Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,6 +24,73 @@ generator = None
|
|
| 24 |
accelerator = None
|
| 25 |
model_path = None
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
@spaces.GPU
|
| 28 |
def initialize_models():
|
| 29 |
global pipeline, generator, accelerator, model_path
|
|
@@ -41,62 +108,8 @@ def initialize_models():
|
|
| 41 |
token=os.environ['Read2']
|
| 42 |
)
|
| 43 |
|
| 44 |
-
# Load
|
| 45 |
-
|
| 46 |
-
os.path.join(model_path, "stable-diffusion-2-1-base/scheduler")
|
| 47 |
-
)
|
| 48 |
-
|
| 49 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
| 50 |
-
os.path.join(model_path, "stable-diffusion-2-1-base/text_encoder")
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
-
tokenizer = CLIPTokenizer.from_pretrained(
|
| 54 |
-
os.path.join(model_path, "stable-diffusion-2-1-base/tokenizer")
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
-
feature_extractor = CLIPImageProcessor.from_pretrained(
|
| 58 |
-
os.path.join(model_path, "stable-diffusion-2-1-base/feature_extractor")
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
unet = UNet2DConditionModel.from_pretrained(
|
| 62 |
-
os.path.join(model_path, "stable-diffusion-2-1-base/unet")
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 66 |
-
os.path.join(model_path, "Controlnet")
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
vae = AutoencoderKL.from_pretrained(
|
| 70 |
-
os.path.join(model_path, "vae")
|
| 71 |
-
)
|
| 72 |
-
|
| 73 |
-
# Freeze models
|
| 74 |
-
for model in [vae, text_encoder, unet, controlnet]:
|
| 75 |
-
model.requires_grad_(False)
|
| 76 |
-
|
| 77 |
-
# Initialize pipeline
|
| 78 |
-
pipeline = StableDiffusionControlNetPipeline(
|
| 79 |
-
vae=vae,
|
| 80 |
-
text_encoder=text_encoder,
|
| 81 |
-
tokenizer=tokenizer,
|
| 82 |
-
feature_extractor=feature_extractor,
|
| 83 |
-
unet=unet,
|
| 84 |
-
controlnet=controlnet,
|
| 85 |
-
scheduler=scheduler,
|
| 86 |
-
safety_checker=None,
|
| 87 |
-
requires_safety_checker=False,
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
# Get weight dtype based on mixed precision
|
| 91 |
-
weight_dtype = torch.float32
|
| 92 |
-
if accelerator.mixed_precision == "fp16":
|
| 93 |
-
weight_dtype = torch.float16
|
| 94 |
-
elif accelerator.mixed_precision == "bf16":
|
| 95 |
-
weight_dtype = torch.bfloat16
|
| 96 |
-
|
| 97 |
-
# Move models to device with appropriate dtype
|
| 98 |
-
for model in [text_encoder, vae, unet, controlnet]:
|
| 99 |
-
model.to(accelerator.device, dtype=weight_dtype)
|
| 100 |
|
| 101 |
# Initialize generator
|
| 102 |
generator = torch.Generator(device=accelerator.device)
|
|
@@ -149,6 +162,8 @@ def process_image(
|
|
| 149 |
t_max=0.6666,
|
| 150 |
t_min=0.0,
|
| 151 |
tile_diffusion=False,
|
|
|
|
|
|
|
| 152 |
added_prompt=prompt,
|
| 153 |
image=input_pil,
|
| 154 |
num_inference_steps=num_inference_steps,
|
|
@@ -158,6 +173,9 @@ def process_image(
|
|
| 158 |
guidance_scale=guidance_scale,
|
| 159 |
negative_prompt=negative_prompt,
|
| 160 |
conditioning_scale=conditioning_scale,
|
|
|
|
|
|
|
|
|
|
| 161 |
)
|
| 162 |
|
| 163 |
generated_image = output.images[0]
|
|
@@ -193,11 +211,7 @@ iface = gr.Interface(
|
|
| 193 |
],
|
| 194 |
outputs=gr.Image(label="Generated Image"),
|
| 195 |
title="Controllable Conditional Super-Resolution",
|
| 196 |
-
description="Upload an image to enhance its resolution using CCSR."
|
| 197 |
-
examples=[
|
| 198 |
-
["example1.jpg", "clean, sharp, detailed", "blurry, noise", 1.0, 1.0, 20, 42, 2, "adain"],
|
| 199 |
-
["example2.jpg", "high-resolution, pristine", "artifacts, pixelated", 1.5, 1.0, 30, 123, 2, "wavelet"],
|
| 200 |
-
]
|
| 201 |
)
|
| 202 |
|
| 203 |
if __name__ == "__main__":
|
|
|
|
| 24 |
accelerator = None
|
| 25 |
model_path = None
|
| 26 |
|
| 27 |
+
def load_pipeline(accelerator, model_path):
|
| 28 |
+
# Load scheduler
|
| 29 |
+
scheduler = DDPMScheduler.from_pretrained(
|
| 30 |
+
model_path,
|
| 31 |
+
subfolder="stable-diffusion-2-1-base/scheduler"
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# Load models
|
| 35 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
| 36 |
+
model_path,
|
| 37 |
+
subfolder="stable-diffusion-2-1-base/text_encoder"
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
| 41 |
+
model_path,
|
| 42 |
+
subfolder="stable-diffusion-2-1-base/tokenizer"
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
feature_extractor = CLIPImageProcessor.from_pretrained(
|
| 46 |
+
os.path.join(model_path, "stable-diffusion-2-1-base/feature_extractor")
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 50 |
+
model_path,
|
| 51 |
+
subfolder="stable-diffusion-2-1-base/unet"
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 55 |
+
model_path,
|
| 56 |
+
subfolder="Controlnet"
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
vae = AutoencoderKL.from_pretrained(
|
| 60 |
+
model_path,
|
| 61 |
+
subfolder="vae"
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Freeze models
|
| 65 |
+
for model in [vae, text_encoder, unet, controlnet]:
|
| 66 |
+
model.requires_grad_(False)
|
| 67 |
+
|
| 68 |
+
# Initialize pipeline
|
| 69 |
+
pipeline = StableDiffusionControlNetPipeline(
|
| 70 |
+
vae=vae,
|
| 71 |
+
text_encoder=text_encoder,
|
| 72 |
+
tokenizer=tokenizer,
|
| 73 |
+
feature_extractor=feature_extractor,
|
| 74 |
+
unet=unet,
|
| 75 |
+
controlnet=controlnet,
|
| 76 |
+
scheduler=scheduler,
|
| 77 |
+
safety_checker=None,
|
| 78 |
+
requires_safety_checker=False,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Set weight dtype based on mixed precision
|
| 82 |
+
weight_dtype = torch.float32
|
| 83 |
+
if accelerator.mixed_precision == "fp16":
|
| 84 |
+
weight_dtype = torch.float16
|
| 85 |
+
elif accelerator.mixed_precision == "bf16":
|
| 86 |
+
weight_dtype = torch.bfloat16
|
| 87 |
+
|
| 88 |
+
# Move models to accelerator device with appropriate dtype
|
| 89 |
+
for model in [text_encoder, vae, unet, controlnet]:
|
| 90 |
+
model.to(accelerator.device, dtype=weight_dtype)
|
| 91 |
+
|
| 92 |
+
return pipeline
|
| 93 |
+
|
| 94 |
@spaces.GPU
|
| 95 |
def initialize_models():
|
| 96 |
global pipeline, generator, accelerator, model_path
|
|
|
|
| 108 |
token=os.environ['Read2']
|
| 109 |
)
|
| 110 |
|
| 111 |
+
# Load pipeline using the original loading function
|
| 112 |
+
pipeline = load_pipeline(accelerator, model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
# Initialize generator
|
| 115 |
generator = torch.Generator(device=accelerator.device)
|
|
|
|
| 162 |
t_max=0.6666,
|
| 163 |
t_min=0.0,
|
| 164 |
tile_diffusion=False,
|
| 165 |
+
tile_diffusion_size=512,
|
| 166 |
+
tile_diffusion_stride=256,
|
| 167 |
added_prompt=prompt,
|
| 168 |
image=input_pil,
|
| 169 |
num_inference_steps=num_inference_steps,
|
|
|
|
| 173 |
guidance_scale=guidance_scale,
|
| 174 |
negative_prompt=negative_prompt,
|
| 175 |
conditioning_scale=conditioning_scale,
|
| 176 |
+
start_steps=999,
|
| 177 |
+
start_point='lr',
|
| 178 |
+
use_vae_encode_condition=False
|
| 179 |
)
|
| 180 |
|
| 181 |
generated_image = output.images[0]
|
|
|
|
| 211 |
],
|
| 212 |
outputs=gr.Image(label="Generated Image"),
|
| 213 |
title="Controllable Conditional Super-Resolution",
|
| 214 |
+
description="Upload an image to enhance its resolution using CCSR."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
)
|
| 216 |
|
| 217 |
if __name__ == "__main__":
|