Spaces:
Runtime error
Runtime error
File size: 6,870 Bytes
e5b5b7e 68d5b48 e5b5b7e 68d5b48 8b884e6 68d5b48 a2718c9 e5b5b7e 8e0a53d 8b884e6 68d5b48 8b884e6 68d5b48 8b884e6 68d5b48 8b884e6 68d5b48 8b884e6 68d5b48 8b884e6 68d5b48 8b884e6 68d5b48 8b884e6 a2718c9 8b884e6 a2718c9 bf81dde 68d5b48 a2718c9 bf81dde 8b884e6 68d5b48 a2718c9 bf81dde 8b884e6 68d5b48 8b884e6 a2718c9 1f0eeb1 a2718c9 bf81dde a2718c9 1f0eeb1 a2718c9 1f0eeb1 e5b5b7e a2718c9 bf81dde a2718c9 bf81dde e5b5b7e a2718c9 bf81dde 68d5b48 1f0eeb1 bf81dde 8b884e6 bf81dde 68d5b48 a2718c9 bf81dde 68d5b48 69f3420 8e0a53d 8b884e6 68d5b48 a2718c9 68d5b48 8b884e6 c0cb430 8b884e6 bf81dde a2718c9 68d5b48 8e0a53d 8b884e6 a2718c9 c0cb430 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from PIL import Image
import gdown
import zipfile
import pathlib
# Define the Google Drive shareable link
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
# Extract the file ID from the URL
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
# Define the local filename to save the ZIP file
local_zip_file = 'file.zip'
# Download the ZIP file
gdown.download(direct_download_url, local_zip_file, quiet=False)
# Directory to extract files
extracted_path = 'extracted_files'
# Verify if the downloaded file is a ZIP file and extract it
try:
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
zip_ref.extractall(extracted_path)
print("Extraction successful!")
except zipfile.BadZipFile:
print("Error: The downloaded file is not a valid ZIP file.")
# Optionally, you can delete the ZIP file after extraction
os.remove(local_zip_file)
# Convert the extracted directory path to a pathlib.Path object
data_dir = pathlib.Path(extracted_path)
# Print the directory structure to debug
for root, dirs, files in os.walk(extracted_path):
level = root.replace(extracted_path, '').count(os.sep)
indent = ' ' * 4 * (level)
print(f"{indent}{os.path.basename(root)}/")
subindent = ' ' * 4 * (level + 1)
for f in files:
print(f"{subindent}{f}")
import pathlib
# Path to the dataset directory
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
data_dir = pathlib.Path(data_dir)
bees = list(data_dir.glob('bees/*'))
print(bees[0])
PIL.Image.open(str(bees[0]))
img_height, img_width = 180, 180
batch_size = 32
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size
)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size
)
class_names = train_ds.class_names
print(class_names)
plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
data_augmentation = keras.Sequential(
[
layers.RandomFlip("horizontal",
input_shape=(img_height,
img_width,
3)),
layers.RandomRotation(0.1),
layers.RandomZoom(0.1),
layers.RandomContrast(0.1),
layers.RandomBrightness(0.1)
]
)
plt.figure(figsize=(10, 10))
for images, _ in train_ds.take(1):
for i in range(9):
augmented_images = data_augmentation(images)
ax = plt.subplot(3, 3, i + 1)
plt.imshow(augmented_images[0].numpy().astype("uint8"))
plt.axis("off")
num_classes = len(class_names)
model = Sequential([
data_augmentation,
layers.Rescaling(1./255),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(128, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.5),
layers.Flatten(),
layers.Dense(256, activation='relu'),
layers.Dropout(0.5),
layers.Dense(num_classes, activation='softmax', name="outputs")
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['accuracy'])
model.summary()
# Learning rate scheduler
lr_scheduler = keras.callbacks.LearningRateScheduler(lambda epoch: 1e-3 * 10**(epoch / 20))
# Early stopping
early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
epochs = 20
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs,
callbacks=[lr_scheduler, early_stopping]
)
# Define category descriptions
category_descriptions = {
"Ants": "Ants are small insects known for their complex social structures and teamwork.",
"Bees": "Bees are flying insects known for their role in pollination and producing honey.",
"Beetles": "Beetles are a group of insects with hard exoskeletons and wings. They are the largest order of insects.",
"Caterpillars": "Caterpillars are the larval stage of butterflies and moths, known for their voracious appetite.",
"Earthworms": "Earthworms are segmented worms that are crucial for soil health and nutrient cycling.",
"Earwigs": "Earwigs are insects with pincers on their abdomen and are known for their nocturnal activity.",
"Grasshoppers": "Grasshoppers are insects known for their powerful hind legs, which they use for jumping.",
"Moths": "Moths are nocturnal insects related to butterflies, known for their attraction to light.",
"Slugs": "Slugs are soft-bodied mollusks that are similar to snails but lack a shell.",
"Snails": "Snails are mollusks with a coiled shell, known for their slow movement and slimy trail.",
"Wasps": "Wasps are stinging insects that can be solitary or social, and some species are important pollinators.",
"Weevils": "Weevils are a type of beetle with a long snout, known for being pests to crops and stored grains."
}
# Define the prediction function
def predict_image(img):
img = np.array(img)
img_resized = tf.image.resize(img, (180, 180))
img_4d = tf.expand_dims(img_resized, axis=0)
prediction = model.predict(img_4d)[0]
predicted_class = np.argmax(prediction)
predicted_label = class_names[predicted_class]
predicted_description = category_descriptions[predicted_label]
return {predicted_label: f"{float(prediction[predicted_class]):.2f} - {predicted_description}"}
# Set up Gradio interface
image = gr.Image()
label = gr.Label(num_top_classes=1)
# Define custom CSS for background image
custom_css = """
body {
background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
background-size: cover;
background-repeat: no-repeat;
background-attachment: fixed;
color: white;
}
"""
gr.Interface(
fn=predict_image,
inputs=image,
outputs=label,
title="Welcome to Agricultural Pest Image Classification",
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
css=custom_css
).launch(debug=True)
|