Spaces:
Running
on
Zero
Running
on
Zero
UI/UX Improvement
Browse files
app.py
CHANGED
@@ -6,7 +6,9 @@ from llama_cpp.llama_speculative import LlamaPromptLookupDecoding
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from duckduckgo_search import DDGS
|
8 |
|
9 |
-
#
|
|
|
|
|
10 |
if "chat_history" not in st.session_state:
|
11 |
st.session_state.chat_history = []
|
12 |
if "pending_response" not in st.session_state:
|
@@ -16,34 +18,24 @@ if "model_name" not in st.session_state:
|
|
16 |
if "llm" not in st.session_state:
|
17 |
st.session_state.llm = None
|
18 |
|
19 |
-
#
|
|
|
|
|
20 |
st.markdown("""
|
21 |
<style>
|
22 |
-
|
23 |
-
|
24 |
-
.chat-
|
|
|
|
|
25 |
</style>
|
26 |
""", unsafe_allow_html=True)
|
27 |
|
28 |
-
#
|
|
|
|
|
29 |
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3 # 5 GB
|
30 |
|
31 |
-
# ---- Function to retrieve web search context ----
|
32 |
-
def retrieve_context(query, max_results=6, max_chars_per_result=600):
|
33 |
-
try:
|
34 |
-
with DDGS() as ddgs:
|
35 |
-
results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))
|
36 |
-
context = ""
|
37 |
-
for i, result in enumerate(results, start=1):
|
38 |
-
title = result.get("title", "No Title")
|
39 |
-
snippet = result.get("body", "")[:max_chars_per_result]
|
40 |
-
context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
|
41 |
-
return context.strip()
|
42 |
-
except Exception as e:
|
43 |
-
st.error(f"Error during retrieval: {e}")
|
44 |
-
return ""
|
45 |
-
|
46 |
-
# ---- Model definitions ----
|
47 |
MODELS = {
|
48 |
"Qwen2.5-0.5B-Instruct (Q4_K_M)": {
|
49 |
"repo_id": "Qwen/Qwen2.5-0.5B-Instruct-GGUF",
|
@@ -102,33 +94,30 @@ MODELS = {
|
|
102 |
},
|
103 |
}
|
104 |
|
105 |
-
#
|
106 |
-
#
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
# ---- Define selected model and manage its download/load ----
|
123 |
-
selected_model = MODELS[selected_model_name]
|
124 |
-
model_path = os.path.join("models", selected_model["filename"])
|
125 |
-
os.makedirs("models", exist_ok=True)
|
126 |
|
127 |
-
def try_load_model(
|
|
|
128 |
try:
|
129 |
return Llama(
|
130 |
-
model_path=
|
131 |
-
n_ctx=4096,
|
132 |
n_threads=2,
|
133 |
n_threads_batch=1,
|
134 |
n_batch=256,
|
@@ -142,7 +131,8 @@ def try_load_model(path):
|
|
142 |
except Exception as e:
|
143 |
return str(e)
|
144 |
|
145 |
-
def download_model():
|
|
|
146 |
with st.spinner(f"Downloading {selected_model['filename']}..."):
|
147 |
hf_hub_download(
|
148 |
repo_id=selected_model["repo_id"],
|
@@ -151,63 +141,142 @@ def download_model():
|
|
151 |
local_dir_use_symlinks=False,
|
152 |
)
|
153 |
|
154 |
-
def validate_or_download_model():
|
|
|
|
|
|
|
155 |
if not os.path.exists(model_path):
|
156 |
if shutil.disk_usage(".").free < REQUIRED_SPACE_BYTES:
|
157 |
-
st.info("Insufficient storage. Consider cleaning up old models.")
|
158 |
-
download_model()
|
159 |
result = try_load_model(model_path)
|
160 |
if isinstance(result, str):
|
161 |
-
st.warning(f"Initial load failed: {result}\
|
162 |
try:
|
163 |
os.remove(model_path)
|
164 |
except Exception:
|
165 |
pass
|
166 |
-
download_model()
|
167 |
result = try_load_model(model_path)
|
168 |
if isinstance(result, str):
|
169 |
-
st.error(f"Model
|
170 |
st.stop()
|
171 |
return result
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
if st.session_state.model_name != selected_model_name:
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
179 |
|
180 |
llm = st.session_state.llm
|
181 |
|
182 |
-
#
|
|
|
|
|
183 |
st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
|
184 |
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")
|
185 |
|
|
|
186 |
for chat in st.session_state.chat_history:
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
189 |
|
190 |
-
#
|
191 |
-
|
|
|
|
|
192 |
if user_input:
|
193 |
if st.session_state.pending_response:
|
194 |
-
st.warning("Please wait
|
195 |
else:
|
196 |
-
#
|
|
|
|
|
197 |
with st.chat_message("user"):
|
198 |
-
st.markdown(user_input)
|
199 |
-
|
200 |
st.session_state.pending_response = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
-
#
|
203 |
-
retrieved_context = (
|
204 |
-
retrieve_context(user_input, max_results=max_results, max_chars_per_result=max_chars_per_result)
|
205 |
-
if enable_search else ""
|
206 |
-
)
|
207 |
-
st.sidebar.markdown("### Retrieved Context" if enable_search else "Web Search Disabled")
|
208 |
-
st.sidebar.text(retrieved_context or "No context found.")
|
209 |
-
|
210 |
-
# Build augmented query as before...
|
211 |
if enable_search and retrieved_context:
|
212 |
augmented_user_input = (
|
213 |
f"{system_prompt_base.strip()}\n\n"
|
@@ -217,8 +286,8 @@ if user_input:
|
|
217 |
)
|
218 |
else:
|
219 |
augmented_user_input = f"{system_prompt_base.strip()}\n\nUser Query: {user_input}"
|
220 |
-
|
221 |
-
# Limit conversation history
|
222 |
MAX_TURNS = 2
|
223 |
trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):]
|
224 |
if trimmed_history and trimmed_history[-1]["role"] == "user":
|
@@ -226,62 +295,44 @@ if user_input:
|
|
226 |
else:
|
227 |
messages = trimmed_history + [{"role": "user", "content": augmented_user_input}]
|
228 |
|
229 |
-
#
|
230 |
visible_placeholder = st.empty()
|
|
|
231 |
response_queue = queue.Queue()
|
232 |
|
233 |
-
#
|
234 |
-
def stream_response(msgs, max_tokens, temp, topk, topp, repeat_penalty):
|
235 |
-
final_text = ""
|
236 |
-
try:
|
237 |
-
stream = llm.create_chat_completion(
|
238 |
-
messages=msgs,
|
239 |
-
max_tokens=max_tokens,
|
240 |
-
temperature=temp,
|
241 |
-
top_k=topk,
|
242 |
-
top_p=topp,
|
243 |
-
repeat_penalty=repeat_penalty,
|
244 |
-
stream=True,
|
245 |
-
)
|
246 |
-
for chunk in stream:
|
247 |
-
if "choices" in chunk:
|
248 |
-
delta = chunk["choices"][0]["delta"].get("content", "")
|
249 |
-
final_text += delta
|
250 |
-
response_queue.put(delta)
|
251 |
-
if chunk["choices"][0].get("finish_reason", ""):
|
252 |
-
break
|
253 |
-
except Exception as e:
|
254 |
-
response_queue.put(f"\nError: {e}")
|
255 |
-
response_queue.put(None) # Signal completion
|
256 |
-
|
257 |
-
# Start streaming in a separate thread
|
258 |
stream_thread = threading.Thread(
|
259 |
target=stream_response,
|
260 |
-
args=(messages, max_tokens, temperature, top_k, top_p, repeat_penalty),
|
261 |
daemon=True
|
262 |
)
|
263 |
stream_thread.start()
|
264 |
|
265 |
-
# Poll the queue
|
266 |
final_response = ""
|
267 |
timeout = 300 # seconds
|
268 |
start_time = time.time()
|
|
|
269 |
while True:
|
270 |
try:
|
271 |
update = response_queue.get(timeout=0.1)
|
272 |
if update is None:
|
273 |
break
|
274 |
final_response += update
|
|
|
275 |
visible_response = re.sub(r"<think>.*?</think>", "", final_response, flags=re.DOTALL)
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
start_time = time.time()
|
280 |
except queue.Empty:
|
281 |
if time.time() - start_time > timeout:
|
282 |
st.error("Response generation timed out.")
|
283 |
break
|
284 |
|
285 |
-
|
|
|
|
|
286 |
st.session_state.pending_response = False
|
|
|
287 |
gc.collect()
|
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from duckduckgo_search import DDGS
|
8 |
|
9 |
+
# ------------------------------
|
10 |
+
# Initialize Session State
|
11 |
+
# ------------------------------
|
12 |
if "chat_history" not in st.session_state:
|
13 |
st.session_state.chat_history = []
|
14 |
if "pending_response" not in st.session_state:
|
|
|
18 |
if "llm" not in st.session_state:
|
19 |
st.session_state.llm = None
|
20 |
|
21 |
+
# ------------------------------
|
22 |
+
# Custom CSS for Improved Look & Feel
|
23 |
+
# ------------------------------
|
24 |
st.markdown("""
|
25 |
<style>
|
26 |
+
.chat-container { margin: 1em 0; }
|
27 |
+
.chat-assistant { background-color: #eef7ff; padding: 1em; border-radius: 10px; margin-bottom: 1em; }
|
28 |
+
.chat-user { background-color: #e6ffe6; padding: 1em; border-radius: 10px; margin-bottom: 1em; }
|
29 |
+
.message-time { font-size: 0.8em; color: #555; text-align: right; }
|
30 |
+
.loading-spinner { font-size: 1.1em; color: #ff6600; }
|
31 |
</style>
|
32 |
""", unsafe_allow_html=True)
|
33 |
|
34 |
+
# ------------------------------
|
35 |
+
# Required Storage and Model Definitions
|
36 |
+
# ------------------------------
|
37 |
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3 # 5 GB
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
MODELS = {
|
40 |
"Qwen2.5-0.5B-Instruct (Q4_K_M)": {
|
41 |
"repo_id": "Qwen/Qwen2.5-0.5B-Instruct-GGUF",
|
|
|
94 |
},
|
95 |
}
|
96 |
|
97 |
+
# ------------------------------
|
98 |
+
# Helper Functions
|
99 |
+
# ------------------------------
|
100 |
+
def retrieve_context(query, max_results=6, max_chars_per_result=600):
|
101 |
+
"""Retrieve web search context using DuckDuckGo."""
|
102 |
+
try:
|
103 |
+
with DDGS() as ddgs:
|
104 |
+
results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))
|
105 |
+
context = ""
|
106 |
+
for i, result in enumerate(results, start=1):
|
107 |
+
title = result.get("title", "No Title")
|
108 |
+
snippet = result.get("body", "")[:max_chars_per_result]
|
109 |
+
context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
|
110 |
+
return context.strip()
|
111 |
+
except Exception as e:
|
112 |
+
st.error(f"Error during web retrieval: {e}")
|
113 |
+
return ""
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
def try_load_model(model_path):
|
116 |
+
"""Attempt to initialize the model from a specified path."""
|
117 |
try:
|
118 |
return Llama(
|
119 |
+
model_path=model_path,
|
120 |
+
n_ctx=4096,
|
121 |
n_threads=2,
|
122 |
n_threads_batch=1,
|
123 |
n_batch=256,
|
|
|
131 |
except Exception as e:
|
132 |
return str(e)
|
133 |
|
134 |
+
def download_model(selected_model):
|
135 |
+
"""Download the model using Hugging Face Hub."""
|
136 |
with st.spinner(f"Downloading {selected_model['filename']}..."):
|
137 |
hf_hub_download(
|
138 |
repo_id=selected_model["repo_id"],
|
|
|
141 |
local_dir_use_symlinks=False,
|
142 |
)
|
143 |
|
144 |
+
def validate_or_download_model(selected_model):
|
145 |
+
"""Ensure the model is available and loaded properly; download if necessary."""
|
146 |
+
model_path = os.path.join("models", selected_model["filename"])
|
147 |
+
os.makedirs("models", exist_ok=True)
|
148 |
if not os.path.exists(model_path):
|
149 |
if shutil.disk_usage(".").free < REQUIRED_SPACE_BYTES:
|
150 |
+
st.info("Insufficient storage space. Consider cleaning up old models.")
|
151 |
+
download_model(selected_model)
|
152 |
result = try_load_model(model_path)
|
153 |
if isinstance(result, str):
|
154 |
+
st.warning(f"Initial model load failed: {result}\nAttempting re-download...")
|
155 |
try:
|
156 |
os.remove(model_path)
|
157 |
except Exception:
|
158 |
pass
|
159 |
+
download_model(selected_model)
|
160 |
result = try_load_model(model_path)
|
161 |
if isinstance(result, str):
|
162 |
+
st.error(f"Model failed to load after re-download: {result}")
|
163 |
st.stop()
|
164 |
return result
|
165 |
|
166 |
+
def stream_response(llm, messages, max_tokens, temperature, top_k, top_p, repeat_penalty, response_queue):
|
167 |
+
"""Stream the model response token-by-token."""
|
168 |
+
final_text = ""
|
169 |
+
try:
|
170 |
+
stream = llm.create_chat_completion(
|
171 |
+
messages=messages,
|
172 |
+
max_tokens=max_tokens,
|
173 |
+
temperature=temperature,
|
174 |
+
top_k=top_k,
|
175 |
+
top_p=top_p,
|
176 |
+
repeat_penalty=repeat_penalty,
|
177 |
+
stream=True,
|
178 |
+
)
|
179 |
+
for chunk in stream:
|
180 |
+
if "choices" in chunk:
|
181 |
+
delta = chunk["choices"][0]["delta"].get("content", "")
|
182 |
+
final_text += delta
|
183 |
+
response_queue.put(delta)
|
184 |
+
if chunk["choices"][0].get("finish_reason", ""):
|
185 |
+
break
|
186 |
+
except Exception as e:
|
187 |
+
response_queue.put(f"\nError: {e}")
|
188 |
+
response_queue.put(None) # Signal the end of streaming
|
189 |
+
|
190 |
+
# ------------------------------
|
191 |
+
# Sidebar: Settings and Advanced Options
|
192 |
+
# ------------------------------
|
193 |
+
with st.sidebar:
|
194 |
+
st.header("⚙️ Settings")
|
195 |
+
|
196 |
+
# Basic Settings
|
197 |
+
selected_model_name = st.selectbox("Select Model", list(MODELS.keys()),
|
198 |
+
help="Choose from the available model configurations.")
|
199 |
+
system_prompt_base = st.text_area("System Prompt",
|
200 |
+
value="You are a helpful assistant.",
|
201 |
+
height=80,
|
202 |
+
help="Define the base context for the AI's responses.")
|
203 |
+
|
204 |
+
# Generation Parameters
|
205 |
+
st.subheader("Generation Parameters")
|
206 |
+
max_tokens = st.slider("Max Tokens", 64, 1024, 256, step=32,
|
207 |
+
help="The maximum number of tokens the assistant can generate.")
|
208 |
+
temperature = st.slider("Temperature", 0.1, 2.0, 0.7,
|
209 |
+
help="Controls randomness. Lower values are more deterministic.")
|
210 |
+
top_k = st.slider("Top-K", 1, 100, 40,
|
211 |
+
help="Limits the token candidates to the top-k tokens.")
|
212 |
+
top_p = st.slider("Top-P", 0.1, 1.0, 0.95,
|
213 |
+
help="Nucleus sampling parameter; restricts to a cumulative probability.")
|
214 |
+
repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1,
|
215 |
+
help="Penalizes token repetition to improve output variety.")
|
216 |
+
|
217 |
+
# Advanced Settings using expandable sections
|
218 |
+
with st.expander("Web Search Settings"):
|
219 |
+
enable_search = st.checkbox("Enable Web Search", value=False,
|
220 |
+
help="Include recent web search context to augment the prompt.")
|
221 |
+
max_results = st.number_input("Max Results for Context", min_value=1, max_value=20, value=6, step=1,
|
222 |
+
help="How many search results to use.")
|
223 |
+
max_chars_per_result = st.number_input("Max Chars per Result", min_value=100, max_value=2000, value=600, step=50,
|
224 |
+
help="Max characters to extract from each search result.")
|
225 |
+
|
226 |
+
# ------------------------------
|
227 |
+
# Model Loading/Reloading if Needed
|
228 |
+
# ------------------------------
|
229 |
+
selected_model = MODELS[selected_model_name]
|
230 |
if st.session_state.model_name != selected_model_name:
|
231 |
+
with st.spinner("Loading selected model..."):
|
232 |
+
if st.session_state.llm is not None:
|
233 |
+
del st.session_state.llm
|
234 |
+
gc.collect()
|
235 |
+
st.session_state.llm = validate_or_download_model(selected_model)
|
236 |
+
st.session_state.model_name = selected_model_name
|
237 |
|
238 |
llm = st.session_state.llm
|
239 |
|
240 |
+
# ------------------------------
|
241 |
+
# Main Title and Chat History Display
|
242 |
+
# ------------------------------
|
243 |
st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
|
244 |
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")
|
245 |
|
246 |
+
# Render chat history with improved styling
|
247 |
for chat in st.session_state.chat_history:
|
248 |
+
role = chat["role"]
|
249 |
+
content = chat["content"]
|
250 |
+
if role == "assistant":
|
251 |
+
st.markdown(f"<div class='chat-assistant'>{content}</div>", unsafe_allow_html=True)
|
252 |
+
else:
|
253 |
+
st.markdown(f"<div class='chat-user'>{content}</div>", unsafe_allow_html=True)
|
254 |
|
255 |
+
# ------------------------------
|
256 |
+
# Chat Input and Processing
|
257 |
+
# ------------------------------
|
258 |
+
user_input = st.chat_input("Your message...")
|
259 |
if user_input:
|
260 |
if st.session_state.pending_response:
|
261 |
+
st.warning("Please wait until the current response is finished.")
|
262 |
else:
|
263 |
+
# Append user message with timestamp (if desired)
|
264 |
+
timestamp = time.strftime("%H:%M")
|
265 |
+
st.session_state.chat_history.append({"role": "user", "content": f"{user_input}\n\n<span class='message-time'>{timestamp}</span>"})
|
266 |
with st.chat_message("user"):
|
267 |
+
st.markdown(f"<div class='chat-user'>{user_input}</div>", unsafe_allow_html=True)
|
268 |
+
|
269 |
st.session_state.pending_response = True
|
270 |
+
|
271 |
+
# Retrieve web search context if enabled
|
272 |
+
retrieved_context = ""
|
273 |
+
if enable_search:
|
274 |
+
retrieved_context = retrieve_context(user_input, max_results=max_results, max_chars_per_result=max_chars_per_result)
|
275 |
+
with st.sidebar:
|
276 |
+
st.markdown("### Retrieved Context")
|
277 |
+
st.text_area("", value=retrieved_context or "No context found.", height=150)
|
278 |
|
279 |
+
# Augment the user prompt with the system prompt and optional web context
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
if enable_search and retrieved_context:
|
281 |
augmented_user_input = (
|
282 |
f"{system_prompt_base.strip()}\n\n"
|
|
|
286 |
)
|
287 |
else:
|
288 |
augmented_user_input = f"{system_prompt_base.strip()}\n\nUser Query: {user_input}"
|
289 |
+
|
290 |
+
# Limit conversation history to the last few turns (for context)
|
291 |
MAX_TURNS = 2
|
292 |
trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):]
|
293 |
if trimmed_history and trimmed_history[-1]["role"] == "user":
|
|
|
295 |
else:
|
296 |
messages = trimmed_history + [{"role": "user", "content": augmented_user_input}]
|
297 |
|
298 |
+
# Set up a placeholder for displaying the streaming response and a queue for tokens
|
299 |
visible_placeholder = st.empty()
|
300 |
+
progress_bar = st.progress(0)
|
301 |
response_queue = queue.Queue()
|
302 |
|
303 |
+
# Start streaming response in a separate thread
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
stream_thread = threading.Thread(
|
305 |
target=stream_response,
|
306 |
+
args=(llm, messages, max_tokens, temperature, top_k, top_p, repeat_penalty, response_queue),
|
307 |
daemon=True
|
308 |
)
|
309 |
stream_thread.start()
|
310 |
|
311 |
+
# Poll the queue to update the UI with incremental tokens and update progress
|
312 |
final_response = ""
|
313 |
timeout = 300 # seconds
|
314 |
start_time = time.time()
|
315 |
+
progress = 0
|
316 |
while True:
|
317 |
try:
|
318 |
update = response_queue.get(timeout=0.1)
|
319 |
if update is None:
|
320 |
break
|
321 |
final_response += update
|
322 |
+
# Remove any special tags from the output (for cleaner UI)
|
323 |
visible_response = re.sub(r"<think>.*?</think>", "", final_response, flags=re.DOTALL)
|
324 |
+
visible_placeholder.markdown(f"<div class='chat-assistant'>{visible_response}</div>", unsafe_allow_html=True)
|
325 |
+
progress = min(progress + 1, 100)
|
326 |
+
progress_bar.progress(progress)
|
327 |
start_time = time.time()
|
328 |
except queue.Empty:
|
329 |
if time.time() - start_time > timeout:
|
330 |
st.error("Response generation timed out.")
|
331 |
break
|
332 |
|
333 |
+
# Append assistant response with timestamp
|
334 |
+
timestamp = time.strftime("%H:%M")
|
335 |
+
st.session_state.chat_history.append({"role": "assistant", "content": f"{final_response}\n\n<span class='message-time'>{timestamp}</span>"})
|
336 |
st.session_state.pending_response = False
|
337 |
+
progress_bar.empty() # Clear progress bar
|
338 |
gc.collect()
|