Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,7 @@ class Args:
|
|
18 |
def __init__(self, **kwargs):
|
19 |
self.__dict__.update(kwargs)
|
20 |
|
|
|
21 |
@spaces.GPU
|
22 |
def initialize_models():
|
23 |
global pipeline, generator, accelerator
|
@@ -49,24 +50,27 @@ def initialize_models():
|
|
49 |
# Load pipeline
|
50 |
pipeline = load_pipeline(args, accelerator, enable_xformers_memory_efficient_attention=False)
|
51 |
|
52 |
-
# Ensure all models are in eval mode
|
|
|
53 |
pipeline.unet.eval()
|
54 |
pipeline.controlnet.eval()
|
55 |
pipeline.vae.eval()
|
56 |
pipeline.text_encoder.eval()
|
57 |
|
58 |
-
# Move pipeline to CUDA
|
59 |
-
pipeline = pipeline.to("cuda")
|
60 |
-
|
61 |
# Initialize generator
|
62 |
generator = torch.Generator("cuda")
|
63 |
|
|
|
64 |
return True
|
65 |
|
66 |
except Exception as e:
|
67 |
print(f"Error initializing models: {str(e)}")
|
68 |
return False
|
69 |
|
|
|
|
|
|
|
|
|
70 |
@spaces.GPU(processing_timeout=180)
|
71 |
def process_image(
|
72 |
input_image,
|
@@ -79,14 +83,9 @@ def process_image(
|
|
79 |
upscale_factor=4,
|
80 |
color_fix_method="adain"
|
81 |
):
|
82 |
-
global pipeline, generator
|
83 |
|
84 |
try:
|
85 |
-
# Initialize models if not already done
|
86 |
-
if pipeline is None:
|
87 |
-
if not initialize_models():
|
88 |
-
return None
|
89 |
-
|
90 |
# Create args object with all necessary parameters
|
91 |
args = Args(
|
92 |
added_prompt=prompt,
|
@@ -105,7 +104,7 @@ def process_image(
|
|
105 |
tile_diffusion_stride=None,
|
106 |
start_steps=999,
|
107 |
start_point='lr',
|
108 |
-
use_vae_encode_condition=True,
|
109 |
sample_times=1
|
110 |
)
|
111 |
|
@@ -128,42 +127,27 @@ def process_image(
|
|
128 |
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
|
129 |
width, height = validation_image.size
|
130 |
|
131 |
-
# Ensure pipeline is on CUDA and in eval mode
|
132 |
-
pipeline = pipeline.to("cuda")
|
133 |
-
pipeline.unet.eval()
|
134 |
-
pipeline.controlnet.eval()
|
135 |
-
pipeline.vae.eval()
|
136 |
-
pipeline.text_encoder.eval()
|
137 |
-
|
138 |
# Generate image
|
139 |
with torch.no_grad():
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
conditioning_scale=args.conditioning_scale,
|
160 |
-
start_steps=args.start_steps,
|
161 |
-
start_point=args.start_point,
|
162 |
-
use_vae_encode_condition=True, # Set to True
|
163 |
-
)
|
164 |
-
except Exception as e:
|
165 |
-
print(f"Pipeline execution error: {str(e)}")
|
166 |
-
raise
|
167 |
|
168 |
image = output.images[0]
|
169 |
|
@@ -184,7 +168,6 @@ def process_image(
|
|
184 |
traceback.print_exc()
|
185 |
return None
|
186 |
|
187 |
-
|
188 |
# Define default values
|
189 |
DEFAULT_VALUES = {
|
190 |
"prompt": "clean, texture, high-resolution, 8k",
|
|
|
18 |
def __init__(self, **kwargs):
|
19 |
self.__dict__.update(kwargs)
|
20 |
|
21 |
+
# Initialize models at startup
|
22 |
@spaces.GPU
|
23 |
def initialize_models():
|
24 |
global pipeline, generator, accelerator
|
|
|
50 |
# Load pipeline
|
51 |
pipeline = load_pipeline(args, accelerator, enable_xformers_memory_efficient_attention=False)
|
52 |
|
53 |
+
# Ensure all models are in eval mode and on CUDA
|
54 |
+
pipeline = pipeline.to("cuda")
|
55 |
pipeline.unet.eval()
|
56 |
pipeline.controlnet.eval()
|
57 |
pipeline.vae.eval()
|
58 |
pipeline.text_encoder.eval()
|
59 |
|
|
|
|
|
|
|
60 |
# Initialize generator
|
61 |
generator = torch.Generator("cuda")
|
62 |
|
63 |
+
print("Models initialized and ready!")
|
64 |
return True
|
65 |
|
66 |
except Exception as e:
|
67 |
print(f"Error initializing models: {str(e)}")
|
68 |
return False
|
69 |
|
70 |
+
# Load models at module level
|
71 |
+
print("Initializing models...")
|
72 |
+
initialize_models()
|
73 |
+
|
74 |
@spaces.GPU(processing_timeout=180)
|
75 |
def process_image(
|
76 |
input_image,
|
|
|
83 |
upscale_factor=4,
|
84 |
color_fix_method="adain"
|
85 |
):
|
86 |
+
global pipeline, generator
|
87 |
|
88 |
try:
|
|
|
|
|
|
|
|
|
|
|
89 |
# Create args object with all necessary parameters
|
90 |
args = Args(
|
91 |
added_prompt=prompt,
|
|
|
104 |
tile_diffusion_stride=None,
|
105 |
start_steps=999,
|
106 |
start_point='lr',
|
107 |
+
use_vae_encode_condition=True,
|
108 |
sample_times=1
|
109 |
)
|
110 |
|
|
|
127 |
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
|
128 |
width, height = validation_image.size
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
# Generate image
|
131 |
with torch.no_grad():
|
132 |
+
inference_time, output = pipeline(
|
133 |
+
args.t_max,
|
134 |
+
args.t_min,
|
135 |
+
args.tile_diffusion,
|
136 |
+
args.tile_diffusion_size,
|
137 |
+
args.tile_diffusion_stride,
|
138 |
+
args.added_prompt,
|
139 |
+
validation_image,
|
140 |
+
num_inference_steps=args.num_inference_steps,
|
141 |
+
generator=generator,
|
142 |
+
height=height,
|
143 |
+
width=width,
|
144 |
+
guidance_scale=args.guidance_scale,
|
145 |
+
negative_prompt=args.negative_prompt,
|
146 |
+
conditioning_scale=args.conditioning_scale,
|
147 |
+
start_steps=args.start_steps,
|
148 |
+
start_point=args.start_point,
|
149 |
+
use_vae_encode_condition=True,
|
150 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
image = output.images[0]
|
153 |
|
|
|
168 |
traceback.print_exc()
|
169 |
return None
|
170 |
|
|
|
171 |
# Define default values
|
172 |
DEFAULT_VALUES = {
|
173 |
"prompt": "clean, texture, high-resolution, 8k",
|