Luigi commited on
Commit
d554072
·
1 Parent(s): 3e4847c

add 4 new models

Browse files
Files changed (2) hide show
  1. README.md +17 -13
  2. app.py +34 -97
README.md CHANGED
@@ -8,28 +8,32 @@ sdk_version: 1.44.1
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
- short_description: Run GGUF models (Qwen2.5, Gemma-3, Phi-4) with llama.cpp
12
  ---
13
 
14
- This Streamlit app lets you run **chat-based inference** on different GGUF models with `llama.cpp` and `llama-cpp-python`.
15
 
16
  ### 🔄 Supported Models:
17
  - `Qwen/Qwen2.5-7B-Instruct-GGUF` → `qwen2.5-7b-instruct-q2_k.gguf`
18
- - `unsloth/gemma-3-4b-it-GGUF` → `gemma-3-4b-it-Q5_K_M.gguf`
19
- - `unsloth/Phi-4-mini-instruct-GGUF` → `Phi-4-mini-instruct-Q5_K_M.gguf`
 
 
 
 
20
 
21
  ### ⚙️ Features:
22
- - Model selection in sidebar
23
- - Custom system prompt and generation parameters
24
  - Chat-style UI with streaming responses
25
 
26
  ### 🧠 Memory-Safe Design (for HuggingFace Spaces):
27
- - Only **one model is loaded at a time** (no persistent memory bloat)
28
- - Uses **manual unloading and `gc.collect()`** to free memory when switching
29
- - Reduces `n_ctx` context length to stay under 16 GB RAM limit
30
- - Automatically downloads models only when needed
31
- - Trims history to the **last 8 user-assistant turns** to avoid context overflow
32
 
33
- Perfect for deploying multi-GGUF chat models on **free-tier HuggingFace Spaces**!
34
 
35
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
+ short_description: Run GGUF models (Qwen2.5, Gemma-3, Phi-4, Meta-Llama-3.1, DeepSeek-R1-Distill-Llama, Mistral-7B, Qwen2.5-Coder) with llama.cpp
12
  ---
13
 
14
+ This Streamlit app enables **chat-based inference** on various GGUF models using `llama.cpp` and `llama-cpp-python`.
15
 
16
  ### 🔄 Supported Models:
17
  - `Qwen/Qwen2.5-7B-Instruct-GGUF` → `qwen2.5-7b-instruct-q2_k.gguf`
18
+ - `unsloth/gemma-3-4b-it-GGUF` → `gemma-3-4b-it-Q4_K_M.gguf`
19
+ - `unsloth/Phi-4-mini-instruct-GGUF` → `Phi-4-mini-instruct-Q4_K_M.gguf`
20
+ - `MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF` → `Meta-Llama-3.1-8B-Instruct.Q2_K.gguf`
21
+ - `unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF` → `DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf`
22
+ - `MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF` → `Mistral-7B-Instruct-v0.3.IQ3_XS.gguf`
23
+ - `Qwen/Qwen2.5-Coder-7B-Instruct-GGUF` → `qwen2.5-coder-7b-instruct-q2_k.gguf`
24
 
25
  ### ⚙️ Features:
26
+ - Model selection in the sidebar
27
+ - Customizable system prompt and generation parameters
28
  - Chat-style UI with streaming responses
29
 
30
  ### 🧠 Memory-Safe Design (for HuggingFace Spaces):
31
+ - Loads only **one model at a time** to prevent memory bloat
32
+ - Utilizes **manual unloading and `gc.collect()`** to free memory when switching models
33
+ - Adjusts `n_ctx` context length to operate within a 16 GB RAM limit
34
+ - Automatically downloads models as needed
35
+ - Limits history to the **last 8 user-assistant turns** to prevent context overflow
36
 
37
+ Ideal for deploying multiple GGUF chat models on **free-tier HuggingFace Spaces**!
38
 
39
+ Refer to the configuration guide at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -3,8 +3,6 @@ from llama_cpp import Llama
3
  from huggingface_hub import hf_hub_download
4
  import os
5
  import gc
6
- import shutil
7
- import subprocess
8
 
9
  # Available models
10
  MODELS = {
@@ -23,8 +21,29 @@ MODELS = {
23
  "filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
24
  "description": "Phi-4 Mini Instruct (Q4_K_M)"
25
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  }
27
 
 
28
  with st.sidebar:
29
  st.header("⚙️ Settings")
30
  selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
@@ -35,37 +54,14 @@ with st.sidebar:
35
  top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
36
  repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
37
 
38
- if st.button("🧹 Clear All Cached Models"):
39
- try:
40
- for f in os.listdir("models"):
41
- if f.endswith(".gguf"):
42
- os.remove(os.path.join("models", f))
43
- st.success("Model cache cleared.")
44
- except Exception as e:
45
- st.error(f"Failed to clear models: {e}")
46
-
47
- if st.button("📦 Show Disk Usage"):
48
- try:
49
- usage = shutil.disk_usage(".")
50
- used = usage.used / (1024**3)
51
- free = usage.free / (1024**3)
52
- st.info(f"Disk Used: {used:.2f} GB | Free: {free:.2f} GB")
53
- except Exception as e:
54
- st.error(f"Disk usage error: {e}")
55
-
56
  # Model info
57
  selected_model = MODELS[selected_model_name]
58
  model_path = os.path.join("models", selected_model["filename"])
59
 
60
- # Init state
61
- if "model_name" not in st.session_state:
62
- st.session_state.model_name = None
63
- if "llm" not in st.session_state:
64
- st.session_state.llm = None
65
-
66
  # Ensure model directory exists
67
  os.makedirs("models", exist_ok=True)
68
 
 
69
  def cleanup_old_models():
70
  for f in os.listdir("models"):
71
  if f.endswith(".gguf") and f != selected_model["filename"]:
@@ -74,6 +70,7 @@ def cleanup_old_models():
74
  except Exception as e:
75
  st.warning(f"Couldn't delete old model {f}: {e}")
76
 
 
77
  def download_model():
78
  with st.spinner(f"Downloading {selected_model['filename']}..."):
79
  hf_hub_download(
@@ -83,86 +80,26 @@ def download_model():
83
  local_dir_use_symlinks=False,
84
  )
85
 
86
- def try_load_model(path):
87
- try:
88
- return Llama(model_path=path, n_ctx=1024, n_threads=2, n_threads_batch=2, n_batch=4, n_gpu_layers=0, use_mlock=False, use_mmap=True, verbose=False)
89
- except Exception as e:
90
- return str(e)
91
-
92
  def validate_or_download_model():
93
  if not os.path.exists(model_path):
94
  cleanup_old_models()
95
  download_model()
96
-
97
- # First load attempt
98
- result = try_load_model(model_path)
99
- if isinstance(result, str):
100
- st.warning(f"Initial load failed: {result}\nAttempting re-download...")
101
  try:
102
  os.remove(model_path)
103
  except:
104
  pass
105
  cleanup_old_models()
106
  download_model()
107
- result = try_load_model(model_path)
108
- if isinstance(result, str):
109
- st.error(f"Model still failed after re-download: {result}")
110
- st.stop()
111
- return result
112
- return result
113
-
114
- # Load model if changed
115
- if st.session_state.model_name != selected_model_name:
116
- if st.session_state.llm is not None:
117
- del st.session_state.llm
118
- gc.collect()
119
- st.session_state.llm = validate_or_download_model()
120
- st.session_state.model_name = selected_model_name
121
-
122
- llm = st.session_state.llm
123
-
124
- # Chat history state
125
- if "chat_history" not in st.session_state:
126
- st.session_state.chat_history = []
127
-
128
- st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
129
- st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")
130
-
131
- user_input = st.chat_input("Ask something...")
132
 
133
- if user_input:
134
- # Prevent appending user message if assistant hasn't replied yet
135
- if len(st.session_state.chat_history) % 2 == 1:
136
- st.warning("Please wait for the assistant to respond before sending another message.")
137
- else:
138
- st.session_state.chat_history.append({"role": "user", "content": user_input})
139
 
140
- with st.chat_message("user"):
141
- st.markdown(user_input)
142
-
143
- # Trim conversation history to max 8 turns (user+assistant)
144
- MAX_TURNS = 8
145
- trimmed_history = st.session_state.chat_history[-MAX_TURNS * 2:]
146
- messages = [{"role": "system", "content": system_prompt}] + trimmed_history
147
-
148
- with st.chat_message("assistant"):
149
- full_response = ""
150
- response_area = st.empty()
151
-
152
- stream = llm.create_chat_completion(
153
- messages=messages,
154
- max_tokens=max_tokens,
155
- temperature=temperature,
156
- top_k=top_k,
157
- top_p=top_p,
158
- repeat_penalty=repeat_penalty,
159
- stream=True,
160
- )
161
-
162
- for chunk in stream:
163
- if "choices" in chunk:
164
- delta = chunk["choices"][0]["delta"].get("content", "")
165
- full_response += delta
166
- response_area.markdown(full_response)
167
-
168
- st.session_state.chat_history.append({"role": "assistant", "content": full_response})
 
3
  from huggingface_hub import hf_hub_download
4
  import os
5
  import gc
 
 
6
 
7
  # Available models
8
  MODELS = {
 
21
  "filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
22
  "description": "Phi-4 Mini Instruct (Q4_K_M)"
23
  },
24
+ "Meta-Llama-3.1-8B-Instruct (Q2_K)": {
25
+ "repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF",
26
+ "filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf",
27
+ "description": "Meta Llama 3.1 8B Instruct (Q2_K)"
28
+ },
29
+ "DeepSeek-R1-Distill-Llama-8B (Q2_K)": {
30
+ "repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF",
31
+ "filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf",
32
+ "description": "DeepSeek R1 Distill Llama 8B (Q2_K)"
33
+ },
34
+ "Mistral-7B-Instruct-v0.3 (IQ3_XS)": {
35
+ "repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF",
36
+ "filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf",
37
+ "description": "Mistral 7B Instruct v0.3 (IQ3_XS)"
38
+ },
39
+ "Qwen2.5-Coder-7B-Instruct (Q2_K)": {
40
+ "repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF",
41
+ "filename": "qwen2.5-coder-7b-instruct-q2_k.gguf",
42
+ "description": "Qwen2.5 Coder 7B Instruct (Q2_K)"
43
+ },
44
  }
45
 
46
+ # Sidebar for model selection and settings
47
  with st.sidebar:
48
  st.header("⚙️ Settings")
49
  selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
 
54
  top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
55
  repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  # Model info
58
  selected_model = MODELS[selected_model_name]
59
  model_path = os.path.join("models", selected_model["filename"])
60
 
 
 
 
 
 
 
61
  # Ensure model directory exists
62
  os.makedirs("models", exist_ok=True)
63
 
64
+ # Function to clean up old models
65
  def cleanup_old_models():
66
  for f in os.listdir("models"):
67
  if f.endswith(".gguf") and f != selected_model["filename"]:
 
70
  except Exception as e:
71
  st.warning(f"Couldn't delete old model {f}: {e}")
72
 
73
+ # Function to download the selected model
74
  def download_model():
75
  with st.spinner(f"Downloading {selected_model['filename']}..."):
76
  hf_hub_download(
 
80
  local_dir_use_symlinks=False,
81
  )
82
 
83
+ # Function to validate or download the model
 
 
 
 
 
84
  def validate_or_download_model():
85
  if not os.path.exists(model_path):
86
  cleanup_old_models()
87
  download_model()
88
+ try:
89
+ # Attempt to load the model with minimal resources to validate
90
+ _ = Llama(model_path=model_path, n_ctx=16, n_threads=1)
91
+ except Exception as e:
92
+ st.warning(f"Model file was invalid or corrupt: {e}\nRedownloading...")
93
  try:
94
  os.remove(model_path)
95
  except:
96
  pass
97
  cleanup_old_models()
98
  download_model()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
+ # Validate or download the selected model
101
+ validate_or_download_model()
 
 
 
 
102
 
103
+ # Load model if changed
104
+ if "model_name" not in st.session_state or st.session_state.model_name != selected_model_name:
105
+ if "llm" in st.session_state and st.session_state.llm