Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,27 +3,19 @@ import torch
|
|
3 |
from diffusers import AutoPipelineForText2Image
|
4 |
from io import BytesIO
|
5 |
from generate_propmts import generate_prompt
|
6 |
-
from concurrent.futures import ThreadPoolExecutor
|
7 |
import json
|
8 |
|
9 |
# Load the model once outside of the function
|
10 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
11 |
|
12 |
-
# Helper function to truncate prompt to fit the model's maximum sequence length
|
13 |
-
# def truncate_prompt(prompt, max_length=77):
|
14 |
-
# return prompt[:max_length]
|
15 |
|
16 |
-
def generate_image(
|
17 |
try:
|
18 |
-
prompt = generate_prompt(text, sentence_mapping, character_dict, selected_style)
|
19 |
-
print(f"Generated prompt: {prompt}")
|
20 |
# Truncate prompt if necessary
|
21 |
-
|
22 |
-
# print(f"truncate_prompt: {prompt}")
|
23 |
-
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
24 |
print(f"Model output: {output}")
|
25 |
-
|
26 |
-
print("output.images:", output.images)
|
27 |
# Check if the model returned images
|
28 |
if output.images:
|
29 |
image = output.images[0]
|
@@ -41,18 +33,27 @@ def generate_image(text, sentence_mapping, character_dict, selected_style):
|
|
41 |
def inference(sentence_mapping, character_dict, selected_style):
|
42 |
images = {}
|
43 |
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}')
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
with ThreadPoolExecutor() as executor:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
for paragraph_number, future in futures.items():
|
54 |
-
images[paragraph_number] = future.result()
|
55 |
-
print(f'images:{images}')
|
56 |
return images
|
57 |
|
58 |
gradio_interface = gr.Interface(
|
@@ -60,7 +61,7 @@ gradio_interface = gr.Interface(
|
|
60 |
inputs=[
|
61 |
gr.JSON(label="Sentence Mapping"),
|
62 |
gr.JSON(label="Character Dict"),
|
63 |
-
gr.Dropdown(["
|
64 |
],
|
65 |
outputs="json"
|
66 |
)
|
|
|
3 |
from diffusers import AutoPipelineForText2Image
|
4 |
from io import BytesIO
|
5 |
from generate_propmts import generate_prompt
|
6 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
7 |
import json
|
8 |
|
9 |
# Load the model once outside of the function
|
10 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
11 |
|
|
|
|
|
|
|
12 |
|
13 |
+
def generate_image(prompt):
|
14 |
try:
|
|
|
|
|
15 |
# Truncate prompt if necessary
|
16 |
+
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]
|
|
|
|
|
17 |
print(f"Model output: {output}")
|
18 |
+
|
|
|
19 |
# Check if the model returned images
|
20 |
if output.images:
|
21 |
image = output.images[0]
|
|
|
33 |
def inference(sentence_mapping, character_dict, selected_style):
|
34 |
images = {}
|
35 |
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}')
|
36 |
+
prompts = []
|
37 |
+
|
38 |
+
# Generate prompts for each paragraph
|
39 |
+
for paragraph_number, sentences in sentence_mapping.items():
|
40 |
+
combined_sentence = " ".join(sentences)
|
41 |
+
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
|
42 |
+
prompts.append((paragraph_number, prompt))
|
43 |
+
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
44 |
|
45 |
with ThreadPoolExecutor() as executor:
|
46 |
+
future_to_paragraph = {executor.submit(generate_image, prompt): paragraph_number for paragraph_number, prompt in prompts}
|
47 |
+
|
48 |
+
for future in as_completed(future_to_paragraph):
|
49 |
+
paragraph_number = future_to_paragraph[future]
|
50 |
+
try:
|
51 |
+
image = future.result()
|
52 |
+
if image:
|
53 |
+
images[paragraph_number] = image
|
54 |
+
except Exception as e:
|
55 |
+
print(f"Error processing paragraph {paragraph_number}: {e}")
|
56 |
|
|
|
|
|
|
|
57 |
return images
|
58 |
|
59 |
gradio_interface = gr.Interface(
|
|
|
61 |
inputs=[
|
62 |
gr.JSON(label="Sentence Mapping"),
|
63 |
gr.JSON(label="Character Dict"),
|
64 |
+
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
|
65 |
],
|
66 |
outputs="json"
|
67 |
)
|