Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,334 +1,109 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
'pip install flash-attn --no-build-isolation',
|
| 5 |
-
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
|
| 6 |
-
shell=True
|
| 7 |
-
)
|
| 8 |
import os
|
| 9 |
-
import
|
| 10 |
-
import
|
| 11 |
-
import
|
| 12 |
-
import
|
|
|
|
|
|
|
| 13 |
import gradio as gr
|
| 14 |
-
from threading import Thread
|
| 15 |
-
from transformers import (
|
| 16 |
-
AutoModelForCausalLM,
|
| 17 |
-
AutoTokenizer,
|
| 18 |
-
BitsAndBytesConfig,
|
| 19 |
-
TextIteratorStreamer
|
| 20 |
-
)
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
DEFAULT_SYSTEM_PROMPT = """You are a highly intelligent Bilingual assistant who is fluent in Arabic and English."""
|
| 25 |
-
# UI Configuration
|
| 26 |
-
TITLE = "<h1><center>Mawared T Assistant</center></h1>"
|
| 27 |
-
PLACEHOLDER = "Ask me anything! I'll think through it step by step."
|
| 28 |
|
| 29 |
-
|
| 30 |
-
.duplicate-button {
|
| 31 |
-
margin: auto !important;
|
| 32 |
-
color: white !important;
|
| 33 |
-
background: black !important;
|
| 34 |
-
border-radius: 100vh !important;
|
| 35 |
-
}
|
| 36 |
-
h3 {
|
| 37 |
-
text-align: center;
|
| 38 |
-
}
|
| 39 |
-
.message-wrap {
|
| 40 |
-
overflow-x: auto;
|
| 41 |
-
}
|
| 42 |
-
.message-wrap p {
|
| 43 |
-
margin-bottom: 1em;
|
| 44 |
-
}
|
| 45 |
-
.message-wrap pre {
|
| 46 |
-
background-color: #f6f8fa;
|
| 47 |
-
border-radius: 3px;
|
| 48 |
-
padding: 16px;
|
| 49 |
-
overflow-x: auto;
|
| 50 |
-
}
|
| 51 |
-
.message-wrap code {
|
| 52 |
-
background-color: rgba(175,184,193,0.2);
|
| 53 |
-
border-radius: 3px;
|
| 54 |
-
padding: 0.2em 0.4em;
|
| 55 |
-
font-family: monospace;
|
| 56 |
-
}
|
| 57 |
-
.custom-tag {
|
| 58 |
-
color: #0066cc;
|
| 59 |
-
font-weight: bold;
|
| 60 |
-
}
|
| 61 |
-
.chat-area {
|
| 62 |
-
height: 500px !important;
|
| 63 |
-
overflow-y: auto !important;
|
| 64 |
-
}
|
| 65 |
-
"""
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
quantization_config = BitsAndBytesConfig(
|
| 70 |
-
load_in_4bit=True,
|
| 71 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 72 |
-
bnb_4bit_use_double_quant=True
|
| 73 |
-
)
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
MODEL_ID,
|
| 81 |
-
torch_dtype=torch.float16,
|
| 82 |
-
device_map="cuda",
|
| 83 |
-
attn_implementation="flash_attention_2",
|
| 84 |
-
quantization_config=quantization_config
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
(r'<Critique>', '\n<Critique>\n'),
|
| 96 |
-
(r'</Critique>', '\n</Critique>\n'),
|
| 97 |
-
(r'<Revising>', '\n<Revising>\n'),
|
| 98 |
-
(r'</Revising>', '\n</Revising>\n'),
|
| 99 |
-
(r'<Final>', '\n<Final>\n'),
|
| 100 |
-
(r'</Final>', '\n</Final>\n')
|
| 101 |
-
]
|
| 102 |
-
|
| 103 |
-
formatted = text
|
| 104 |
-
for pattern, replacement in tag_patterns:
|
| 105 |
-
formatted = re.sub(pattern, replacement, formatted)
|
| 106 |
-
|
| 107 |
-
formatted = '\n'.join(line for line in formatted.split('\n') if line.strip())
|
| 108 |
-
|
| 109 |
-
return formatted
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
formatted = []
|
| 114 |
-
for user_msg, assistant_msg in history:
|
| 115 |
-
formatted.append(f"User: {user_msg}")
|
| 116 |
-
if assistant_msg:
|
| 117 |
-
formatted.append(f"Assistant: {assistant_msg}")
|
| 118 |
-
return "\n\n".join(formatted)
|
| 119 |
-
|
| 120 |
-
def create_examples():
|
| 121 |
-
"""Create example queries for the UI"""
|
| 122 |
-
return [
|
| 123 |
-
"Explain the concept of artificial intelligence.",
|
| 124 |
-
"How does photosynthesis work?",
|
| 125 |
-
"What are the main causes of climate change?",
|
| 126 |
-
"Describe the process of protein synthesis.",
|
| 127 |
-
"What are the key features of a democratic government?",
|
| 128 |
-
"Explain the theory of relativity.",
|
| 129 |
-
"How do vaccines work to prevent diseases?",
|
| 130 |
-
"What are the major events of World War II?",
|
| 131 |
-
"Describe the structure of a human cell.",
|
| 132 |
-
"What is the role of DNA in genetics?"
|
| 133 |
-
]
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
message: str,
|
| 138 |
-
history: list,
|
| 139 |
-
chat_display: str,
|
| 140 |
-
system_prompt: str,
|
| 141 |
-
temperature: float = 1.0,
|
| 142 |
-
max_new_tokens: int = 4000,
|
| 143 |
-
top_p: float = 0.8,
|
| 144 |
-
top_k: int = 40,
|
| 145 |
-
penalty: float = 1.2,
|
| 146 |
-
):
|
| 147 |
-
"""Generate chat responses, keeping tags visible in the output"""
|
| 148 |
-
conversation = [
|
| 149 |
-
{"role": "system", "content": system_prompt}
|
| 150 |
-
]
|
| 151 |
-
|
| 152 |
-
for prompt, answer in history:
|
| 153 |
-
conversation.extend([
|
| 154 |
-
{"role": "user", "content": prompt},
|
| 155 |
-
{"role": "assistant", "content": answer}
|
| 156 |
-
])
|
| 157 |
-
|
| 158 |
-
conversation.append({"role": "user", "content": message})
|
| 159 |
-
|
| 160 |
-
input_ids = tokenizer.apply_chat_template(
|
| 161 |
-
conversation,
|
| 162 |
-
add_generation_prompt=True,
|
| 163 |
-
return_tensors="pt"
|
| 164 |
-
).to(model.device)
|
| 165 |
-
|
| 166 |
-
streamer = TextIteratorStreamer(
|
| 167 |
-
tokenizer,
|
| 168 |
-
timeout=60.0,
|
| 169 |
-
skip_prompt=True,
|
| 170 |
-
skip_special_tokens=True
|
| 171 |
-
)
|
| 172 |
-
|
| 173 |
-
generate_kwargs = dict(
|
| 174 |
-
input_ids=input_ids,
|
| 175 |
-
max_new_tokens=max_new_tokens,
|
| 176 |
-
do_sample=False if temperature == 0 else True,
|
| 177 |
-
top_p=top_p,
|
| 178 |
-
top_k=top_k,
|
| 179 |
-
temperature=temperature,
|
| 180 |
-
repetition_penalty=penalty,
|
| 181 |
-
streamer=streamer,
|
| 182 |
-
)
|
| 183 |
-
|
| 184 |
-
buffer = ""
|
| 185 |
-
|
| 186 |
-
with torch.no_grad():
|
| 187 |
-
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 188 |
-
thread.start()
|
| 189 |
-
|
| 190 |
-
history = history + [[message, ""]]
|
| 191 |
-
|
| 192 |
-
for new_text in streamer:
|
| 193 |
-
buffer += new_text
|
| 194 |
-
formatted_buffer = format_text(buffer)
|
| 195 |
-
history[-1][1] = formatted_buffer
|
| 196 |
-
chat_display = format_chat_history(history)
|
| 197 |
-
|
| 198 |
-
yield history, chat_display
|
| 199 |
|
| 200 |
-
|
| 201 |
-
"""Process example query and return empty history and updated display"""
|
| 202 |
-
return [], f"User: {example}\n\n"
|
| 203 |
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
label="Your message",
|
| 229 |
-
lines=3
|
| 230 |
-
)
|
| 231 |
-
|
| 232 |
-
with gr.Row():
|
| 233 |
-
submit = gr.Button("Send")
|
| 234 |
-
clear = gr.Button("Clear")
|
| 235 |
-
|
| 236 |
-
with gr.Accordion("βοΈ Advanced Settings", open=False):
|
| 237 |
-
system_prompt = gr.TextArea(
|
| 238 |
-
value=DEFAULT_SYSTEM_PROMPT,
|
| 239 |
-
label="System Prompt",
|
| 240 |
-
lines=5,
|
| 241 |
-
)
|
| 242 |
-
temperature = gr.Slider(
|
| 243 |
-
minimum=0,
|
| 244 |
-
maximum=1,
|
| 245 |
-
step=0.1,
|
| 246 |
-
value=0.2,
|
| 247 |
-
label="Temperature",
|
| 248 |
-
)
|
| 249 |
-
max_tokens = gr.Slider(
|
| 250 |
-
minimum=128,
|
| 251 |
-
maximum=32000,
|
| 252 |
-
step=128,
|
| 253 |
-
value=4000,
|
| 254 |
-
label="Max Tokens",
|
| 255 |
-
)
|
| 256 |
-
top_p = gr.Slider(
|
| 257 |
-
minimum=0.1,
|
| 258 |
-
maximum=1.0,
|
| 259 |
-
step=0.1,
|
| 260 |
-
value=0.8,
|
| 261 |
-
label="Top-p",
|
| 262 |
-
)
|
| 263 |
-
top_k = gr.Slider(
|
| 264 |
-
minimum=1,
|
| 265 |
-
maximum=100,
|
| 266 |
-
step=1,
|
| 267 |
-
value=40,
|
| 268 |
-
label="Top-k",
|
| 269 |
-
)
|
| 270 |
-
penalty = gr.Slider(
|
| 271 |
-
minimum=1.0,
|
| 272 |
-
maximum=2.0,
|
| 273 |
-
step=0.1,
|
| 274 |
-
value=1.2,
|
| 275 |
-
label="Repetition Penalty",
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
-
examples = gr.Examples(
|
| 279 |
-
examples=create_examples(),
|
| 280 |
-
inputs=[message],
|
| 281 |
-
outputs=[chat_history, chat_display],
|
| 282 |
-
fn=process_example,
|
| 283 |
-
cache_examples=False,
|
| 284 |
-
)
|
| 285 |
-
|
| 286 |
-
# Set up event handlers
|
| 287 |
-
submit_click = submit.click(
|
| 288 |
-
chat_response,
|
| 289 |
-
inputs=[
|
| 290 |
-
message,
|
| 291 |
-
chat_history,
|
| 292 |
-
chat_display,
|
| 293 |
-
system_prompt,
|
| 294 |
-
temperature,
|
| 295 |
-
max_tokens,
|
| 296 |
-
top_p,
|
| 297 |
-
top_k,
|
| 298 |
-
penalty,
|
| 299 |
-
],
|
| 300 |
-
outputs=[chat_history, chat_display],
|
| 301 |
-
show_progress=True,
|
| 302 |
-
)
|
| 303 |
-
|
| 304 |
-
message.submit(
|
| 305 |
-
chat_response,
|
| 306 |
-
inputs=[
|
| 307 |
-
message,
|
| 308 |
-
chat_history,
|
| 309 |
-
chat_display,
|
| 310 |
-
system_prompt,
|
| 311 |
-
temperature,
|
| 312 |
-
max_tokens,
|
| 313 |
-
top_p,
|
| 314 |
-
top_k,
|
| 315 |
-
penalty,
|
| 316 |
-
],
|
| 317 |
-
outputs=[chat_history, chat_display],
|
| 318 |
-
show_progress=True,
|
| 319 |
-
)
|
| 320 |
-
|
| 321 |
-
clear.click(
|
| 322 |
-
lambda: ([], ""),
|
| 323 |
-
outputs=[chat_history, chat_display],
|
| 324 |
-
show_progress=True,
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
submit_click.then(lambda: "", outputs=message)
|
| 328 |
-
message.submit(lambda: "", outputs=message)
|
| 329 |
-
|
| 330 |
-
return demo
|
| 331 |
|
|
|
|
| 332 |
if __name__ == "__main__":
|
| 333 |
-
|
| 334 |
-
demo.launch()
|
|
|
|
| 1 |
+
from langchain_community.vectorstores import Qdrant
|
| 2 |
+
from langchain_groq import ChatGroq
|
| 3 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import os
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
from langchain.prompts import ChatPromptTemplate
|
| 7 |
+
from langchain.schema.runnable import RunnablePassthrough
|
| 8 |
+
from langchain.schema.output_parser import StrOutputParser
|
| 9 |
+
from qdrant_client import QdrantClient, models
|
| 10 |
+
from langchain_qdrant import Qdrant
|
| 11 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
# Load environment variables
|
| 14 |
+
load_dotenv()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# HuggingFace Embeddings
|
| 19 |
+
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
# Qdrant Client Setup
|
| 22 |
+
client = QdrantClient(
|
| 23 |
+
url=os.getenv("QDRANT_URL"),
|
| 24 |
+
api_key=os.getenv("QDRANT_API_KEY"),
|
| 25 |
+
prefer_grpc=True
|
| 26 |
+
)
|
| 27 |
|
| 28 |
+
collection_name = "mawared"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
# Try to create collection, handle if it already exists
|
| 31 |
+
try:
|
| 32 |
+
client.create_collection(
|
| 33 |
+
collection_name=collection_name,
|
| 34 |
+
vectors_config=models.VectorParams(
|
| 35 |
+
size=768, # GTE-large embedding size
|
| 36 |
+
distance=models.Distance.COSINE
|
| 37 |
+
),
|
| 38 |
)
|
| 39 |
+
print(f"Created new collection: {collection_name}")
|
| 40 |
+
except Exception as e:
|
| 41 |
+
if "already exists" in str(e):
|
| 42 |
+
print(f"Collection {collection_name} already exists, continuing...")
|
| 43 |
+
else:
|
| 44 |
+
raise e
|
| 45 |
+
|
| 46 |
+
# Create Qdrant vector store
|
| 47 |
+
db = Qdrant(
|
| 48 |
+
client=client,
|
| 49 |
+
collection_name=collection_name,
|
| 50 |
+
embeddings=embeddings,
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Create retriever
|
| 54 |
+
retriever = db.as_retriever(
|
| 55 |
+
search_type="similarity",
|
| 56 |
+
search_kwargs={"k": 5}
|
| 57 |
+
)
|
| 58 |
|
| 59 |
+
# LLM setup
|
| 60 |
+
llm = ChatGroq(
|
| 61 |
+
model="llama-3.3-70b-versatile",
|
| 62 |
+
temperature=0.1,
|
| 63 |
+
max_tokens=None,
|
| 64 |
+
timeout=None,
|
| 65 |
+
max_retries=2,
|
| 66 |
+
)
|
| 67 |
|
| 68 |
+
# Create prompt template
|
| 69 |
+
template = """
|
| 70 |
+
You are an expert assistant specializing in the LONG COT RAG. Your task is to answer the user's question strictly based on the provided context...
|
| 71 |
+
Context:
|
| 72 |
+
{context}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
Question:
|
| 75 |
+
{question}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
Answer:
|
| 78 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
# Create the RAG chain
|
| 83 |
+
rag_chain = (
|
| 84 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
| 85 |
+
| prompt
|
| 86 |
+
| llm
|
| 87 |
+
| StrOutputParser()
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
# Define the Gradio function
|
| 91 |
+
def ask_question_gradio(question):
|
| 92 |
+
result = ""
|
| 93 |
+
for chunk in rag_chain.stream(question):
|
| 94 |
+
result += chunk
|
| 95 |
+
return result
|
| 96 |
+
|
| 97 |
+
# Create the Gradio interface
|
| 98 |
+
interface = gr.Interface(
|
| 99 |
+
fn=ask_question_gradio,
|
| 100 |
+
inputs="text",
|
| 101 |
+
outputs="text",
|
| 102 |
+
title="Mawared Expert Assistant",
|
| 103 |
+
description="Ask questions about the Mawared HR System or any related topic using Chain-of-Thought (CoT) and RAG principles.",
|
| 104 |
+
theme="compact",
|
| 105 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
# Launch Gradio app
|
| 108 |
if __name__ == "__main__":
|
| 109 |
+
interface.launch()
|
|
|