Manyue-DataScientist commited on
Commit
f9f18b4
·
verified ·
1 Parent(s): 7e1c872

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +194 -136
app.py CHANGED
@@ -3,80 +3,182 @@ import json
3
  from typing import Dict, List, Any
4
  import re
5
 
6
- def format_project_response(project: dict, include_status: bool = True) -> str:
7
- """Format a project description with proper status handling"""
8
- response = [f" {project['name']}:"]
9
- response.append(f" - {project['description']}")
 
 
10
 
11
  if 'skills_used' in project:
12
- response.append(f" - Technologies: {', '.join(project['skills_used'])}")
13
 
14
- if include_status and 'status' in project:
15
- if 'development' in project['status'].lower() or 'progress' in project['status'].lower():
16
- response.append(f" - Currently {project['status']}")
 
17
  if 'confidentiality_note' in project:
18
- response.append(f" - Note: {project['confidentiality_note']}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  return '\n'.join(response)
21
 
22
- def analyze_job_requirements(text: str, knowledge_base: dict) -> Dict[str, List[str]]:
23
- """Analyze job requirements and match with skills"""
24
- text_lower = text.lower()
 
 
 
 
 
25
 
26
- # Extract skills from knowledge base
27
- my_skills = {
28
- 'technical': [skill.lower() for skill in knowledge_base['skills']['technical_skills']['machine_learning']['core'] +
29
- knowledge_base['skills']['technical_skills']['programming']['primary'] +
30
- knowledge_base['skills']['technical_skills']['data']['databases']],
31
- 'tools': [tool.lower() for tool in knowledge_base['skills']['technical_skills']['programming']['tools'] +
32
- knowledge_base['skills']['technical_skills']['deployment']['web']],
33
- 'soft_skills': [skill['skill'].lower() for skill in knowledge_base['skills']['soft_skills']]
34
  }
35
 
36
- # Find matching skills in job description
37
- matches = {
38
- 'technical_matches': [skill for skill in my_skills['technical'] if skill in text_lower],
39
- 'tool_matches': [tool for tool in my_skills['tools'] if tool in text_lower],
40
- 'soft_skill_matches': [skill for skill in my_skills['soft_skills'] if skill in text_lower]
41
  }
42
 
43
- return matches
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
- def find_relevant_projects(requirements: str, projects: List[dict]) -> List[dict]:
46
- """Find projects relevant to job requirements"""
47
- req_lower = requirements.lower()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  relevant_projects = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
- for project in projects:
51
- # Check if project skills or description match requirements
52
- if any(skill.lower() in req_lower for skill in project['skills_used']) or \
53
- any(word in project['description'].lower() for word in req_lower.split()):
54
- relevant_projects.append(project)
 
55
 
56
- return relevant_projects[:2] # Return top 2 most relevant projects
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
  def add_relevant_links(response: str, query: str, knowledge_base: dict) -> str:
59
  """Add relevant links based on query context"""
60
  query_lower = query.lower()
61
  links = []
62
 
63
- # Add portfolio link for project-related queries
64
  if any(word in query_lower for word in ['project', 'portfolio', 'work']):
65
  links.append(f"\nView my complete portfolio: {knowledge_base['personal_details']['online_presence']['portfolio']}")
66
 
67
- # Add blog link for technical queries
68
- if any(word in query_lower for word in ['machine learning', 'ml', 'algorithm', 'knn']):
69
- for post in knowledge_base['personal_details']['online_presence']['blog_posts']:
70
- if 'link' in post and any(word in post['title'].lower() for word in query_lower.split()):
71
- links.append(f"\nRelated blog post: {post['link']}")
72
- break
73
-
74
- # Add LinkedIn for professional background queries
75
  if any(word in query_lower for word in ['background', 'experience', 'work']):
76
  links.append(f"\nConnect with me: {knowledge_base['personal_details']['online_presence']['linkedin']}")
77
 
 
 
 
 
 
78
  if links:
79
- response += '\n\n' + '\n'.join(links)
80
 
81
  return response
82
 
@@ -86,17 +188,17 @@ def generate_response(query: str, knowledge_base: dict) -> str:
86
 
87
  # Handle project listing requests
88
  if any(word in query_lower for word in ['list', 'project', 'portfolio', 'built', 'created', 'developed']):
89
- response_parts = ["Here are my key projects:"]
90
 
91
  # Major Projects (under development)
92
- response_parts.append("\nMajor Projects (In Development):")
93
  for project in knowledge_base['projects']['major_projects']:
94
- response_parts.append(format_project_response(project))
95
-
96
- # Algorithm Implementation Projects (completed)
97
- response_parts.append("\nCompleted Algorithm Implementation Projects:")
98
  for project in knowledge_base['projects']['algorithm_practice_projects']:
99
- response_parts.append(format_project_response(project, include_status=False))
100
 
101
  response = '\n'.join(response_parts)
102
  return add_relevant_links(response, query, knowledge_base)
@@ -104,89 +206,42 @@ def generate_response(query: str, knowledge_base: dict) -> str:
104
  # Handle job description analysis
105
  elif len(query.split()) > 20 and any(phrase in query_lower for phrase in
106
  ['requirements', 'qualifications', 'looking for', 'job description']):
107
-
108
- skill_matches = analyze_job_requirements(query, knowledge_base)
109
- relevant_projects = find_relevant_projects(query, knowledge_base['projects']['major_projects'])
110
-
111
- response_parts = ["Based on the job requirements, here's how my profile aligns:"]
112
-
113
- # Technical Skills Match
114
- if skill_matches['technical_matches']:
115
- response_parts.append("\n• Technical Skills Match:")
116
- for skill in skill_matches['technical_matches']:
117
- response_parts.append(f" - Strong proficiency in {skill}")
118
-
119
- # Tools and Technologies
120
- if skill_matches['tool_matches']:
121
- response_parts.append("\n• Relevant Tools/Technologies:")
122
- for tool in skill_matches['tool_matches']:
123
- response_parts.append(f" - Experience with {tool}")
124
-
125
- # Relevant Projects
126
- if relevant_projects:
127
- response_parts.append("\n• Relevant Project Experience:")
128
- for project in relevant_projects:
129
- response_parts.append(format_project_response(project))
130
-
131
- # Education and Background
132
- response_parts.append("\n• Education and Background:")
133
- response_parts.append(" - Currently pursuing advanced AI/ML education in Canada")
134
- response_parts.append(" - Unique background combining commerce and technology")
135
- response_parts.append(" - Strong foundation in practical ML implementation")
136
-
137
- response = '\n'.join(response_parts)
138
- return add_relevant_links(response, query, knowledge_base)
139
 
140
  # Handle background/story queries
141
  elif any(word in query_lower for word in ['background', 'journey', 'story', 'transition']):
142
- transition_story = next((qa['answer'] for qa in knowledge_base['frequently_asked_questions']
143
- if 'transition' in qa['question'].lower()), '')
144
-
145
- response_parts = [
146
- "My Journey from Commerce to ML/AI:",
147
- "• Education Background:",
148
- f" - {knowledge_base['education']['undergraduate']['course_name']} from {knowledge_base['education']['undergraduate']['institution']}",
149
- "• Career Transition:",
150
- " - Started as a Programmer Trainee at Cognizant",
151
- f" - {transition_story[:200]}...",
152
- "• Current Path:",
153
- " - Pursuing AI/ML education in Canada",
154
- " - Building practical ML projects",
155
- "• Future Goals:",
156
- " - Aiming to become an ML Engineer in Canada",
157
- " - Focus on innovative AI solutions"
158
- ]
159
-
160
- response = '\n'.join(response_parts)
161
- return add_relevant_links(response, query, knowledge_base)
162
 
163
  # Handle skill-specific queries
164
  elif any(word in query_lower for word in ['skill', 'know', 'technology', 'stack']):
165
- tech_skills = knowledge_base['skills']['technical_skills']
166
-
167
- response_parts = ["My Technical Expertise:"]
 
 
 
 
 
 
168
 
169
- # ML/AI Skills
170
- response_parts.append("\n• Machine Learning & AI:")
171
- response_parts.append(f" - Core: {', '.join(tech_skills['machine_learning']['core'])}")
172
- response_parts.append(f" - Frameworks: {', '.join(tech_skills['machine_learning']['frameworks'])}")
173
 
174
- # Programming & Tools
175
- response_parts.append("\n• Programming & Development:")
176
- response_parts.append(f" - Languages: {', '.join(tech_skills['programming']['primary'])}")
177
- response_parts.append(f" - Tools: {', '.join(tech_skills['programming']['tools'])}")
178
 
179
- # Data & Analytics
180
- response_parts.append("\n• Data & Analytics:")
181
- response_parts.append(f" - Databases: {', '.join(tech_skills['data']['databases'])}")
182
- response_parts.append(f" - Visualization: {', '.join(tech_skills['data']['visualization'])}")
183
 
184
- response = '\n'.join(response_parts)
185
- return add_relevant_links(response, query, knowledge_base)
186
 
187
- # Handle default/unknown queries
188
- return (f"I'm {knowledge_base['personal_details']['full_name']}, "
189
- f"{knowledge_base['personal_details']['professional_summary']}\n\n"
190
  "You can ask me about:\n"
191
  "• My projects and portfolio\n"
192
  "• My journey from commerce to ML/AI\n"
@@ -202,7 +257,7 @@ def main():
202
  st.session_state.messages = []
203
  if "knowledge_base" not in st.session_state:
204
  try:
205
- with open('knowledge_base.json', 'r', encoding='utf-8') as f:
206
  st.session_state.knowledge_base = json.load(f)
207
  except FileNotFoundError:
208
  st.error("Knowledge base file not found.")
@@ -218,10 +273,10 @@ def main():
218
  - You can also paste job descriptions to see how my profile matches!
219
  """)
220
  st.session_state.displayed_welcome = True
221
-
222
  # Create two columns
223
  col1, col2 = st.columns([3, 1])
224
-
225
  with col1:
226
  # Display chat messages
227
  for message in st.session_state.messages:
@@ -233,29 +288,32 @@ def main():
233
  # Add user message
234
  st.session_state.messages.append({"role": "user", "content": prompt})
235
 
236
- # Generate and display response
237
- with st.chat_message("assistant"):
238
- response = generate_response(prompt, st.session_state.knowledge_base)
239
- st.markdown(response)
240
- st.session_state.messages.append({"role": "assistant", "content": response})
 
 
 
241
 
242
  st.rerun()
243
-
244
  with col2:
245
  st.subheader("Quick Questions")
246
  example_questions = [
247
  "Tell me about your ML projects",
248
  "What are your technical skills?",
249
- "Why should we hire you as an ML Engineer?",
250
  "What's your journey into ML?",
251
  "Paste a job description to see how I match!"
252
  ]
253
-
254
  for question in example_questions:
255
  if st.button(question):
256
  st.session_state.messages.append({"role": "user", "content": question})
257
  st.rerun()
258
-
259
  st.markdown("---")
260
  if st.button("Clear Chat"):
261
  st.session_state.messages = []
 
3
  from typing import Dict, List, Any
4
  import re
5
 
6
+ def format_project_response(project: dict, indent_level: int = 0) -> str:
7
+ """Format project details with proper indentation and spacing"""
8
+ indent = " " * indent_level
9
+
10
+ response = [f"{indent}• {project['name']}"]
11
+ response.append(f"{indent} {project['description']}")
12
 
13
  if 'skills_used' in project:
14
+ response.append(f"{indent} Technologies: {', '.join(project['skills_used'])}")
15
 
16
+ if 'status' in project:
17
+ status = project['status']
18
+ if 'development' in status.lower() or 'progress' in status.lower():
19
+ response.append(f"{indent} Status: {status}")
20
  if 'confidentiality_note' in project:
21
+ response.append(f"{indent} Note: {project['confidentiality_note']}")
22
+
23
+ return '\n'.join(response) + '\n' # Add extra newline for spacing
24
+
25
+ def format_skills_response(skills: dict) -> str:
26
+ """Format skills with proper hierarchy and spacing"""
27
+ response = ["My Technical Expertise:\n"]
28
+
29
+ categories = {
30
+ 'Machine Learning & AI': ['core', 'frameworks', 'focus_areas'],
31
+ 'Programming': ['primary', 'libraries', 'tools'],
32
+ 'Data & Analytics': ['databases', 'visualization', 'processing']
33
+ }
34
+
35
+ for category, subcategories in categories.items():
36
+ response.append(f"• {category}")
37
+ for subcat in subcategories:
38
+ if subcat in skills['machine_learning']:
39
+ items = skills['machine_learning'][subcat]
40
+ response.append(f" - {subcat.title()}: {', '.join(items)}")
41
+ response.append("") # Add spacing between categories
42
 
43
  return '\n'.join(response)
44
 
45
+ def analyze_job_description(text: str, knowledge_base: dict) -> str:
46
+ """Analyze job description and provide detailed alignment"""
47
+ # Extract key requirements
48
+ requirements = {
49
+ 'technical_tools': set(),
50
+ 'soft_skills': set(),
51
+ 'responsibilities': set()
52
+ }
53
 
54
+ # Common technical tools and skills
55
+ tech_keywords = {
56
+ 'data science', 'analytics', 'visualization', 'tableau', 'python',
57
+ 'machine learning', 'modeling', 'automation', 'sql', 'data analysis'
 
 
 
 
58
  }
59
 
60
+ # Common soft skills
61
+ soft_keywords = {
62
+ 'collaborate', 'communicate', 'analyze', 'design', 'implement',
63
+ 'produce insights', 'improve', 'support'
 
64
  }
65
 
66
+ text_lower = text.lower()
67
+
68
+ # Extract company name if present
69
+ companies = ['rbc', 'shopify', 'google', 'microsoft', 'amazon']
70
+ company_name = next((company.upper() for company in companies if company in text_lower), None)
71
+
72
+ # Extract requirements
73
+ for word in tech_keywords:
74
+ if word in text_lower:
75
+ requirements['technical_tools'].add(word)
76
+
77
+ for word in soft_keywords:
78
+ if word in text_lower:
79
+ requirements['soft_skills'].add(word)
80
+
81
+ # Build response
82
+ response_parts = []
83
+
84
+ # Company-specific introduction if applicable
85
+ if company_name:
86
+ response_parts.append(f"Here's how I align with {company_name}'s requirements:\n")
87
+ else:
88
+ response_parts.append("Based on the job requirements, here's how I align:\n")
89
 
90
+ # Technical Skills Alignment
91
+ response_parts.append(" Technical Skills Match:")
92
+ my_relevant_skills = []
93
+ if 'visualization' in requirements['technical_tools'] or 'tableau' in requirements['technical_tools']:
94
+ my_relevant_skills.append(" - Proficient in Tableau and data visualization (used in multiple projects)")
95
+ if 'data analysis' in requirements['technical_tools']:
96
+ my_relevant_skills.append(" - Strong data analysis skills demonstrated in projects like LoanTap Credit Assessment")
97
+ if 'machine learning' in requirements['technical_tools'] or 'modeling' in requirements['technical_tools']:
98
+ my_relevant_skills.append(" - Experienced in building ML models from scratch (demonstrated in algorithm practice projects)")
99
+
100
+ response_parts.extend(my_relevant_skills)
101
+ response_parts.append("") # Add spacing
102
+
103
+ # Business Understanding
104
+ response_parts.append("• Business Acumen:")
105
+ response_parts.append(" - Commerce background provides strong understanding of business requirements")
106
+ response_parts.append(" - Experience in translating business needs into technical solutions")
107
+ response_parts.append(" - Proven ability to communicate technical findings to business stakeholders")
108
+ response_parts.append("") # Add spacing
109
+
110
+ # Project Experience
111
+ response_parts.append("• Relevant Project Experience:")
112
  relevant_projects = []
113
+ if 'automation' in requirements['technical_tools']:
114
+ relevant_projects.append(" - Developed AI-powered POS system with automated operations")
115
+ if 'data analysis' in requirements['technical_tools']:
116
+ relevant_projects.append(" - Built credit assessment model for LoanTap using comprehensive data analysis")
117
+ if 'machine learning' in requirements['technical_tools']:
118
+ relevant_projects.append(" - Created multiple ML models from scratch, including predictive analytics for Ola")
119
+
120
+ response_parts.extend(relevant_projects)
121
+ response_parts.append("") # Add spacing
122
+
123
+ # Education and Additional Qualifications
124
+ response_parts.append("• Additional Strengths:")
125
+ response_parts.append(" - Currently pursuing advanced AI/ML education in Canada")
126
+ response_parts.append(" - Strong foundation in both technical implementation and business analysis")
127
+ response_parts.append(" - Experience in end-to-end project delivery and deployment")
128
+
129
+ return '\n'.join(response_parts)
130
+
131
+ def format_story_response(knowledge_base: dict) -> str:
132
+ """Format background story with proper structure"""
133
+ response_parts = ["My Journey from Commerce to ML/AI:\n"]
134
 
135
+ # Education Background
136
+ response_parts.append("• Education Background:")
137
+ response_parts.append(f" - Commerce degree from {knowledge_base['education']['undergraduate']['institution']}")
138
+ response_parts.append(f" - Currently at {knowledge_base['education']['postgraduate'][0]['institution']}")
139
+ response_parts.append(f" - Also enrolled at {knowledge_base['education']['postgraduate'][1]['institution']}")
140
+ response_parts.append("") # Add spacing
141
 
142
+ # Career Transition
143
+ response_parts.append("• Career Transition:")
144
+ transition = next((qa['answer'] for qa in knowledge_base['frequently_asked_questions']
145
+ if 'transition' in qa['question'].lower()), '')
146
+ response_parts.append(f" - {transition[:200]}...") # Truncate for readability
147
+ response_parts.append("") # Add spacing
148
+
149
+ # Current Focus
150
+ response_parts.append("• Current Focus:")
151
+ response_parts.append(" - Building practical ML projects")
152
+ response_parts.append(" - Advancing AI/ML education in Canada")
153
+ response_parts.append("") # Add spacing
154
+
155
+ # Goals
156
+ response_parts.append("• Future Goals:")
157
+ response_parts.append(" - Secure ML Engineering role in Canada")
158
+ response_parts.append(" - Develop innovative AI solutions")
159
+ response_parts.append(" - Contribute to cutting-edge ML projects")
160
+
161
+ return '\n'.join(response_parts)
162
 
163
  def add_relevant_links(response: str, query: str, knowledge_base: dict) -> str:
164
  """Add relevant links based on query context"""
165
  query_lower = query.lower()
166
  links = []
167
 
168
+ # Add links strategically based on context
169
  if any(word in query_lower for word in ['project', 'portfolio', 'work']):
170
  links.append(f"\nView my complete portfolio: {knowledge_base['personal_details']['online_presence']['portfolio']}")
171
 
 
 
 
 
 
 
 
 
172
  if any(word in query_lower for word in ['background', 'experience', 'work']):
173
  links.append(f"\nConnect with me: {knowledge_base['personal_details']['online_presence']['linkedin']}")
174
 
175
+ for post in knowledge_base['personal_details']['online_presence']['blog_posts']:
176
+ if 'link' in post and any(word in query_lower for word in post['title'].lower().split()):
177
+ links.append(f"\nRelated blog post: {post['link']}")
178
+ break
179
+
180
  if links:
181
+ response += '\n' + '\n'.join(links)
182
 
183
  return response
184
 
 
188
 
189
  # Handle project listing requests
190
  if any(word in query_lower for word in ['list', 'project', 'portfolio', 'built', 'created', 'developed']):
191
+ response_parts = ["Here are my key projects:\n"]
192
 
193
  # Major Projects (under development)
194
+ response_parts.append("Major Projects (In Development):")
195
  for project in knowledge_base['projects']['major_projects']:
196
+ response_parts.append(format_project_response(project, indent_level=1))
197
+
198
+ # Algorithm Implementation Projects
199
+ response_parts.append("Completed Algorithm Implementation Projects:")
200
  for project in knowledge_base['projects']['algorithm_practice_projects']:
201
+ response_parts.append(format_project_response(project, indent_level=1))
202
 
203
  response = '\n'.join(response_parts)
204
  return add_relevant_links(response, query, knowledge_base)
 
206
  # Handle job description analysis
207
  elif len(query.split()) > 20 and any(phrase in query_lower for phrase in
208
  ['requirements', 'qualifications', 'looking for', 'job description']):
209
+ return analyze_job_description(query, knowledge_base)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210
 
211
  # Handle background/story queries
212
  elif any(word in query_lower for word in ['background', 'journey', 'story', 'transition']):
213
+ return format_story_response(knowledge_base)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214
 
215
  # Handle skill-specific queries
216
  elif any(word in query_lower for word in ['skill', 'know', 'technology', 'stack']):
217
+ return format_skills_response(knowledge_base['skills']['technical_skills'])
218
+
219
+ # Handle standout/unique qualities queries
220
+ elif any(word in query_lower for word in ['stand out', 'unique', 'different', 'special']):
221
+ response_parts = ["What Makes Me Stand Out:\n"]
222
+ response_parts.append("• Unique Background:")
223
+ response_parts.append(" - Successfully transitioned from commerce to tech")
224
+ response_parts.append(" - Blend of business acumen and technical expertise")
225
+ response_parts.append("")
226
 
227
+ response_parts.append("• Practical Experience:")
228
+ response_parts.append(" - Built multiple ML projects from scratch")
229
+ response_parts.append(" - Focus on real-world applications")
230
+ response_parts.append("")
231
 
232
+ response_parts.append("• Technical Depth:")
233
+ response_parts.append(" - Strong foundation in ML/AI principles")
234
+ response_parts.append(" - Experience with end-to-end project implementation")
235
+ response_parts.append("")
236
 
237
+ response_parts.append("• Innovation Focus:")
238
+ response_parts.append(" - Developing novel solutions in ML/AI")
239
+ response_parts.append(" - Emphasis on practical impact")
 
240
 
241
+ return '\n'.join(response_parts)
 
242
 
243
+ # Default response
244
+ return (f"I'm {knowledge_base['personal_details']['professional_summary']}\n\n"
 
245
  "You can ask me about:\n"
246
  "• My projects and portfolio\n"
247
  "• My journey from commerce to ML/AI\n"
 
257
  st.session_state.messages = []
258
  if "knowledge_base" not in st.session_state:
259
  try:
260
+ with open('manny_knowledge_base.json', 'r', encoding='utf-8') as f:
261
  st.session_state.knowledge_base = json.load(f)
262
  except FileNotFoundError:
263
  st.error("Knowledge base file not found.")
 
273
  - You can also paste job descriptions to see how my profile matches!
274
  """)
275
  st.session_state.displayed_welcome = True
276
+
277
  # Create two columns
278
  col1, col2 = st.columns([3, 1])
279
+
280
  with col1:
281
  # Display chat messages
282
  for message in st.session_state.messages:
 
288
  # Add user message
289
  st.session_state.messages.append({"role": "user", "content": prompt})
290
 
291
+ try:
292
+ # Generate and display response
293
+ with st.chat_message("assistant"):
294
+ response = generate_response(prompt, st.session_state.knowledge_base)
295
+ st.markdown(response)
296
+ st.session_state.messages.append({"role": "assistant", "content": response})
297
+ except Exception as e:
298
+ st.error(f"An error occurred: {str(e)}")
299
 
300
  st.rerun()
301
+
302
  with col2:
303
  st.subheader("Quick Questions")
304
  example_questions = [
305
  "Tell me about your ML projects",
306
  "What are your technical skills?",
307
+ "What makes you stand out?",
308
  "What's your journey into ML?",
309
  "Paste a job description to see how I match!"
310
  ]
311
+
312
  for question in example_questions:
313
  if st.button(question):
314
  st.session_state.messages.append({"role": "user", "content": question})
315
  st.rerun()
316
+
317
  st.markdown("---")
318
  if st.button("Clear Chat"):
319
  st.session_state.messages = []