Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,45 @@
|
|
|
|
|
|
1 |
from langchain_community.vectorstores import Qdrant
|
2 |
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
from langchain.llms import HuggingFacePipeline
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
5 |
-
import os
|
6 |
-
from dotenv import load_dotenv
|
7 |
from langchain.prompts import ChatPromptTemplate
|
8 |
from langchain.schema.runnable import RunnablePassthrough
|
9 |
from langchain.schema.output_parser import StrOutputParser
|
10 |
from qdrant_client import QdrantClient, models
|
11 |
from langchain_qdrant import Qdrant
|
12 |
import gradio as gr
|
13 |
-
import
|
14 |
|
15 |
# Load environment variables
|
16 |
load_dotenv()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# HuggingFace Embeddings
|
19 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
|
20 |
|
21 |
# Qdrant Client Setup
|
22 |
client = QdrantClient(
|
23 |
-
url=
|
24 |
-
api_key=
|
25 |
-
|
26 |
)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
collection_name = "mawared"
|
29 |
|
30 |
# Try to create collection, handle if it already exists
|
@@ -57,12 +72,16 @@ retriever = db.as_retriever(
|
|
57 |
)
|
58 |
|
59 |
# Load Hugging Face Model
|
60 |
-
model_name = "
|
61 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
62 |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
|
63 |
|
|
|
|
|
|
|
|
|
64 |
# Create Hugging Face Pipeline with the specified model and tokenizer
|
65 |
-
hf_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
66 |
|
67 |
# LangChain LLM using Hugging Face Pipeline
|
68 |
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
@@ -105,7 +124,7 @@ rag_chain = (
|
|
105 |
)
|
106 |
|
107 |
# Define the Gradio function
|
108 |
-
@spaces.GPU(
|
109 |
def ask_question_gradio(question):
|
110 |
result = ""
|
111 |
for chunk in rag_chain.stream(question):
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
from langchain_community.vectorstores import Qdrant
|
4 |
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
from langchain.llms import HuggingFacePipeline
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
|
7 |
from langchain.prompts import ChatPromptTemplate
|
8 |
from langchain.schema.runnable import RunnablePassthrough
|
9 |
from langchain.schema.output_parser import StrOutputParser
|
10 |
from qdrant_client import QdrantClient, models
|
11 |
from langchain_qdrant import Qdrant
|
12 |
import gradio as gr
|
13 |
+
import torch
|
14 |
|
15 |
# Load environment variables
|
16 |
load_dotenv()
|
17 |
|
18 |
+
# Verify environment variables
|
19 |
+
qdrant_url = os.getenv("QDRANT_URL")
|
20 |
+
qdrant_api_key = os.getenv("QDRANT_API_KEY")
|
21 |
+
|
22 |
+
print(f"QDRANT_URL: {qdrant_url}")
|
23 |
+
print(f"QDRANT_API_KEY: {qdrant_api_key}")
|
24 |
+
|
25 |
# HuggingFace Embeddings
|
26 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
|
27 |
|
28 |
# Qdrant Client Setup
|
29 |
client = QdrantClient(
|
30 |
+
url=qdrant_url,
|
31 |
+
api_key=qdrant_api_key,
|
32 |
+
prefer_grpc=True
|
33 |
)
|
34 |
|
35 |
+
# Check if the connection is successful
|
36 |
+
try:
|
37 |
+
client.get_collection(collection_name)
|
38 |
+
print(f"Successfully connected to Qdrant collection: {collection_name}")
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Failed to connect to Qdrant: {e}")
|
41 |
+
raise e
|
42 |
+
|
43 |
collection_name = "mawared"
|
44 |
|
45 |
# Try to create collection, handle if it already exists
|
|
|
72 |
)
|
73 |
|
74 |
# Load Hugging Face Model
|
75 |
+
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # Replace with your desired model
|
76 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
77 |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
|
78 |
|
79 |
+
# Ensure the model is on the GPU
|
80 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
81 |
+
model.to(device)
|
82 |
+
|
83 |
# Create Hugging Face Pipeline with the specified model and tokenizer
|
84 |
+
hf_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
|
85 |
|
86 |
# LangChain LLM using Hugging Face Pipeline
|
87 |
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
|
|
124 |
)
|
125 |
|
126 |
# Define the Gradio function
|
127 |
+
@spaces.GPU()
|
128 |
def ask_question_gradio(question):
|
129 |
result = ""
|
130 |
for chunk in rag_chain.stream(question):
|