Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,131 @@
|
|
1 |
import streamlit as st
|
2 |
import json
|
|
|
|
|
|
|
3 |
|
4 |
-
# Page
|
5 |
-
st.set_page_config(
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# Initialize
|
8 |
-
if
|
9 |
st.session_state.messages = []
|
10 |
|
11 |
-
# Load knowledge base
|
12 |
def load_knowledge_base():
|
|
|
13 |
try:
|
14 |
-
with open(
|
15 |
return json.load(f)
|
16 |
except Exception as e:
|
17 |
st.error(f"Error loading knowledge base: {str(e)}")
|
18 |
return {}
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
else:
|
41 |
-
response = "I understand you're asking about: " + prompt
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
st.session_state.messages = []
|
51 |
-
st.rerun()
|
|
|
1 |
import streamlit as st
|
2 |
import json
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
+
import time
|
6 |
|
7 |
+
# Page configuration
|
8 |
+
st.set_page_config(
|
9 |
+
page_title="Portfolio Chatbot Test",
|
10 |
+
page_icon="🤖",
|
11 |
+
layout="wide"
|
12 |
+
)
|
13 |
|
14 |
+
# Initialize session state
|
15 |
+
if 'messages' not in st.session_state:
|
16 |
st.session_state.messages = []
|
17 |
|
|
|
18 |
def load_knowledge_base():
|
19 |
+
"""Load the knowledge base from JSON file"""
|
20 |
try:
|
21 |
+
with open('knowledge_base.json', 'r', encoding='utf-8') as f:
|
22 |
return json.load(f)
|
23 |
except Exception as e:
|
24 |
st.error(f"Error loading knowledge base: {str(e)}")
|
25 |
return {}
|
26 |
|
27 |
+
def get_context(query: str, knowledge_base: dict) -> str:
|
28 |
+
"""Get relevant context from knowledge base based on query"""
|
29 |
+
query_lower = query.lower()
|
30 |
+
contexts = []
|
31 |
+
|
32 |
+
# Project context
|
33 |
+
if "project" in query_lower:
|
34 |
+
if "projects" in knowledge_base:
|
35 |
+
contexts.extend([
|
36 |
+
f"{name}: {desc}"
|
37 |
+
for name, desc in knowledge_base["projects"].items()
|
38 |
+
])
|
39 |
+
|
40 |
+
# Skills context
|
41 |
+
elif any(keyword in query_lower for keyword in ["skill", "experience", "capability"]):
|
42 |
+
if "personal_details" in knowledge_base and "skills" in knowledge_base["personal_details"]:
|
43 |
+
contexts.extend([
|
44 |
+
f"{skill}: {desc}"
|
45 |
+
for skill, desc in knowledge_base["personal_details"]["skills"].items()
|
46 |
+
])
|
47 |
+
|
48 |
+
# Default context
|
49 |
+
else:
|
50 |
+
contexts = [
|
51 |
+
f"Name: {knowledge_base.get('personal_details', {}).get('full_name', 'Manyue')}",
|
52 |
+
"Summary: I am an aspiring AI/ML engineer with experience in Python, Machine Learning, and Data Analysis."
|
53 |
+
]
|
54 |
+
|
55 |
+
return "\n".join(contexts)
|
56 |
|
57 |
+
def initialize_model():
|
58 |
+
"""Initialize the model and tokenizer"""
|
59 |
+
try:
|
60 |
+
# For testing, use a smaller model
|
61 |
+
model_name = "meta-llama/Llama-2-7b-chat-hf" # You'll need to adjust this
|
62 |
+
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
64 |
+
model = AutoModelForCausalLM.from_pretrained(
|
65 |
+
model_name,
|
66 |
+
torch_dtype=torch.float16,
|
67 |
+
device_map="auto"
|
68 |
+
)
|
69 |
+
return tokenizer, model
|
70 |
+
except Exception as e:
|
71 |
+
st.error(f"Error initializing model: {str(e)}")
|
72 |
+
return None, None
|
73 |
|
74 |
+
def main():
|
75 |
+
st.title("Portfolio Chatbot Testing Interface")
|
76 |
+
st.write("Test the chatbot's responses and interaction patterns")
|
|
|
77 |
|
78 |
+
# Load knowledge base
|
79 |
+
knowledge_base = load_knowledge_base()
|
80 |
+
|
81 |
+
# Create two columns for layout
|
82 |
+
col1, col2 = st.columns([2, 1])
|
|
|
|
|
83 |
|
84 |
+
with col1:
|
85 |
+
st.subheader("Chat Interface")
|
86 |
+
# Display chat messages from history
|
87 |
+
for message in st.session_state.messages:
|
88 |
+
with st.chat_message(message["role"]):
|
89 |
+
st.markdown(message["content"])
|
90 |
+
|
91 |
+
# Accept user input
|
92 |
+
if prompt := st.chat_input("What would you like to know?"):
|
93 |
+
# Add user message to chat history
|
94 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
95 |
+
|
96 |
+
# Get context for the query
|
97 |
+
context = get_context(prompt, knowledge_base)
|
98 |
+
|
99 |
+
# For now, just echo back a response (replace with actual model response later)
|
100 |
+
response = f"Test Response: Let me tell you about that based on my experience..."
|
101 |
+
|
102 |
+
# Display assistant response in chat message container
|
103 |
+
with st.chat_message("assistant"):
|
104 |
+
st.markdown(response)
|
105 |
+
|
106 |
+
# Add assistant response to chat history
|
107 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
108 |
+
|
109 |
+
with col2:
|
110 |
+
st.subheader("Testing Tools")
|
111 |
+
if st.button("Clear Chat History"):
|
112 |
+
st.session_state.messages = []
|
113 |
+
st.experimental_rerun()
|
114 |
+
|
115 |
+
st.subheader("Sample Questions")
|
116 |
+
if st.button("Tell me about your ML projects"):
|
117 |
+
st.session_state.messages.append({
|
118 |
+
"role": "user",
|
119 |
+
"content": "Tell me about your ML projects"
|
120 |
+
})
|
121 |
+
st.experimental_rerun()
|
122 |
+
|
123 |
+
if st.button("What are your Python skills?"):
|
124 |
+
st.session_state.messages.append({
|
125 |
+
"role": "user",
|
126 |
+
"content": "What are your Python skills?"
|
127 |
+
})
|
128 |
+
st.experimental_rerun()
|
129 |
|
130 |
+
if __name__ == "__main__":
|
131 |
+
main()
|
|
|
|