Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,48 +1,34 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from dotenv import load_dotenv
|
| 3 |
from langchain_community.vectorstores import Qdrant
|
|
|
|
| 4 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 5 |
-
|
| 6 |
-
from
|
| 7 |
from langchain.prompts import ChatPromptTemplate
|
| 8 |
from langchain.schema.runnable import RunnablePassthrough
|
| 9 |
from langchain.schema.output_parser import StrOutputParser
|
| 10 |
from qdrant_client import QdrantClient, models
|
| 11 |
from langchain_qdrant import Qdrant
|
| 12 |
-
|
| 13 |
-
import
|
| 14 |
-
|
| 15 |
|
| 16 |
# Load environment variables
|
| 17 |
load_dotenv()
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
qdrant_api_key = os.getenv("QDRANT_API_KEY")
|
| 22 |
-
|
| 23 |
-
print(f"QDRANT_URL: {qdrant_url}")
|
| 24 |
-
print(f"QDRANT_API_KEY: {qdrant_api_key}")
|
| 25 |
|
| 26 |
# HuggingFace Embeddings
|
| 27 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
|
| 28 |
|
| 29 |
# Qdrant Client Setup
|
| 30 |
client = QdrantClient(
|
| 31 |
-
url=
|
| 32 |
-
api_key=
|
| 33 |
-
|
| 34 |
)
|
| 35 |
|
| 36 |
-
collection_name="mawared"
|
| 37 |
-
|
| 38 |
-
# Check if the connection is successful
|
| 39 |
-
try:
|
| 40 |
-
client.get_collection(collection_name)
|
| 41 |
-
print(f"Successfully connected to Qdrant collection: {collection_name}")
|
| 42 |
-
except Exception as e:
|
| 43 |
-
print(f"Failed to connect to Qdrant: {e}")
|
| 44 |
-
raise e
|
| 45 |
-
|
| 46 |
|
| 47 |
# Try to create collection, handle if it already exists
|
| 48 |
try:
|
|
@@ -52,6 +38,7 @@ try:
|
|
| 52 |
size=768, # GTE-large embedding size
|
| 53 |
distance=models.Distance.COSINE
|
| 54 |
),
|
|
|
|
| 55 |
)
|
| 56 |
print(f"Created new collection: {collection_name}")
|
| 57 |
except Exception as e:
|
|
@@ -73,20 +60,8 @@ retriever = db.as_retriever(
|
|
| 73 |
search_kwargs={"k": 5}
|
| 74 |
)
|
| 75 |
|
| 76 |
-
# Load Hugging Face Model
|
| 77 |
-
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # Replace with your desired model
|
| 78 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 79 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
|
| 80 |
-
|
| 81 |
-
# Ensure the model is on the GPU
|
| 82 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 83 |
-
model.to(device)
|
| 84 |
|
| 85 |
-
|
| 86 |
-
hf_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 87 |
-
|
| 88 |
-
# LangChain LLM using Hugging Face Pipeline
|
| 89 |
-
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
| 90 |
|
| 91 |
# Create prompt template
|
| 92 |
template = """
|
|
@@ -117,7 +92,7 @@ Answer
|
|
| 117 |
|
| 118 |
prompt = ChatPromptTemplate.from_template(template)
|
| 119 |
|
| 120 |
-
# Create the RAG chain
|
| 121 |
rag_chain = (
|
| 122 |
{"context": retriever, "question": RunnablePassthrough()}
|
| 123 |
| prompt
|
|
@@ -125,24 +100,19 @@ rag_chain = (
|
|
| 125 |
| StrOutputParser()
|
| 126 |
)
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
def
|
| 131 |
-
|
| 132 |
for chunk in rag_chain.stream(question):
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
# Create the Gradio interface
|
| 137 |
-
interface = gr.Interface(
|
| 138 |
-
fn=ask_question_gradio,
|
| 139 |
-
inputs="text",
|
| 140 |
-
outputs="text",
|
| 141 |
-
title="Mawared Expert Assistant",
|
| 142 |
-
description="Ask questions about the Mawared HR System or any related topic using Chain-of-Thought (CoT) and RAG principles.",
|
| 143 |
-
theme="compact",
|
| 144 |
-
)
|
| 145 |
|
| 146 |
-
#
|
| 147 |
if __name__ == "__main__":
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from langchain_community.vectorstores import Qdrant
|
| 2 |
+
from langchain_groq import ChatGroq
|
| 3 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 4 |
+
import os
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
from langchain.prompts import ChatPromptTemplate
|
| 7 |
from langchain.schema.runnable import RunnablePassthrough
|
| 8 |
from langchain.schema.output_parser import StrOutputParser
|
| 9 |
from qdrant_client import QdrantClient, models
|
| 10 |
from langchain_qdrant import Qdrant
|
| 11 |
+
from langchain_qdrant import QdrantVectorStore
|
| 12 |
+
from langchain_huggingface import ChatHuggingFace
|
| 13 |
+
|
| 14 |
|
| 15 |
# Load environment variables
|
| 16 |
load_dotenv()
|
| 17 |
|
| 18 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API")
|
| 19 |
+
HF_TOKEN = os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# HuggingFace Embeddings
|
| 22 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
|
| 23 |
|
| 24 |
# Qdrant Client Setup
|
| 25 |
client = QdrantClient(
|
| 26 |
+
url=os.getenv("QDRANT_URL"),
|
| 27 |
+
api_key=os.getenv("QDRANT_API_KEY"),
|
| 28 |
+
prefer_grpc=True
|
| 29 |
)
|
| 30 |
|
| 31 |
+
collection_name = "mawared"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# Try to create collection, handle if it already exists
|
| 34 |
try:
|
|
|
|
| 38 |
size=768, # GTE-large embedding size
|
| 39 |
distance=models.Distance.COSINE
|
| 40 |
),
|
| 41 |
+
|
| 42 |
)
|
| 43 |
print(f"Created new collection: {collection_name}")
|
| 44 |
except Exception as e:
|
|
|
|
| 60 |
search_kwargs={"k": 5}
|
| 61 |
)
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
llm = ChatOpenAI(base_url="https://api-inference.huggingface.co/v1/", temperature=0 , api_key=HF_TOKEN , model="meta-llama/Llama-3.3-70B-Instruct")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
# Create prompt template
|
| 67 |
template = """
|
|
|
|
| 92 |
|
| 93 |
prompt = ChatPromptTemplate.from_template(template)
|
| 94 |
|
| 95 |
+
# Create the RAG chain using LCEL with prompt printing and streaming output
|
| 96 |
rag_chain = (
|
| 97 |
{"context": retriever, "question": RunnablePassthrough()}
|
| 98 |
| prompt
|
|
|
|
| 100 |
| StrOutputParser()
|
| 101 |
)
|
| 102 |
|
| 103 |
+
|
| 104 |
+
# Function to ask questions
|
| 105 |
+
def ask_question(question):
|
| 106 |
+
print("Answer:\t", end=" ", flush=True)
|
| 107 |
for chunk in rag_chain.stream(question):
|
| 108 |
+
print(chunk, end="", flush=True)
|
| 109 |
+
print("\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
# Example usage
|
| 112 |
if __name__ == "__main__":
|
| 113 |
+
while True:
|
| 114 |
+
user_question = input("\n \n \n Ask a question (or type 'quit' to exit): ")
|
| 115 |
+
if user_question.lower() == 'quit':
|
| 116 |
+
break
|
| 117 |
+
answer = ask_question(user_question)
|
| 118 |
+
# print("\nFull answer received.\n")
|