File size: 6,470 Bytes
8359d12 0217602 c2c5723 0217602 cd66018 f5a2881 34b0a17 9950104 8359d12 0217602 6386510 cd66018 c2c5723 6386510 0217602 62138c4 c2c5723 78b486e b70c257 c2c5723 0217602 7fed2d1 0217602 652620b 0217602 8359d12 7cb9567 0217602 c2c5723 0217602 b70c257 0217602 c2c5723 0217602 c2c5723 0217602 c2c5723 b70c257 9950104 0217602 bb9892b ba78767 bb9892b a97f5a3 0f8e69f bb9892b b70c257 cd66018 1cdadeb cd66018 c2c5723 cd66018 c2c5723 11ca068 1cdadeb c2c5723 561ff95 c2c5723 51a7d9e cd66018 c2c5723 0217602 bb9892b 6e94dfd 0217602 cd66018 6e94dfd cd66018 0217602 cd66018 6e94dfd cd66018 6e94dfd cd66018 0217602 6e94dfd cd66018 6e94dfd 0217602 2f9af02 ed81a64 5d4ed4d cd66018 6e94dfd cd66018 6e94dfd cd66018 8359d12 0217602 51a7d9e 0217602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import os
from dotenv import load_dotenv
from langchain_community.vectorstores import Qdrant
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
from qdrant_client import QdrantClient, models
from langchain_openai import ChatOpenAI
import gradio as gr
import logging
from typing import List, Tuple
from dataclasses import dataclass
from datetime import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM ,pipeline
from langchain_huggingface.llms import HuggingFacePipeline
import spaces
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class Message:
role: str
content: str
timestamp: str
class ChatHistory:
def __init__(self):
self.messages: List[Message] = []
def add_message(self, role: str, content: str):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self.messages.append(Message(role=role, content=content, timestamp=timestamp))
def get_formatted_history(self, max_messages: int = 5) -> str:
"""Returns the most recent conversation history formatted as a string"""
recent_messages = self.messages[-max_messages:] if len(self.messages) > max_messages else self.messages
formatted_history = "\n".join([
f"{msg.role}: {msg.content}" for msg in recent_messages
])
return formatted_history
def clear(self):
self.messages = []
# Load environment variables
load_dotenv()
# HuggingFace API Token
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
logger.error("HF_TOKEN is not set in the environment variables.")
exit(1)
# HuggingFace Embeddings
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
# Qdrant Client Setup
try:
client = QdrantClient(
url=os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY"),
prefer_grpc=True
)
except Exception as e:
logger.error("Failed to connect to Qdrant. Ensure QDRANT_URL and QDRANT_API_KEY are correctly set.")
exit(1)
# Define collection name
collection_name = "mawared"
# Try to create collection
try:
client.create_collection(
collection_name=collection_name,
vectors_config=models.VectorParams(
size=768, # GTE-large embedding size
distance=models.Distance.COSINE
)
)
logger.info(f"Created new collection: {collection_name}")
except Exception as e:
if "already exists" in str(e):
logger.info(f"Collection {collection_name} already exists, continuing...")
else:
logger.error(f"Error creating collection: {e}")
exit(1)
# Create Qdrant vector store
db = Qdrant(
client=client,
collection_name=collection_name,
embeddings=embeddings,
)
# Create retriever
retriever = db.as_retriever(
search_type="similarity",
search_kwargs={"k": 5}
)
# Load model directly
# Set up the LLM
llm = ChatOpenAI(
base_url="https://api-inference.huggingface.co/v1/",
temperature=0.1,
api_key=HF_TOKEN,
model="mistralai/Mistral-Nemo-Instruct-2407",
max_tokens=None,
timeout=None
)
# Create prompt template with chat history
template = """
You are an expert assistant specializing in the Mawared HR System. Your task is to provide accurate and contextually relevant answers based on the provided context and chat history. If you need more information, ask targeted clarifying questions.
Previous Conversation:
{chat_history}
Current Context:
{context}
Current Question:
{question}
Please provide a response that takes into account both the current context and the previous conversation history.
Answer:
"""
prompt = ChatPromptTemplate.from_template(template)
# Create the RAG chain with chat history
def create_rag_chain(chat_history: str):
chain = (
{
"context": retriever,
"question": RunnablePassthrough(),
"chat_history": lambda x: chat_history
}
| prompt
| llm
| StrOutputParser()
)
return chain
# Initialize chat history
chat_history = ChatHistory()
# Gradio Function
def ask_question_gradio(question, history):
try:
# Add user question to chat history
chat_history.add_message("user", question)
# Get formatted history
formatted_history = chat_history.get_formatted_history()
# Create chain with current chat history
rag_chain = create_rag_chain(formatted_history)
# Generate response
response = ""
for chunk in rag_chain.stream(question):
response += chunk
# Add assistant response to chat history
chat_history.add_message("assistant", response)
# Update Gradio chat history
history.append({"role": "user", "content": question})
history.append({"role": "assistant", "content": response})
return "", history
except Exception as e:
logger.error(f"Error during question processing: {e}")
return "", history + [{"role": "assistant", "content": "An error occurred. Please try again later."}]
def clear_chat():
chat_history.clear()
return [], ""
# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft()) as iface:
gr.Image("Image.jpg" , width=1200 , height=300 ,show_label=False, show_download_button=False)
gr.Markdown("# Mawared HR Assistant")
gr.Markdown("Ask questions about the Mawared HR system, and this assistant will provide answers based on the available context and conversation history.")
chatbot = gr.Chatbot(
height=400,
show_label=False,
type="messages" # Using the new messages format
)
with gr.Row():
question_input = gr.Textbox(
label="Ask a question:",
placeholder="Type your question here...",
scale=9
)
clear_button = gr.Button("Clear Chat", scale=1)
question_input.submit(
ask_question_gradio,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot]
)
clear_button.click(
clear_chat,
outputs=[chatbot, question_input]
)
# Launch the Gradio App
if __name__ == "__main__":
iface.launch() |