File size: 13,512 Bytes
a703203
 
 
 
248f5a7
a703203
 
d181b45
5ea073d
248f5a7
4c6b4c5
 
ac8e9cc
4c6b4c5
0ff6c39
eb215ff
a703203
eb215ff
a703203
9d3ca6c
d181b45
 
eb215ff
cd26609
4731160
d181b45
4731160
794ee70
4731160
d181b45
4731160
b1544e2
4731160
d181b45
4731160
f5c0811
4731160
d181b45
4731160
f7a541f
4731160
d181b45
4731160
cd26609
4731160
d181b45
4731160
cd26609
4731160
d181b45
4731160
cd26609
4731160
d181b45
4731160
d554072
4731160
d181b45
4731160
d554072
4731160
d181b45
4731160
d554072
4731160
d181b45
4731160
d554072
cd26609
 
ac8e9cc
 
a703203
ac8e9cc
 
 
 
 
 
 
 
a703203
ac8e9cc
 
 
 
 
 
 
 
 
 
 
a703203
 
ac8e9cc
 
 
 
a703203
 
 
 
 
 
 
 
 
 
 
d33dfcd
ef361b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a703203
5ea073d
a703203
ac8e9cc
a703203
 
ac8e9cc
5ea073d
ac8e9cc
 
 
ef361b0
5ea073d
 
ac8e9cc
a703203
 
ac8e9cc
 
 
a703203
ac8e9cc
a703203
 
 
ac8e9cc
a703203
 
 
 
 
 
 
 
 
ac8e9cc
 
a703203
 
 
 
 
d181b45
ac8e9cc
a703203
eb215ff
5ea073d
ef361b0
 
5ea073d
ac8e9cc
5ea073d
 
 
b6b3940
5ea073d
 
ef361b0
5ea073d
 
d181b45
5ea073d
 
 
 
 
 
 
 
 
 
 
 
 
d181b45
5ea073d
 
 
 
 
 
 
 
eb215ff
ac8e9cc
 
 
 
eb215ff
 
a703203
eb215ff
a703203
 
 
afa19a3
5f6306a
 
 
 
 
 
 
 
 
 
eb215ff
a703203
eb215ff
d181b45
 
a703203
4c6b4c5
a703203
 
 
 
 
 
 
 
4e60755
5f6306a
 
 
 
a703203
5f6306a
a703203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f6306a
 
 
 
 
 
 
a703203
 
 
 
 
 
5ea073d
a703203
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
import time
import gc
import threading
from itertools import islice
from datetime import datetime
import gradio as gr
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from duckduckgo_search import DDGS
import spaces  # Import spaces early to enable ZeroGPU support

# Optional: Disable GPU visibility if you wish to force CPU usage
# os.environ["CUDA_VISIBLE_DEVICES"] = ""

# ------------------------------
# Global Cancellation Event
# ------------------------------
cancel_event = threading.Event()

# ------------------------------
# Torch-Compatible Model Definitions with Adjusted Descriptions
# ------------------------------
MODELS = {
    "Taiwan-tinyllama-v1.0-chat": {
        "repo_id": "DavidLanz/Taiwan-tinyllama-v1.0-chat",
        "description": "Taiwan-tinyllama-v1.0-chat"
    },
    "Llama-3.2-Taiwan-3B-Instruct": {
        "repo_id": "https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B-Instruct",
        "description": "Llama-3.2-Taiwan-3B-Instruct"
    },
    "MiniCPM3-4B": {
        "repo_id": "openbmb/MiniCPM3-4B",
        "description": "MiniCPM3-4B"
    },
    "Qwen2.5-3B-Instruct": {
        "repo_id": "Qwen/Qwen2.5-3B-Instruct",
        "description": "Qwen2.5-3B-Instruct"
    },
    "Qwen2.5-7B-Instruct": {
        "repo_id": "Qwen/Qwen2.5-7B-Instruct",
        "description": "Qwen2.5-7B-Instruct"
    },
    "Gemma-3-4B-IT": {
        "repo_id": "unsloth/gemma-3-4b-it",
        "description": "Gemma-3-4B-IT"
    },
    "Phi-4-mini-Instruct": {
        "repo_id": "unsloth/Phi-4-mini-instruct",
        "description": "Phi-4-mini-Instruct"
    },
    "Meta-Llama-3.1-8B-Instruct": {
        "repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct",
        "description": "Meta-Llama-3.1-8B-Instruct"
    },
    "DeepSeek-R1-Distill-Llama-8B": {
        "repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B",
        "description": "DeepSeek-R1-Distill-Llama-8B"
    },
    "Mistral-7B-Instruct-v0.3": {
        "repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3",
        "description": "Mistral-7B-Instruct-v0.3"
    },
    "Qwen2.5-Coder-7B-Instruct": {
        "repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct",
        "description": "Qwen2.5-Coder-7B-Instruct"
    },
}

# Global cache for pipelines to avoid re-loading.
PIPELINES = {}

def load_pipeline(model_name):
    """
    Load and cache a transformers pipeline for chat/text-generation.
    Uses the model's repo_id from MODELS and caches the pipeline for future use.
    """
    global PIPELINES
    if model_name in PIPELINES:
        return PIPELINES[model_name]
    selected_model = MODELS[model_name]
    # Create a chat-style text-generation pipeline.
    pipe = pipeline(
        task="text-generation",
        model=selected_model["repo_id"],
        tokenizer=selected_model["repo_id"],
        trust_remote_code=True,
        torch_dtype=torch.bfloat16,
        device_map="auto"
    )
    PIPELINES[model_name] = pipe
    return pipe

def retrieve_context(query, max_results=6, max_chars_per_result=600):
    """
    Retrieve recent web search context for the given query using DuckDuckGo.
    Returns a formatted string with search results.
    """
    try:
        with DDGS() as ddgs:
            results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))
            context = ""
            for i, result in enumerate(results, start=1):
                title = result.get("title", "No Title")
                snippet = result.get("body", "")[:max_chars_per_result]
                context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
            return context.strip()
    except Exception:
        return ""

# ----------------------------------------------------------------------------
# NEW HELPER FUNCTION: Format Conversation History into a Clean Prompt
# ----------------------------------------------------------------------------
def format_conversation(conversation, system_prompt):
    """
    Converts a list of conversation messages (each a dict with 'role' and 'content')
    and a system prompt into a single plain text string.
    This prevents raw role labels from being passed to the model.
    """
    # Start with the system prompt.
    prompt = system_prompt.strip() + "\n"
    # Loop through conversation and format user and assistant messages.
    for msg in conversation:
        if msg["role"] == "user":
            prompt += "User: " + msg["content"].strip() + "\n"
        elif msg["role"] == "assistant":
            prompt += "Assistant: " + msg["content"].strip() + "\n"
        elif msg["role"] == "system":
            prompt += msg["content"].strip() + "\n"
    # Append the assistant cue to indicate the start of the reply.
    if not prompt.strip().endswith("Assistant:"):
        prompt += "Assistant: "
    return prompt

# ------------------------------
# Chat Response Generation with ZeroGPU using Pipeline (Streaming Token-by-Token)
# ------------------------------
@spaces.GPU(duration=60)
def chat_response(user_message, chat_history, system_prompt, enable_search,
                  max_results, max_chars, model_name, max_tokens, temperature, top_k, top_p, repeat_penalty):
    """
    Generate a chat response by utilizing a transformers pipeline with streaming.
    
    - Appends the user's message to the conversation history.
    - Optionally retrieves web search context and inserts it as an additional system message.
    - Converts the conversation into a formatted prompt to avoid leaking role labels.
    - Uses the cached pipeline’s underlying model and tokenizer with a streamer to yield tokens as they are generated.
    - Yields updated conversation history token by token.
    """
    cancel_event.clear()
    
    # Build conversation list from chat history.
    conversation = list(chat_history) if chat_history else []
    conversation.append({"role": "user", "content": user_message})
    
    # Retrieve web search context if enabled.
    debug_message = ""
    if enable_search:
        debug_message = "Initiating web search..."
        yield conversation, debug_message
        search_result = [""]
        def do_search():
            search_result[0] = retrieve_context(user_message, max_results, max_chars)
        search_thread = threading.Thread(target=do_search)
        search_thread.start()
        search_thread.join(timeout=2)
        retrieved_context = search_result[0]
        if retrieved_context:
            debug_message = f"Web search results:\n\n{retrieved_context}"
            # Insert the search context as a system-level message immediately after the original system prompt.
            conversation.insert(1, {"role": "system", "content": f"Web search context:\n{retrieved_context}"})
        else:
            debug_message = "Web search returned no results or timed out."
    else:
        debug_message = "Web search disabled."
    
    # Append a placeholder for the assistant's response.
    conversation.append({"role": "assistant", "content": ""})
    
    try:
        # Format the entire conversation into a single prompt.
        prompt_text = format_conversation(conversation, system_prompt)
        
        # Load the pipeline.
        pipe = load_pipeline(model_name)
        # Obtain the underlying tokenizer and model.
        tokenizer = pipe.tokenizer
        model = pipe.model
        
        # Tokenize the formatted prompt.
        model_inputs = tokenizer(prompt_text, return_tensors="pt").to(model.device)
        
        # Set up a streamer for token-by-token generation.
        streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
        
        # Run generate in a background thread with the streamer.
        gen_kwargs = {
            "input_ids": model_inputs.input_ids,
            "attention_mask": model_inputs.attention_mask,
            "max_new_tokens": max_tokens,
            "temperature": temperature,
            "top_k": top_k,
            "top_p": top_p,
            "repetition_penalty": repeat_penalty,
            "streamer": streamer
        }
        thread = threading.Thread(target=model.generate, kwargs=gen_kwargs)
        thread.start()
        
        # Collect tokens from the streamer as they are generated.
        assistant_text = ""
        for new_text in streamer:
            assistant_text += new_text
            conversation[-1]["content"] = assistant_text
            yield conversation, debug_message  # Update UI token by token
        
        thread.join()
    except Exception as e:
        conversation[-1]["content"] = f"Error: {e}"
        yield conversation, debug_message
    finally:
        gc.collect()

# ------------------------------
# Cancel Function
# ------------------------------
def cancel_generation():
    cancel_event.set()
    return "Cancellation requested."

# ------------------------------
# Helper Function for Default Prompt Update
# ------------------------------
def update_default_prompt(enable_search):
    today = datetime.now().strftime('%Y-%m-%d')
    if enable_search:
        return f"You are a helpful assistant. Today is {today}. Please leverage the latest web data when responding to queries."
    else:
        return f"You are a helpful assistant. Today is {today}."

# ------------------------------
# Gradio UI Definition
# ------------------------------
with gr.Blocks(title="LLM Inference with ZeroGPU") as demo:
    gr.Markdown("## 🧠 ZeroGPU LLM Inference with Web Search")
    gr.Markdown("Interact with the model. Select your model, set your system prompt, and adjust parameters on the left.")
    
    with gr.Row():
        with gr.Column(scale=3):
            default_model = list(MODELS.keys())[0] if MODELS else "No models available"
            model_dropdown = gr.Dropdown(
                label="Select Model", 
                choices=list(MODELS.keys()) if MODELS else [], 
                value=default_model,
                info="Choose from available models."
            )
            # Create the Enable Web Search checkbox.
            enable_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False,
                                                 info="Include recent search context to improve answers.")
            # Create the System Prompt textbox with an initial value.
            system_prompt_text = gr.Textbox(label="System Prompt",
                                            value=update_default_prompt(enable_search_checkbox.value),
                                            lines=3,
                                            info="Define the base context for the AI's responses.")
            gr.Markdown("### Generation Parameters")
            max_tokens_slider = gr.Slider(label="Max Tokens", minimum=64, maximum=1024, value=1024, step=32,
                                          info="Maximum tokens for the response.")
            temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7, step=0.1,
                                           info="Controls the randomness of the output.")
            top_k_slider = gr.Slider(label="Top-K", minimum=1, maximum=100, value=40, step=1,
                                     info="Limits token candidates to the top-k tokens.")
            top_p_slider = gr.Slider(label="Top-P (Nucleus Sampling)", minimum=0.1, maximum=1.0, value=0.95, step=0.05,
                                     info="Limits token candidates to a cumulative probability threshold.")
            repeat_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.1, step=0.1,
                                              info="Penalizes token repetition to improve diversity.")
            gr.Markdown("### Web Search Settings")
            max_results_number = gr.Number(label="Max Search Results", value=6, precision=0,
                                           info="Maximum number of search results to retrieve.")
            max_chars_number = gr.Number(label="Max Chars per Result", value=600, precision=0,
                                         info="Maximum characters to retrieve per search result.")
            clear_button = gr.Button("Clear Chat")
            cancel_button = gr.Button("Cancel Generation")
        with gr.Column(scale=7):
            chatbot = gr.Chatbot(label="Chat", type="messages")
            msg_input = gr.Textbox(label="Your Message", placeholder="Enter your message and press Enter")
            search_debug = gr.Markdown(label="Web Search Debug")
    
    # Wire the Enable Web Search checkbox change to update the System Prompt textbox.
    enable_search_checkbox.change(
        fn=update_default_prompt,
        inputs=[enable_search_checkbox],
        outputs=[system_prompt_text]
    )
    
    def clear_chat():
        return [], "", ""
    
    clear_button.click(fn=clear_chat, outputs=[chatbot, msg_input, search_debug])
    cancel_button.click(fn=cancel_generation, outputs=search_debug)
    
    # Submission: the chat_response function is used with streaming.
    msg_input.submit(
        fn=chat_response,
        inputs=[msg_input, chatbot, system_prompt_text, enable_search_checkbox,
                max_results_number, max_chars_number, model_dropdown,
                max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repeat_penalty_slider],
        outputs=[chatbot, search_debug],
    )
    
demo.launch()