Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,34 @@
|
|
1 |
-
import os
|
2 |
-
from dotenv import load_dotenv
|
3 |
from langchain_community.vectorstores import Qdrant
|
|
|
4 |
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
-
|
6 |
-
from
|
7 |
from langchain.prompts import ChatPromptTemplate
|
8 |
from langchain.schema.runnable import RunnablePassthrough
|
9 |
from langchain.schema.output_parser import StrOutputParser
|
10 |
from qdrant_client import QdrantClient, models
|
11 |
from langchain_qdrant import Qdrant
|
12 |
-
|
13 |
-
import
|
14 |
-
|
15 |
|
16 |
# Load environment variables
|
17 |
load_dotenv()
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
qdrant_api_key = os.getenv("QDRANT_API_KEY")
|
22 |
-
|
23 |
-
print(f"QDRANT_URL: {qdrant_url}")
|
24 |
-
print(f"QDRANT_API_KEY: {qdrant_api_key}")
|
25 |
|
26 |
# HuggingFace Embeddings
|
27 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
|
28 |
|
29 |
# Qdrant Client Setup
|
30 |
client = QdrantClient(
|
31 |
-
url=
|
32 |
-
api_key=
|
33 |
-
|
34 |
)
|
35 |
|
36 |
-
collection_name="mawared"
|
37 |
-
|
38 |
-
# Check if the connection is successful
|
39 |
-
try:
|
40 |
-
client.get_collection(collection_name)
|
41 |
-
print(f"Successfully connected to Qdrant collection: {collection_name}")
|
42 |
-
except Exception as e:
|
43 |
-
print(f"Failed to connect to Qdrant: {e}")
|
44 |
-
raise e
|
45 |
-
|
46 |
|
47 |
# Try to create collection, handle if it already exists
|
48 |
try:
|
@@ -52,6 +38,7 @@ try:
|
|
52 |
size=768, # GTE-large embedding size
|
53 |
distance=models.Distance.COSINE
|
54 |
),
|
|
|
55 |
)
|
56 |
print(f"Created new collection: {collection_name}")
|
57 |
except Exception as e:
|
@@ -73,20 +60,8 @@ retriever = db.as_retriever(
|
|
73 |
search_kwargs={"k": 5}
|
74 |
)
|
75 |
|
76 |
-
# Load Hugging Face Model
|
77 |
-
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # Replace with your desired model
|
78 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
79 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
|
80 |
-
|
81 |
-
# Ensure the model is on the GPU
|
82 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
83 |
-
model.to(device)
|
84 |
|
85 |
-
|
86 |
-
hf_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
87 |
-
|
88 |
-
# LangChain LLM using Hugging Face Pipeline
|
89 |
-
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
90 |
|
91 |
# Create prompt template
|
92 |
template = """
|
@@ -117,7 +92,7 @@ Answer
|
|
117 |
|
118 |
prompt = ChatPromptTemplate.from_template(template)
|
119 |
|
120 |
-
# Create the RAG chain
|
121 |
rag_chain = (
|
122 |
{"context": retriever, "question": RunnablePassthrough()}
|
123 |
| prompt
|
@@ -125,24 +100,19 @@ rag_chain = (
|
|
125 |
| StrOutputParser()
|
126 |
)
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
def
|
131 |
-
|
132 |
for chunk in rag_chain.stream(question):
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
# Create the Gradio interface
|
137 |
-
interface = gr.Interface(
|
138 |
-
fn=ask_question_gradio,
|
139 |
-
inputs="text",
|
140 |
-
outputs="text",
|
141 |
-
title="Mawared Expert Assistant",
|
142 |
-
description="Ask questions about the Mawared HR System or any related topic using Chain-of-Thought (CoT) and RAG principles.",
|
143 |
-
theme="compact",
|
144 |
-
)
|
145 |
|
146 |
-
#
|
147 |
if __name__ == "__main__":
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from langchain_community.vectorstores import Qdrant
|
2 |
+
from langchain_groq import ChatGroq
|
3 |
from langchain_huggingface import HuggingFaceEmbeddings
|
4 |
+
import os
|
5 |
+
from dotenv import load_dotenv
|
6 |
from langchain.prompts import ChatPromptTemplate
|
7 |
from langchain.schema.runnable import RunnablePassthrough
|
8 |
from langchain.schema.output_parser import StrOutputParser
|
9 |
from qdrant_client import QdrantClient, models
|
10 |
from langchain_qdrant import Qdrant
|
11 |
+
from langchain_qdrant import QdrantVectorStore
|
12 |
+
from langchain_huggingface import ChatHuggingFace
|
13 |
+
|
14 |
|
15 |
# Load environment variables
|
16 |
load_dotenv()
|
17 |
|
18 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API")
|
19 |
+
HF_TOKEN = os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# HuggingFace Embeddings
|
22 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
|
23 |
|
24 |
# Qdrant Client Setup
|
25 |
client = QdrantClient(
|
26 |
+
url=os.getenv("QDRANT_URL"),
|
27 |
+
api_key=os.getenv("QDRANT_API_KEY"),
|
28 |
+
prefer_grpc=True
|
29 |
)
|
30 |
|
31 |
+
collection_name = "mawared"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Try to create collection, handle if it already exists
|
34 |
try:
|
|
|
38 |
size=768, # GTE-large embedding size
|
39 |
distance=models.Distance.COSINE
|
40 |
),
|
41 |
+
|
42 |
)
|
43 |
print(f"Created new collection: {collection_name}")
|
44 |
except Exception as e:
|
|
|
60 |
search_kwargs={"k": 5}
|
61 |
)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
llm = ChatOpenAI(base_url="https://api-inference.huggingface.co/v1/", temperature=0 , api_key=HF_TOKEN , model="meta-llama/Llama-3.3-70B-Instruct")
|
|
|
|
|
|
|
|
|
65 |
|
66 |
# Create prompt template
|
67 |
template = """
|
|
|
92 |
|
93 |
prompt = ChatPromptTemplate.from_template(template)
|
94 |
|
95 |
+
# Create the RAG chain using LCEL with prompt printing and streaming output
|
96 |
rag_chain = (
|
97 |
{"context": retriever, "question": RunnablePassthrough()}
|
98 |
| prompt
|
|
|
100 |
| StrOutputParser()
|
101 |
)
|
102 |
|
103 |
+
|
104 |
+
# Function to ask questions
|
105 |
+
def ask_question(question):
|
106 |
+
print("Answer:\t", end=" ", flush=True)
|
107 |
for chunk in rag_chain.stream(question):
|
108 |
+
print(chunk, end="", flush=True)
|
109 |
+
print("\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
# Example usage
|
112 |
if __name__ == "__main__":
|
113 |
+
while True:
|
114 |
+
user_question = input("\n \n \n Ask a question (or type 'quit' to exit): ")
|
115 |
+
if user_question.lower() == 'quit':
|
116 |
+
break
|
117 |
+
answer = ask_question(user_question)
|
118 |
+
# print("\nFull answer received.\n")
|