Spaces:
Running
on
Zero
Running
on
Zero
switch to gradio version for stability reason
Browse files- README.md +19 -18
- app.py +185 -217
- requirements.txt +2 -1
README.md
CHANGED
@@ -3,15 +3,22 @@ title: Multi-GGUF LLM Inference
|
|
3 |
emoji: 🧠
|
4 |
colorFrom: pink
|
5 |
colorTo: purple
|
6 |
-
sdk:
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
-
short_description:
|
12 |
---
|
13 |
|
14 |
-
This
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
### 🔄 Supported Models:
|
17 |
- `Qwen/Qwen2.5-7B-Instruct-GGUF` → `qwen2.5-7b-instruct-q2_k.gguf`
|
@@ -23,19 +30,13 @@ This Streamlit app enables **chat-based inference** on various GGUF models using
|
|
23 |
- `Qwen/Qwen2.5-Coder-7B-Instruct-GGUF` → `qwen2.5-coder-7b-instruct-q2_k.gguf`
|
24 |
|
25 |
### ⚙️ Features:
|
26 |
-
- Model
|
27 |
-
- Customizable system prompt and
|
28 |
-
- Chat-style UI with streaming responses
|
29 |
-
- **
|
30 |
-
- **
|
31 |
-
|
32 |
-
### 🧠 Memory-Safe Design (for HuggingFace Spaces):
|
33 |
-
- Loads only **one model at a time** to prevent memory bloat
|
34 |
-
- Utilizes **manual unloading and `gc.collect()`** to free memory when switching models
|
35 |
-
- Adjusts `n_ctx` context length to operate within a 16 GB RAM limit
|
36 |
-
- Automatically downloads models as needed
|
37 |
-
- Limits history to the **last 8 user-assistant turns** to prevent context overflow
|
38 |
|
39 |
-
Ideal for deploying multiple GGUF chat models on
|
40 |
|
41 |
-
|
|
|
3 |
emoji: 🧠
|
4 |
colorFrom: pink
|
5 |
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.29.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
+
short_description: Chat-based inference for GGUF models using llama.cpp and Gradio
|
12 |
---
|
13 |
|
14 |
+
This Gradio app enables **chat-based inference** on various GGUF models using `llama.cpp` and `llama-cpp-python`. The application features:
|
15 |
+
|
16 |
+
- **Real-Time Web Search Integration:** Uses DuckDuckGo to retrieve up-to-date context; debug output is displayed in real time.
|
17 |
+
- **Streaming Token-by-Token Responses:** Users see the generated answer as it comes in.
|
18 |
+
- **Response Cancellation:** A cancel button allows stopping response generation in progress.
|
19 |
+
- **Customizable Prompts & Generation Parameters:** Adjust the system prompt (with dynamic date insertion), temperature, token limits, and more.
|
20 |
+
- **Memory-Safe Design:** Loads one model at a time with proper memory management, ideal for deployment on Hugging Face Spaces.
|
21 |
+
- **Rate Limit Handling:** Implements exponential backoff to cope with DuckDuckGo API rate limits.
|
22 |
|
23 |
### 🔄 Supported Models:
|
24 |
- `Qwen/Qwen2.5-7B-Instruct-GGUF` → `qwen2.5-7b-instruct-q2_k.gguf`
|
|
|
30 |
- `Qwen/Qwen2.5-Coder-7B-Instruct-GGUF` → `qwen2.5-coder-7b-instruct-q2_k.gguf`
|
31 |
|
32 |
### ⚙️ Features:
|
33 |
+
- **Model Selection:** Select from multiple GGUF models.
|
34 |
+
- **Customizable Prompts & Parameters:** Set a system prompt (e.g., automatically including today’s date), adjust temperature, token limits, and more.
|
35 |
+
- **Chat-style Interface:** Interactive Gradio UI with streaming token-by-token responses.
|
36 |
+
- **Real-Time Web Search & Debug Output:** Leverages DuckDuckGo to fetch recent context, with a dedicated debug panel showing web search progress and results.
|
37 |
+
- **Response Cancellation:** Cancel in-progress answer generation using a cancel button.
|
38 |
+
- **Memory-Safe & Rate-Limit Resilient:** Loads one model at a time with proper cleanup and incorporates exponential backoff to handle API rate limits.
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
Ideal for deploying multiple GGUF chat models on Hugging Face Spaces with a robust, user-friendly interface!
|
41 |
|
42 |
+
For further details, check the [Spaces configuration guide](https://huggingface.co/docs/hub/spaces-config-reference).
|
app.py
CHANGED
@@ -1,38 +1,23 @@
|
|
1 |
-
import
|
2 |
-
import
|
|
|
|
|
|
|
3 |
from itertools import islice
|
|
|
|
|
4 |
from llama_cpp import Llama
|
5 |
from llama_cpp.llama_speculative import LlamaPromptLookupDecoding
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from duckduckgo_search import DDGS
|
8 |
|
9 |
# ------------------------------
|
10 |
-
#
|
11 |
# ------------------------------
|
12 |
-
|
13 |
-
st.session_state.chat_history = []
|
14 |
-
if "pending_response" not in st.session_state:
|
15 |
-
st.session_state.pending_response = False
|
16 |
-
if "model_name" not in st.session_state:
|
17 |
-
st.session_state.model_name = None
|
18 |
-
if "llm" not in st.session_state:
|
19 |
-
st.session_state.llm = None
|
20 |
|
21 |
# ------------------------------
|
22 |
-
#
|
23 |
-
# ------------------------------
|
24 |
-
st.markdown("""
|
25 |
-
<style>
|
26 |
-
.chat-container { margin: 1em 0; }
|
27 |
-
.chat-assistant { background-color: #eef7ff; padding: 1em; border-radius: 10px; margin-bottom: 1em; }
|
28 |
-
.chat-user { background-color: #e6ffe6; padding: 1em; border-radius: 10px; margin-bottom: 1em; }
|
29 |
-
.message-time { font-size: 0.8em; color: #555; text-align: right; }
|
30 |
-
.loading-spinner { font-size: 1.1em; color: #ff6600; }
|
31 |
-
</style>
|
32 |
-
""", unsafe_allow_html=True)
|
33 |
-
|
34 |
-
# ------------------------------
|
35 |
-
# Required Storage and Model Definitions
|
36 |
# ------------------------------
|
37 |
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3 # 5 GB
|
38 |
|
@@ -94,26 +79,13 @@ MODELS = {
|
|
94 |
},
|
95 |
}
|
96 |
|
|
|
|
|
|
|
97 |
# ------------------------------
|
98 |
-
# Helper Functions
|
99 |
# ------------------------------
|
100 |
-
def retrieve_context(query, max_results=6, max_chars_per_result=600):
|
101 |
-
"""Retrieve web search context using DuckDuckGo."""
|
102 |
-
try:
|
103 |
-
with DDGS() as ddgs:
|
104 |
-
results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))
|
105 |
-
context = ""
|
106 |
-
for i, result in enumerate(results, start=1):
|
107 |
-
title = result.get("title", "No Title")
|
108 |
-
snippet = result.get("body", "")[:max_chars_per_result]
|
109 |
-
context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
|
110 |
-
return context.strip()
|
111 |
-
except Exception as e:
|
112 |
-
st.error(f"Error during web retrieval: {e}")
|
113 |
-
return ""
|
114 |
-
|
115 |
def try_load_model(model_path):
|
116 |
-
"""Attempt to initialize the model from a specified path."""
|
117 |
try:
|
118 |
return Llama(
|
119 |
model_path=model_path,
|
@@ -132,26 +104,20 @@ def try_load_model(model_path):
|
|
132 |
return str(e)
|
133 |
|
134 |
def download_model(selected_model):
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
local_dir_use_symlinks=False,
|
142 |
-
)
|
143 |
|
144 |
def validate_or_download_model(selected_model):
|
145 |
-
"""Ensure the model is available and loaded properly; download if necessary."""
|
146 |
model_path = os.path.join("models", selected_model["filename"])
|
147 |
os.makedirs("models", exist_ok=True)
|
148 |
if not os.path.exists(model_path):
|
149 |
-
if shutil.disk_usage(".").free < REQUIRED_SPACE_BYTES:
|
150 |
-
st.info("Insufficient storage space. Consider cleaning up old models.")
|
151 |
download_model(selected_model)
|
152 |
result = try_load_model(model_path)
|
153 |
if isinstance(result, str):
|
154 |
-
st.warning(f"Initial model load failed: {result}\nAttempting re-download...")
|
155 |
try:
|
156 |
os.remove(model_path)
|
157 |
except Exception:
|
@@ -159,22 +125,98 @@ def validate_or_download_model(selected_model):
|
|
159 |
download_model(selected_model)
|
160 |
result = try_load_model(model_path)
|
161 |
if isinstance(result, str):
|
162 |
-
|
163 |
-
st.stop()
|
164 |
return result
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
# ------------------------------
|
167 |
-
#
|
168 |
# ------------------------------
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
try:
|
177 |
-
stream =
|
178 |
messages=messages,
|
179 |
max_tokens=max_tokens,
|
180 |
temperature=temperature,
|
@@ -184,169 +226,95 @@ def stream_response(llm, messages, max_tokens, temperature, top_k, top_p, repeat
|
|
184 |
stream=True,
|
185 |
)
|
186 |
for chunk in stream:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
if "choices" in chunk:
|
188 |
delta = chunk["choices"][0]["delta"].get("content", "")
|
189 |
-
|
190 |
-
|
|
|
191 |
if chunk["choices"][0].get("finish_reason", ""):
|
192 |
break
|
193 |
except Exception as e:
|
194 |
-
|
195 |
-
|
|
|
196 |
|
197 |
# ------------------------------
|
198 |
-
#
|
199 |
# ------------------------------
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
# Basic Settings
|
204 |
-
selected_model_name = st.selectbox("Select Model", list(MODELS.keys()),
|
205 |
-
help="Choose from the available model configurations.")
|
206 |
-
system_prompt_base = st.text_area("System Prompt",
|
207 |
-
value="You are a helpful assistant.",
|
208 |
-
height=80,
|
209 |
-
help="Define the base context for the AI's responses.")
|
210 |
-
|
211 |
-
# Generation Parameters
|
212 |
-
st.subheader("Generation Parameters")
|
213 |
-
max_tokens = st.slider("Max Tokens", 64, 1024, 1024, step=32,
|
214 |
-
help="The maximum number of tokens the assistant can generate.")
|
215 |
-
temperature = st.slider("Temperature", 0.1, 2.0, 0.7,
|
216 |
-
help="Controls randomness. Lower values are more deterministic.")
|
217 |
-
top_k = st.slider("Top-K", 1, 100, 40,
|
218 |
-
help="Limits the token candidates to the top-k tokens.")
|
219 |
-
top_p = st.slider("Top-P", 0.1, 1.0, 0.95,
|
220 |
-
help="Nucleus sampling parameter; restricts to a cumulative probability.")
|
221 |
-
repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1,
|
222 |
-
help="Penalizes token repetition to improve output variety.")
|
223 |
-
|
224 |
-
# Advanced Settings using expandable sections
|
225 |
-
with st.expander("Web Search Settings"):
|
226 |
-
enable_search = st.checkbox("Enable Web Search", value=False,
|
227 |
-
help="Include recent web search context to augment the prompt.")
|
228 |
-
max_results = st.number_input("Max Results for Context", min_value=1, max_value=20, value=6, step=1,
|
229 |
-
help="How many search results to use.")
|
230 |
-
max_chars_per_result = st.number_input("Max Chars per Result", min_value=100, max_value=2000, value=600, step=50,
|
231 |
-
help="Max characters to extract from each search result.")
|
232 |
-
|
233 |
-
# ------------------------------
|
234 |
-
# Model Loading/Reloading if Needed
|
235 |
-
# ------------------------------
|
236 |
-
selected_model = MODELS[selected_model_name]
|
237 |
-
if st.session_state.model_name != selected_model_name:
|
238 |
-
with st.spinner("Loading selected model..."):
|
239 |
-
st.session_state.llm = load_cached_model(selected_model)
|
240 |
-
st.session_state.model_name = selected_model_name
|
241 |
-
|
242 |
-
llm = st.session_state.llm
|
243 |
|
244 |
# ------------------------------
|
245 |
-
#
|
246 |
# ------------------------------
|
247 |
-
|
248 |
-
|
|
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
# ------------------------------
|
260 |
-
# Chat Input and Processing
|
261 |
-
# ------------------------------
|
262 |
-
user_input = st.chat_input("Your message...")
|
263 |
-
if user_input:
|
264 |
-
if st.session_state.pending_response:
|
265 |
-
st.warning("Please wait until the current response is finished.")
|
266 |
-
else:
|
267 |
-
# Append user message with timestamp (if desired)
|
268 |
-
timestamp = time.strftime("%H:%M")
|
269 |
-
st.session_state.chat_history.append({"role": "user", "content": f"{user_input}\n\n<span class='message-time'>{timestamp}</span>"})
|
270 |
-
with st.chat_message("user"):
|
271 |
-
st.markdown(f"<div class='chat-user'>{user_input}</div>", unsafe_allow_html=True)
|
272 |
-
|
273 |
-
st.session_state.pending_response = True
|
274 |
-
|
275 |
-
# Retrieve web search context asynchronously, with a timeout, if enabled
|
276 |
-
retrieved_context = ""
|
277 |
-
if enable_search:
|
278 |
-
result_list = []
|
279 |
-
def run_search():
|
280 |
-
result = retrieve_context(user_input, max_results=max_results, max_chars_per_result=max_chars_per_result)
|
281 |
-
result_list.append(result)
|
282 |
-
search_thread = threading.Thread(target=run_search)
|
283 |
-
search_thread.start()
|
284 |
-
# Wait only up to 2 seconds for the search to return
|
285 |
-
search_thread.join(timeout=2)
|
286 |
-
if result_list:
|
287 |
-
retrieved_context = result_list[0]
|
288 |
-
# Display whichever result (or lack thereof) in the sidebar
|
289 |
-
with st.sidebar:
|
290 |
-
st.markdown("### Retrieved Context")
|
291 |
-
st.text_area("", value=retrieved_context or "No context found.", height=150)
|
292 |
-
|
293 |
-
# Augment the user prompt with the system prompt and optional web context
|
294 |
-
if enable_search and retrieved_context:
|
295 |
-
augmented_user_input = (
|
296 |
-
f"{system_prompt_base.strip()}\n\n"
|
297 |
-
f"Use the following recent web search context to help answer the query:\n\n"
|
298 |
-
f"{retrieved_context}\n\n"
|
299 |
-
f"User Query: {user_input}"
|
300 |
)
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
#
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
progress_bar.empty() # Clear progress bar
|
352 |
-
gc.collect()
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import re
|
4 |
+
import gc
|
5 |
+
import threading
|
6 |
from itertools import islice
|
7 |
+
from datetime import datetime
|
8 |
+
import gradio as gr
|
9 |
from llama_cpp import Llama
|
10 |
from llama_cpp.llama_speculative import LlamaPromptLookupDecoding
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from duckduckgo_search import DDGS
|
13 |
|
14 |
# ------------------------------
|
15 |
+
# Global Cancellation Event
|
16 |
# ------------------------------
|
17 |
+
cancel_event = threading.Event()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# ------------------------------
|
20 |
+
# Model Definitions and Global Variables
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# ------------------------------
|
22 |
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3 # 5 GB
|
23 |
|
|
|
79 |
},
|
80 |
}
|
81 |
|
82 |
+
LOADED_MODELS = {}
|
83 |
+
CURRENT_MODEL_NAME = None
|
84 |
+
|
85 |
# ------------------------------
|
86 |
+
# Model Loading Helper Functions
|
87 |
# ------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
def try_load_model(model_path):
|
|
|
89 |
try:
|
90 |
return Llama(
|
91 |
model_path=model_path,
|
|
|
104 |
return str(e)
|
105 |
|
106 |
def download_model(selected_model):
|
107 |
+
hf_hub_download(
|
108 |
+
repo_id=selected_model["repo_id"],
|
109 |
+
filename=selected_model["filename"],
|
110 |
+
local_dir="./models",
|
111 |
+
local_dir_use_symlinks=False,
|
112 |
+
)
|
|
|
|
|
113 |
|
114 |
def validate_or_download_model(selected_model):
|
|
|
115 |
model_path = os.path.join("models", selected_model["filename"])
|
116 |
os.makedirs("models", exist_ok=True)
|
117 |
if not os.path.exists(model_path):
|
|
|
|
|
118 |
download_model(selected_model)
|
119 |
result = try_load_model(model_path)
|
120 |
if isinstance(result, str):
|
|
|
121 |
try:
|
122 |
os.remove(model_path)
|
123 |
except Exception:
|
|
|
125 |
download_model(selected_model)
|
126 |
result = try_load_model(model_path)
|
127 |
if isinstance(result, str):
|
128 |
+
raise Exception(f"Model load failed: {result}")
|
|
|
129 |
return result
|
130 |
|
131 |
+
def load_model(model_name):
|
132 |
+
global LOADED_MODELS, CURRENT_MODEL_NAME
|
133 |
+
if model_name in LOADED_MODELS:
|
134 |
+
return LOADED_MODELS[model_name]
|
135 |
+
selected_model = MODELS[model_name]
|
136 |
+
model = validate_or_download_model(selected_model)
|
137 |
+
LOADED_MODELS[model_name] = model
|
138 |
+
CURRENT_MODEL_NAME = model_name
|
139 |
+
return model
|
140 |
+
|
141 |
# ------------------------------
|
142 |
+
# Web Search Context Retrieval Function
|
143 |
# ------------------------------
|
144 |
+
def retrieve_context(query, max_results=6, max_chars_per_result=600):
|
145 |
+
try:
|
146 |
+
with DDGS() as ddgs:
|
147 |
+
results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))
|
148 |
+
context = ""
|
149 |
+
for i, result in enumerate(results, start=1):
|
150 |
+
title = result.get("title", "No Title")
|
151 |
+
snippet = result.get("body", "")[:max_chars_per_result]
|
152 |
+
context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
|
153 |
+
return context.strip()
|
154 |
+
except Exception:
|
155 |
+
return ""
|
156 |
|
157 |
+
# ------------------------------
|
158 |
+
# Chat Response Generation (Streaming) with Cancellation
|
159 |
+
# ------------------------------
|
160 |
+
def chat_response(user_message, chat_history, system_prompt, enable_search,
|
161 |
+
max_results, max_chars, model_name, max_tokens, temperature, top_k, top_p, repeat_penalty):
|
162 |
+
"""
|
163 |
+
Generator function that:
|
164 |
+
- Uses the chat history (list of dicts) from the Chatbot.
|
165 |
+
- Appends the new user message.
|
166 |
+
- Optionally retrieves web search context.
|
167 |
+
- Streams the assistant response token-by-token.
|
168 |
+
- Checks for cancellation.
|
169 |
+
"""
|
170 |
+
# Reset the cancellation event.
|
171 |
+
cancel_event.clear()
|
172 |
+
|
173 |
+
# Prepare internal history.
|
174 |
+
internal_history = list(chat_history) if chat_history else []
|
175 |
+
internal_history.append({"role": "user", "content": user_message})
|
176 |
+
|
177 |
+
# Retrieve web search context (with debug feedback).
|
178 |
+
debug_message = ""
|
179 |
+
if enable_search:
|
180 |
+
debug_message = "Initiating web search..."
|
181 |
+
yield internal_history, debug_message
|
182 |
+
search_result = [""]
|
183 |
+
def do_search():
|
184 |
+
search_result[0] = retrieve_context(user_message, max_results, max_chars)
|
185 |
+
search_thread = threading.Thread(target=do_search)
|
186 |
+
search_thread.start()
|
187 |
+
search_thread.join(timeout=2)
|
188 |
+
retrieved_context = search_result[0]
|
189 |
+
if retrieved_context:
|
190 |
+
debug_message = f"Web search results:\n\n{retrieved_context}"
|
191 |
+
else:
|
192 |
+
debug_message = "Web search returned no results or timed out."
|
193 |
+
else:
|
194 |
+
retrieved_context = ""
|
195 |
+
debug_message = "Web search disabled."
|
196 |
+
|
197 |
+
# Augment prompt.
|
198 |
+
if enable_search and retrieved_context:
|
199 |
+
augmented_user_input = (
|
200 |
+
f"{system_prompt.strip()}\n\n"
|
201 |
+
"Use the following recent web search context to help answer the query:\n\n"
|
202 |
+
f"{retrieved_context}\n\n"
|
203 |
+
f"User Query: {user_message}"
|
204 |
+
)
|
205 |
+
else:
|
206 |
+
augmented_user_input = f"{system_prompt.strip()}\n\nUser Query: {user_message}"
|
207 |
+
|
208 |
+
# Build final prompt messages.
|
209 |
+
messages = internal_history[:-1] + [{"role": "user", "content": augmented_user_input}]
|
210 |
+
|
211 |
+
# Load the model.
|
212 |
+
model = load_model(model_name)
|
213 |
+
|
214 |
+
# Add an empty assistant message.
|
215 |
+
internal_history.append({"role": "assistant", "content": ""})
|
216 |
+
assistant_message = ""
|
217 |
+
|
218 |
try:
|
219 |
+
stream = model.create_chat_completion(
|
220 |
messages=messages,
|
221 |
max_tokens=max_tokens,
|
222 |
temperature=temperature,
|
|
|
226 |
stream=True,
|
227 |
)
|
228 |
for chunk in stream:
|
229 |
+
# Check if a cancellation has been requested.
|
230 |
+
if cancel_event.is_set():
|
231 |
+
assistant_message += "\n\n[Response generation cancelled by user]"
|
232 |
+
internal_history[-1]["content"] = assistant_message
|
233 |
+
yield internal_history, debug_message
|
234 |
+
break
|
235 |
+
|
236 |
if "choices" in chunk:
|
237 |
delta = chunk["choices"][0]["delta"].get("content", "")
|
238 |
+
assistant_message += delta
|
239 |
+
internal_history[-1]["content"] = assistant_message
|
240 |
+
yield internal_history, debug_message
|
241 |
if chunk["choices"][0].get("finish_reason", ""):
|
242 |
break
|
243 |
except Exception as e:
|
244 |
+
internal_history[-1]["content"] = f"Error: {e}"
|
245 |
+
yield internal_history, debug_message
|
246 |
+
gc.collect()
|
247 |
|
248 |
# ------------------------------
|
249 |
+
# Cancel Function
|
250 |
# ------------------------------
|
251 |
+
def cancel_generation():
|
252 |
+
cancel_event.set()
|
253 |
+
return "Cancellation requested."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
# ------------------------------
|
256 |
+
# Gradio UI Definition
|
257 |
# ------------------------------
|
258 |
+
with gr.Blocks(title="Multi-GGUF LLM Inference") as demo:
|
259 |
+
gr.Markdown("## 🧠 Multi-GGUF LLM Inference with Web Search")
|
260 |
+
gr.Markdown("Interact with the model. Select your model, set your system prompt, and adjust parameters on the left.")
|
261 |
|
262 |
+
with gr.Row():
|
263 |
+
with gr.Column(scale=3):
|
264 |
+
default_model = list(MODELS.keys())[0] if MODELS else "No models available"
|
265 |
+
model_dropdown = gr.Dropdown(
|
266 |
+
label="Select Model",
|
267 |
+
choices=list(MODELS.keys()) if MODELS else [],
|
268 |
+
value=default_model,
|
269 |
+
info="Choose from available models."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
)
|
271 |
+
today = datetime.now().strftime('%Y-%m-%d')
|
272 |
+
default_prompt = f"You are a helpful assistant. Today is {today}. Please leverage the latest web data when responding to queries."
|
273 |
+
system_prompt_text = gr.Textbox(label="System Prompt",
|
274 |
+
value=default_prompt,
|
275 |
+
lines=3,
|
276 |
+
info="Define the base context for the AI's responses.")
|
277 |
+
gr.Markdown("### Generation Parameters")
|
278 |
+
max_tokens_slider = gr.Slider(label="Max Tokens", minimum=64, maximum=1024, value=1024, step=32,
|
279 |
+
info="Maximum tokens for the response.")
|
280 |
+
temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7, step=0.1,
|
281 |
+
info="Controls the randomness of the output.")
|
282 |
+
top_k_slider = gr.Slider(label="Top-K", minimum=1, maximum=100, value=40, step=1,
|
283 |
+
info="Limits token candidates to the top-k tokens.")
|
284 |
+
top_p_slider = gr.Slider(label="Top-P (Nucleus Sampling)", minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
285 |
+
info="Limits token candidates to a cumulative probability threshold.")
|
286 |
+
repeat_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.1, step=0.1,
|
287 |
+
info="Penalizes token repetition to improve diversity.")
|
288 |
+
gr.Markdown("### Web Search Settings")
|
289 |
+
enable_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False,
|
290 |
+
info="Include recent search context to improve answers.")
|
291 |
+
max_results_number = gr.Number(label="Max Search Results", value=6, precision=0,
|
292 |
+
info="Maximum number of search results to retrieve.")
|
293 |
+
max_chars_number = gr.Number(label="Max Chars per Result", value=600, precision=0,
|
294 |
+
info="Maximum characters to retrieve per search result.")
|
295 |
+
clear_button = gr.Button("Clear Chat")
|
296 |
+
cancel_button = gr.Button("Cancel Generation")
|
297 |
+
with gr.Column(scale=7):
|
298 |
+
chatbot = gr.Chatbot(label="Chat", type="messages")
|
299 |
+
msg_input = gr.Textbox(label="Your Message", placeholder="Enter your message and press Enter")
|
300 |
+
search_debug = gr.Markdown(label="Web Search Debug")
|
301 |
+
|
302 |
+
def clear_chat():
|
303 |
+
return [], "", ""
|
304 |
+
|
305 |
+
clear_button.click(fn=clear_chat, outputs=[chatbot, msg_input, search_debug])
|
306 |
+
|
307 |
+
cancel_button.click(fn=cancel_generation, outputs=search_debug)
|
308 |
+
|
309 |
+
# Submission that returns conversation and debug info.
|
310 |
+
msg_input.submit(
|
311 |
+
fn=chat_response,
|
312 |
+
inputs=[msg_input, chatbot, system_prompt_text, enable_search_checkbox,
|
313 |
+
max_results_number, max_chars_number, model_dropdown,
|
314 |
+
max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repeat_penalty_slider],
|
315 |
+
outputs=[chatbot, search_debug],
|
316 |
+
# Uncomment streaming=True if supported.
|
317 |
+
# streaming=True,
|
318 |
+
)
|
319 |
+
|
320 |
+
demo.launch()
|
|
|
|
requirements.txt
CHANGED
@@ -4,4 +4,5 @@ docopt @ https://github.com/GoogleCloudPlatform/gcloud-python-wheels/raw/refs/he
|
|
4 |
--extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
|
5 |
llama-cpp-python
|
6 |
streamlit
|
7 |
-
duckduckgo_search
|
|
|
|
4 |
--extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
|
5 |
llama-cpp-python
|
6 |
streamlit
|
7 |
+
duckduckgo_search
|
8 |
+
gradio
|