File size: 9,556 Bytes
352d473
c672d1b
5cb8fb6
75c603a
352d473
f9f18b4
 
 
79da7a3
f9f18b4
79da7a3
 
 
75c603a
79da7a3
75c603a
79da7a3
75c603a
79da7a3
f9f18b4
 
 
79da7a3
75c603a
f9f18b4
 
79da7a3
f9f18b4
79da7a3
 
 
5cb8fb6
79da7a3
f9f18b4
79da7a3
 
 
 
 
75c603a
5cb8fb6
79da7a3
 
 
 
 
 
 
efc4ecf
5cb8fb6
79da7a3
 
 
 
 
f9f18b4
79da7a3
75c603a
79da7a3
 
75c603a
79da7a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb8fb6
 
 
 
 
efc4ecf
 
79da7a3
75c603a
 
79da7a3
75c603a
f9f18b4
 
 
79da7a3
75c603a
f9f18b4
75c603a
 
 
efc4ecf
75c603a
 
 
 
79da7a3
 
 
 
75c603a
79da7a3
 
 
 
 
 
 
75c603a
79da7a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75c603a
f9f18b4
5cb8fb6
79da7a3
 
 
 
 
 
 
 
f9f18b4
79da7a3
473251f
35e8298
79da7a3
75c603a
a05bcb9
75c603a
 
 
 
f2357ce
75c603a
 
 
 
 
 
 
 
79da7a3
75c603a
 
 
79da7a3
75c603a
 
 
79da7a3
 
f73c0d1
f9f18b4
35e8298
79da7a3
 
 
 
 
 
75c603a
79da7a3
75c603a
f73c0d1
35e8298
75c603a
f9f18b4
 
 
 
 
 
 
 
75c603a
 
f9f18b4
35e8298
f73c0d1
a05bcb9
 
 
f9f18b4
5cb8fb6
79da7a3
a05bcb9
f9f18b4
05ce7a2
a05bcb9
 
75c603a
f9f18b4
f73c0d1
a05bcb9
f73c0d1
75c603a
352d473
35e8298
5cb8fb6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import streamlit as st
import json
from typing import Dict, List, Any
import re

def format_project_response(project: dict, indent_level: int = 0) -> str:
    """Format project details with proper indentation and spacing"""
    indent = "  " * indent_level
    response = [f"\n{indent}{project['name']}:"]
    
    # Add description with proper indentation
    description_lines = project['description'].split('. ')
    response.extend([f"{indent}  {line.strip()}." for line in description_lines])
    
    # Add technologies with proper line break
    if 'skills_used' in project:
        response.append(f"\n{indent}  Technologies: {', '.join(project['skills_used'])}")
    
    # Add status and notes
    if 'status' in project:
        status = project['status']
        if 'development' in status.lower() or 'progress' in status.lower():
            response.append(f"\n{indent}  Status: {status}")
            if 'confidentiality_note' in project:
                response.append(f"{indent}  Note: {project['confidentiality_note']}")
    
    return '\n'.join(response) + '\n'

def analyze_job_requirements(text: str, knowledge_base: dict) -> Dict[str, List[str]]:
    """Analyze job requirements and match with skills"""
    text_lower = text.lower()
    
    # Common ML/AI related keywords
    tech_keywords = {
        'machine learning': ['ml', 'machine learning', 'deep learning', 'neural networks'],
        'data science': ['data science', 'data analysis', 'analytics', 'statistics'],
        'programming': ['python', 'sql', 'programming', 'coding'],
        'tools': ['tableau', 'powerbi', 'visualization', 'git'],
        'cloud': ['aws', 'azure', 'cloud', 'deployment']
    }
    
    # Extract matches from knowledge base
    matches = {category: [] for category in tech_keywords}
    my_skills = {
        skill.lower() 
        for skill_type in knowledge_base['skills']['technical_skills'].values() 
        for skill_list in skill_type.values() 
        for skill in skill_list
    }
    
    # Find matching skills in each category
    for category, keywords in tech_keywords.items():
        for keyword in keywords:
            if keyword in text_lower and any(skill in keyword or keyword in skill for skill in my_skills):
                matches[category].append(keyword)
    
    return matches

def handle_perspective_query(query: str, knowledge_base: dict) -> str:
    """Handle philosophical or perspective-based queries"""
    query_lower = query.lower()
    perspectives = knowledge_base.get('perspectives', {})
    
    # Market-related queries
    if any(word in query_lower for word in ['market', 'opportunity', 'job', 'hiring']):
        if any(word in query_lower for word in ['down', 'bad', 'difficult', 'tough']):
            response_parts = [
                "• My Perspective on the Current Market:",
                f"  {perspectives['market_outlook']['job_market']}",
                "",
                "• My Strategic Approach:",
                f"  {perspectives['market_outlook']['strategy']}",
                "",
                "• My Unique Value Proposition:",
                f"  {perspectives['market_outlook']['value_proposition']}"
            ]
            return '\n'.join(response_parts)
    
    # Learning and growth queries
    elif any(word in query_lower for word in ['learn', 'study', 'growth']):
        return f"• My Learning Philosophy:\n  {perspectives['learning_philosophy']}"
    
    # Handle non-portfolio queries gracefully
    return knowledge_base['common_queries']['general']

def generate_response(query: str, knowledge_base: dict) -> str:
    """Generate enhanced responses using the knowledge base"""
    query_lower = query.lower()
    
    # Handle project listing requests
    if any(word in query_lower for word in ['list', 'project', 'portfolio', 'built', 'created', 'developed']):
        response_parts = ["Here are my key projects:"]
        
        # Major Projects (under development)
        response_parts.append("\nMajor Projects (In Development):")
        for project in knowledge_base['projects']['major_projects']:
            response_parts.append(format_project_response(project, indent_level=1))
        
        # Algorithm Implementation Projects
        response_parts.append("\nCompleted Algorithm Implementation Projects:")
        for project in knowledge_base['projects']['algorithm_practice_projects']:
            response_parts.append(format_project_response(project, indent_level=1))
        
        response = '\n'.join(response_parts)
        return add_relevant_links(response, query, knowledge_base)
    
    # Handle job description analysis
    elif len(query.split()) > 20 and any(phrase in query_lower for phrase in 
        ['requirements', 'qualifications', 'looking for', 'job description']):
        
        matches = analyze_job_requirements(query, knowledge_base)
        relevant_projects = find_relevant_projects(query, knowledge_base['projects']['major_projects'])
        
        response_parts = ["Based on the job requirements, here's how my profile aligns:\n"]
        
        # Technical Skills Match
        if any(matches.values()):
            response_parts.append("• Technical Skills Alignment:")
            for category, skills in matches.items():
                if skills:
                    response_parts.append(f"  - Strong {category} skills: {', '.join(skills)}")
            response_parts.append("")
        
        # Project Experience
        if relevant_projects:
            response_parts.append("• Relevant Project Experience:")
            for project in relevant_projects:
                desc = f"  - {project['name']}: {project['description']}"
                response_parts.append(desc)
            response_parts.append("")
        
        # Education and Background
        response_parts.extend([
            "• Education and Background:",
            "  - Advanced AI/ML education in Canada",
            "  - Unique commerce background providing business perspective",
            "  - Strong foundation in practical ML implementation",
            ""
        ])
        
        return '\n'.join(response_parts)
    
    # Handle perspective/philosophical queries
    elif any(word in query_lower for word in ['market', 'think', 'believe', 'opinion', 'weather']):
        return handle_perspective_query(query, knowledge_base)
    
    # Handle story/background queries
    elif any(word in query_lower for word in ['background', 'journey', 'story', 'transition']):
        return format_story_response(knowledge_base)
    
    # Default response
    return format_default_response(knowledge_base)

def main():
    st.title("🤖 Meet Rini - AI-Powered Insights on Manyue's World")
    
    # Initialize session state
    if "messages" not in st.session_state:
        st.session_state.messages = []
    if "knowledge_base" not in st.session_state:
        try:
            with open('knowledge_base.json', 'r', encoding='utf-8') as f:
                st.session_state.knowledge_base = json.load(f)
        except FileNotFoundError:
            st.error("Knowledge base file not found.")
            return
    
    # Display welcome message
    if "displayed_welcome" not in st.session_state:
        st.write("""
        Hi there! I'm Rini, Manyue's AI-powered assistant. I'm here to represent Manyue and share insights about:
        - My journey from commerce to ML/AI
        - My technical skills and projects
        - My fit for ML/AI roles
        - My perspective on the tech industry
        - You can also paste job descriptions to see how my profile matches!
        """)
        st.session_state.displayed_welcome = True

    # Create two columns with chat history in scrollable container
    col1, col2 = st.columns([3, 1])
    
    with col1:
        # Chat container for better scrolling
        chat_container = st.container()
        with chat_container:
            for message in st.session_state.messages:
                with st.chat_message(message["role"]):
                    st.markdown(message["content"])
        
        # Chat input at bottom
        if prompt := st.chat_input("Ask me anything or paste a job description..."):
            # Add user message
            st.session_state.messages.append({"role": "user", "content": prompt})
            
            try:
                # Generate and display response
                with st.chat_message("assistant"):
                    response = generate_response(prompt, st.session_state.knowledge_base)
                    st.markdown(response)
                    st.session_state.messages.append({"role": "assistant", "content": response})
            except Exception as e:
                st.error(f"An error occurred: {str(e)}")
            
            st.rerun()
    
    with col2:
        st.subheader("Quick Questions")
        example_questions = [
            "Tell me about your ML projects",
            "What are your technical skills?",
            "What makes you stand out?",
            "What's your journey into ML?",
            "Your view on the current market?"
        ]
        
        for question in example_questions:
            if st.button(question):
                st.session_state.messages.append({"role": "user", "content": question})
                st.rerun()
        
        st.markdown("---")
        if st.button("Clear Chat"):
            st.session_state.messages = []
            st.rerun()

if __name__ == "__main__":
    main()