File size: 8,929 Bytes
4e3cd79 5a6715f 8edd409 5a6715f 8359d12 72ccc50 8359d12 0217602 c2c5723 0217602 cd66018 4c81ad7 34b0a17 7eb2b48 bbc9fae 7eb2b48 936fd23 9950104 8359d12 8edd409 4c81ad7 cd66018 4c81ad7 736da61 bbc9fae 4c81ad7 3206d9d 547606d 3206d9d 4c81ad7 52a3d0e 4c81ad7 03d6372 4c81ad7 52a3d0e 4c81ad7 736da61 4c81ad7 52a3d0e 4c81ad7 52a3d0e 4c81ad7 91a7826 b89373e 4c81ad7 14bd49d 92b6108 a106ce8 92b6108 936fd23 5a6715f 9367f10 14bd49d 64f4771 a76f205 64f4771 5a6715f 632dfa0 64f4771 5a6715f 64f4771 92b6108 75f78f2 64f4771 5a6715f 64f4771 5a6715f 64f4771 4c81ad7 9c4781b 4c81ad7 595159e a61471c 595159e a61471c 595159e a61471c 595159e a61471c 595159e a61471c 7074c5b 595159e 4c81ad7 9c4781b 7fa65bd 4c81ad7 2c311d4 4c81ad7 a76f205 4c81ad7 a76f205 5bdbb4a a76f205 4c81ad7 c05cd1b 632dfa0 4c81ad7 cd66018 c05cd1b cd66018 6e94dfd cd66018 8359d12 0217602 51a7d9e 0217602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import spaces
import subprocess
subprocess.run(
'pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
import os
import torch
from dotenv import load_dotenv
from langchain_community.vectorstores import Qdrant
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
from qdrant_client import QdrantClient, models
from langchain_openai import ChatOpenAI
import gradio as gr
import logging
from typing import List, Tuple
from dataclasses import dataclass
from datetime import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM ,pipeline
from langchain_huggingface.llms import HuggingFacePipeline
import re
from langchain_huggingface.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline,BitsAndBytesConfig,TextIteratorStreamer
from langchain_cerebras import ChatCerebras
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class Message:
role: str
content: str
timestamp: str
class ChatHistory:
def __init__(self):
self.messages: List[Message] = []
def add_message(self, role: str, content: str):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self.messages.append(Message(role=role, content=content, timestamp=timestamp))
def get_formatted_history(self, max_messages: int = 10) -> str:
"""Returns the most recent conversation history formatted as a string"""
recent_messages = self.messages[-max_messages:] if len(self.messages) > max_messages else self.messages
formatted_history = "\n".join([
f"{msg.role}: {msg.content}" for msg in recent_messages
])
return formatted_history
def clear(self):
self.messages = []
# Load environment variables
load_dotenv()
# HuggingFace API Token
HF_TOKEN = os.getenv("HF_TOKEN")
C_apikey = os.getenv("C_apikey")
OPENAPI_KEY = os.getenv("OPENAPI_KEY")
if not HF_TOKEN:
logger.error("HF_TOKEN is not set in the environment variables.")
exit(1)
# HuggingFace Embeddings
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Qdrant Client Setup
try:
client = QdrantClient(
url=os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY"),
prefer_grpc=False
)
except Exception as e:
logger.error("Failed to connect to Qdrant. Ensure QDRANT_URL and QDRANT_API_KEY are correctly set.")
exit(1)
# Define collection name
collection_name = "mawared"
# Try to create collection
try:
client.create_collection(
collection_name=collection_name,
vectors_config=models.VectorParams(
size=384, # GTE-large embedding size
distance=models.Distance.COSINE
)
)
logger.info(f"Created new collection: {collection_name}")
except Exception as e:
if "already exists" in str(e):
logger.info(f"Collection {collection_name} already exists, continuing...")
else:
logger.error(f"Error creating collection: {e}")
exit(1)
# Create Qdrant vector store
db = Qdrant(
client=client,
collection_name=collection_name,
embeddings=embeddings,
)
# Create retriever
retriever = db.as_retriever(
search_type="similarity",
search_kwargs={"k": 5}
)
# retriever = db.as_retriever(
# search_type="mmr",
# search_kwargs={"k": 5, "fetch_k": 10, "lambda_mult": 0.5}
# )
# retriever = db.as_retriever(
# search_type="similarity_score_threshold",
# search_kwargs={"k": 5, "score_threshold": 0.8}
# )
# Load model directly
# Set up the LLM
# llm = ChatOpenAI(
# base_url="https://api-inference.huggingface.co/v1/",
# temperature=0,
# api_key=HF_TOKEN,
# model="mistralai/Mistral-Nemo-Instruct-2407",
# max_tokens=None,
# timeout=None
# )
#llm = ChatOpenAI(
# base_url="https://openrouter.ai/api/v1",
#temperature=0.01,
# api_key=OPENAPI_KEY,
#model="google/gemini-2.0-flash-exp:free",
#max_tokens=None,
#timeout=None,
# max_retries=3,
#)
# llm = ChatCerebras(
# model="llama-3.3-70b",
# api_key=C_apikey,
# stream=True
# )
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
model_id = "meta-llama/Llama-3.2-3B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="cuda",
attn_implementation="flash_attention_2",
#quantization_config=quantization_config
)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=8192 )
llm = HuggingFacePipeline(pipeline=pipe)
# Create prompt template with chat history
template = """
You are an expert assistant specializing in the Mawared HR System. Your role is to provide precise and contextually relevant answers based on the retrieved context and chat history.
Key Responsibilities:
Use the given chat history and retrieved context to craft accurate and detailed responses.
If necessary, ask specific and targeted clarifying questions to gather more information.
Present step-by-step instructions in a clear, numbered format when applicable.
Rules for Responses:
Strictly use the information from the provided context and chat history. Avoid making up or fabricating any details.
Do not reference the retrieval process, sources, pages, or documents in your responses.
Maintain a conversational flow by asking relevant follow-up questions to engage the user and enhance the interaction.
Inputs for Your Response:
Previous Conversation: {chat_history}
Retrieved Context: {context}
Current Question: {question}
Answer:{{answer}}
Your answers must be expressive, detailed, and fully address the user’s needs without deviating from the provided information.
"""
prompt = ChatPromptTemplate.from_template(template)
# Create the RAG chain with chat history
def create_rag_chain(chat_history: str):
chain = (
{
"context": retriever,
"question": RunnablePassthrough(),
"chat_history": lambda x: chat_history
}
| prompt
| llm
| StrOutputParser()
)
return chain
# Initialize chat history
chat_history = ChatHistory()
# Gradio Function
@spaces.GPU()
def ask_question_gradio(question, history):
try:
# Add user question to chat history
chat_history.add_message("user", question)
# Get formatted history
formatted_history = chat_history.get_formatted_history()
# Create chain with current chat history
rag_chain = create_rag_chain(formatted_history)
# Generate response
response = ""
for chunk in rag_chain.stream(question):
response += chunk
# Add assistant response to chat history
chat_history.add_message("assistant", response)
# Update Gradio chat history
history.append({"role": "user", "content": question})
history.append({"role": "assistant", "content": response})
return "", history
except Exception as e:
logger.error(f"Error during question processing: {e}")
return "", history + [{"role": "assistant", "content": "An error occurred. Please try again later."}]
def clear_chat():
chat_history.clear()
return [], ""
# Gradio Interface
with gr.Blocks(theme='lone17/kotaemon') as iface:
gr.Image("Image.jpg" , width=1200 , height=300 ,show_label=False, show_download_button=False)
gr.Markdown("# Mawared HR Assistant 2.5.1")
gr.Markdown('### Instructions')
gr.Markdown("Ask a question about MawaredHR and get a detailed answer , if you get an error try again with same prompt , its an Api issue and we are working on it 😀")
chatbot = gr.Chatbot(
height=750,
show_label=False,
type="messages" # Using the new messages format
)
with gr.Row():
question_input = gr.Textbox(
label="Ask a question:",
placeholder="Type your question here...",
scale=30
)
clear_button = gr.Button("Clear Chat", scale=1)
question_input.submit(
ask_question_gradio,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot]
)
clear_button.click(
clear_chat,
outputs=[chatbot, question_input]
)
# Launch the Gradio App
if __name__ == "__main__":
iface.launch() |