Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,21 +7,22 @@ from indic_transliteration.sanscript import transliterate
|
|
7 |
import langdetect
|
8 |
import re
|
9 |
|
10 |
-
|
|
|
|
|
11 |
|
12 |
def detect_language_script(text: str) -> tuple[str, str]:
|
13 |
-
"""
|
14 |
-
|
15 |
-
Returns (language_code, script_type)
|
16 |
-
"""
|
17 |
try:
|
18 |
# Use confidence threshold to avoid false detections
|
19 |
lang_detect = langdetect.detect_langs(text)
|
20 |
-
if lang_detect[0].prob > 0.8:
|
|
|
21 |
lang = lang_detect[0].lang
|
22 |
else:
|
23 |
lang = 'en' # Default to English if unsure
|
24 |
-
|
25 |
script = None
|
26 |
try:
|
27 |
script = detect_script(text)
|
@@ -32,10 +33,8 @@ def detect_language_script(text: str) -> tuple[str, str]:
|
|
32 |
return 'en', None
|
33 |
|
34 |
def is_romanized_indic(text: str) -> bool:
|
35 |
-
"""
|
36 |
-
|
37 |
-
More strict pattern matching.
|
38 |
-
"""
|
39 |
# Common Bengali romanized patterns with word boundaries
|
40 |
bengali_patterns = [
|
41 |
r'\b(ami|tumi|apni)\b', # Common pronouns
|
@@ -50,13 +49,11 @@ def is_romanized_indic(text: str) -> bool:
|
|
50 |
return matches >= 2 # Require at least 2 matches to consider it Bengali
|
51 |
|
52 |
def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]:
|
53 |
-
"""
|
54 |
-
Translate text to target language, with more conservative translation logic.
|
55 |
-
"""
|
56 |
# Skip translation for very short inputs or basic greetings
|
57 |
if len(text.split()) <= 2 or text.lower() in ['hello', 'hi', 'hey']:
|
58 |
return text, 'en', False
|
59 |
-
|
60 |
original_lang, script = detect_language_script(text)
|
61 |
is_transliterated = False
|
62 |
|
@@ -69,12 +66,12 @@ def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]:
|
|
69 |
except Exception as e:
|
70 |
print(f"Translation error: {e}")
|
71 |
return text, 'en', False
|
72 |
-
|
73 |
# Check for romanized Indic text only if it's a longer input
|
74 |
if original_lang == 'en' and len(text.split()) > 2 and is_romanized_indic(text):
|
75 |
text = romanized_to_bengali(text)
|
76 |
return translate_text(text, target_lang) # Recursive call with Bengali script
|
77 |
-
|
78 |
return text, 'en', False
|
79 |
|
80 |
def check_custom_responses(message: str) -> str:
|
@@ -91,12 +88,47 @@ def check_custom_responses(message: str) -> str:
|
|
91 |
"who is ur dev": "sk md saad amin",
|
92 |
"who is ur developer": "sk md saad amin",
|
93 |
}
|
94 |
-
|
95 |
for pattern, response in custom_responses.items():
|
96 |
if pattern in message_lower:
|
97 |
return response
|
98 |
return None
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
def romanized_to_bengali(text: str) -> str:
|
101 |
"""Convert romanized Bengali text to Bengali script."""
|
102 |
bengali_mappings = {
|
@@ -126,11 +158,11 @@ def romanized_to_bengali(text: str) -> str:
|
|
126 |
return text_lower
|
127 |
|
128 |
def respond(
|
129 |
-
message,
|
130 |
-
history: list[tuple[str, str]],
|
131 |
-
system_message,
|
132 |
-
max_tokens,
|
133 |
-
temperature,
|
134 |
top_p,
|
135 |
):
|
136 |
# First check for custom responses
|
@@ -139,9 +171,25 @@ def respond(
|
|
139 |
yield custom_response
|
140 |
return
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
# Handle translation with more conservative approach
|
143 |
translated_msg, original_lang, was_transliterated = translate_text(message)
|
144 |
-
|
145 |
# Prepare conversation history - only translate if necessary
|
146 |
messages = [{"role": "system", "content": system_message}]
|
147 |
for val in history:
|
@@ -156,10 +204,10 @@ def respond(
|
|
156 |
messages.append({"role": "assistant", "content": val[1]})
|
157 |
|
158 |
messages.append({"role": "user", "content": translated_msg})
|
159 |
-
|
160 |
# Get response from model
|
161 |
response = ""
|
162 |
-
for message in
|
163 |
messages,
|
164 |
max_tokens=max_tokens,
|
165 |
stream=True,
|
@@ -168,18 +216,19 @@ def respond(
|
|
168 |
):
|
169 |
token = message.choices[0].delta.content
|
170 |
response += token
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
yield response
|
180 |
-
else:
|
181 |
yield response
|
|
|
|
|
182 |
|
|
|
183 |
demo = gr.ChatInterface(
|
184 |
respond,
|
185 |
additional_inputs=[
|
|
|
7 |
import langdetect
|
8 |
import re
|
9 |
|
10 |
+
# Initialize clients
|
11 |
+
text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
12 |
+
image_client = InferenceClient("ijohn07/DALLE-4K")
|
13 |
|
14 |
def detect_language_script(text: str) -> tuple[str, str]:
|
15 |
+
"""Detect language and script of the input text.
|
16 |
+
Returns (language_code, script_type)"""
|
|
|
|
|
17 |
try:
|
18 |
# Use confidence threshold to avoid false detections
|
19 |
lang_detect = langdetect.detect_langs(text)
|
20 |
+
if lang_detect[0].prob > 0.8:
|
21 |
+
# Only accept high confidence detections
|
22 |
lang = lang_detect[0].lang
|
23 |
else:
|
24 |
lang = 'en' # Default to English if unsure
|
25 |
+
|
26 |
script = None
|
27 |
try:
|
28 |
script = detect_script(text)
|
|
|
33 |
return 'en', None
|
34 |
|
35 |
def is_romanized_indic(text: str) -> bool:
|
36 |
+
"""Check if text appears to be romanized Indic language.
|
37 |
+
More strict pattern matching."""
|
|
|
|
|
38 |
# Common Bengali romanized patterns with word boundaries
|
39 |
bengali_patterns = [
|
40 |
r'\b(ami|tumi|apni)\b', # Common pronouns
|
|
|
49 |
return matches >= 2 # Require at least 2 matches to consider it Bengali
|
50 |
|
51 |
def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]:
|
52 |
+
"""Translate text to target language, with more conservative translation logic."""
|
|
|
|
|
53 |
# Skip translation for very short inputs or basic greetings
|
54 |
if len(text.split()) <= 2 or text.lower() in ['hello', 'hi', 'hey']:
|
55 |
return text, 'en', False
|
56 |
+
|
57 |
original_lang, script = detect_language_script(text)
|
58 |
is_transliterated = False
|
59 |
|
|
|
66 |
except Exception as e:
|
67 |
print(f"Translation error: {e}")
|
68 |
return text, 'en', False
|
69 |
+
|
70 |
# Check for romanized Indic text only if it's a longer input
|
71 |
if original_lang == 'en' and len(text.split()) > 2 and is_romanized_indic(text):
|
72 |
text = romanized_to_bengali(text)
|
73 |
return translate_text(text, target_lang) # Recursive call with Bengali script
|
74 |
+
|
75 |
return text, 'en', False
|
76 |
|
77 |
def check_custom_responses(message: str) -> str:
|
|
|
88 |
"who is ur dev": "sk md saad amin",
|
89 |
"who is ur developer": "sk md saad amin",
|
90 |
}
|
|
|
91 |
for pattern, response in custom_responses.items():
|
92 |
if pattern in message_lower:
|
93 |
return response
|
94 |
return None
|
95 |
|
96 |
+
def is_image_request(message: str) -> bool:
|
97 |
+
"""Detect if the message is requesting image generation."""
|
98 |
+
image_triggers = [
|
99 |
+
"generate an image",
|
100 |
+
"create an image",
|
101 |
+
"draw",
|
102 |
+
"make a picture",
|
103 |
+
"generate a picture",
|
104 |
+
"create a picture",
|
105 |
+
"generate art",
|
106 |
+
"create art",
|
107 |
+
"make art",
|
108 |
+
"visualize",
|
109 |
+
"show me",
|
110 |
+
]
|
111 |
+
message_lower = message.lower()
|
112 |
+
return any(trigger in message_lower for trigger in image_triggers)
|
113 |
+
|
114 |
+
def generate_image(prompt: str) -> str:
|
115 |
+
"""Generate an image using DALLE-4K model."""
|
116 |
+
try:
|
117 |
+
response = image_client.text_to_image(
|
118 |
+
prompt,
|
119 |
+
parameters={
|
120 |
+
"negative_prompt": "blurry, bad quality, nsfw",
|
121 |
+
"num_inference_steps": 30,
|
122 |
+
"guidance_scale": 7.5
|
123 |
+
}
|
124 |
+
)
|
125 |
+
# Save the image and return the path or base64 string
|
126 |
+
# Note: Implementation depends on how you want to handle the image output
|
127 |
+
return response
|
128 |
+
except Exception as e:
|
129 |
+
print(f"Image generation error: {e}")
|
130 |
+
return None
|
131 |
+
|
132 |
def romanized_to_bengali(text: str) -> str:
|
133 |
"""Convert romanized Bengali text to Bengali script."""
|
134 |
bengali_mappings = {
|
|
|
158 |
return text_lower
|
159 |
|
160 |
def respond(
|
161 |
+
message,
|
162 |
+
history: list[tuple[str, str]],
|
163 |
+
system_message,
|
164 |
+
max_tokens,
|
165 |
+
temperature,
|
166 |
top_p,
|
167 |
):
|
168 |
# First check for custom responses
|
|
|
171 |
yield custom_response
|
172 |
return
|
173 |
|
174 |
+
# Check if this is an image generation request
|
175 |
+
if is_image_request(message):
|
176 |
+
try:
|
177 |
+
image = generate_image(message)
|
178 |
+
if image:
|
179 |
+
yield f"Here's your generated image based on: {message}"
|
180 |
+
# You'll need to implement the actual image display logic
|
181 |
+
# depending on your Gradio interface requirements
|
182 |
+
return
|
183 |
+
else:
|
184 |
+
yield "Sorry, I couldn't generate the image. Please try again."
|
185 |
+
return
|
186 |
+
except Exception as e:
|
187 |
+
yield f"An error occurred while generating the image: {str(e)}"
|
188 |
+
return
|
189 |
+
|
190 |
# Handle translation with more conservative approach
|
191 |
translated_msg, original_lang, was_transliterated = translate_text(message)
|
192 |
+
|
193 |
# Prepare conversation history - only translate if necessary
|
194 |
messages = [{"role": "system", "content": system_message}]
|
195 |
for val in history:
|
|
|
204 |
messages.append({"role": "assistant", "content": val[1]})
|
205 |
|
206 |
messages.append({"role": "user", "content": translated_msg})
|
207 |
+
|
208 |
# Get response from model
|
209 |
response = ""
|
210 |
+
for message in text_client.chat_completion(
|
211 |
messages,
|
212 |
max_tokens=max_tokens,
|
213 |
stream=True,
|
|
|
216 |
):
|
217 |
token = message.choices[0].delta.content
|
218 |
response += token
|
219 |
+
|
220 |
+
# Only translate back if the original was definitely non-English
|
221 |
+
if original_lang != 'en' and len(message.split()) > 2:
|
222 |
+
try:
|
223 |
+
translator = GoogleTranslator(source='en', target=original_lang)
|
224 |
+
translated_response = translator.translate(response)
|
225 |
+
yield translated_response
|
226 |
+
except:
|
|
|
|
|
227 |
yield response
|
228 |
+
else:
|
229 |
+
yield response
|
230 |
|
231 |
+
# Updated Gradio interface to handle images
|
232 |
demo = gr.ChatInterface(
|
233 |
respond,
|
234 |
additional_inputs=[
|