Daemontatox commited on
Commit
736da61
·
verified ·
1 Parent(s): 334c688

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -181
app.py CHANGED
@@ -12,195 +12,31 @@ import logging
12
  from typing import List, Tuple
13
  from dataclasses import dataclass
14
  from datetime import datetime
15
- from transformers import AutoTokenizer, AutoModelForCausalLM ,pipeline
16
  from langchain_huggingface.llms import HuggingFacePipeline
17
  import spaces
18
 
 
19
 
20
- # Configure logging
21
- logging.basicConfig(level=logging.INFO)
22
- logger = logging.getLogger(__name__)
23
-
24
- @dataclass
25
- class Message:
26
- role: str
27
- content: str
28
- timestamp: str
29
-
30
- class ChatHistory:
31
- def __init__(self):
32
- self.messages: List[Message] = []
33
-
34
- def add_message(self, role: str, content: str):
35
- timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
36
- self.messages.append(Message(role=role, content=content, timestamp=timestamp))
37
-
38
- def get_formatted_history(self, max_messages: int = 5) -> str:
39
- """Returns the most recent conversation history formatted as a string"""
40
- recent_messages = self.messages[-max_messages:] if len(self.messages) > max_messages else self.messages
41
- formatted_history = "\n".join([
42
- f"{msg.role}: {msg.content}" for msg in recent_messages
43
- ])
44
- return formatted_history
45
-
46
- def clear(self):
47
- self.messages = []
48
-
49
- # Load environment variables
50
- load_dotenv()
51
-
52
- # HuggingFace API Token
53
- HF_TOKEN = os.getenv("HF_TOKEN")
54
- if not HF_TOKEN:
55
- logger.error("HF_TOKEN is not set in the environment variables.")
56
- exit(1)
57
-
58
- # HuggingFace Embeddings
59
- embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
60
-
61
- # Qdrant Client Setup
62
- try:
63
- client = QdrantClient(
64
- url=os.getenv("QDRANT_URL"),
65
- api_key=os.getenv("QDRANT_API_KEY"),
66
- prefer_grpc=True
67
- )
68
- except Exception as e:
69
- logger.error("Failed to connect to Qdrant. Ensure QDRANT_URL and QDRANT_API_KEY are correctly set.")
70
- exit(1)
71
-
72
- # Define collection name
73
- collection_name = "mawared"
74
-
75
- # Try to create collection
76
- try:
77
- client.create_collection(
78
- collection_name=collection_name,
79
- vectors_config=models.VectorParams(
80
- size=768, # GTE-large embedding size
81
- distance=models.Distance.COSINE
82
- )
83
- )
84
- logger.info(f"Created new collection: {collection_name}")
85
- except Exception as e:
86
- if "already exists" in str(e):
87
- logger.info(f"Collection {collection_name} already exists, continuing...")
88
- else:
89
- logger.error(f"Error creating collection: {e}")
90
- exit(1)
91
-
92
- # Create Qdrant vector store
93
- db = Qdrant(
94
- client=client,
95
- collection_name=collection_name,
96
- embeddings=embeddings,
97
- )
98
-
99
- # Create retriever
100
- retriever = db.as_retriever(
101
- search_type="similarity",
102
- search_kwargs={"k": 5}
103
- )
104
-
105
-
106
- # Load model directly
107
-
108
-
109
-
110
- # Set up the LLM
111
- llm = ChatOpenAI(
112
- base_url="https://api-inference.huggingface.co/v1/",
113
- temperature=0,
114
- api_key=HF_TOKEN,
115
- model="meta-llama/Llama-3.3-70B-Instruct",
116
- max_tokens=None,
117
- timeout=None
118
-
119
- )
120
-
121
- # Create prompt template with chat history
122
- template = """
123
- You are an expert assistant specializing in the Mawared HR System.
124
- Your task is to provide accurate and contextually relevant answers based on the provided context and chat history.
125
- If you need more information, ask targeted clarifying questions.
126
- Ensure you provide detailed Numbered step by step to the user and be very accurate.
127
- Previous Conversation:
128
- {chat_history}
129
- Current Context:
130
- {context}
131
- Current Question:
132
- {question}
133
- Ask followup questions based on your provided asnwer to create a conversational flow, Only answer form the provided context and chat history , dont make up any information.
134
- answer only and only from the given context and knowledgebase.
135
- Answer:
136
- """
137
-
138
- prompt = ChatPromptTemplate.from_template(template)
139
-
140
- # Create the RAG chain with chat history
141
- def create_rag_chain(chat_history: str):
142
- chain = (
143
- {
144
- "context": retriever,
145
- "question": RunnablePassthrough(),
146
- "chat_history": lambda x: chat_history
147
- }
148
- | prompt
149
- | llm
150
- | StrOutputParser()
151
- )
152
- return chain
153
-
154
- # Initialize chat history
155
- chat_history = ChatHistory()
156
-
157
- # Gradio Function
158
-
159
- def ask_question_gradio(question, history):
160
- try:
161
- # Add user question to chat history
162
- chat_history.add_message("user", question)
163
-
164
- # Get formatted history
165
- formatted_history = chat_history.get_formatted_history()
166
-
167
- # Create chain with current chat history
168
- rag_chain = create_rag_chain(formatted_history)
169
-
170
- # Generate response
171
- response = ""
172
- for chunk in rag_chain.stream(question):
173
- response += chunk
174
-
175
- # Add assistant response to chat history
176
- chat_history.add_message("assistant", response)
177
-
178
- # Update Gradio chat history
179
- history.append({"role": "user", "content": question})
180
- history.append({"role": "assistant", "content": response})
181
-
182
- return "", history
183
- except Exception as e:
184
- logger.error(f"Error during question processing: {e}")
185
- return "", history + [{"role": "assistant", "content": "An error occurred. Please try again later."}]
186
-
187
- def clear_chat():
188
- chat_history.clear()
189
- return [], ""
190
-
191
- # Gradio Interface
192
  with gr.Blocks(theme=gr.themes.Soft()) as iface:
193
- gr.Image("Image.jpg" , width=1200 , height=300 ,show_label=False, show_download_button=False)
194
  gr.Markdown("# Mawared HR Assistant")
195
  gr.Markdown("Ask questions about the Mawared HR system, and this assistant will provide answers based on the available context and conversation history.")
196
-
197
-
198
 
199
- chatbot = gr.Chatbot(
200
- height=400,
201
- show_label=False,
202
- type="messages" # Using the new messages format
203
- )
 
 
 
 
 
 
 
 
204
 
205
  with gr.Row():
206
  question_input = gr.Textbox(
@@ -210,6 +46,48 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
210
  )
211
  clear_button = gr.Button("Clear Chat", scale=1)
212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213
  question_input.submit(
214
  ask_question_gradio,
215
  inputs=[question_input, chatbot],
@@ -220,6 +98,31 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
220
  clear_chat,
221
  outputs=[chatbot, question_input]
222
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
 
224
  # Launch the Gradio App
225
  if __name__ == "__main__":
 
12
  from typing import List, Tuple
13
  from dataclasses import dataclass
14
  from datetime import datetime
15
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
16
  from langchain_huggingface.llms import HuggingFacePipeline
17
  import spaces
18
 
19
+ # [Previous imports and configurations remain the same]
20
 
21
+ # Modified Gradio Interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  with gr.Blocks(theme=gr.themes.Soft()) as iface:
23
+ gr.Image("Image.jpg", width=1200, height=300, show_label=False, show_download_button=False)
24
  gr.Markdown("# Mawared HR Assistant")
25
  gr.Markdown("Ask questions about the Mawared HR system, and this assistant will provide answers based on the available context and conversation history.")
 
 
26
 
27
+ # Create a state to store the latest assistant response
28
+ latest_response = gr.State("")
29
+
30
+ with gr.Row():
31
+ chatbot = gr.Chatbot(
32
+ height=400,
33
+ show_label=False,
34
+ type="messages"
35
+ )
36
+
37
+ with gr.Row():
38
+ # Add copy button next to the response
39
+ copy_button = gr.Button("📋 Copy Last Response", visible=True)
40
 
41
  with gr.Row():
42
  question_input = gr.Textbox(
 
46
  )
47
  clear_button = gr.Button("Clear Chat", scale=1)
48
 
49
+ def copy_last_response(history):
50
+ if history:
51
+ # Find the last assistant message
52
+ for message in reversed(history):
53
+ if message["role"] == "assistant":
54
+ return message["content"]
55
+ return ""
56
+
57
+ # Modified ask_question_gradio function to update the latest response
58
+ def ask_question_gradio(question, history):
59
+ try:
60
+ # Add user question to chat history
61
+ chat_history.add_message("user", question)
62
+
63
+ # Get formatted history
64
+ formatted_history = chat_history.get_formatted_history()
65
+
66
+ # Create chain with current chat history
67
+ rag_chain = create_rag_chain(formatted_history)
68
+
69
+ # Generate response
70
+ response = ""
71
+ for chunk in rag_chain.stream(question):
72
+ response += chunk
73
+
74
+ # Add assistant response to chat history
75
+ chat_history.add_message("assistant", response)
76
+
77
+ # Update Gradio chat history
78
+ history.append({"role": "user", "content": question})
79
+ history.append({"role": "assistant", "content": response})
80
+
81
+ return "", history
82
+ except Exception as e:
83
+ logger.error(f"Error during question processing: {e}")
84
+ return "", history + [{"role": "assistant", "content": "An error occurred. Please try again later."}]
85
+
86
+ def clear_chat():
87
+ chat_history.clear()
88
+ return [], ""
89
+
90
+ # Connect the components
91
  question_input.submit(
92
  ask_question_gradio,
93
  inputs=[question_input, chatbot],
 
98
  clear_chat,
99
  outputs=[chatbot, question_input]
100
  )
101
+
102
+ # Add copy button functionality
103
+ copy_button.click(
104
+ copy_last_response,
105
+ inputs=[chatbot],
106
+ outputs=[],
107
+ _js="""
108
+ async (response) => {
109
+ await navigator.clipboard.writeText(response);
110
+ // Optional: Show a toast notification
111
+ const toast = document.createElement('div');
112
+ toast.textContent = 'Response copied to clipboard!';
113
+ toast.style.position = 'fixed';
114
+ toast.style.bottom = '20px';
115
+ toast.style.right = '20px';
116
+ toast.style.backgroundColor = '#4CAF50';
117
+ toast.style.color = 'white';
118
+ toast.style.padding = '15px';
119
+ toast.style.borderRadius = '5px';
120
+ toast.style.zIndex = '1000';
121
+ document.body.appendChild(toast);
122
+ setTimeout(() => toast.remove(), 2000);
123
+ }
124
+ """
125
+ )
126
 
127
  # Launch the Gradio App
128
  if __name__ == "__main__":