Update app.py
Browse files
app.py
CHANGED
@@ -1,334 +1,109 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
'pip install flash-attn --no-build-isolation',
|
5 |
-
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
|
6 |
-
shell=True
|
7 |
-
)
|
8 |
import os
|
9 |
-
import
|
10 |
-
import
|
11 |
-
import
|
12 |
-
import
|
|
|
|
|
13 |
import gradio as gr
|
14 |
-
from threading import Thread
|
15 |
-
from transformers import (
|
16 |
-
AutoModelForCausalLM,
|
17 |
-
AutoTokenizer,
|
18 |
-
BitsAndBytesConfig,
|
19 |
-
TextIteratorStreamer
|
20 |
-
)
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
DEFAULT_SYSTEM_PROMPT = """You are a highly intelligent Bilingual assistant who is fluent in Arabic and English."""
|
25 |
-
# UI Configuration
|
26 |
-
TITLE = "<h1><center>Mawared T Assistant</center></h1>"
|
27 |
-
PLACEHOLDER = "Ask me anything! I'll think through it step by step."
|
28 |
|
29 |
-
|
30 |
-
.duplicate-button {
|
31 |
-
margin: auto !important;
|
32 |
-
color: white !important;
|
33 |
-
background: black !important;
|
34 |
-
border-radius: 100vh !important;
|
35 |
-
}
|
36 |
-
h3 {
|
37 |
-
text-align: center;
|
38 |
-
}
|
39 |
-
.message-wrap {
|
40 |
-
overflow-x: auto;
|
41 |
-
}
|
42 |
-
.message-wrap p {
|
43 |
-
margin-bottom: 1em;
|
44 |
-
}
|
45 |
-
.message-wrap pre {
|
46 |
-
background-color: #f6f8fa;
|
47 |
-
border-radius: 3px;
|
48 |
-
padding: 16px;
|
49 |
-
overflow-x: auto;
|
50 |
-
}
|
51 |
-
.message-wrap code {
|
52 |
-
background-color: rgba(175,184,193,0.2);
|
53 |
-
border-radius: 3px;
|
54 |
-
padding: 0.2em 0.4em;
|
55 |
-
font-family: monospace;
|
56 |
-
}
|
57 |
-
.custom-tag {
|
58 |
-
color: #0066cc;
|
59 |
-
font-weight: bold;
|
60 |
-
}
|
61 |
-
.chat-area {
|
62 |
-
height: 500px !important;
|
63 |
-
overflow-y: auto !important;
|
64 |
-
}
|
65 |
-
"""
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
quantization_config = BitsAndBytesConfig(
|
70 |
-
load_in_4bit=True,
|
71 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
72 |
-
bnb_4bit_use_double_quant=True
|
73 |
-
)
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
MODEL_ID,
|
81 |
-
torch_dtype=torch.float16,
|
82 |
-
device_map="cuda",
|
83 |
-
attn_implementation="flash_attention_2",
|
84 |
-
quantization_config=quantization_config
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
(r'<Critique>', '\n<Critique>\n'),
|
96 |
-
(r'</Critique>', '\n</Critique>\n'),
|
97 |
-
(r'<Revising>', '\n<Revising>\n'),
|
98 |
-
(r'</Revising>', '\n</Revising>\n'),
|
99 |
-
(r'<Final>', '\n<Final>\n'),
|
100 |
-
(r'</Final>', '\n</Final>\n')
|
101 |
-
]
|
102 |
-
|
103 |
-
formatted = text
|
104 |
-
for pattern, replacement in tag_patterns:
|
105 |
-
formatted = re.sub(pattern, replacement, formatted)
|
106 |
-
|
107 |
-
formatted = '\n'.join(line for line in formatted.split('\n') if line.strip())
|
108 |
-
|
109 |
-
return formatted
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
formatted = []
|
114 |
-
for user_msg, assistant_msg in history:
|
115 |
-
formatted.append(f"User: {user_msg}")
|
116 |
-
if assistant_msg:
|
117 |
-
formatted.append(f"Assistant: {assistant_msg}")
|
118 |
-
return "\n\n".join(formatted)
|
119 |
-
|
120 |
-
def create_examples():
|
121 |
-
"""Create example queries for the UI"""
|
122 |
-
return [
|
123 |
-
"Explain the concept of artificial intelligence.",
|
124 |
-
"How does photosynthesis work?",
|
125 |
-
"What are the main causes of climate change?",
|
126 |
-
"Describe the process of protein synthesis.",
|
127 |
-
"What are the key features of a democratic government?",
|
128 |
-
"Explain the theory of relativity.",
|
129 |
-
"How do vaccines work to prevent diseases?",
|
130 |
-
"What are the major events of World War II?",
|
131 |
-
"Describe the structure of a human cell.",
|
132 |
-
"What is the role of DNA in genetics?"
|
133 |
-
]
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
message: str,
|
138 |
-
history: list,
|
139 |
-
chat_display: str,
|
140 |
-
system_prompt: str,
|
141 |
-
temperature: float = 1.0,
|
142 |
-
max_new_tokens: int = 4000,
|
143 |
-
top_p: float = 0.8,
|
144 |
-
top_k: int = 40,
|
145 |
-
penalty: float = 1.2,
|
146 |
-
):
|
147 |
-
"""Generate chat responses, keeping tags visible in the output"""
|
148 |
-
conversation = [
|
149 |
-
{"role": "system", "content": system_prompt}
|
150 |
-
]
|
151 |
-
|
152 |
-
for prompt, answer in history:
|
153 |
-
conversation.extend([
|
154 |
-
{"role": "user", "content": prompt},
|
155 |
-
{"role": "assistant", "content": answer}
|
156 |
-
])
|
157 |
-
|
158 |
-
conversation.append({"role": "user", "content": message})
|
159 |
-
|
160 |
-
input_ids = tokenizer.apply_chat_template(
|
161 |
-
conversation,
|
162 |
-
add_generation_prompt=True,
|
163 |
-
return_tensors="pt"
|
164 |
-
).to(model.device)
|
165 |
-
|
166 |
-
streamer = TextIteratorStreamer(
|
167 |
-
tokenizer,
|
168 |
-
timeout=60.0,
|
169 |
-
skip_prompt=True,
|
170 |
-
skip_special_tokens=True
|
171 |
-
)
|
172 |
-
|
173 |
-
generate_kwargs = dict(
|
174 |
-
input_ids=input_ids,
|
175 |
-
max_new_tokens=max_new_tokens,
|
176 |
-
do_sample=False if temperature == 0 else True,
|
177 |
-
top_p=top_p,
|
178 |
-
top_k=top_k,
|
179 |
-
temperature=temperature,
|
180 |
-
repetition_penalty=penalty,
|
181 |
-
streamer=streamer,
|
182 |
-
)
|
183 |
-
|
184 |
-
buffer = ""
|
185 |
-
|
186 |
-
with torch.no_grad():
|
187 |
-
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
188 |
-
thread.start()
|
189 |
-
|
190 |
-
history = history + [[message, ""]]
|
191 |
-
|
192 |
-
for new_text in streamer:
|
193 |
-
buffer += new_text
|
194 |
-
formatted_buffer = format_text(buffer)
|
195 |
-
history[-1][1] = formatted_buffer
|
196 |
-
chat_display = format_chat_history(history)
|
197 |
-
|
198 |
-
yield history, chat_display
|
199 |
|
200 |
-
|
201 |
-
"""Process example query and return empty history and updated display"""
|
202 |
-
return [], f"User: {example}\n\n"
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
label="Your message",
|
229 |
-
lines=3
|
230 |
-
)
|
231 |
-
|
232 |
-
with gr.Row():
|
233 |
-
submit = gr.Button("Send")
|
234 |
-
clear = gr.Button("Clear")
|
235 |
-
|
236 |
-
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
237 |
-
system_prompt = gr.TextArea(
|
238 |
-
value=DEFAULT_SYSTEM_PROMPT,
|
239 |
-
label="System Prompt",
|
240 |
-
lines=5,
|
241 |
-
)
|
242 |
-
temperature = gr.Slider(
|
243 |
-
minimum=0,
|
244 |
-
maximum=1,
|
245 |
-
step=0.1,
|
246 |
-
value=0.2,
|
247 |
-
label="Temperature",
|
248 |
-
)
|
249 |
-
max_tokens = gr.Slider(
|
250 |
-
minimum=128,
|
251 |
-
maximum=32000,
|
252 |
-
step=128,
|
253 |
-
value=4000,
|
254 |
-
label="Max Tokens",
|
255 |
-
)
|
256 |
-
top_p = gr.Slider(
|
257 |
-
minimum=0.1,
|
258 |
-
maximum=1.0,
|
259 |
-
step=0.1,
|
260 |
-
value=0.8,
|
261 |
-
label="Top-p",
|
262 |
-
)
|
263 |
-
top_k = gr.Slider(
|
264 |
-
minimum=1,
|
265 |
-
maximum=100,
|
266 |
-
step=1,
|
267 |
-
value=40,
|
268 |
-
label="Top-k",
|
269 |
-
)
|
270 |
-
penalty = gr.Slider(
|
271 |
-
minimum=1.0,
|
272 |
-
maximum=2.0,
|
273 |
-
step=0.1,
|
274 |
-
value=1.2,
|
275 |
-
label="Repetition Penalty",
|
276 |
-
)
|
277 |
-
|
278 |
-
examples = gr.Examples(
|
279 |
-
examples=create_examples(),
|
280 |
-
inputs=[message],
|
281 |
-
outputs=[chat_history, chat_display],
|
282 |
-
fn=process_example,
|
283 |
-
cache_examples=False,
|
284 |
-
)
|
285 |
-
|
286 |
-
# Set up event handlers
|
287 |
-
submit_click = submit.click(
|
288 |
-
chat_response,
|
289 |
-
inputs=[
|
290 |
-
message,
|
291 |
-
chat_history,
|
292 |
-
chat_display,
|
293 |
-
system_prompt,
|
294 |
-
temperature,
|
295 |
-
max_tokens,
|
296 |
-
top_p,
|
297 |
-
top_k,
|
298 |
-
penalty,
|
299 |
-
],
|
300 |
-
outputs=[chat_history, chat_display],
|
301 |
-
show_progress=True,
|
302 |
-
)
|
303 |
-
|
304 |
-
message.submit(
|
305 |
-
chat_response,
|
306 |
-
inputs=[
|
307 |
-
message,
|
308 |
-
chat_history,
|
309 |
-
chat_display,
|
310 |
-
system_prompt,
|
311 |
-
temperature,
|
312 |
-
max_tokens,
|
313 |
-
top_p,
|
314 |
-
top_k,
|
315 |
-
penalty,
|
316 |
-
],
|
317 |
-
outputs=[chat_history, chat_display],
|
318 |
-
show_progress=True,
|
319 |
-
)
|
320 |
-
|
321 |
-
clear.click(
|
322 |
-
lambda: ([], ""),
|
323 |
-
outputs=[chat_history, chat_display],
|
324 |
-
show_progress=True,
|
325 |
-
)
|
326 |
-
|
327 |
-
submit_click.then(lambda: "", outputs=message)
|
328 |
-
message.submit(lambda: "", outputs=message)
|
329 |
-
|
330 |
-
return demo
|
331 |
|
|
|
332 |
if __name__ == "__main__":
|
333 |
-
|
334 |
-
demo.launch()
|
|
|
1 |
+
from langchain_community.vectorstores import Qdrant
|
2 |
+
from langchain_groq import ChatGroq
|
3 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
|
|
|
|
|
|
4 |
import os
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from langchain.prompts import ChatPromptTemplate
|
7 |
+
from langchain.schema.runnable import RunnablePassthrough
|
8 |
+
from langchain.schema.output_parser import StrOutputParser
|
9 |
+
from qdrant_client import QdrantClient, models
|
10 |
+
from langchain_qdrant import Qdrant
|
11 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Load environment variables
|
14 |
+
load_dotenv()
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# HuggingFace Embeddings
|
19 |
+
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Qdrant Client Setup
|
22 |
+
client = QdrantClient(
|
23 |
+
url=os.getenv("QDRANT_URL"),
|
24 |
+
api_key=os.getenv("QDRANT_API_KEY"),
|
25 |
+
prefer_grpc=True
|
26 |
+
)
|
27 |
|
28 |
+
collection_name = "mawared"
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
# Try to create collection, handle if it already exists
|
31 |
+
try:
|
32 |
+
client.create_collection(
|
33 |
+
collection_name=collection_name,
|
34 |
+
vectors_config=models.VectorParams(
|
35 |
+
size=768, # GTE-large embedding size
|
36 |
+
distance=models.Distance.COSINE
|
37 |
+
),
|
38 |
)
|
39 |
+
print(f"Created new collection: {collection_name}")
|
40 |
+
except Exception as e:
|
41 |
+
if "already exists" in str(e):
|
42 |
+
print(f"Collection {collection_name} already exists, continuing...")
|
43 |
+
else:
|
44 |
+
raise e
|
45 |
+
|
46 |
+
# Create Qdrant vector store
|
47 |
+
db = Qdrant(
|
48 |
+
client=client,
|
49 |
+
collection_name=collection_name,
|
50 |
+
embeddings=embeddings,
|
51 |
+
)
|
52 |
+
|
53 |
+
# Create retriever
|
54 |
+
retriever = db.as_retriever(
|
55 |
+
search_type="similarity",
|
56 |
+
search_kwargs={"k": 5}
|
57 |
+
)
|
58 |
|
59 |
+
# LLM setup
|
60 |
+
llm = ChatGroq(
|
61 |
+
model="llama-3.3-70b-versatile",
|
62 |
+
temperature=0.1,
|
63 |
+
max_tokens=None,
|
64 |
+
timeout=None,
|
65 |
+
max_retries=2,
|
66 |
+
)
|
67 |
|
68 |
+
# Create prompt template
|
69 |
+
template = """
|
70 |
+
You are an expert assistant specializing in the LONG COT RAG. Your task is to answer the user's question strictly based on the provided context...
|
71 |
+
Context:
|
72 |
+
{context}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
Question:
|
75 |
+
{question}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
Answer:
|
78 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
|
81 |
|
82 |
+
# Create the RAG chain
|
83 |
+
rag_chain = (
|
84 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
85 |
+
| prompt
|
86 |
+
| llm
|
87 |
+
| StrOutputParser()
|
88 |
+
)
|
89 |
+
|
90 |
+
# Define the Gradio function
|
91 |
+
def ask_question_gradio(question):
|
92 |
+
result = ""
|
93 |
+
for chunk in rag_chain.stream(question):
|
94 |
+
result += chunk
|
95 |
+
return result
|
96 |
+
|
97 |
+
# Create the Gradio interface
|
98 |
+
interface = gr.Interface(
|
99 |
+
fn=ask_question_gradio,
|
100 |
+
inputs="text",
|
101 |
+
outputs="text",
|
102 |
+
title="Mawared Expert Assistant",
|
103 |
+
description="Ask questions about the Mawared HR System or any related topic using Chain-of-Thought (CoT) and RAG principles.",
|
104 |
+
theme="compact",
|
105 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
# Launch Gradio app
|
108 |
if __name__ == "__main__":
|
109 |
+
interface.launch()
|
|