File size: 9,034 Bytes
7c89d3a
 
 
 
 
d7ca9c8
eeb4ef5
d7ca9c8
b22f2c5
7c89d3a
b22f2c5
 
7c89d3a
 
 
b22f2c5
 
 
 
a495ef9
f6b2853
7c89d3a
 
b22f2c5
7c89d3a
 
b22f2c5
eeb4ef5
 
 
 
7c89d3a
b22f2c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6b2853
 
d7ca9c8
 
 
 
 
7c89d3a
877f3e5
7c89d3a
f6b2853
7c89d3a
 
 
 
 
 
f6b2853
 
 
 
877f3e5
7c89d3a
 
2139aa8
7c89d3a
2139aa8
7c89d3a
2139aa8
 
 
7c89d3a
 
f6b2853
7c89d3a
 
b000100
 
 
 
 
 
 
 
b22f2c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6b2853
b22f2c5
 
 
7c89d3a
83686fb
 
7c89d3a
b22f2c5
83686fb
b22f2c5
 
 
83686fb
 
b22f2c5
83686fb
 
b22f2c5
7c89d3a
bfecb5b
f6b2853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b22f2c5
83686fb
 
7c89d3a
b22f2c5
 
 
83686fb
 
 
b22f2c5
 
83686fb
b22f2c5
7c89d3a
 
877f3e5
 
7c89d3a
 
0269eb6
 
 
 
e629ed6
0269eb6
 
 
 
 
 
 
ec512c8
27b77c5
 
 
 
ec512c8
 
 
cea71a2
 
 
 
 
 
 
 
 
e629ed6
cea71a2
 
 
 
 
ec512c8
 
 
 
 
d7ca9c8
ec512c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd0930
ec512c8
 
 
 
 
 
 
 
 
0fd0930
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import torch
import gradio as gr
import spaces
from PIL import Image
from diffusers import DiffusionPipeline
from huggingface_hub import snapshot_download
from test_ccsr_tile import load_pipeline
import argparse
from accelerate import Accelerator

# Initialize global variables
pipeline = None
generator = None
accelerator = None

class Args:
    def __init__(self, **kwargs):
        self.__dict__.update(kwargs)

# Initialize models at startup
@spaces.GPU
def initialize_models():
    global pipeline, generator, accelerator
    
    try:
        # Download model repository
        model_path = snapshot_download(
            repo_id="NightRaven109/CCSRModels",
            token=os.environ['Read2']
        )

        # Set up default arguments
        args = Args(
            pretrained_model_path=os.path.join(model_path, "stable-diffusion-2-1-base"),
            controlnet_model_path=os.path.join(model_path, "Controlnet"),
            vae_model_path=os.path.join(model_path, "vae"),
            mixed_precision="fp16",
            tile_vae=False,
            sample_method="ddpm",
            vae_encoder_tile_size=1024,
            vae_decoder_tile_size=224
        )

        # Initialize accelerator
        accelerator = Accelerator(
            mixed_precision=args.mixed_precision,
        )

        # Load pipeline
        pipeline = load_pipeline(args, accelerator, enable_xformers_memory_efficient_attention=False)
        
        # Ensure all models are in eval mode and on CUDA
        pipeline = pipeline.to("cuda")
        pipeline.unet.eval()
        pipeline.controlnet.eval()
        pipeline.vae.eval()
        pipeline.text_encoder.eval()
        
        # Initialize generator
        generator = torch.Generator("cuda")
        
        print("Models initialized and ready!")
        return True

    except Exception as e:
        print(f"Error initializing models: {str(e)}")
        return False

# Load models at module level
print("Initializing models...")
initialize_models()

@spaces.GPU(processing_timeout=180)
def process_image(
    input_image,
    prompt="clean, texture, high-resolution, 8k",
    negative_prompt="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
    guidance_scale=2.5,
    conditioning_scale=1.0,
    num_inference_steps=6,
    seed=None,
    upscale_factor=4,
    color_fix_method="adain"
):
    global pipeline, generator
    
    try:
        # Handle seed
        if seed is not None and seed != 0:  # Only set seed if it's provided and not 0
            if generator is None:
                generator = torch.Generator("cuda")
            generator.manual_seed(seed)
        elif generator is None:
            generator = torch.Generator("cuda")

        # Create args object with all necessary parameters
        args = Args(
            added_prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            conditioning_scale=conditioning_scale,
            num_inference_steps=num_inference_steps,
            seed=seed,
            upscale=upscale_factor,
            process_size=512,
            align_method=color_fix_method,
            t_max=0.6666,
            t_min=0.0,
            tile_diffusion=False,
            tile_diffusion_size=None,
            tile_diffusion_stride=None,
            start_steps=999,
            start_point='lr',
            use_vae_encode_condition=True,
            sample_times=1
        )

        # Process input image
        validation_image = Image.fromarray(input_image)
        ori_width, ori_height = validation_image.size
        
        # Resize logic
        resize_flag = False
        if ori_width < args.process_size//args.upscale or ori_height < args.process_size//args.upscale:
            scale = (args.process_size//args.upscale)/min(ori_width, ori_height)
            validation_image = validation_image.resize((round(scale*ori_width), round(scale*ori_height)))
            resize_flag = True

        validation_image = validation_image.resize((validation_image.size[0]*args.upscale, validation_image.size[1]*args.upscale))
        validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
        width, height = validation_image.size

        # Generate image
        with torch.no_grad():
            inference_time, output = pipeline(
                args.t_max,
                args.t_min,
                args.tile_diffusion,
                args.tile_diffusion_size,
                args.tile_diffusion_stride,
                args.added_prompt,
                validation_image,
                num_inference_steps=args.num_inference_steps,
                generator=generator,
                height=height,
                width=width,
                guidance_scale=args.guidance_scale,
                negative_prompt=args.negative_prompt,
                conditioning_scale=args.conditioning_scale,
                start_steps=args.start_steps,
                start_point=args.start_point,
                use_vae_encode_condition=True,
            )

        image = output.images[0]

        # Apply color fixing if specified
        if args.align_method != "none":
            from myutils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
            fix_func = wavelet_color_fix if args.align_method == "wavelet" else adain_color_fix
            image = fix_func(image, validation_image)
            
        if resize_flag:
            image = image.resize((ori_width*args.upscale, ori_height*args.upscale))

        return image

    except Exception as e:
        print(f"Error processing image: {str(e)}")
        import traceback
        traceback.print_exc()
        return None

# Define default values
DEFAULT_VALUES = {
    "prompt": "clean, texture, high-resolution, 8k",
    "negative_prompt": "blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
    "guidance_scale": 3,
    "conditioning_scale": 1.0,
    "num_steps": 6,
    "seed": None,
    "upscale_factor": 4,
    "color_fix_method": "adain"
}

# Create interface components
with gr.Blocks(title="Controllable Conditional Super-Resolution") as demo:
    gr.Markdown("## Controllable Conditional Super-Resolution")
    gr.Markdown("Upload an image to enhance its resolution using CCSR.")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image")
            
            # Put all parameters in an accordion/dropdown
            with gr.Accordion("Advanced Options", open=False):
                prompt = gr.Textbox(label="Prompt", value=DEFAULT_VALUES["prompt"])
                negative_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_VALUES["negative_prompt"])
                guidance_scale = gr.Slider(minimum=1.0, maximum=20.0, value=DEFAULT_VALUES["guidance_scale"], label="Guidance Scale")
                conditioning_scale = gr.Slider(minimum=0.1, maximum=2.0, value=DEFAULT_VALUES["conditioning_scale"], label="Conditioning Scale")
                num_steps = gr.Slider(minimum=1, maximum=50, value=DEFAULT_VALUES["num_steps"], step=1, label="Number of Steps")
                seed = gr.Number(label="Seed", value=DEFAULT_VALUES["seed"])
                upscale_factor = gr.Slider(minimum=1, maximum=8, value=DEFAULT_VALUES["upscale_factor"], step=1, label="Upscale Factor")
                color_fix_method = gr.Dropdown(
                    choices=["none", "wavelet", "adain"], 
                    label="Color Fix Method", 
                    value=DEFAULT_VALUES["color_fix_method"]
                )
            
            # Add buttons
            with gr.Row():
                clear_btn = gr.Button("Clear")
                submit_btn = gr.Button("Submit", variant="primary")

        with gr.Column():
            output_image = gr.Image(label="Generated Image")

    # Define submit action
    submit_btn.click(
        fn=process_image,
        inputs=[
            input_image, prompt, negative_prompt, guidance_scale,
            conditioning_scale, num_steps, seed, upscale_factor,
            color_fix_method
        ],
        outputs=output_image
    )

    # Define clear action that resets to default values
    def reset_to_defaults():
        return [
            None,  # input_image
            DEFAULT_VALUES["prompt"],
            DEFAULT_VALUES["negative_prompt"],
            DEFAULT_VALUES["guidance_scale"],
            DEFAULT_VALUES["conditioning_scale"],
            DEFAULT_VALUES["num_steps"],
            DEFAULT_VALUES["seed"],
            DEFAULT_VALUES["upscale_factor"],
            DEFAULT_VALUES["color_fix_method"]
        ]

    clear_btn.click(
        fn=reset_to_defaults,
        inputs=None,
        outputs=[
            input_image, prompt, negative_prompt, guidance_scale,
            conditioning_scale, num_steps, seed, upscale_factor,
            color_fix_method
        ]
    )

if __name__ == "__main__":
    demo.launch()