Reality123b commited on
Commit
45b720d
·
verified ·
1 Parent(s): 5ac6df3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -22
app.py CHANGED
@@ -6,10 +6,15 @@ from indic_transliteration.detect import detect as detect_script
6
  from indic_transliteration.sanscript import transliterate
7
  import langdetect
8
  import re
 
 
 
 
 
9
 
10
  # Initialize clients
11
  text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
12
- image_client = InferenceClient("ijohn07/DALLE-4K")
13
 
14
  def detect_language_script(text: str) -> tuple[str, str]:
15
  """Detect language and script of the input text.
@@ -111,20 +116,56 @@ def is_image_request(message: str) -> bool:
111
  message_lower = message.lower()
112
  return any(trigger in message_lower for trigger in image_triggers)
113
 
114
- def generate_image(prompt: str) -> str:
115
- """Generate an image using DALLE-4K model."""
116
  try:
117
- response = image_client.text_to_image(
118
- prompt,
119
- parameters={
120
- "negative_prompt": "blurry, bad quality, nsfw",
121
- "num_inference_steps": 30,
122
- "guidance_scale": 7.5
123
- }
124
- )
125
- # Save the image and return the path or base64 string
126
- # Note: Implementation depends on how you want to handle the image output
127
- return response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  except Exception as e:
129
  print(f"Image generation error: {e}")
130
  return None
@@ -174,11 +215,9 @@ def respond(
174
  # Check if this is an image generation request
175
  if is_image_request(message):
176
  try:
177
- image = generate_image(message)
178
  if image:
179
- yield f"Here's your generated image based on: {message}"
180
- # You'll need to implement the actual image display logic
181
- # depending on your Gradio interface requirements
182
  return
183
  else:
184
  yield "Sorry, I couldn't generate the image. Please try again."
@@ -258,7 +297,4 @@ demo = gr.ChatInterface(
258
  label="Top-p (nucleus sampling)"
259
  ),
260
  ]
261
- )
262
-
263
- if __name__ == "__main__":
264
- demo.launch(share=True)
 
6
  from indic_transliteration.sanscript import transliterate
7
  import langdetect
8
  import re
9
+ import requests
10
+ import json
11
+ import base64
12
+ from PIL import Image
13
+ import io
14
 
15
  # Initialize clients
16
  text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
17
+ SPACE_URL = "https://ijohn07-dalle-4k.hf.space"
18
 
19
  def detect_language_script(text: str) -> tuple[str, str]:
20
  """Detect language and script of the input text.
 
116
  message_lower = message.lower()
117
  return any(trigger in message_lower for trigger in image_triggers)
118
 
119
+ def generate_image_space(prompt: str) -> Image.Image:
120
+ """Generate an image using the DALLE-4K Space."""
121
  try:
122
+ # First get the session hash
123
+ response = requests.post(f"{SPACE_URL}/queue/join")
124
+ session_hash = response.json().get('session_hash')
125
+
126
+ # Send the generation request
127
+ payload = {
128
+ "prompt": prompt,
129
+ "negative_prompt": "blurry, bad quality, nsfw",
130
+ "num_inference_steps": 30,
131
+ "guidance_scale": 7.5,
132
+ "session_hash": session_hash
133
+ }
134
+
135
+ response = requests.post(f"{SPACE_URL}/run/predict", json={
136
+ "data": [
137
+ prompt, # Prompt
138
+ "", # Negative prompt
139
+ 7.5, # Guidance scale
140
+ 30, # Steps
141
+ "DPM++ SDE Karras", # Scheduler
142
+ False, # High resolution
143
+ False, # Image to image
144
+ None, # Image upload
145
+ 1 # Batch size
146
+ ],
147
+ "session_hash": session_hash
148
+ })
149
+
150
+ # Poll for results
151
+ while True:
152
+ status_response = requests.post(f"{SPACE_URL}/queue/status", json={
153
+ "session_hash": session_hash
154
+ })
155
+ status_data = status_response.json()
156
+
157
+ if status_data.get('status') == 'complete':
158
+ # Get the image data
159
+ image_data = status_data['data']['image']
160
+ # Convert base64 to PIL Image
161
+ image_bytes = base64.b64decode(image_data.split(',')[1])
162
+ image = Image.open(io.BytesIO(image_bytes))
163
+ return image
164
+ elif status_data.get('status') == 'error':
165
+ raise Exception(f"Image generation failed: {status_data.get('error')}")
166
+
167
+ time.sleep(1) # Wait before polling again
168
+
169
  except Exception as e:
170
  print(f"Image generation error: {e}")
171
  return None
 
215
  # Check if this is an image generation request
216
  if is_image_request(message):
217
  try:
218
+ image = generate_image_space(message)
219
  if image:
220
+ yield (image, f"Here's your generated image based on: {message}")
 
 
221
  return
222
  else:
223
  yield "Sorry, I couldn't generate the image. Please try again."
 
297
  label="Top-p (nucleus sampling)"
298
  ),
299
  ]
300
+ )