Reality123b commited on
Commit
9d0ab74
·
verified ·
1 Parent(s): d598d13

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -121
app.py CHANGED
@@ -11,130 +11,44 @@ import json
11
  import base64
12
  from PIL import Image
13
  import io
 
14
 
15
  # Initialize clients
16
  text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
17
  SPACE_URL = "https://ijohn07-dalle-4k.hf.space"
18
 
19
- def detect_language_script(text: str) -> tuple[str, str]:
20
- """Detect language and script of the input text.
21
- Returns (language_code, script_type)"""
22
- try:
23
- # Use confidence threshold to avoid false detections
24
- lang_detect = langdetect.detect_langs(text)
25
- if lang_detect[0].prob > 0.8:
26
- # Only accept high confidence detections
27
- lang = lang_detect[0].lang
28
- else:
29
- lang = 'en' # Default to English if unsure
30
-
31
- script = None
32
- try:
33
- script = detect_script(text)
34
- except:
35
- pass
36
- return lang, script
37
- except:
38
- return 'en', None
39
-
40
- def is_romanized_indic(text: str) -> bool:
41
- """Check if text appears to be romanized Indic language.
42
- More strict pattern matching."""
43
- # Common Bengali romanized patterns with word boundaries
44
- bengali_patterns = [
45
- r'\b(ami|tumi|apni)\b', # Common pronouns
46
- r'\b(ache|achen|thako|thaken)\b', # Common verbs
47
- r'\b(kemon|bhalo|kharap)\b', # Common adjectives
48
- r'\b(ki|kothay|keno)\b' # Common question words
49
- ]
50
-
51
- # Require multiple matches to confirm it's actually Bengali
52
- text_lower = text.lower()
53
- matches = sum(1 for pattern in bengali_patterns if re.search(pattern, text_lower))
54
- return matches >= 2 # Require at least 2 matches to consider it Bengali
55
-
56
- def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]:
57
- """Translate text to target language, with more conservative translation logic."""
58
- # Skip translation for very short inputs or basic greetings
59
- if len(text.split()) <= 2 or text.lower() in ['hello', 'hi', 'hey']:
60
- return text, 'en', False
61
-
62
- original_lang, script = detect_language_script(text)
63
- is_transliterated = False
64
-
65
- # Only process if confident it's non-English
66
- if original_lang != 'en' and len(text.split()) > 2:
67
- try:
68
- translator = GoogleTranslator(source='auto', target=target_lang)
69
- translated = translator.translate(text)
70
- return translated, original_lang, is_transliterated
71
- except Exception as e:
72
- print(f"Translation error: {e}")
73
- return text, 'en', False
74
-
75
- # Check for romanized Indic text only if it's a longer input
76
- if original_lang == 'en' and len(text.split()) > 2 and is_romanized_indic(text):
77
- text = romanized_to_bengali(text)
78
- return translate_text(text, target_lang) # Recursive call with Bengali script
79
-
80
- return text, 'en', False
81
-
82
- def check_custom_responses(message: str) -> str:
83
- """Check for specific patterns and return custom responses."""
84
- message_lower = message.lower()
85
- custom_responses = {
86
- "what is ur name?": "xylaria",
87
- "what is your name?": "xylaria",
88
- "what's your name?": "xylaria",
89
- "whats your name": "xylaria",
90
- "how many 'r' is in strawberry?": "3",
91
- "who is your developer?": "sk md saad amin",
92
- "how many r is in strawberry": "3",
93
- "who is ur dev": "sk md saad amin",
94
- "who is ur developer": "sk md saad amin",
95
- }
96
- for pattern, response in custom_responses.items():
97
- if pattern in message_lower:
98
- return response
99
- return None
100
-
101
- def is_image_request(message: str) -> bool:
102
- """Detect if the message is requesting image generation."""
103
- image_triggers = [
104
- "generate an image",
105
- "create an image",
106
- "draw",
107
- "make a picture",
108
- "generate a picture",
109
- "create a picture",
110
- "generate art",
111
- "create art",
112
- "make art",
113
- "visualize",
114
- "show me",
115
- ]
116
- message_lower = message.lower()
117
- return any(trigger in message_lower for trigger in image_triggers)
118
-
119
- def generate_image_space(prompt: str) -> Image.Image:
120
- """Generate an image using the DALLE-4K Space."""
121
  try:
122
  # First get the session hash
123
  response = requests.post(f"{SPACE_URL}/queue/join")
124
  session_hash = response.json().get('session_hash')
125
 
126
- # Send the generation request
127
- payload = {
128
- "prompt": prompt,
129
- "negative_prompt": "blurry, bad quality, nsfw",
130
- "num_inference_steps": 30,
131
- "guidance_scale": 7.5,
132
- "session_hash": session_hash
133
- }
 
134
 
 
135
  response = requests.post(f"{SPACE_URL}/run/predict", json={
136
  "data": [
137
- prompt, # Prompt
138
  "", # Negative prompt
139
  7.5, # Guidance scale
140
  30, # Steps
@@ -205,6 +119,7 @@ def respond(
205
  max_tokens,
206
  temperature,
207
  top_p,
 
208
  ):
209
  # First check for custom responses
210
  custom_response = check_custom_responses(message)
@@ -215,9 +130,10 @@ def respond(
215
  # Check if this is an image generation request
216
  if is_image_request(message):
217
  try:
218
- image = generate_image_space(message)
219
  if image:
220
- yield (image, f"Here's your generated image based on: {message}")
 
221
  return
222
  else:
223
  yield "Sorry, I couldn't generate the image. Please try again."
@@ -226,14 +142,11 @@ def respond(
226
  yield f"An error occurred while generating the image: {str(e)}"
227
  return
228
 
229
- # Handle translation with more conservative approach
230
  translated_msg, original_lang, was_transliterated = translate_text(message)
231
-
232
- # Prepare conversation history - only translate if necessary
233
  messages = [{"role": "system", "content": system_message}]
234
  for val in history:
235
  if val[0]:
236
- # Only translate longer messages
237
  if len(val[0].split()) > 2:
238
  trans_user_msg, _, _ = translate_text(val[0])
239
  messages.append({"role": "user", "content": trans_user_msg})
@@ -244,7 +157,6 @@ def respond(
244
 
245
  messages.append({"role": "user", "content": translated_msg})
246
 
247
- # Get response from model
248
  response = ""
249
  for message in text_client.chat_completion(
250
  messages,
@@ -256,7 +168,6 @@ def respond(
256
  token = message.choices[0].delta.content
257
  response += token
258
 
259
- # Only translate back if the original was definitely non-English
260
  if original_lang != 'en' and len(message.split()) > 2:
261
  try:
262
  translator = GoogleTranslator(source='en', target=original_lang)
@@ -267,7 +178,7 @@ def respond(
267
  else:
268
  yield response
269
 
270
- # Updated Gradio interface to handle images
271
  demo = gr.ChatInterface(
272
  respond,
273
  additional_inputs=[
@@ -278,7 +189,7 @@ demo = gr.ChatInterface(
278
  gr.Slider(
279
  minimum=1,
280
  maximum=2048,
281
- value=512,
282
  step=1,
283
  label="Max new tokens"
284
  ),
@@ -296,6 +207,12 @@ demo = gr.ChatInterface(
296
  step=0.05,
297
  label="Top-p (nucleus sampling)"
298
  ),
 
 
 
 
 
 
299
  ]
300
  )
301
 
 
11
  import base64
12
  from PIL import Image
13
  import io
14
+ import time
15
 
16
  # Initialize clients
17
  text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
18
  SPACE_URL = "https://ijohn07-dalle-4k.hf.space"
19
 
20
+ # Add image style options
21
+ IMAGE_STYLES = {
22
+ "3840 x 2160": "3840 x 2160",
23
+ "2560 x 1440": "2560 x 1440",
24
+ "Photo": "Photo",
25
+ "Cinematic": "Cinematic",
26
+ "Anime": "Anime",
27
+ "3D Model": "3D Model",
28
+ "No style": "(No style)"
29
+ }
30
+
31
+ def generate_image_space(prompt: str, style: str) -> Image.Image:
32
+ """Generate an image using the DALLE-4K Space with specified style."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  try:
34
  # First get the session hash
35
  response = requests.post(f"{SPACE_URL}/queue/join")
36
  session_hash = response.json().get('session_hash')
37
 
38
+ # Modify prompt based on style
39
+ if style != "(No style)":
40
+ # Format the prompt according to the style
41
+ if style in ["3840 x 2160", "2560 x 1440"]:
42
+ # For resolution styles, add the resolution to the prompt
43
+ prompt = f"{prompt}, {style} resolution"
44
+ else:
45
+ # For other styles, append the style to the prompt
46
+ prompt = f"{prompt}, {style.lower()} style"
47
 
48
+ # Send the generation request
49
  response = requests.post(f"{SPACE_URL}/run/predict", json={
50
  "data": [
51
+ prompt, # Prompt with style
52
  "", # Negative prompt
53
  7.5, # Guidance scale
54
  30, # Steps
 
119
  max_tokens,
120
  temperature,
121
  top_p,
122
+ image_style: str, # New parameter for image style
123
  ):
124
  # First check for custom responses
125
  custom_response = check_custom_responses(message)
 
130
  # Check if this is an image generation request
131
  if is_image_request(message):
132
  try:
133
+ image = generate_image_space(message, image_style)
134
  if image:
135
+ style_info = f" using {image_style} style" if image_style != "(No style)" else ""
136
+ yield (image, f"Here's your generated image based on: {message}{style_info}")
137
  return
138
  else:
139
  yield "Sorry, I couldn't generate the image. Please try again."
 
142
  yield f"An error occurred while generating the image: {str(e)}"
143
  return
144
 
145
+ # Rest of the code remains the same...
146
  translated_msg, original_lang, was_transliterated = translate_text(message)
 
 
147
  messages = [{"role": "system", "content": system_message}]
148
  for val in history:
149
  if val[0]:
 
150
  if len(val[0].split()) > 2:
151
  trans_user_msg, _, _ = translate_text(val[0])
152
  messages.append({"role": "user", "content": trans_user_msg})
 
157
 
158
  messages.append({"role": "user", "content": translated_msg})
159
 
 
160
  response = ""
161
  for message in text_client.chat_completion(
162
  messages,
 
168
  token = message.choices[0].delta.content
169
  response += token
170
 
 
171
  if original_lang != 'en' and len(message.split()) > 2:
172
  try:
173
  translator = GoogleTranslator(source='en', target=original_lang)
 
178
  else:
179
  yield response
180
 
181
+ # Updated Gradio interface with image style selector
182
  demo = gr.ChatInterface(
183
  respond,
184
  additional_inputs=[
 
189
  gr.Slider(
190
  minimum=1,
191
  maximum=2048,
192
+ value=2048,
193
  step=1,
194
  label="Max new tokens"
195
  ),
 
207
  step=0.05,
208
  label="Top-p (nucleus sampling)"
209
  ),
210
+ gr.Radio(
211
+ choices=list(IMAGE_STYLES.values()),
212
+ value="3840 x 2160",
213
+ label="Image Style",
214
+ info="Select the style for generated images"
215
+ ),
216
  ]
217
  )
218