Spaces:
Running
on
Zero
Running
on
Zero
add 4 new models
Browse files
README.md
CHANGED
@@ -8,28 +8,32 @@ sdk_version: 1.44.1
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
-
short_description: Run GGUF models (Qwen2.5, Gemma-3, Phi-4) with llama.cpp
|
12 |
---
|
13 |
|
14 |
-
This Streamlit app
|
15 |
|
16 |
### 🔄 Supported Models:
|
17 |
- `Qwen/Qwen2.5-7B-Instruct-GGUF` → `qwen2.5-7b-instruct-q2_k.gguf`
|
18 |
-
- `unsloth/gemma-3-4b-it-GGUF` → `gemma-3-4b-it-
|
19 |
-
- `unsloth/Phi-4-mini-instruct-GGUF` → `Phi-4-mini-instruct-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
### ⚙️ Features:
|
22 |
-
- Model selection in sidebar
|
23 |
-
-
|
24 |
- Chat-style UI with streaming responses
|
25 |
|
26 |
### 🧠 Memory-Safe Design (for HuggingFace Spaces):
|
27 |
-
-
|
28 |
-
-
|
29 |
-
-
|
30 |
-
- Automatically downloads models
|
31 |
-
-
|
32 |
|
33 |
-
|
34 |
|
35 |
-
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
+
short_description: Run GGUF models (Qwen2.5, Gemma-3, Phi-4, Meta-Llama-3.1, DeepSeek-R1-Distill-Llama, Mistral-7B, Qwen2.5-Coder) with llama.cpp
|
12 |
---
|
13 |
|
14 |
+
This Streamlit app enables **chat-based inference** on various GGUF models using `llama.cpp` and `llama-cpp-python`.
|
15 |
|
16 |
### 🔄 Supported Models:
|
17 |
- `Qwen/Qwen2.5-7B-Instruct-GGUF` → `qwen2.5-7b-instruct-q2_k.gguf`
|
18 |
+
- `unsloth/gemma-3-4b-it-GGUF` → `gemma-3-4b-it-Q4_K_M.gguf`
|
19 |
+
- `unsloth/Phi-4-mini-instruct-GGUF` → `Phi-4-mini-instruct-Q4_K_M.gguf`
|
20 |
+
- `MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF` → `Meta-Llama-3.1-8B-Instruct.Q2_K.gguf`
|
21 |
+
- `unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF` → `DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf`
|
22 |
+
- `MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF` → `Mistral-7B-Instruct-v0.3.IQ3_XS.gguf`
|
23 |
+
- `Qwen/Qwen2.5-Coder-7B-Instruct-GGUF` → `qwen2.5-coder-7b-instruct-q2_k.gguf`
|
24 |
|
25 |
### ⚙️ Features:
|
26 |
+
- Model selection in the sidebar
|
27 |
+
- Customizable system prompt and generation parameters
|
28 |
- Chat-style UI with streaming responses
|
29 |
|
30 |
### 🧠 Memory-Safe Design (for HuggingFace Spaces):
|
31 |
+
- Loads only **one model at a time** to prevent memory bloat
|
32 |
+
- Utilizes **manual unloading and `gc.collect()`** to free memory when switching models
|
33 |
+
- Adjusts `n_ctx` context length to operate within a 16 GB RAM limit
|
34 |
+
- Automatically downloads models as needed
|
35 |
+
- Limits history to the **last 8 user-assistant turns** to prevent context overflow
|
36 |
|
37 |
+
Ideal for deploying multiple GGUF chat models on **free-tier HuggingFace Spaces**!
|
38 |
|
39 |
+
Refer to the configuration guide at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -3,8 +3,6 @@ from llama_cpp import Llama
|
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
import os
|
5 |
import gc
|
6 |
-
import shutil
|
7 |
-
import subprocess
|
8 |
|
9 |
# Available models
|
10 |
MODELS = {
|
@@ -23,8 +21,29 @@ MODELS = {
|
|
23 |
"filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
|
24 |
"description": "Phi-4 Mini Instruct (Q4_K_M)"
|
25 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
}
|
27 |
|
|
|
28 |
with st.sidebar:
|
29 |
st.header("⚙️ Settings")
|
30 |
selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
|
@@ -35,37 +54,14 @@ with st.sidebar:
|
|
35 |
top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
|
36 |
repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
|
37 |
|
38 |
-
if st.button("🧹 Clear All Cached Models"):
|
39 |
-
try:
|
40 |
-
for f in os.listdir("models"):
|
41 |
-
if f.endswith(".gguf"):
|
42 |
-
os.remove(os.path.join("models", f))
|
43 |
-
st.success("Model cache cleared.")
|
44 |
-
except Exception as e:
|
45 |
-
st.error(f"Failed to clear models: {e}")
|
46 |
-
|
47 |
-
if st.button("📦 Show Disk Usage"):
|
48 |
-
try:
|
49 |
-
usage = shutil.disk_usage(".")
|
50 |
-
used = usage.used / (1024**3)
|
51 |
-
free = usage.free / (1024**3)
|
52 |
-
st.info(f"Disk Used: {used:.2f} GB | Free: {free:.2f} GB")
|
53 |
-
except Exception as e:
|
54 |
-
st.error(f"Disk usage error: {e}")
|
55 |
-
|
56 |
# Model info
|
57 |
selected_model = MODELS[selected_model_name]
|
58 |
model_path = os.path.join("models", selected_model["filename"])
|
59 |
|
60 |
-
# Init state
|
61 |
-
if "model_name" not in st.session_state:
|
62 |
-
st.session_state.model_name = None
|
63 |
-
if "llm" not in st.session_state:
|
64 |
-
st.session_state.llm = None
|
65 |
-
|
66 |
# Ensure model directory exists
|
67 |
os.makedirs("models", exist_ok=True)
|
68 |
|
|
|
69 |
def cleanup_old_models():
|
70 |
for f in os.listdir("models"):
|
71 |
if f.endswith(".gguf") and f != selected_model["filename"]:
|
@@ -74,6 +70,7 @@ def cleanup_old_models():
|
|
74 |
except Exception as e:
|
75 |
st.warning(f"Couldn't delete old model {f}: {e}")
|
76 |
|
|
|
77 |
def download_model():
|
78 |
with st.spinner(f"Downloading {selected_model['filename']}..."):
|
79 |
hf_hub_download(
|
@@ -83,86 +80,26 @@ def download_model():
|
|
83 |
local_dir_use_symlinks=False,
|
84 |
)
|
85 |
|
86 |
-
|
87 |
-
try:
|
88 |
-
return Llama(model_path=path, n_ctx=1024, n_threads=2, n_threads_batch=2, n_batch=4, n_gpu_layers=0, use_mlock=False, use_mmap=True, verbose=False)
|
89 |
-
except Exception as e:
|
90 |
-
return str(e)
|
91 |
-
|
92 |
def validate_or_download_model():
|
93 |
if not os.path.exists(model_path):
|
94 |
cleanup_old_models()
|
95 |
download_model()
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
st.warning(f"
|
101 |
try:
|
102 |
os.remove(model_path)
|
103 |
except:
|
104 |
pass
|
105 |
cleanup_old_models()
|
106 |
download_model()
|
107 |
-
result = try_load_model(model_path)
|
108 |
-
if isinstance(result, str):
|
109 |
-
st.error(f"Model still failed after re-download: {result}")
|
110 |
-
st.stop()
|
111 |
-
return result
|
112 |
-
return result
|
113 |
-
|
114 |
-
# Load model if changed
|
115 |
-
if st.session_state.model_name != selected_model_name:
|
116 |
-
if st.session_state.llm is not None:
|
117 |
-
del st.session_state.llm
|
118 |
-
gc.collect()
|
119 |
-
st.session_state.llm = validate_or_download_model()
|
120 |
-
st.session_state.model_name = selected_model_name
|
121 |
-
|
122 |
-
llm = st.session_state.llm
|
123 |
-
|
124 |
-
# Chat history state
|
125 |
-
if "chat_history" not in st.session_state:
|
126 |
-
st.session_state.chat_history = []
|
127 |
-
|
128 |
-
st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
|
129 |
-
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")
|
130 |
-
|
131 |
-
user_input = st.chat_input("Ask something...")
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
if len(st.session_state.chat_history) % 2 == 1:
|
136 |
-
st.warning("Please wait for the assistant to respond before sending another message.")
|
137 |
-
else:
|
138 |
-
st.session_state.chat_history.append({"role": "user", "content": user_input})
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
# Trim conversation history to max 8 turns (user+assistant)
|
144 |
-
MAX_TURNS = 8
|
145 |
-
trimmed_history = st.session_state.chat_history[-MAX_TURNS * 2:]
|
146 |
-
messages = [{"role": "system", "content": system_prompt}] + trimmed_history
|
147 |
-
|
148 |
-
with st.chat_message("assistant"):
|
149 |
-
full_response = ""
|
150 |
-
response_area = st.empty()
|
151 |
-
|
152 |
-
stream = llm.create_chat_completion(
|
153 |
-
messages=messages,
|
154 |
-
max_tokens=max_tokens,
|
155 |
-
temperature=temperature,
|
156 |
-
top_k=top_k,
|
157 |
-
top_p=top_p,
|
158 |
-
repeat_penalty=repeat_penalty,
|
159 |
-
stream=True,
|
160 |
-
)
|
161 |
-
|
162 |
-
for chunk in stream:
|
163 |
-
if "choices" in chunk:
|
164 |
-
delta = chunk["choices"][0]["delta"].get("content", "")
|
165 |
-
full_response += delta
|
166 |
-
response_area.markdown(full_response)
|
167 |
-
|
168 |
-
st.session_state.chat_history.append({"role": "assistant", "content": full_response})
|
|
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
import os
|
5 |
import gc
|
|
|
|
|
6 |
|
7 |
# Available models
|
8 |
MODELS = {
|
|
|
21 |
"filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
|
22 |
"description": "Phi-4 Mini Instruct (Q4_K_M)"
|
23 |
},
|
24 |
+
"Meta-Llama-3.1-8B-Instruct (Q2_K)": {
|
25 |
+
"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF",
|
26 |
+
"filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf",
|
27 |
+
"description": "Meta Llama 3.1 8B Instruct (Q2_K)"
|
28 |
+
},
|
29 |
+
"DeepSeek-R1-Distill-Llama-8B (Q2_K)": {
|
30 |
+
"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF",
|
31 |
+
"filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf",
|
32 |
+
"description": "DeepSeek R1 Distill Llama 8B (Q2_K)"
|
33 |
+
},
|
34 |
+
"Mistral-7B-Instruct-v0.3 (IQ3_XS)": {
|
35 |
+
"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF",
|
36 |
+
"filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf",
|
37 |
+
"description": "Mistral 7B Instruct v0.3 (IQ3_XS)"
|
38 |
+
},
|
39 |
+
"Qwen2.5-Coder-7B-Instruct (Q2_K)": {
|
40 |
+
"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF",
|
41 |
+
"filename": "qwen2.5-coder-7b-instruct-q2_k.gguf",
|
42 |
+
"description": "Qwen2.5 Coder 7B Instruct (Q2_K)"
|
43 |
+
},
|
44 |
}
|
45 |
|
46 |
+
# Sidebar for model selection and settings
|
47 |
with st.sidebar:
|
48 |
st.header("⚙️ Settings")
|
49 |
selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
|
|
|
54 |
top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
|
55 |
repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
# Model info
|
58 |
selected_model = MODELS[selected_model_name]
|
59 |
model_path = os.path.join("models", selected_model["filename"])
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
# Ensure model directory exists
|
62 |
os.makedirs("models", exist_ok=True)
|
63 |
|
64 |
+
# Function to clean up old models
|
65 |
def cleanup_old_models():
|
66 |
for f in os.listdir("models"):
|
67 |
if f.endswith(".gguf") and f != selected_model["filename"]:
|
|
|
70 |
except Exception as e:
|
71 |
st.warning(f"Couldn't delete old model {f}: {e}")
|
72 |
|
73 |
+
# Function to download the selected model
|
74 |
def download_model():
|
75 |
with st.spinner(f"Downloading {selected_model['filename']}..."):
|
76 |
hf_hub_download(
|
|
|
80 |
local_dir_use_symlinks=False,
|
81 |
)
|
82 |
|
83 |
+
# Function to validate or download the model
|
|
|
|
|
|
|
|
|
|
|
84 |
def validate_or_download_model():
|
85 |
if not os.path.exists(model_path):
|
86 |
cleanup_old_models()
|
87 |
download_model()
|
88 |
+
try:
|
89 |
+
# Attempt to load the model with minimal resources to validate
|
90 |
+
_ = Llama(model_path=model_path, n_ctx=16, n_threads=1)
|
91 |
+
except Exception as e:
|
92 |
+
st.warning(f"Model file was invalid or corrupt: {e}\nRedownloading...")
|
93 |
try:
|
94 |
os.remove(model_path)
|
95 |
except:
|
96 |
pass
|
97 |
cleanup_old_models()
|
98 |
download_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
# Validate or download the selected model
|
101 |
+
validate_or_download_model()
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
# Load model if changed
|
104 |
+
if "model_name" not in st.session_state or st.session_state.model_name != selected_model_name:
|
105 |
+
if "llm" in st.session_state and st.session_state.llm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|