Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import spaces
|
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
import safetensors.torch
|
8 |
-
from huggingface_hub import
|
9 |
from accelerate import Accelerator
|
10 |
from accelerate.utils import set_seed
|
11 |
from diffusers import (
|
@@ -22,10 +22,11 @@ from myutils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
|
|
22 |
pipeline = None
|
23 |
generator = None
|
24 |
accelerator = None
|
|
|
25 |
|
26 |
@spaces.GPU
|
27 |
def initialize_models():
|
28 |
-
global pipeline, generator, accelerator
|
29 |
|
30 |
# Initialize accelerator
|
31 |
accelerator = Accelerator(
|
@@ -34,50 +35,41 @@ def initialize_models():
|
|
34 |
)
|
35 |
|
36 |
try:
|
37 |
-
# Download
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
scheduler = DDPMScheduler.from_pretrained(
|
39 |
-
"
|
40 |
-
subfolder="stable-diffusion-2-1-base/scheduler",
|
41 |
-
use_auth_token=os.environ['Read2']
|
42 |
)
|
43 |
|
44 |
text_encoder = CLIPTextModel.from_pretrained(
|
45 |
-
"
|
46 |
-
subfolder="stable-diffusion-2-1-base/text_encoder",
|
47 |
-
use_auth_token=os.environ['Read2']
|
48 |
)
|
49 |
|
50 |
tokenizer = CLIPTokenizer.from_pretrained(
|
51 |
-
"
|
52 |
-
subfolder="stable-diffusion-2-1-base/tokenizer",
|
53 |
-
use_auth_token=os.environ['Read2']
|
54 |
)
|
55 |
|
56 |
feature_extractor = CLIPImageProcessor.from_pretrained(
|
57 |
-
"
|
58 |
-
subfolder="stable-diffusion-2-1-base/feature_extractor",
|
59 |
-
use_auth_token=os.environ['Read2']
|
60 |
)
|
61 |
|
62 |
unet = UNet2DConditionModel.from_pretrained(
|
63 |
-
"
|
64 |
-
subfolder="stable-diffusion-2-1-base/unet",
|
65 |
-
use_auth_token=os.environ['Read2']
|
66 |
)
|
67 |
|
68 |
controlnet = ControlNetModel.from_pretrained(
|
69 |
-
"
|
70 |
-
subfolder="Controlnet",
|
71 |
-
use_auth_token=os.environ['Read2']
|
72 |
)
|
73 |
|
74 |
vae = AutoencoderKL.from_pretrained(
|
75 |
-
"
|
76 |
-
subfolder="vae",
|
77 |
-
use_auth_token=os.environ['Read2']
|
78 |
)
|
79 |
|
80 |
-
# Rest of the code remains the same
|
81 |
# Freeze models
|
82 |
for model in [vae, text_encoder, unet, controlnet]:
|
83 |
model.requires_grad_(False)
|
|
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
import safetensors.torch
|
8 |
+
from huggingface_hub import snapshot_download
|
9 |
from accelerate import Accelerator
|
10 |
from accelerate.utils import set_seed
|
11 |
from diffusers import (
|
|
|
22 |
pipeline = None
|
23 |
generator = None
|
24 |
accelerator = None
|
25 |
+
model_path = None
|
26 |
|
27 |
@spaces.GPU
|
28 |
def initialize_models():
|
29 |
+
global pipeline, generator, accelerator, model_path
|
30 |
|
31 |
# Initialize accelerator
|
32 |
accelerator = Accelerator(
|
|
|
35 |
)
|
36 |
|
37 |
try:
|
38 |
+
# Download the entire repository
|
39 |
+
model_path = snapshot_download(
|
40 |
+
repo_id="NightRaven109/CCSRModels",
|
41 |
+
token=os.environ['Read2']
|
42 |
+
)
|
43 |
+
|
44 |
+
# Load models from local directory
|
45 |
scheduler = DDPMScheduler.from_pretrained(
|
46 |
+
os.path.join(model_path, "stable-diffusion-2-1-base/scheduler")
|
|
|
|
|
47 |
)
|
48 |
|
49 |
text_encoder = CLIPTextModel.from_pretrained(
|
50 |
+
os.path.join(model_path, "stable-diffusion-2-1-base/text_encoder")
|
|
|
|
|
51 |
)
|
52 |
|
53 |
tokenizer = CLIPTokenizer.from_pretrained(
|
54 |
+
os.path.join(model_path, "stable-diffusion-2-1-base/tokenizer")
|
|
|
|
|
55 |
)
|
56 |
|
57 |
feature_extractor = CLIPImageProcessor.from_pretrained(
|
58 |
+
os.path.join(model_path, "stable-diffusion-2-1-base/feature_extractor")
|
|
|
|
|
59 |
)
|
60 |
|
61 |
unet = UNet2DConditionModel.from_pretrained(
|
62 |
+
os.path.join(model_path, "stable-diffusion-2-1-base/unet")
|
|
|
|
|
63 |
)
|
64 |
|
65 |
controlnet = ControlNetModel.from_pretrained(
|
66 |
+
os.path.join(model_path, "Controlnet")
|
|
|
|
|
67 |
)
|
68 |
|
69 |
vae = AutoencoderKL.from_pretrained(
|
70 |
+
os.path.join(model_path, "vae")
|
|
|
|
|
71 |
)
|
72 |
|
|
|
73 |
# Freeze models
|
74 |
for model in [vae, text_encoder, unet, controlnet]:
|
75 |
model.requires_grad_(False)
|