File size: 9,526 Bytes
24a059f e109361 24a059f d24563e aeeda1a 24a059f 13e4c4d 7fcd557 c308901 13e4c4d d24563e 13e4c4d d24563e e109361 fb73da9 e109361 fb73da9 e109361 13e4c4d 6bcbc7b e109361 13e4c4d 24a059f 8b80c42 9f7748a 8b80c42 2f1a209 d67bb93 8b80c42 d67bb93 8b80c42 2f1a209 8b80c42 2f1a209 8b80c42 d30a8bb 8b80c42 d67bb93 8b80c42 2f1a209 d67bb93 9f7748a e109361 9f7748a 1fe4357 d24563e 13e4c4d d24563e 13e4c4d d24563e 8f89713 104bf5a 8f89713 1fe4357 8f89713 1fe4357 2f1a209 8f89713 e109361 1f0c8bc b8ab1fc 7bdeca8 e359f0e 45d118c 7bdeca8 673f0ca 514663d 673f0ca fa8abad 7bdeca8 b8ab1fc fa8abad e359f0e fa8abad e359f0e 7bdeca8 e359f0e 927f408 e359f0e fa8abad e359f0e d24563e 7e020a6 e359f0e d51aeb7 e359f0e 7bdeca8 d51aeb7 e359f0e c2fa8d0 7bdeca8 a45bd57 c2fa8d0 7bdeca8 c2fa8d0 7bdeca8 fca838b 7fcd557 7bdeca8 1fe4357 c2fa8d0 7fcd557 d24563e e359f0e 7fcd557 514663d 7fcd557 514663d 8f89713 7fcd557 514663d 7fcd557 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import gradio as gr
import pandas as pd
import os
import re
from datetime import datetime
from huggingface_hub import hf_hub_download
from huggingface_hub import HfApi, HfFolder
LEADERBOARD_FILE = "leaderboard.csv"
GROUND_TRUTH_FILE = "ground_truth.csv"
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
# Ensure authentication and suppress warnings
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable is not set or invalid.")
def initialize_leaderboard_file():
"""
Ensure the leaderboard file exists and has the correct headers.
"""
if not os.path.exists(LEADERBOARD_FILE):
pd.DataFrame(columns=[
"Model Name", "Overall Accuracy", "Valid Accuracy",
"Correct Predictions", "Total Questions", "Timestamp"
]).to_csv(LEADERBOARD_FILE, index=False)
elif os.stat(LEADERBOARD_FILE).st_size == 0:
pd.DataFrame(columns=[
"Model Name", "Overall Accuracy", "Valid Accuracy",
"Correct Predictions", "Total Questions", "Timestamp"
]).to_csv(LEADERBOARD_FILE, index=False)
def clean_answer(answer):
if pd.isna(answer):
return None
answer = str(answer)
clean = re.sub(r'[^A-Da-d]', '', answer)
return clean[0].upper() if clean else None
def update_leaderboard(results):
"""
Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
"""
new_entry = {
"Model Name": results['model_name'],
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
"Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
"Correct Predictions": results['correct_predictions'],
"Total Questions": results['total_questions'],
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
}
try:
# Update the local leaderboard file
new_entry_df = pd.DataFrame([new_entry])
file_exists = os.path.exists(LEADERBOARD_FILE)
new_entry_df.to_csv(
LEADERBOARD_FILE,
mode='a', # Append mode
index=False,
header=not file_exists # Write header only if the file is new
)
print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")
# Push the updated file to the Hugging Face repository using HTTP API
api = HfApi()
token = HfFolder.get_token()
api.upload_file(
path_or_fileobj=LEADERBOARD_FILE,
path_in_repo="leaderboard.csv",
repo_id="SondosMB/ss", # Your Space repository
repo_type="space",
token=token
)
print("Leaderboard changes pushed to Hugging Face repository.")
except Exception as e:
print(f"Error updating leaderboard file: {e}")
def load_leaderboard():
if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
return pd.DataFrame({
"Model Name": [],
"Overall Accuracy": [],
"Valid Accuracy": [],
"Correct Predictions": [],
"Total Questions": [],
"Timestamp": [],
})
return pd.read_csv(LEADERBOARD_FILE)
def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
try:
ground_truth_path = hf_hub_download(
repo_id="SondosMB/ground-truth-dataset",
filename="ground_truth.csv",
repo_type="dataset",
use_auth_token=True
)
ground_truth_df = pd.read_csv(ground_truth_path)
except FileNotFoundError:
return "Ground truth file not found in the dataset repository.", load_leaderboard()
except Exception as e:
return f"Error loading ground truth: {e}", load_leaderboard()
if not prediction_file:
return "Prediction file not uploaded.", load_leaderboard()
try:
predictions_df = pd.read_csv(prediction_file.name)
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
valid_predictions = merged_df.dropna(subset=['pred_answer'])
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
total_predictions = len(merged_df)
total_valid_predictions = len(valid_predictions)
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
results = {
'model_name': model_name if model_name else "Unknown Model",
'overall_accuracy': overall_accuracy,
'valid_accuracy': valid_accuracy,
'correct_predictions': correct_predictions,
'total_questions': total_predictions,
}
if add_to_leaderboard:
update_leaderboard(results)
return "Evaluation completed and added to leaderboard.", load_leaderboard()
else:
return "Evaluation completed but not added to leaderboard.", load_leaderboard()
except Exception as e:
return f"Error during evaluation: {str(e)}", load_leaderboard()
initialize_leaderboard_file()
# Function to set default mode
# Function to set default mode
import gradio as gr
# Ensure CSS is correctly defined
css_tech_theme = """
body {
background-color: #f4f6fa;
color: #333333;
font-family: 'Roboto', sans-serif;
line-height: 1.8;
}
.center-content {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
text-align: center;
margin: 30px 0;
padding: 20px;
}
h1, h3 {
color: #5e35b1;
margin: 15px 0;
text-align: center;
}
"""
# Ensure all required functions and variables are defined
def evaluate_predictions(file, model_name, add_to_leaderboard):
# Add logic for evaluating predictions
return "Evaluation completed", 90.0 # Example return
def load_leaderboard():
# Add logic for loading leaderboard
return [{"Model Name": "Example", "Accuracy": 90}]
LAST_UPDATED = "December 21, 2024"
# Create the Gradio Interface
with gr.Blocks(css=css_tech_theme) as demo:
gr.Markdown("""
<div class="center-content">
<h1>π Mobile-MMLU Benchmark Competition</h1>
<h3>π Welcome to the Competition Overview</h3>
<img src="https://via.placeholder.com/200" alt="Competition Logo">
<p>
Welcome to the Mobile-MMLU Benchmark Competition. Here you can submit your predictions,
view the leaderboard, and track your performance!
</p>
<hr>
</div>
""")
with gr.Tabs(elem_id="tabs"):
with gr.TabItem("π Overview"):
gr.Markdown("""
## Overview
Welcome to the **Mobile-MMLU Benchmark Competition**! Evaluate mobile-compatible Large Language Models (LLMs) on **16,186 scenario-based and factual questions** across **80 fields**.
---
### What is Mobile-MMLU?
Mobile-MMLU is a benchmark designed to test the capabilities of LLMs optimized for mobile use. Contribute to advancing mobile AI systems by competing to achieve the highest accuracy.
---
### How It Works
1. **Download the Dataset**
Access the dataset and instructions on our [GitHub page](https://github.com/your-github-repo).
2. **Generate Predictions**
Use your LLM to answer the dataset questions. Format your predictions as a CSV file.
3. **Submit Predictions**
Upload your predictions on this platform.
4. **Evaluation**
Submissions are scored on accuracy.
5. **Leaderboard**
View real-time rankings on the leaderboard.
---
""")
with gr.TabItem("π€ Submission"):
with gr.Row():
file_input = gr.File(label="π Upload Prediction CSV", file_types=[".csv"], interactive=True)
model_name_input = gr.Textbox(label="ποΈ Model Name", placeholder="Enter your model name")
with gr.Row():
overall_accuracy_display = gr.Number(label="π
Overall Accuracy", interactive=False)
add_to_leaderboard_checkbox = gr.Checkbox(label="π Add to Leaderboard?", value=True)
eval_button = gr.Button("Evaluate", elem_id="evaluate-button")
eval_status = gr.Textbox(label="π’ Evaluation Status", interactive=False)
eval_button.click(
evaluate_predictions,
inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
outputs=[eval_status, overall_accuracy_display],
)
with gr.TabItem("π
Leaderboard"):
leaderboard_table = gr.Dataframe(
value=load_leaderboard(),
label="Leaderboard",
interactive=False,
wrap=True,
)
refresh_button = gr.Button("Refresh Leaderboard")
refresh_button.click(
lambda: load_leaderboard(),
inputs=[],
outputs=[leaderboard_table],
)
gr.Markdown(f"**Last updated:** {LAST_UPDATED}")
demo.launch()
|