language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def addCourseDetails(NB, CourseID='1MS926', CourseName='Applied Statistics',
CourseInstance='Spring 2019, Uppsala University') :
'''Add Course Details to the Master Notebook NB'''
#NB['metadata']['lx_assignment_number']=AssignmentNumber
NB['metadata']['lx_course_number']=CourseID
NB['metadata']['lx_course_name']=CourseName
NB['metadata']['lx_course_instance']=CourseInstance
md = '''# [{}](https://lamastex.github.io/scalable-data-science/as/2019/)\
\n## {}, {} \n©2019 Raazesh Sainudiin. [Attribution 4.0 International \
(CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/)'''\
.format(CourseName,CourseID,CourseInstance)
newCell = nbformat.v4.new_markdown_cell(md)
newCell['metadata']['deletable']=False
NB['cells'].insert(0,newCell)
return NB | def addCourseDetails(NB, CourseID='1MS926', CourseName='Applied Statistics',
CourseInstance='Spring 2019, Uppsala University') :
'''Add Course Details to the Master Notebook NB'''
#NB['metadata']['lx_assignment_number']=AssignmentNumber
NB['metadata']['lx_course_number']=CourseID
NB['metadata']['lx_course_name']=CourseName
NB['metadata']['lx_course_instance']=CourseInstance
md = '''# [{}](https://lamastex.github.io/scalable-data-science/as/2019/)\
\n## {}, {} \n©2019 Raazesh Sainudiin. [Attribution 4.0 International \
(CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/)'''\
.format(CourseName,CourseID,CourseInstance)
newCell = nbformat.v4.new_markdown_cell(md)
newCell['metadata']['deletable']=False
NB['cells'].insert(0,newCell)
return NB |
Python | def parseCommentMarksIntoMDAndMetaData(NB):
'''take master NB and turn the #PROBLEM x, #POINT y, #TEST x into md cells
ADD PROBLEM number in cell metadata
TODO? make dictionary of points scored, etc.'''
cellIndex=-1
AssnProbDict={}
indicesToInsertCells=[]
for C in NB['cells']:
cellIndex=cellIndex+1
s = C['source']
sSplitByNewLines = s.split('\n')
l0=sSplitByNewLines[0] # first line
sAllButl0 = '\n'.join(sSplitByNewLines[1:]) # gives '' if no extra lines are there
matchObj = re.match(r'#\s*(\w+)\s+(\d+),\s*(\w+)\s+(\d+),\s*(\w+)\s*(\d+)', l0, re.U)
if matchObj:
#print cellIndex, l0
assignmentNum = str(int(matchObj.group(2)))
LX_Prob_CellType = matchObj.group(3)
probNum=str(int(matchObj.group(4)))
probPoints=str(int(matchObj.group(6)))
C['metadata']['lx_assignment_number']=assignmentNum
C['metadata']['lx_problem_cell_type']=LX_Prob_CellType
C['metadata']['lx_problem_number']=probNum
C['metadata']['lx_problem_points']=probPoints
if (LX_Prob_CellType == 'PROBLEM'):
C['source'] = sAllButl0 # remove first comment line containing PROBLEM
if assignmentNum+'_'+probNum not in AssnProbDict:
md='''---\n---\n## Assignment {}, Problem {}\nMaximum Points = {}'''.format(assignmentNum,probNum,probPoints)
newCell = nbformat.v4.new_markdown_cell(md)
newCell['metadata']['lx_problem_cell_type']=LX_Prob_CellType
newCell['metadata']['lx_assignment_number']=assignmentNum
indicesToInsertCells.append([cellIndex,newCell])
cellIndex=cellIndex+1
AssnProbDict[assignmentNum+'_'+probNum]=1
# now insert the md cells at the right places
for iC in indicesToInsertCells:
NB['cells'].insert(iC[0],iC[1])
return NB | def parseCommentMarksIntoMDAndMetaData(NB):
'''take master NB and turn the #PROBLEM x, #POINT y, #TEST x into md cells
ADD PROBLEM number in cell metadata
TODO? make dictionary of points scored, etc.'''
cellIndex=-1
AssnProbDict={}
indicesToInsertCells=[]
for C in NB['cells']:
cellIndex=cellIndex+1
s = C['source']
sSplitByNewLines = s.split('\n')
l0=sSplitByNewLines[0] # first line
sAllButl0 = '\n'.join(sSplitByNewLines[1:]) # gives '' if no extra lines are there
matchObj = re.match(r'#\s*(\w+)\s+(\d+),\s*(\w+)\s+(\d+),\s*(\w+)\s*(\d+)', l0, re.U)
if matchObj:
#print cellIndex, l0
assignmentNum = str(int(matchObj.group(2)))
LX_Prob_CellType = matchObj.group(3)
probNum=str(int(matchObj.group(4)))
probPoints=str(int(matchObj.group(6)))
C['metadata']['lx_assignment_number']=assignmentNum
C['metadata']['lx_problem_cell_type']=LX_Prob_CellType
C['metadata']['lx_problem_number']=probNum
C['metadata']['lx_problem_points']=probPoints
if (LX_Prob_CellType == 'PROBLEM'):
C['source'] = sAllButl0 # remove first comment line containing PROBLEM
if assignmentNum+'_'+probNum not in AssnProbDict:
md='''---\n---\n## Assignment {}, Problem {}\nMaximum Points = {}'''.format(assignmentNum,probNum,probPoints)
newCell = nbformat.v4.new_markdown_cell(md)
newCell['metadata']['lx_problem_cell_type']=LX_Prob_CellType
newCell['metadata']['lx_assignment_number']=assignmentNum
indicesToInsertCells.append([cellIndex,newCell])
cellIndex=cellIndex+1
AssnProbDict[assignmentNum+'_'+probNum]=1
# now insert the md cells at the right places
for iC in indicesToInsertCells:
NB['cells'].insert(iC[0],iC[1])
return NB |
Python | def addGenericAssignmentAndCourseHeader(NB,AssNum):
'''Add generic Header for Assignment Number AssNum to input NB'''
NB['metadata']['lx_assignment_number']=AssNum
CourseID=NB['metadata']['lx_course_number']
md = '''# Assignment {} for Course {}\nFill in your Personal Number, make \
sure you pass the `# ... Test` cells and\n submit by email with *Subject line* \
**{} Assignment{}**.\nYou can submit multiple times before the deadline \
and your highest score will be used.'''.format(AssNum,CourseID,CourseID,AssNum)
newCell = nbformat.v4.new_markdown_cell(md)
newCell['metadata']['deletable']=False
NB['cells'].insert(1,newCell)
return NB | def addGenericAssignmentAndCourseHeader(NB,AssNum):
'''Add generic Header for Assignment Number AssNum to input NB'''
NB['metadata']['lx_assignment_number']=AssNum
CourseID=NB['metadata']['lx_course_number']
md = '''# Assignment {} for Course {}\nFill in your Personal Number, make \
sure you pass the `# ... Test` cells and\n submit by email with *Subject line* \
**{} Assignment{}**.\nYou can submit multiple times before the deadline \
and your highest score will be used.'''.format(AssNum,CourseID,CourseID,AssNum)
newCell = nbformat.v4.new_markdown_cell(md)
newCell['metadata']['deletable']=False
NB['cells'].insert(1,newCell)
return NB |
Python | def addStudentIdAtBeginning(NB):
'''Add a non-Deletable Cell with Student Person Number'''
newCell = nbformat.v4.new_code_cell('''# Enter your 12 digit personal number here and evaluate this cell\nMyPersonalNumber = 'YYYYMMDDXXXX'\n\n#tests\nassert(isinstance(MyPersonalNumber, basestring))\nassert(MyPersonalNumber.isdigit())\nassert(len(MyPersonalNumber)==12)''')
newCell['metadata']['lx_cell_type']='personal_number'
newCell['metadata']['deletable']=False
NB['cells'].insert(2,newCell)
return NB | def addStudentIdAtBeginning(NB):
'''Add a non-Deletable Cell with Student Person Number'''
newCell = nbformat.v4.new_code_cell('''# Enter your 12 digit personal number here and evaluate this cell\nMyPersonalNumber = 'YYYYMMDDXXXX'\n\n#tests\nassert(isinstance(MyPersonalNumber, basestring))\nassert(MyPersonalNumber.isdigit())\nassert(len(MyPersonalNumber)==12)''')
newCell['metadata']['lx_cell_type']='personal_number'
newCell['metadata']['deletable']=False
NB['cells'].insert(2,newCell)
return NB |
Python | def makeStudentAssignmentNotebookWithProblemsAndWithoutSOLUTIONandTEST(NBList,AssNum):
'''remove TEST, SOLUTION cells and only make PROBLEMs and Self-Test cells of Assignment AssNum'''
# to create assignments from the master notebook
NB0=NBList[0].copy()
NB0 = addGenericAssignmentAndCourseHeader(NB0,AssNum) # Add generic but Assignment/course-specific header
NB0 = addStudentIdAtBeginning(NB0) # Add Student ID Cell
studentCells=NB0['cells'][0:3]
for NB in NBList:
for C in NB['cells']:
appendCell=False
assignmentNumber=''
probCellType=''
if 'lx_assignment_number' in C['metadata']:
assignmentNumber = C['metadata']['lx_assignment_number']
if assignmentNumber==AssNum:
appendCell=True
if 'lx_problem_cell_type' in C['metadata']:
probCellType = C['metadata']['lx_problem_cell_type']
if ( ("SOLUTION" in probCellType) or ("TEST" in probCellType) ):
appendCell=False
if appendCell:
studentCells.append(C)
NB0['cells']=studentCells
return NB0 | def makeStudentAssignmentNotebookWithProblemsAndWithoutSOLUTIONandTEST(NBList,AssNum):
'''remove TEST, SOLUTION cells and only make PROBLEMs and Self-Test cells of Assignment AssNum'''
# to create assignments from the master notebook
NB0=NBList[0].copy()
NB0 = addGenericAssignmentAndCourseHeader(NB0,AssNum) # Add generic but Assignment/course-specific header
NB0 = addStudentIdAtBeginning(NB0) # Add Student ID Cell
studentCells=NB0['cells'][0:3]
for NB in NBList:
for C in NB['cells']:
appendCell=False
assignmentNumber=''
probCellType=''
if 'lx_assignment_number' in C['metadata']:
assignmentNumber = C['metadata']['lx_assignment_number']
if assignmentNumber==AssNum:
appendCell=True
if 'lx_problem_cell_type' in C['metadata']:
probCellType = C['metadata']['lx_problem_cell_type']
if ( ("SOLUTION" in probCellType) or ("TEST" in probCellType) ):
appendCell=False
if appendCell:
studentCells.append(C)
NB0['cells']=studentCells
return NB0 |
Python | def makeStudentAssignmentNotebookWithProblemsAndWithSOLUTION(NBList,AssNum):
'''keep SOLUTION cells as well as PROBLEMs and Self-Test cells of Assignment AssNum'''
# to create assignments from the master notebook
NB0=NBList[0].copy()
NB0 = addGenericAssignmentAndCourseHeader(NB0,AssNum) # Add generic but Assignment/course-specific header
NB0 = addStudentIdAtBeginning(NB0) # Add Student ID Cell
studentCells=NB0['cells'][0:3]
for NB in NBList:
for C in NB['cells']:
appendCell=False
assignmentNumber=''
probCellType=''
if 'lx_assignment_number' in C['metadata']:
assignmentNumber = C['metadata']['lx_assignment_number']
if assignmentNumber==AssNum:
appendCell=True
if 'lx_problem_cell_type' in C['metadata']:
probCellType = C['metadata']['lx_problem_cell_type']
if ("SOLUTION" in probCellType): # not putting TEST cells or ("TEST" in probCellType) ):
appendCell=True
if appendCell:
studentCells.append(C)
NB0['cells']=studentCells
return NB0 | def makeStudentAssignmentNotebookWithProblemsAndWithSOLUTION(NBList,AssNum):
'''keep SOLUTION cells as well as PROBLEMs and Self-Test cells of Assignment AssNum'''
# to create assignments from the master notebook
NB0=NBList[0].copy()
NB0 = addGenericAssignmentAndCourseHeader(NB0,AssNum) # Add generic but Assignment/course-specific header
NB0 = addStudentIdAtBeginning(NB0) # Add Student ID Cell
studentCells=NB0['cells'][0:3]
for NB in NBList:
for C in NB['cells']:
appendCell=False
assignmentNumber=''
probCellType=''
if 'lx_assignment_number' in C['metadata']:
assignmentNumber = C['metadata']['lx_assignment_number']
if assignmentNumber==AssNum:
appendCell=True
if 'lx_problem_cell_type' in C['metadata']:
probCellType = C['metadata']['lx_problem_cell_type']
if ("SOLUTION" in probCellType): # not putting TEST cells or ("TEST" in probCellType) ):
appendCell=True
if appendCell:
studentCells.append(C)
NB0['cells']=studentCells
return NB0 |
Python | def extractAssignmentFromMasterNotebookNumbers(inputMasterNBNos, AssNum):
'''extract assignment num AssNum from list of master notebook numbers'''
masterNotebooks=[]
for inputMasterNBNum in inputMasterNBNos:
inputMasterNB=inputMasterNBNum+'.ipynb'
#read master notebook
nb = nbformat.read('master/jp/'+inputMasterNB, as_version=4)
nb = addCourseDetails(nb)
nb = parseCommentMarksIntoMDAndMetaData(nb)
masterNotebooks.append(nb)
nb2019jpAss = makeStudentAssignmentNotebookWithProblemsAndWithoutSOLUTIONandTEST(masterNotebooks,AssNum)
nbformat.write(nb2019jpAss,'2019/jp/Assignment0'+AssNum+'.ipynb') | def extractAssignmentFromMasterNotebookNumbers(inputMasterNBNos, AssNum):
'''extract assignment num AssNum from list of master notebook numbers'''
masterNotebooks=[]
for inputMasterNBNum in inputMasterNBNos:
inputMasterNB=inputMasterNBNum+'.ipynb'
#read master notebook
nb = nbformat.read('master/jp/'+inputMasterNB, as_version=4)
nb = addCourseDetails(nb)
nb = parseCommentMarksIntoMDAndMetaData(nb)
masterNotebooks.append(nb)
nb2019jpAss = makeStudentAssignmentNotebookWithProblemsAndWithoutSOLUTIONandTEST(masterNotebooks,AssNum)
nbformat.write(nb2019jpAss,'2019/jp/Assignment0'+AssNum+'.ipynb') |
Python | def extractAssignmentWithSolutionsFromMasterNotebookNumbers(inputMasterNBNos, AssNum):
'''extract assignment num AssNum from list of master notebook numbers'''
masterNotebooks=[]
for inputMasterNBNum in inputMasterNBNos:
inputMasterNB=inputMasterNBNum+'.ipynb'
#read master notebook
nb = nbformat.read('master/jp/'+inputMasterNB, as_version=4)
nb = addCourseDetails(nb)
nb = parseCommentMarksIntoMDAndMetaData(nb)
masterNotebooks.append(nb)
nb2019jpAss = makeStudentAssignmentNotebookWithProblemsAndWithSOLUTION(masterNotebooks,AssNum)
nbformat.write(nb2019jpAss,'2019/jp/Assignment0'+AssNum+'_soln.ipynb') | def extractAssignmentWithSolutionsFromMasterNotebookNumbers(inputMasterNBNos, AssNum):
'''extract assignment num AssNum from list of master notebook numbers'''
masterNotebooks=[]
for inputMasterNBNum in inputMasterNBNos:
inputMasterNB=inputMasterNBNum+'.ipynb'
#read master notebook
nb = nbformat.read('master/jp/'+inputMasterNB, as_version=4)
nb = addCourseDetails(nb)
nb = parseCommentMarksIntoMDAndMetaData(nb)
masterNotebooks.append(nb)
nb2019jpAss = makeStudentAssignmentNotebookWithProblemsAndWithSOLUTION(masterNotebooks,AssNum)
nbformat.write(nb2019jpAss,'2019/jp/Assignment0'+AssNum+'_soln.ipynb') |
Python | def convert_css_to_xpath(css):
""" Convert CSS Selectors to XPath Selectors.
Example:
convert_css_to_xpath('button:contains("Next")')
Output => "//button[contains(., 'Next')]"
"""
xpath = GenericTranslator().css_to_xpath(css, prefix='//')
return xpath | def convert_css_to_xpath(css):
""" Convert CSS Selectors to XPath Selectors.
Example:
convert_css_to_xpath('button:contains("Next")')
Output => "//button[contains(., 'Next')]"
"""
xpath = GenericTranslator().css_to_xpath(css, prefix='//')
return xpath |
Python | def plot_stack_ccorr(arrayName, x0, y0, type_stack, w, Tmax, amp, amp_lin, \
amp_pow, amp_PWS, n1, n2):
"""
This function stacks the cross correlation over all the tremor windows
and plot the stack
Input:
type arrayName = string
arrayName = Name of seismic array
type x0 = float
x0 = Distance of the center of the cell from the array (east)
type y0 = float
y0 = Distance of the center of the cell from the array (north)
type type_stack = string
type_stack = Type of stack ('lin', 'pow', 'PWS')
type w = float
w = Power of the stack (for 'pow' and 'PWS')
type Tmax = float
Tmax = Maximum time lag for cross correlation plot
type amp = float
amp = Amplification factor of cross correlation for plotting
type amp_lin = float
amp_lin = Amplification factor of linear stack for plotting
type amp_pow = float
amp_pow = Amplification factor of power stack for plotting
type amp_PWS = float
amp_PWS = Amplification factor of phase-weighted stack for plotting
type n1 = integer
n1 = Index of first tremor to be plotted
type n2 = integer
n2 = Index of last tremor to be plotted
"""
# Read file containing data from stack_ccorr_tremor
filename = 'cc/{}/{}_{:03d}_{:03d}/{}_{:03d}_{:03d}_{}.pkl'.format( \
arrayName, arrayName, int(x0), int(y0), arrayName, int(x0), int(y0), \
type_stack)
data = pickle.load(open(filename, 'rb'))
EW_UD = data[6]
NS_UD = data[7]
# Stack over all tremor windows
EW_lin = linstack([EW_UD], normalize=False)[0]
EW_pow = powstack([EW_UD], w, normalize=False)[0]
EW_PWS = PWstack([EW_UD], w, normalize=False)[0]
NS_lin = linstack([NS_UD], normalize=False)[0]
NS_pow = powstack([NS_UD], w, normalize=False)[0]
NS_PWS = PWstack([NS_UD], w, normalize=False)[0]
# Plot
plt.figure(1, figsize=(20, 15))
# EW - UD cross correlation
ax1 = plt.subplot(121)
for i in range(n1, n2):
dt = EW_UD[i].stats.delta
ncor = int((EW_UD[i].stats.npts - 1) / 2)
t = dt * np.arange(- ncor, ncor + 1)
if (i == 36):
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * EW_UD[i].data, 'r-')
elif (i == 51):
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * EW_UD[i].data, 'b-')
elif (i == 19):
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * EW_UD[i].data, 'g-')
else:
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * EW_UD[i].data, 'k-')
wave = Rectangle((4.0, 5), 1.4, 86, facecolor = 'c', fill=True, alpha=0.5)
ax1.add_patch(wave)
plt.plot(t, - 2.0 + amp_lin * EW_lin.data, 'r-')
plt.plot(t, - 2.0 + amp_pow * EW_pow.data, 'b-')
plt.plot(t, - 2.0 + amp_PWS * EW_PWS.data, 'g-')
plt.xlim(0, Tmax)
plt.ylim(- 5.0, 2.0 * (n2 - n1))
plt.title('East / Vertical component', fontsize=24)
plt.xlabel('Lag time (s)', fontsize=24)
plt.ylabel('Cross correlation', fontsize=24)
ax1.set_yticklabels([])
ax1.tick_params(labelsize=20)
# NS - UD cross correlation
ax2 = plt.subplot(122)
for i in range(n1, n2):
dt = NS_UD[i].stats.delta
ncor = int((NS_UD[i].stats.npts - 1) / 2)
t = dt * np.arange(- ncor, ncor + 1)
if (i == 36):
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * NS_UD[i].data, 'r-')
elif (i == 51):
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * NS_UD[i].data, 'b-')
elif (i == 19):
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * NS_UD[i].data, 'g-')
else:
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * NS_UD[i].data, 'k-')
wave = Rectangle((4.0, 5), 1.4, 86, facecolor = 'c', fill=True, alpha=0.5)
ax2.add_patch(wave)
plt.plot(t, - 2.0 + amp_lin * NS_lin.data, 'r-')
plt.plot(t, - 2.0 + amp_pow * NS_pow.data, 'b-')
plt.plot(t, - 2.0 + amp_PWS * NS_PWS.data, 'g-')
plt.xlim(0, Tmax)
plt.ylim(- 5.0, 2.0 * (n2 - n1))
plt.title('North / Vertical component', fontsize=24)
plt.xlabel('Lag time (s)', fontsize=24)
plt.ylabel('Cross correlation', fontsize=24)
ax2.set_yticklabels([])
ax2.tick_params(labelsize=20)
# End figure and plot
plt.suptitle('{} at {} km, {} km'.format(arrayName, x0, y0), fontsize=24)
plt.savefig('cc/{}/{}_{:03d}_{:03d}/{}_{:03d}_{:03d}_{}.eps'.format( \
arrayName, arrayName, int(x0), int(y0), arrayName, int(x0), int(y0), \
type_stack), format='eps')
ax1.clear()
ax2.clear()
plt.close(1) | def plot_stack_ccorr(arrayName, x0, y0, type_stack, w, Tmax, amp, amp_lin, \
amp_pow, amp_PWS, n1, n2):
"""
This function stacks the cross correlation over all the tremor windows
and plot the stack
Input:
type arrayName = string
arrayName = Name of seismic array
type x0 = float
x0 = Distance of the center of the cell from the array (east)
type y0 = float
y0 = Distance of the center of the cell from the array (north)
type type_stack = string
type_stack = Type of stack ('lin', 'pow', 'PWS')
type w = float
w = Power of the stack (for 'pow' and 'PWS')
type Tmax = float
Tmax = Maximum time lag for cross correlation plot
type amp = float
amp = Amplification factor of cross correlation for plotting
type amp_lin = float
amp_lin = Amplification factor of linear stack for plotting
type amp_pow = float
amp_pow = Amplification factor of power stack for plotting
type amp_PWS = float
amp_PWS = Amplification factor of phase-weighted stack for plotting
type n1 = integer
n1 = Index of first tremor to be plotted
type n2 = integer
n2 = Index of last tremor to be plotted
"""
# Read file containing data from stack_ccorr_tremor
filename = 'cc/{}/{}_{:03d}_{:03d}/{}_{:03d}_{:03d}_{}.pkl'.format( \
arrayName, arrayName, int(x0), int(y0), arrayName, int(x0), int(y0), \
type_stack)
data = pickle.load(open(filename, 'rb'))
EW_UD = data[6]
NS_UD = data[7]
# Stack over all tremor windows
EW_lin = linstack([EW_UD], normalize=False)[0]
EW_pow = powstack([EW_UD], w, normalize=False)[0]
EW_PWS = PWstack([EW_UD], w, normalize=False)[0]
NS_lin = linstack([NS_UD], normalize=False)[0]
NS_pow = powstack([NS_UD], w, normalize=False)[0]
NS_PWS = PWstack([NS_UD], w, normalize=False)[0]
# Plot
plt.figure(1, figsize=(20, 15))
# EW - UD cross correlation
ax1 = plt.subplot(121)
for i in range(n1, n2):
dt = EW_UD[i].stats.delta
ncor = int((EW_UD[i].stats.npts - 1) / 2)
t = dt * np.arange(- ncor, ncor + 1)
if (i == 36):
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * EW_UD[i].data, 'r-')
elif (i == 51):
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * EW_UD[i].data, 'b-')
elif (i == 19):
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * EW_UD[i].data, 'g-')
else:
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * EW_UD[i].data, 'k-')
wave = Rectangle((4.0, 5), 1.4, 86, facecolor = 'c', fill=True, alpha=0.5)
ax1.add_patch(wave)
plt.plot(t, - 2.0 + amp_lin * EW_lin.data, 'r-')
plt.plot(t, - 2.0 + amp_pow * EW_pow.data, 'b-')
plt.plot(t, - 2.0 + amp_PWS * EW_PWS.data, 'g-')
plt.xlim(0, Tmax)
plt.ylim(- 5.0, 2.0 * (n2 - n1))
plt.title('East / Vertical component', fontsize=24)
plt.xlabel('Lag time (s)', fontsize=24)
plt.ylabel('Cross correlation', fontsize=24)
ax1.set_yticklabels([])
ax1.tick_params(labelsize=20)
# NS - UD cross correlation
ax2 = plt.subplot(122)
for i in range(n1, n2):
dt = NS_UD[i].stats.delta
ncor = int((NS_UD[i].stats.npts - 1) / 2)
t = dt * np.arange(- ncor, ncor + 1)
if (i == 36):
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * NS_UD[i].data, 'r-')
elif (i == 51):
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * NS_UD[i].data, 'b-')
elif (i == 19):
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * NS_UD[i].data, 'g-')
else:
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * NS_UD[i].data, 'k-')
wave = Rectangle((4.0, 5), 1.4, 86, facecolor = 'c', fill=True, alpha=0.5)
ax2.add_patch(wave)
plt.plot(t, - 2.0 + amp_lin * NS_lin.data, 'r-')
plt.plot(t, - 2.0 + amp_pow * NS_pow.data, 'b-')
plt.plot(t, - 2.0 + amp_PWS * NS_PWS.data, 'g-')
plt.xlim(0, Tmax)
plt.ylim(- 5.0, 2.0 * (n2 - n1))
plt.title('North / Vertical component', fontsize=24)
plt.xlabel('Lag time (s)', fontsize=24)
plt.ylabel('Cross correlation', fontsize=24)
ax2.set_yticklabels([])
ax2.tick_params(labelsize=20)
# End figure and plot
plt.suptitle('{} at {} km, {} km'.format(arrayName, x0, y0), fontsize=24)
plt.savefig('cc/{}/{}_{:03d}_{:03d}/{}_{:03d}_{:03d}_{}.eps'.format( \
arrayName, arrayName, int(x0), int(y0), arrayName, int(x0), int(y0), \
type_stack), format='eps')
ax1.clear()
ax2.clear()
plt.close(1) |
Python | def MAD(data):
"""
Compute MAD estimator of scale
(from Rousseeuw and Croux, 1993)
"""
m = np.median(data)
res = 1.4826 * np.median(np.abs(data - m))
return res | def MAD(data):
"""
Compute MAD estimator of scale
(from Rousseeuw and Croux, 1993)
"""
m = np.median(data)
res = 1.4826 * np.median(np.abs(data - m))
return res |
Python | def S(data):
"""
Compute Sn estimator of scale
(from Rousseeuw and Croux, 1993)
"""
N = np.shape(data)[0]
m = np.zeros(N)
for i in range(0, N):
m[i] = np.median(np.abs(data[i] - data))
res = 1.1926 * np.median(m)
return res | def S(data):
"""
Compute Sn estimator of scale
(from Rousseeuw and Croux, 1993)
"""
N = np.shape(data)[0]
m = np.zeros(N)
for i in range(0, N):
m[i] = np.median(np.abs(data[i] - data))
res = 1.1926 * np.median(m)
return res |
Python | def linstack(streams, normalize=True, method='RMS'):
"""
Compute the linear stack of a list of streams
Several streams -> returns a stack for each station and each channel
One stream -> returns a stack for each channel (and merge stations)
Input:
type streams = list of streams
streams = List of streams to stack
type normalize = boolean
normalize = Normalize traces by RMS amplitude before stacking
Output:
type stack = stream
stack = Stream with stacked traces for each channel (and each station)
"""
# If there are several streams in the list,
# return one stack for each station and each channel
if len(streams) > 1:
stack = streams[np.argmax([len(stream) for stream in streams])].copy()
# If there is only one stream in the list,
# return one stack for each channel and merge the stations
else:
channels = []
for tr in streams[0]:
if not(tr.stats.channel in channels):
channels.append(tr.stats.channel)
stack = Stream()
for i in range(0, len(channels)):
stack.append(streams[0][0].copy())
stack[-1].stats['channel'] = channels[i]
stack[-1].stats['station'] = 'all'
# Initialize trace to 0
for tr in stack:
tr.data = np.zeros(tr.stats.npts)
# Initialize number of traces stacked to 0
ntr = np.zeros((len(stack)))
# Stack traces
for i in range(0, len(streams)):
for k in range (0, len(stack)):
if len(streams) > 1:
matchtr = streams[i].select(station=stack[k].stats.station, \
channel=stack[k].stats.channel)
else:
matchtr = streams[i].select(channel=stack[k].stats.channel)
for j in range(0, len(matchtr)):
ntr[k] = ntr[k] + 1
# Normalize the data before stacking
if normalize:
if (method == 'RMS'):
norm = matchtr[j].data / \
np.sqrt(np.mean(np.square(matchtr[j].data)))
elif (method == 'Max'):
norm = matchtr[j].data / \
np.max(np.abs(matchtr[j].data))
else:
raise ValueError( \
'Method must be RMS or Max')
norm = np.nan_to_num(norm)
else:
norm = matchtr[j].data
stack[k].data = np.sum((norm, stack[k].data), axis=0)
# Divide by the number of traces stacked
for k in range (0, len(stack)):
stack[k].data = stack[k].data / ntr[k]
return stack | def linstack(streams, normalize=True, method='RMS'):
"""
Compute the linear stack of a list of streams
Several streams -> returns a stack for each station and each channel
One stream -> returns a stack for each channel (and merge stations)
Input:
type streams = list of streams
streams = List of streams to stack
type normalize = boolean
normalize = Normalize traces by RMS amplitude before stacking
Output:
type stack = stream
stack = Stream with stacked traces for each channel (and each station)
"""
# If there are several streams in the list,
# return one stack for each station and each channel
if len(streams) > 1:
stack = streams[np.argmax([len(stream) for stream in streams])].copy()
# If there is only one stream in the list,
# return one stack for each channel and merge the stations
else:
channels = []
for tr in streams[0]:
if not(tr.stats.channel in channels):
channels.append(tr.stats.channel)
stack = Stream()
for i in range(0, len(channels)):
stack.append(streams[0][0].copy())
stack[-1].stats['channel'] = channels[i]
stack[-1].stats['station'] = 'all'
# Initialize trace to 0
for tr in stack:
tr.data = np.zeros(tr.stats.npts)
# Initialize number of traces stacked to 0
ntr = np.zeros((len(stack)))
# Stack traces
for i in range(0, len(streams)):
for k in range (0, len(stack)):
if len(streams) > 1:
matchtr = streams[i].select(station=stack[k].stats.station, \
channel=stack[k].stats.channel)
else:
matchtr = streams[i].select(channel=stack[k].stats.channel)
for j in range(0, len(matchtr)):
ntr[k] = ntr[k] + 1
# Normalize the data before stacking
if normalize:
if (method == 'RMS'):
norm = matchtr[j].data / \
np.sqrt(np.mean(np.square(matchtr[j].data)))
elif (method == 'Max'):
norm = matchtr[j].data / \
np.max(np.abs(matchtr[j].data))
else:
raise ValueError( \
'Method must be RMS or Max')
norm = np.nan_to_num(norm)
else:
norm = matchtr[j].data
stack[k].data = np.sum((norm, stack[k].data), axis=0)
# Divide by the number of traces stacked
for k in range (0, len(stack)):
stack[k].data = stack[k].data / ntr[k]
return stack |
Python | def powstack(streams, weight=2.0, normalize=True):
"""
Compute the power (Nth-root) stack of a list of streams
Several streams -> returns a stack for each station and each channel
One stream -> returns a stack for each channel (and merge stations)
Input:
type streams = list of streams
streams = List of streams to stack
type weight = float
weight = Power of the stack (usually integer greater than 1)
type normalize = boolean
normalize = Normalize traces by RMS amplitude before stacking
Output:
type stack = stream
stack = Stream with stacked traces for each channel (and each station)
"""
# If there are several streams in the list,
# return one stack for each station and each channel
if len(streams) > 1:
stack = streams[np.argmax([len(stream) for stream in streams])].copy()
# If there is only one stream in the list,
# return one stack for each channel and merge the stations
else:
channels = []
for tr in streams[0]:
if not(tr.stats.channel in channels):
channels.append(tr.stats.channel)
stack = Stream()
for i in range(0, len(channels)):
stack.append(streams[0][0].copy())
stack[-1].stats['channel'] = channels[i]
stack[-1].stats['station'] = 'all'
# Initialize trace to 0
for tr in stack:
tr.data = np.zeros(tr.stats.npts)
# Initialize number of traces stacked to 0
ntr = np.zeros((len(stack)))
# Stack traces
for i in range(0, len(streams)):
for k in range (0, len(stack)):
if len(streams) > 1:
matchtr = streams[i].select(station=stack[k].stats.station, \
channel=stack[k].stats.channel)
else:
matchtr = streams[i].select(channel=stack[k].stats.channel)
for j in range(0, len(matchtr)):
ntr[k] = ntr[k] + 1
# Normalize the data before stacking
if normalize:
norm = matchtr[j].data / \
np.sqrt(np.mean(np.square(matchtr[j].data)))
norm = np.nan_to_num(norm)
else:
norm = matchtr[j].data
stack[k].data = np.sum((np.power(np.abs(norm), 1.0 / weight) \
* np.sign(norm), stack[k].data), axis=0)
# Take the power of the stack and divide by the number of traces stacked
for k in range (0, len(stack)):
stack[k].data = np.sign(stack[k].data) * np.power(stack[k].data, \
weight) / ntr[k]
return stack | def powstack(streams, weight=2.0, normalize=True):
"""
Compute the power (Nth-root) stack of a list of streams
Several streams -> returns a stack for each station and each channel
One stream -> returns a stack for each channel (and merge stations)
Input:
type streams = list of streams
streams = List of streams to stack
type weight = float
weight = Power of the stack (usually integer greater than 1)
type normalize = boolean
normalize = Normalize traces by RMS amplitude before stacking
Output:
type stack = stream
stack = Stream with stacked traces for each channel (and each station)
"""
# If there are several streams in the list,
# return one stack for each station and each channel
if len(streams) > 1:
stack = streams[np.argmax([len(stream) for stream in streams])].copy()
# If there is only one stream in the list,
# return one stack for each channel and merge the stations
else:
channels = []
for tr in streams[0]:
if not(tr.stats.channel in channels):
channels.append(tr.stats.channel)
stack = Stream()
for i in range(0, len(channels)):
stack.append(streams[0][0].copy())
stack[-1].stats['channel'] = channels[i]
stack[-1].stats['station'] = 'all'
# Initialize trace to 0
for tr in stack:
tr.data = np.zeros(tr.stats.npts)
# Initialize number of traces stacked to 0
ntr = np.zeros((len(stack)))
# Stack traces
for i in range(0, len(streams)):
for k in range (0, len(stack)):
if len(streams) > 1:
matchtr = streams[i].select(station=stack[k].stats.station, \
channel=stack[k].stats.channel)
else:
matchtr = streams[i].select(channel=stack[k].stats.channel)
for j in range(0, len(matchtr)):
ntr[k] = ntr[k] + 1
# Normalize the data before stacking
if normalize:
norm = matchtr[j].data / \
np.sqrt(np.mean(np.square(matchtr[j].data)))
norm = np.nan_to_num(norm)
else:
norm = matchtr[j].data
stack[k].data = np.sum((np.power(np.abs(norm), 1.0 / weight) \
* np.sign(norm), stack[k].data), axis=0)
# Take the power of the stack and divide by the number of traces stacked
for k in range (0, len(stack)):
stack[k].data = np.sign(stack[k].data) * np.power(stack[k].data, \
weight) / ntr[k]
return stack |
Python | def PWstack(streams, weight=2, normalize=True):
"""
Compute the phase-weighted stack of a list of streams
Several streams -> returns a stack for each station and each channel
One stream -> returns a stack for each channel (and merge stations)
Input:
type streams = list of streams
streams = List of streams to stack
type weight = float
weight = Power of the stack (usually integer greater than 1)
type normalize = boolean
normalize = Normalize traces by RMS amplitude before stacking
Output:
type stack = stream
stack = Stream with stacked traces for each channel (and each station)
"""
# First get the linear stack which we will weight by the phase stack
Linstack = linstack(streams, normalize=normalize)
# Compute the instantaneous phase
instaphases = []
for stream in streams:
instaphase = stream.copy()
for tr in instaphase:
analytic = hilbert(tr.data)
env = envelope(tr.data)
tr.data = analytic / env
tr.data = np.nan_to_num(tr.data)
instaphases.append(instaphase)
# Compute the phase stack
Phasestack = linstack(instaphases, normalize=False)
# Compute the phase-weighted stack
for tr in Phasestack:
tr.data = Linstack.select(station=tr.stats.station, \
channel=tr.stats.channel)[0].data \
* np.power(np.abs(tr.data), weight)
return Phasestack | def PWstack(streams, weight=2, normalize=True):
"""
Compute the phase-weighted stack of a list of streams
Several streams -> returns a stack for each station and each channel
One stream -> returns a stack for each channel (and merge stations)
Input:
type streams = list of streams
streams = List of streams to stack
type weight = float
weight = Power of the stack (usually integer greater than 1)
type normalize = boolean
normalize = Normalize traces by RMS amplitude before stacking
Output:
type stack = stream
stack = Stream with stacked traces for each channel (and each station)
"""
# First get the linear stack which we will weight by the phase stack
Linstack = linstack(streams, normalize=normalize)
# Compute the instantaneous phase
instaphases = []
for stream in streams:
instaphase = stream.copy()
for tr in instaphase:
analytic = hilbert(tr.data)
env = envelope(tr.data)
tr.data = analytic / env
tr.data = np.nan_to_num(tr.data)
instaphases.append(instaphase)
# Compute the phase stack
Phasestack = linstack(instaphases, normalize=False)
# Compute the phase-weighted stack
for tr in Phasestack:
tr.data = Linstack.select(station=tr.stats.station, \
channel=tr.stats.channel)[0].data \
* np.power(np.abs(tr.data), weight)
return Phasestack |
Python | def plot_stack_acorr(arrayName, x0, y0, type_stack, w, Tmax, amp, amp_lin, \
amp_pow, amp_PWS, n1, n2):
"""
This function stacks the autocorrelation over all the tremor windows
and plot the stack
Input:
type arrayName = string
arrayName = Name of seismic array
type x0 = float
x0 = Distance of the center of the cell from the array (east)
type y0 = float
y0 = Distance of the center of the cell from the array (north)
type type_stack = string
type_stack = Type of stack ('lin', 'pow', 'PWS')
type w = float
w = Power of the stack (for 'pow' and 'PWS')
type Tmax = float
Tmax = Maximum time lag for autocorrelation plot
type amp = float
amp = Amplification factor of autocorrelation for plotting
type amp_lin = float
amp_lin = Amplification factor of linear stack for plotting
type amp_pow = float
amp_pow = Amplification factor of power stack for plotting
type amp_PWS = float
amp_PWS = Amplification factor of phase-weighted stack for plotting
type n1 = integer
n1 = Index of first tremor to be plotted
type n2 = integer
n2 = Index of last tremor to be plotted
"""
# Read file containing data from stack_acorr_tremor
filename = 'ac/{}/{}_{:03d}_{:03d}/{}_{:03d}_{:03d}_{}.pkl'.format( \
arrayName, arrayName, int(x0), int(y0), arrayName, int(x0), int(y0), \
type_stack)
data = pickle.load(open(filename, 'rb'))
EW = data[6]
NS = data[7]
UD = data[8]
# Stack over all tremor windows
EW_lin = linstack([EW], normalize=False)[0]
EW_pow = powstack([EW], w, normalize=False)[0]
EW_PWS = PWstack([EW], w, normalize=False)[0]
NS_lin = linstack([NS], normalize=False)[0]
NS_pow = powstack([NS], w, normalize=False)[0]
NS_PWS = PWstack([NS], w, normalize=False)[0]
UD_lin = linstack([UD], normalize=False)[0]
UD_pow = powstack([UD], w, normalize=False)[0]
UD_PWS = PWstack([UD], w, normalize=False)[0]
# Plot
plt.figure(1, figsize=(30, 15))
# EW autocorrelation
ax1 = plt.subplot(131)
for i in range(n1, n2):
dt = EW[i].stats.delta
ncor = int((EW[i].stats.npts - 1) / 2)
t = dt * np.arange(- ncor, ncor + 1)
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * EW[i].data, 'k-')
plt.plot(t, - 2.0 + amp_lin * EW_lin.data, 'r-')
plt.plot(t, - 2.0 + amp_pow * EW_pow.data, 'b-')
plt.plot(t, - 2.0 + amp_PWS * EW_PWS.data, 'g-')
plt.xlim(0, Tmax)
plt.ylim(- 5.0, 2.0 * (n2 - n1))
plt.title('East component', fontsize=24)
plt.xlabel('Lag time (s)', fontsize=24)
plt.ylabel('Autocorrelation', fontsize=24)
ax1.set_yticklabels([])
ax1.tick_params(labelsize=20)
# NS autocorrelation
ax2 = plt.subplot(132)
for i in range(n1, n2):
dt = NS[i].stats.delta
ncor = int((NS[i].stats.npts - 1) / 2)
t = dt * np.arange(- ncor, ncor + 1)
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * NS[i].data, 'k-')
plt.plot(t, - 2.0 + amp_lin * NS_lin.data, 'r-')
plt.plot(t, - 2.0 + amp_pow * NS_pow.data, 'b-')
plt.plot(t, - 2.0 + amp_PWS * NS_PWS.data, 'g-')
plt.xlim(0, Tmax)
plt.ylim(- 5.0, 2.0 * (n2 - n1))
plt.title('North component', fontsize=24)
plt.xlabel('Lag time (s)', fontsize=24)
plt.ylabel('Autocorrelation', fontsize=24)
ax2.set_yticklabels([])
ax2.tick_params(labelsize=20)
# UD autocorrelation
ax3 = plt.subplot(133)
for i in range(n1, n2):
dt = UD[i].stats.delta
ncor = int((UD[i].stats.npts - 1) / 2)
t = dt * np.arange(- ncor, ncor + 1)
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * UD[i].data, 'k-')
plt.plot(t, - 2.0 + amp_lin * UD_lin.data, 'r-')
plt.plot(t, - 2.0 + amp_pow * UD_pow.data, 'b-')
plt.plot(t, - 2.0 + amp_PWS * UD_PWS.data, 'g-')
plt.xlim(0, Tmax)
plt.ylim(- 5.0, 2.0 * (n2 - n1))
plt.title('Vertical component', fontsize=24)
plt.xlabel('Lag time (s)', fontsize=24)
plt.ylabel('Autocorrelation', fontsize=24)
ax3.set_yticklabels([])
ax3.tick_params(labelsize=20)
# End figure and plot
plt.suptitle('{} at {} km, {} km'.format(arrayName, x0, y0), fontsize=24)
plt.savefig('ac/{}/{}_{:03d}_{:03d}/{}_{:03d}_{:03d}_{}.eps'.format( \
arrayName, arrayName, int(x0), int(y0), arrayName, int(x0), int(y0), \
type_stack), format='eps')
ax1.clear()
ax2.clear()
ax3.clear()
plt.close(1) | def plot_stack_acorr(arrayName, x0, y0, type_stack, w, Tmax, amp, amp_lin, \
amp_pow, amp_PWS, n1, n2):
"""
This function stacks the autocorrelation over all the tremor windows
and plot the stack
Input:
type arrayName = string
arrayName = Name of seismic array
type x0 = float
x0 = Distance of the center of the cell from the array (east)
type y0 = float
y0 = Distance of the center of the cell from the array (north)
type type_stack = string
type_stack = Type of stack ('lin', 'pow', 'PWS')
type w = float
w = Power of the stack (for 'pow' and 'PWS')
type Tmax = float
Tmax = Maximum time lag for autocorrelation plot
type amp = float
amp = Amplification factor of autocorrelation for plotting
type amp_lin = float
amp_lin = Amplification factor of linear stack for plotting
type amp_pow = float
amp_pow = Amplification factor of power stack for plotting
type amp_PWS = float
amp_PWS = Amplification factor of phase-weighted stack for plotting
type n1 = integer
n1 = Index of first tremor to be plotted
type n2 = integer
n2 = Index of last tremor to be plotted
"""
# Read file containing data from stack_acorr_tremor
filename = 'ac/{}/{}_{:03d}_{:03d}/{}_{:03d}_{:03d}_{}.pkl'.format( \
arrayName, arrayName, int(x0), int(y0), arrayName, int(x0), int(y0), \
type_stack)
data = pickle.load(open(filename, 'rb'))
EW = data[6]
NS = data[7]
UD = data[8]
# Stack over all tremor windows
EW_lin = linstack([EW], normalize=False)[0]
EW_pow = powstack([EW], w, normalize=False)[0]
EW_PWS = PWstack([EW], w, normalize=False)[0]
NS_lin = linstack([NS], normalize=False)[0]
NS_pow = powstack([NS], w, normalize=False)[0]
NS_PWS = PWstack([NS], w, normalize=False)[0]
UD_lin = linstack([UD], normalize=False)[0]
UD_pow = powstack([UD], w, normalize=False)[0]
UD_PWS = PWstack([UD], w, normalize=False)[0]
# Plot
plt.figure(1, figsize=(30, 15))
# EW autocorrelation
ax1 = plt.subplot(131)
for i in range(n1, n2):
dt = EW[i].stats.delta
ncor = int((EW[i].stats.npts - 1) / 2)
t = dt * np.arange(- ncor, ncor + 1)
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * EW[i].data, 'k-')
plt.plot(t, - 2.0 + amp_lin * EW_lin.data, 'r-')
plt.plot(t, - 2.0 + amp_pow * EW_pow.data, 'b-')
plt.plot(t, - 2.0 + amp_PWS * EW_PWS.data, 'g-')
plt.xlim(0, Tmax)
plt.ylim(- 5.0, 2.0 * (n2 - n1))
plt.title('East component', fontsize=24)
plt.xlabel('Lag time (s)', fontsize=24)
plt.ylabel('Autocorrelation', fontsize=24)
ax1.set_yticklabels([])
ax1.tick_params(labelsize=20)
# NS autocorrelation
ax2 = plt.subplot(132)
for i in range(n1, n2):
dt = NS[i].stats.delta
ncor = int((NS[i].stats.npts - 1) / 2)
t = dt * np.arange(- ncor, ncor + 1)
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * NS[i].data, 'k-')
plt.plot(t, - 2.0 + amp_lin * NS_lin.data, 'r-')
plt.plot(t, - 2.0 + amp_pow * NS_pow.data, 'b-')
plt.plot(t, - 2.0 + amp_PWS * NS_PWS.data, 'g-')
plt.xlim(0, Tmax)
plt.ylim(- 5.0, 2.0 * (n2 - n1))
plt.title('North component', fontsize=24)
plt.xlabel('Lag time (s)', fontsize=24)
plt.ylabel('Autocorrelation', fontsize=24)
ax2.set_yticklabels([])
ax2.tick_params(labelsize=20)
# UD autocorrelation
ax3 = plt.subplot(133)
for i in range(n1, n2):
dt = UD[i].stats.delta
ncor = int((UD[i].stats.npts - 1) / 2)
t = dt * np.arange(- ncor, ncor + 1)
plt.plot(t, (2.0 * i + 1) - 2 * n1 + amp * UD[i].data, 'k-')
plt.plot(t, - 2.0 + amp_lin * UD_lin.data, 'r-')
plt.plot(t, - 2.0 + amp_pow * UD_pow.data, 'b-')
plt.plot(t, - 2.0 + amp_PWS * UD_PWS.data, 'g-')
plt.xlim(0, Tmax)
plt.ylim(- 5.0, 2.0 * (n2 - n1))
plt.title('Vertical component', fontsize=24)
plt.xlabel('Lag time (s)', fontsize=24)
plt.ylabel('Autocorrelation', fontsize=24)
ax3.set_yticklabels([])
ax3.tick_params(labelsize=20)
# End figure and plot
plt.suptitle('{} at {} km, {} km'.format(arrayName, x0, y0), fontsize=24)
plt.savefig('ac/{}/{}_{:03d}_{:03d}/{}_{:03d}_{:03d}_{}.eps'.format( \
arrayName, arrayName, int(x0), int(y0), arrayName, int(x0), int(y0), \
type_stack), format='eps')
ax1.clear()
ax2.clear()
ax3.clear()
plt.close(1) |
Python | def compute_time(h, v, i0):
"""
Compute the travel time from the
velocity profile and the incidence angle
Input:
type h = 1D numpy array
h = Thicknesses of the layers
type v = 1D numpy array
v = Seismic wave velocities
type i0 = float
i0 = Incidence angle
Output:
type d0 = float
d0 = Distance from epicenter
type t0 = float
t0 = Travel time
"""
N = np.shape(h)[0]
d = np.zeros(N)
l = np.zeros(N)
t = np.zeros(N)
i = np.zeros(N)
i[0] = i0
for j in range(0, N):
d[j] = h[j] * tan(i[j] * pi / 180.0)
l[j] = h[j] / cos(i[j] * pi / 180.0)
t[j] = l[j] / v[j]
if j < N - 1:
if abs(v[j + 1] * sin(i[j] * pi / 180.0) / v[j]) > 1.0:
return (10000.0, 10000.0)
else:
i[j + 1] = asin(v[j + 1] * sin(i[j] * pi / 180.0) \
/ v[j]) * 180.0 / pi
d0 = np.sum(d)
t0 = np.sum(t)
return (d0, t0) | def compute_time(h, v, i0):
"""
Compute the travel time from the
velocity profile and the incidence angle
Input:
type h = 1D numpy array
h = Thicknesses of the layers
type v = 1D numpy array
v = Seismic wave velocities
type i0 = float
i0 = Incidence angle
Output:
type d0 = float
d0 = Distance from epicenter
type t0 = float
t0 = Travel time
"""
N = np.shape(h)[0]
d = np.zeros(N)
l = np.zeros(N)
t = np.zeros(N)
i = np.zeros(N)
i[0] = i0
for j in range(0, N):
d[j] = h[j] * tan(i[j] * pi / 180.0)
l[j] = h[j] / cos(i[j] * pi / 180.0)
t[j] = l[j] / v[j]
if j < N - 1:
if abs(v[j + 1] * sin(i[j] * pi / 180.0) / v[j]) > 1.0:
return (10000.0, 10000.0)
else:
i[j + 1] = asin(v[j + 1] * sin(i[j] * pi / 180.0) \
/ v[j]) * 180.0 / pi
d0 = np.sum(d)
t0 = np.sum(t)
return (d0, t0) |
Python | def cli(env, identifier, postinstall, key):
"""Reload operating system on a virtual server."""
vsi = SoftLayer.VSManager(env.client)
vs_id = helpers.resolve_id(vsi.resolve_ids, identifier, 'VS')
keys = []
if key:
for single_key in key:
resolver = SoftLayer.SshKeyManager(env.client).resolve_ids
key_id = helpers.resolve_id(resolver, single_key, 'SshKey')
keys.append(key_id)
if not (env.skip_confirmations or formatting.no_going_back(vs_id)):
raise exceptions.CLIAbort('Aborted')
vsi.reload_instance(vs_id, postinstall, keys) | def cli(env, identifier, postinstall, key):
"""Reload operating system on a virtual server."""
vsi = SoftLayer.VSManager(env.client)
vs_id = helpers.resolve_id(vsi.resolve_ids, identifier, 'VS')
keys = []
if key:
for single_key in key:
resolver = SoftLayer.SshKeyManager(env.client).resolve_ids
key_id = helpers.resolve_id(resolver, single_key, 'SshKey')
keys.append(key_id)
if not (env.skip_confirmations or formatting.no_going_back(vs_id)):
raise exceptions.CLIAbort('Aborted')
vsi.reload_instance(vs_id, postinstall, keys) |
Python | def ping(self, datacenter=None, network=None):
"""Ping a message queue endpoint."""
resp = requests.get('%s/v1/ping' %
self.get_endpoint(datacenter, network))
resp.raise_for_status()
return True | def ping(self, datacenter=None, network=None):
"""Ping a message queue endpoint."""
resp = requests.get('%s/v1/ping' %
self.get_endpoint(datacenter, network))
resp.raise_for_status()
return True |
Python | def _make_request(self, method, path, **kwargs):
"""Make request. Generally not called directly.
:param method: HTTP Method
:param path: resource Path
:param dict \\*\\*kwargs: extra request arguments
"""
headers = {
'Content-Type': 'application/json',
'User-Agent': consts.USER_AGENT,
}
headers.update(kwargs.get('headers', {}))
kwargs['headers'] = headers
kwargs['auth'] = self.auth
url = '/'.join((self.endpoint, 'v1', self.account_id, path))
resp = requests.request(method, url, **kwargs)
try:
resp.raise_for_status()
except requests.HTTPError as ex:
content = json.loads(ex.response.content)
raise exceptions.SoftLayerAPIError(ex.response.status_code,
content['message'])
return resp | def _make_request(self, method, path, **kwargs):
"""Make request. Generally not called directly.
:param method: HTTP Method
:param path: resource Path
:param dict \\*\\*kwargs: extra request arguments
"""
headers = {
'Content-Type': 'application/json',
'User-Agent': consts.USER_AGENT,
}
headers.update(kwargs.get('headers', {}))
kwargs['headers'] = headers
kwargs['auth'] = self.auth
url = '/'.join((self.endpoint, 'v1', self.account_id, path))
resp = requests.request(method, url, **kwargs)
try:
resp.raise_for_status()
except requests.HTTPError as ex:
content = json.loads(ex.response.content)
raise exceptions.SoftLayerAPIError(ex.response.status_code,
content['message'])
return resp |
Python | def authenticate(self, username, api_key, auth_token=None):
"""Authenticate this connection using the given credentials.
:param username: SoftLayer username
:param api_key: SoftLayer API Key
:param auth_token: (optional) Starting auth token
"""
auth_endpoint = '/'.join((self.endpoint, 'v1',
self.account_id, 'auth'))
auth = QueueAuth(auth_endpoint, username, api_key,
auth_token=auth_token)
auth.auth()
self.auth = auth | def authenticate(self, username, api_key, auth_token=None):
"""Authenticate this connection using the given credentials.
:param username: SoftLayer username
:param api_key: SoftLayer API Key
:param auth_token: (optional) Starting auth token
"""
auth_endpoint = '/'.join((self.endpoint, 'v1',
self.account_id, 'auth'))
auth = QueueAuth(auth_endpoint, username, api_key,
auth_token=auth_token)
auth.auth()
self.auth = auth |
Python | def pop_messages(self, queue_name, count=1):
"""Pop messages from a queue.
:param queue_name: Queue Name
:param count: (optional) number of messages to retrieve
"""
resp = self._make_request('get', 'queues/%s/messages' % queue_name,
params={'batch': count})
return resp.json() | def pop_messages(self, queue_name, count=1):
"""Pop messages from a queue.
:param queue_name: Queue Name
:param count: (optional) number of messages to retrieve
"""
resp = self._make_request('get', 'queues/%s/messages' % queue_name,
params={'batch': count})
return resp.json() |
Python | def pop_message(self, queue_name):
"""Pop a single message from a queue.
If no messages are returned this returns None
:param queue_name: Queue Name
"""
messages = self.pop_messages(queue_name, count=1)
if messages['item_count'] > 0:
return messages['items'][0]
else:
return None | def pop_message(self, queue_name):
"""Pop a single message from a queue.
If no messages are returned this returns None
:param queue_name: Queue Name
"""
messages = self.pop_messages(queue_name, count=1)
if messages['item_count'] > 0:
return messages['items'][0]
else:
return None |
Python | def _format_object_mask(objectmask, service):
"""Format new and old style object masks into proper headers.
:param objectmask: a string- or dict-based object mask
:param service: a SoftLayer API service name
"""
if isinstance(objectmask, dict):
mheader = '%sObjectMask' % service
else:
mheader = 'SoftLayer_ObjectMask'
objectmask = objectmask.strip()
if (not objectmask.startswith('mask') and
not objectmask.startswith('[')):
objectmask = "mask[%s]" % objectmask
return {mheader: {'mask': objectmask}} | def _format_object_mask(objectmask, service):
"""Format new and old style object masks into proper headers.
:param objectmask: a string- or dict-based object mask
:param service: a SoftLayer API service name
"""
if isinstance(objectmask, dict):
mheader = '%sObjectMask' % service
else:
mheader = 'SoftLayer_ObjectMask'
objectmask = objectmask.strip()
if (not objectmask.startswith('mask') and
not objectmask.startswith('[')):
objectmask = "mask[%s]" % objectmask
return {mheader: {'mask': objectmask}} |
Python | def cli(env, service, method, parameters, _id, mask, limit, offset):
"""Call arbitrary API endpoints with the given SERVICE and METHOD.
\b
Examples:
slcli call-api Account getObject
slcli call-api Account getVirtualGuests --limit=10 --mask=id,hostname
slcli call-api Virtual_Guest getObject --id=12345
slcli call-api Metric_Tracking_Object getBandwidthData --id=1234 \\
"2015-01-01 00:00:00" "2015-01-1 12:00:00" public
"""
result = env.client.call(service, method, *parameters,
id=_id,
mask=mask,
limit=limit,
offset=offset)
env.fout(formatting.iter_to_table(result)) | def cli(env, service, method, parameters, _id, mask, limit, offset):
"""Call arbitrary API endpoints with the given SERVICE and METHOD.
\b
Examples:
slcli call-api Account getObject
slcli call-api Account getVirtualGuests --limit=10 --mask=id,hostname
slcli call-api Virtual_Guest getObject --id=12345
slcli call-api Metric_Tracking_Object getBandwidthData --id=1234 \\
"2015-01-01 00:00:00" "2015-01-1 12:00:00" public
"""
result = env.client.call(service, method, *parameters,
id=_id,
mask=mask,
limit=limit,
offset=offset)
env.fout(formatting.iter_to_table(result)) |
Python | def cli(ctx, env):
"""Enters a shell for slcli."""
# Set up the environment
env = copy.deepcopy(env)
env.load_modules_from_python(routes.ALL_ROUTES)
env.aliases.update(routes.ALL_ALIASES)
env.vars['global_args'] = ctx.parent.params
env.vars['is_shell'] = True
env.vars['last_exit_code'] = 0
# Set up prompt_toolkit settings
app_path = click.get_app_dir('softlayer')
if not os.path.exists(app_path):
os.makedirs(app_path)
history = p_history.FileHistory(os.path.join(app_path, 'history'))
complete = completer.ShellCompleter()
while True:
try:
line = p_shortcuts.get_input(
u"(%s)> " % env.vars['last_exit_code'],
completer=complete,
history=history,
)
try:
args = shlex.split(line)
except ValueError as ex:
print("Invalid Command: %s" % ex)
continue
if not args:
continue
# Reset client so that the client gets refreshed
env.client = None
core.main(args=list(get_env_args(env)) + args,
obj=env,
prog_name="",
reraise_exceptions=True)
except SystemExit as ex:
env.vars['last_exit_code'] = ex.code
except KeyboardInterrupt:
env.vars['last_exit_code'] = 1
except EOFError:
return
except ShellExit:
return
except Exception as ex:
env.vars['last_exit_code'] = 1
traceback.print_exc(file=sys.stderr) | def cli(ctx, env):
"""Enters a shell for slcli."""
# Set up the environment
env = copy.deepcopy(env)
env.load_modules_from_python(routes.ALL_ROUTES)
env.aliases.update(routes.ALL_ALIASES)
env.vars['global_args'] = ctx.parent.params
env.vars['is_shell'] = True
env.vars['last_exit_code'] = 0
# Set up prompt_toolkit settings
app_path = click.get_app_dir('softlayer')
if not os.path.exists(app_path):
os.makedirs(app_path)
history = p_history.FileHistory(os.path.join(app_path, 'history'))
complete = completer.ShellCompleter()
while True:
try:
line = p_shortcuts.get_input(
u"(%s)> " % env.vars['last_exit_code'],
completer=complete,
history=history,
)
try:
args = shlex.split(line)
except ValueError as ex:
print("Invalid Command: %s" % ex)
continue
if not args:
continue
# Reset client so that the client gets refreshed
env.client = None
core.main(args=list(get_env_args(env)) + args,
obj=env,
prog_name="",
reraise_exceptions=True)
except SystemExit as ex:
env.vars['last_exit_code'] = ex.code
except KeyboardInterrupt:
env.vars['last_exit_code'] = 1
except EOFError:
return
except ShellExit:
return
except Exception as ex:
env.vars['last_exit_code'] = 1
traceback.print_exc(file=sys.stderr) |
Python | def cli(env,
format='table',
config=None,
debug=0,
verbose=0,
proxy=None,
really=False,
fixtures=False,
**kwargs):
"""Main click CLI entry-point."""
# Set logging level
if debug is not None:
verbose = int(debug)
if verbose:
logger = logging.getLogger()
logger.addHandler(logging.StreamHandler())
logger.setLevel(DEBUG_LOGGING_MAP.get(verbose, logging.DEBUG))
# Populate environement with client and set it as the context object
env.skip_confirmations = really
env.config_file = config
env.format = format
if env.client is None:
# Environment can be passed in explicitly. This is used for testing
if fixtures:
client = SoftLayer.BaseClient(
transport=SoftLayer.FixtureTransport(),
auth=None,
)
else:
# Create SL Client
client = SoftLayer.create_client_from_env(
proxy=proxy,
config_file=config,
)
env.client = client
env.vars['timings'] = SoftLayer.TimingTransport(env.client.transport)
env.client.transport = env.vars['timings'] | def cli(env,
format='table',
config=None,
debug=0,
verbose=0,
proxy=None,
really=False,
fixtures=False,
**kwargs):
"""Main click CLI entry-point."""
# Set logging level
if debug is not None:
verbose = int(debug)
if verbose:
logger = logging.getLogger()
logger.addHandler(logging.StreamHandler())
logger.setLevel(DEBUG_LOGGING_MAP.get(verbose, logging.DEBUG))
# Populate environement with client and set it as the context object
env.skip_confirmations = really
env.config_file = config
env.format = format
if env.client is None:
# Environment can be passed in explicitly. This is used for testing
if fixtures:
client = SoftLayer.BaseClient(
transport=SoftLayer.FixtureTransport(),
auth=None,
)
else:
# Create SL Client
client = SoftLayer.create_client_from_env(
proxy=proxy,
config_file=config,
)
env.client = client
env.vars['timings'] = SoftLayer.TimingTransport(env.client.transport)
env.client.transport = env.vars['timings'] |
Python | def output_result(env, timings=False, *args, **kwargs):
"""Outputs the results returned by the CLI and also outputs timings."""
if timings and env.vars.get('timings'):
timing_table = formatting.Table(['service', 'method', 'time'])
calls = env.vars['timings'].get_last_calls()
for call, _, duration in calls:
timing_table.add_row([call.service, call.method, duration])
env.err(env.fmt(timing_table)) | def output_result(env, timings=False, *args, **kwargs):
"""Outputs the results returned by the CLI and also outputs timings."""
if timings and env.vars.get('timings'):
timing_table = formatting.Table(['service', 'method', 'time'])
calls = env.vars['timings'].get_last_calls()
for call, _, duration in calls:
timing_table.add_row([call.service, call.method, duration])
env.err(env.fmt(timing_table)) |
Python | def main(reraise_exceptions=False, **kwargs):
"""Main program. Catches several common errors and displays them nicely."""
exit_status = 0
try:
cli.main(**kwargs)
except SoftLayer.SoftLayerAPIError as ex:
if 'invalid api token' in ex.faultString.lower():
print("Authentication Failed: To update your credentials,"
" use 'slcli config setup'")
exit_status = 1
else:
print(str(ex))
exit_status = 1
except SoftLayer.SoftLayerError as ex:
print(str(ex))
exit_status = 1
except exceptions.CLIAbort as ex:
print(str(ex.message))
exit_status = ex.code
except Exception:
if reraise_exceptions:
raise
import traceback
print("An unexpected error has occured:")
print(str(traceback.format_exc()))
print("Feel free to report this error as it is likely a bug:")
print(" https://github.com/softlayer/softlayer-python/issues")
exit_status = 1
sys.exit(exit_status) | def main(reraise_exceptions=False, **kwargs):
"""Main program. Catches several common errors and displays them nicely."""
exit_status = 0
try:
cli.main(**kwargs)
except SoftLayer.SoftLayerAPIError as ex:
if 'invalid api token' in ex.faultString.lower():
print("Authentication Failed: To update your credentials,"
" use 'slcli config setup'")
exit_status = 1
else:
print(str(ex))
exit_status = 1
except SoftLayer.SoftLayerError as ex:
print(str(ex))
exit_status = 1
except exceptions.CLIAbort as ex:
print(str(ex.message))
exit_status = ex.code
except Exception:
if reraise_exceptions:
raise
import traceback
print("An unexpected error has occured:")
print(str(traceback.format_exc()))
print("Feel free to report this error as it is likely a bug:")
print(" https://github.com/softlayer/softlayer-python/issues")
exit_status = 1
sys.exit(exit_status) |
Python | def generate_order_template(self, quote_id, extra, quantity=1):
"""Generate a complete order template.
:param int quote_id: ID of target quote
:param list extra: List of dictionaries that have extra details about
the order such as hostname or domain names for
virtual servers or hardware nodes
:param int quantity: Number of ~things~ to order
"""
container = self.get_order_container(quote_id)
container['quantity'] = quantity
# NOTE(kmcdonald): This will only work with virtualGuests and hardware.
# There has to be a better way, since this is based on
# an existing quote that supposedly knows about this
# detail
if container['packageId'] == 46:
product_type = 'virtualGuests'
else:
product_type = 'hardware'
if len(extra) != quantity:
raise ValueError("You must specify extra for each server in the "
"quote")
container[product_type] = []
for extra_details in extra:
container[product_type].append(extra_details)
container['presetId'] = None
return container | def generate_order_template(self, quote_id, extra, quantity=1):
"""Generate a complete order template.
:param int quote_id: ID of target quote
:param list extra: List of dictionaries that have extra details about
the order such as hostname or domain names for
virtual servers or hardware nodes
:param int quantity: Number of ~things~ to order
"""
container = self.get_order_container(quote_id)
container['quantity'] = quantity
# NOTE(kmcdonald): This will only work with virtualGuests and hardware.
# There has to be a better way, since this is based on
# an existing quote that supposedly knows about this
# detail
if container['packageId'] == 46:
product_type = 'virtualGuests'
else:
product_type = 'hardware'
if len(extra) != quantity:
raise ValueError("You must specify extra for each server in the "
"quote")
container[product_type] = []
for extra_details in extra:
container[product_type].append(extra_details)
container['presetId'] = None
return container |
Python | def verify_quote(self, quote_id, extra, quantity=1):
"""Verifies that a quote order is valid.
:param int quote_id: ID for the target quote
:param list hostnames: hostnames of the servers
:param string domain: domain of the new servers
:param int quantity: Quantity to override default
"""
container = self.generate_order_template(quote_id, extra,
quantity=quantity)
return self.client['Product_Order'].verifyOrder(container) | def verify_quote(self, quote_id, extra, quantity=1):
"""Verifies that a quote order is valid.
:param int quote_id: ID for the target quote
:param list hostnames: hostnames of the servers
:param string domain: domain of the new servers
:param int quantity: Quantity to override default
"""
container = self.generate_order_template(quote_id, extra,
quantity=quantity)
return self.client['Product_Order'].verifyOrder(container) |
Python | def order_quote(self, quote_id, extra, quantity=1):
"""Places an order using a quote
:param int quote_id: ID for the target quote
:param list hostnames: hostnames of the servers
:param string domain: domain of the new server
:param int quantity: Quantity to override default
"""
container = self.generate_order_template(quote_id, extra,
quantity=quantity)
return self.client['Product_Order'].placeOrder(container) | def order_quote(self, quote_id, extra, quantity=1):
"""Places an order using a quote
:param int quote_id: ID for the target quote
:param list hostnames: hostnames of the servers
:param string domain: domain of the new server
:param int quantity: Quantity to override default
"""
container = self.generate_order_template(quote_id, extra,
quantity=quantity)
return self.client['Product_Order'].placeOrder(container) |
Python | def row(self, data):
"""Return a formatted row for the given data."""
for column in self.column_funcs:
if callable(column):
yield column(data)
else:
yield utils.lookup(data, *column) | def row(self, data):
"""Return a formatted row for the given data."""
for column in self.column_funcs:
if callable(column):
yield column(data)
else:
yield utils.lookup(data, *column) |
Python | def _click_autocomplete(root, text):
"""Completer generator for click applications."""
try:
parts = shlex.split(text)
except ValueError:
return []
location, incomplete = _click_resolve_command(root, parts)
if not text.endswith(' ') and not incomplete and text:
return []
options = []
if incomplete and not incomplete[0:2].isalnum():
for param in location.params:
if not isinstance(param, click.Option):
continue
options.extend(param.opts)
options.extend(param.secondary_opts)
elif isinstance(location, (click.MultiCommand, click.core.Group)):
options.extend(location.list_commands(click.Context(location)))
# collect options that starts with the incomplete section
completions = []
for option in options:
if option.startswith(incomplete):
completions.append(
completion.Completion(option, -len(incomplete)))
return completions | def _click_autocomplete(root, text):
"""Completer generator for click applications."""
try:
parts = shlex.split(text)
except ValueError:
return []
location, incomplete = _click_resolve_command(root, parts)
if not text.endswith(' ') and not incomplete and text:
return []
options = []
if incomplete and not incomplete[0:2].isalnum():
for param in location.params:
if not isinstance(param, click.Option):
continue
options.extend(param.opts)
options.extend(param.secondary_opts)
elif isinstance(location, (click.MultiCommand, click.core.Group)):
options.extend(location.list_commands(click.Context(location)))
# collect options that starts with the incomplete section
completions = []
for option in options:
if option.startswith(incomplete):
completions.append(
completion.Completion(option, -len(incomplete)))
return completions |
Python | def _click_resolve_command(root, parts):
"""Return the click command and the left over text given some vargs."""
location = root
incomplete = ''
for part in parts:
incomplete = part
if not part[0:2].isalnum():
continue
try:
next_location = location.get_command(click.Context(location),
part)
if next_location is not None:
location = next_location
incomplete = ''
except AttributeError:
break
return location, incomplete | def _click_resolve_command(root, parts):
"""Return the click command and the left over text given some vargs."""
location = root
incomplete = ''
for part in parts:
incomplete = part
if not part[0:2].isalnum():
continue
try:
next_location = location.get_command(click.Context(location),
part)
if next_location is not None:
location = next_location
incomplete = ''
except AttributeError:
break
return location, incomplete |
Python | def _find_item_prices(self, size, categorycode=''):
"""Retrieves the Item Price IDs."""
item_prices = self.client['Product_Package'].getItems(
id=0,
mask='id,capacity,prices[id]',
filter={
'items': {
'capacity': {'operation': int(size)},
'categories': {
'categoryCode': {'operation': categorycode}
}}})
for item_price in item_prices:
for price in item_price['prices']:
return price['id']
raise exceptions.SoftLayerError(
"Could not find a valid price with for the given size") | def _find_item_prices(self, size, categorycode=''):
"""Retrieves the Item Price IDs."""
item_prices = self.client['Product_Package'].getItems(
id=0,
mask='id,capacity,prices[id]',
filter={
'items': {
'capacity': {'operation': int(size)},
'categories': {
'categoryCode': {'operation': categorycode}
}}})
for item_price in item_prices:
for price in item_price['prices']:
return price['id']
raise exceptions.SoftLayerError(
"Could not find a valid price with for the given size") |
Python | def _get_location_id(self, location):
"""Returns location id of datacenter for ProductOrder::placeOrder()."""
loc_svc = self.client['Location_Datacenter']
datacenters = loc_svc.getDatacenters(mask='mask[longName,id,name]')
for datacenter in datacenters:
if datacenter['name'] == location:
location = datacenter['id']
return location
raise ValueError('Invalid datacenter name specified.') | def _get_location_id(self, location):
"""Returns location id of datacenter for ProductOrder::placeOrder()."""
loc_svc = self.client['Location_Datacenter']
datacenters = loc_svc.getDatacenters(mask='mask[longName,id,name]')
for datacenter in datacenters:
if datacenter['name'] == location:
location = datacenter['id']
return location
raise ValueError('Invalid datacenter name specified.') |
Python | def create_iscsi(self, size=None, location=None):
"""Places an order for iSCSI volume.
:param integer size: size of iSCSI volume to create
:param string location: datacenter to use to create volume in
"""
item_price = self._find_item_prices(int(size),
categorycode='iscsi')
iscsi_order = self._build_order(item_price, location)
return self.product_order.placeOrder(iscsi_order) | def create_iscsi(self, size=None, location=None):
"""Places an order for iSCSI volume.
:param integer size: size of iSCSI volume to create
:param string location: datacenter to use to create volume in
"""
item_price = self._find_item_prices(int(size),
categorycode='iscsi')
iscsi_order = self._build_order(item_price, location)
return self.product_order.placeOrder(iscsi_order) |
Python | def cancel_iscsi(self, volume_id, reason='unNeeded', immediate=False):
"""Cancels the given iSCSI volume.
:param integer volume_id: the volume ID
"""
iscsi = self.get_iscsi(
volume_id,
mask='mask[id,capacityGb,username,password,billingItem[id]]')
billingitemid = iscsi['billingItem']['id']
self.client['Billing_Item'].cancelItem(
immediate,
True,
reason,
id=billingitemid) | def cancel_iscsi(self, volume_id, reason='unNeeded', immediate=False):
"""Cancels the given iSCSI volume.
:param integer volume_id: the volume ID
"""
iscsi = self.get_iscsi(
volume_id,
mask='mask[id,capacityGb,username,password,billingItem[id]]')
billingitemid = iscsi['billingItem']['id']
self.client['Billing_Item'].cancelItem(
immediate,
True,
reason,
id=billingitemid) |
Python | def create_snapshot(self, volume_id, notes='No longer needed'):
"""Orders a snapshot for given volume.
:param integer volume_id: the volume ID
"""
self.iscsi_svc.createSnapshot(notes, id=volume_id) | def create_snapshot(self, volume_id, notes='No longer needed'):
"""Orders a snapshot for given volume.
:param integer volume_id: the volume ID
"""
self.iscsi_svc.createSnapshot(notes, id=volume_id) |
Python | def create_snapshot_space(self, volume_id, capacity):
"""Orders a snapshot space for given volume.
:param integer volume_id: the volume ID
:param integer capacity: capacity in ~GB
"""
item_price = self._find_item_prices(
int(capacity), categorycode='iscsi_snapshot_space')
result = self.get_iscsi(
volume_id, mask='mask[id,capacityGb,serviceResource[datacenter]]')
snapshotspaceorder = {
'complexType':
'SoftLayer_Container_Product_Order_\
Network_Storage_Iscsi_SnapshotSpace',
'location': result['serviceResource']['datacenter']['id'],
'packageId': 0,
'prices': [{'id': item_price}],
'quantity': 1,
'volumeId': volume_id}
self.product_order.placeOrder(snapshotspaceorder) | def create_snapshot_space(self, volume_id, capacity):
"""Orders a snapshot space for given volume.
:param integer volume_id: the volume ID
:param integer capacity: capacity in ~GB
"""
item_price = self._find_item_prices(
int(capacity), categorycode='iscsi_snapshot_space')
result = self.get_iscsi(
volume_id, mask='mask[id,capacityGb,serviceResource[datacenter]]')
snapshotspaceorder = {
'complexType':
'SoftLayer_Container_Product_Order_\
Network_Storage_Iscsi_SnapshotSpace',
'location': result['serviceResource']['datacenter']['id'],
'packageId': 0,
'prices': [{'id': item_price}],
'quantity': 1,
'volumeId': volume_id}
self.product_order.placeOrder(snapshotspaceorder) |
Python | def restore_from_snapshot(self, volume_id, snapshot_id):
"""Restore the volume to snapshot's contents.
:params: imteger volume_id: the volume ID
:params: integer snapshot_id: the snapshot ID
"""
self.iscsi_svc.restoreFromSnapshot(snapshot_id, id=volume_id) | def restore_from_snapshot(self, volume_id, snapshot_id):
"""Restore the volume to snapshot's contents.
:params: imteger volume_id: the volume ID
:params: integer snapshot_id: the snapshot ID
"""
self.iscsi_svc.restoreFromSnapshot(snapshot_id, id=volume_id) |
Python | def _get_network(self, kind, router=True, vlans=True, vlan_ids=True):
"""Wrapper for getting details about networks.
:param string kind: network kind. Typically 'public' or 'private'
:param boolean router: flag to include router information
:param boolean vlans: flag to include vlan information
:param boolean vlan_ids: flag to include vlan_ids
"""
network = {}
macs = self.get('%s_mac' % kind)
network['mac_addresses'] = macs
if len(macs) == 0:
return network
if router:
network['router'] = self.get('router', macs[0])
if vlans:
network['vlans'] = self.get('vlans', macs[0])
if vlan_ids:
network['vlan_ids'] = self.get('vlan_ids', macs[0])
return network | def _get_network(self, kind, router=True, vlans=True, vlan_ids=True):
"""Wrapper for getting details about networks.
:param string kind: network kind. Typically 'public' or 'private'
:param boolean router: flag to include router information
:param boolean vlans: flag to include vlan information
:param boolean vlan_ids: flag to include vlan_ids
"""
network = {}
macs = self.get('%s_mac' % kind)
network['mac_addresses'] = macs
if len(macs) == 0:
return network
if router:
network['router'] = self.get('router', macs[0])
if vlans:
network['vlans'] = self.get('vlans', macs[0])
if vlan_ids:
network['vlan_ids'] = self.get('vlan_ids', macs[0])
return network |
Python | def public_network(self, **kwargs):
"""Returns details about the public network.
:param boolean router: True to return router details
:param boolean vlans: True to return vlan details
:param boolean vlan_ids: True to return vlan_ids
"""
return self._get_network('frontend', **kwargs) | def public_network(self, **kwargs):
"""Returns details about the public network.
:param boolean router: True to return router details
:param boolean vlans: True to return vlan details
:param boolean vlan_ids: True to return vlan_ids
"""
return self._get_network('frontend', **kwargs) |
Python | def private_network(self, **kwargs):
"""Returns details about the private network.
:param boolean router: True to return router details
:param boolean vlans: True to return vlan details
:param boolean vlan_ids: True to return vlan_ids
"""
return self._get_network('backend', **kwargs) | def private_network(self, **kwargs):
"""Returns details about the private network.
:param boolean router: True to return router details
:param boolean vlans: True to return vlan details
:param boolean vlan_ids: True to return vlan_ids
"""
return self._get_network('backend', **kwargs) |
Python | def tracedmodule_to_onnx(
traced_module,
output="out.onnx",
*,
graph_name="graph",
opset=8,
outspec=None,
input_data_type: str = None,
input_scales: Union[float, List[float]] = None,
input_zero_points: Union[int, List[int]] = None,
require_quantize=False,
param_fake_quant=False,
quantize_file_path="quant_params.json",
):
"""
Convert megengine model to ONNX,
and save the ONNX model to file `output`.
:param mge_fpath: the file path of megengine model.
:type fpath: str
:param output: the filename used for the saved model.
:type output: str
:param graph_name: the name of the ONNX graph.
:type graph_name: str
:param opset: opset version of ONNX model.
:type opset: int
"""
if isinstance(traced_module, str):
traced_module = mge.load(traced_module)
assert isinstance(
traced_module, TracedModule
), "Input should be a traced module or a path of traced module."
_update_inputs_qparams(
traced_module, input_data_type, input_scales, input_zero_points
)
assert not require_quantize, "Caffe do not support quantize model."
tm_resolver = TM_FrontEnd(traced_module, outspec=outspec)
irgraph = tm_resolver.resolve()
transformer_options = [
TransformerRule.REMOVE_RESHAPE_REALTED_OP,
TransformerRule.REMOVE_UNRELATED_IROP,
TransformerRule.EXPAND_CONVRELU,
]
transformer = IRTransform(transformer_options)
transformed_irgraph = transformer.transform(irgraph)
quantizer = IRQuantizer(
require_quantize=require_quantize, param_fake_quant=param_fake_quant
)
if tm_resolver.has_qat:
quantizer.save_quantize_params(transformed_irgraph)
converter = OnnxConverter(transformed_irgraph, opset, graph_name, quantizer)
model = converter.convert()
if tm_resolver.has_qat:
quantizer.dump_quant_param(path=quantize_file_path)
assert isinstance(output, str), "onnx_fpath must be string"
with open(output, "wb") as fout:
fout.write(model.SerializeToString()) | def tracedmodule_to_onnx(
traced_module,
output="out.onnx",
*,
graph_name="graph",
opset=8,
outspec=None,
input_data_type: str = None,
input_scales: Union[float, List[float]] = None,
input_zero_points: Union[int, List[int]] = None,
require_quantize=False,
param_fake_quant=False,
quantize_file_path="quant_params.json",
):
"""
Convert megengine model to ONNX,
and save the ONNX model to file `output`.
:param mge_fpath: the file path of megengine model.
:type fpath: str
:param output: the filename used for the saved model.
:type output: str
:param graph_name: the name of the ONNX graph.
:type graph_name: str
:param opset: opset version of ONNX model.
:type opset: int
"""
if isinstance(traced_module, str):
traced_module = mge.load(traced_module)
assert isinstance(
traced_module, TracedModule
), "Input should be a traced module or a path of traced module."
_update_inputs_qparams(
traced_module, input_data_type, input_scales, input_zero_points
)
assert not require_quantize, "Caffe do not support quantize model."
tm_resolver = TM_FrontEnd(traced_module, outspec=outspec)
irgraph = tm_resolver.resolve()
transformer_options = [
TransformerRule.REMOVE_RESHAPE_REALTED_OP,
TransformerRule.REMOVE_UNRELATED_IROP,
TransformerRule.EXPAND_CONVRELU,
]
transformer = IRTransform(transformer_options)
transformed_irgraph = transformer.transform(irgraph)
quantizer = IRQuantizer(
require_quantize=require_quantize, param_fake_quant=param_fake_quant
)
if tm_resolver.has_qat:
quantizer.save_quantize_params(transformed_irgraph)
converter = OnnxConverter(transformed_irgraph, opset, graph_name, quantizer)
model = converter.convert()
if tm_resolver.has_qat:
quantizer.dump_quant_param(path=quantize_file_path)
assert isinstance(output, str), "onnx_fpath must be string"
with open(output, "wb") as fout:
fout.write(model.SerializeToString()) |
Python | def _check_dependency(outputs: List[IRTensor]):
"""
Check whether there exist one output depend on another output
"""
output_oprs = {var.owner_opr for var in outputs}
output_input_oprs = {
i.owner_opr for opr in _get_dep_opr(outputs) for i in opr.inp_tensors
}
if len(output_oprs) != len(outputs) or (output_oprs & output_input_oprs):
raise ReorderError("Bad order due to dependency between two outputs.") | def _check_dependency(outputs: List[IRTensor]):
"""
Check whether there exist one output depend on another output
"""
output_oprs = {var.owner_opr for var in outputs}
output_input_oprs = {
i.owner_opr for opr in _get_dep_opr(outputs) for i in opr.inp_tensors
}
if len(output_oprs) != len(outputs) or (output_oprs & output_input_oprs):
raise ReorderError("Bad order due to dependency between two outputs.") |
Python | def _reorder_outputs(context: "CaffeConverter"):
"""
Try to keep same order with original network, but sometimes it is impossible,
raise a ReorderError if it can't order output layers correctly.
"""
output_tensor = context.net.graph_outputs
_check_dependency(output_tensor)
blob2index = {}
ordered_layers = []
output_layers = [None] * len(output_tensor)
for i, oup in enumerate(output_tensor):
blob = context.get_blob_name(oup)
blob2index[blob] = i
for l in context.layers:
is_output = False
for blob in l.top:
idx = blob2index.get(blob, None)
if idx is not None:
if not is_output:
is_output = True
else:
raise ReorderError(
"layer {} has more than one network outputs".format(l)
)
if output_layers[idx] is not None:
raise ReorderError(
"duplicated blob name of layer {} and {}".format(
output_layers[idx], l
)
)
output_layers[idx] = l
if not is_output:
ordered_layers.append(l)
if output_layers.count(None) > 0:
raise ReorderError("failure to replace all output vars.")
ordered_layers += output_layers
return ordered_layers | def _reorder_outputs(context: "CaffeConverter"):
"""
Try to keep same order with original network, but sometimes it is impossible,
raise a ReorderError if it can't order output layers correctly.
"""
output_tensor = context.net.graph_outputs
_check_dependency(output_tensor)
blob2index = {}
ordered_layers = []
output_layers = [None] * len(output_tensor)
for i, oup in enumerate(output_tensor):
blob = context.get_blob_name(oup)
blob2index[blob] = i
for l in context.layers:
is_output = False
for blob in l.top:
idx = blob2index.get(blob, None)
if idx is not None:
if not is_output:
is_output = True
else:
raise ReorderError(
"layer {} has more than one network outputs".format(l)
)
if output_layers[idx] is not None:
raise ReorderError(
"duplicated blob name of layer {} and {}".format(
output_layers[idx], l
)
)
output_layers[idx] = l
if not is_output:
ordered_layers.append(l)
if output_layers.count(None) > 0:
raise ReorderError("failure to replace all output vars.")
ordered_layers += output_layers
return ordered_layers |
Python | def _get_inputs(self, exclude_idx=None):
"""
Returns the names of inputs of onnx operator.
"""
if exclude_idx is None:
exclude_idx = []
for idx, inp in enumerate(self._opr.inp_tensors):
if idx not in exclude_idx:
if self._opr.inp_tensors[idx].np_data is not None:
inp_tensor = onnx.helper.make_tensor_value_info(
inp.name, mge2onnx_dtype_mapping[inp.dtype], inp.shape
)
param = onnx.numpy_helper.from_array(inp.np_data, inp.name)
self._net_sources.append(inp_tensor)
self._parameters.append(param)
return [tensor.name for tensor in self._opr.inp_tensors] | def _get_inputs(self, exclude_idx=None):
"""
Returns the names of inputs of onnx operator.
"""
if exclude_idx is None:
exclude_idx = []
for idx, inp in enumerate(self._opr.inp_tensors):
if idx not in exclude_idx:
if self._opr.inp_tensors[idx].np_data is not None:
inp_tensor = onnx.helper.make_tensor_value_info(
inp.name, mge2onnx_dtype_mapping[inp.dtype], inp.shape
)
param = onnx.numpy_helper.from_array(inp.np_data, inp.name)
self._net_sources.append(inp_tensor)
self._parameters.append(param)
return [tensor.name for tensor in self._opr.inp_tensors] |
Python | def _get_outputs(self):
"""
Returns the names of outputs of onnx operator.
"""
return [tensor.name for tensor in self._opr.out_tensors] | def _get_outputs(self):
"""
Returns the names of outputs of onnx operator.
"""
return [tensor.name for tensor in self._opr.out_tensors] |
Python | def convert(self):
"""
Convert owning operator to onnx operator. Could be override by
subclass.
Returns tuple (nodes, net_sources, parameters)
"""
nodes = [
onnx.helper.make_node(
self.__opr_type__,
self._get_inputs(),
self._get_outputs(),
name=self._opr.out_tensors[0].name,
**self._get_attrs(),
)
]
return nodes, self._net_sources, self._parameters | def convert(self):
"""
Convert owning operator to onnx operator. Could be override by
subclass.
Returns tuple (nodes, net_sources, parameters)
"""
nodes = [
onnx.helper.make_node(
self.__opr_type__,
self._get_inputs(),
self._get_outputs(),
name=self._opr.out_tensors[0].name,
**self._get_attrs(),
)
]
return nodes, self._net_sources, self._parameters |
Python | def tracedmodule_to_tflite(
traced_module,
output="out.tflite",
*,
input_data_type: str = None,
input_scales: Union[float, List[float]] = None,
input_zero_points: Union[int, List[int]] = None,
require_quantize=False,
param_fake_quant=False,
quantize_file_path="quant_params.json",
graph_name="graph",
mtk=False,
outspec=None,
):
"""
Convert traced model to TFLite,
and save the TFLite model to file `output`.
:param traced_module: a traced module or the file path of a traced module.
:param output: the filename used for the saved model.
:param data_type: data type of input
:param graph_name: the name of the TFLite graph.
:param mtk: if this TFLite will be run on mtk.
:type mtk: bool
"""
if isinstance(traced_module, str):
traced_module = mge.load(traced_module)
assert isinstance(
traced_module, TracedModule
), "Input should be a traced module or a path of traced module."
_update_inputs_qparams(
traced_module, input_data_type, input_scales, input_zero_points
)
tm_resolver = TM_FrontEnd(traced_module, outspec=outspec)
irgraph = tm_resolver.resolve()
transformer_options = [
TransformerRule.REDUCE_AXIS_AS_INPUT,
TransformerRule.PADDING_FOR_CONV_AND_POOLING,
TransformerRule.EXPAND_CONVRELU,
TransformerRule.CONV_ADD_ZERO_BIAS,
TransformerRule.DECONV_SHAPE_AS_INPUT,
TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT,
TransformerRule.RESHAPE_BIAS_TO_1DIM,
TransformerRule.FUSE_ACTIVATION,
TransformerRule.SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE,
TransformerRule.RESIZE_PARAMS_AS_INPUT,
TransformerRule.TRANSPOSE_PATTERN_AS_INPUT,
TransformerRule.FUSE_CONV_BN,
TransformerRule.REMOVE_IDENTITY,
TransformerRule.REPLACE_FLATTEN_TO_RESHAPE,
]
if mtk:
# MTK devices only support batch_size 1
set_platform("mtk")
transformer_options.append(TransformerRule.DECONV_ADD_ZERO_BIAS,)
transformer = IRTransform(transformer_options)
transformed_irgraph = transformer.transform(irgraph)
quantizer = IRQuantizer(
require_quantize=require_quantize, param_fake_quant=param_fake_quant
)
if not require_quantize and tm_resolver.has_qat:
quantizer.save_quantize_params(transformed_irgraph)
quantizer.dump_quant_param(path=quantize_file_path)
converter = TFLiteConverter(transformed_irgraph, graph_name, quantizer=quantizer)
model = converter.convert()
assert isinstance(output, str), "tflite_fpath must be string"
with open(output, "wb") as fout:
fout.write(model) | def tracedmodule_to_tflite(
traced_module,
output="out.tflite",
*,
input_data_type: str = None,
input_scales: Union[float, List[float]] = None,
input_zero_points: Union[int, List[int]] = None,
require_quantize=False,
param_fake_quant=False,
quantize_file_path="quant_params.json",
graph_name="graph",
mtk=False,
outspec=None,
):
"""
Convert traced model to TFLite,
and save the TFLite model to file `output`.
:param traced_module: a traced module or the file path of a traced module.
:param output: the filename used for the saved model.
:param data_type: data type of input
:param graph_name: the name of the TFLite graph.
:param mtk: if this TFLite will be run on mtk.
:type mtk: bool
"""
if isinstance(traced_module, str):
traced_module = mge.load(traced_module)
assert isinstance(
traced_module, TracedModule
), "Input should be a traced module or a path of traced module."
_update_inputs_qparams(
traced_module, input_data_type, input_scales, input_zero_points
)
tm_resolver = TM_FrontEnd(traced_module, outspec=outspec)
irgraph = tm_resolver.resolve()
transformer_options = [
TransformerRule.REDUCE_AXIS_AS_INPUT,
TransformerRule.PADDING_FOR_CONV_AND_POOLING,
TransformerRule.EXPAND_CONVRELU,
TransformerRule.CONV_ADD_ZERO_BIAS,
TransformerRule.DECONV_SHAPE_AS_INPUT,
TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT,
TransformerRule.RESHAPE_BIAS_TO_1DIM,
TransformerRule.FUSE_ACTIVATION,
TransformerRule.SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE,
TransformerRule.RESIZE_PARAMS_AS_INPUT,
TransformerRule.TRANSPOSE_PATTERN_AS_INPUT,
TransformerRule.FUSE_CONV_BN,
TransformerRule.REMOVE_IDENTITY,
TransformerRule.REPLACE_FLATTEN_TO_RESHAPE,
]
if mtk:
# MTK devices only support batch_size 1
set_platform("mtk")
transformer_options.append(TransformerRule.DECONV_ADD_ZERO_BIAS,)
transformer = IRTransform(transformer_options)
transformed_irgraph = transformer.transform(irgraph)
quantizer = IRQuantizer(
require_quantize=require_quantize, param_fake_quant=param_fake_quant
)
if not require_quantize and tm_resolver.has_qat:
quantizer.save_quantize_params(transformed_irgraph)
quantizer.dump_quant_param(path=quantize_file_path)
converter = TFLiteConverter(transformed_irgraph, graph_name, quantizer=quantizer)
model = converter.convert()
assert isinstance(output, str), "tflite_fpath must be string"
with open(output, "wb") as fout:
fout.write(model) |
Python | def tracedmodule_to_caffe(
traced_module,
prototxt="out.prototxt",
caffemodel="out.caffemodel",
outspec=None,
use_empty_blobs=False,
input_data_type: str = None,
input_scales: Union[float, List[float]] = None,
input_zero_points: Union[int, List[int]] = None,
require_quantize=False,
param_fake_quant=False,
split_conv_relu=False,
fuse_bn=False,
quantize_file_path="quant_params.json",
convert_backend: BackEnd = BackEnd.CAFFE,
):
"""
Convert TracedModule model to Caffe,
and save caffe model to `prototxt` and `caffemodel`.
:param traced_module: the file path of TracedModule model.
:type traced_module: str
:param prototxt: the filename used for saved model definition.
:type prototxt: str
:param caffemodel: the filename used for saved model weights.
:type caffemodel: str
:param outspec: specify the end points of the model, expect the full names of nodes.
:type outspec: list
"""
if isinstance(traced_module, str):
traced_module = mge.load(traced_module)
assert isinstance(
traced_module, TracedModule
), "Input should be a traced module or a path of traced module."
assert not require_quantize, "Caffe do not support quantize model."
_update_inputs_qparams(
traced_module, input_data_type, input_scales, input_zero_points
)
tm_resolver = TM_FrontEnd(traced_module, outspec=outspec)
irgraph = tm_resolver.resolve()
transformer_options = [
TransformerRule.REMOVE_DROPOUT,
TransformerRule.REMOVE_RESHAPE_REALTED_OP,
TransformerRule.REMOVE_UNRELATED_IROP,
TransformerRule.ADD_FAKE_HSIGMOID_OUT,
TransformerRule.EXPAND_CONVRELU,
]
if fuse_bn:
transformer_options += [
TransformerRule.FUSE_LINEAR_BN,
TransformerRule.FUSE_CONV_BN,
]
if convert_backend == BackEnd.NNIE:
transformer_options.extend(
[TransformerRule.REMOVE_FLATTEN_BEFORE_LINEAR,]
)
if split_conv_relu:
transformer_options += [TransformerRule.REMOVE_RELU]
transformer = IRTransform(transformer_options)
transformed_irgraph = transformer.transform(irgraph)
quantizer = IRQuantizer(
require_quantize=require_quantize, param_fake_quant=param_fake_quant
)
if tm_resolver.has_qat:
quantizer.save_quantize_params(transformed_irgraph)
converter = CaffeConverter(
transformed_irgraph, quantizer, use_empty_blobs, convert_backend
)
converter.convert()
if tm_resolver.has_qat:
quantizer.dump_quant_param(path=quantize_file_path)
assert isinstance(prototxt, str) and isinstance(
caffemodel, str
), "'prototxt' and 'caffemodel' must be string"
converter.dump(prototxt, caffemodel) | def tracedmodule_to_caffe(
traced_module,
prototxt="out.prototxt",
caffemodel="out.caffemodel",
outspec=None,
use_empty_blobs=False,
input_data_type: str = None,
input_scales: Union[float, List[float]] = None,
input_zero_points: Union[int, List[int]] = None,
require_quantize=False,
param_fake_quant=False,
split_conv_relu=False,
fuse_bn=False,
quantize_file_path="quant_params.json",
convert_backend: BackEnd = BackEnd.CAFFE,
):
"""
Convert TracedModule model to Caffe,
and save caffe model to `prototxt` and `caffemodel`.
:param traced_module: the file path of TracedModule model.
:type traced_module: str
:param prototxt: the filename used for saved model definition.
:type prototxt: str
:param caffemodel: the filename used for saved model weights.
:type caffemodel: str
:param outspec: specify the end points of the model, expect the full names of nodes.
:type outspec: list
"""
if isinstance(traced_module, str):
traced_module = mge.load(traced_module)
assert isinstance(
traced_module, TracedModule
), "Input should be a traced module or a path of traced module."
assert not require_quantize, "Caffe do not support quantize model."
_update_inputs_qparams(
traced_module, input_data_type, input_scales, input_zero_points
)
tm_resolver = TM_FrontEnd(traced_module, outspec=outspec)
irgraph = tm_resolver.resolve()
transformer_options = [
TransformerRule.REMOVE_DROPOUT,
TransformerRule.REMOVE_RESHAPE_REALTED_OP,
TransformerRule.REMOVE_UNRELATED_IROP,
TransformerRule.ADD_FAKE_HSIGMOID_OUT,
TransformerRule.EXPAND_CONVRELU,
]
if fuse_bn:
transformer_options += [
TransformerRule.FUSE_LINEAR_BN,
TransformerRule.FUSE_CONV_BN,
]
if convert_backend == BackEnd.NNIE:
transformer_options.extend(
[TransformerRule.REMOVE_FLATTEN_BEFORE_LINEAR,]
)
if split_conv_relu:
transformer_options += [TransformerRule.REMOVE_RELU]
transformer = IRTransform(transformer_options)
transformed_irgraph = transformer.transform(irgraph)
quantizer = IRQuantizer(
require_quantize=require_quantize, param_fake_quant=param_fake_quant
)
if tm_resolver.has_qat:
quantizer.save_quantize_params(transformed_irgraph)
converter = CaffeConverter(
transformed_irgraph, quantizer, use_empty_blobs, convert_backend
)
converter.convert()
if tm_resolver.has_qat:
quantizer.dump_quant_param(path=quantize_file_path)
assert isinstance(prototxt, str) and isinstance(
caffemodel, str
), "'prototxt' and 'caffemodel' must be string"
converter.dump(prototxt, caffemodel) |
Python | def repo_dir(repo, *path, mkdir=False):
"""creates directories mentioned in *path if absent"""
path = repo_path(repo, *path)
if os.path.exists(path):
if (os.path.isdir(path)):
return path
else:
raise Exception("Not a directory %s" % path)
if mkdir:
os.makedirs(path)
return path
else:
return None | def repo_dir(repo, *path, mkdir=False):
"""creates directories mentioned in *path if absent"""
path = repo_path(repo, *path)
if os.path.exists(path):
if (os.path.isdir(path)):
return path
else:
raise Exception("Not a directory %s" % path)
if mkdir:
os.makedirs(path)
return path
else:
return None |
Python | def repo_create(path):
"""Create a new repository at path"""
repo = vcsRepository(path, True) # create a vcs repo object
# first check if path provided exists or is an empty directory
if os.path.exists(repo.worktree):
if not os.path.isdir(repo.worktree):
raise Exception("%s is not a directory" % path)
else:
os.makedirs(repo.worktree)
assert(repo_dir(repo, "branches", mkdir=True))
assert(repo_dir(repo, "objects", mkdir=True))
assert(repo_dir(repo, "refs", "tags", mkdir=True))
assert(repo_dir(repo, "refs", "heads", mkdir=True))
# .vcs/description
with open(repo_file(repo, "description"), "w") as f:
f.write("Unnamed repository; edit this desscription to name the repository\n")
# .vcs/HEAD
with open(repo_file(repo, "HEAD"), "w") as f:
f.write("ref: refs/heads/master\n")
# write default content to vcs config file
with open(repo_file(repo, "config"), "w") as f:
config = repo_default_config()
config.write(f)
with open(repo_file(repo, "userInfo"), "w") as f:
config = repo_userInfo_config()
config.write(f)
return repo | def repo_create(path):
"""Create a new repository at path"""
repo = vcsRepository(path, True) # create a vcs repo object
# first check if path provided exists or is an empty directory
if os.path.exists(repo.worktree):
if not os.path.isdir(repo.worktree):
raise Exception("%s is not a directory" % path)
else:
os.makedirs(repo.worktree)
assert(repo_dir(repo, "branches", mkdir=True))
assert(repo_dir(repo, "objects", mkdir=True))
assert(repo_dir(repo, "refs", "tags", mkdir=True))
assert(repo_dir(repo, "refs", "heads", mkdir=True))
# .vcs/description
with open(repo_file(repo, "description"), "w") as f:
f.write("Unnamed repository; edit this desscription to name the repository\n")
# .vcs/HEAD
with open(repo_file(repo, "HEAD"), "w") as f:
f.write("ref: refs/heads/master\n")
# write default content to vcs config file
with open(repo_file(repo, "config"), "w") as f:
config = repo_default_config()
config.write(f)
with open(repo_file(repo, "userInfo"), "w") as f:
config = repo_userInfo_config()
config.write(f)
return repo |
Python | def repo_default_config():
"""Defines the config file structure and returns the configparser object"""
# config files is of microsoft INI format
ret = configparser.ConfigParser()
ret.add_section("core")
ret.set("core", "repositoryformatversion", "0")
ret.set("core", "filemode", "false")
ret.set("core", "bare", "false")
return ret | def repo_default_config():
"""Defines the config file structure and returns the configparser object"""
# config files is of microsoft INI format
ret = configparser.ConfigParser()
ret.add_section("core")
ret.set("core", "repositoryformatversion", "0")
ret.set("core", "filemode", "false")
ret.set("core", "bare", "false")
return ret |
Python | def repo_userInfo_config():
"""Defines the config file structure and returns the configparser object for UserInfo file"""
# config files is of microsoft INI format
ret = configparser.ConfigParser()
ret.add_section("info")
ret.set("info", "name", "")
ret.set("info", "email", "")
return ret | def repo_userInfo_config():
"""Defines the config file structure and returns the configparser object for UserInfo file"""
# config files is of microsoft INI format
ret = configparser.ConfigParser()
ret.add_section("info")
ret.set("info", "name", "")
ret.set("info", "email", "")
return ret |
Python | def repo_find(path=".", required=True):
"""Method to return path to .vcs directory by looking in current directory or recursively in it's parents"""
"""Required to prevent creation of redundant .vcs directory for a repo if it's parent directory already has a .vcs directory"""
path = os.path.realpath(path)
if os.path.isdir(os.path.join(path,".vcs")):
return vcsRepository(path)
parent = os.path.realpath(os.path.join(path, ".."))
if parent == path:
# checking the condition when we reach root "/"
# "/../" == "/"
if required:
raise Exception("No .vcs directory")
else:
return None
# recursive call
return repo_find(parent, required) | def repo_find(path=".", required=True):
"""Method to return path to .vcs directory by looking in current directory or recursively in it's parents"""
"""Required to prevent creation of redundant .vcs directory for a repo if it's parent directory already has a .vcs directory"""
path = os.path.realpath(path)
if os.path.isdir(os.path.join(path,".vcs")):
return vcsRepository(path)
parent = os.path.realpath(os.path.join(path, ".."))
if parent == path:
# checking the condition when we reach root "/"
# "/../" == "/"
if required:
raise Exception("No .vcs directory")
else:
return None
# recursive call
return repo_find(parent, required) |
Python | def serialize(self):
""" This function must be implemented by various subclasses.
Since, objects are of different types on the basis of the data it is storing, different object types are required
and thus different function and classes"""
"""Read objects content from self.data, a byte string, and do whatever it takes to convert it to a meaningful representation"""
raise Exception("Unimplemented!!") | def serialize(self):
""" This function must be implemented by various subclasses.
Since, objects are of different types on the basis of the data it is storing, different object types are required
and thus different function and classes"""
"""Read objects content from self.data, a byte string, and do whatever it takes to convert it to a meaningful representation"""
raise Exception("Unimplemented!!") |
Python | def keyValueMessageParser(original, start=0, dct=None):
"""Recursive function which parses a commit or a tag message and extracts key value pairs and messages"""
if not dct:
dct = collections.OrderedDict()
# original is a byte string of the commit or tag message
spaceIndex = original.find(b' ', start)
newlineIndex = original.find(b'\n', start)
# if newline arrives before space, then the line must be a empty line
# thus, it means remainder of the data is a message
# the if case handles the situation when a blank line is reached and strings after this will be the message
if (spaceIndex < 0 or newlineIndex < spaceIndex):
assert(newlineIndex == start)
dct[b''] = original[start+1:]
return dct
# handling the case before blank line is reached, thus parsing key value is needed
key = original[start:spaceIndex]
end = start
while True:
end = original.find(b'\n', end+1)
if original[end+1] != ord(' '):
break
value = original[spaceIndex+1:end]
value.replace(b'\n ', b'\n')
if key in dct:
if type(dct[key]) == list:
dct[key].append(value)
else:
dct[key] = [dct[key], value]
else:
dct[key] = [value]
# recursive function to extract the next key value pair or message
return keyValueMessageParser(original, end+1, dct) | def keyValueMessageParser(original, start=0, dct=None):
"""Recursive function which parses a commit or a tag message and extracts key value pairs and messages"""
if not dct:
dct = collections.OrderedDict()
# original is a byte string of the commit or tag message
spaceIndex = original.find(b' ', start)
newlineIndex = original.find(b'\n', start)
# if newline arrives before space, then the line must be a empty line
# thus, it means remainder of the data is a message
# the if case handles the situation when a blank line is reached and strings after this will be the message
if (spaceIndex < 0 or newlineIndex < spaceIndex):
assert(newlineIndex == start)
dct[b''] = original[start+1:]
return dct
# handling the case before blank line is reached, thus parsing key value is needed
key = original[start:spaceIndex]
end = start
while True:
end = original.find(b'\n', end+1)
if original[end+1] != ord(' '):
break
value = original[spaceIndex+1:end]
value.replace(b'\n ', b'\n')
if key in dct:
if type(dct[key]) == list:
dct[key].append(value)
else:
dct[key] = [dct[key], value]
else:
dct[key] = [value]
# recursive function to extract the next key value pair or message
return keyValueMessageParser(original, end+1, dct) |
Python | def keyValueMessageSerialize(keyValueDict):
"""Function which forms the original commit message from the keyValue dictionary formed by keyvalueParser()"""
res = b''
for keys in keyValueDict.keys():
if (keys == b''):
continue
val = keyValueDict[keys]
if type(val) != list:
val = [val]
# adding the key value pairs and recreating the original format
for elements in val:
res += keys + b' ' + elements.replace(b'\n', b'\n ') + b'\n'
# adding the blank line and the message after
res += b'\n' + keyValueDict[b'']
return res | def keyValueMessageSerialize(keyValueDict):
"""Function which forms the original commit message from the keyValue dictionary formed by keyvalueParser()"""
res = b''
for keys in keyValueDict.keys():
if (keys == b''):
continue
val = keyValueDict[keys]
if type(val) != list:
val = [val]
# adding the key value pairs and recreating the original format
for elements in val:
res += keys + b' ' + elements.replace(b'\n', b'\n ') + b'\n'
# adding the blank line and the message after
res += b'\n' + keyValueDict[b'']
return res |
Python | def object_read(repo, sha):
"""Read object object_id from vcs repository repo. Return a
vcs object whose exact type depends on the object"""
path = repo_file(repo, "objects", sha[0:2], sha[2:])
with open(path, "rb") as f:
raw = zlib.decompress(f.read())
# computing the starting position of the whitespace in header of the object file
x = raw.find(b' ')
fmt = raw[0:x] # the type of object in byte type
# read and validate object size
y = raw.find(b'\x00', x)
size = int(raw[x:y].decode("ascii"))
if size != len(raw) - y - 1:
raise Exception("Malformed object {0}: bad length".format(sha))
# picking proper vcs object class
if fmt == b'commit' : c = vcsCommit
elif fmt == b'tree' : c = vcsTree
elif fmt == b'tag' : c = vcsTag
elif fmt == b'blob' : c = vcsBlob
else:
raise Exception("Unknown type %s for object %s".format(fmt.decode("ascii"), sha))
# return object of the class picked above
return c(repo, raw[y+1:]) | def object_read(repo, sha):
"""Read object object_id from vcs repository repo. Return a
vcs object whose exact type depends on the object"""
path = repo_file(repo, "objects", sha[0:2], sha[2:])
with open(path, "rb") as f:
raw = zlib.decompress(f.read())
# computing the starting position of the whitespace in header of the object file
x = raw.find(b' ')
fmt = raw[0:x] # the type of object in byte type
# read and validate object size
y = raw.find(b'\x00', x)
size = int(raw[x:y].decode("ascii"))
if size != len(raw) - y - 1:
raise Exception("Malformed object {0}: bad length".format(sha))
# picking proper vcs object class
if fmt == b'commit' : c = vcsCommit
elif fmt == b'tree' : c = vcsTree
elif fmt == b'tag' : c = vcsTag
elif fmt == b'blob' : c = vcsBlob
else:
raise Exception("Unknown type %s for object %s".format(fmt.decode("ascii"), sha))
# return object of the class picked above
return c(repo, raw[y+1:]) |
Python | def object_write(obj, actually_write=True):
"""Creates the vcs object of input data and writes it to a file in compressed form if actually_write is True"""
# Serialize object data
if obj.fmt == b'commit':
data = obj.serialize(obj.commitData) # get the content in byte string format
else:
data = obj.serialize()
if type(data) == str:
data = data.encode()
# add header
result = obj.fmt + b' ' + str(len(data)).encode() + b'\x00' + data
# compute hash
sha = hashlib.sha1(result).hexdigest()
if actually_write:
path = repo_file(obj.repo, "objects", sha[0:2], sha[2:], mkdir=actually_write)
with open(path, "wb") as f:
# compress the data and write
f.write(zlib.compress(result))
return sha | def object_write(obj, actually_write=True):
"""Creates the vcs object of input data and writes it to a file in compressed form if actually_write is True"""
# Serialize object data
if obj.fmt == b'commit':
data = obj.serialize(obj.commitData) # get the content in byte string format
else:
data = obj.serialize()
if type(data) == str:
data = data.encode()
# add header
result = obj.fmt + b' ' + str(len(data)).encode() + b'\x00' + data
# compute hash
sha = hashlib.sha1(result).hexdigest()
if actually_write:
path = repo_file(obj.repo, "objects", sha[0:2], sha[2:], mkdir=actually_write)
with open(path, "wb") as f:
# compress the data and write
f.write(zlib.compress(result))
return sha |
Python | def object_find(repo, name, fmt=None, follow=True):
""" A name resolution function: Since a vcs object can be refered through various ways such as full hash, short hash,
tag etc"""
# unimplemented now (placeholder function) --> will be implemented later
if name == "HEAD":
return ref_resolve(repo, name)
else:
return name | def object_find(repo, name, fmt=None, follow=True):
""" A name resolution function: Since a vcs object can be refered through various ways such as full hash, short hash,
tag etc"""
# unimplemented now (placeholder function) --> will be implemented later
if name == "HEAD":
return ref_resolve(repo, name)
else:
return name |
Python | def tree_parse_one(raw, start=0):
""" Function to parse a single record in the tree object"""
# finding the space terminator of the mode
x = raw.find(b' ', start)
# checking if mode provided is correct or not
assert(x-start == 5 or x-start == 6)
# read the mode
mode = raw[start:x]
# finding the NULL terminator of the path
y = raw.find(b'\x00', x)
# and read the path
path = raw[x+1:y]
# Read the SHA and convert to an hex string
sha = hex(int.from_bytes(raw[y+1:y+21], "big"))
# removing the "0x" substring from the starting of the hex string
sha = sha[2:]
return y+21, vcsTreeLeaf(mode, path, sha) | def tree_parse_one(raw, start=0):
""" Function to parse a single record in the tree object"""
# finding the space terminator of the mode
x = raw.find(b' ', start)
# checking if mode provided is correct or not
assert(x-start == 5 or x-start == 6)
# read the mode
mode = raw[start:x]
# finding the NULL terminator of the path
y = raw.find(b'\x00', x)
# and read the path
path = raw[x+1:y]
# Read the SHA and convert to an hex string
sha = hex(int.from_bytes(raw[y+1:y+21], "big"))
# removing the "0x" substring from the starting of the hex string
sha = sha[2:]
return y+21, vcsTreeLeaf(mode, path, sha) |
Python | def parse_tree(raw):
""" Function to parse the whole tree"""
pos = 0
max_len = len(raw)
res = list()
while pos < max_len:
pos, data = tree_parse_one(raw, pos)
res.append(data)
return res | def parse_tree(raw):
""" Function to parse the whole tree"""
pos = 0
max_len = len(raw)
res = list()
while pos < max_len:
pos, data = tree_parse_one(raw, pos)
res.append(data)
return res |
Python | def tree_serialize(obj):
"""Function to serialize a tree object"""
res = b''
for i in obj.items:
res += i.mode
res += b' '
res += i.path
res += b'\x00'
sha = int(i.sha, 16)
res += sha.to_bytes(20, byteorder="big")
return res | def tree_serialize(obj):
"""Function to serialize a tree object"""
res = b''
for i in obj.items:
res += i.mode
res += b' '
res += i.path
res += b'\x00'
sha = int(i.sha, 16)
res += sha.to_bytes(20, byteorder="big")
return res |
Python | def object_hash(fd, fmt, repo=None):
""" Function to read the content of a open file, create appropiate object
and write the object to vcs directory and return the hash of the file"""
data = fd.read()
# choosing constructor on the basis of the object type found in header
if fmt == b'commit' : obj = vcsCommit(repo, data)
elif fmt == b'tree' : obj = vcsTree(repo, data)
elif fmt == b'tag' : obj = vcsTag(repo, data)
elif fmt == b'blob' : obj = vcsBlob(repo, data)
else:
raise Exception('Unknown type %s!' % fmt)
return object_write(obj, repo) | def object_hash(fd, fmt, repo=None):
""" Function to read the content of a open file, create appropiate object
and write the object to vcs directory and return the hash of the file"""
data = fd.read()
# choosing constructor on the basis of the object type found in header
if fmt == b'commit' : obj = vcsCommit(repo, data)
elif fmt == b'tree' : obj = vcsTree(repo, data)
elif fmt == b'tag' : obj = vcsTag(repo, data)
elif fmt == b'blob' : obj = vcsBlob(repo, data)
else:
raise Exception('Unknown type %s!' % fmt)
return object_write(obj, repo) |
Python | def logGraph(repo, sha, seen):
""" Function to print the log of commits by traversing the graph"""
# seen is a set which stores all the commits which are already visited, thus preventing any circular loop situation in
# graph travers al.
if sha in seen:
return
seen.add(sha)
commit = object_read(repo, sha)
# assertion to check, if the object desrialized is a commit object
assert(commit.fmt == b'commit')
if not b'parent' in commit.commitData.keys():
# the first commit
return
parents = commit.commitData[b'parent']
if type(parents) != list:
parents = [parents]
for p in parents:
# as data is kept in objects in byte string format
p = p.decode('ascii')
print("c_{0} -> c_{1}".format(sha, p))
logGraph(repo, p, seen) | def logGraph(repo, sha, seen):
""" Function to print the log of commits by traversing the graph"""
# seen is a set which stores all the commits which are already visited, thus preventing any circular loop situation in
# graph travers al.
if sha in seen:
return
seen.add(sha)
commit = object_read(repo, sha)
# assertion to check, if the object desrialized is a commit object
assert(commit.fmt == b'commit')
if not b'parent' in commit.commitData.keys():
# the first commit
return
parents = commit.commitData[b'parent']
if type(parents) != list:
parents = [parents]
for p in parents:
# as data is kept in objects in byte string format
p = p.decode('ascii')
print("c_{0} -> c_{1}".format(sha, p))
logGraph(repo, p, seen) |
Python | def commitLog(repo, sha, seen):
"""Function to pretty print the log of commits in the terminal"""
if sha in seen.keys():
return
seen[sha] = object_read(repo, sha)
# assertion to check, if the object deserialized is a commit object
assert(seen[sha].fmt == b'commit')
print("\n")
print("commit id: {0}{1}".format(sha, " (HEAD)" if (len(seen.keys()) == 1) else ""))
print("commit message: {0}".format(seen[sha].commitData[b''].decode('ascii')))
if not b'parent' in seen[sha].commitData.keys():
return
parents = seen[sha].commitData[b'parent']
if type(parents) != list:
parents = [parents]
for p in parents:
p = p.decode('ascii')
commitLog(repo, p, seen) | def commitLog(repo, sha, seen):
"""Function to pretty print the log of commits in the terminal"""
if sha in seen.keys():
return
seen[sha] = object_read(repo, sha)
# assertion to check, if the object deserialized is a commit object
assert(seen[sha].fmt == b'commit')
print("\n")
print("commit id: {0}{1}".format(sha, " (HEAD)" if (len(seen.keys()) == 1) else ""))
print("commit message: {0}".format(seen[sha].commitData[b''].decode('ascii')))
if not b'parent' in seen[sha].commitData.keys():
return
parents = seen[sha].commitData[b'parent']
if type(parents) != list:
parents = [parents]
for p in parents:
p = p.decode('ascii')
commitLog(repo, p, seen) |
Python | def tree_checkout(repo, tree, path):
"""Recursively instantiates a tree during checkout into a empty directory"""
for item in tree.items:
obj = object_read(repo, item.sha)
rootPath = os.path.realpath(os.path.join(repo.vcsdir, '../'))
relativePath = item.path.decode().replace(rootPath, '')
destRootPath = path
dest = destRootPath + relativePath.encode()
if obj.fmt == b'tree':
os.mkdir(dest)
# recursively call if the object is tree
tree_checkout(repo, obj, destRootPath)
elif obj.fmt == b'blob':
with open(dest, 'wb') as f:
f.write(obj.blobdata) | def tree_checkout(repo, tree, path):
"""Recursively instantiates a tree during checkout into a empty directory"""
for item in tree.items:
obj = object_read(repo, item.sha)
rootPath = os.path.realpath(os.path.join(repo.vcsdir, '../'))
relativePath = item.path.decode().replace(rootPath, '')
destRootPath = path
dest = destRootPath + relativePath.encode()
if obj.fmt == b'tree':
os.mkdir(dest)
# recursively call if the object is tree
tree_checkout(repo, obj, destRootPath)
elif obj.fmt == b'blob':
with open(dest, 'wb') as f:
f.write(obj.blobdata) |
Python | def createTree(path=None, actually_write=True, verbose=False):
"""Creates a tree object of the whole repo"""
blackList = ['libvcs.py', 'vcs', '__pycache__', '.vcs']
repo = repo_find()
if (path == None):
path = repo.worktree
content = os.listdir(path)
treeContent = list()
for files in content:
dest = os.path.join(path, files)
if os.path.isfile(dest):
if files not in blackList:
with open(dest, "rb") as f:
data = f.read()
blobObj = vcsBlob(repo, data)
sha = object_write(blobObj, actually_write)
mode = str(os.stat(dest).st_mode).encode()
leafObj = vcsTreeLeaf(mode, dest.encode(), sha)
treeContent.append(leafObj)
if verbose:
print("Added {0} to current commit".format(dest))
print("sha of {0} ----> {1}\n".format(dest, sha))
else:
# when the given files is a directory
if files not in blackList:
leafObj = createTree(dest)
treeContent.append(leafObj)
treeObj = vcsTree(repo)
treeObj.items = treeContent
sha = object_write(treeObj, actually_write)
if path == repo.worktree:
return sha
else:
mode = str(os.stat(path).st_mode).encode()
leafObj = vcsTreeLeaf(mode, path.encode(), sha)
return leafObj | def createTree(path=None, actually_write=True, verbose=False):
"""Creates a tree object of the whole repo"""
blackList = ['libvcs.py', 'vcs', '__pycache__', '.vcs']
repo = repo_find()
if (path == None):
path = repo.worktree
content = os.listdir(path)
treeContent = list()
for files in content:
dest = os.path.join(path, files)
if os.path.isfile(dest):
if files not in blackList:
with open(dest, "rb") as f:
data = f.read()
blobObj = vcsBlob(repo, data)
sha = object_write(blobObj, actually_write)
mode = str(os.stat(dest).st_mode).encode()
leafObj = vcsTreeLeaf(mode, dest.encode(), sha)
treeContent.append(leafObj)
if verbose:
print("Added {0} to current commit".format(dest))
print("sha of {0} ----> {1}\n".format(dest, sha))
else:
# when the given files is a directory
if files not in blackList:
leafObj = createTree(dest)
treeContent.append(leafObj)
treeObj = vcsTree(repo)
treeObj.items = treeContent
sha = object_write(treeObj, actually_write)
if path == repo.worktree:
return sha
else:
mode = str(os.stat(path).st_mode).encode()
leafObj = vcsTreeLeaf(mode, path.encode(), sha)
return leafObj |
Python | def promptUserInfo():
"""Function to prompt user to set user name and email id if missing"""
repo = repo_find()
path = repo_file(repo, "userInfo")
if not os.path.exists(path):
raise Exception("{0} doesn't exist".format(path))
# this exception for the case if a directory of the same name is created in .vcs but file doesn't exist
if not os.path.isfile(path):
raise Exception("{0} is not a file".format(path))
f = open(path)
content = f.read()
parser = configparser.ConfigParser()
parser.read_string(content)
if not parser["info"]["name"]:
print("User name missing")
print("Set user name using command vcs set --name [username]")
exit()
if not parser["info"]["email"]:
print("User email missing")
print("Set user email using command vcs set --email [email id]")
exit() | def promptUserInfo():
"""Function to prompt user to set user name and email id if missing"""
repo = repo_find()
path = repo_file(repo, "userInfo")
if not os.path.exists(path):
raise Exception("{0} doesn't exist".format(path))
# this exception for the case if a directory of the same name is created in .vcs but file doesn't exist
if not os.path.isfile(path):
raise Exception("{0} is not a file".format(path))
f = open(path)
content = f.read()
parser = configparser.ConfigParser()
parser.read_string(content)
if not parser["info"]["name"]:
print("User name missing")
print("Set user name using command vcs set --name [username]")
exit()
if not parser["info"]["email"]:
print("User email missing")
print("Set user email using command vcs set --email [email id]")
exit() |
Python | def ref_resolve(repo, ref):
"""Recursively finds the sha-1 of objects referenced by a ref"""
if not os.path.exists(os.path.realpath(os.path.join(repo.vcsdir, ref, '..'))):
raise Exception("Directory missing: {0}".format(os.path.realpath(os.path.join(repo.vcsdir, ref, '..'))))
if not os.path.isfile(repo_file(repo, ref)):
return ""
with open(repo_file(repo, ref), 'r') as fp:
data = fp.read()[:-1] # reject the '\n' at the end of the string
if data.startswith("ref: "):
return ref_resolve(repo, data[5:])
else:
return data | def ref_resolve(repo, ref):
"""Recursively finds the sha-1 of objects referenced by a ref"""
if not os.path.exists(os.path.realpath(os.path.join(repo.vcsdir, ref, '..'))):
raise Exception("Directory missing: {0}".format(os.path.realpath(os.path.join(repo.vcsdir, ref, '..'))))
if not os.path.isfile(repo_file(repo, ref)):
return ""
with open(repo_file(repo, ref), 'r') as fp:
data = fp.read()[:-1] # reject the '\n' at the end of the string
if data.startswith("ref: "):
return ref_resolve(repo, data[5:])
else:
return data |
Python | def ref_list(repo, path=None):
"""Function which returns a sorted ordered dictionary of references and sha values they represent"""
if not path:
path = repo_dir(repo, "refs")
ret = collections.OrderedDict()
for f in sorted(os.listdir(path)):
ref_path = os.path.join(path, f)
if os.path.isdir(ref_path):
ret[f] = ref_list(repo, ref_path)
else:
ret[f] = ref_resolve(repo, ref_path)
return ret | def ref_list(repo, path=None):
"""Function which returns a sorted ordered dictionary of references and sha values they represent"""
if not path:
path = repo_dir(repo, "refs")
ret = collections.OrderedDict()
for f in sorted(os.listdir(path)):
ref_path = os.path.join(path, f)
if os.path.isdir(ref_path):
ret[f] = ref_list(repo, ref_path)
else:
ret[f] = ref_resolve(repo, ref_path)
return ret |
Python | def cmd_hash_object(args):
"""calling function for hash-object command"""
if args.write:
repo = vcsRepository(".")
else:
repo = None
with open(args.path, "rb") as f:
sha = object_hash(f, args.type.encode(), repo)
print(sha) | def cmd_hash_object(args):
"""calling function for hash-object command"""
if args.write:
repo = vcsRepository(".")
else:
repo = None
with open(args.path, "rb") as f:
sha = object_hash(f, args.type.encode(), repo)
print(sha) |
Python | def cmd_ls_tree(args):
""" Calling function for ls-tree command"""
repo = repo_find()
obj = object_read(repo, object_find(repo, args.object, fmt=b'tree'))
for item in obj.items:
print("{0} {1} {2}\t{3}".format(
"0" * (6 - len(item.mode)) + item.mode.decode("ascii"),
object_read(repo, item.sha).fmt.decode("ascii"),
item.sha,
item.path.decode("ascii"))) | def cmd_ls_tree(args):
""" Calling function for ls-tree command"""
repo = repo_find()
obj = object_read(repo, object_find(repo, args.object, fmt=b'tree'))
for item in obj.items:
print("{0} {1} {2}\t{3}".format(
"0" * (6 - len(item.mode)) + item.mode.decode("ascii"),
object_read(repo, item.sha).fmt.decode("ascii"),
item.sha,
item.path.decode("ascii"))) |
Python | def cmd_checkout(args):
""" Calling function for vcs checkout command"""
repo = repo_find()
# deserializing the commit byte data and forming the commit object
obj = object_read(repo, object_find(repo, args.commit))
# deserializing the tree byte object mentioned in commit object
if obj.fmt == b'commit':
obj = object_read(repo, obj.commitData[b'tree'][0].decode("ascii"))
# verify that the path mentioned in the argument is empty
if os.path.exists(args.path):
if not os.path.isdir(args.path):
raise Exception("{0} is not a directory".format(args.path))
if os.listdir(args.path):
raise Exception("Directory is not empty")
else:
os.makedirs(args.path)
tree_checkout(repo, obj, os.path.realpath(args.path).encode()) | def cmd_checkout(args):
""" Calling function for vcs checkout command"""
repo = repo_find()
# deserializing the commit byte data and forming the commit object
obj = object_read(repo, object_find(repo, args.commit))
# deserializing the tree byte object mentioned in commit object
if obj.fmt == b'commit':
obj = object_read(repo, obj.commitData[b'tree'][0].decode("ascii"))
# verify that the path mentioned in the argument is empty
if os.path.exists(args.path):
if not os.path.isdir(args.path):
raise Exception("{0} is not a directory".format(args.path))
if os.listdir(args.path):
raise Exception("Directory is not empty")
else:
os.makedirs(args.path)
tree_checkout(repo, obj, os.path.realpath(args.path).encode()) |
Python | def cmd_commit(args):
"""calling function for vcs commit function"""
if not args.message:
raise Exception("Commit message is empty")
# check if user email and name is present or not
promptUserInfo()
repo = repo_find()
dct = collections.OrderedDict()
treeHash = createTree(verbose=args.verbose).encode()
headPath = os.path.join(repo.vcsdir, "HEAD")
if not os.path.exists(headPath):
raise Exception("{0} doesn't exist".format(headPath))
if not os.path.isfile(headPath):
raise Exception("{0} is not a file".format(headPath))
# HEAD file is expected to have commit hash in ascii string format
headCommitHash = ref_resolve(repo, 'HEAD')
# -------------- DEBUG ----------------------
# print("Head commit hash --> " + headCommitHash)
# -------------------------------------------
if headCommitHash:
# check if the commit hash (sha-1) exists or not
if not os.path.isfile(os.path.join(repo.vcsdir, "objects", headCommitHash[:2], headCommitHash[2:])):
raise Exception("Commit pointed by HEAD --> {0} doesn't exist".format(headCommitHash))
# check if the hash in HEAD is a commit object hash
fmt = getObjectFormat(repo, headCommitHash)
if fmt != "commit":
raise Exception("Object pointed by HEAD --> {0} is not a commit".format(headCommitHash))
# check if changes been made in worktree since last commit
obj = object_read(repo, headCommitHash)
if obj.commitData[b'tree'][0] == treeHash:
print('Nothing to commit. No change in worktree since last commit ({0})'.format(headCommitHash))
return
name, email = getUserInfo()
# todo: add optional pgp signature component of commit
dct[b'tree'] = treeHash
if headCommitHash:
# add parent if headCommitHash is not empty,ie, first commit will not have a parent commit entry
dct[b'parent'] = headCommitHash.encode()
dct[b'author'] = name.encode() + b' ' + email.encode()
if not args.a:
dct[b'committer'] = name.encode() + b' ' + email.encode()
dct[b''] = args.message.encode()
commitObj = vcsCommit(repo)
commitObj.commitData = dct
sha = object_write(commitObj, True)
# updating the HEAD commit
update_master(repo, sha)
print("commit hash: {0}".format(sha))
print("commit message: {0}\n".format(args.message)) | def cmd_commit(args):
"""calling function for vcs commit function"""
if not args.message:
raise Exception("Commit message is empty")
# check if user email and name is present or not
promptUserInfo()
repo = repo_find()
dct = collections.OrderedDict()
treeHash = createTree(verbose=args.verbose).encode()
headPath = os.path.join(repo.vcsdir, "HEAD")
if not os.path.exists(headPath):
raise Exception("{0} doesn't exist".format(headPath))
if not os.path.isfile(headPath):
raise Exception("{0} is not a file".format(headPath))
# HEAD file is expected to have commit hash in ascii string format
headCommitHash = ref_resolve(repo, 'HEAD')
# -------------- DEBUG ----------------------
# print("Head commit hash --> " + headCommitHash)
# -------------------------------------------
if headCommitHash:
# check if the commit hash (sha-1) exists or not
if not os.path.isfile(os.path.join(repo.vcsdir, "objects", headCommitHash[:2], headCommitHash[2:])):
raise Exception("Commit pointed by HEAD --> {0} doesn't exist".format(headCommitHash))
# check if the hash in HEAD is a commit object hash
fmt = getObjectFormat(repo, headCommitHash)
if fmt != "commit":
raise Exception("Object pointed by HEAD --> {0} is not a commit".format(headCommitHash))
# check if changes been made in worktree since last commit
obj = object_read(repo, headCommitHash)
if obj.commitData[b'tree'][0] == treeHash:
print('Nothing to commit. No change in worktree since last commit ({0})'.format(headCommitHash))
return
name, email = getUserInfo()
# todo: add optional pgp signature component of commit
dct[b'tree'] = treeHash
if headCommitHash:
# add parent if headCommitHash is not empty,ie, first commit will not have a parent commit entry
dct[b'parent'] = headCommitHash.encode()
dct[b'author'] = name.encode() + b' ' + email.encode()
if not args.a:
dct[b'committer'] = name.encode() + b' ' + email.encode()
dct[b''] = args.message.encode()
commitObj = vcsCommit(repo)
commitObj.commitData = dct
sha = object_write(commitObj, True)
# updating the HEAD commit
update_master(repo, sha)
print("commit hash: {0}".format(sha))
print("commit message: {0}\n".format(args.message)) |
Python | def cmd_show_ref(args):
"""Calling function for vcs show-ref command"""
repo = repo_find()
refs = ref_list(repo)
show_ref(repo, refs, prefix="") | def cmd_show_ref(args):
"""Calling function for vcs show-ref command"""
repo = repo_find()
refs = ref_list(repo)
show_ref(repo, refs, prefix="") |
Python | def cmd_set(args):
"""calling function for vcs set command"""
repo = repo_find()
path = repo_file(repo, "userInfo")
f = open(path)
content = f.read()
parser = configparser.ConfigParser()
parser.read_string(content)
if args.name:
parser["info"]["name"] = args.name
if args.email:
parser["info"]["email"] = args.email
with open(path, "w") as f:
parser.write(f) | def cmd_set(args):
"""calling function for vcs set command"""
repo = repo_find()
path = repo_file(repo, "userInfo")
f = open(path)
content = f.read()
parser = configparser.ConfigParser()
parser.read_string(content)
if args.name:
parser["info"]["name"] = args.name
if args.email:
parser["info"]["email"] = args.email
with open(path, "w") as f:
parser.write(f) |
Python | def __insert_new_node(self, parent_node, child_node):
"""insert new node to FP tree
Args:
parent_node (FPNode): parent node of node that needs inserting
child_node (FPNode): node that needs inserting
"""
parent_node.children.append(child_node)
child_node.parent = parent_node | def __insert_new_node(self, parent_node, child_node):
"""insert new node to FP tree
Args:
parent_node (FPNode): parent node of node that needs inserting
child_node (FPNode): node that needs inserting
"""
parent_node.children.append(child_node)
child_node.parent = parent_node |
Python | def __setup_nodelink_structure(self, node):
"""setting up header table when a new node is inserted to FPTree
Args:
node (FPNode): new inserted node
"""
if node.item_name not in self.header_table:
self.header_table[node.item_name] = node
self.__latest_itemlink[node.item_name] = node
else:
self.__latest_itemlink[node.item_name].node_link = node
self.__latest_itemlink[node.item_name] = node | def __setup_nodelink_structure(self, node):
"""setting up header table when a new node is inserted to FPTree
Args:
node (FPNode): new inserted node
"""
if node.item_name not in self.header_table:
self.header_table[node.item_name] = node
self.__latest_itemlink[node.item_name] = node
else:
self.__latest_itemlink[node.item_name].node_link = node
self.__latest_itemlink[node.item_name] = node |
Python | def buildTreeFromData(self, transactions):
"""build FP-tree from a set of transactions
Args:
transactions (list): list of transactions. Each transaction should be a list of item.
For example, here is a valid list of transactions
[['a', 'b', 'c'], ['c']]
"""
self.reset()
item2freq = get_sorted_frequent_item_from_data(
transactions, self.min_sup)
if len(item2freq) > 0:
for transaction in transactions:
filtered_transaction = list(
filter(lambda item: item in item2freq, transaction))
if len(filtered_transaction) > 0:
self.__insert_tree(
sorted(filtered_transaction,
key=lambda item: item2freq[item]
),
self.root
) | def buildTreeFromData(self, transactions):
"""build FP-tree from a set of transactions
Args:
transactions (list): list of transactions. Each transaction should be a list of item.
For example, here is a valid list of transactions
[['a', 'b', 'c'], ['c']]
"""
self.reset()
item2freq = get_sorted_frequent_item_from_data(
transactions, self.min_sup)
if len(item2freq) > 0:
for transaction in transactions:
filtered_transaction = list(
filter(lambda item: item in item2freq, transaction))
if len(filtered_transaction) > 0:
self.__insert_tree(
sorted(filtered_transaction,
key=lambda item: item2freq[item]
),
self.root
) |
Python | def isSinglePathTree(self):
"""check whether FP-tree has only one path
Returns:
bool: True if tree has only one path, False otherwise
"""
for item in self.header_table:
if self.header_table[item].node_link is not None:
return False
return True | def isSinglePathTree(self):
"""check whether FP-tree has only one path
Returns:
bool: True if tree has only one path, False otherwise
"""
for item in self.header_table:
if self.header_table[item].node_link is not None:
return False
return True |
Python | def __get_conditional_pattern_base_of_item(self, item):
"""get conditional pattern base of an item in header table
Args:
item (str): item name
Returns:
list[tuple[str, int]]: conditional pattern base of an item
"""
current_header = self.header_table[item]
conditional_pattern_bases = []
while current_header is not None:
current_header_pattern = self.__get_header_pattern(current_header)
if len(current_header_pattern) > 1:
conditional_pattern_bases.append(current_header_pattern)
current_header = current_header.node_link
return conditional_pattern_bases | def __get_conditional_pattern_base_of_item(self, item):
"""get conditional pattern base of an item in header table
Args:
item (str): item name
Returns:
list[tuple[str, int]]: conditional pattern base of an item
"""
current_header = self.header_table[item]
conditional_pattern_bases = []
while current_header is not None:
current_header_pattern = self.__get_header_pattern(current_header)
if len(current_header_pattern) > 1:
conditional_pattern_bases.append(current_header_pattern)
current_header = current_header.node_link
return conditional_pattern_bases |
Python | def isEmptyTree(self):
"""check if a tree is empty
Returns:
bool: True if yes, False if not
"""
return len(self.root.children) == 0 | def isEmptyTree(self):
"""check if a tree is empty
Returns:
bool: True if yes, False if not
"""
return len(self.root.children) == 0 |
Python | def __getItemListFromSinglePathTree(fp_tree):
"""get all items of a single-path tree
Args:
fp_tree (FPTree): object of FPTree
Returns:
list[tuple[str, int]]: a list of tuples, each of which has item name and item count
"""
current_node = fp_tree.root
items = []
support = None
while len(current_node.children) == 1:
items.append(
(current_node.children[0].item_name, current_node.children[0].count))
current_node = current_node.children[0]
return items | def __getItemListFromSinglePathTree(fp_tree):
"""get all items of a single-path tree
Args:
fp_tree (FPTree): object of FPTree
Returns:
list[tuple[str, int]]: a list of tuples, each of which has item name and item count
"""
current_node = fp_tree.root
items = []
support = None
while len(current_node.children) == 1:
items.append(
(current_node.children[0].item_name, current_node.children[0].count))
current_node = current_node.children[0]
return items |
Python | def __grow_single_path_tree(fp_tree, dest, frequent_set):
"""mine a single-path tree
Args:
fp_tree (FPTree): object of FPTree. This object should have only one path
dest (list): destination array where items are stored
frequent_set (list): potential frequent itemset
"""
tree_nodes = FPTree.__getItemListFromSinglePathTree(fp_tree)
for i in range(len(tree_nodes)):
item_combinations = combinations(tree_nodes, i+1)
for item_combination in item_combinations:
frequent_items = frequent_set + list(item_combination)
min_sup = min(map(lambda item: item[1], frequent_items))
frequent_items = (
[item for item, _ in frequent_items], min_sup)
dest.append(frequent_items) | def __grow_single_path_tree(fp_tree, dest, frequent_set):
"""mine a single-path tree
Args:
fp_tree (FPTree): object of FPTree. This object should have only one path
dest (list): destination array where items are stored
frequent_set (list): potential frequent itemset
"""
tree_nodes = FPTree.__getItemListFromSinglePathTree(fp_tree)
for i in range(len(tree_nodes)):
item_combinations = combinations(tree_nodes, i+1)
for item_combination in item_combinations:
frequent_items = frequent_set + list(item_combination)
min_sup = min(map(lambda item: item[1], frequent_items))
frequent_items = (
[item for item, _ in frequent_items], min_sup)
dest.append(frequent_items) |
Python | def forward(self, x):
"""
Forward function acceps a Tensor of input data and returns a tensor of output data.
"""
#out = self.dropout(self.relu1(self.bn1(self.fc1(x))))
#out = self.dropout(self.relu2(self.bn2(self.fc2(out))))
#out = self.dropout(self.relu3(self.bn3(self.fc3(out))))
#out = self.dropout(self.relu4(self.bn4(self.fc4(out))))
#out = self.dropout(self.relu5(self.bn5(self.fc5(out))))
out = self.dropout(self.relu1(self.fc1(x)))
out = self.dropout(self.relu2(self.fc2(out)))
out = self.dropout(self.relu3(self.fc3(out)))
out = self.dropout(self.relu4(self.fc4(out)))
out = self.dropout(self.relu5(self.fc5(out)))
out = self.fc_output_activation(self.fc_output(out))
return out | def forward(self, x):
"""
Forward function acceps a Tensor of input data and returns a tensor of output data.
"""
#out = self.dropout(self.relu1(self.bn1(self.fc1(x))))
#out = self.dropout(self.relu2(self.bn2(self.fc2(out))))
#out = self.dropout(self.relu3(self.bn3(self.fc3(out))))
#out = self.dropout(self.relu4(self.bn4(self.fc4(out))))
#out = self.dropout(self.relu5(self.bn5(self.fc5(out))))
out = self.dropout(self.relu1(self.fc1(x)))
out = self.dropout(self.relu2(self.fc2(out)))
out = self.dropout(self.relu3(self.fc3(out)))
out = self.dropout(self.relu4(self.fc4(out)))
out = self.dropout(self.relu5(self.fc5(out)))
out = self.fc_output_activation(self.fc_output(out))
return out |
Python | def airports_observable(self):
"""Returns rx.Observable that emits airport data"""
def emit_airports(observer):
reader = csv.reader(self.airports_file())
reader.__next__() # skip the header
for row in reader:
observer.on_next(Airport(*row))
observer.on_completed()
return Observable.create(emit_airports) | def airports_observable(self):
"""Returns rx.Observable that emits airport data"""
def emit_airports(observer):
reader = csv.reader(self.airports_file())
reader.__next__() # skip the header
for row in reader:
observer.on_next(Airport(*row))
observer.on_completed()
return Observable.create(emit_airports) |
Python | def flights_observable(self, year):
"""Returns rx.Observable that emits flight data for the specified year"""
def emit_flights(observer):
reader = csv.reader(self.flights_file(year))
reader.__next__() # skip the header
for row in reader:
observer.on_next(Flight(*row))
observer.on_completed()
return Observable.create(emit_flights) | def flights_observable(self, year):
"""Returns rx.Observable that emits flight data for the specified year"""
def emit_flights(observer):
reader = csv.reader(self.flights_file(year))
reader.__next__() # skip the header
for row in reader:
observer.on_next(Flight(*row))
observer.on_completed()
return Observable.create(emit_flights) |
Python | def report_airports_for_state():
"""List airports for a specific state"""
context = ReportContext()
context.state = prompt.string("State abbreviation: ").upper()
print("\nIATA\tAirport Name\t\t\t\t\tCity")
print("-" * 77)
impl().report_airports_for_state(context) | def report_airports_for_state():
"""List airports for a specific state"""
context = ReportContext()
context.state = prompt.string("State abbreviation: ").upper()
print("\nIATA\tAirport Name\t\t\t\t\tCity")
print("-" * 77)
impl().report_airports_for_state(context) |
Python | def report_airports_with_highest_cancellation_rate():
"""List airports with highest cancellation rates"""
context = ReportContext()
context.year = prompt.integer("Year: ")
context.limit = prompt.integer("Limit: ")
print("IATA\tAirport Name\t\t\t\tCancelled %")
print("-" * 60)
impl().report_airports_with_highest_cancellation_rate(context) | def report_airports_with_highest_cancellation_rate():
"""List airports with highest cancellation rates"""
context = ReportContext()
context.year = prompt.integer("Year: ")
context.limit = prompt.integer("Limit: ")
print("IATA\tAirport Name\t\t\t\tCancelled %")
print("-" * 60)
impl().report_airports_with_highest_cancellation_rate(context) |
Python | def add_flight(self, flight):
"""Aggregate various metrics based on the specified flight"""
self.totalFlights += 1
if flight.Origin == self.subject.iata:
self.totalOrigins += 1
# cancellations are counted only for the origin airport
if flight.Cancelled:
self.totalCancelled += 1
if flight.CancellationCode == 'A':
self.totalCancelledCarrier += 1
elif flight.CancellationCode == 'B':
self.totalCancelledWeather += 1
elif flight.CancellationCode == 'C':
self.totalCancelledNAS += 1
elif flight.CancellationCode == 'D':
self.totalCancelledSecurity += 1
elif flight.Dest == self.subject.iata:
self.totalDestinations += 1
# diversions are counted only for the destination airport
if flight.Diverted:
self.totalDiverted += 1 | def add_flight(self, flight):
"""Aggregate various metrics based on the specified flight"""
self.totalFlights += 1
if flight.Origin == self.subject.iata:
self.totalOrigins += 1
# cancellations are counted only for the origin airport
if flight.Cancelled:
self.totalCancelled += 1
if flight.CancellationCode == 'A':
self.totalCancelledCarrier += 1
elif flight.CancellationCode == 'B':
self.totalCancelledWeather += 1
elif flight.CancellationCode == 'C':
self.totalCancelledNAS += 1
elif flight.CancellationCode == 'D':
self.totalCancelledSecurity += 1
elif flight.Dest == self.subject.iata:
self.totalDestinations += 1
# diversions are counted only for the destination airport
if flight.Diverted:
self.totalDiverted += 1 |
Python | def has_alpha(self, text: str):
"""
Checks if the comment has at least one letter.
Args:
- text: the comment to be checked
Returns:
- True if the comment has at least one letter, False otherwise
"""
return any(char.isalpha() for char in text) | def has_alpha(self, text: str):
"""
Checks if the comment has at least one letter.
Args:
- text: the comment to be checked
Returns:
- True if the comment has at least one letter, False otherwise
"""
return any(char.isalpha() for char in text) |
Python | def only_contains_anon(self, text: str):
"""
Checks if the comment only contains anonymous reserved words.
Args:
- text: the comment to be checked
Returns:
- True if the comment only contains anonymous reserved words, False otherwise
"""
anon_words = ["USER", "HASHTAG", "URL"]
for word in text.split():
if word not in anon_words:
return False
return True | def only_contains_anon(self, text: str):
"""
Checks if the comment only contains anonymous reserved words.
Args:
- text: the comment to be checked
Returns:
- True if the comment only contains anonymous reserved words, False otherwise
"""
anon_words = ["USER", "HASHTAG", "URL"]
for word in text.split():
if word not in anon_words:
return False
return True |
Python | def has_acceptable_length(self, text: str):
"""
Checks if the comment has an acceptable length.
Args:
- text: the comment to be checked
Returns:
- True if the comment has an acceptable length, False otherwise
"""
return len(text) <= self.max_length | def has_acceptable_length(self, text: str):
"""
Checks if the comment has an acceptable length.
Args:
- text: the comment to be checked
Returns:
- True if the comment has an acceptable length, False otherwise
"""
return len(text) <= self.max_length |
Python | def is_empty(self, text: str):
"""
Checks if the comment is empty.
Args:
- text: the comment to be checked
Returns:
- True if the comment is empty, False otherwise
"""
if text in ["", " ", "\n", "\t", None]:
return True
else:
return False | def is_empty(self, text: str):
"""
Checks if the comment is empty.
Args:
- text: the comment to be checked
Returns:
- True if the comment is empty, False otherwise
"""
if text in ["", " ", "\n", "\t", None]:
return True
else:
return False |
Python | def _get_video_id(video_url: str):
"""Get video id from a YouTube video url.
Args:
- video_url: YouTube video url (e.g. https://www.youtube.com/watch?v=dQw4w9WgXcQ)
Returns:
- video_id: YouTube video id
"""
return video_url.split("watch?v=")[1].split("&")[0] | def _get_video_id(video_url: str):
"""Get video id from a YouTube video url.
Args:
- video_url: YouTube video url (e.g. https://www.youtube.com/watch?v=dQw4w9WgXcQ)
Returns:
- video_id: YouTube video id
"""
return video_url.split("watch?v=")[1].split("&")[0] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.