Spaces:
Running
Running
File size: 14,957 Bytes
ef37daa 1af0ee8 305d245 1af0ee8 ef37daa 5ac6df3 1af0ee8 f147126 283f6a1 5ac6df3 283f6a1 45b720d 283f6a1 1af0ee8 283f6a1 1af0ee8 5ac6df3 1af0ee8 69bd0b3 305d245 69bd0b3 305d245 69bd0b3 305d245 c08c295 bc34025 1af0ee8 bc34025 1af0ee8 bc34025 1af0ee8 bc34025 1af0ee8 bc34025 1af0ee8 bc34025 1af0ee8 bc34025 1af0ee8 bc34025 1af0ee8 bc34025 1af0ee8 bc34025 1af0ee8 bc34025 1af0ee8 bc34025 1af0ee8 bc34025 1af0ee8 bc34025 ef37daa bc34025 1af0ee8 bc34025 5ac6df3 bc34025 c08c295 1af0ee8 bc34025 1af0ee8 283f6a1 1af0ee8 bc34025 5ac6df3 1af0ee8 ef37daa 1af0ee8 bc34025 1af0ee8 bc34025 1af0ee8 bc34025 1af0ee8 bc34025 d598d13 bc34025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import gradio as gr
import time
import requests
import io
from PIL import Image
from huggingface_hub import InferenceClient, HfApi
from deep_translator import GoogleTranslator
from indic_transliteration import sanscript
from indic_transliteration.detect import detect as detect_script
from indic_transliteration.sanscript import transliterate
import langdetect
import re
import os
# Get secrets from Hugging Face Space
HF_TOKEN = os.environ.get('HF_TOKEN')
if not HF_TOKEN:
raise ValueError("Please set the HF_TOKEN secret in your HuggingFace Space")
# Initialize clients
text_client = InferenceClient(
"HuggingFaceH4/zephyr-7b-beta",
token=HF_TOKEN
)
# Image generation setup
API_URL = "https://api-inference.huggingface.co/models/SG161222/RealVisXL_V4.0"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
def detect_language_script(text: str) -> tuple[str, str]:
"""Detect language and script of the input text.
Returns (language_code, script_type)"""
try:
# Use confidence threshold to avoid false detections
lang_detect = langdetect.detect_langs(text)
if lang_detect[0].prob > 0.8:
# Only accept high confidence detections
lang = lang_detect[0].lang
else:
lang = 'en' # Default to English if unsure
script = None
try:
script = detect_script(text)
except:
pass
return lang, script
except:
return 'en', None
def is_romanized_indic(text: str) -> bool:
"""Check if text appears to be romanized Indic language.
More strict pattern matching."""
# Common Bengali romanized patterns with word boundaries
bengali_patterns = [
r'\b(ami|tumi|apni)\b', # Common pronouns
r'\b(ache|achen|thako|thaken)\b', # Common verbs
r'\b(kemon|bhalo|kharap)\b', # Common adjectives
r'\b(ki|kothay|keno)\b' # Common question words
]
# Require multiple matches to confirm it's actually Bengali
text_lower = text.lower()
matches = sum(1 for pattern in bengali_patterns if re.search(pattern, text_lower))
return matches >= 2 # Require at least 2 matches to consider it Bengali
def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]:
"""Translate text to target language, with more conservative translation logic."""
# Skip translation for very short inputs or basic greetings
if len(text.split()) <= 2 or text.lower() in ['hello', 'hi', 'hey']:
return text, 'en', False
original_lang, script = detect_language_script(text)
is_transliterated = False
# Only process if confident it's non-English
if original_lang != 'en' and len(text.split()) > 2:
try:
translator = GoogleTranslator(source='auto', target=target_lang)
translated = translator.translate(text)
return translated, original_lang, is_transliterated
except Exception as e:
print(f"Translation error: {e}")
return text, 'en', False
# Check for romanized Indic text only if it's a longer input
if original_lang == 'en' and len(text.split()) > 2 and is_romanized_indic(text):
text = romanized_to_bengali(text)
return translate_text(text, target_lang) # Recursive call with Bengali script
return text, 'en', False
def check_custom_responses(message: str) -> str:
"""Check for specific patterns and return custom responses."""
message_lower = message.lower()
custom_responses = {
"what is ur name?": "xylaria",
"what is your name?": "xylaria",
"what's your name?": "xylaria",
"whats your name": "xylaria",
"how many 'r' is in strawberry?": "3",
"who is your developer?": "sk md saad amin",
"how many r is in strawberry": "3",
"who is ur dev": "sk md saad amin",
"who is ur developer": "sk md saad amin",
}
for pattern, response in custom_responses.items():
if pattern in message_lower:
return response
return None
def is_image_request(message: str) -> bool:
"""Detect if the message is requesting image generation."""
image_triggers = [
"generate an image",
"create an image",
"draw",
"make a picture",
"generate a picture",
"create a picture",
"generate art",
"create art",
"make art",
"visualize",
"show me",
]
message_lower = message.lower()
return any(trigger in message_lower for trigger in image_triggers)
def generate_image(prompt):
"""Generate image using HuggingFace inference API"""
try:
response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
image = Image.open(io.BytesIO(response.content))
return image
except Exception as e:
print(f"Image generation error: {e}")
return None
def romanized_to_bengali(text: str) -> str:
"""Convert romanized Bengali text to Bengali script."""
bengali_mappings = {
'ami': 'আমি',
'tumi': 'তুমি',
'apni': 'আপনি',
'kemon': 'কেমন',
'achen': 'আছেন',
'acchen': 'আছেন',
'bhalo': 'ভালো',
'achi': 'আছি',
'ki': 'কি',
'kothay': 'কোথায়',
'keno': 'কেন',
}
text_lower = text.lower()
for roman, bengali in bengali_mappings.items():
text_lower = re.sub(r'\b' + roman + r'\b', bengali, text_lower)
if text_lower == text.lower():
try:
return transliterate(text, sanscript.ITRANS, sanscript.BENGALI)
except:
return text
return text_lower
def create_chat_interface():
# Custom CSS for better styling with Inter font and animations
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
* {
font-family: 'Inter', sans-serif !important;
}
.container {
max-width: 850px !important;
margin: auto;
}
.chat-window {
height: 600px !important;
overflow-y: auto;
border-radius: 15px !important;
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1) !important;
transition: all 0.3s ease !important;
}
.chat-window:hover {
box-shadow: 0 12px 20px rgba(0, 0, 0, 0.15) !important;
}
.chat-message {
padding: 1rem !important;
margin: 0.5rem !important;
border-radius: 12px !important;
transition: all 0.2s ease !important;
opacity: 0;
animation: messageSlide 0.3s ease forwards;
}
@keyframes messageSlide {
from {
opacity: 0;
transform: translateY(10px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
.user-message {
background: linear-gradient(135deg, #6366f1 0%, #8b5cf6 100%) !important;
color: white !important;
margin-left: 2rem !important;
}
.bot-message {
background: linear-gradient(135deg, #f3f4f6 0%, #e5e7eb 100%) !important;
margin-right: 2rem !important;
}
/* Button Styles */
button.primary {
background: linear-gradient(135deg, #6366f1 0%, #8b5cf6 100%) !important;
border: none !important;
color: white !important;
padding: 0.75rem 1.5rem !important;
border-radius: 12px !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
transform: translateY(0);
box-shadow: 0 4px 6px rgba(99, 102, 241, 0.2) !important;
}
button.primary:hover {
transform: translateY(-2px);
box-shadow: 0 8px 12px rgba(99, 102, 241, 0.3) !important;
}
button.primary:active {
transform: translateY(0);
}
button.secondary {
background: #f3f4f6 !important;
border: 2px solid #e5e7eb !important;
color: #4b5563 !important;
padding: 0.75rem 1.5rem !important;
border-radius: 12px !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
}
button.secondary:hover {
background: #e5e7eb !important;
border-color: #d1d5db !important;
}
/* Input Styles */
.input-container {
position: relative;
margin-bottom: 1rem;
}
textarea {
border: 2px solid #e5e7eb !important;
border-radius: 12px !important;
padding: 1rem !important;
transition: all 0.3s ease !important;
font-size: 1rem !important;
line-height: 1.5 !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
}
textarea:focus {
border-color: #6366f1 !important;
box-shadow: 0 4px 6px rgba(99, 102, 241, 0.1) !important;
}
/* Settings Panel */
.settings-block {
background: white !important;
border-radius: 15px !important;
padding: 1.5rem !important;
margin-top: 1rem !important;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05) !important;
transition: all 0.3s ease !important;
}
.settings-block:hover {
box-shadow: 0 6px 8px rgba(0, 0, 0, 0.08) !important;
}
/* Slider Styles */
.gr-slider {
height: 4px !important;
background: #e5e7eb !important;
border-radius: 2px !important;
}
.gr-slider .handle {
width: 16px !important;
height: 16px !important;
border: 2px solid #6366f1 !important;
background: white !important;
border-radius: 50% !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1) !important;
transition: all 0.2s ease !important;
}
.gr-slider .handle:hover {
transform: scale(1.1);
}
/* Loading Animation */
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.5; }
100% { opacity: 1; }
}
.loading {
animation: pulse 1.5s ease-in-out infinite;
}
"""
# Create the interface with custom theme
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
# Header
with gr.Row():
gr.HTML("""
<div style="text-align: center; margin-bottom: 2rem; padding: 2rem;">
<h1 style="font-size: 3rem; font-weight: 700; color: #4f46e5; margin-bottom: 0.5rem;">
✨ Xylaria Chat
</h1>
<p style="color: #6b7280; font-size: 1.2rem; font-weight: 500;">
Your Intelligent Multilingual Assistant
</p>
</div>
""")
# Main chat interface
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
height=500,
show_label=False,
container=True,
elem_classes=["chat-window"],
type='messages'
)
image_output = gr.Image(
type="pil",
label="Generated Image",
visible=False,
elem_classes=["generated-image"]
)
with gr.Row():
with gr.Column(scale=8):
txt = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
container=False,
elem_classes=["input-textbox"]
)
with gr.Column(scale=1):
send_btn = gr.Button(
"Send",
variant="primary",
elem_classes=["primary"]
)
with gr.Column(scale=1):
clear_btn = gr.Button(
"Clear",
variant="secondary",
elem_classes=["secondary"]
)
# Settings panel
with gr.Accordion(
"⚙️ Advanced Settings",
open=False,
elem_classes=["settings-accordion"]
):
with gr.Row():
with gr.Column():
system_msg = gr.Textbox(
value="You are a friendly Chatbot who always responds in English unless the user specifically uses another language.",
label="System Message",
lines=2
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max Tokens"
)
with gr.Column():
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
)
# Rest of your existing functions (user_message, bot_response, etc.)
# ... (keep the same function implementations)
# Update the event handlers to use the new classes
send_event = txt.submit(
user_message,
[txt, chatbot],
[txt, chatbot],
queue=False
).then(
bot_response,
[chatbot, system_msg, max_tokens, temperature, top_p],
[chatbot, image_output]
)
send_btn.click(
user_message,
[txt, chatbot],
[txt, chatbot],
queue=False
).then(
bot_response,
[chatbot, system_msg, max_tokens, temperature, top_p],
[chatbot, image_output]
)
clear_btn.click(
lambda: (None, None),
None,
[chatbot, image_output],
queue=False
)
# Update image visibility
send_event.then(
lambda img: gr.update(visible=img is not None),
image_output,
image_output
)
return demo
# Create and launch the interface
demo = create_chat_interface()
if __name__ == "__main__":
demo.launch(share=True)
|