Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,13 @@ def detect_language_script(text: str) -> tuple[str, str]:
|
|
15 |
Returns (language_code, script_type)
|
16 |
"""
|
17 |
try:
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
script = None
|
20 |
try:
|
21 |
script = detect_script(text)
|
@@ -28,9 +34,9 @@ def detect_language_script(text: str) -> tuple[str, str]:
|
|
28 |
def is_romanized_indic(text: str) -> bool:
|
29 |
"""
|
30 |
Check if text appears to be romanized Indic language.
|
31 |
-
|
32 |
"""
|
33 |
-
# Common Bengali romanized patterns
|
34 |
bengali_patterns = [
|
35 |
r'\b(ami|tumi|apni)\b', # Common pronouns
|
36 |
r'\b(ache|achen|thako|thaken)\b', # Common verbs
|
@@ -38,71 +44,38 @@ def is_romanized_indic(text: str) -> bool:
|
|
38 |
r'\b(ki|kothay|keno)\b' # Common question words
|
39 |
]
|
40 |
|
|
|
41 |
text_lower = text.lower()
|
42 |
-
|
43 |
-
|
44 |
-
def romanized_to_bengali(text: str) -> str:
|
45 |
-
"""
|
46 |
-
Convert romanized Bengali text to Bengali script.
|
47 |
-
"""
|
48 |
-
# Define common Bengali word mappings
|
49 |
-
bengali_mappings = {
|
50 |
-
'ami': 'আমি',
|
51 |
-
'tumi': 'তুমি',
|
52 |
-
'apni': 'আপনি',
|
53 |
-
'kemon': 'কেমন',
|
54 |
-
'achen': 'আছেন',
|
55 |
-
'acchen': 'আছেন',
|
56 |
-
'bhalo': 'ভালো',
|
57 |
-
'achi': 'আছি',
|
58 |
-
'ki': 'কি',
|
59 |
-
'tumi': 'তুমি',
|
60 |
-
'kothay': 'কোথায়',
|
61 |
-
'keno': 'কেন',
|
62 |
-
# Add more mappings as needed
|
63 |
-
}
|
64 |
-
|
65 |
-
# Convert to lowercase for matching
|
66 |
-
text_lower = text.lower()
|
67 |
-
|
68 |
-
# Replace words based on mappings
|
69 |
-
for roman, bengali in bengali_mappings.items():
|
70 |
-
text_lower = re.sub(r'\b' + roman + r'\b', bengali, text_lower)
|
71 |
-
|
72 |
-
# If no direct mapping found, try using transliteration
|
73 |
-
if text_lower == text.lower():
|
74 |
-
try:
|
75 |
-
return transliterate(text, sanscript.ITRANS, sanscript.BENGALI)
|
76 |
-
except:
|
77 |
-
return text
|
78 |
-
|
79 |
-
return text_lower
|
80 |
|
81 |
def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]:
|
82 |
"""
|
83 |
-
Translate text to target language,
|
84 |
-
Returns (translated_text, original_lang, is_transliterated)
|
85 |
"""
|
|
|
|
|
|
|
|
|
86 |
original_lang, script = detect_language_script(text)
|
87 |
is_transliterated = False
|
88 |
|
89 |
-
#
|
90 |
-
if original_lang
|
91 |
-
text = romanized_to_bengali(text)
|
92 |
-
original_lang = 'bn'
|
93 |
-
is_transliterated = True
|
94 |
-
|
95 |
-
# Only translate if not already in target language
|
96 |
-
if original_lang != target_lang:
|
97 |
try:
|
98 |
translator = GoogleTranslator(source='auto', target=target_lang)
|
99 |
translated = translator.translate(text)
|
100 |
return translated, original_lang, is_transliterated
|
101 |
except Exception as e:
|
102 |
print(f"Translation error: {e}")
|
103 |
-
return text,
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
def check_custom_responses(message: str) -> str:
|
108 |
"""Check for specific patterns and return custom responses."""
|
@@ -124,19 +97,33 @@ def check_custom_responses(message: str) -> str:
|
|
124 |
return response
|
125 |
return None
|
126 |
|
127 |
-
def
|
128 |
-
"""
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
try:
|
133 |
-
|
134 |
-
|
135 |
-
return translated
|
136 |
-
except Exception as e:
|
137 |
-
print(f"Translation error: {e}")
|
138 |
return text
|
139 |
-
|
|
|
140 |
|
141 |
def respond(
|
142 |
message,
|
@@ -152,16 +139,19 @@ def respond(
|
|
152 |
yield custom_response
|
153 |
return
|
154 |
|
155 |
-
# Handle translation
|
156 |
translated_msg, original_lang, was_transliterated = translate_text(message)
|
157 |
|
158 |
-
# Prepare conversation history
|
159 |
messages = [{"role": "system", "content": system_message}]
|
160 |
for val in history:
|
161 |
if val[0]:
|
162 |
-
#
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
165 |
if val[1]:
|
166 |
messages.append({"role": "assistant", "content": val[1]})
|
167 |
|
@@ -179,10 +169,14 @@ def respond(
|
|
179 |
token = message.choices[0].delta.content
|
180 |
response += token
|
181 |
|
182 |
-
#
|
183 |
-
if original_lang != 'en':
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
186 |
else:
|
187 |
yield response
|
188 |
|
@@ -190,7 +184,7 @@ demo = gr.ChatInterface(
|
|
190 |
respond,
|
191 |
additional_inputs=[
|
192 |
gr.Textbox(
|
193 |
-
value="You are a friendly Chatbot.",
|
194 |
label="System message"
|
195 |
),
|
196 |
gr.Slider(
|
|
|
15 |
Returns (language_code, script_type)
|
16 |
"""
|
17 |
try:
|
18 |
+
# Use confidence threshold to avoid false detections
|
19 |
+
lang_detect = langdetect.detect_langs(text)
|
20 |
+
if lang_detect[0].prob > 0.8: # Only accept high confidence detections
|
21 |
+
lang = lang_detect[0].lang
|
22 |
+
else:
|
23 |
+
lang = 'en' # Default to English if unsure
|
24 |
+
|
25 |
script = None
|
26 |
try:
|
27 |
script = detect_script(text)
|
|
|
34 |
def is_romanized_indic(text: str) -> bool:
|
35 |
"""
|
36 |
Check if text appears to be romanized Indic language.
|
37 |
+
More strict pattern matching.
|
38 |
"""
|
39 |
+
# Common Bengali romanized patterns with word boundaries
|
40 |
bengali_patterns = [
|
41 |
r'\b(ami|tumi|apni)\b', # Common pronouns
|
42 |
r'\b(ache|achen|thako|thaken)\b', # Common verbs
|
|
|
44 |
r'\b(ki|kothay|keno)\b' # Common question words
|
45 |
]
|
46 |
|
47 |
+
# Require multiple matches to confirm it's actually Bengali
|
48 |
text_lower = text.lower()
|
49 |
+
matches = sum(1 for pattern in bengali_patterns if re.search(pattern, text_lower))
|
50 |
+
return matches >= 2 # Require at least 2 matches to consider it Bengali
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]:
|
53 |
"""
|
54 |
+
Translate text to target language, with more conservative translation logic.
|
|
|
55 |
"""
|
56 |
+
# Skip translation for very short inputs or basic greetings
|
57 |
+
if len(text.split()) <= 2 or text.lower() in ['hello', 'hi', 'hey']:
|
58 |
+
return text, 'en', False
|
59 |
+
|
60 |
original_lang, script = detect_language_script(text)
|
61 |
is_transliterated = False
|
62 |
|
63 |
+
# Only process if confident it's non-English
|
64 |
+
if original_lang != 'en' and len(text.split()) > 2:
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
try:
|
66 |
translator = GoogleTranslator(source='auto', target=target_lang)
|
67 |
translated = translator.translate(text)
|
68 |
return translated, original_lang, is_transliterated
|
69 |
except Exception as e:
|
70 |
print(f"Translation error: {e}")
|
71 |
+
return text, 'en', False
|
72 |
|
73 |
+
# Check for romanized Indic text only if it's a longer input
|
74 |
+
if original_lang == 'en' and len(text.split()) > 2 and is_romanized_indic(text):
|
75 |
+
text = romanized_to_bengali(text)
|
76 |
+
return translate_text(text, target_lang) # Recursive call with Bengali script
|
77 |
+
|
78 |
+
return text, 'en', False
|
79 |
|
80 |
def check_custom_responses(message: str) -> str:
|
81 |
"""Check for specific patterns and return custom responses."""
|
|
|
97 |
return response
|
98 |
return None
|
99 |
|
100 |
+
def romanized_to_bengali(text: str) -> str:
|
101 |
+
"""Convert romanized Bengali text to Bengali script."""
|
102 |
+
bengali_mappings = {
|
103 |
+
'ami': 'আমি',
|
104 |
+
'tumi': 'তুমি',
|
105 |
+
'apni': 'আপনি',
|
106 |
+
'kemon': 'কেমন',
|
107 |
+
'achen': 'আছেন',
|
108 |
+
'acchen': 'আছেন',
|
109 |
+
'bhalo': 'ভালো',
|
110 |
+
'achi': 'আছি',
|
111 |
+
'ki': 'কি',
|
112 |
+
'kothay': 'কোথায়',
|
113 |
+
'keno': 'কেন',
|
114 |
+
}
|
115 |
+
|
116 |
+
text_lower = text.lower()
|
117 |
+
for roman, bengali in bengali_mappings.items():
|
118 |
+
text_lower = re.sub(r'\b' + roman + r'\b', bengali, text_lower)
|
119 |
+
|
120 |
+
if text_lower == text.lower():
|
121 |
try:
|
122 |
+
return transliterate(text, sanscript.ITRANS, sanscript.BENGALI)
|
123 |
+
except:
|
|
|
|
|
|
|
124 |
return text
|
125 |
+
|
126 |
+
return text_lower
|
127 |
|
128 |
def respond(
|
129 |
message,
|
|
|
139 |
yield custom_response
|
140 |
return
|
141 |
|
142 |
+
# Handle translation with more conservative approach
|
143 |
translated_msg, original_lang, was_transliterated = translate_text(message)
|
144 |
|
145 |
+
# Prepare conversation history - only translate if necessary
|
146 |
messages = [{"role": "system", "content": system_message}]
|
147 |
for val in history:
|
148 |
if val[0]:
|
149 |
+
# Only translate longer messages
|
150 |
+
if len(val[0].split()) > 2:
|
151 |
+
trans_user_msg, _, _ = translate_text(val[0])
|
152 |
+
messages.append({"role": "user", "content": trans_user_msg})
|
153 |
+
else:
|
154 |
+
messages.append({"role": "user", "content": val[0]})
|
155 |
if val[1]:
|
156 |
messages.append({"role": "assistant", "content": val[1]})
|
157 |
|
|
|
169 |
token = message.choices[0].delta.content
|
170 |
response += token
|
171 |
|
172 |
+
# Only translate back if the original was definitely non-English
|
173 |
+
if original_lang != 'en' and len(message.split()) > 2:
|
174 |
+
try:
|
175 |
+
translator = GoogleTranslator(source='en', target=original_lang)
|
176 |
+
translated_response = translator.translate(response)
|
177 |
+
yield translated_response
|
178 |
+
except:
|
179 |
+
yield response
|
180 |
else:
|
181 |
yield response
|
182 |
|
|
|
184 |
respond,
|
185 |
additional_inputs=[
|
186 |
gr.Textbox(
|
187 |
+
value="You are a friendly Chatbot who always responds in English unless the user specifically uses another language.",
|
188 |
label="System message"
|
189 |
),
|
190 |
gr.Slider(
|