Manyue-DataScientist commited on
Commit
75c603a
·
verified ·
1 Parent(s): 72dca05

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +189 -175
app.py CHANGED
@@ -1,125 +1,84 @@
1
  import streamlit as st
2
  import json
3
  from typing import Dict, List, Any
 
4
 
5
- # Initialize Streamlit page configuration
6
- st.set_page_config(
7
- page_title="Manyue's Portfolio Chatbot",
8
- page_icon="🤖",
9
- layout="wide"
10
- )
11
-
12
- # Helper functions for formatting responses
13
- def get_project_details(project: dict) -> str:
14
- """Format project details in a clear, structured way"""
15
- return (
16
- f"• {project['name']}\n"
17
- f" Description: {project['description']}\n"
18
- f" Skills: {', '.join(project['skills_used'])}\n"
19
- f" Status: {project['status']}"
20
- )
21
-
22
- def get_skills_by_category(knowledge_base: dict) -> Dict[str, List[str]]:
23
- """Organize skills by category with examples"""
24
- skills = knowledge_base['skills']
25
- projects = knowledge_base['professional_experience']['projects']
26
-
27
- skill_examples = {}
28
- for skill in skills['technical_skills']:
29
- related_projects = [p['name'] for p in projects
30
- if skill.lower() in [s.lower() for s in p['skills_used']]]
31
- if related_projects:
32
- skill_examples[skill] = related_projects[0]
33
- return skill_examples
34
-
35
- def format_story_response(knowledge_base: dict) -> str:
36
- """Format the background story in a clear, structured way"""
37
- education = knowledge_base['education']
38
-
39
- story = [
40
- "Here's my journey from commerce to ML/AI:",
41
- "• Education Background:",
42
- f" - Graduated with a Commerce degree from {education['Undergraduate'][0]['institution']}",
43
- "• Career Transition:",
44
- " - Started as a Programmer Trainee at Cognizant despite no prior coding experience",
45
- " - Excelled in development roles and discovered passion for technology",
46
- "• Current Path:",
47
- f" - Pursuing {education['postgraduate'][0]['course_name']} at {education['postgraduate'][0]['institution']}",
48
- f" - Also enrolled in {education['postgraduate'][1]['course_name']} at {education['postgraduate'][1]['institution']}",
49
- "• Goal:",
50
- " - Combining business acumen with ML/AI expertise to create impactful solutions"
51
- ]
52
- return '\n'.join(story)
53
-
54
- def format_project_list(knowledge_base: dict) -> str:
55
- """Format project list in a clear, structured way"""
56
- projects = knowledge_base['professional_experience']['projects']
57
 
58
- response = ["My Portfolio Projects:"]
59
- for project in projects:
60
- response.extend([
61
- f"\n{project['name']}",
62
- f"• Description: {project['description']}",
63
- f"• Technologies: {', '.join(project['skills_used'])}",
64
- f"• Current Status: {project['status']}",
65
- "---"
66
- ])
67
  return '\n'.join(response)
68
 
69
- def format_standout_qualities(knowledge_base: dict) -> str:
70
- """Format standout qualities in a clear, structured way"""
71
- qualities = [
72
- "What Makes Me Stand Out:",
73
- "\n1. Unique Background",
74
- " • Successfully transitioned from commerce to tech",
75
- " • Bring both business acumen and technical expertise",
76
- "\n2. Practical Experience",
77
- f" • Developed {len(knowledge_base['professional_experience']['projects'])} significant ML projects",
78
- " • Real-world implementation experience from Cognizant",
79
- "\n3. Canadian Education",
80
- " • Advanced AI/ML education in Canada",
81
- " • Up-to-date with latest industry practices",
82
- "\n4. Technical Expertise",
83
- f" • Strong foundation in {', '.join(knowledge_base['skills']['technical_skills'][:3])}",
84
- " • Hands-on experience with ML model deployment",
85
- "\n5. Business Perspective",
86
- " • Understanding of both technical and business requirements",
87
- " • Can bridge gap between technical and business teams"
88
- ]
89
- return '\n'.join(qualities)
90
-
91
- def analyze_job_description(text: str, knowledge_base: dict) -> dict:
92
- """Analyze job description and match with candidate's profile"""
93
  text_lower = text.lower()
94
 
95
- # Extract key skills from knowledge base
96
- my_skills = set(s.lower() for s in knowledge_base['skills']['technical_skills'])
 
 
 
 
 
 
 
97
 
98
- # Common ML/AI job related keywords
99
- ml_keywords = {
100
- 'machine learning', 'deep learning', 'artificial intelligence', 'ai', 'ml',
101
- 'neural networks', 'nlp', 'computer vision', 'data science',
102
- 'python', 'pytorch', 'tensorflow', 'scikit-learn'
103
  }
104
 
105
- # Find mentioned skills in JD
106
- found_skills = []
107
- for skill in my_skills:
108
- if skill in text_lower:
109
- found_skills.append(skill)
110
-
111
- # Find relevant projects
112
  relevant_projects = []
113
- for project in knowledge_base['professional_experience']['projects']:
114
- project_skills = set(s.lower() for s in project['skills_used'])
115
- if any(skill in text_lower for skill in project_skills):
 
 
116
  relevant_projects.append(project)
117
-
118
- return {
119
- 'matching_skills': found_skills,
120
- 'relevant_projects': relevant_projects[:2],
121
- 'is_ml_role': any(keyword in text_lower for keyword in ml_keywords)
122
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
  def generate_response(query: str, knowledge_base: dict) -> str:
125
  """Generate enhanced responses using the knowledge base"""
@@ -127,45 +86,105 @@ def generate_response(query: str, knowledge_base: dict) -> str:
127
 
128
  # Handle project listing requests
129
  if any(word in query_lower for word in ['list', 'project', 'portfolio', 'built', 'created', 'developed']):
130
- return format_project_list(knowledge_base)
131
-
132
- # Handle background/journey queries
133
- elif any(word in query_lower for word in ['background', 'journey', 'story', 'transition']):
134
- return format_story_response(knowledge_base)
 
 
 
 
 
 
 
 
 
135
 
136
- # Handle standout/unique qualities queries
137
- elif any(word in query_lower for word in ['stand out', 'unique', 'different', 'special']):
138
- return format_standout_qualities(knowledge_base)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
 
140
- # Handle job descriptions or role requirements
141
- elif len(query.split()) > 20 or any(phrase in query_lower for phrase in
142
- ['requirements', 'qualifications', 'looking for', 'job description', 'responsibilities']):
143
- analysis = analyze_job_description(query, knowledge_base)
144
 
145
- if analysis['is_ml_role']:
146
- response_parts = []
147
- response_parts.append("Based on the job description, here's how my profile aligns:")
148
-
149
- if analysis['matching_skills']:
150
- response_parts.append(f"\n• Technical Skills Match:\n - I have experience with: {', '.join(analysis['matching_skills'])}")
151
-
152
- if analysis['relevant_projects']:
153
- project = analysis['relevant_projects'][0]
154
- response_parts.append(f"\n• Relevant Project Experience:\n - {project['name']}: {project['description']}")
155
-
156
- response_parts.append("\n• Additional Qualifications:\n - Advanced AI/ML education in Canada\n - Unique background combining business and technical expertise")
157
-
158
- return '\n'.join(response_parts)
 
 
 
159
 
160
- # Handle specific skill queries
161
- elif any(word in query_lower for word in ['skill', 'know', 'experience', 'expert']):
162
- skill_examples = get_skills_by_category(knowledge_base)
163
- response = ["My Technical Skills:"]
164
- for skill, project in skill_examples.items():
165
- response.append(f"• {skill} - Applied in {project}")
166
- return '\n'.join(response)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
 
168
- # Default response
169
  return (f"I'm {knowledge_base['personal_details']['full_name']}, "
170
  f"{knowledge_base['personal_details']['professional_summary']}\n\n"
171
  "You can ask me about:\n"
@@ -175,35 +194,30 @@ def generate_response(query: str, knowledge_base: dict) -> str:
175
  "• My fit for ML/AI roles\n"
176
  "Or paste a job description to see how my profile matches!")
177
 
178
- # Load and cache knowledge base
179
- @st.cache_data
180
- def load_knowledge_base():
181
- try:
182
- with open('knowledge_base.json', 'r', encoding='utf-8') as f:
183
- return json.load(f)
184
- except FileNotFoundError:
185
- st.error("Knowledge base file not found.")
186
- return {}
187
-
188
- def initialize_session_state():
189
- """Initialize session state variables"""
190
- if "messages" not in st.session_state:
191
- st.session_state.messages = []
192
- if "knowledge_base" not in st.session_state:
193
- st.session_state.knowledge_base = load_knowledge_base()
194
-
195
  def main():
196
  st.title("💬 Chat with Manyue's Portfolio")
197
- st.write("""
198
- Hi! I'm Manyue's AI assistant. I can tell you about:
199
- - My journey from commerce to ML/AI
200
- - My technical skills and projects
201
- - My fit for ML/AI roles
202
- - You can also paste job descriptions, and I'll show how my profile matches!
203
- """)
204
-
205
  # Initialize session state
206
- initialize_session_state()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207
 
208
  # Create two columns
209
  col1, col2 = st.columns([3, 1])
@@ -213,19 +227,19 @@ def main():
213
  for message in st.session_state.messages:
214
  with st.chat_message(message["role"]):
215
  st.markdown(message["content"])
216
-
217
  # Chat input
218
- if prompt := st.chat_input("Ask me anything about Manyue's experience or paste a job description..."):
219
  # Add user message
220
  st.session_state.messages.append({"role": "user", "content": prompt})
221
- with st.chat_message("user"):
222
- st.markdown(prompt)
223
-
224
  # Generate and display response
225
  with st.chat_message("assistant"):
226
  response = generate_response(prompt, st.session_state.knowledge_base)
227
  st.markdown(response)
228
  st.session_state.messages.append({"role": "assistant", "content": response})
 
 
229
 
230
  with col2:
231
  st.subheader("Quick Questions")
@@ -240,12 +254,12 @@ def main():
240
  for question in example_questions:
241
  if st.button(question):
242
  st.session_state.messages.append({"role": "user", "content": question})
243
- st.experimental_rerun()
244
 
245
  st.markdown("---")
246
  if st.button("Clear Chat"):
247
  st.session_state.messages = []
248
- st.experimental_rerun()
249
 
250
  if __name__ == "__main__":
251
  main()
 
1
  import streamlit as st
2
  import json
3
  from typing import Dict, List, Any
4
+ import re
5
 
6
+ def format_project_response(project: dict, include_status: bool = True) -> str:
7
+ """Format a project description with proper status handling"""
8
+ response = [f"• {project['name']}:"]
9
+ response.append(f" - {project['description']}")
10
+
11
+ if 'skills_used' in project:
12
+ response.append(f" - Technologies: {', '.join(project['skills_used'])}")
13
+
14
+ if include_status and 'status' in project:
15
+ if 'development' in project['status'].lower() or 'progress' in project['status'].lower():
16
+ response.append(f" - Currently {project['status']}")
17
+ if 'confidentiality_note' in project:
18
+ response.append(f" - Note: {project['confidentiality_note']}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
 
 
 
 
 
 
 
 
 
20
  return '\n'.join(response)
21
 
22
+ def analyze_job_requirements(text: str, knowledge_base: dict) -> Dict[str, List[str]]:
23
+ """Analyze job requirements and match with skills"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  text_lower = text.lower()
25
 
26
+ # Extract skills from knowledge base
27
+ my_skills = {
28
+ 'technical': [skill.lower() for skill in knowledge_base['skills']['technical_skills']['machine_learning']['core'] +
29
+ knowledge_base['skills']['technical_skills']['programming']['primary'] +
30
+ knowledge_base['skills']['technical_skills']['data']['databases']],
31
+ 'tools': [tool.lower() for tool in knowledge_base['skills']['technical_skills']['programming']['tools'] +
32
+ knowledge_base['skills']['technical_skills']['deployment']['web']],
33
+ 'soft_skills': [skill['skill'].lower() for skill in knowledge_base['skills']['soft_skills']]
34
+ }
35
 
36
+ # Find matching skills in job description
37
+ matches = {
38
+ 'technical_matches': [skill for skill in my_skills['technical'] if skill in text_lower],
39
+ 'tool_matches': [tool for tool in my_skills['tools'] if tool in text_lower],
40
+ 'soft_skill_matches': [skill for skill in my_skills['soft_skills'] if skill in text_lower]
41
  }
42
 
43
+ return matches
44
+
45
+ def find_relevant_projects(requirements: str, projects: List[dict]) -> List[dict]:
46
+ """Find projects relevant to job requirements"""
47
+ req_lower = requirements.lower()
 
 
48
  relevant_projects = []
49
+
50
+ for project in projects:
51
+ # Check if project skills or description match requirements
52
+ if any(skill.lower() in req_lower for skill in project['skills_used']) or \
53
+ any(word in project['description'].lower() for word in req_lower.split()):
54
  relevant_projects.append(project)
55
+
56
+ return relevant_projects[:2] # Return top 2 most relevant projects
57
+
58
+ def add_relevant_links(response: str, query: str, knowledge_base: dict) -> str:
59
+ """Add relevant links based on query context"""
60
+ query_lower = query.lower()
61
+ links = []
62
+
63
+ # Add portfolio link for project-related queries
64
+ if any(word in query_lower for word in ['project', 'portfolio', 'work']):
65
+ links.append(f"\nView my complete portfolio: {knowledge_base['personal_details']['online_presence']['portfolio']}")
66
+
67
+ # Add blog link for technical queries
68
+ if any(word in query_lower for word in ['machine learning', 'ml', 'algorithm', 'knn']):
69
+ for post in knowledge_base['personal_details']['online_presence']['blog_posts']:
70
+ if 'link' in post and any(word in post['title'].lower() for word in query_lower.split()):
71
+ links.append(f"\nRelated blog post: {post['link']}")
72
+ break
73
+
74
+ # Add LinkedIn for professional background queries
75
+ if any(word in query_lower for word in ['background', 'experience', 'work']):
76
+ links.append(f"\nConnect with me: {knowledge_base['personal_details']['online_presence']['linkedin']}")
77
+
78
+ if links:
79
+ response += '\n\n' + '\n'.join(links)
80
+
81
+ return response
82
 
83
  def generate_response(query: str, knowledge_base: dict) -> str:
84
  """Generate enhanced responses using the knowledge base"""
 
86
 
87
  # Handle project listing requests
88
  if any(word in query_lower for word in ['list', 'project', 'portfolio', 'built', 'created', 'developed']):
89
+ response_parts = ["Here are my key projects:"]
90
+
91
+ # Major Projects (under development)
92
+ response_parts.append("\nMajor Projects (In Development):")
93
+ for project in knowledge_base['projects']['major_projects']:
94
+ response_parts.append(format_project_response(project))
95
+
96
+ # Algorithm Implementation Projects (completed)
97
+ response_parts.append("\nCompleted Algorithm Implementation Projects:")
98
+ for project in knowledge_base['projects']['algorithm_practice_projects']:
99
+ response_parts.append(format_project_response(project, include_status=False))
100
+
101
+ response = '\n'.join(response_parts)
102
+ return add_relevant_links(response, query, knowledge_base)
103
 
104
+ # Handle job description analysis
105
+ elif len(query.split()) > 20 and any(phrase in query_lower for phrase in
106
+ ['requirements', 'qualifications', 'looking for', 'job description']):
107
+
108
+ skill_matches = analyze_job_requirements(query, knowledge_base)
109
+ relevant_projects = find_relevant_projects(query, knowledge_base['projects']['major_projects'])
110
+
111
+ response_parts = ["Based on the job requirements, here's how my profile aligns:"]
112
+
113
+ # Technical Skills Match
114
+ if skill_matches['technical_matches']:
115
+ response_parts.append("\n• Technical Skills Match:")
116
+ for skill in skill_matches['technical_matches']:
117
+ response_parts.append(f" - Strong proficiency in {skill}")
118
+
119
+ # Tools and Technologies
120
+ if skill_matches['tool_matches']:
121
+ response_parts.append("\n• Relevant Tools/Technologies:")
122
+ for tool in skill_matches['tool_matches']:
123
+ response_parts.append(f" - Experience with {tool}")
124
+
125
+ # Relevant Projects
126
+ if relevant_projects:
127
+ response_parts.append("\n• Relevant Project Experience:")
128
+ for project in relevant_projects:
129
+ response_parts.append(format_project_response(project))
130
+
131
+ # Education and Background
132
+ response_parts.append("\n• Education and Background:")
133
+ response_parts.append(" - Currently pursuing advanced AI/ML education in Canada")
134
+ response_parts.append(" - Unique background combining commerce and technology")
135
+ response_parts.append(" - Strong foundation in practical ML implementation")
136
+
137
+ response = '\n'.join(response_parts)
138
+ return add_relevant_links(response, query, knowledge_base)
139
 
140
+ # Handle background/story queries
141
+ elif any(word in query_lower for word in ['background', 'journey', 'story', 'transition']):
142
+ transition_story = next((qa['answer'] for qa in knowledge_base['frequently_asked_questions']
143
+ if 'transition' in qa['question'].lower()), '')
144
 
145
+ response_parts = [
146
+ "My Journey from Commerce to ML/AI:",
147
+ " Education Background:",
148
+ f" - {knowledge_base['education']['undergraduate']['course_name']} from {knowledge_base['education']['undergraduate']['institution']}",
149
+ "• Career Transition:",
150
+ " - Started as a Programmer Trainee at Cognizant",
151
+ f" - {transition_story[:200]}...",
152
+ "• Current Path:",
153
+ " - Pursuing AI/ML education in Canada",
154
+ " - Building practical ML projects",
155
+ "• Future Goals:",
156
+ " - Aiming to become an ML Engineer in Canada",
157
+ " - Focus on innovative AI solutions"
158
+ ]
159
+
160
+ response = '\n'.join(response_parts)
161
+ return add_relevant_links(response, query, knowledge_base)
162
 
163
+ # Handle skill-specific queries
164
+ elif any(word in query_lower for word in ['skill', 'know', 'technology', 'stack']):
165
+ tech_skills = knowledge_base['skills']['technical_skills']
166
+
167
+ response_parts = ["My Technical Expertise:"]
168
+
169
+ # ML/AI Skills
170
+ response_parts.append("\n• Machine Learning & AI:")
171
+ response_parts.append(f" - Core: {', '.join(tech_skills['machine_learning']['core'])}")
172
+ response_parts.append(f" - Frameworks: {', '.join(tech_skills['machine_learning']['frameworks'])}")
173
+
174
+ # Programming & Tools
175
+ response_parts.append("\n• Programming & Development:")
176
+ response_parts.append(f" - Languages: {', '.join(tech_skills['programming']['primary'])}")
177
+ response_parts.append(f" - Tools: {', '.join(tech_skills['programming']['tools'])}")
178
+
179
+ # Data & Analytics
180
+ response_parts.append("\n• Data & Analytics:")
181
+ response_parts.append(f" - Databases: {', '.join(tech_skills['data']['databases'])}")
182
+ response_parts.append(f" - Visualization: {', '.join(tech_skills['data']['visualization'])}")
183
+
184
+ response = '\n'.join(response_parts)
185
+ return add_relevant_links(response, query, knowledge_base)
186
 
187
+ # Handle default/unknown queries
188
  return (f"I'm {knowledge_base['personal_details']['full_name']}, "
189
  f"{knowledge_base['personal_details']['professional_summary']}\n\n"
190
  "You can ask me about:\n"
 
194
  "• My fit for ML/AI roles\n"
195
  "Or paste a job description to see how my profile matches!")
196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
  def main():
198
  st.title("💬 Chat with Manyue's Portfolio")
199
+
 
 
 
 
 
 
 
200
  # Initialize session state
201
+ if "messages" not in st.session_state:
202
+ st.session_state.messages = []
203
+ if "knowledge_base" not in st.session_state:
204
+ try:
205
+ with open('manny_knowledge_base.json', 'r', encoding='utf-8') as f:
206
+ st.session_state.knowledge_base = json.load(f)
207
+ except FileNotFoundError:
208
+ st.error("Knowledge base file not found.")
209
+ return
210
+
211
+ # Display welcome message
212
+ if "displayed_welcome" not in st.session_state:
213
+ st.write("""
214
+ Hi! I'm Manyue's AI assistant. I can tell you about:
215
+ - My journey from commerce to ML/AI
216
+ - My technical skills and projects
217
+ - My fit for ML/AI roles
218
+ - You can also paste job descriptions to see how my profile matches!
219
+ """)
220
+ st.session_state.displayed_welcome = True
221
 
222
  # Create two columns
223
  col1, col2 = st.columns([3, 1])
 
227
  for message in st.session_state.messages:
228
  with st.chat_message(message["role"]):
229
  st.markdown(message["content"])
230
+
231
  # Chat input
232
+ if prompt := st.chat_input("Ask me anything or paste a job description..."):
233
  # Add user message
234
  st.session_state.messages.append({"role": "user", "content": prompt})
235
+
 
 
236
  # Generate and display response
237
  with st.chat_message("assistant"):
238
  response = generate_response(prompt, st.session_state.knowledge_base)
239
  st.markdown(response)
240
  st.session_state.messages.append({"role": "assistant", "content": response})
241
+
242
+ st.rerun()
243
 
244
  with col2:
245
  st.subheader("Quick Questions")
 
254
  for question in example_questions:
255
  if st.button(question):
256
  st.session_state.messages.append({"role": "user", "content": question})
257
+ st.rerun()
258
 
259
  st.markdown("---")
260
  if st.button("Clear Chat"):
261
  st.session_state.messages = []
262
+ st.rerun()
263
 
264
  if __name__ == "__main__":
265
  main()