Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files- app.py +212 -0
- requirements.txt +15 -14
app.py
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import spaces
|
| 5 |
+
import numpy as np
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import safetensors.torch
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
from accelerate import Accelerator
|
| 10 |
+
from accelerate.utils import set_seed
|
| 11 |
+
from diffusers import (
|
| 12 |
+
AutoencoderKL,
|
| 13 |
+
DDPMScheduler,
|
| 14 |
+
UNet2DConditionModel,
|
| 15 |
+
)
|
| 16 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
|
| 17 |
+
from models.controlnet import ControlNetModel
|
| 18 |
+
from pipelines.pipeline_ccsr import StableDiffusionControlNetPipeline
|
| 19 |
+
from myutils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
|
| 20 |
+
|
| 21 |
+
# Initialize global variables for models
|
| 22 |
+
pipeline = None
|
| 23 |
+
generator = None
|
| 24 |
+
accelerator = None
|
| 25 |
+
|
| 26 |
+
@spaces.GPU
|
| 27 |
+
def initialize_models():
|
| 28 |
+
global pipeline, generator, accelerator
|
| 29 |
+
|
| 30 |
+
# Initialize accelerator
|
| 31 |
+
accelerator = Accelerator(
|
| 32 |
+
mixed_precision="fp16",
|
| 33 |
+
gradient_accumulation_steps=1
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
# Download and load models with authentication token
|
| 38 |
+
scheduler = DDPMScheduler.from_pretrained(
|
| 39 |
+
"NightRaven109/CCSRModels",
|
| 40 |
+
subfolder="stable-diffusion-2-1-base/scheduler",
|
| 41 |
+
use_auth_token=os.environ['Read']
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
| 45 |
+
"NightRaven109/CCSRModels",
|
| 46 |
+
subfolder="stable-diffusion-2-1-base/text_encoder",
|
| 47 |
+
use_auth_token=os.environ['Read']
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
| 51 |
+
"NightRaven109/CCSRModels",
|
| 52 |
+
subfolder="stable-diffusion-2-1-base/tokenizer",
|
| 53 |
+
use_auth_token=os.environ['Read']
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
feature_extractor = CLIPImageProcessor.from_pretrained(
|
| 57 |
+
"NightRaven109/CCSRModels",
|
| 58 |
+
subfolder="stable-diffusion-2-1-base/feature_extractor",
|
| 59 |
+
use_auth_token=os.environ['Read']
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 63 |
+
"NightRaven109/CCSRModels",
|
| 64 |
+
subfolder="stable-diffusion-2-1-base/unet",
|
| 65 |
+
use_auth_token=os.environ['Read']
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 69 |
+
"NightRaven109/CCSRModels",
|
| 70 |
+
subfolder="Controlnet",
|
| 71 |
+
use_auth_token=os.environ['Read']
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
vae = AutoencoderKL.from_pretrained(
|
| 75 |
+
"NightRaven109/CCSRModels",
|
| 76 |
+
subfolder="vae",
|
| 77 |
+
use_auth_token=os.environ['Read']
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# Rest of the code remains the same
|
| 81 |
+
# Freeze models
|
| 82 |
+
for model in [vae, text_encoder, unet, controlnet]:
|
| 83 |
+
model.requires_grad_(False)
|
| 84 |
+
|
| 85 |
+
# Initialize pipeline
|
| 86 |
+
pipeline = StableDiffusionControlNetPipeline(
|
| 87 |
+
vae=vae,
|
| 88 |
+
text_encoder=text_encoder,
|
| 89 |
+
tokenizer=tokenizer,
|
| 90 |
+
feature_extractor=feature_extractor,
|
| 91 |
+
unet=unet,
|
| 92 |
+
controlnet=controlnet,
|
| 93 |
+
scheduler=scheduler,
|
| 94 |
+
safety_checker=None,
|
| 95 |
+
requires_safety_checker=False,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Get weight dtype based on mixed precision
|
| 99 |
+
weight_dtype = torch.float32
|
| 100 |
+
if accelerator.mixed_precision == "fp16":
|
| 101 |
+
weight_dtype = torch.float16
|
| 102 |
+
elif accelerator.mixed_precision == "bf16":
|
| 103 |
+
weight_dtype = torch.bfloat16
|
| 104 |
+
|
| 105 |
+
# Move models to device with appropriate dtype
|
| 106 |
+
for model in [text_encoder, vae, unet, controlnet]:
|
| 107 |
+
model.to(accelerator.device, dtype=weight_dtype)
|
| 108 |
+
|
| 109 |
+
# Initialize generator
|
| 110 |
+
generator = torch.Generator(device=accelerator.device)
|
| 111 |
+
|
| 112 |
+
return True
|
| 113 |
+
|
| 114 |
+
except Exception as e:
|
| 115 |
+
print(f"Error initializing models: {str(e)}")
|
| 116 |
+
return False
|
| 117 |
+
|
| 118 |
+
@spaces.GPU
|
| 119 |
+
def process_image(
|
| 120 |
+
input_image,
|
| 121 |
+
prompt="clean, high-resolution, 8k",
|
| 122 |
+
negative_prompt="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
|
| 123 |
+
guidance_scale=1.0,
|
| 124 |
+
conditioning_scale=1.0,
|
| 125 |
+
num_inference_steps=20,
|
| 126 |
+
seed=42,
|
| 127 |
+
upscale_factor=2,
|
| 128 |
+
color_fix_method="adain"
|
| 129 |
+
):
|
| 130 |
+
global pipeline, generator, accelerator
|
| 131 |
+
|
| 132 |
+
if pipeline is None:
|
| 133 |
+
if not initialize_models():
|
| 134 |
+
return None
|
| 135 |
+
|
| 136 |
+
try:
|
| 137 |
+
# Set seed
|
| 138 |
+
if seed is not None:
|
| 139 |
+
generator.manual_seed(seed)
|
| 140 |
+
|
| 141 |
+
# Process input image
|
| 142 |
+
input_pil = Image.fromarray(input_image)
|
| 143 |
+
width, height = input_pil.size
|
| 144 |
+
|
| 145 |
+
# Resize image
|
| 146 |
+
target_width = width * upscale_factor
|
| 147 |
+
target_height = height * upscale_factor
|
| 148 |
+
target_width = target_width - (target_width % 8)
|
| 149 |
+
target_height = target_height - (target_height % 8)
|
| 150 |
+
|
| 151 |
+
# Move pipeline to GPU for processing
|
| 152 |
+
pipeline.to(accelerator.device)
|
| 153 |
+
|
| 154 |
+
# Generate image
|
| 155 |
+
with torch.no_grad():
|
| 156 |
+
output = pipeline(
|
| 157 |
+
t_max=0.6666,
|
| 158 |
+
t_min=0.0,
|
| 159 |
+
tile_diffusion=False,
|
| 160 |
+
added_prompt=prompt,
|
| 161 |
+
image=input_pil,
|
| 162 |
+
num_inference_steps=num_inference_steps,
|
| 163 |
+
generator=generator,
|
| 164 |
+
height=target_height,
|
| 165 |
+
width=target_width,
|
| 166 |
+
guidance_scale=guidance_scale,
|
| 167 |
+
negative_prompt=negative_prompt,
|
| 168 |
+
conditioning_scale=conditioning_scale,
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
generated_image = output.images[0]
|
| 172 |
+
|
| 173 |
+
# Apply color fixing if specified
|
| 174 |
+
if color_fix_method != "none":
|
| 175 |
+
fix_func = wavelet_color_fix if color_fix_method == "wavelet" else adain_color_fix
|
| 176 |
+
generated_image = fix_func(generated_image, input_pil)
|
| 177 |
+
|
| 178 |
+
# Move pipeline back to CPU
|
| 179 |
+
pipeline.to("cpu")
|
| 180 |
+
torch.cuda.empty_cache()
|
| 181 |
+
|
| 182 |
+
return generated_image
|
| 183 |
+
|
| 184 |
+
except Exception as e:
|
| 185 |
+
print(f"Error processing image: {str(e)}")
|
| 186 |
+
return None
|
| 187 |
+
|
| 188 |
+
# Create Gradio interface
|
| 189 |
+
iface = gr.Interface(
|
| 190 |
+
fn=process_image,
|
| 191 |
+
inputs=[
|
| 192 |
+
gr.Image(label="Input Image"),
|
| 193 |
+
gr.Textbox(label="Prompt", value="clean, high-resolution, 8k"),
|
| 194 |
+
gr.Textbox(label="Negative Prompt", value="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed"),
|
| 195 |
+
gr.Slider(minimum=1.0, maximum=20.0, value=1.0, label="Guidance Scale"),
|
| 196 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, label="Conditioning Scale"),
|
| 197 |
+
gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Steps"),
|
| 198 |
+
gr.Number(label="Seed", value=42),
|
| 199 |
+
gr.Slider(minimum=1, maximum=4, value=2, step=1, label="Upscale Factor"),
|
| 200 |
+
gr.Radio(["none", "wavelet", "adain"], label="Color Fix Method", value="adain"),
|
| 201 |
+
],
|
| 202 |
+
outputs=gr.Image(label="Generated Image"),
|
| 203 |
+
title="Controllable Conditional Super-Resolution",
|
| 204 |
+
description="Upload an image to enhance its resolution using CCSR.",
|
| 205 |
+
examples=[
|
| 206 |
+
["example1.jpg", "clean, sharp, detailed", "blurry, noise", 1.0, 1.0, 20, 42, 2, "adain"],
|
| 207 |
+
["example2.jpg", "high-resolution, pristine", "artifacts, pixelated", 1.5, 1.0, 30, 123, 2, "wavelet"],
|
| 208 |
+
]
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
if __name__ == "__main__":
|
| 212 |
+
iface.launch()
|
requirements.txt
CHANGED
|
@@ -1,14 +1,15 @@
|
|
| 1 |
-
diffusers==0.21.0
|
| 2 |
-
torch==2.0.1
|
| 3 |
-
pytorch_lightning
|
| 4 |
-
accelerate==1.2.0
|
| 5 |
-
transformers==4.25.0
|
| 6 |
-
xformers==0.0.22
|
| 7 |
-
loralib
|
| 8 |
-
fairscale==0.4.13
|
| 9 |
-
basicsr==1.4.2
|
| 10 |
-
timm==0.9.5
|
| 11 |
-
pydantic==1.10.11
|
| 12 |
-
huggingface_hub==0.25.2
|
| 13 |
-
opencv-python-headless
|
| 14 |
-
lpips
|
|
|
|
|
|
| 1 |
+
diffusers==0.21.0
|
| 2 |
+
torch==2.0.1
|
| 3 |
+
pytorch_lightning
|
| 4 |
+
accelerate==1.2.0
|
| 5 |
+
transformers==4.25.0
|
| 6 |
+
xformers==0.0.22
|
| 7 |
+
loralib
|
| 8 |
+
fairscale==0.4.13
|
| 9 |
+
basicsr==1.4.2
|
| 10 |
+
timm==0.9.5
|
| 11 |
+
pydantic==1.10.11
|
| 12 |
+
huggingface_hub==0.25.2
|
| 13 |
+
opencv-python-headless
|
| 14 |
+
lpips
|
| 15 |
+
einops
|