File size: 4,625 Bytes
8359d12 0217602 c2c5723 0217602 8359d12 0217602 6386510 c2c5723 6386510 0217602 62138c4 c2c5723 b70c257 c2c5723 0217602 652620b 0217602 8359d12 7cb9567 0217602 c2c5723 0217602 b70c257 0217602 c2c5723 0217602 c2c5723 0217602 c2c5723 b70c257 0217602 b70c257 c2c5723 9b29f12 f3bc24e c2c5723 f77fb99 c2c5723 b70c257 9b29f12 f3bc24e c2c5723 561ff95 c2c5723 51a7d9e 0217602 c2c5723 0217602 8359d12 0217602 51a7d9e 0217602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import os
from dotenv import load_dotenv
from langchain_community.vectorstores import Qdrant
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
from qdrant_client import QdrantClient, models
from langchain_openai import ChatOpenAI
import gradio as gr
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# HuggingFace API Token
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
logger.error("HF_TOKEN is not set in the environment variables.")
exit(1)
# HuggingFace Embeddings
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
# Qdrant Client Setup
try:
client = QdrantClient(
url=os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY"),
prefer_grpc=True
)
except Exception as e:
logger.error("Failed to connect to Qdrant. Ensure QDRANT_URL and QDRANT_API_KEY are correctly set.")
exit(1)
# Define collection name
collection_name = "mawared"
# Try to create collection
try:
client.create_collection(
collection_name=collection_name,
vectors_config=models.VectorParams(
size=768, # GTE-large embedding size
distance=models.Distance.COSINE
)
)
logger.info(f"Created new collection: {collection_name}")
except Exception as e:
if "already exists" in str(e):
logger.info(f"Collection {collection_name} already exists, continuing...")
else:
logger.error(f"Error creating collection: {e}")
exit(1)
# Create Qdrant vector store
db = Qdrant(
client=client,
collection_name=collection_name,
embeddings=embeddings,
)
# Create retriever
retriever = db.as_retriever(
search_type="similarity",
search_kwargs={"k": 5}
)
# Set up the LLM
llm = ChatOpenAI(
base_url="https://api-inference.huggingface.co/v1/",
temperature=0,
api_key=HF_TOKEN,
model="meta-llama/Llama-3.3-70B-Instruct"
)
# Create prompt template
template = f"""
You are an expert assistant specializing in the Mawared HR System. Your task is to answer the user's question strictly based on the provided context. If the context lacks sufficient information, ask focused clarifying questions to gather additional details.
To improve your responses, follow these steps:
Chain-of-Thought (COT): Break down complex queries into logical steps. Use tags like [Step 1], [Step 2], etc., to label each part of the reasoning process. This helps structure your thinking and ensure clarity. For example:
[Step 1] Identify the key details in the context relevant to the question.
[Step 2] Break down any assumptions or information gaps.
[Step 3] Combine all pieces to form the final, well-reasoned response.
Reasoning: Demonstrate a clear logical connection between the context and your answer at each step. If information is missing or unclear, indicate the gap using tags like [Missing Information] and ask relevant follow-up questions to fill that gap.
Clarity and Precision: Provide direct, concise answers focused only on the context. Avoid including speculative or unrelated information.
Follow-up Questions: If the context is insufficient, focus on asking specific, relevant questions. Label them as [Clarifying Question] to indicate they are needed to complete the response. For example:
[Clarifying Question] Could you specify which employee section you're referring to?
Context:
{context}
Question:
{question}
Answer
"""
prompt = ChatPromptTemplate.from_template(template)
# Create the RAG chain
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
# Gradio Function
def ask_question_gradio(question):
try:
response = ""
for chunk in rag_chain.stream(question):
response += chunk
return response
except Exception as e:
logger.error(f"Error during question processing: {e}")
return "An error occurred. Please try again later."
# Gradio Interface
iface = gr.Interface(
fn=ask_question_gradio,
inputs=gr.Textbox(label="Ask a question about Mawared HR System:"),
outputs=gr.Textbox(label="Answer:"),
title="Mawared HR Assistant",
description="Ask questions about the Mawared HR system, and this assistant will provide answers based on the available context."
)
# Launch the Gradio App
if __name__ == "__main__":
iface.launch() |