Update app.py
Browse files
app.py
CHANGED
@@ -12,195 +12,31 @@ import logging
|
|
12 |
from typing import List, Tuple
|
13 |
from dataclasses import dataclass
|
14 |
from datetime import datetime
|
15 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
16 |
from langchain_huggingface.llms import HuggingFacePipeline
|
17 |
import spaces
|
18 |
|
|
|
19 |
|
20 |
-
#
|
21 |
-
logging.basicConfig(level=logging.INFO)
|
22 |
-
logger = logging.getLogger(__name__)
|
23 |
-
|
24 |
-
@dataclass
|
25 |
-
class Message:
|
26 |
-
role: str
|
27 |
-
content: str
|
28 |
-
timestamp: str
|
29 |
-
|
30 |
-
class ChatHistory:
|
31 |
-
def __init__(self):
|
32 |
-
self.messages: List[Message] = []
|
33 |
-
|
34 |
-
def add_message(self, role: str, content: str):
|
35 |
-
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
36 |
-
self.messages.append(Message(role=role, content=content, timestamp=timestamp))
|
37 |
-
|
38 |
-
def get_formatted_history(self, max_messages: int = 5) -> str:
|
39 |
-
"""Returns the most recent conversation history formatted as a string"""
|
40 |
-
recent_messages = self.messages[-max_messages:] if len(self.messages) > max_messages else self.messages
|
41 |
-
formatted_history = "\n".join([
|
42 |
-
f"{msg.role}: {msg.content}" for msg in recent_messages
|
43 |
-
])
|
44 |
-
return formatted_history
|
45 |
-
|
46 |
-
def clear(self):
|
47 |
-
self.messages = []
|
48 |
-
|
49 |
-
# Load environment variables
|
50 |
-
load_dotenv()
|
51 |
-
|
52 |
-
# HuggingFace API Token
|
53 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
54 |
-
if not HF_TOKEN:
|
55 |
-
logger.error("HF_TOKEN is not set in the environment variables.")
|
56 |
-
exit(1)
|
57 |
-
|
58 |
-
# HuggingFace Embeddings
|
59 |
-
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
|
60 |
-
|
61 |
-
# Qdrant Client Setup
|
62 |
-
try:
|
63 |
-
client = QdrantClient(
|
64 |
-
url=os.getenv("QDRANT_URL"),
|
65 |
-
api_key=os.getenv("QDRANT_API_KEY"),
|
66 |
-
prefer_grpc=True
|
67 |
-
)
|
68 |
-
except Exception as e:
|
69 |
-
logger.error("Failed to connect to Qdrant. Ensure QDRANT_URL and QDRANT_API_KEY are correctly set.")
|
70 |
-
exit(1)
|
71 |
-
|
72 |
-
# Define collection name
|
73 |
-
collection_name = "mawared"
|
74 |
-
|
75 |
-
# Try to create collection
|
76 |
-
try:
|
77 |
-
client.create_collection(
|
78 |
-
collection_name=collection_name,
|
79 |
-
vectors_config=models.VectorParams(
|
80 |
-
size=768, # GTE-large embedding size
|
81 |
-
distance=models.Distance.COSINE
|
82 |
-
)
|
83 |
-
)
|
84 |
-
logger.info(f"Created new collection: {collection_name}")
|
85 |
-
except Exception as e:
|
86 |
-
if "already exists" in str(e):
|
87 |
-
logger.info(f"Collection {collection_name} already exists, continuing...")
|
88 |
-
else:
|
89 |
-
logger.error(f"Error creating collection: {e}")
|
90 |
-
exit(1)
|
91 |
-
|
92 |
-
# Create Qdrant vector store
|
93 |
-
db = Qdrant(
|
94 |
-
client=client,
|
95 |
-
collection_name=collection_name,
|
96 |
-
embeddings=embeddings,
|
97 |
-
)
|
98 |
-
|
99 |
-
# Create retriever
|
100 |
-
retriever = db.as_retriever(
|
101 |
-
search_type="similarity",
|
102 |
-
search_kwargs={"k": 5}
|
103 |
-
)
|
104 |
-
|
105 |
-
|
106 |
-
# Load model directly
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
# Set up the LLM
|
111 |
-
llm = ChatOpenAI(
|
112 |
-
base_url="https://api-inference.huggingface.co/v1/",
|
113 |
-
temperature=0,
|
114 |
-
api_key=HF_TOKEN,
|
115 |
-
model="meta-llama/Llama-3.3-70B-Instruct",
|
116 |
-
max_tokens=None,
|
117 |
-
timeout=None
|
118 |
-
|
119 |
-
)
|
120 |
-
|
121 |
-
# Create prompt template with chat history
|
122 |
-
template = """
|
123 |
-
You are an expert assistant specializing in the Mawared HR System.
|
124 |
-
Your task is to provide accurate and contextually relevant answers based on the provided context and chat history.
|
125 |
-
If you need more information, ask targeted clarifying questions.
|
126 |
-
Ensure you provide detailed Numbered step by step to the user and be very accurate.
|
127 |
-
Previous Conversation:
|
128 |
-
{chat_history}
|
129 |
-
Current Context:
|
130 |
-
{context}
|
131 |
-
Current Question:
|
132 |
-
{question}
|
133 |
-
Ask followup questions based on your provided asnwer to create a conversational flow, Only answer form the provided context and chat history , dont make up any information.
|
134 |
-
answer only and only from the given context and knowledgebase.
|
135 |
-
Answer:
|
136 |
-
"""
|
137 |
-
|
138 |
-
prompt = ChatPromptTemplate.from_template(template)
|
139 |
-
|
140 |
-
# Create the RAG chain with chat history
|
141 |
-
def create_rag_chain(chat_history: str):
|
142 |
-
chain = (
|
143 |
-
{
|
144 |
-
"context": retriever,
|
145 |
-
"question": RunnablePassthrough(),
|
146 |
-
"chat_history": lambda x: chat_history
|
147 |
-
}
|
148 |
-
| prompt
|
149 |
-
| llm
|
150 |
-
| StrOutputParser()
|
151 |
-
)
|
152 |
-
return chain
|
153 |
-
|
154 |
-
# Initialize chat history
|
155 |
-
chat_history = ChatHistory()
|
156 |
-
|
157 |
-
# Gradio Function
|
158 |
-
|
159 |
-
def ask_question_gradio(question, history):
|
160 |
-
try:
|
161 |
-
# Add user question to chat history
|
162 |
-
chat_history.add_message("user", question)
|
163 |
-
|
164 |
-
# Get formatted history
|
165 |
-
formatted_history = chat_history.get_formatted_history()
|
166 |
-
|
167 |
-
# Create chain with current chat history
|
168 |
-
rag_chain = create_rag_chain(formatted_history)
|
169 |
-
|
170 |
-
# Generate response
|
171 |
-
response = ""
|
172 |
-
for chunk in rag_chain.stream(question):
|
173 |
-
response += chunk
|
174 |
-
|
175 |
-
# Add assistant response to chat history
|
176 |
-
chat_history.add_message("assistant", response)
|
177 |
-
|
178 |
-
# Update Gradio chat history
|
179 |
-
history.append({"role": "user", "content": question})
|
180 |
-
history.append({"role": "assistant", "content": response})
|
181 |
-
|
182 |
-
return "", history
|
183 |
-
except Exception as e:
|
184 |
-
logger.error(f"Error during question processing: {e}")
|
185 |
-
return "", history + [{"role": "assistant", "content": "An error occurred. Please try again later."}]
|
186 |
-
|
187 |
-
def clear_chat():
|
188 |
-
chat_history.clear()
|
189 |
-
return [], ""
|
190 |
-
|
191 |
-
# Gradio Interface
|
192 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
193 |
-
gr.Image("Image.jpg"
|
194 |
gr.Markdown("# Mawared HR Assistant")
|
195 |
gr.Markdown("Ask questions about the Mawared HR system, and this assistant will provide answers based on the available context and conversation history.")
|
196 |
-
|
197 |
-
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
with gr.Row():
|
206 |
question_input = gr.Textbox(
|
@@ -210,6 +46,48 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
210 |
)
|
211 |
clear_button = gr.Button("Clear Chat", scale=1)
|
212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
question_input.submit(
|
214 |
ask_question_gradio,
|
215 |
inputs=[question_input, chatbot],
|
@@ -220,6 +98,31 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
220 |
clear_chat,
|
221 |
outputs=[chatbot, question_input]
|
222 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
# Launch the Gradio App
|
225 |
if __name__ == "__main__":
|
|
|
12 |
from typing import List, Tuple
|
13 |
from dataclasses import dataclass
|
14 |
from datetime import datetime
|
15 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
16 |
from langchain_huggingface.llms import HuggingFacePipeline
|
17 |
import spaces
|
18 |
|
19 |
+
# [Previous imports and configurations remain the same]
|
20 |
|
21 |
+
# Modified Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
23 |
+
gr.Image("Image.jpg", width=1200, height=300, show_label=False, show_download_button=False)
|
24 |
gr.Markdown("# Mawared HR Assistant")
|
25 |
gr.Markdown("Ask questions about the Mawared HR system, and this assistant will provide answers based on the available context and conversation history.")
|
|
|
|
|
26 |
|
27 |
+
# Create a state to store the latest assistant response
|
28 |
+
latest_response = gr.State("")
|
29 |
+
|
30 |
+
with gr.Row():
|
31 |
+
chatbot = gr.Chatbot(
|
32 |
+
height=400,
|
33 |
+
show_label=False,
|
34 |
+
type="messages"
|
35 |
+
)
|
36 |
+
|
37 |
+
with gr.Row():
|
38 |
+
# Add copy button next to the response
|
39 |
+
copy_button = gr.Button("📋 Copy Last Response", visible=True)
|
40 |
|
41 |
with gr.Row():
|
42 |
question_input = gr.Textbox(
|
|
|
46 |
)
|
47 |
clear_button = gr.Button("Clear Chat", scale=1)
|
48 |
|
49 |
+
def copy_last_response(history):
|
50 |
+
if history:
|
51 |
+
# Find the last assistant message
|
52 |
+
for message in reversed(history):
|
53 |
+
if message["role"] == "assistant":
|
54 |
+
return message["content"]
|
55 |
+
return ""
|
56 |
+
|
57 |
+
# Modified ask_question_gradio function to update the latest response
|
58 |
+
def ask_question_gradio(question, history):
|
59 |
+
try:
|
60 |
+
# Add user question to chat history
|
61 |
+
chat_history.add_message("user", question)
|
62 |
+
|
63 |
+
# Get formatted history
|
64 |
+
formatted_history = chat_history.get_formatted_history()
|
65 |
+
|
66 |
+
# Create chain with current chat history
|
67 |
+
rag_chain = create_rag_chain(formatted_history)
|
68 |
+
|
69 |
+
# Generate response
|
70 |
+
response = ""
|
71 |
+
for chunk in rag_chain.stream(question):
|
72 |
+
response += chunk
|
73 |
+
|
74 |
+
# Add assistant response to chat history
|
75 |
+
chat_history.add_message("assistant", response)
|
76 |
+
|
77 |
+
# Update Gradio chat history
|
78 |
+
history.append({"role": "user", "content": question})
|
79 |
+
history.append({"role": "assistant", "content": response})
|
80 |
+
|
81 |
+
return "", history
|
82 |
+
except Exception as e:
|
83 |
+
logger.error(f"Error during question processing: {e}")
|
84 |
+
return "", history + [{"role": "assistant", "content": "An error occurred. Please try again later."}]
|
85 |
+
|
86 |
+
def clear_chat():
|
87 |
+
chat_history.clear()
|
88 |
+
return [], ""
|
89 |
+
|
90 |
+
# Connect the components
|
91 |
question_input.submit(
|
92 |
ask_question_gradio,
|
93 |
inputs=[question_input, chatbot],
|
|
|
98 |
clear_chat,
|
99 |
outputs=[chatbot, question_input]
|
100 |
)
|
101 |
+
|
102 |
+
# Add copy button functionality
|
103 |
+
copy_button.click(
|
104 |
+
copy_last_response,
|
105 |
+
inputs=[chatbot],
|
106 |
+
outputs=[],
|
107 |
+
_js="""
|
108 |
+
async (response) => {
|
109 |
+
await navigator.clipboard.writeText(response);
|
110 |
+
// Optional: Show a toast notification
|
111 |
+
const toast = document.createElement('div');
|
112 |
+
toast.textContent = 'Response copied to clipboard!';
|
113 |
+
toast.style.position = 'fixed';
|
114 |
+
toast.style.bottom = '20px';
|
115 |
+
toast.style.right = '20px';
|
116 |
+
toast.style.backgroundColor = '#4CAF50';
|
117 |
+
toast.style.color = 'white';
|
118 |
+
toast.style.padding = '15px';
|
119 |
+
toast.style.borderRadius = '5px';
|
120 |
+
toast.style.zIndex = '1000';
|
121 |
+
document.body.appendChild(toast);
|
122 |
+
setTimeout(() => toast.remove(), 2000);
|
123 |
+
}
|
124 |
+
"""
|
125 |
+
)
|
126 |
|
127 |
# Launch the Gradio App
|
128 |
if __name__ == "__main__":
|