Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,181 +6,82 @@ import re
|
|
| 6 |
def format_project_response(project: dict, indent_level: int = 0) -> str:
|
| 7 |
"""Format project details with proper indentation and spacing"""
|
| 8 |
indent = " " * indent_level
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
|
|
|
| 12 |
|
|
|
|
| 13 |
if 'skills_used' in project:
|
| 14 |
-
response.append(f"{indent} Technologies: {', '.join(project['skills_used'])}")
|
| 15 |
|
|
|
|
| 16 |
if 'status' in project:
|
| 17 |
status = project['status']
|
| 18 |
if 'development' in status.lower() or 'progress' in status.lower():
|
| 19 |
-
response.append(f"{indent} Status: {status}")
|
| 20 |
if 'confidentiality_note' in project:
|
| 21 |
response.append(f"{indent} Note: {project['confidentiality_note']}")
|
| 22 |
|
| 23 |
-
return '\n'.join(response) + '\n'
|
| 24 |
|
| 25 |
-
def
|
| 26 |
-
"""
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
categories = {
|
| 30 |
-
'Machine Learning & AI': ['core', 'frameworks', 'focus_areas'],
|
| 31 |
-
'Programming': ['primary', 'libraries', 'tools'],
|
| 32 |
-
'Data & Analytics': ['databases', 'visualization', 'processing']
|
| 33 |
-
}
|
| 34 |
-
|
| 35 |
-
for category, subcategories in categories.items():
|
| 36 |
-
response.append(f"• {category}")
|
| 37 |
-
for subcat in subcategories:
|
| 38 |
-
if subcat in skills['machine_learning']:
|
| 39 |
-
items = skills['machine_learning'][subcat]
|
| 40 |
-
response.append(f" - {subcat.title()}: {', '.join(items)}")
|
| 41 |
-
response.append("") # Add spacing between categories
|
| 42 |
-
|
| 43 |
-
return '\n'.join(response)
|
| 44 |
-
|
| 45 |
-
def analyze_job_description(text: str, knowledge_base: dict) -> str:
|
| 46 |
-
"""Analyze job description and provide detailed alignment"""
|
| 47 |
-
# Extract key requirements
|
| 48 |
-
requirements = {
|
| 49 |
-
'technical_tools': set(),
|
| 50 |
-
'soft_skills': set(),
|
| 51 |
-
'responsibilities': set()
|
| 52 |
-
}
|
| 53 |
|
| 54 |
-
# Common
|
| 55 |
tech_keywords = {
|
| 56 |
-
'
|
| 57 |
-
'
|
|
|
|
|
|
|
|
|
|
| 58 |
}
|
| 59 |
|
| 60 |
-
#
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
| 64 |
}
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
# Extract requirements
|
| 73 |
-
for word in tech_keywords:
|
| 74 |
-
if word in text_lower:
|
| 75 |
-
requirements['technical_tools'].add(word)
|
| 76 |
-
|
| 77 |
-
for word in soft_keywords:
|
| 78 |
-
if word in text_lower:
|
| 79 |
-
requirements['soft_skills'].add(word)
|
| 80 |
-
|
| 81 |
-
# Build response
|
| 82 |
-
response_parts = []
|
| 83 |
|
| 84 |
-
|
| 85 |
-
if company_name:
|
| 86 |
-
response_parts.append(f"Here's how I align with {company_name}'s requirements:\n")
|
| 87 |
-
else:
|
| 88 |
-
response_parts.append("Based on the job requirements, here's how I align:\n")
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
my_relevant_skills = []
|
| 93 |
-
if 'visualization' in requirements['technical_tools'] or 'tableau' in requirements['technical_tools']:
|
| 94 |
-
my_relevant_skills.append(" - Proficient in Tableau and data visualization (used in multiple projects)")
|
| 95 |
-
if 'data analysis' in requirements['technical_tools']:
|
| 96 |
-
my_relevant_skills.append(" - Strong data analysis skills demonstrated in projects like LoanTap Credit Assessment")
|
| 97 |
-
if 'machine learning' in requirements['technical_tools'] or 'modeling' in requirements['technical_tools']:
|
| 98 |
-
my_relevant_skills.append(" - Experienced in building ML models from scratch (demonstrated in algorithm practice projects)")
|
| 99 |
-
|
| 100 |
-
response_parts.extend(my_relevant_skills)
|
| 101 |
-
response_parts.append("") # Add spacing
|
| 102 |
-
|
| 103 |
-
# Business Understanding
|
| 104 |
-
response_parts.append("• Business Acumen:")
|
| 105 |
-
response_parts.append(" - Commerce background provides strong understanding of business requirements")
|
| 106 |
-
response_parts.append(" - Experience in translating business needs into technical solutions")
|
| 107 |
-
response_parts.append(" - Proven ability to communicate technical findings to business stakeholders")
|
| 108 |
-
response_parts.append("") # Add spacing
|
| 109 |
-
|
| 110 |
-
# Project Experience
|
| 111 |
-
response_parts.append("• Relevant Project Experience:")
|
| 112 |
-
relevant_projects = []
|
| 113 |
-
if 'automation' in requirements['technical_tools']:
|
| 114 |
-
relevant_projects.append(" - Developed AI-powered POS system with automated operations")
|
| 115 |
-
if 'data analysis' in requirements['technical_tools']:
|
| 116 |
-
relevant_projects.append(" - Built credit assessment model for LoanTap using comprehensive data analysis")
|
| 117 |
-
if 'machine learning' in requirements['technical_tools']:
|
| 118 |
-
relevant_projects.append(" - Created multiple ML models from scratch, including predictive analytics for Ola")
|
| 119 |
-
|
| 120 |
-
response_parts.extend(relevant_projects)
|
| 121 |
-
response_parts.append("") # Add spacing
|
| 122 |
-
|
| 123 |
-
# Education and Additional Qualifications
|
| 124 |
-
response_parts.append("• Additional Strengths:")
|
| 125 |
-
response_parts.append(" - Currently pursuing advanced AI/ML education in Canada")
|
| 126 |
-
response_parts.append(" - Strong foundation in both technical implementation and business analysis")
|
| 127 |
-
response_parts.append(" - Experience in end-to-end project delivery and deployment")
|
| 128 |
-
|
| 129 |
-
return '\n'.join(response_parts)
|
| 130 |
-
|
| 131 |
-
def format_story_response(knowledge_base: dict) -> str:
|
| 132 |
-
"""Format background story with proper structure"""
|
| 133 |
-
response_parts = ["My Journey from Commerce to ML/AI:\n"]
|
| 134 |
-
|
| 135 |
-
# Education Background
|
| 136 |
-
response_parts.append("• Education Background:")
|
| 137 |
-
response_parts.append(f" - Commerce degree from {knowledge_base['education']['undergraduate']['institution']}")
|
| 138 |
-
response_parts.append(f" - Currently at {knowledge_base['education']['postgraduate'][0]['institution']}")
|
| 139 |
-
response_parts.append(f" - Also enrolled at {knowledge_base['education']['postgraduate'][1]['institution']}")
|
| 140 |
-
response_parts.append("") # Add spacing
|
| 141 |
-
|
| 142 |
-
# Career Transition
|
| 143 |
-
response_parts.append("• Career Transition:")
|
| 144 |
-
transition = next((qa['answer'] for qa in knowledge_base['frequently_asked_questions']
|
| 145 |
-
if 'transition' in qa['question'].lower()), '')
|
| 146 |
-
response_parts.append(f" - {transition[:200]}...") # Truncate for readability
|
| 147 |
-
response_parts.append("") # Add spacing
|
| 148 |
-
|
| 149 |
-
# Current Focus
|
| 150 |
-
response_parts.append("• Current Focus:")
|
| 151 |
-
response_parts.append(" - Building practical ML projects")
|
| 152 |
-
response_parts.append(" - Advancing AI/ML education in Canada")
|
| 153 |
-
response_parts.append("") # Add spacing
|
| 154 |
-
|
| 155 |
-
# Goals
|
| 156 |
-
response_parts.append("• Future Goals:")
|
| 157 |
-
response_parts.append(" - Secure ML Engineering role in Canada")
|
| 158 |
-
response_parts.append(" - Develop innovative AI solutions")
|
| 159 |
-
response_parts.append(" - Contribute to cutting-edge ML projects")
|
| 160 |
-
|
| 161 |
-
return '\n'.join(response_parts)
|
| 162 |
-
|
| 163 |
-
def add_relevant_links(response: str, query: str, knowledge_base: dict) -> str:
|
| 164 |
-
"""Add relevant links based on query context"""
|
| 165 |
query_lower = query.lower()
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
#
|
| 169 |
-
if any(word in query_lower for word in ['
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
def generate_response(query: str, knowledge_base: dict) -> str:
|
| 186 |
"""Generate enhanced responses using the knowledge base"""
|
|
@@ -188,15 +89,15 @@ def generate_response(query: str, knowledge_base: dict) -> str:
|
|
| 188 |
|
| 189 |
# Handle project listing requests
|
| 190 |
if any(word in query_lower for word in ['list', 'project', 'portfolio', 'built', 'created', 'developed']):
|
| 191 |
-
response_parts = ["Here are my key projects
|
| 192 |
|
| 193 |
# Major Projects (under development)
|
| 194 |
-
response_parts.append("
|
| 195 |
for project in knowledge_base['projects']['major_projects']:
|
| 196 |
response_parts.append(format_project_response(project, indent_level=1))
|
| 197 |
|
| 198 |
# Algorithm Implementation Projects
|
| 199 |
-
response_parts.append("
|
| 200 |
for project in knowledge_base['projects']['algorithm_practice_projects']:
|
| 201 |
response_parts.append(format_project_response(project, indent_level=1))
|
| 202 |
|
|
@@ -206,51 +107,52 @@ def generate_response(query: str, knowledge_base: dict) -> str:
|
|
| 206 |
# Handle job description analysis
|
| 207 |
elif len(query.split()) > 20 and any(phrase in query_lower for phrase in
|
| 208 |
['requirements', 'qualifications', 'looking for', 'job description']):
|
| 209 |
-
return analyze_job_description(query, knowledge_base)
|
| 210 |
-
|
| 211 |
-
# Handle background/story queries
|
| 212 |
-
elif any(word in query_lower for word in ['background', 'journey', 'story', 'transition']):
|
| 213 |
-
return format_story_response(knowledge_base)
|
| 214 |
-
|
| 215 |
-
# Handle skill-specific queries
|
| 216 |
-
elif any(word in query_lower for word in ['skill', 'know', 'technology', 'stack']):
|
| 217 |
-
return format_skills_response(knowledge_base['skills']['technical_skills'])
|
| 218 |
-
|
| 219 |
-
# Handle standout/unique qualities queries
|
| 220 |
-
elif any(word in query_lower for word in ['stand out', 'unique', 'different', 'special']):
|
| 221 |
-
response_parts = ["What Makes Me Stand Out:\n"]
|
| 222 |
-
response_parts.append("• Unique Background:")
|
| 223 |
-
response_parts.append(" - Successfully transitioned from commerce to tech")
|
| 224 |
-
response_parts.append(" - Blend of business acumen and technical expertise")
|
| 225 |
-
response_parts.append("")
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
response_parts
|
| 231 |
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
return '\n'.join(response_parts)
|
| 242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
# Default response
|
| 244 |
-
return (
|
| 245 |
-
"You can ask me about:\n"
|
| 246 |
-
"• My projects and portfolio\n"
|
| 247 |
-
"• My journey from commerce to ML/AI\n"
|
| 248 |
-
"• My technical skills and experience\n"
|
| 249 |
-
"• My fit for ML/AI roles\n"
|
| 250 |
-
"Or paste a job description to see how my profile matches!")
|
| 251 |
|
| 252 |
def main():
|
| 253 |
-
st.title("
|
| 254 |
|
| 255 |
# Initialize session state
|
| 256 |
if "messages" not in st.session_state:
|
|
@@ -266,24 +168,27 @@ def main():
|
|
| 266 |
# Display welcome message
|
| 267 |
if "displayed_welcome" not in st.session_state:
|
| 268 |
st.write("""
|
| 269 |
-
Hi! I'm Manyue's AI assistant. I
|
| 270 |
- My journey from commerce to ML/AI
|
| 271 |
- My technical skills and projects
|
| 272 |
- My fit for ML/AI roles
|
|
|
|
| 273 |
- You can also paste job descriptions to see how my profile matches!
|
| 274 |
""")
|
| 275 |
st.session_state.displayed_welcome = True
|
| 276 |
-
|
| 277 |
-
# Create two columns
|
| 278 |
col1, col2 = st.columns([3, 1])
|
| 279 |
|
| 280 |
with col1:
|
| 281 |
-
#
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
|
|
|
|
|
|
| 285 |
|
| 286 |
-
# Chat input
|
| 287 |
if prompt := st.chat_input("Ask me anything or paste a job description..."):
|
| 288 |
# Add user message
|
| 289 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
@@ -306,7 +211,7 @@ def main():
|
|
| 306 |
"What are your technical skills?",
|
| 307 |
"What makes you stand out?",
|
| 308 |
"What's your journey into ML?",
|
| 309 |
-
"
|
| 310 |
]
|
| 311 |
|
| 312 |
for question in example_questions:
|
|
|
|
| 6 |
def format_project_response(project: dict, indent_level: int = 0) -> str:
|
| 7 |
"""Format project details with proper indentation and spacing"""
|
| 8 |
indent = " " * indent_level
|
| 9 |
+
response = [f"\n{indent}• {project['name']}:"]
|
| 10 |
|
| 11 |
+
# Add description with proper indentation
|
| 12 |
+
description_lines = project['description'].split('. ')
|
| 13 |
+
response.extend([f"{indent} {line.strip()}." for line in description_lines])
|
| 14 |
|
| 15 |
+
# Add technologies with proper line break
|
| 16 |
if 'skills_used' in project:
|
| 17 |
+
response.append(f"\n{indent} Technologies: {', '.join(project['skills_used'])}")
|
| 18 |
|
| 19 |
+
# Add status and notes
|
| 20 |
if 'status' in project:
|
| 21 |
status = project['status']
|
| 22 |
if 'development' in status.lower() or 'progress' in status.lower():
|
| 23 |
+
response.append(f"\n{indent} Status: {status}")
|
| 24 |
if 'confidentiality_note' in project:
|
| 25 |
response.append(f"{indent} Note: {project['confidentiality_note']}")
|
| 26 |
|
| 27 |
+
return '\n'.join(response) + '\n'
|
| 28 |
|
| 29 |
+
def analyze_job_requirements(text: str, knowledge_base: dict) -> Dict[str, List[str]]:
|
| 30 |
+
"""Analyze job requirements and match with skills"""
|
| 31 |
+
text_lower = text.lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
# Common ML/AI related keywords
|
| 34 |
tech_keywords = {
|
| 35 |
+
'machine learning': ['ml', 'machine learning', 'deep learning', 'neural networks'],
|
| 36 |
+
'data science': ['data science', 'data analysis', 'analytics', 'statistics'],
|
| 37 |
+
'programming': ['python', 'sql', 'programming', 'coding'],
|
| 38 |
+
'tools': ['tableau', 'powerbi', 'visualization', 'git'],
|
| 39 |
+
'cloud': ['aws', 'azure', 'cloud', 'deployment']
|
| 40 |
}
|
| 41 |
|
| 42 |
+
# Extract matches from knowledge base
|
| 43 |
+
matches = {category: [] for category in tech_keywords}
|
| 44 |
+
my_skills = {
|
| 45 |
+
skill.lower()
|
| 46 |
+
for skill_type in knowledge_base['skills']['technical_skills'].values()
|
| 47 |
+
for skill_list in skill_type.values()
|
| 48 |
+
for skill in skill_list
|
| 49 |
}
|
| 50 |
|
| 51 |
+
# Find matching skills in each category
|
| 52 |
+
for category, keywords in tech_keywords.items():
|
| 53 |
+
for keyword in keywords:
|
| 54 |
+
if keyword in text_lower and any(skill in keyword or keyword in skill for skill in my_skills):
|
| 55 |
+
matches[category].append(keyword)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
return matches
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
def handle_perspective_query(query: str, knowledge_base: dict) -> str:
|
| 60 |
+
"""Handle philosophical or perspective-based queries"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
query_lower = query.lower()
|
| 62 |
+
perspectives = knowledge_base.get('perspectives', {})
|
| 63 |
+
|
| 64 |
+
# Market-related queries
|
| 65 |
+
if any(word in query_lower for word in ['market', 'opportunity', 'job', 'hiring']):
|
| 66 |
+
if any(word in query_lower for word in ['down', 'bad', 'difficult', 'tough']):
|
| 67 |
+
response_parts = [
|
| 68 |
+
"• My Perspective on the Current Market:",
|
| 69 |
+
f" {perspectives['market_outlook']['job_market']}",
|
| 70 |
+
"",
|
| 71 |
+
"• My Strategic Approach:",
|
| 72 |
+
f" {perspectives['market_outlook']['strategy']}",
|
| 73 |
+
"",
|
| 74 |
+
"• My Unique Value Proposition:",
|
| 75 |
+
f" {perspectives['market_outlook']['value_proposition']}"
|
| 76 |
+
]
|
| 77 |
+
return '\n'.join(response_parts)
|
| 78 |
+
|
| 79 |
+
# Learning and growth queries
|
| 80 |
+
elif any(word in query_lower for word in ['learn', 'study', 'growth']):
|
| 81 |
+
return f"• My Learning Philosophy:\n {perspectives['learning_philosophy']}"
|
| 82 |
+
|
| 83 |
+
# Handle non-portfolio queries gracefully
|
| 84 |
+
return knowledge_base['common_queries']['general']
|
| 85 |
|
| 86 |
def generate_response(query: str, knowledge_base: dict) -> str:
|
| 87 |
"""Generate enhanced responses using the knowledge base"""
|
|
|
|
| 89 |
|
| 90 |
# Handle project listing requests
|
| 91 |
if any(word in query_lower for word in ['list', 'project', 'portfolio', 'built', 'created', 'developed']):
|
| 92 |
+
response_parts = ["Here are my key projects:"]
|
| 93 |
|
| 94 |
# Major Projects (under development)
|
| 95 |
+
response_parts.append("\nMajor Projects (In Development):")
|
| 96 |
for project in knowledge_base['projects']['major_projects']:
|
| 97 |
response_parts.append(format_project_response(project, indent_level=1))
|
| 98 |
|
| 99 |
# Algorithm Implementation Projects
|
| 100 |
+
response_parts.append("\nCompleted Algorithm Implementation Projects:")
|
| 101 |
for project in knowledge_base['projects']['algorithm_practice_projects']:
|
| 102 |
response_parts.append(format_project_response(project, indent_level=1))
|
| 103 |
|
|
|
|
| 107 |
# Handle job description analysis
|
| 108 |
elif len(query.split()) > 20 and any(phrase in query_lower for phrase in
|
| 109 |
['requirements', 'qualifications', 'looking for', 'job description']):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
matches = analyze_job_requirements(query, knowledge_base)
|
| 112 |
+
relevant_projects = find_relevant_projects(query, knowledge_base['projects']['major_projects'])
|
| 113 |
+
|
| 114 |
+
response_parts = ["Based on the job requirements, here's how my profile aligns:\n"]
|
| 115 |
|
| 116 |
+
# Technical Skills Match
|
| 117 |
+
if any(matches.values()):
|
| 118 |
+
response_parts.append("• Technical Skills Alignment:")
|
| 119 |
+
for category, skills in matches.items():
|
| 120 |
+
if skills:
|
| 121 |
+
response_parts.append(f" - Strong {category} skills: {', '.join(skills)}")
|
| 122 |
+
response_parts.append("")
|
| 123 |
|
| 124 |
+
# Project Experience
|
| 125 |
+
if relevant_projects:
|
| 126 |
+
response_parts.append("• Relevant Project Experience:")
|
| 127 |
+
for project in relevant_projects:
|
| 128 |
+
desc = f" - {project['name']}: {project['description']}"
|
| 129 |
+
response_parts.append(desc)
|
| 130 |
+
response_parts.append("")
|
| 131 |
+
|
| 132 |
+
# Education and Background
|
| 133 |
+
response_parts.extend([
|
| 134 |
+
"• Education and Background:",
|
| 135 |
+
" - Advanced AI/ML education in Canada",
|
| 136 |
+
" - Unique commerce background providing business perspective",
|
| 137 |
+
" - Strong foundation in practical ML implementation",
|
| 138 |
+
""
|
| 139 |
+
])
|
| 140 |
|
| 141 |
return '\n'.join(response_parts)
|
| 142 |
|
| 143 |
+
# Handle perspective/philosophical queries
|
| 144 |
+
elif any(word in query_lower for word in ['market', 'think', 'believe', 'opinion', 'weather']):
|
| 145 |
+
return handle_perspective_query(query, knowledge_base)
|
| 146 |
+
|
| 147 |
+
# Handle story/background queries
|
| 148 |
+
elif any(word in query_lower for word in ['background', 'journey', 'story', 'transition']):
|
| 149 |
+
return format_story_response(knowledge_base)
|
| 150 |
+
|
| 151 |
# Default response
|
| 152 |
+
return format_default_response(knowledge_base)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
def main():
|
| 155 |
+
st.title("🤖 Meet Rini - AI-Powered Insights on Manyue's World")
|
| 156 |
|
| 157 |
# Initialize session state
|
| 158 |
if "messages" not in st.session_state:
|
|
|
|
| 168 |
# Display welcome message
|
| 169 |
if "displayed_welcome" not in st.session_state:
|
| 170 |
st.write("""
|
| 171 |
+
Hi there! I'm Rini, Manyue's AI-powered assistant. I'm here to represent Manyue and share insights about:
|
| 172 |
- My journey from commerce to ML/AI
|
| 173 |
- My technical skills and projects
|
| 174 |
- My fit for ML/AI roles
|
| 175 |
+
- My perspective on the tech industry
|
| 176 |
- You can also paste job descriptions to see how my profile matches!
|
| 177 |
""")
|
| 178 |
st.session_state.displayed_welcome = True
|
| 179 |
+
|
| 180 |
+
# Create two columns with chat history in scrollable container
|
| 181 |
col1, col2 = st.columns([3, 1])
|
| 182 |
|
| 183 |
with col1:
|
| 184 |
+
# Chat container for better scrolling
|
| 185 |
+
chat_container = st.container()
|
| 186 |
+
with chat_container:
|
| 187 |
+
for message in st.session_state.messages:
|
| 188 |
+
with st.chat_message(message["role"]):
|
| 189 |
+
st.markdown(message["content"])
|
| 190 |
|
| 191 |
+
# Chat input at bottom
|
| 192 |
if prompt := st.chat_input("Ask me anything or paste a job description..."):
|
| 193 |
# Add user message
|
| 194 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
|
|
| 211 |
"What are your technical skills?",
|
| 212 |
"What makes you stand out?",
|
| 213 |
"What's your journey into ML?",
|
| 214 |
+
"Your view on the current market?"
|
| 215 |
]
|
| 216 |
|
| 217 |
for question in example_questions:
|