Reality123b commited on
Commit
283f6a1
·
verified ·
1 Parent(s): 9d0ab74

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +125 -82
app.py CHANGED
@@ -6,84 +6,128 @@ from indic_transliteration.detect import detect as detect_script
6
  from indic_transliteration.sanscript import transliterate
7
  import langdetect
8
  import re
9
- import requests
10
- import json
11
- import base64
12
- from PIL import Image
13
- import io
14
- import time
15
 
16
  # Initialize clients
17
  text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
18
- SPACE_URL = "https://ijohn07-dalle-4k.hf.space"
19
 
20
- # Add image style options
21
- IMAGE_STYLES = {
22
- "3840 x 2160": "3840 x 2160",
23
- "2560 x 1440": "2560 x 1440",
24
- "Photo": "Photo",
25
- "Cinematic": "Cinematic",
26
- "Anime": "Anime",
27
- "3D Model": "3D Model",
28
- "No style": "(No style)"
29
- }
30
-
31
- def generate_image_space(prompt: str, style: str) -> Image.Image:
32
- """Generate an image using the DALLE-4K Space with specified style."""
33
  try:
34
- # First get the session hash
35
- response = requests.post(f"{SPACE_URL}/queue/join")
36
- session_hash = response.json().get('session_hash')
37
-
38
- # Modify prompt based on style
39
- if style != "(No style)":
40
- # Format the prompt according to the style
41
- if style in ["3840 x 2160", "2560 x 1440"]:
42
- # For resolution styles, add the resolution to the prompt
43
- prompt = f"{prompt}, {style} resolution"
44
- else:
45
- # For other styles, append the style to the prompt
46
- prompt = f"{prompt}, {style.lower()} style"
47
-
48
- # Send the generation request
49
- response = requests.post(f"{SPACE_URL}/run/predict", json={
50
- "data": [
51
- prompt, # Prompt with style
52
- "", # Negative prompt
53
- 7.5, # Guidance scale
54
- 30, # Steps
55
- "DPM++ SDE Karras", # Scheduler
56
- False, # High resolution
57
- False, # Image to image
58
- None, # Image upload
59
- 1 # Batch size
60
- ],
61
- "session_hash": session_hash
62
- })
63
 
64
- # Poll for results
65
- while True:
66
- status_response = requests.post(f"{SPACE_URL}/queue/status", json={
67
- "session_hash": session_hash
68
- })
69
- status_data = status_response.json()
70
-
71
- if status_data.get('status') == 'complete':
72
- # Get the image data
73
- image_data = status_data['data']['image']
74
- # Convert base64 to PIL Image
75
- image_bytes = base64.b64decode(image_data.split(',')[1])
76
- image = Image.open(io.BytesIO(image_bytes))
77
- return image
78
- elif status_data.get('status') == 'error':
79
- raise Exception(f"Image generation failed: {status_data.get('error')}")
80
-
81
- time.sleep(1) # Wait before polling again
82
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  except Exception as e:
84
  print(f"Image generation error: {e}")
85
  return None
86
-
87
  def romanized_to_bengali(text: str) -> str:
88
  """Convert romanized Bengali text to Bengali script."""
89
  bengali_mappings = {
@@ -119,7 +163,6 @@ def respond(
119
  max_tokens,
120
  temperature,
121
  top_p,
122
- image_style: str, # New parameter for image style
123
  ):
124
  # First check for custom responses
125
  custom_response = check_custom_responses(message)
@@ -130,10 +173,11 @@ def respond(
130
  # Check if this is an image generation request
131
  if is_image_request(message):
132
  try:
133
- image = generate_image_space(message, image_style)
134
  if image:
135
- style_info = f" using {image_style} style" if image_style != "(No style)" else ""
136
- yield (image, f"Here's your generated image based on: {message}{style_info}")
 
137
  return
138
  else:
139
  yield "Sorry, I couldn't generate the image. Please try again."
@@ -142,11 +186,14 @@ def respond(
142
  yield f"An error occurred while generating the image: {str(e)}"
143
  return
144
 
145
- # Rest of the code remains the same...
146
  translated_msg, original_lang, was_transliterated = translate_text(message)
 
 
147
  messages = [{"role": "system", "content": system_message}]
148
  for val in history:
149
  if val[0]:
 
150
  if len(val[0].split()) > 2:
151
  trans_user_msg, _, _ = translate_text(val[0])
152
  messages.append({"role": "user", "content": trans_user_msg})
@@ -157,6 +204,7 @@ def respond(
157
 
158
  messages.append({"role": "user", "content": translated_msg})
159
 
 
160
  response = ""
161
  for message in text_client.chat_completion(
162
  messages,
@@ -168,6 +216,7 @@ def respond(
168
  token = message.choices[0].delta.content
169
  response += token
170
 
 
171
  if original_lang != 'en' and len(message.split()) > 2:
172
  try:
173
  translator = GoogleTranslator(source='en', target=original_lang)
@@ -178,7 +227,7 @@ def respond(
178
  else:
179
  yield response
180
 
181
- # Updated Gradio interface with image style selector
182
  demo = gr.ChatInterface(
183
  respond,
184
  additional_inputs=[
@@ -189,7 +238,7 @@ demo = gr.ChatInterface(
189
  gr.Slider(
190
  minimum=1,
191
  maximum=2048,
192
- value=2048,
193
  step=1,
194
  label="Max new tokens"
195
  ),
@@ -207,12 +256,6 @@ demo = gr.ChatInterface(
207
  step=0.05,
208
  label="Top-p (nucleus sampling)"
209
  ),
210
- gr.Radio(
211
- choices=list(IMAGE_STYLES.values()),
212
- value="3840 x 2160",
213
- label="Image Style",
214
- info="Select the style for generated images"
215
- ),
216
  ]
217
  )
218
 
 
6
  from indic_transliteration.sanscript import transliterate
7
  import langdetect
8
  import re
 
 
 
 
 
 
9
 
10
  # Initialize clients
11
  text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
12
+ image_client = InferenceClient("ijohn07/DALLE-4K")
13
 
14
+ def detect_language_script(text: str) -> tuple[str, str]:
15
+ """Detect language and script of the input text.
16
+ Returns (language_code, script_type)"""
 
 
 
 
 
 
 
 
 
 
17
  try:
18
+ # Use confidence threshold to avoid false detections
19
+ lang_detect = langdetect.detect_langs(text)
20
+ if lang_detect[0].prob > 0.8:
21
+ # Only accept high confidence detections
22
+ lang = lang_detect[0].lang
23
+ else:
24
+ lang = 'en' # Default to English if unsure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ script = None
27
+ try:
28
+ script = detect_script(text)
29
+ except:
30
+ pass
31
+ return lang, script
32
+ except:
33
+ return 'en', None
34
+
35
+ def is_romanized_indic(text: str) -> bool:
36
+ """Check if text appears to be romanized Indic language.
37
+ More strict pattern matching."""
38
+ # Common Bengali romanized patterns with word boundaries
39
+ bengali_patterns = [
40
+ r'\b(ami|tumi|apni)\b', # Common pronouns
41
+ r'\b(ache|achen|thako|thaken)\b', # Common verbs
42
+ r'\b(kemon|bhalo|kharap)\b', # Common adjectives
43
+ r'\b(ki|kothay|keno)\b' # Common question words
44
+ ]
45
+
46
+ # Require multiple matches to confirm it's actually Bengali
47
+ text_lower = text.lower()
48
+ matches = sum(1 for pattern in bengali_patterns if re.search(pattern, text_lower))
49
+ return matches >= 2 # Require at least 2 matches to consider it Bengali
50
+
51
+ def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]:
52
+ """Translate text to target language, with more conservative translation logic."""
53
+ # Skip translation for very short inputs or basic greetings
54
+ if len(text.split()) <= 2 or text.lower() in ['hello', 'hi', 'hey']:
55
+ return text, 'en', False
56
+
57
+ original_lang, script = detect_language_script(text)
58
+ is_transliterated = False
59
+
60
+ # Only process if confident it's non-English
61
+ if original_lang != 'en' and len(text.split()) > 2:
62
+ try:
63
+ translator = GoogleTranslator(source='auto', target=target_lang)
64
+ translated = translator.translate(text)
65
+ return translated, original_lang, is_transliterated
66
+ except Exception as e:
67
+ print(f"Translation error: {e}")
68
+ return text, 'en', False
69
+
70
+ # Check for romanized Indic text only if it's a longer input
71
+ if original_lang == 'en' and len(text.split()) > 2 and is_romanized_indic(text):
72
+ text = romanized_to_bengali(text)
73
+ return translate_text(text, target_lang) # Recursive call with Bengali script
74
+
75
+ return text, 'en', False
76
+
77
+ def check_custom_responses(message: str) -> str:
78
+ """Check for specific patterns and return custom responses."""
79
+ message_lower = message.lower()
80
+ custom_responses = {
81
+ "what is ur name?": "xylaria",
82
+ "what is your name?": "xylaria",
83
+ "what's your name?": "xylaria",
84
+ "whats your name": "xylaria",
85
+ "how many 'r' is in strawberry?": "3",
86
+ "who is your developer?": "sk md saad amin",
87
+ "how many r is in strawberry": "3",
88
+ "who is ur dev": "sk md saad amin",
89
+ "who is ur developer": "sk md saad amin",
90
+ }
91
+ for pattern, response in custom_responses.items():
92
+ if pattern in message_lower:
93
+ return response
94
+ return None
95
+
96
+ def is_image_request(message: str) -> bool:
97
+ """Detect if the message is requesting image generation."""
98
+ image_triggers = [
99
+ "generate an image",
100
+ "create an image",
101
+ "draw",
102
+ "make a picture",
103
+ "generate a picture",
104
+ "create a picture",
105
+ "generate art",
106
+ "create art",
107
+ "make art",
108
+ "visualize",
109
+ "show me",
110
+ ]
111
+ message_lower = message.lower()
112
+ return any(trigger in message_lower for trigger in image_triggers)
113
+
114
+ def generate_image(prompt: str) -> str:
115
+ """Generate an image using DALLE-4K model."""
116
+ try:
117
+ response = image_client.text_to_image(
118
+ prompt,
119
+ parameters={
120
+ "negative_prompt": "blurry, bad quality, nsfw",
121
+ "num_inference_steps": 30,
122
+ "guidance_scale": 7.5
123
+ }
124
+ )
125
+ # Save the image and return the path or base64 string
126
+ # Note: Implementation depends on how you want to handle the image output
127
+ return response
128
  except Exception as e:
129
  print(f"Image generation error: {e}")
130
  return None
 
131
  def romanized_to_bengali(text: str) -> str:
132
  """Convert romanized Bengali text to Bengali script."""
133
  bengali_mappings = {
 
163
  max_tokens,
164
  temperature,
165
  top_p,
 
166
  ):
167
  # First check for custom responses
168
  custom_response = check_custom_responses(message)
 
173
  # Check if this is an image generation request
174
  if is_image_request(message):
175
  try:
176
+ image = generate_image(message)
177
  if image:
178
+ yield f"Here's your generated image based on: {message}"
179
+ # You'll need to implement the actual image display logic
180
+ # depending on your Gradio interface requirements
181
  return
182
  else:
183
  yield "Sorry, I couldn't generate the image. Please try again."
 
186
  yield f"An error occurred while generating the image: {str(e)}"
187
  return
188
 
189
+ # Handle translation with more conservative approach
190
  translated_msg, original_lang, was_transliterated = translate_text(message)
191
+
192
+ # Prepare conversation history - only translate if necessary
193
  messages = [{"role": "system", "content": system_message}]
194
  for val in history:
195
  if val[0]:
196
+ # Only translate longer messages
197
  if len(val[0].split()) > 2:
198
  trans_user_msg, _, _ = translate_text(val[0])
199
  messages.append({"role": "user", "content": trans_user_msg})
 
204
 
205
  messages.append({"role": "user", "content": translated_msg})
206
 
207
+ # Get response from model
208
  response = ""
209
  for message in text_client.chat_completion(
210
  messages,
 
216
  token = message.choices[0].delta.content
217
  response += token
218
 
219
+ # Only translate back if the original was definitely non-English
220
  if original_lang != 'en' and len(message.split()) > 2:
221
  try:
222
  translator = GoogleTranslator(source='en', target=original_lang)
 
227
  else:
228
  yield response
229
 
230
+ # Updated Gradio interface to handle images
231
  demo = gr.ChatInterface(
232
  respond,
233
  additional_inputs=[
 
238
  gr.Slider(
239
  minimum=1,
240
  maximum=2048,
241
+ value=512,
242
  step=1,
243
  label="Max new tokens"
244
  ),
 
256
  step=0.05,
257
  label="Top-p (nucleus sampling)"
258
  ),
 
 
 
 
 
 
259
  ]
260
  )
261