Luigi commited on
Commit
4e60755
·
1 Parent(s): 9d3ca6c

Add internet search feature

Browse files
Files changed (2) hide show
  1. app.py +95 -101
  2. requirements.txt +1 -0
app.py CHANGED
@@ -1,10 +1,9 @@
1
  import streamlit as st
2
  from llama_cpp import Llama
3
  from huggingface_hub import hf_hub_download
4
- import os
5
- import gc
6
- import shutil
7
- import re
8
 
9
  # ----- Custom CSS for pretty formatting of internal reasoning -----
10
  CUSTOM_CSS = """
@@ -33,8 +32,40 @@ st.markdown(CUSTOM_CSS, unsafe_allow_html=True)
33
  # ----- Set a threshold for required free storage (in bytes) -----
34
  REQUIRED_SPACE_BYTES = 5 * 1024 ** 3 # 5 GB
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  # ----- Available models -----
37
  MODELS = {
 
 
 
 
 
 
 
 
 
 
38
  "Qwen2.5-7B-Instruct (Q2_K)": {
39
  "repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
40
  "filename": "qwen2.5-7b-instruct-q2_k.gguf",
@@ -76,22 +107,16 @@ MODELS = {
76
  with st.sidebar:
77
  st.header("⚙️ Settings")
78
  selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
79
- system_prompt = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
80
- max_tokens = st.slider("Max tokens", 64, 2048, 512, step=32)
81
  temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
82
  top_k = st.slider("Top-K", 1, 100, 40)
83
  top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
84
  repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
85
 
86
- if st.button("🧹 Clear All Cached Models"):
87
- try:
88
- for f in os.listdir("models"):
89
- if f.endswith(".gguf"):
90
- os.remove(os.path.join("models", f))
91
- st.success("Model cache cleared.")
92
- except Exception as e:
93
- st.error(f"Failed to clear models: {e}")
94
-
95
  if st.button("📦 Show Disk Usage"):
96
  try:
97
  usage = shutil.disk_usage(".")
@@ -101,49 +126,22 @@ with st.sidebar:
101
  except Exception as e:
102
  st.error(f"Disk usage error: {e}")
103
 
104
- # ----- Model info -----
105
  selected_model = MODELS[selected_model_name]
106
  model_path = os.path.join("models", selected_model["filename"])
107
 
108
- # ----- Session state initialization -----
109
- if "model_name" not in st.session_state:
110
- st.session_state.model_name = None
111
- if "llm" not in st.session_state:
112
- st.session_state.llm = None
113
- if "chat_history" not in st.session_state:
114
- st.session_state.chat_history = []
115
- if "pending_response" not in st.session_state:
116
- st.session_state.pending_response = False
117
-
118
- # ----- Ensure model directory exists -----
119
  os.makedirs("models", exist_ok=True)
120
 
121
- # ----- Functions for model management -----
122
- def cleanup_old_models():
123
- for f in os.listdir("models"):
124
- if f.endswith(".gguf") and f != selected_model["filename"]:
125
- try:
126
- os.remove(os.path.join("models", f))
127
- except Exception as e:
128
- st.warning(f"Couldn't delete old model {f}: {e}")
129
-
130
- def download_model():
131
- with st.spinner(f"Downloading {selected_model['filename']}..."):
132
- hf_hub_download(
133
- repo_id=selected_model["repo_id"],
134
- filename=selected_model["filename"],
135
- local_dir="./models",
136
- local_dir_use_symlinks=False, # Deprecated parameter; harmless warning.
137
- )
138
-
139
  def try_load_model(path):
140
  try:
141
  return Llama(
142
  model_path=path,
143
- n_ctx=1024,
144
- n_threads=2,
145
- n_threads_batch=2,
146
- n_batch=4,
147
  n_gpu_layers=0,
148
  use_mlock=False,
149
  use_mmap=True,
@@ -152,15 +150,21 @@ def try_load_model(path):
152
  except Exception as e:
153
  return str(e)
154
 
 
 
 
 
 
 
 
 
 
155
  def validate_or_download_model():
156
- # Download model if not present locally.
157
  if not os.path.exists(model_path):
158
  free_space = shutil.disk_usage(".").free
159
  if free_space < REQUIRED_SPACE_BYTES:
160
- st.info("Insufficient storage detected. Cleaning up old models to free up space.")
161
- cleanup_old_models()
162
  download_model()
163
-
164
  result = try_load_model(model_path)
165
  if isinstance(result, str):
166
  st.warning(f"Initial load failed: {result}\nAttempting re-download...")
@@ -168,10 +172,6 @@ def validate_or_download_model():
168
  os.remove(model_path)
169
  except Exception:
170
  pass
171
- free_space = shutil.disk_usage(".").free
172
- if free_space < REQUIRED_SPACE_BYTES:
173
- st.info("Insufficient storage detected on re-download attempt. Cleaning up old models to free up space.")
174
- cleanup_old_models()
175
  download_model()
176
  result = try_load_model(model_path)
177
  if isinstance(result, str):
@@ -180,6 +180,16 @@ def validate_or_download_model():
180
  return result
181
  return result
182
 
 
 
 
 
 
 
 
 
 
 
183
  # ----- Load model if changed -----
184
  if st.session_state.model_name != selected_model_name:
185
  if st.session_state.llm is not None:
@@ -194,37 +204,51 @@ llm = st.session_state.llm
194
  st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
195
  st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")
196
 
197
- # ----- Render full chat history -----
198
  for chat in st.session_state.chat_history:
199
  with st.chat_message(chat["role"]):
200
  st.markdown(chat["content"])
201
- # For assistant messages, if there's completed internal reasoning, display it behind an expander.
202
- if chat.get("role") == "assistant" and chat.get("thinking"):
203
- with st.expander("🧠 Model's Internal Reasoning"):
204
- for t in chat["thinking"]:
205
- st.markdown(t.strip())
206
 
207
- # ----- Chat input widget -----
208
  user_input = st.chat_input("Ask something...")
209
 
210
  if user_input:
211
  if st.session_state.pending_response:
212
  st.warning("Please wait for the assistant to finish responding.")
213
  else:
 
214
  st.session_state.chat_history.append({"role": "user", "content": user_input})
215
  with st.chat_message("user"):
216
  st.markdown(user_input)
217
 
218
  st.session_state.pending_response = True
219
 
220
- MAX_TURNS = 8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
  trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):]
222
- messages = [{"role": "system", "content": system_prompt}] + trimmed_history
223
 
224
- # ----- Streaming the assistant response -----
225
  with st.chat_message("assistant"):
226
  visible_placeholder = st.empty()
227
- thinking_placeholder = st.empty()
228
  full_response = ""
229
  stream = llm.create_chat_completion(
230
  messages=messages,
@@ -240,41 +264,11 @@ if user_input:
240
  if "choices" in chunk:
241
  delta = chunk["choices"][0]["delta"].get("content", "")
242
  full_response += delta
243
-
244
- # Determine if there is an open (in-progress) <think> block
245
- open_think = re.search(r"<think>([^<]*)$", full_response, flags=re.DOTALL)
246
- in_progress = open_think.group(1).strip() if open_think else ""
247
-
248
- # Create the visible response by removing any complete <think>...</think> blocks,
249
- # and also removing any in-progress (unclosed) <think> content.
250
  visible_response = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL)
251
  visible_response = re.sub(r"<think>.*$", "", visible_response, flags=re.DOTALL)
252
  visible_placeholder.markdown(visible_response)
253
 
254
- # If there's an in-progress thinking part, display it in a pretty style
255
- if in_progress:
256
- # You can further format in_progress as you like; here we wrap it in a styled div.
257
- thinking_html = f"""
258
- <div class="chat-assistant">
259
- <strong>Internal Reasoning (in progress):</strong>
260
- <br>{in_progress}
261
- </div>
262
- """
263
- thinking_placeholder.markdown(thinking_html, unsafe_allow_html=True)
264
- else:
265
- thinking_placeholder.empty()
266
-
267
- # After streaming completes:
268
- # Extract all completed <think> blocks (the final internal reasoning that was closed)
269
- final_thinking = re.findall(r"<think>(.*?)</think>", full_response, flags=re.DOTALL)
270
- # The final visible response: remove any <think> blocks or any in-progress open block.
271
- final_visible = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL)
272
- final_visible = re.sub(r"<think>.*$", "", final_visible, flags=re.DOTALL)
273
-
274
- st.session_state.chat_history.append({
275
- "role": "assistant",
276
- "content": final_visible,
277
- "thinking": final_thinking
278
- })
279
-
280
  st.session_state.pending_response = False
 
 
1
  import streamlit as st
2
  from llama_cpp import Llama
3
  from huggingface_hub import hf_hub_download
4
+ import os, gc, shutil, re
5
+ from itertools import islice
6
+ from duckduckgo_search import DDGS # Latest class-based interface :contentReference[oaicite:0]{index=0}
 
7
 
8
  # ----- Custom CSS for pretty formatting of internal reasoning -----
9
  CUSTOM_CSS = """
 
32
  # ----- Set a threshold for required free storage (in bytes) -----
33
  REQUIRED_SPACE_BYTES = 5 * 1024 ** 3 # 5 GB
34
 
35
+ # ----- Function to perform DuckDuckGo search and retrieve concise context -----
36
+ def retrieve_context(query, max_results=2, max_chars_per_result=150):
37
+ """
38
+ Query DuckDuckGo for the given search query and return a concatenated context string.
39
+ Uses the DDGS().text() generator (with region, safesearch, and timelimit parameters)
40
+ and limits the results using islice. Each result's title and snippet are combined into context.
41
+ """
42
+ try:
43
+ with DDGS() as ddgs:
44
+ results_gen = ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y")
45
+ results = list(islice(results_gen, max_results))
46
+ context = ""
47
+ if results:
48
+ for i, result in enumerate(results, start=1):
49
+ title = result.get("title", "No Title")
50
+ snippet = result.get("body", "")[:max_chars_per_result]
51
+ context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
52
+ return context.strip()
53
+ except Exception as e:
54
+ st.error(f"Error during retrieval: {e}")
55
+ return ""
56
+
57
  # ----- Available models -----
58
  MODELS = {
59
+ "Qwen2.5-0.5B-Instruct (Q4_K_M)": {
60
+ "repo_id": "Qwen/Qwen2.5-0.5B-Instruct-GGUF",
61
+ "filename": "qwen2.5-0.5b-instruct-q4_k_m.gguf",
62
+ "description": "Qwen2.5-0.5B-Instruct (Q4_K_M)"
63
+ },
64
+ "Gemma-3.1B-it (Q4_K_M)": {
65
+ "repo_id": "unsloth/gemma-3-1b-it-GGUF",
66
+ "filename": "gemma-3-1b-it-Q4_K_M.gguf",
67
+ "description": "Gemma-3.1B-it (Q4_K_M)"
68
+ },
69
  "Qwen2.5-7B-Instruct (Q2_K)": {
70
  "repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
71
  "filename": "qwen2.5-7b-instruct-q2_k.gguf",
 
107
  with st.sidebar:
108
  st.header("⚙️ Settings")
109
  selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
110
+ system_prompt_base = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
111
+ max_tokens = st.slider("Max tokens", 64, 1024, 256, step=32) # Adjust for lower memory usage
112
  temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
113
  top_k = st.slider("Top-K", 1, 100, 40)
114
  top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
115
  repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
116
 
117
+ # Checkbox to enable the DuckDuckGo search feature (disabled by default)
118
+ enable_search = st.checkbox("Enable Web Search", value=False)
119
+
 
 
 
 
 
 
120
  if st.button("📦 Show Disk Usage"):
121
  try:
122
  usage = shutil.disk_usage(".")
 
126
  except Exception as e:
127
  st.error(f"Disk usage error: {e}")
128
 
129
+ # ----- Define selected model and path -----
130
  selected_model = MODELS[selected_model_name]
131
  model_path = os.path.join("models", selected_model["filename"])
132
 
133
+ # Ensure model directory exists
 
 
 
 
 
 
 
 
 
 
134
  os.makedirs("models", exist_ok=True)
135
 
136
+ # ----- Helper functions for model management -----
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  def try_load_model(path):
138
  try:
139
  return Llama(
140
  model_path=path,
141
+ n_ctx=512, # Reduced context window to save memory
142
+ n_threads=1, # Fewer threads for resource-constrained environments
143
+ n_threads_batch=1,
144
+ n_batch=2, # Lower batch size to conserve memory
145
  n_gpu_layers=0,
146
  use_mlock=False,
147
  use_mmap=True,
 
150
  except Exception as e:
151
  return str(e)
152
 
153
+ def download_model():
154
+ with st.spinner(f"Downloading {selected_model['filename']}..."):
155
+ hf_hub_download(
156
+ repo_id=selected_model["repo_id"],
157
+ filename=selected_model["filename"],
158
+ local_dir="./models",
159
+ local_dir_use_symlinks=False,
160
+ )
161
+
162
  def validate_or_download_model():
 
163
  if not os.path.exists(model_path):
164
  free_space = shutil.disk_usage(".").free
165
  if free_space < REQUIRED_SPACE_BYTES:
166
+ st.info("Insufficient storage. Consider cleaning up old models.")
 
167
  download_model()
 
168
  result = try_load_model(model_path)
169
  if isinstance(result, str):
170
  st.warning(f"Initial load failed: {result}\nAttempting re-download...")
 
172
  os.remove(model_path)
173
  except Exception:
174
  pass
 
 
 
 
175
  download_model()
176
  result = try_load_model(model_path)
177
  if isinstance(result, str):
 
180
  return result
181
  return result
182
 
183
+ # ----- Session state initialization -----
184
+ if "model_name" not in st.session_state:
185
+ st.session_state.model_name = None
186
+ if "llm" not in st.session_state:
187
+ st.session_state.llm = None
188
+ if "chat_history" not in st.session_state:
189
+ st.session_state.chat_history = []
190
+ if "pending_response" not in st.session_state:
191
+ st.session_state.pending_response = False
192
+
193
  # ----- Load model if changed -----
194
  if st.session_state.model_name != selected_model_name:
195
  if st.session_state.llm is not None:
 
204
  st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
205
  st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")
206
 
207
+ # Render existing chat history
208
  for chat in st.session_state.chat_history:
209
  with st.chat_message(chat["role"]):
210
  st.markdown(chat["content"])
 
 
 
 
 
211
 
212
+ # ----- Chat input and integrated RAG with memory optimizations -----
213
  user_input = st.chat_input("Ask something...")
214
 
215
  if user_input:
216
  if st.session_state.pending_response:
217
  st.warning("Please wait for the assistant to finish responding.")
218
  else:
219
+ # Append the user query to chat history
220
  st.session_state.chat_history.append({"role": "user", "content": user_input})
221
  with st.chat_message("user"):
222
  st.markdown(user_input)
223
 
224
  st.session_state.pending_response = True
225
 
226
+ # Only retrieve search context if search feature is enabled
227
+ if enable_search:
228
+ retrieved_context = retrieve_context(user_input, max_results=2, max_chars_per_result=150)
229
+ else:
230
+ retrieved_context = ""
231
+ st.sidebar.markdown("### Retrieved Context" if enable_search else "Web Search Disabled")
232
+ st.sidebar.text(retrieved_context or "No context found.")
233
+
234
+ # Build an augmented system prompt that includes the retrieved context if available
235
+ if retrieved_context:
236
+ augmented_prompt = (
237
+ "Use the following recent web search context to help answer the query:\n\n"
238
+ f"{retrieved_context}\n\nUser Query: {user_input}"
239
+ )
240
+ else:
241
+ augmented_prompt = f"User Query: {user_input}"
242
+ full_system_prompt = system_prompt_base.strip() + "\n\n" + augmented_prompt
243
+
244
+ # Limit conversation history to the last 2 turns
245
+ MAX_TURNS = 2
246
  trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):]
247
+ messages = [{"role": "system", "content": full_system_prompt}] + trimmed_history
248
 
249
+ # Generate response with the LLM in a streaming fashion
250
  with st.chat_message("assistant"):
251
  visible_placeholder = st.empty()
 
252
  full_response = ""
253
  stream = llm.create_chat_completion(
254
  messages=messages,
 
264
  if "choices" in chunk:
265
  delta = chunk["choices"][0]["delta"].get("content", "")
266
  full_response += delta
267
+ # Clean internal reasoning markers before display
 
 
 
 
 
 
268
  visible_response = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL)
269
  visible_response = re.sub(r"<think>.*$", "", visible_response, flags=re.DOTALL)
270
  visible_placeholder.markdown(visible_response)
271
 
272
+ st.session_state.chat_history.append({"role": "assistant", "content": full_response})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273
  st.session_state.pending_response = False
274
+ gc.collect() # Trigger garbage collection to free memory
requirements.txt CHANGED
@@ -5,3 +5,4 @@ llama-cpp-python
5
  llama-cpp-agent
6
  huggingface_hub
7
  streamlit
 
 
5
  llama-cpp-agent
6
  huggingface_hub
7
  streamlit
8
+ duckduckgo_search