File size: 4,625 Bytes
8359d12
 
0217602
 
c2c5723
 
 
 
0217602
 
 
8359d12
0217602
 
 
6386510
c2c5723
 
6386510
0217602
 
 
 
 
62138c4
c2c5723
 
b70c257
c2c5723
0217602
 
 
 
 
 
 
 
 
652620b
0217602
8359d12
7cb9567
0217602
c2c5723
 
 
 
 
 
0217602
b70c257
0217602
c2c5723
 
0217602
c2c5723
0217602
 
c2c5723
 
 
 
 
 
 
 
 
 
 
 
 
b70c257
0217602
 
 
 
 
 
 
b70c257
c2c5723
9b29f12
f3bc24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c5723
 
f77fb99
c2c5723
 
b70c257
9b29f12
f3bc24e
c2c5723
561ff95
c2c5723
51a7d9e
0217602
c2c5723
 
 
 
 
 
 
0217602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8359d12
0217602
51a7d9e
0217602
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
from dotenv import load_dotenv
from langchain_community.vectorstores import Qdrant
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
from qdrant_client import QdrantClient, models
from langchain_openai import ChatOpenAI
import gradio as gr
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv()

# HuggingFace API Token
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    logger.error("HF_TOKEN is not set in the environment variables.")
    exit(1)

# HuggingFace Embeddings
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")

# Qdrant Client Setup
try:
    client = QdrantClient(
        url=os.getenv("QDRANT_URL"),
        api_key=os.getenv("QDRANT_API_KEY"),
        prefer_grpc=True
    )
except Exception as e:
    logger.error("Failed to connect to Qdrant. Ensure QDRANT_URL and QDRANT_API_KEY are correctly set.")
    exit(1)

# Define collection name
collection_name = "mawared"

# Try to create collection
try:
    client.create_collection(
        collection_name=collection_name,
        vectors_config=models.VectorParams(
            size=768,  # GTE-large embedding size
            distance=models.Distance.COSINE
        )
    )
    logger.info(f"Created new collection: {collection_name}")
except Exception as e:
    if "already exists" in str(e):
        logger.info(f"Collection {collection_name} already exists, continuing...")
    else:
        logger.error(f"Error creating collection: {e}")
        exit(1)

# Create Qdrant vector store
db = Qdrant(
    client=client,
    collection_name=collection_name,
    embeddings=embeddings,
)

# Create retriever
retriever = db.as_retriever(
    search_type="similarity",
    search_kwargs={"k": 5}
)

# Set up the LLM
llm = ChatOpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    temperature=0,
    api_key=HF_TOKEN,
    model="meta-llama/Llama-3.3-70B-Instruct"
)

# Create prompt template
template = f"""
You are an expert assistant specializing in the Mawared HR System. Your task is to answer the user's question strictly based on the provided context. If the context lacks sufficient information, ask focused clarifying questions to gather additional details.

To improve your responses, follow these steps:

Chain-of-Thought (COT): Break down complex queries into logical steps. Use tags like [Step 1], [Step 2], etc., to label each part of the reasoning process. This helps structure your thinking and ensure clarity. For example:

[Step 1] Identify the key details in the context relevant to the question.
[Step 2] Break down any assumptions or information gaps.
[Step 3] Combine all pieces to form the final, well-reasoned response.
Reasoning: Demonstrate a clear logical connection between the context and your answer at each step. If information is missing or unclear, indicate the gap using tags like [Missing Information] and ask relevant follow-up questions to fill that gap.

Clarity and Precision: Provide direct, concise answers focused only on the context. Avoid including speculative or unrelated information.

Follow-up Questions: If the context is insufficient, focus on asking specific, relevant questions. Label them as [Clarifying Question] to indicate they are needed to complete the response. For example:

[Clarifying Question] Could you specify which employee section you're referring to?
Context:
{context}

Question:
{question}


Answer
"""

prompt = ChatPromptTemplate.from_template(template)

# Create the RAG chain
rag_chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)

# Gradio Function
def ask_question_gradio(question):
    try:
        response = ""
        for chunk in rag_chain.stream(question):
            response += chunk
        return response
    except Exception as e:
        logger.error(f"Error during question processing: {e}")
        return "An error occurred. Please try again later."

# Gradio Interface
iface = gr.Interface(
    fn=ask_question_gradio,
    inputs=gr.Textbox(label="Ask a question about Mawared HR System:"),
    outputs=gr.Textbox(label="Answer:"),
    title="Mawared HR Assistant",
    description="Ask questions about the Mawared HR system, and this assistant will provide answers based on the available context."
)

# Launch the Gradio App
if __name__ == "__main__":
    iface.launch()