Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,074 Bytes
a703203 248f5a7 a703203 d181b45 ac8e9cc 248f5a7 4c6b4c5 ac8e9cc 4c6b4c5 0ff6c39 eb215ff a703203 eb215ff a703203 9d3ca6c d181b45 eb215ff cd26609 4731160 d181b45 4731160 794ee70 4731160 d181b45 4731160 b1544e2 4731160 d181b45 4731160 f5c0811 4731160 d181b45 4731160 f7a541f 4731160 d181b45 4731160 cd26609 4731160 d181b45 4731160 cd26609 4731160 d181b45 4731160 cd26609 4731160 d181b45 4731160 d554072 4731160 d181b45 4731160 d554072 4731160 d181b45 4731160 d554072 4731160 d181b45 4731160 d554072 cd26609 ac8e9cc a703203 ac8e9cc a703203 ac8e9cc a703203 ac8e9cc a703203 d33dfcd a703203 ac8e9cc a703203 ac8e9cc a703203 ac8e9cc a703203 ac8e9cc a703203 ac8e9cc a703203 ac8e9cc a703203 ac8e9cc a703203 ac8e9cc a703203 d181b45 ac8e9cc a703203 eb215ff ac8e9cc b6b3940 ac8e9cc d181b45 ac8e9cc d181b45 ac8e9cc eb215ff ac8e9cc eb215ff a703203 eb215ff a703203 afa19a3 eb215ff a703203 eb215ff d181b45 a703203 4c6b4c5 a703203 4e60755 a703203 ac8e9cc a703203 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import os
import time
import gc
import threading
from itertools import islice
from datetime import datetime
import gradio as gr
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from duckduckgo_search import DDGS
import spaces # Import spaces early to enable ZeroGPU support
# Optional: Disable GPU visibility if you wish to force CPU usage
# os.environ["CUDA_VISIBLE_DEVICES"] = ""
# ------------------------------
# Global Cancellation Event
# ------------------------------
cancel_event = threading.Event()
# ------------------------------
# Torch-Compatible Model Definitions with Adjusted Descriptions
# ------------------------------
MODELS = {
"Taiwan-tinyllama-v1.0-chat": {
"repo_id": "DavidLanz/Taiwan-tinyllama-v1.0-chat",
"description": "Taiwan-tinyllama-v1.0-chat"
},
"Llama-3.2-Taiwan-3B-Instruct": {
"repo_id": "https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B-Instruct",
"description": "Llama-3.2-Taiwan-3B-Instruct"
},
"MiniCPM3-4B": {
"repo_id": "openbmb/MiniCPM3-4B",
"description": "MiniCPM3-4B"
},
"Qwen2.5-3B-Instruct": {
"repo_id": "Qwen/Qwen2.5-3B-Instruct",
"description": "Qwen2.5-3B-Instruct"
},
"Qwen2.5-7B-Instruct": {
"repo_id": "Qwen/Qwen2.5-7B-Instruct",
"description": "Qwen2.5-7B-Instruct"
},
"Gemma-3-4B-IT": {
"repo_id": "unsloth/gemma-3-4b-it",
"description": "Gemma-3-4B-IT"
},
"Phi-4-mini-Instruct": {
"repo_id": "unsloth/Phi-4-mini-instruct",
"description": "Phi-4-mini-Instruct"
},
"Meta-Llama-3.1-8B-Instruct": {
"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct",
"description": "Meta-Llama-3.1-8B-Instruct"
},
"DeepSeek-R1-Distill-Llama-8B": {
"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B",
"description": "DeepSeek-R1-Distill-Llama-8B"
},
"Mistral-7B-Instruct-v0.3": {
"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3",
"description": "Mistral-7B-Instruct-v0.3"
},
"Qwen2.5-Coder-7B-Instruct": {
"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct",
"description": "Qwen2.5-Coder-7B-Instruct"
},
}
# Global cache for pipelines to avoid re-loading.
PIPELINES = {}
def load_pipeline(model_name):
"""
Load and cache a transformers pipeline for chat/text-generation.
Uses the model's repo_id from MODELS and caches the pipeline for future use.
"""
global PIPELINES
if model_name in PIPELINES:
return PIPELINES[model_name]
selected_model = MODELS[model_name]
# Create a chat-style text-generation pipeline.
pipe = pipeline(
task="text-generation",
model=selected_model["repo_id"],
tokenizer=selected_model["repo_id"],
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map="auto"
)
PIPELINES[model_name] = pipe
return pipe
def retrieve_context(query, max_results=6, max_chars_per_result=600):
"""
Retrieve recent web search context for the given query using DuckDuckGo.
Returns a formatted string with search results.
"""
try:
with DDGS() as ddgs:
results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))
context = ""
for i, result in enumerate(results, start=1):
title = result.get("title", "No Title")
snippet = result.get("body", "")[:max_chars_per_result]
context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
return context.strip()
except Exception:
return ""
# ------------------------------
# Chat Response Generation with ZeroGPU using Pipeline
# ------------------------------
@spaces.GPU(duration=60)
def chat_response(user_message, chat_history, system_prompt, enable_search,
max_results, max_chars, model_name, max_tokens, temperature, top_k, top_p, repeat_penalty):
"""
Generate a chat response by utilizing a transformers pipeline.
- Appends the user's message to the conversation history.
- Optionally retrieves web search context and inserts it as an additional system message.
- Uses a cached pipeline (loaded via load_pipeline) to generate a response.
- Returns the updated conversation history and a debug message.
"""
cancel_event.clear()
# Build conversation list from chat history.
conversation = list(chat_history) if chat_history else []
conversation.append({"role": "user", "content": user_message})
# Retrieve web search context if enabled.
debug_message = ""
retrieved_context = ""
if enable_search:
debug_message = "Initiating web search..."
yield conversation, debug_message
search_result = [""]
def do_search():
search_result[0] = retrieve_context(user_message, max_results, max_chars)
search_thread = threading.Thread(target=do_search)
search_thread.start()
search_thread.join(timeout=2)
retrieved_context = search_result[0]
if retrieved_context:
debug_message = f"Web search results:\n\n{retrieved_context}"
# Insert the search context as a system-level message immediately after the original system prompt.
conversation.insert(1, {"role": "system", "content": f"Web search context:\n{retrieved_context}"})
else:
debug_message = "Web search returned no results or timed out."
else:
debug_message = "Web search disabled."
# Append a placeholder for the assistant's response.
conversation.append({"role": "assistant", "content": ""})
try:
# Load the pipeline (cached) for the selected model.
pipe = load_pipeline(model_name)
# Use the pipeline directly with conversation history.
# Note: Many chat pipelines use internal chat templating to properly format the conversation.
response = pipe(
conversation,
max_new_tokens=max_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repeat_penalty,
)
# Extract the assistant's reply.
try:
assistant_text = response[0]["generated_text"][-1]["content"]
except (KeyError, IndexError, TypeError):
assistant_text = response[0]["generated_text"]
# Update the conversation history.
conversation[-1]["content"] = assistant_text
# Yield the complete conversation history and the debug message.
yield conversation, debug_message
except Exception as e:
conversation[-1]["content"] = f"Error: {e}"
yield conversation, debug_message
finally:
gc.collect()
# ------------------------------
# Cancel Function
# ------------------------------
def cancel_generation():
cancel_event.set()
return "Cancellation requested."
# ------------------------------
# Gradio UI Definition
# ------------------------------
with gr.Blocks(title="LLM Inference with ZeroGPU") as demo:
gr.Markdown("## 🧠 ZeroGPU LLM Inference with Web Search")
gr.Markdown("Interact with the model. Select your model, set your system prompt, and adjust parameters on the left.")
with gr.Row():
with gr.Column(scale=3):
default_model = list(MODELS.keys())[0] if MODELS else "No models available"
model_dropdown = gr.Dropdown(
label="Select Model",
choices=list(MODELS.keys()) if MODELS else [],
value=default_model,
info="Choose from available models."
)
today = datetime.now().strftime('%Y-%m-%d')
default_prompt = f"You are a helpful assistant. Today is {today}. Please leverage the latest web data when responding to queries."
system_prompt_text = gr.Textbox(label="System Prompt",
value=default_prompt,
lines=3,
info="Define the base context for the AI's responses.")
gr.Markdown("### Generation Parameters")
max_tokens_slider = gr.Slider(label="Max Tokens", minimum=64, maximum=1024, value=1024, step=32,
info="Maximum tokens for the response.")
temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7, step=0.1,
info="Controls the randomness of the output.")
top_k_slider = gr.Slider(label="Top-K", minimum=1, maximum=100, value=40, step=1,
info="Limits token candidates to the top-k tokens.")
top_p_slider = gr.Slider(label="Top-P (Nucleus Sampling)", minimum=0.1, maximum=1.0, value=0.95, step=0.05,
info="Limits token candidates to a cumulative probability threshold.")
repeat_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.1, step=0.1,
info="Penalizes token repetition to improve diversity.")
gr.Markdown("### Web Search Settings")
enable_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False,
info="Include recent search context to improve answers.")
max_results_number = gr.Number(label="Max Search Results", value=6, precision=0,
info="Maximum number of search results to retrieve.")
max_chars_number = gr.Number(label="Max Chars per Result", value=600, precision=0,
info="Maximum characters to retrieve per search result.")
clear_button = gr.Button("Clear Chat")
cancel_button = gr.Button("Cancel Generation")
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="Chat", type="messages")
msg_input = gr.Textbox(label="Your Message", placeholder="Enter your message and press Enter")
search_debug = gr.Markdown(label="Web Search Debug")
def clear_chat():
return [], "", ""
clear_button.click(fn=clear_chat, outputs=[chatbot, msg_input, search_debug])
cancel_button.click(fn=cancel_generation, outputs=search_debug)
# Submission: the chat_response function is now used with the Transformers pipeline.
msg_input.submit(
fn=chat_response,
inputs=[msg_input, chatbot, system_prompt_text, enable_search_checkbox,
max_results_number, max_chars_number, model_dropdown,
max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repeat_penalty_slider],
outputs=[chatbot, search_debug],
)
demo.launch()
|