Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,50 +1,61 @@
|
|
| 1 |
-
from langchain_community.vectorstores import Qdrant
|
| 2 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
| 3 |
import os
|
| 4 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
| 5 |
from langchain.prompts import ChatPromptTemplate
|
| 6 |
from langchain.schema.runnable import RunnablePassthrough
|
| 7 |
from langchain.schema.output_parser import StrOutputParser
|
| 8 |
from qdrant_client import QdrantClient, models
|
| 9 |
-
from
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
from langchain_openai import ChatOpenAI ,OpenAI
|
| 13 |
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Load environment variables
|
| 16 |
load_dotenv()
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# HuggingFace Embeddings
|
| 21 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
|
| 22 |
|
| 23 |
# Qdrant Client Setup
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
|
|
|
| 30 |
collection_name = "mawared"
|
| 31 |
|
| 32 |
-
# Try to create collection
|
| 33 |
try:
|
| 34 |
client.create_collection(
|
| 35 |
collection_name=collection_name,
|
| 36 |
vectors_config=models.VectorParams(
|
| 37 |
size=768, # GTE-large embedding size
|
| 38 |
distance=models.Distance.COSINE
|
| 39 |
-
)
|
| 40 |
-
|
| 41 |
)
|
| 42 |
-
|
| 43 |
except Exception as e:
|
| 44 |
if "already exists" in str(e):
|
| 45 |
-
|
| 46 |
else:
|
| 47 |
-
|
|
|
|
| 48 |
|
| 49 |
# Create Qdrant vector store
|
| 50 |
db = Qdrant(
|
|
@@ -59,8 +70,13 @@ retriever = db.as_retriever(
|
|
| 59 |
search_kwargs={"k": 5}
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
-
llm = ChatOpenAI(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# Create prompt template
|
| 66 |
template = """
|
|
@@ -91,7 +107,7 @@ Answer
|
|
| 91 |
|
| 92 |
prompt = ChatPromptTemplate.from_template(template)
|
| 93 |
|
| 94 |
-
# Create the RAG chain
|
| 95 |
rag_chain = (
|
| 96 |
{"context": retriever, "question": RunnablePassthrough()}
|
| 97 |
| prompt
|
|
@@ -99,19 +115,26 @@ rag_chain = (
|
|
| 99 |
| StrOutputParser()
|
| 100 |
)
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
#
|
| 104 |
-
def ask_question(question):
|
| 105 |
-
print("Answer:\t", end=" ", flush=True)
|
| 106 |
-
for chunk in rag_chain.stream(question):
|
| 107 |
-
print(chunk, end="", flush=True)
|
| 108 |
-
print("\n")
|
| 109 |
-
|
| 110 |
-
# Example usage
|
| 111 |
if __name__ == "__main__":
|
| 112 |
-
|
| 113 |
-
user_question = input("\n \n \n Ask a question (or type 'quit' to exit): ")
|
| 114 |
-
if user_question.lower() == 'quit':
|
| 115 |
-
break
|
| 116 |
-
answer = ask_question(user_question)
|
| 117 |
-
# print("\nFull answer received.\n")
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
from dotenv import load_dotenv
|
| 3 |
+
from langchain_community.vectorstores import Qdrant
|
| 4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 5 |
from langchain.prompts import ChatPromptTemplate
|
| 6 |
from langchain.schema.runnable import RunnablePassthrough
|
| 7 |
from langchain.schema.output_parser import StrOutputParser
|
| 8 |
from qdrant_client import QdrantClient, models
|
| 9 |
+
from langchain_openai import ChatOpenAI
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import logging
|
|
|
|
| 12 |
|
| 13 |
+
# Configure logging
|
| 14 |
+
logging.basicConfig(level=logging.INFO)
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
# Load environment variables
|
| 18 |
load_dotenv()
|
| 19 |
|
| 20 |
+
# HuggingFace API Token
|
| 21 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 22 |
+
if not HF_TOKEN:
|
| 23 |
+
logger.error("HF_TOKEN is not set in the environment variables.")
|
| 24 |
+
exit(1)
|
| 25 |
|
| 26 |
# HuggingFace Embeddings
|
| 27 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
|
| 28 |
|
| 29 |
# Qdrant Client Setup
|
| 30 |
+
try:
|
| 31 |
+
client = QdrantClient(
|
| 32 |
+
url=os.getenv("QDRANT_URL"),
|
| 33 |
+
api_key=os.getenv("QDRANT_API_KEY"),
|
| 34 |
+
prefer_grpc=True
|
| 35 |
+
)
|
| 36 |
+
except Exception as e:
|
| 37 |
+
logger.error("Failed to connect to Qdrant. Ensure QDRANT_URL and QDRANT_API_KEY are correctly set.")
|
| 38 |
+
exit(1)
|
| 39 |
|
| 40 |
+
# Define collection name
|
| 41 |
collection_name = "mawared"
|
| 42 |
|
| 43 |
+
# Try to create collection
|
| 44 |
try:
|
| 45 |
client.create_collection(
|
| 46 |
collection_name=collection_name,
|
| 47 |
vectors_config=models.VectorParams(
|
| 48 |
size=768, # GTE-large embedding size
|
| 49 |
distance=models.Distance.COSINE
|
| 50 |
+
)
|
|
|
|
| 51 |
)
|
| 52 |
+
logger.info(f"Created new collection: {collection_name}")
|
| 53 |
except Exception as e:
|
| 54 |
if "already exists" in str(e):
|
| 55 |
+
logger.info(f"Collection {collection_name} already exists, continuing...")
|
| 56 |
else:
|
| 57 |
+
logger.error(f"Error creating collection: {e}")
|
| 58 |
+
exit(1)
|
| 59 |
|
| 60 |
# Create Qdrant vector store
|
| 61 |
db = Qdrant(
|
|
|
|
| 70 |
search_kwargs={"k": 5}
|
| 71 |
)
|
| 72 |
|
| 73 |
+
# Set up the LLM
|
| 74 |
+
llm = ChatOpenAI(
|
| 75 |
+
base_url="https://api-inference.huggingface.co/v1/",
|
| 76 |
+
temperature=0,
|
| 77 |
+
api_key=HF_TOKEN,
|
| 78 |
+
model="meta-llama/Llama-3.3-70B-Instruct"
|
| 79 |
+
)
|
| 80 |
|
| 81 |
# Create prompt template
|
| 82 |
template = """
|
|
|
|
| 107 |
|
| 108 |
prompt = ChatPromptTemplate.from_template(template)
|
| 109 |
|
| 110 |
+
# Create the RAG chain
|
| 111 |
rag_chain = (
|
| 112 |
{"context": retriever, "question": RunnablePassthrough()}
|
| 113 |
| prompt
|
|
|
|
| 115 |
| StrOutputParser()
|
| 116 |
)
|
| 117 |
|
| 118 |
+
# Gradio Function
|
| 119 |
+
def ask_question_gradio(question):
|
| 120 |
+
try:
|
| 121 |
+
response = ""
|
| 122 |
+
for chunk in rag_chain.stream(question):
|
| 123 |
+
response += chunk
|
| 124 |
+
return response
|
| 125 |
+
except Exception as e:
|
| 126 |
+
logger.error(f"Error during question processing: {e}")
|
| 127 |
+
return "An error occurred. Please try again later."
|
| 128 |
+
|
| 129 |
+
# Gradio Interface
|
| 130 |
+
iface = gr.Interface(
|
| 131 |
+
fn=ask_question_gradio,
|
| 132 |
+
inputs=gr.Textbox(label="Ask a question about Mawared HR System:"),
|
| 133 |
+
outputs=gr.Textbox(label="Answer:"),
|
| 134 |
+
title="Mawared HR Assistant",
|
| 135 |
+
description="Ask questions about the Mawared HR system, and this assistant will provide answers based on the available context."
|
| 136 |
+
)
|
| 137 |
|
| 138 |
+
# Launch the Gradio App
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
if __name__ == "__main__":
|
| 140 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|