File size: 9,269 Bytes
d244e18
 
8b24191
d244e18
15ed0e7
de30673
412e4a3
d244e18
 
 
 
15ed0e7
d244e18
 
 
a9e6c3b
d244e18
f2f7dda
 
d244e18
 
9476a94
4d8d888
 
 
 
 
 
 
 
 
 
 
 
15ed0e7
a4e4b71
15ed0e7
3371395
d244e18
 
 
 
 
 
 
 
 
 
 
a9e6c3b
8b24191
aeca549
 
15ed0e7
aeca549
 
f8ed37f
aeca549
 
 
f8ed37f
 
 
 
8b24191
f8ed37f
8b24191
 
 
 
 
 
 
 
 
 
de30673
f8ed37f
a28a9dc
c90c2ec
f172bb5
d38433c
3b2fd03
b604a12
15ed0e7
bca3677
44e6288
bca3677
a620e89
 
b604a12
a28a9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d244e18
 
 
 
 
006ee88
15ed0e7
 
c98699f
15ed0e7
8ec9856
94c2133
97424be
 
 
 
 
 
 
 
a601e7b
d244e18
15ed0e7
d244e18
412e4a3
c98699f
 
412e4a3
3f05b9b
 
 
 
412e4a3
3f05b9b
 
d244e18
 
 
 
3f05b9b
d244e18
 
3f05b9b
15ed0e7
d244e18
 
3f05b9b
d244e18
3f05b9b
d244e18
 
 
412e4a3
d244e18
 
 
 
 
 
 
 
 
 
40a5413
 
 
 
 
 
 
 
 
 
d244e18
3f05b9b
0f11a05
40a5413
229a73d
0f11a05
40a5413
229a73d
0f11a05
40a5413
229a73d
72bb6cb
95ff438
229a73d
72bb6cb
95ff438
229a73d
72bb6cb
95ff438
229a73d
72bb6cb
95ff438
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import streamlit as st
import os
import json
import requests
import pdfplumber
import chromadb
import re
from langchain.document_loaders import PDFPlumberLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_experimental.text_splitter import SemanticChunker
from langchain_chroma import Chroma
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth

# ----------------- Streamlit UI Setup -----------------
st.set_page_config(page_title="Blah-1", layout="centered")

# ----------------- API Keys -----------------
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")

# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")

llm_judge.verbose = True
rag_llm.verbose = True

# Clear ChromaDB cache to fix tenant issue
chromadb.api.client.SharedSystemClient.clear_system_cache()

st.title("Blah")

# ----------------- ChromaDB Persistent Directory -----------------
CHROMA_DB_DIR = "/mnt/data/chroma_db" 
os.makedirs(CHROMA_DB_DIR, exist_ok=True)

# ----------------- Initialize Session State -----------------
if "pdf_loaded" not in st.session_state:
    st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
    st.session_state.chunked = False
if "vector_created" not in st.session_state:
    st.session_state.vector_created = False
if "processed_chunks" not in st.session_state:
    st.session_state.processed_chunks = None
if "vector_store" not in st.session_state:
    st.session_state.vector_store = None

# ----------------- Metadata Extraction -----------------
def extract_metadata_llm(pdf_path):
    """Extracts metadata using LLM instead of regex."""
    with pdfplumber.open(pdf_path) as pdf:
        first_page_text = pdf.pages[0].extract_text() if pdf.pages else "No text found."

    # Run LLM Metadata Extraction
    metadata_chain = LLMChain(llm=llm_judge, prompt=metadata_prompt, output_key="metadata")
    metadata_response = metadata_chain.invoke({"text": first_page_text})

    # Ensure LLM Output is a Proper JSON String
    json_match = re.search(r"```json\n(.*?)\n```", metadata_response["metadata"], re.DOTALL)
    json_text = json_match.group(1) if json_match else metadata_response["metadata"]

    try:
        metadata_dict = json.loads(json_text)
    except json.JSONDecodeError:
        metadata_dict = {
            "Title": "Unknown",
            "Author": "Unknown",
            "Emails": "No emails found",
            "Affiliations": "No affiliations found"
        }

    return metadata_dict



# ----------------- Step 1: Choose PDF Source -----------------
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)

if pdf_source == "Upload a PDF file":
    uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
    if uploaded_file:
        st.session_state.pdf_path = "/mnt/data/temp.pdf"
        with open(st.session_state.pdf_path, "wb") as f:
            f.write(uploaded_file.getbuffer())
        st.session_state.pdf_loaded = False
        st.session_state.chunked = False
        st.session_state.vector_created = False

elif pdf_source == "Enter a PDF URL":
    pdf_url = st.text_input("Enter PDF URL:")
    if pdf_url and not st.session_state.pdf_loaded:
        with st.spinner("πŸ”„ Downloading PDF..."):
            try:
                response = requests.get(pdf_url)
                if response.status_code == 200:
                    st.session_state.pdf_path = "/mnt/data/temp.pdf"
                    with open(st.session_state.pdf_path, "wb") as f:
                        f.write(response.content)
                    st.session_state.pdf_loaded = False
                    st.session_state.chunked = False
                    st.session_state.vector_created = False
                    st.success("βœ… PDF Downloaded Successfully!")
                else:
                    st.error("❌ Failed to download PDF. Check the URL.")
            except Exception as e:
                st.error(f"Error downloading PDF: {e}")


# ----------------- Process PDF -----------------
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
    with st.spinner("πŸ”„ Processing document... Please wait."):
        loader = PDFPlumberLoader(st.session_state.pdf_path)
        docs = loader.load()
        st.json(docs[0].metadata)

        # Extract metadata
        metadata = extract_metadata_llm(st.session_state.pdf_path)

        # Display extracted-metadata
        if isinstance(metadata, dict):
            st.subheader("πŸ“„ Extracted Document Metadata")
            st.write(f"**Title:** {metadata.get('Title', 'Unknown')}")
            st.write(f"**Author:** {metadata.get('Author', 'Unknown')}")
            st.write(f"**Emails:** {metadata.get('Emails', 'No emails found')}")
            st.write(f"**Affiliations:** {metadata.get('Affiliations', 'No affiliations found')}")
        else:
            st.error("Metadata extraction failed. Check the LLM response format.")

        # Embedding Model
        model_name = "nomic-ai/modernbert-embed-base"
        embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})

        # Convert metadata into a retrievable chunk
        metadata_doc = {"page_content": metadata, "metadata": {"source": "metadata"}}


        # Prevent unnecessary re-chunking
        if not st.session_state.chunked:
            text_splitter = SemanticChunker(embedding_model)
            document_chunks = text_splitter.split_documents(docs)
            document_chunks.insert(0, metadata_doc)  # Insert metadata as a retrievable document
            st.session_state.processed_chunks = document_chunks
            st.session_state.chunked = True

        st.session_state.pdf_loaded = True
        st.success("βœ… Document processed and chunked successfully!")

# ----------------- Setup Vector Store -----------------
if not st.session_state.vector_created and st.session_state.processed_chunks:
    with st.spinner("πŸ”„ Initializing Vector Store..."):
        st.session_state.vector_store = Chroma(
            persist_directory=CHROMA_DB_DIR,  # <-- Ensures persistence
            collection_name="deepseek_collection",
            collection_metadata={"hnsw:space": "cosine"},
            embedding_function=embedding_model
        )
        st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
        st.session_state.vector_created = True
        st.success("βœ… Vector store initialized successfully!")


# ----------------- Query Input -----------------
query = st.text_input("πŸ” Ask a question about the document:")

if query:
    with st.spinner("πŸ”„ Retrieving relevant context..."):
        retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
        retrieved_docs = retriever.invoke(query)
        context = [d.page_content for d in retrieved_docs]
        st.success("βœ… Context retrieved successfully!")

    # ----------------- Run Individual Chains Explicitly -----------------
    context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response")
    relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number")
    relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts")
    response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")

    response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query})
    relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]})
    contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context})
    final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]})

    # ----------------- Display All Outputs -----------------
    st.markdown("### Context Relevancy Evaluation")
    st.json(response_crisis["relevancy_response"])

    st.markdown("### Picked Relevant Contexts")
    st.json(relevant_response["context_number"])

    st.markdown("### Extracted Relevant Contexts")
    st.json(contexts["relevant_contexts"])

    st.subheader("context_relevancy_evaluation_chain Statement")
    st.json(final_response["relevancy_response"])

    st.subheader("pick_relevant_context_chain Statement")
    st.json(final_response["context_number"])

    st.subheader("relevant_contexts_chain Statement")
    st.json(final_response["relevant_contexts"])

    st.subheader("RAG Response Statement")
    st.json(final_response["final_response"])