Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,10 +6,15 @@ from indic_transliteration.detect import detect as detect_script
|
|
| 6 |
from indic_transliteration.sanscript import transliterate
|
| 7 |
import langdetect
|
| 8 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Initialize clients
|
| 11 |
text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 12 |
-
|
| 13 |
|
| 14 |
def detect_language_script(text: str) -> tuple[str, str]:
|
| 15 |
"""Detect language and script of the input text.
|
|
@@ -111,20 +116,56 @@ def is_image_request(message: str) -> bool:
|
|
| 111 |
message_lower = message.lower()
|
| 112 |
return any(trigger in message_lower for trigger in image_triggers)
|
| 113 |
|
| 114 |
-
def
|
| 115 |
-
"""Generate an image using DALLE-4K
|
| 116 |
try:
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
except Exception as e:
|
| 129 |
print(f"Image generation error: {e}")
|
| 130 |
return None
|
|
@@ -174,11 +215,9 @@ def respond(
|
|
| 174 |
# Check if this is an image generation request
|
| 175 |
if is_image_request(message):
|
| 176 |
try:
|
| 177 |
-
image =
|
| 178 |
if image:
|
| 179 |
-
yield f"Here's your generated image based on: {message}"
|
| 180 |
-
# You'll need to implement the actual image display logic
|
| 181 |
-
# depending on your Gradio interface requirements
|
| 182 |
return
|
| 183 |
else:
|
| 184 |
yield "Sorry, I couldn't generate the image. Please try again."
|
|
@@ -258,7 +297,4 @@ demo = gr.ChatInterface(
|
|
| 258 |
label="Top-p (nucleus sampling)"
|
| 259 |
),
|
| 260 |
]
|
| 261 |
-
)
|
| 262 |
-
|
| 263 |
-
if __name__ == "__main__":
|
| 264 |
-
demo.launch(share=True)
|
|
|
|
| 6 |
from indic_transliteration.sanscript import transliterate
|
| 7 |
import langdetect
|
| 8 |
import re
|
| 9 |
+
import requests
|
| 10 |
+
import json
|
| 11 |
+
import base64
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import io
|
| 14 |
|
| 15 |
# Initialize clients
|
| 16 |
text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 17 |
+
SPACE_URL = "https://ijohn07-dalle-4k.hf.space"
|
| 18 |
|
| 19 |
def detect_language_script(text: str) -> tuple[str, str]:
|
| 20 |
"""Detect language and script of the input text.
|
|
|
|
| 116 |
message_lower = message.lower()
|
| 117 |
return any(trigger in message_lower for trigger in image_triggers)
|
| 118 |
|
| 119 |
+
def generate_image_space(prompt: str) -> Image.Image:
|
| 120 |
+
"""Generate an image using the DALLE-4K Space."""
|
| 121 |
try:
|
| 122 |
+
# First get the session hash
|
| 123 |
+
response = requests.post(f"{SPACE_URL}/queue/join")
|
| 124 |
+
session_hash = response.json().get('session_hash')
|
| 125 |
+
|
| 126 |
+
# Send the generation request
|
| 127 |
+
payload = {
|
| 128 |
+
"prompt": prompt,
|
| 129 |
+
"negative_prompt": "blurry, bad quality, nsfw",
|
| 130 |
+
"num_inference_steps": 30,
|
| 131 |
+
"guidance_scale": 7.5,
|
| 132 |
+
"session_hash": session_hash
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
response = requests.post(f"{SPACE_URL}/run/predict", json={
|
| 136 |
+
"data": [
|
| 137 |
+
prompt, # Prompt
|
| 138 |
+
"", # Negative prompt
|
| 139 |
+
7.5, # Guidance scale
|
| 140 |
+
30, # Steps
|
| 141 |
+
"DPM++ SDE Karras", # Scheduler
|
| 142 |
+
False, # High resolution
|
| 143 |
+
False, # Image to image
|
| 144 |
+
None, # Image upload
|
| 145 |
+
1 # Batch size
|
| 146 |
+
],
|
| 147 |
+
"session_hash": session_hash
|
| 148 |
+
})
|
| 149 |
+
|
| 150 |
+
# Poll for results
|
| 151 |
+
while True:
|
| 152 |
+
status_response = requests.post(f"{SPACE_URL}/queue/status", json={
|
| 153 |
+
"session_hash": session_hash
|
| 154 |
+
})
|
| 155 |
+
status_data = status_response.json()
|
| 156 |
+
|
| 157 |
+
if status_data.get('status') == 'complete':
|
| 158 |
+
# Get the image data
|
| 159 |
+
image_data = status_data['data']['image']
|
| 160 |
+
# Convert base64 to PIL Image
|
| 161 |
+
image_bytes = base64.b64decode(image_data.split(',')[1])
|
| 162 |
+
image = Image.open(io.BytesIO(image_bytes))
|
| 163 |
+
return image
|
| 164 |
+
elif status_data.get('status') == 'error':
|
| 165 |
+
raise Exception(f"Image generation failed: {status_data.get('error')}")
|
| 166 |
+
|
| 167 |
+
time.sleep(1) # Wait before polling again
|
| 168 |
+
|
| 169 |
except Exception as e:
|
| 170 |
print(f"Image generation error: {e}")
|
| 171 |
return None
|
|
|
|
| 215 |
# Check if this is an image generation request
|
| 216 |
if is_image_request(message):
|
| 217 |
try:
|
| 218 |
+
image = generate_image_space(message)
|
| 219 |
if image:
|
| 220 |
+
yield (image, f"Here's your generated image based on: {message}")
|
|
|
|
|
|
|
| 221 |
return
|
| 222 |
else:
|
| 223 |
yield "Sorry, I couldn't generate the image. Please try again."
|
|
|
|
| 297 |
label="Top-p (nucleus sampling)"
|
| 298 |
),
|
| 299 |
]
|
| 300 |
+
)
|
|
|
|
|
|
|
|
|