language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def _yt_comments_call(self, video_id: str, max_results: int, pageToken: str = None):
"""
Call YouTube API to get comments from a video.
Args:
- video_id: YouTube video id
- max_results: maximum number of comments to retrieve
Returns:
- comments: list of comments
"""
response = self.api.commentThreads().list(
part="snippet,replies",
maxResults=max_results,
pageToken=pageToken,
videoId=video_id).execute()
self.call_counter += 1
return response | def _yt_comments_call(self, video_id: str, max_results: int, pageToken: str = None):
"""
Call YouTube API to get comments from a video.
Args:
- video_id: YouTube video id
- max_results: maximum number of comments to retrieve
Returns:
- comments: list of comments
"""
response = self.api.commentThreads().list(
part="snippet,replies",
maxResults=max_results,
pageToken=pageToken,
videoId=video_id).execute()
self.call_counter += 1
return response |
Python | def normalize_raw_text(data: List[RawText]) -> List[Dict[Any, Any]]:
"""
Normalize RawText to a list of dictionaries.
Args:
- data: A list of RawText objects.
Returns:
- A list of dictionaries.
"""
new_data = []
for i in data:
i = i.dict()
i["created_at"] = i["created_at"].isoformat()
i["collected_at"] = i["collected_at"].isoformat()
new_data.append(i)
return new_data | def normalize_raw_text(data: List[RawText]) -> List[Dict[Any, Any]]:
"""
Normalize RawText to a list of dictionaries.
Args:
- data: A list of RawText objects.
Returns:
- A list of dictionaries.
"""
new_data = []
for i in data:
i = i.dict()
i["created_at"] = i["created_at"].isoformat()
i["collected_at"] = i["collected_at"].isoformat()
new_data.append(i)
return new_data |
Python | def check_words(text: str, words: list):
"""Check if the text only contains words from the list.
Args:
- text: The text to check.
- words: The words to check for.
Returns:
- True if the text contains all the words.
"""
for word in words:
if word not in text:
return False
return True | def check_words(text: str, words: list):
"""Check if the text only contains words from the list.
Args:
- text: The text to check.
- words: The words to check for.
Returns:
- True if the text contains all the words.
"""
for word in words:
if word not in text:
return False
return True |
Python | def prepare_data_to_px(df: pd.DataFrame):
"""
Prepare the data to be used in a plotly graph.
Args:
- data: A pandas dataframe with each column being an annotator and each row being a label.
Returns:
- A pandas dataframe with the following columns: Annotator, Label, Count.
"""
data = []
for annotator in df.columns:
for label, count in df[annotator].value_counts().items():
data.append({"Annotator": annotator, "Label": label, "Count": count})
return pd.DataFrame(data) | def prepare_data_to_px(df: pd.DataFrame):
"""
Prepare the data to be used in a plotly graph.
Args:
- data: A pandas dataframe with each column being an annotator and each row being a label.
Returns:
- A pandas dataframe with the following columns: Annotator, Label, Count.
"""
data = []
for annotator in df.columns:
for label, count in df[annotator].value_counts().items():
data.append({"Annotator": annotator, "Label": label, "Count": count})
return pd.DataFrame(data) |
Python | def dict_serialize_date(data: List[Dict[Any, Any]], keys: List[Any]):
"""Serialize keys that are dates in a list of dictionaries to ISO 8601.
Args:
- data: A list of RawText objects.
- keys: A list of keys to serialize.
Returns:
- A list of dictionaries.
"""
new_data = []
for i in data:
for key in keys:
if key in i:
if isinstance(i[key], datetime.datetime):
i[key] = i[key].isoformat()
new_data.append(i)
return new_data | def dict_serialize_date(data: List[Dict[Any, Any]], keys: List[Any]):
"""Serialize keys that are dates in a list of dictionaries to ISO 8601.
Args:
- data: A list of RawText objects.
- keys: A list of keys to serialize.
Returns:
- A list of dictionaries.
"""
new_data = []
for i in data:
for key in keys:
if key in i:
if isinstance(i[key], datetime.datetime):
i[key] = i[key].isoformat()
new_data.append(i)
return new_data |
Python | def predict(self, text: str) -> Dict[str, float]:
"""
Predict toxicity of a comment.
Parameters:
text (str): The text to predict toxicity for.
Returns:
A dictionary containing the predicted toxicity scores. (e.g. {'TOXICITY': 0.5})
"""
_logger.debug(f"Predicting for text: {text}")
analyze_request = {
"comment": {"text": text},
"languages": ["pt"],
"requestedAttributes": {"TOXICITY": {}}
}
response = self.client.comments().analyze(body=analyze_request).execute()
_logger.debug(f"Got response: {response}")
try:
toxicity = response["attributeScores"]["TOXICITY"]["summaryScore"]["value"]
toxicity = round(toxicity, 4)
except Exception as error:
_logger.error(f"Error getting toxicity: {error}")
toxicity = None
time.sleep(self.wait_time)
_logger.debug(f"Finished predicting for text: {text}")
return {"TOXICITY": toxicity} | def predict(self, text: str) -> Dict[str, float]:
"""
Predict toxicity of a comment.
Parameters:
text (str): The text to predict toxicity for.
Returns:
A dictionary containing the predicted toxicity scores. (e.g. {'TOXICITY': 0.5})
"""
_logger.debug(f"Predicting for text: {text}")
analyze_request = {
"comment": {"text": text},
"languages": ["pt"],
"requestedAttributes": {"TOXICITY": {}}
}
response = self.client.comments().analyze(body=analyze_request).execute()
_logger.debug(f"Got response: {response}")
try:
toxicity = response["attributeScores"]["TOXICITY"]["summaryScore"]["value"]
toxicity = round(toxicity, 4)
except Exception as error:
_logger.error(f"Error getting toxicity: {error}")
toxicity = None
time.sleep(self.wait_time)
_logger.debug(f"Finished predicting for text: {text}")
return {"TOXICITY": toxicity} |
Python | def percent_agreement(reliability_data: Union[List[List[Any]], pd.DataFrame]) -> float:
"""Calculate the percentage agreement between raters.
Args:
- reliability_data: The reliability data. Format is as follows:
[[1, 1, 0, ..., 0, 0, 1], # CoderA
[1, 1, 1, ..., 0, 1, 0], # CoderB
[1, 1, 0, ..., 0, 1, 0]] # CoderC
each row is a list of annotations by a given annotator
Returns:
- The percentage agreement as a float.
"""
if isinstance(reliability_data, pd.DataFrame):
reliability_data = reliability_data.transpose().values.tolist()
elif isinstance(reliability_data, list):
reliability_data = np.array(reliability_data).T.tolist()
else:
raise ValueError("reliability_data must be a list or a DataFrame.")
agree_on = 0
non_agree_on = 0
for annotations in zip(*reliability_data):
if len(set(annotations)) == 1:
agree_on += 1
else:
non_agree_on += 1
return agree_on / (agree_on + non_agree_on) | def percent_agreement(reliability_data: Union[List[List[Any]], pd.DataFrame]) -> float:
"""Calculate the percentage agreement between raters.
Args:
- reliability_data: The reliability data. Format is as follows:
[[1, 1, 0, ..., 0, 0, 1], # CoderA
[1, 1, 1, ..., 0, 1, 0], # CoderB
[1, 1, 0, ..., 0, 1, 0]] # CoderC
each row is a list of annotations by a given annotator
Returns:
- The percentage agreement as a float.
"""
if isinstance(reliability_data, pd.DataFrame):
reliability_data = reliability_data.transpose().values.tolist()
elif isinstance(reliability_data, list):
reliability_data = np.array(reliability_data).T.tolist()
else:
raise ValueError("reliability_data must be a list or a DataFrame.")
agree_on = 0
non_agree_on = 0
for annotations in zip(*reliability_data):
if len(set(annotations)) == 1:
agree_on += 1
else:
non_agree_on += 1
return agree_on / (agree_on + non_agree_on) |
Python | def apply_all(self, text: str) -> str:
"""Applies all anonymization methods to a given text.
Args:
- The text to be anonymized.
Returns:
- The anonymized text.
"""
_logger.debug(f"Anonymizing text: {text}")
text = self.remove_users(text)
text = self.remove_urls(text)
text = self.remove_hashtags(text)
text = self.remove_names(text)
_logger.debug(f"Anonymized text: {text}")
return text | def apply_all(self, text: str) -> str:
"""Applies all anonymization methods to a given text.
Args:
- The text to be anonymized.
Returns:
- The anonymized text.
"""
_logger.debug(f"Anonymizing text: {text}")
text = self.remove_users(text)
text = self.remove_urls(text)
text = self.remove_hashtags(text)
text = self.remove_names(text)
_logger.debug(f"Anonymized text: {text}")
return text |
Python | def remove_users(self, text: str) -> str:
"""Regex that removes user mentions on a given text.
Args:
- The text to be anonymized.
Returns:
- The anonymized text.
"""
return re.sub(r'@\w+', self.user_placeholder, text) | def remove_users(self, text: str) -> str:
"""Regex that removes user mentions on a given text.
Args:
- The text to be anonymized.
Returns:
- The anonymized text.
"""
return re.sub(r'@\w+', self.user_placeholder, text) |
Python | def remove_urls(self, text: str) -> str:
"""Regex that removes urls on a given text.
Args:
- The text to be anonymized.
Returns:
- The anonymized text.
"""
return re.sub(r'http\S+', self.url_placeholder, text) | def remove_urls(self, text: str) -> str:
"""Regex that removes urls on a given text.
Args:
- The text to be anonymized.
Returns:
- The anonymized text.
"""
return re.sub(r'http\S+', self.url_placeholder, text) |
Python | def remove_hashtags(self, text: str) -> str:
"""Regex that removes hashtags on a given text.
Args:
- The text to be anonymized.
Returns:
- The anonymized text.
"""
return re.sub(r'#\S+', self.hashtag_placeholder, text) | def remove_hashtags(self, text: str) -> str:
"""Regex that removes hashtags on a given text.
Args:
- The text to be anonymized.
Returns:
- The anonymized text.
"""
return re.sub(r'#\S+', self.hashtag_placeholder, text) |
Python | def majority_vote(annotations: List[Any]):
"""Returns the majority vote of the annotations.
Args:
- annotations: A list of annotations.
Returns:
- The majority vote of the annotations.
"""
# Raise an warning if the annotation list is even
if len(annotations) % 2 == 0:
warnings.warn("The annotation list is even. The returned vote will be random.")
return max(Counter(annotations).items(), key=lambda x: x[1])[0] | def majority_vote(annotations: List[Any]):
"""Returns the majority vote of the annotations.
Args:
- annotations: A list of annotations.
Returns:
- The majority vote of the annotations.
"""
# Raise an warning if the annotation list is even
if len(annotations) % 2 == 0:
warnings.warn("The annotation list is even. The returned vote will be random.")
return max(Counter(annotations).items(), key=lambda x: x[1])[0] |
Python | def at_least_one(annotations: List[bool]):
"""Returns True if at least one of the annotations is True.
Args:
- annotations: A list of annotations.
Returns:
- True if at least one of the annotations is True.
"""
return any(annotations) | def at_least_one(annotations: List[bool]):
"""Returns True if at least one of the annotations is True.
Args:
- annotations: A list of annotations.
Returns:
- True if at least one of the annotations is True.
"""
return any(annotations) |
Python | def all_labeled_spans(annotations: List[Any]):
"""Returns all spans that are labeled by at least one annotator.
Args:
- annotations: A list of annotations.
Returns:
- A list of spans (e.g. [0, 1, 2, ...]).
"""
spans = []
for annotation in annotations:
spans.extend(annotation)
spans = list(set(spans))
spans.sort()
return spans | def all_labeled_spans(annotations: List[Any]):
"""Returns all spans that are labeled by at least one annotator.
Args:
- annotations: A list of annotations.
Returns:
- A list of spans (e.g. [0, 1, 2, ...]).
"""
spans = []
for annotation in annotations:
spans.extend(annotation)
spans = list(set(spans))
spans.sort()
return spans |
Python | def fit(self, dataNoise, dataConvolution, prior_method = "vague", priors=None, bias = None, **kwargs):
"""
Fit the model to the posterior distribution
Parameters
------------
dataNoise: list
1D array witht he data of the noise
dataConvolution: list
1D array witht he data of the convolution
**kwargs:
Arguments to be passed to the *DynamicNestedSampler* and *run_nested* functions from the dynesty package
Returns
------------
Nothing
"""
self.data = dataNoise
self.datac = dataConvolution
if bias == None:
m = np.min([dataNoise,dataConvolution])
if m < 0:
self.bias = m - 0.01
else:
self.bias = 0
else:
self.bias = bias
#separate kargs for the two different samplers functions
#nested sampler function
nestedsampler_args = [k for k, v in inspect.signature(dn.NestedSampler).parameters.items()]
nestedsampler_dict = {k: kwargs.pop(k) for k in dict(kwargs) if k in nestedsampler_args}
if not ("sample" in nestedsampler_dict.keys()):
nestedsampler_dict["sample"] = "rslice"
#run nested function
run_nested_args = [k for k, v in inspect.signature(dn.NestedSampler).parameters.items()]
run_nested_dict = {k: kwargs.pop(k) for k in dict(kwargs) if k in run_nested_args}
#make fit
gdposteriormodelgamma.__init__(self,dataNoise,dataConvolution,self.K,self.Kc)
if prior_method == "vague":
if priors == None and self.priors == []:
m = np.mean(dataNoise-self.bias)
v = np.var(dataNoise-self.bias)
m2 = np.mean(dataConvolution-self.bias)
v2 = np.var(dataConvolution-self.bias)
self.priors = [10*(v/m)**0.5,
1.1,
10*(m**2/v)**0.5,
1.1,
10*(v2/m2)**0.5,
1.1,
10*(m2**2/v2)**0.5,
1.1]
elif self.priors == []:
self.priors = priors
dynestyModel = dn.NestedSampler(self.logLikelihood, self.prior, 3*self.K+3*self.Kc, **nestedsampler_dict)
elif prior_method == "uniform":
if priors == None and self.priors == []:
m = np.mean(dataNoise-self.bias)
v = np.var(dataNoise-self.bias)
m2 = np.mean(dataConvolution-self.bias)
v2 = np.var(dataConvolution-self.bias)
self.priors = [0,
10*(v/m)**0.5,
0,
10*(m**2/v)**0.5,
0,
10*(v2/m2)**0.5,
0,
10*(m2**2/v2)**0.5]
elif self.priors == []:
self.priors = priors
dynestyModel = dn.NestedSampler(self.logLikelihood, self.prior_uniform, 3*self.K+3*self.Kc, **nestedsampler_dict)
dynestyModel.run_nested(**run_nested_dict)
self.results = {}
self.results["samples"] = dynestyModel.results["samples"]
self.results["logwt"] = dynestyModel.results["logwt"]
self.results["evidence"] = dynestyModel.results["logz"][-1]
weightMax = np.max(self.results["logwt"])
self.weights = np.exp(self.results["logwt"]-weightMax)
self.weights = self.weights/np.sum(self.weights)
self.samples = self.results["samples"]
self.fitted = True
return | def fit(self, dataNoise, dataConvolution, prior_method = "vague", priors=None, bias = None, **kwargs):
"""
Fit the model to the posterior distribution
Parameters
------------
dataNoise: list
1D array witht he data of the noise
dataConvolution: list
1D array witht he data of the convolution
**kwargs:
Arguments to be passed to the *DynamicNestedSampler* and *run_nested* functions from the dynesty package
Returns
------------
Nothing
"""
self.data = dataNoise
self.datac = dataConvolution
if bias == None:
m = np.min([dataNoise,dataConvolution])
if m < 0:
self.bias = m - 0.01
else:
self.bias = 0
else:
self.bias = bias
#separate kargs for the two different samplers functions
#nested sampler function
nestedsampler_args = [k for k, v in inspect.signature(dn.NestedSampler).parameters.items()]
nestedsampler_dict = {k: kwargs.pop(k) for k in dict(kwargs) if k in nestedsampler_args}
if not ("sample" in nestedsampler_dict.keys()):
nestedsampler_dict["sample"] = "rslice"
#run nested function
run_nested_args = [k for k, v in inspect.signature(dn.NestedSampler).parameters.items()]
run_nested_dict = {k: kwargs.pop(k) for k in dict(kwargs) if k in run_nested_args}
#make fit
gdposteriormodelgamma.__init__(self,dataNoise,dataConvolution,self.K,self.Kc)
if prior_method == "vague":
if priors == None and self.priors == []:
m = np.mean(dataNoise-self.bias)
v = np.var(dataNoise-self.bias)
m2 = np.mean(dataConvolution-self.bias)
v2 = np.var(dataConvolution-self.bias)
self.priors = [10*(v/m)**0.5,
1.1,
10*(m**2/v)**0.5,
1.1,
10*(v2/m2)**0.5,
1.1,
10*(m2**2/v2)**0.5,
1.1]
elif self.priors == []:
self.priors = priors
dynestyModel = dn.NestedSampler(self.logLikelihood, self.prior, 3*self.K+3*self.Kc, **nestedsampler_dict)
elif prior_method == "uniform":
if priors == None and self.priors == []:
m = np.mean(dataNoise-self.bias)
v = np.var(dataNoise-self.bias)
m2 = np.mean(dataConvolution-self.bias)
v2 = np.var(dataConvolution-self.bias)
self.priors = [0,
10*(v/m)**0.5,
0,
10*(m**2/v)**0.5,
0,
10*(v2/m2)**0.5,
0,
10*(m2**2/v2)**0.5]
elif self.priors == []:
self.priors = priors
dynestyModel = dn.NestedSampler(self.logLikelihood, self.prior_uniform, 3*self.K+3*self.Kc, **nestedsampler_dict)
dynestyModel.run_nested(**run_nested_dict)
self.results = {}
self.results["samples"] = dynestyModel.results["samples"]
self.results["logwt"] = dynestyModel.results["logwt"]
self.results["evidence"] = dynestyModel.results["logz"][-1]
weightMax = np.max(self.results["logwt"])
self.weights = np.exp(self.results["logwt"]-weightMax)
self.weights = self.weights/np.sum(self.weights)
self.samples = self.results["samples"]
self.fitted = True
return |
Python | def prune(self, order = -1):
"""
Prune the number of samples to remove samples with weights orders of magnitude lower than the main one.
This may speed up drawing samples when the number of draws is huge.
Parameters
--------------
order: int, order of manitude below which prune the samples
returns:
nothing
"""
if order == -1:
weightMax = np.max(self.results["logwt"])
self.weights = np.exp(self.results["logwt"]-weightMax)
self.weights = self.weights/np.sum(self.weights)
self.samples = self.results["samples"]
else:
weightMax = np.max(self.results["logwt"])
self.weights = np.exp(self.results["logwt"]-weightMax)
self.weights = self.weights/np.sum(self.weights)
select = (self.weights>self.weights.max()*10**-order)
self.weights = self.weights[select]
self.weights = self.weights/np.sum(self.weights)
self.samples = self.results["samples"][select]
return | def prune(self, order = -1):
"""
Prune the number of samples to remove samples with weights orders of magnitude lower than the main one.
This may speed up drawing samples when the number of draws is huge.
Parameters
--------------
order: int, order of manitude below which prune the samples
returns:
nothing
"""
if order == -1:
weightMax = np.max(self.results["logwt"])
self.weights = np.exp(self.results["logwt"]-weightMax)
self.weights = self.weights/np.sum(self.weights)
self.samples = self.results["samples"]
else:
weightMax = np.max(self.results["logwt"])
self.weights = np.exp(self.results["logwt"]-weightMax)
self.weights = self.weights/np.sum(self.weights)
select = (self.weights>self.weights.max()*10**-order)
self.weights = self.weights[select]
self.weights = self.weights/np.sum(self.weights)
self.samples = self.results["samples"][select]
return |
Python | def save(self, name):
"""
Pickle save the model.
Parameters
----------------
name: string, name in which to store the model
Return:
nothing
"""
if self.fitted:
pickling_on = open(name+".pickle","wb")
pk.dump({"K":self.K, "Kc":self.Kc, "weights":self.results["logwt"], "samples":self.results["samples"], "evidence":self.results["evidence"], "bias":self.bias}, pickling_on)
pickling_on.close()
else:
print("The model has not been fitted so there is nothing to save.")
return | def save(self, name):
"""
Pickle save the model.
Parameters
----------------
name: string, name in which to store the model
Return:
nothing
"""
if self.fitted:
pickling_on = open(name+".pickle","wb")
pk.dump({"K":self.K, "Kc":self.Kc, "weights":self.results["logwt"], "samples":self.results["samples"], "evidence":self.results["evidence"], "bias":self.bias}, pickling_on)
pickling_on.close()
else:
print("The model has not been fitted so there is nothing to save.")
return |
Python | def load(self, name):
"""
Pickle load the model.
Parameters
----------------
name: string, name from which to recover the model
Return:
nothing
"""
pickle_off = open(name+".pickle","rb")
aux = pk.load(pickle_off)
pickle_off.close()
self.K = aux["K"]
self.Kc = aux["Kc"]
self.results = {}
self.results["logwt"] = aux["weights"]
self.results["samples"] = aux["samples"]
self.results["evidence"] = aux["evidence"]
self.bias = aux["bias"]
self.prune()
self.fitted = True
return | def load(self, name):
"""
Pickle load the model.
Parameters
----------------
name: string, name from which to recover the model
Return:
nothing
"""
pickle_off = open(name+".pickle","rb")
aux = pk.load(pickle_off)
pickle_off.close()
self.K = aux["K"]
self.Kc = aux["Kc"]
self.results = {}
self.results["logwt"] = aux["weights"]
self.results["samples"] = aux["samples"]
self.results["evidence"] = aux["evidence"]
self.bias = aux["bias"]
self.prune()
self.fitted = True
return |
Python | def sample_autofluorescence(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the noise distribution
Parameters
--------------
size: int, number of samples to be drawn
style: string ("full" or "single"), sample from the posterior and then sample, or all the samples from the same posterior draw
pos: if style = "single", draw from the posterior from which to choose
Returns:
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size, bias = 0))+self.bias
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)), p=self.weights)
return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size,pos=pos, bias = 0))+self.bias
else:
return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size,pos=pos, bias = 0))+self.bias
return | def sample_autofluorescence(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the noise distribution
Parameters
--------------
size: int, number of samples to be drawn
style: string ("full" or "single"), sample from the posterior and then sample, or all the samples from the same posterior draw
pos: if style = "single", draw from the posterior from which to choose
Returns:
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size, bias = 0))+self.bias
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)), p=self.weights)
return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size,pos=pos, bias = 0))+self.bias
else:
return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size,pos=pos, bias = 0))+self.bias
return |
Python | def sample_deconvolution(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the deconvolved distribution
Parameters
--------------
size: int, number of samples to be drawn
style: string ("full" or "single"), sample from the posterior and then sample, or all the samples from the same posterior draw
pos: if style = "single", draw from the posterior from which to choose
Returns:
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size, bias = 0))+self.bias
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)), p=self.weights)
return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size,pos=pos, bias = 0))+self.bias
else:
return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size,pos=pos, bias = 0))+self.bias
return | def sample_deconvolution(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the deconvolved distribution
Parameters
--------------
size: int, number of samples to be drawn
style: string ("full" or "single"), sample from the posterior and then sample, or all the samples from the same posterior draw
pos: if style = "single", draw from the posterior from which to choose
Returns:
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size, bias = 0))+self.bias
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)), p=self.weights)
return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size,pos=pos, bias = 0))+self.bias
else:
return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size,pos=pos, bias = 0))+self.bias
return |
Python | def sample_convolution(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the convolved distribution
Parameters
--------------
size: int, number of samples to be drawn
style: string ("full" or "single"), sample from the posterior and then sample, or all the samples from the same posterior draw
pos: if style = "single", draw from the posterior from which to choose
Returns:
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size, bias = 0))+2*self.bias
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)), p=self.weights)
return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size,pos=pos, bias = 0))+2*self.bias
else:
return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size,pos=pos, bias = 0))+2*self.bias
return | def sample_convolution(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the convolved distribution
Parameters
--------------
size: int, number of samples to be drawn
style: string ("full" or "single"), sample from the posterior and then sample, or all the samples from the same posterior draw
pos: if style = "single", draw from the posterior from which to choose
Returns:
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size, bias = 0))+2*self.bias
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)), p=self.weights)
return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size,pos=pos, bias = 0))+2*self.bias
else:
return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,weights=self.weights,size=size,pos=pos, bias = 0))+2*self.bias
return |
Python | def score_autofluorescence(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the convolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(len(self.weights),p=self.weights)
y = np.zeros(len(x))
for k in range(self.K):
thetastar = self.samples[i,self.K+k]
kconststar = self.samples[i,2*self.K+k]
y += self.samples[i,k]*gamma.pdf(x,a=kconststar,scale=thetastar)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) | def score_autofluorescence(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the convolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(len(self.weights),p=self.weights)
y = np.zeros(len(x))
for k in range(self.K):
thetastar = self.samples[i,self.K+k]
kconststar = self.samples[i,2*self.K+k]
y += self.samples[i,k]*gamma.pdf(x,a=kconststar,scale=thetastar)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) |
Python | def score_deconvolution(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the deconvolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(len(self.weights),p=self.weights)
y = np.zeros(len(x))
for j in range(self.Kc):
thetastar = self.samples[i,3*self.K+self.Kc+j]
kconststar = self.samples[i,3*self.K+2*self.Kc+j]
y += self.samples[i,3*self.K+j]*gamma.pdf(x,a=kconststar,scale=thetastar)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) | def score_deconvolution(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the deconvolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(len(self.weights),p=self.weights)
y = np.zeros(len(x))
for j in range(self.Kc):
thetastar = self.samples[i,3*self.K+self.Kc+j]
kconststar = self.samples[i,3*self.K+2*self.Kc+j]
y += self.samples[i,3*self.K+j]*gamma.pdf(x,a=kconststar,scale=thetastar)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) |
Python | def score_convolution(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the convolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(len(self.weights),p=self.weights)
y = np.zeros(len(x))
for j in range(self.Kc):
for k in range(self.K):
theta1 = self.samples[i,self.K+k]
theta2 = self.samples[i,3*self.K+self.Kc+j]
k1 = self.samples[i,2*self.K+k]
k2 = self.samples[i,3*self.K+2*self.Kc+j]
mu = theta1*k1+theta2*k2
s = theta1*theta1*k1+theta2*theta2*k2
thetastar = s/mu
kconststar = mu*mu/s
y += self.samples[i,k]*self.samples[i,3*self.K+j]*gamma.pdf(x,a=kconststar,scale=thetastar)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) | def score_convolution(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the convolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(len(self.weights),p=self.weights)
y = np.zeros(len(x))
for j in range(self.Kc):
for k in range(self.K):
theta1 = self.samples[i,self.K+k]
theta2 = self.samples[i,3*self.K+self.Kc+j]
k1 = self.samples[i,2*self.K+k]
k2 = self.samples[i,3*self.K+2*self.Kc+j]
mu = theta1*k1+theta2*k2
s = theta1*theta1*k1+theta2*theta2*k2
thetastar = s/mu
kconststar = mu*mu/s
y += self.samples[i,k]*self.samples[i,3*self.K+j]*gamma.pdf(x,a=kconststar,scale=thetastar)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) |
Python | def save(self, name):
"""
Pickle save the model.
Parameters
----------------
name: string, name in which to store the model
Return:
nothing
"""
if self.fitted:
pickling_on = open(name+".pickle","wb")
pk.dump({"K":self.K, "Kc":self.Kc, "alpha": self.alpha, "alphac": self.alphac, "iterations": self.iterations,
"ignored_iterations": self.ignored_iterations,
"priortheta_k": self.priortheta_k, "priortheta_theta": self.priortheta_theta, "priork_k": self.priork_k,
"priork_theta": self.priork_theta, "priortheta_kc": self.priortheta_kc, "priortheta_thetac": self.priortheta_thetac,
"priortheta_thetac": self.priortheta_thetac, "priork_thetac": self.priork_thetac,
"bias":self.bias, "chains":self.chains, "samples":self.samples}, pickling_on)
pickling_on.close()
else:
print("The model has not been fitted so there is nothing to save.")
return | def save(self, name):
"""
Pickle save the model.
Parameters
----------------
name: string, name in which to store the model
Return:
nothing
"""
if self.fitted:
pickling_on = open(name+".pickle","wb")
pk.dump({"K":self.K, "Kc":self.Kc, "alpha": self.alpha, "alphac": self.alphac, "iterations": self.iterations,
"ignored_iterations": self.ignored_iterations,
"priortheta_k": self.priortheta_k, "priortheta_theta": self.priortheta_theta, "priork_k": self.priork_k,
"priork_theta": self.priork_theta, "priortheta_kc": self.priortheta_kc, "priortheta_thetac": self.priortheta_thetac,
"priortheta_thetac": self.priortheta_thetac, "priork_thetac": self.priork_thetac,
"bias":self.bias, "chains":self.chains, "samples":self.samples}, pickling_on)
pickling_on.close()
else:
print("The model has not been fitted so there is nothing to save.")
return |
Python | def load(self, name):
"""
Pickle load the model.
Parameters
----------------
name: string, name from which to recover the model
Return:
nothing
"""
pickle_off = open(name+".pickle","rb")
aux = pk.load(pickle_off)
pickle_off.close()
self.K = aux["K"]
self.Kc = aux ["Kc"]
self.alpha = aux["alpha"]
self.alphac = aux["alphac"]
self.iterations = aux["iterations"]
self.ignored_iterations = aux["ignored_iterations"]
self.chains = aux["chains"]
self.samples = aux["samples"]
self.priortheta_k = aux["priortheta_k"]
self.priortheta_theta = aux["priortheta_theta"]
self.priork_k = aux["priork_k"]
self.priork_theta = aux["priork_theta"]
self.priortheta_kc = aux["priortheta_kc"]
self.priortheta_thetac = aux["priortheta_thetac"]
self.priortheta_thetac = aux["priortheta_thetac"]
self.priork_thetac = aux["priork_thetac"]
self.bias = aux["bias"]
self.fitted = True
return | def load(self, name):
"""
Pickle load the model.
Parameters
----------------
name: string, name from which to recover the model
Return:
nothing
"""
pickle_off = open(name+".pickle","rb")
aux = pk.load(pickle_off)
pickle_off.close()
self.K = aux["K"]
self.Kc = aux ["Kc"]
self.alpha = aux["alpha"]
self.alphac = aux["alphac"]
self.iterations = aux["iterations"]
self.ignored_iterations = aux["ignored_iterations"]
self.chains = aux["chains"]
self.samples = aux["samples"]
self.priortheta_k = aux["priortheta_k"]
self.priortheta_theta = aux["priortheta_theta"]
self.priork_k = aux["priork_k"]
self.priork_theta = aux["priork_theta"]
self.priortheta_kc = aux["priortheta_kc"]
self.priortheta_thetac = aux["priortheta_thetac"]
self.priortheta_thetac = aux["priortheta_thetac"]
self.priork_thetac = aux["priork_thetac"]
self.bias = aux["bias"]
self.fitted = True
return |
Python | def sample_autofluorescence(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the noise distribution
Parameters
-------------
size: int, number of samples to be drawn
Returns
-------------
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,size=size, bias=0))+self.bias
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)))
return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias
else:
return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias | def sample_autofluorescence(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the noise distribution
Parameters
-------------
size: int, number of samples to be drawn
Returns
-------------
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,size=size, bias=0))+self.bias
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)))
return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias
else:
return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias |
Python | def sample_deconvolution(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the deconvolved distribution
Parameters
-------------
size: int, number of samples to be drawn
Returns
-------------
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,size=size, bias=0))+self.bias
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)))
return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias
else:
return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias | def sample_deconvolution(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the deconvolved distribution
Parameters
-------------
size: int, number of samples to be drawn
Returns
-------------
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,size=size, bias=0))+self.bias
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)))
return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias
else:
return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias |
Python | def sample_convolution(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the convolved distribution
Parameters
-------------
size: int, number of samples to be drawn
Returns
-------------
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,size=size, bias=0))+self.bias
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)))
return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias
else:
return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias | def sample_convolution(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the convolved distribution
Parameters
-------------
size: int, number of samples to be drawn
Returns
-------------
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,size=size, bias=0))+self.bias
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)))
return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias
else:
return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias |
Python | def score_autofluorescence(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the convolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(self.iterations)
y = np.zeros(len(x))
for k in range(self.K):
thetastar = self.samples[i,self.K+k]
kconststar = self.samples[i,2*self.K+k]
y += self.samples[i,k]*gamma.pdf(x,a=kconststar,scale=thetastar)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) | def score_autofluorescence(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the convolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(self.iterations)
y = np.zeros(len(x))
for k in range(self.K):
thetastar = self.samples[i,self.K+k]
kconststar = self.samples[i,2*self.K+k]
y += self.samples[i,k]*gamma.pdf(x,a=kconststar,scale=thetastar)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) |
Python | def score_deconvolution(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the deconvolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(self.iterations)
y = np.zeros(len(x))
for j in range(self.Kc):
thetastar = self.samples[i,3*self.K+self.Kc+j]
kconststar = self.samples[i,3*self.K+2*self.Kc+j]
y += self.samples[i,3*self.K+j]*gamma.pdf(x,a=kconststar,scale=thetastar)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) | def score_deconvolution(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the deconvolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(self.iterations)
y = np.zeros(len(x))
for j in range(self.Kc):
thetastar = self.samples[i,3*self.K+self.Kc+j]
kconststar = self.samples[i,3*self.K+2*self.Kc+j]
y += self.samples[i,3*self.K+j]*gamma.pdf(x,a=kconststar,scale=thetastar)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) |
Python | def score_convolution(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the convolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(self.iterations)
y = np.zeros(len(x))
for j in range(self.Kc):
for k in range(self.K):
theta1 = self.samples[i,self.K+k]
theta2 = self.samples[i,3*self.K+self.Kc+j]
k1 = self.samples[i,2*self.K+k]
k2 = self.samples[i,3*self.K+2*self.Kc+j]
mu = theta1*k1+theta2*k2
s = theta1*theta1*k1+theta2*theta2*k2
thetastar = s/mu
kconststar = mu*mu/s
y += self.samples[i,k]*self.samples[i,3*self.K+j]*gamma.pdf(x,a=kconststar,scale=thetastar)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) | def score_convolution(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the convolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(self.iterations)
y = np.zeros(len(x))
for j in range(self.Kc):
for k in range(self.K):
theta1 = self.samples[i,self.K+k]
theta2 = self.samples[i,3*self.K+self.Kc+j]
k1 = self.samples[i,2*self.K+k]
k2 = self.samples[i,3*self.K+2*self.Kc+j]
mu = theta1*k1+theta2*k2
s = theta1*theta1*k1+theta2*theta2*k2
thetastar = s/mu
kconststar = mu*mu/s
y += self.samples[i,k]*self.samples[i,3*self.K+j]*gamma.pdf(x,a=kconststar,scale=thetastar)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) |
Python | def save(self, name):
"""
Pickle save the model.
Parameters
----------------
name: string, name in which to store the model
Return:
nothing
"""
if self.fitted:
pickling_on = open(name+".pickle","wb")
pk.dump({"K":self.K, "Kc":self.Kc, "priors": self.priors, "iterations": self.iterations,
"ignored_iterations": self.ignored_iterations,
"chains":self.chains, "samples":self.samples}, pickling_on)
pickling_on.close()
else:
print("The model has not been fitted so there is nothing to save.")
return | def save(self, name):
"""
Pickle save the model.
Parameters
----------------
name: string, name in which to store the model
Return:
nothing
"""
if self.fitted:
pickling_on = open(name+".pickle","wb")
pk.dump({"K":self.K, "Kc":self.Kc, "priors": self.priors, "iterations": self.iterations,
"ignored_iterations": self.ignored_iterations,
"chains":self.chains, "samples":self.samples}, pickling_on)
pickling_on.close()
else:
print("The model has not been fitted so there is nothing to save.")
return |
Python | def load(self, name):
"""
Pickle load the model.
Parameters
----------------
name: string, name from which to recover the model
Return:
nothing
"""
pickle_off = open(name+".pickle","rb")
aux = pk.load(pickle_off)
pickle_off.close()
self.K = aux["K"]
self.Kc = aux ["Kc"]
self.priors = aux["priors"]
self.iterations = aux["iterations"]
self.ignored_iterations = aux["ignored_iterations"]
self.chains = aux["chains"]
self.samples = aux["samples"]
self.fitted = True
return | def load(self, name):
"""
Pickle load the model.
Parameters
----------------
name: string, name from which to recover the model
Return:
nothing
"""
pickle_off = open(name+".pickle","rb")
aux = pk.load(pickle_off)
pickle_off.close()
self.K = aux["K"]
self.Kc = aux ["Kc"]
self.priors = aux["priors"]
self.iterations = aux["iterations"]
self.ignored_iterations = aux["ignored_iterations"]
self.chains = aux["chains"]
self.samples = aux["samples"]
self.fitted = True
return |
Python | def sample_autofluorescence(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the noise distribution
Parameters
--------------
size: int, number of samples to be drawn
style: string ("full" or "single"), sample from the posterior and then sample, or all the samples from the same posterior draw
pos: if style = "single", draw from the posterior from which to choose
Returns:
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_autofluorescence(self.samples,self.K,self.Kc,size=size))
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)))
return np.array(sample_autofluorescence(self.samples,self.K,self.Kc,size=size,pos=pos))
else:
return np.array(sample_autofluorescence(self.samples,self.K,self.Kc,size=size,pos=pos))
return | def sample_autofluorescence(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the noise distribution
Parameters
--------------
size: int, number of samples to be drawn
style: string ("full" or "single"), sample from the posterior and then sample, or all the samples from the same posterior draw
pos: if style = "single", draw from the posterior from which to choose
Returns:
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_autofluorescence(self.samples,self.K,self.Kc,size=size))
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)))
return np.array(sample_autofluorescence(self.samples,self.K,self.Kc,size=size,pos=pos))
else:
return np.array(sample_autofluorescence(self.samples,self.K,self.Kc,size=size,pos=pos))
return |
Python | def sample_deconvolution(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the deconvolved distribution
Parameters
--------------
size: int, number of samples to be drawn
style: string ("full" or "single"), sample from the posterior and then sample, or all the samples from the same posterior draw
pos: if style = "single", draw from the posterior from which to choose
Returns:
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_deconvolution(self.samples,self.K,self.Kc,size=size))
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)))
return np.array(sample_deconvolution(self.samples,self.K,self.Kc,size=size,pos=pos))
else:
return np.array(sample_deconvolution(self.samples,self.K,self.Kc,size=size,pos=pos))
return | def sample_deconvolution(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the deconvolved distribution
Parameters
--------------
size: int, number of samples to be drawn
style: string ("full" or "single"), sample from the posterior and then sample, or all the samples from the same posterior draw
pos: if style = "single", draw from the posterior from which to choose
Returns:
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_deconvolution(self.samples,self.K,self.Kc,size=size))
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)))
return np.array(sample_deconvolution(self.samples,self.K,self.Kc,size=size,pos=pos))
else:
return np.array(sample_deconvolution(self.samples,self.K,self.Kc,size=size,pos=pos))
return |
Python | def sample_convolution(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the convolved distribution
Parameters
--------------
size: int, number of samples to be drawn
style: string ("full" or "single"), sample from the posterior and then sample, or all the samples from the same posterior draw
pos: if style = "single", draw from the posterior from which to choose
Returns:
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_convolution(self.samples,self.K,self.Kc,size=size))
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)))
return np.array(sample_convolution(self.samples,self.K,self.Kc,size=size,pos=pos))
else:
return np.array(sample_convolution(self.samples,self.K,self.Kc,size=size,pos=pos))
return | def sample_convolution(self, size = 1, style = "full", pos = None):
"""
Generate samples from the fitted posterior distribution according to the convolved distribution
Parameters
--------------
size: int, number of samples to be drawn
style: string ("full" or "single"), sample from the posterior and then sample, or all the samples from the same posterior draw
pos: if style = "single", draw from the posterior from which to choose
Returns:
list: list, 1D array with *size* samples from the model
"""
if style=="full":
return np.array(sample_convolution(self.samples,self.K,self.Kc,size=size))
elif style=="single":
if pos == None:
pos = np.random.choice(range(len(self.samples)))
return np.array(sample_convolution(self.samples,self.K,self.Kc,size=size,pos=pos))
else:
return np.array(sample_convolution(self.samples,self.K,self.Kc,size=size,pos=pos))
return |
Python | def score_autofluorescence(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the convolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(self.iterations)
y = np.zeros(len(x))
for k in range(self.K):
mu = self.samples[i,self.K+k]
sigma = self.samples[i,2*self.K+k]
y += self.samples[i,k]*norm.pdf(x,loc=mu,scale=sigma)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) | def score_autofluorescence(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the convolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(self.iterations)
y = np.zeros(len(x))
for k in range(self.K):
mu = self.samples[i,self.K+k]
sigma = self.samples[i,2*self.K+k]
y += self.samples[i,k]*norm.pdf(x,loc=mu,scale=sigma)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) |
Python | def score_deconvolution(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the deconvolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(self.iterations)
y = np.zeros(len(x))
for j in range(self.Kc):
mu = self.samples[i,3*self.K+self.Kc+j]
sigma = self.samples[i,3*self.K+2*self.Kc+j]
y += self.samples[i,3*self.K+j]*norm.pdf(x,loc=mu,scale=sigma)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) | def score_deconvolution(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the deconvolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(self.iterations)
y = np.zeros(len(x))
for j in range(self.Kc):
mu = self.samples[i,3*self.K+self.Kc+j]
sigma = self.samples[i,3*self.K+2*self.Kc+j]
y += self.samples[i,3*self.K+j]*norm.pdf(x,loc=mu,scale=sigma)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) |
Python | def score_convolution(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the convolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(self.iterations)
y = np.zeros(len(x))
for j in range(self.Kc):
for k in range(self.K):
mu1 = self.samples[i,self.K+k]
mu2 = self.samples[i,3*self.K+self.Kc+j]
sigma1 = self.samples[i,2*self.K+k]
sigma2 = self.samples[i,3*self.K+2*self.Kc+j]
mu = mu1
s = np.sqrt(sigma1**2+sigma2**2)
y += self.samples[i,k]*self.samples[i,3*self.K+j]*norm.pdf(x,loc=mu,scale=s)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) | def score_convolution(self, x, percentiles = [5, 95], size = 100):
"""
Evaluate the mean and percentiles of the the pdf at certain position acording to the convolved distribution
Parameters
-------------
x: list/array, positions where to evaluate the distribution
percentiles: list/array, percentiles to be evaluated
size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability
Returns
-------------
list: list, 2D array with the mean and all the percentile evaluations at all points in x
"""
yT = []
for l in range(size):
i = np.random.choice(self.iterations)
y = np.zeros(len(x))
for j in range(self.Kc):
for k in range(self.K):
mu1 = self.samples[i,self.K+k]
mu2 = self.samples[i,3*self.K+self.Kc+j]
sigma1 = self.samples[i,2*self.K+k]
sigma2 = self.samples[i,3*self.K+2*self.Kc+j]
mu = mu1
s = np.sqrt(sigma1**2+sigma2**2)
y += self.samples[i,k]*self.samples[i,3*self.K+j]*norm.pdf(x,loc=mu,scale=s)
yT.append(y)
return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) |
Python | def send_mail(address, passwd):
"""
Send verification emails based on below template.
"""
message = (
"Hey there!\n\nYour HOBY Feedback account is ready to be logged "
+ "into. If you have any problems logging in, please contact the "
+ "operations staff who created your account."
+ "\n\nURL: https://feedback.hobynye.org\nPassword: {}\n\n"
+ "Please change this password once you have logged in.\n\n"
+ "Thanks,\nHOBY NYE\n"
+ "\n\nThis message was automatically generated by HOBY Feedback"
)
message = message.format(passwd)
email = MIMEText(message)
email["To"] = address
email["From"] = "HOBY Feedback <{}>".format(app.config["EMAIL_USER"])
email["Subject"] = "Your HOBY Feedback Account"
email["Date"] = formatdate()
server = smtplib.SMTP_SSL("smtp.gmail.com", 465)
server.login(app.config["EMAIL_USER"], app.config["EMAIL_PASS"])
server.send_message(email)
server.quit() | def send_mail(address, passwd):
"""
Send verification emails based on below template.
"""
message = (
"Hey there!\n\nYour HOBY Feedback account is ready to be logged "
+ "into. If you have any problems logging in, please contact the "
+ "operations staff who created your account."
+ "\n\nURL: https://feedback.hobynye.org\nPassword: {}\n\n"
+ "Please change this password once you have logged in.\n\n"
+ "Thanks,\nHOBY NYE\n"
+ "\n\nThis message was automatically generated by HOBY Feedback"
)
message = message.format(passwd)
email = MIMEText(message)
email["To"] = address
email["From"] = "HOBY Feedback <{}>".format(app.config["EMAIL_USER"])
email["Subject"] = "Your HOBY Feedback Account"
email["Date"] = formatdate()
server = smtplib.SMTP_SSL("smtp.gmail.com", 465)
server.login(app.config["EMAIL_USER"], app.config["EMAIL_PASS"])
server.send_message(email)
server.quit() |
Python | def check_certs(certs):
"""Checks if certificate and configuration match"""
path = certs + "*.crt"
# add check for crt and opvn files
# if crt dont exist, user will be not checked
names = [os.path.splitext(os.path.basename(item))[0] for item in glob.glob(path)]
for user in names:
try:
cert_crt = open(CERT_DIR + user + ".crt", "r").read()
except FileNotFoundError as err:
print(
f"{Colors.BADRED}{Colors.BOLD}Cannot open crt file for {user}. {err}{Colors.ENDC}"
)
exit()
try:
cert_ovpn = open(CERT_DIR + PREFIX + user + "-config.ovpn", "r").read()
except FileNotFoundError as err:
print(
f"{Colors.BADRED}Cannot open ovpn file for {user}. {err}{Colors.ENDC}"
)
exit()
try:
cert_crt_match = REG_CRT.search(cert_crt).group("cert")
except AttributeError as err:
print(f" {user}: Bad - regexp cannot match! {err}")
try:
cert_ovpn_match = REG_OVPN.search(cert_ovpn).group("cert")
except AttributeError as err:
print(f"{Colors.BADRED}Bad - regexp cannot match! {err}{Colors.ENDC}")
if cert_crt_match == cert_ovpn_match:
print(f"{Colors.OKGREEN}{user}: OK{Colors.ENDC}")
else:
print(f"{Colors.BADRED}{user}: BAD{Colors.ENDC}") | def check_certs(certs):
"""Checks if certificate and configuration match"""
path = certs + "*.crt"
# add check for crt and opvn files
# if crt dont exist, user will be not checked
names = [os.path.splitext(os.path.basename(item))[0] for item in glob.glob(path)]
for user in names:
try:
cert_crt = open(CERT_DIR + user + ".crt", "r").read()
except FileNotFoundError as err:
print(
f"{Colors.BADRED}{Colors.BOLD}Cannot open crt file for {user}. {err}{Colors.ENDC}"
)
exit()
try:
cert_ovpn = open(CERT_DIR + PREFIX + user + "-config.ovpn", "r").read()
except FileNotFoundError as err:
print(
f"{Colors.BADRED}Cannot open ovpn file for {user}. {err}{Colors.ENDC}"
)
exit()
try:
cert_crt_match = REG_CRT.search(cert_crt).group("cert")
except AttributeError as err:
print(f" {user}: Bad - regexp cannot match! {err}")
try:
cert_ovpn_match = REG_OVPN.search(cert_ovpn).group("cert")
except AttributeError as err:
print(f"{Colors.BADRED}Bad - regexp cannot match! {err}{Colors.ENDC}")
if cert_crt_match == cert_ovpn_match:
print(f"{Colors.OKGREEN}{user}: OK{Colors.ENDC}")
else:
print(f"{Colors.BADRED}{user}: BAD{Colors.ENDC}") |
Python | def colorWipe(strip, color, wait_s=50):
"""Wipe color across display a pixel at a time."""
for i in range(strip.numPixels()):
strip.setPixelColor(i, color)
strip.show()
time.sleep(wait_s/1000.0) | def colorWipe(strip, color, wait_s=50):
"""Wipe color across display a pixel at a time."""
for i in range(strip.numPixels()):
strip.setPixelColor(i, color)
strip.show()
time.sleep(wait_s/1000.0) |
Python | def blink(pos, times, color, wait_s=50):
"""Wipe color across display a pixel at a time."""
for i in range(times):
strip.setPixelColor(pos+i, color)
strip.show()
time.sleep(wait_s/1000.0)
strip.setPixelColor(pos+i, Color(0, 0, 0))
strip.show()
time.sleep(wait_s/1000.0) | def blink(pos, times, color, wait_s=50):
"""Wipe color across display a pixel at a time."""
for i in range(times):
strip.setPixelColor(pos+i, color)
strip.show()
time.sleep(wait_s/1000.0)
strip.setPixelColor(pos+i, Color(0, 0, 0))
strip.show()
time.sleep(wait_s/1000.0) |
Python | def _get_topic_names_and_types(self, expected, timeout):
"""Make sure discovery has found all 'expected' topics."""
start = time.monotonic()
while True:
topics = self.this_node.get_topic_names_and_types()
now = time.monotonic()
if all(expected_topic in topics for expected_topic in expected):
return topics
elif (now - start) < timeout:
continue
else:
return None | def _get_topic_names_and_types(self, expected, timeout):
"""Make sure discovery has found all 'expected' topics."""
start = time.monotonic()
while True:
topics = self.this_node.get_topic_names_and_types()
now = time.monotonic()
if all(expected_topic in topics for expected_topic in expected):
return topics
elif (now - start) < timeout:
continue
else:
return None |
Python | def _fake_glob_scores(nb_vid, scale=1):
"""Creates fake global scores for test
nb_vid (int): number of videos "generated"
scale (float): variance of generated global scores
Returns:
(float array): fake global scores
"""
glob_scores = np.random.normal(scale=scale, size=nb_vid)
return glob_scores | def _fake_glob_scores(nb_vid, scale=1):
"""Creates fake global scores for test
nb_vid (int): number of videos "generated"
scale (float): variance of generated global scores
Returns:
(float array): fake global scores
"""
glob_scores = np.random.normal(scale=scale, size=nb_vid)
return glob_scores |
Python | def _fake_s(nb_s, multiple_scales=True):
"""Returns random s parameters
nb_s (int): number of s parameters required
multiple_scales (bool): wether to draw s parameters or set all to 1
Returns:
(float array): random independant s parameters
"""
if multiple_scales:
return np.random.gamma(4, scale=0.3, size=nb_s)
return np.ones(nb_s) | def _fake_s(nb_s, multiple_scales=True):
"""Returns random s parameters
nb_s (int): number of s parameters required
multiple_scales (bool): wether to draw s parameters or set all to 1
Returns:
(float array): random independant s parameters
"""
if multiple_scales:
return np.random.gamma(4, scale=0.3, size=nb_s)
return np.ones(nb_s) |
Python | def fetch_data():
"""Fetches the data from the Comparisons model
Returns:
- comparison_data: list of
[ contributor_id: int, video_id_1: int, video_id_2: int,
criteria: str, score: float, weight: float ]
"""
comparison_data = [
[
ccs.comparison.user_id,
ccs.comparison.entity_1_id,
ccs.comparison.entity_2_id,
ccs.criteria,
ccs.score,
ccs.weight,
]
for ccs in ComparisonCriteriaScore.objects
.filter(comparison__user__in=User.trusted_users())
.prefetch_related("comparison")
]
return comparison_data | def fetch_data():
"""Fetches the data from the Comparisons model
Returns:
- comparison_data: list of
[ contributor_id: int, video_id_1: int, video_id_2: int,
criteria: str, score: float, weight: float ]
"""
comparison_data = [
[
ccs.comparison.user_id,
ccs.comparison.entity_1_id,
ccs.comparison.entity_2_id,
ccs.criteria,
ccs.score,
ccs.weight,
]
for ccs in ComparisonCriteriaScore.objects
.filter(comparison__user__in=User.trusted_users())
.prefetch_related("comparison")
]
return comparison_data |
Python | def save_data(video_scores, contributor_rating_scores):
"""
Saves in the scores for Entities and ContributorRatings
"""
EntityCriteriaScore.objects.all().delete()
EntityCriteriaScore.objects.bulk_create(
[
EntityCriteriaScore(
entity_id=video_id,
criteria=criteria,
score=score,
uncertainty=uncertainty,
)
for video_id, criteria, score, uncertainty in video_scores
]
)
rating_ids = {
(contributor_id, video_id): rating_id
for rating_id, contributor_id, video_id in ContributorRating.objects.all().values_list(
"id", "user_id", "entity_id"
)
}
ratings_to_create = set(
(contributor_id, video_id)
for contributor_id, video_id, _, _, _ in contributor_rating_scores
if (contributor_id, video_id) not in rating_ids
)
created_ratings = ContributorRating.objects.bulk_create(
[
ContributorRating(
entity_id=video_id,
user_id=contributor_id,
)
for contributor_id, video_id in ratings_to_create
]
)
rating_ids.update(
{(rating.user_id, rating.entity_id): rating.id for rating in created_ratings}
)
ContributorRatingCriteriaScore.objects.all().delete()
ContributorRatingCriteriaScore.objects.bulk_create(
[
ContributorRatingCriteriaScore(
contributor_rating_id=rating_ids[(contributor_id, video_id)],
criteria=criteria,
score=score,
uncertainty=uncertainty,
)
for contributor_id, video_id, criteria, score, uncertainty in contributor_rating_scores
]
) | def save_data(video_scores, contributor_rating_scores):
"""
Saves in the scores for Entities and ContributorRatings
"""
EntityCriteriaScore.objects.all().delete()
EntityCriteriaScore.objects.bulk_create(
[
EntityCriteriaScore(
entity_id=video_id,
criteria=criteria,
score=score,
uncertainty=uncertainty,
)
for video_id, criteria, score, uncertainty in video_scores
]
)
rating_ids = {
(contributor_id, video_id): rating_id
for rating_id, contributor_id, video_id in ContributorRating.objects.all().values_list(
"id", "user_id", "entity_id"
)
}
ratings_to_create = set(
(contributor_id, video_id)
for contributor_id, video_id, _, _, _ in contributor_rating_scores
if (contributor_id, video_id) not in rating_ids
)
created_ratings = ContributorRating.objects.bulk_create(
[
ContributorRating(
entity_id=video_id,
user_id=contributor_id,
)
for contributor_id, video_id in ratings_to_create
]
)
rating_ids.update(
{(rating.user_id, rating.entity_id): rating.id for rating in created_ratings}
)
ContributorRatingCriteriaScore.objects.all().delete()
ContributorRatingCriteriaScore.objects.bulk_create(
[
ContributorRatingCriteriaScore(
contributor_rating_id=rating_ids[(contributor_id, video_id)],
criteria=criteria,
score=score,
uncertainty=uncertainty,
)
for contributor_id, video_id, criteria, score, uncertainty in contributor_rating_scores
]
) |
Python | def lookups(self, request, model_admin):
"""
Returns a list of tuples. The first element in each
tuple is the coded value for the option that will
appear in the URL query. The second element is the
human-readable name for the option that will appear
in the right sidebar.
"""
return (
('1', 'Yes'),
('0', 'No'),
) | def lookups(self, request, model_admin):
"""
Returns a list of tuples. The first element in each
tuple is the coded value for the option that will
appear in the URL query. The second element is the
human-readable name for the option that will appear
in the right sidebar.
"""
return (
('1', 'Yes'),
('0', 'No'),
) |
Python | def api_get_tournesol_scores():
"""Get a dataframe with all videos from tournesol.."""
response = requests.get(
f"https://api.tournesol.app/video/?limit=9999&unsafe=true"
).json()
df = pd.DataFrame.from_dict(response["results"])
for crit in CRITERIA:
df[crit] = df.apply(lambda x: get_score(x, crit), axis=1)
df.drop(columns=["criteria_scores"], inplace=True)
df["tournesol_score"] = df[CRITERIA].sum(axis=1)
return df | def api_get_tournesol_scores():
"""Get a dataframe with all videos from tournesol.."""
response = requests.get(
f"https://api.tournesol.app/video/?limit=9999&unsafe=true"
).json()
df = pd.DataFrame.from_dict(response["results"])
for crit in CRITERIA:
df[crit] = df.apply(lambda x: get_score(x, crit), axis=1)
df.drop(columns=["criteria_scores"], inplace=True)
df["tournesol_score"] = df[CRITERIA].sum(axis=1)
return df |
Python | def refresh_youtube_metadata(video):
"""
Fetch and update video metadata from Youtube API.
This function is similar to `video.refresh_youtube_metatada(force=True)`
but this code needs to be duplicated here, as versioned model used
in migrations do not include model custom methods.
"""
video.last_metadata_request_at = timezone.now()
video.save(update_fields=["last_metadata_request_at"])
try:
metadata = get_video_metadata(video.video_id, compute_language=False)
except VideoNotFound:
metadata = {}
if not metadata:
return
fields = [
"name",
"description",
"publication_date",
"uploader",
"views",
"duration",
"metadata_timestamp",
]
for f in fields:
setattr(video, f, metadata[f])
logging.info("Saving metadata for video %s. Duration: %s", video.video_id, video.duration)
video.save(update_fields=fields) | def refresh_youtube_metadata(video):
"""
Fetch and update video metadata from Youtube API.
This function is similar to `video.refresh_youtube_metatada(force=True)`
but this code needs to be duplicated here, as versioned model used
in migrations do not include model custom methods.
"""
video.last_metadata_request_at = timezone.now()
video.save(update_fields=["last_metadata_request_at"])
try:
metadata = get_video_metadata(video.video_id, compute_language=False)
except VideoNotFound:
metadata = {}
if not metadata:
return
fields = [
"name",
"description",
"publication_date",
"uploader",
"views",
"duration",
"metadata_timestamp",
]
for f in fields:
setattr(video, f, metadata[f])
logging.info("Saving metadata for video %s. Duration: %s", video.video_id, video.duration)
video.save(update_fields=fields) |
Python | def forward_func(apps, schema_editor):
"""
Refresh video metadata where duration is missing, due to previous implementation
"""
Video = apps.get_model("tournesol", "Video")
for video in Video.objects.filter(duration__isnull=True).iterator():
refresh_youtube_metadata(video) | def forward_func(apps, schema_editor):
"""
Refresh video metadata where duration is missing, due to previous implementation
"""
Video = apps.get_model("tournesol", "Video")
for video in Video.objects.filter(duration__isnull=True).iterator():
refresh_youtube_metadata(video) |
Python | def extract_grad(model):
"""returns list of gradients of a model
model (float tensor): torch tensor with gradients
Returns:
(float tensor list): list of gradients of the model
"""
return [p.grad for p in [model]] | def extract_grad(model):
"""returns list of gradients of a model
model (float tensor): torch tensor with gradients
Returns:
(float tensor list): list of gradients of the model
"""
return [p.grad for p in [model]] |
Python | def scalar_product(l_grad1, l_grad2):
"""scalar product of 2 lists of gradients
l_grad1 (float tensor list): list of gradients of a model
l_grad2 (float tensor list): list of gradients of a model
Returns:
(float): scalar product of the gradients
"""
s = 0
for g1, g2 in zip(l_grad1, l_grad2):
s += (g1 * g2).sum()
return round_loss(s, 4) | def scalar_product(l_grad1, l_grad2):
"""scalar product of 2 lists of gradients
l_grad1 (float tensor list): list of gradients of a model
l_grad2 (float tensor list): list of gradients of a model
Returns:
(float): scalar product of the gradients
"""
s = 0
for g1, g2 in zip(l_grad1, l_grad2):
s += (g1 * g2).sum()
return round_loss(s, 4) |
Python | def replace_coordinate(tens, score, idx):
"""Replaces one coordinate of the tensor
Args:
tens (float tensor): local model
score (scalar tensor): score to put in tens
idx (int): index of score to replace
Returns:
(float tensor): same tensor as input but backward pointing to -score
"""
size = len(tens)
left, _, right = torch.split(tens, [idx, 1, size - idx - 1])
return torch.cat([left, score, right]) | def replace_coordinate(tens, score, idx):
"""Replaces one coordinate of the tensor
Args:
tens (float tensor): local model
score (scalar tensor): score to put in tens
idx (int): index of score to replace
Returns:
(float tensor): same tensor as input but backward pointing to -score
"""
size = len(tens)
left, _, right = torch.split(tens, [idx, 1, size - idx - 1])
return torch.cat([left, score, right]) |
Python | def _global_uncert(values, prior=4, weight=5):
"""Returns posterior value of median
prior(float): value of prior median
weight (int): weight of prior
values (float list): data to take median of
Returns:
(float): global uncertainty for one video
"""
full_values = values + [prior] * weight
return median(full_values) / len(values) ** 0.5 | def _global_uncert(values, prior=4, weight=5):
"""Returns posterior value of median
prior(float): value of prior median
weight (int): weight of prior
values (float list): data to take median of
Returns:
(float): global uncertainty for one video
"""
full_values = values + [prior] * weight
return median(full_values) / len(values) ** 0.5 |
Python | def _get_hessian_fun_loc(licch, uid, vidx):
"""Gives loss in function of local model for hessian computation
Args:
licch (Licchavi()): licchavi object
id_node (int): id of user
vidx (int): index of video, ie index of parameter
Returns:
(scalar tensor -> float) function giving loss according to one score
"""
def get_loss(score):
"""Used to compute its second derivative to get uncertainty
input (float scalar tensor): one score
Returns:
(float scalar tensor): partial loss for 1 user, 1 video
"""
new_model = replace_coordinate(licch.nodes[uid].model, score, vidx)
licch.nodes[uid].model = new_model
fit_loss, _, gen_loss = loss_fit_s_gen(licch, vidx, uid)
return fit_loss + gen_loss
return get_loss | def _get_hessian_fun_loc(licch, uid, vidx):
"""Gives loss in function of local model for hessian computation
Args:
licch (Licchavi()): licchavi object
id_node (int): id of user
vidx (int): index of video, ie index of parameter
Returns:
(scalar tensor -> float) function giving loss according to one score
"""
def get_loss(score):
"""Used to compute its second derivative to get uncertainty
input (float scalar tensor): one score
Returns:
(float scalar tensor): partial loss for 1 user, 1 video
"""
new_model = replace_coordinate(licch.nodes[uid].model, score, vidx)
licch.nodes[uid].model = new_model
fit_loss, _, gen_loss = loss_fit_s_gen(licch, vidx, uid)
return fit_loss + gen_loss
return get_loss |
Python | def _random_signs(epsilon, nb_vids):
"""Returns a tensor whith binary random coordinates
epsilon (float): scores increment before computing gradient
nb_vids (int): length of output tensor
Returns:
(float tensor): coordinates are +/-epsilon randomly
"""
rand = torch.randint(2, size=(1, nb_vids))[0] - 0.5
return rand * 2 * epsilon | def _random_signs(epsilon, nb_vids):
"""Returns a tensor whith binary random coordinates
epsilon (float): scores increment before computing gradient
nb_vids (int): length of output tensor
Returns:
(float tensor): coordinates are +/-epsilon randomly
"""
rand = torch.randint(2, size=(1, nb_vids))[0] - 0.5
return rand * 2 * epsilon |
Python | def check_equilibrium_glob(epsilon, licch):
"""Returns proportion of global scores which have converged
Args:
licch (Licchavi()): licchavi object
Returns:
(float): fraction of scores at equilibrium
"""
nbvid = len(licch.vid_vidx)
incr = _random_signs(epsilon, nbvid)
def _one_side_glob(increment):
"""increment (float tensor): coordinates are +/- epsilon"""
for node in licch.nodes.values():
node.opt.zero_grad(set_to_none=True) # node optimizer
licch.opt_gen.zero_grad(set_to_none=True) # general optimizer
# adding epsilon to scores
with torch.no_grad():
licch.global_model += increment
gen_loss, reg_loss = loss_gen_reg(licch)
loss = gen_loss + reg_loss
loss.backward()
derivs = licch.global_model.grad
# removing epsilon from scores
with torch.no_grad():
licch.global_model -= increment
return derivs * increment
derivs1 = _one_side_glob(incr)
derivs2 = _one_side_glob(-incr)
equilibrated = torch.logical_and(derivs1 > 0, derivs2 > 0)
frac_glob = torch.count_nonzero(equilibrated) / nbvid
return frac_glob.item() | def check_equilibrium_glob(epsilon, licch):
"""Returns proportion of global scores which have converged
Args:
licch (Licchavi()): licchavi object
Returns:
(float): fraction of scores at equilibrium
"""
nbvid = len(licch.vid_vidx)
incr = _random_signs(epsilon, nbvid)
def _one_side_glob(increment):
"""increment (float tensor): coordinates are +/- epsilon"""
for node in licch.nodes.values():
node.opt.zero_grad(set_to_none=True) # node optimizer
licch.opt_gen.zero_grad(set_to_none=True) # general optimizer
# adding epsilon to scores
with torch.no_grad():
licch.global_model += increment
gen_loss, reg_loss = loss_gen_reg(licch)
loss = gen_loss + reg_loss
loss.backward()
derivs = licch.global_model.grad
# removing epsilon from scores
with torch.no_grad():
licch.global_model -= increment
return derivs * increment
derivs1 = _one_side_glob(incr)
derivs2 = _one_side_glob(-incr)
equilibrated = torch.logical_and(derivs1 > 0, derivs2 > 0)
frac_glob = torch.count_nonzero(equilibrated) / nbvid
return frac_glob.item() |
Python | def check_one(vid, comp_glob, comp_loc):
"""prints global and local scores for one video"""
print("all we have on video: ", vid)
for score in comp_glob:
if score[0] == vid:
print(score)
for score in comp_loc:
if score[1] == vid:
print(score) | def check_one(vid, comp_glob, comp_loc):
"""prints global and local scores for one video"""
print("all we have on video: ", vid)
for score in comp_glob:
if score[0] == vid:
print(score)
for score in comp_loc:
if score[1] == vid:
print(score) |
Python | def licch_stats(licch):
"""gives some statistics about Licchavi object"""
print("LICCH_SATS")
licch.check() # some tests
h = licch.history
print("nb_nodes", licch.nb_nodes)
licch.stat_s() # print stats on s parameters
with torch.no_grad():
gen_s = licch.all_nodes("s")
l_s = [s.item() for s in gen_s]
plot_density(l_s, "s parameters", PATH_PLOTS, "s_params.png")
plot_metrics([h], path=PATH_PLOTS) | def licch_stats(licch):
"""gives some statistics about Licchavi object"""
print("LICCH_SATS")
licch.check() # some tests
h = licch.history
print("nb_nodes", licch.nb_nodes)
licch.stat_s() # print stats on s parameters
with torch.no_grad():
gen_s = licch.all_nodes("s")
l_s = [s.item() for s in gen_s]
plot_density(l_s, "s parameters", PATH_PLOTS, "s_params.png")
plot_metrics([h], path=PATH_PLOTS) |
Python | def scores_stats(glob_scores):
"""gives statistics on global scores
glob_scores: torch tensor of global scores
"""
print("SCORES_STATS")
var = torch.var(glob_scores)
mini, maxi = (torch.min(glob_scores).item(), torch.max(glob_scores).item())
print("minimax:", mini, maxi)
print("variance of global scores :", var.item())
with torch.no_grad():
plot_density(
glob_scores.cpu(),
"Global scores",
PATH_PLOTS,
"scores.png"
) | def scores_stats(glob_scores):
"""gives statistics on global scores
glob_scores: torch tensor of global scores
"""
print("SCORES_STATS")
var = torch.var(glob_scores)
mini, maxi = (torch.min(glob_scores).item(), torch.max(glob_scores).item())
print("minimax:", mini, maxi)
print("variance of global scores :", var.item())
with torch.no_grad():
plot_density(
glob_scores.cpu(),
"Global scores",
PATH_PLOTS,
"scores.png"
) |
Python | def s_stats(licch):
""" Prints and plots about s parameters """
if licch.test_mode:
s_predicted = [s.detach().item() for s in licch.all_nodes('s')]
plot_s_predict_gt(s_predicted, licch.s_gt, PATH_PLOTS) | def s_stats(licch):
""" Prints and plots about s parameters """
if licch.test_mode:
s_predicted = [s.detach().item() for s in licch.all_nodes('s')]
plot_s_predict_gt(s_predicted, licch.s_gt, PATH_PLOTS) |
Python | def migrate_forward(apps, schema_editor):
"""
Create the criteria of the `videos` poll.
"""
Criteria = apps.get_model("tournesol", "Criteria")
CriteriaLocale = apps.get_model("tournesol", "CriteriaLocale")
CriteriaRank = apps.get_model("tournesol", "CriteriaRank")
Poll = apps.get_model("tournesol", "Poll")
default_poll = Poll.objects.get(name="videos")
for idx, c_data in enumerate(CRITERIAS):
criteria = Criteria.objects.create(name=c_data["name"])
CriteriaLocale.objects.create(
criteria=criteria, language="en", label=c_data["label_en"]
)
CriteriaLocale.objects.create(
criteria=criteria, language="fr", label=c_data["label_fr"]
)
CriteriaRank.objects.create(
criteria=criteria,
poll=default_poll,
rank=(len(CRITERIAS) - idx) * 10,
optional=c_data.get("optional", True),
) | def migrate_forward(apps, schema_editor):
"""
Create the criteria of the `videos` poll.
"""
Criteria = apps.get_model("tournesol", "Criteria")
CriteriaLocale = apps.get_model("tournesol", "CriteriaLocale")
CriteriaRank = apps.get_model("tournesol", "CriteriaRank")
Poll = apps.get_model("tournesol", "Poll")
default_poll = Poll.objects.get(name="videos")
for idx, c_data in enumerate(CRITERIAS):
criteria = Criteria.objects.create(name=c_data["name"])
CriteriaLocale.objects.create(
criteria=criteria, language="en", label=c_data["label_en"]
)
CriteriaLocale.objects.create(
criteria=criteria, language="fr", label=c_data["label_fr"]
)
CriteriaRank.objects.create(
criteria=criteria,
poll=default_poll,
rank=(len(CRITERIAS) - idx) * 10,
optional=c_data.get("optional", True),
) |
Python | def create_all():
"""Create all dynamic fields for all models."""
subclasses = WithDynamicFields.__subclasses__()
for scl in subclasses:
if not scl.fields_created:
scl.fields_created = True
scl._create_fields() | def create_all():
"""Create all dynamic fields for all models."""
subclasses = WithDynamicFields.__subclasses__()
for scl in subclasses:
if not scl.fields_created:
scl.fields_created = True
scl._create_fields() |
Python | def filter_reduce(lst, fcn, name="_"):
"""Reduce a list of filters."""
lst_orig = lst
lst = [x for x in lst if x is not None]
if not lst:
logging.warning(
f"{name} query with en empty list of operands, returning None: {lst_orig}"
)
return None
return reduce(fcn, lst) | def filter_reduce(lst, fcn, name="_"):
"""Reduce a list of filters."""
lst_orig = lst
lst = [x for x in lst if x is not None]
if not lst:
logging.warning(
f"{name} query with en empty list of operands, returning None: {lst_orig}"
)
return None
return reduce(fcn, lst) |
Python | def migrate_forward(apps, schema_editor):
"""
Set the `uid` and the `type` field of all entities present in the
database (supposedly only YT videos are present).
"""
Entity = apps.get_model("tournesol", "Entity")
for entity in Entity.objects.iterator():
entity.uid = "{}:{}".format(ENTITY_UID_YT_NAMESPACE, entity.video_id)
entity.type = ENTITY_TYPE_VIDEO
entity.save(update_fields=["uid", "type"]) | def migrate_forward(apps, schema_editor):
"""
Set the `uid` and the `type` field of all entities present in the
database (supposedly only YT videos are present).
"""
Entity = apps.get_model("tournesol", "Entity")
for entity in Entity.objects.iterator():
entity.uid = "{}:{}".format(ENTITY_UID_YT_NAMESPACE, entity.video_id)
entity.type = ENTITY_TYPE_VIDEO
entity.save(update_fields=["uid", "type"]) |
Python | def _show(self, msg, level):
"""Utility for handling logging messages
msg (str): info message
level (float): minimum level of verbosity to show -msg
"""
if self.verb >= level:
loginf(msg) | def _show(self, msg, level):
"""Utility for handling logging messages
msg (str): info message
level (float): minimum level of verbosity to show -msg
"""
if self.verb >= level:
loginf(msg) |
Python | def output_scores(self):
"""Returns video scores both global and local
Returns :
- (tensor of all vIDS , tensor of global video scores)
- (list of tensor of local vIDs, list of tensors of local video scores)
"""
loc_scores = []
list_vids_batchs = []
with torch.no_grad():
glob_scores = self.global_model
for node in self.nodes.values():
input = one_hot_vids(self.vid_vidx, node.vids, self.device)
output = predict(input, node.model)
loc_scores.append(output)
list_vids_batchs.append(node.vids)
vids_batch = list(self.vid_vidx.keys())
return (vids_batch, glob_scores), (list_vids_batchs, loc_scores) | def output_scores(self):
"""Returns video scores both global and local
Returns :
- (tensor of all vIDS , tensor of global video scores)
- (list of tensor of local vIDs, list of tensors of local video scores)
"""
loc_scores = []
list_vids_batchs = []
with torch.no_grad():
glob_scores = self.global_model
for node in self.nodes.values():
input = one_hot_vids(self.vid_vidx, node.vids, self.device)
output = predict(input, node.model)
loc_scores.append(output)
list_vids_batchs.append(node.vids)
vids_batch = list(self.vid_vidx.keys())
return (vids_batch, glob_scores), (list_vids_batchs, loc_scores) |
Python | def save_models(self, fullpath):
"""Saves age and global and local weights, detached (no gradients)"""
loginf("Saving models")
local_data = {
id: (node.s, node.model.detach(), node.age) # s # model # age
for id, node in self.nodes.items()
}
saved_data = (
self.criteria,
self.vid_vidx,
self.global_model.detach(),
local_data,
)
torch.save(saved_data, fullpath)
loginf("Models saved") | def save_models(self, fullpath):
"""Saves age and global and local weights, detached (no gradients)"""
loginf("Saving models")
local_data = {
id: (node.s, node.model.detach(), node.age) # s # model # age
for id, node in self.nodes.items()
}
saved_data = (
self.criteria,
self.vid_vidx,
self.global_model.detach(),
local_data,
)
torch.save(saved_data, fullpath)
loginf("Models saved") |
Python | def _update_hist(self, epoch, fit, s, gen, reg):
"""Updates history (at end of epoch)"""
self.history["fit"].append(round_loss(fit))
self.history["s"].append(round_loss(s))
self.history["gen"].append(round_loss(gen))
self.history["reg"].append(round_loss(reg))
norm = model_norm(self.global_model, pow=(2, 0.5))
self.history["l2_norm"].append(round_loss(norm, 3))
grad_gen = extract_grad(self.global_model)
if epoch > 1: # no previous model for first epoch
scal_grad = scalar_product(self.last_grad, grad_gen)
self.history["grad_sp"].append(scal_grad)
else:
self.history["grad_sp"].append(0) # default value for first epoch
self.last_grad = deepcopy(extract_grad(self.global_model))
grad_norm = scalar_product(grad_gen, grad_gen)
self.history["grad_norm"].append(grad_norm) | def _update_hist(self, epoch, fit, s, gen, reg):
"""Updates history (at end of epoch)"""
self.history["fit"].append(round_loss(fit))
self.history["s"].append(round_loss(s))
self.history["gen"].append(round_loss(gen))
self.history["reg"].append(round_loss(reg))
norm = model_norm(self.global_model, pow=(2, 0.5))
self.history["l2_norm"].append(round_loss(norm, 3))
grad_gen = extract_grad(self.global_model)
if epoch > 1: # no previous model for first epoch
scal_grad = scalar_product(self.last_grad, grad_gen)
self.history["grad_sp"].append(scal_grad)
else:
self.history["grad_sp"].append(0) # default value for first epoch
self.last_grad = deepcopy(extract_grad(self.global_model))
grad_norm = scalar_product(grad_gen, grad_gen)
self.history["grad_norm"].append(grad_norm) |
Python | def _do_step(self, fit_step):
"""Makes step for appropriate optimizer(s)"""
if fit_step: # updating local or global alternatively
for node in self.nodes.values():
node.opt.step() # node optimizer
else:
self.opt_gen.step() | def _do_step(self, fit_step):
"""Makes step for appropriate optimizer(s)"""
if fit_step: # updating local or global alternatively
for node in self.nodes.values():
node.opt.step() # node optimizer
else:
self.opt_gen.step() |
Python | def check(self):
"""Performs some tests on internal parameters adequation"""
# population check
b1 = self.nb_nodes == len(self.nodes)
# history check
reference = self.history["fit"]
b2 = all([len(v) == len(reference) for v in self.history.values()])
if b1 and b2:
loginf("No Problem")
else:
logging.warning("Coherency problem in Licchavi object ") | def check(self):
"""Performs some tests on internal parameters adequation"""
# population check
b1 = self.nb_nodes == len(self.nodes)
# history check
reference = self.history["fit"]
b2 = all([len(v) == len(reference) for v in self.history.values()])
if b1 and b2:
loginf("No Problem")
else:
logging.warning("Coherency problem in Licchavi object ") |
Python | def forward_func(apps, schema_editor):
"""
Create missing instances of ContributorRating for all existing Comparisons
(including non-trusted users, for which no rating has been computed by ML),
in order to store the 'is_public' flag related to every pair (user, video).
"""
ContributorRating = apps.get_model("tournesol", "ContributorRating")
Comparison = apps.get_model("tournesol", "Comparison")
user_video_pairs = set(
Comparison.objects.all().values_list("user_id", "video_1_id").distinct()
)
user_video_pairs.update(
Comparison.objects.all().values_list("user_id", "video_2_id").distinct()
)
ContributorRating.objects.bulk_create(
[
ContributorRating(user_id=user_id, video_id=video_id)
for (user_id, video_id) in user_video_pairs
],
batch_size=1000,
ignore_conflicts=True,
) | def forward_func(apps, schema_editor):
"""
Create missing instances of ContributorRating for all existing Comparisons
(including non-trusted users, for which no rating has been computed by ML),
in order to store the 'is_public' flag related to every pair (user, video).
"""
ContributorRating = apps.get_model("tournesol", "ContributorRating")
Comparison = apps.get_model("tournesol", "Comparison")
user_video_pairs = set(
Comparison.objects.all().values_list("user_id", "video_1_id").distinct()
)
user_video_pairs.update(
Comparison.objects.all().values_list("user_id", "video_2_id").distinct()
)
ContributorRating.objects.bulk_create(
[
ContributorRating(user_id=user_id, video_id=video_id)
for (user_id, video_id) in user_video_pairs
],
batch_size=1000,
ignore_conflicts=True,
) |
Python | def predict(input, tens, mask=None):
"""Predicts score according to a model
Args:
input (bool 2D tensor): one line is a one-hot encoded video index
tens (float tensor): tensor = model
mask (bool tensor): one element is bool for using this comparison
Returns:
(2D float tensor): score of the videos according to the model
"""
if input.shape[1] == 0: # if empty input
return torch.zeros((1, 1))
if mask is not None:
return torch.where(mask, torch.matmul(input.float(), tens), torch.zeros(1))
return torch.matmul(input.float(), tens) | def predict(input, tens, mask=None):
"""Predicts score according to a model
Args:
input (bool 2D tensor): one line is a one-hot encoded video index
tens (float tensor): tensor = model
mask (bool tensor): one element is bool for using this comparison
Returns:
(2D float tensor): score of the videos according to the model
"""
if input.shape[1] == 0: # if empty input
return torch.zeros((1, 1))
if mask is not None:
return torch.where(mask, torch.matmul(input.float(), tens), torch.zeros(1))
return torch.matmul(input.float(), tens) |
Python | def _bbt_loss(t, r):
"""Binomial Bradley-Terry loss function (used for test only)
Used only for testing
Args:
t (float tensor): batch of (s * (ya - yb))
r (float tensor): batch of ratings given by user.
Returns:
(float tensor): sum of empirical losses for all comparisons of one user
"""
two = torch.tensor(2)
losses = torch.log(abs(torch.sinh(t) / t)) + r * t + torch.log(two)
return sum(losses) | def _bbt_loss(t, r):
"""Binomial Bradley-Terry loss function (used for test only)
Used only for testing
Args:
t (float tensor): batch of (s * (ya - yb))
r (float tensor): batch of ratings given by user.
Returns:
(float tensor): sum of empirical losses for all comparisons of one user
"""
two = torch.tensor(2)
losses = torch.log(abs(torch.sinh(t) / t)) + r * t + torch.log(two)
return sum(losses) |
Python | def _approx_bbt_loss(t, r):
"""Approximated Binomial Bradley-Terry loss function (used in Licchavi)
Args:
t (float tensor): batch of (s * (ya - yb))
r (float tensor): batch of ratings given by user.
Returns:
(float tensor): sum of empirical losses for all comparisons of one user
"""
small = abs(t) <= 0.01
medium = torch.logical_and((abs(t) < 10), (abs(t) > 0.01))
big = abs(t) >= 10
zer = torch.zeros(1)
loss = 0
loss += torch.where(
small, t ** 2 / 6 + r * t + torch.log(torch.tensor(2)), zer
).sum()
tt = torch.where(t != 0, t, torch.ones(1)) # trick to avoid zeros so NaNs
loss += torch.where(medium, torch.log(2 * torch.sinh(tt) / tt) + r * tt, zer).sum()
loss += torch.where(big, abs(tt) - torch.log(abs(tt)) + r * tt, zer).sum()
return loss | def _approx_bbt_loss(t, r):
"""Approximated Binomial Bradley-Terry loss function (used in Licchavi)
Args:
t (float tensor): batch of (s * (ya - yb))
r (float tensor): batch of ratings given by user.
Returns:
(float tensor): sum of empirical losses for all comparisons of one user
"""
small = abs(t) <= 0.01
medium = torch.logical_and((abs(t) < 10), (abs(t) > 0.01))
big = abs(t) >= 10
zer = torch.zeros(1)
loss = 0
loss += torch.where(
small, t ** 2 / 6 + r * t + torch.log(torch.tensor(2)), zer
).sum()
tt = torch.where(t != 0, t, torch.ones(1)) # trick to avoid zeros so NaNs
loss += torch.where(medium, torch.log(2 * torch.sinh(tt) / tt) + r * tt, zer).sum()
loss += torch.where(big, abs(tt) - torch.log(abs(tt)) + r * tt, zer).sum()
return loss |
Python | def models_dist(model1, model2, pow=(1, 1), mask=None, vidx=-1):
"""distance between 2 models (l1 by default)
Args:
model1 (float tensor): scoring model
model2 (float tensor): scoring model
pow (float, float): (internal power, external power)
mask (bool tensor): subspace in which to compute distance
vidx (int): video index if only one is computed (-1 for all)
Returns:
(scalar float tensor): distance between the 2 models
"""
q, p = pow
if vidx == -1: # if we want several coordinates
if mask is None: # if we want all coordinates
dist = ((model1 - model2) ** q).abs().sum() ** p
else:
dist = (((model1 - model2) * mask) ** q).abs().sum() ** p
else: # if we want only one coordinate
dist = abs(model1[vidx] - model2[vidx]) ** (q * p)
return dist | def models_dist(model1, model2, pow=(1, 1), mask=None, vidx=-1):
"""distance between 2 models (l1 by default)
Args:
model1 (float tensor): scoring model
model2 (float tensor): scoring model
pow (float, float): (internal power, external power)
mask (bool tensor): subspace in which to compute distance
vidx (int): video index if only one is computed (-1 for all)
Returns:
(scalar float tensor): distance between the 2 models
"""
q, p = pow
if vidx == -1: # if we want several coordinates
if mask is None: # if we want all coordinates
dist = ((model1 - model2) ** q).abs().sum() ** p
else:
dist = (((model1 - model2) * mask) ** q).abs().sum() ** p
else: # if we want only one coordinate
dist = abs(model1[vidx] - model2[vidx]) ** (q * p)
return dist |
Python | def model_norm(model, pow=(2, 1), vidx=-1):
"""norm of a model (l2 squared by default)
Args:
model (float tensor): scoring model
pow (float, float): (internal power, external power)
vidx (int): video index if only one is computed (-1 for all)
Returns:
(float scalar tensor): norm of the model
"""
q, p = pow
if vidx != -1: # if we use only one video
return abs(model[vidx]) ** (q * p)
return (model ** q).abs().sum() ** p | def model_norm(model, pow=(2, 1), vidx=-1):
"""norm of a model (l2 squared by default)
Args:
model (float tensor): scoring model
pow (float, float): (internal power, external power)
vidx (int): video index if only one is computed (-1 for all)
Returns:
(float scalar tensor): norm of the model
"""
q, p = pow
if vidx != -1: # if we use only one video
return abs(model[vidx]) ** (q * p)
return (model ** q).abs().sum() ** p |
Python | def loss_fit_s_gen(licch, vidx=-1, uid=-1):
"""Computes local and generalisation terms of loss
Args:
licch (Licchavi()): licchavi object
vidx (int): video index if we are interested in partial loss
(-1 for all indexes)
uid (int): user ID if we are interested in partial loss
(-1 for all users)
Returns:
(float tensor): sum of local terms of loss
(float tensor): generalisation term of loss
"""
fit_loss, s_loss, gen_loss = 0, 0, 0
if uid != -1: # if we want only one user
node = licch.nodes[uid]
fit_loss += get_fit_loss(
node.model, # local model
node.s, # s
node.vid1, # id_batch1
node.vid2, # id_batch2
node.r, # r_batch
vidx,
)
if vidx == -1: # only if all loss is computed
s_loss += get_s_loss(node.s) # FIXME not accessed?
g = models_dist(
node.model, # local model
licch.global_model, # general model
mask=node.mask, # mask
vidx=vidx, # video index if we want partial loss
)
gen_loss += node.w * g # node weight * generalisation term
else: # if we want all users
for node in licch.nodes.values():
fit_loss += get_fit_loss(
node.model, # local model
node.s, # s
node.vid1, # id_batch1
node.vid2, # id_batch2
node.r, # r_batch
vidx,
)
if vidx == -1: # only if all loss is computed
s_loss += get_s_loss(node.s)
g = models_dist(
node.model, # local model
licch.global_model, # general model
mask=node.mask, # mask
vidx=vidx, # video index if we want partial loss
)
gen_loss += node.w * g # node weight * generalisation term
return fit_loss, s_loss, gen_loss | def loss_fit_s_gen(licch, vidx=-1, uid=-1):
"""Computes local and generalisation terms of loss
Args:
licch (Licchavi()): licchavi object
vidx (int): video index if we are interested in partial loss
(-1 for all indexes)
uid (int): user ID if we are interested in partial loss
(-1 for all users)
Returns:
(float tensor): sum of local terms of loss
(float tensor): generalisation term of loss
"""
fit_loss, s_loss, gen_loss = 0, 0, 0
if uid != -1: # if we want only one user
node = licch.nodes[uid]
fit_loss += get_fit_loss(
node.model, # local model
node.s, # s
node.vid1, # id_batch1
node.vid2, # id_batch2
node.r, # r_batch
vidx,
)
if vidx == -1: # only if all loss is computed
s_loss += get_s_loss(node.s) # FIXME not accessed?
g = models_dist(
node.model, # local model
licch.global_model, # general model
mask=node.mask, # mask
vidx=vidx, # video index if we want partial loss
)
gen_loss += node.w * g # node weight * generalisation term
else: # if we want all users
for node in licch.nodes.values():
fit_loss += get_fit_loss(
node.model, # local model
node.s, # s
node.vid1, # id_batch1
node.vid2, # id_batch2
node.r, # r_batch
vidx,
)
if vidx == -1: # only if all loss is computed
s_loss += get_s_loss(node.s)
g = models_dist(
node.model, # local model
licch.global_model, # general model
mask=node.mask, # mask
vidx=vidx, # video index if we want partial loss
)
gen_loss += node.w * g # node weight * generalisation term
return fit_loss, s_loss, gen_loss |
Python | def loss_gen_reg(licch, vidx=-1):
"""Computes generalisation and regularisation terms of loss
Args:
licch (Licchavi()): licchavi object
vidx (int): video index if we are interested in partial loss
(-1 for all indexes)
Returns:
(float tensor): generalisation term of loss
(float tensor): regularisation loss (of general model)
"""
gen_loss, reg_loss = 0, 0
for node in licch.nodes.values():
g = models_dist(
node.model, # local model
licch.global_model, # general model
mask=node.mask, # mask
vidx=vidx,
)
gen_loss += node.w * g # node weight * generalisation term
reg_loss = licch.w0 * model_norm(licch.global_model, vidx=vidx)
return gen_loss, reg_loss | def loss_gen_reg(licch, vidx=-1):
"""Computes generalisation and regularisation terms of loss
Args:
licch (Licchavi()): licchavi object
vidx (int): video index if we are interested in partial loss
(-1 for all indexes)
Returns:
(float tensor): generalisation term of loss
(float tensor): regularisation loss (of general model)
"""
gen_loss, reg_loss = 0, 0
for node in licch.nodes.values():
g = models_dist(
node.model, # local model
licch.global_model, # general model
mask=node.mask, # mask
vidx=vidx,
)
gen_loss += node.w * g # node weight * generalisation term
reg_loss = licch.w0 * model_norm(licch.global_model, vidx=vidx)
return gen_loss, reg_loss |
Python | def round_loss(tens, dec=0):
"""from an input scalar tensor or int/float returns rounded int/float"""
if type(tens) is int or type(tens) is float:
return round(tens, dec)
else:
return round(tens.item(), dec) | def round_loss(tens, dec=0):
"""from an input scalar tensor or int/float returns rounded int/float"""
if type(tens) is int or type(tens) is float:
return round(tens, dec)
else:
return round(tens.item(), dec) |
Python | def remove_duplicated_email(apps, schema_editor):
"""
Find users with duplicated emails, and update email of the accounts associated
with the fewer comparisons (to preserve only 1 per original address).
Their 'email' value will be replaced with an invalid address derived
from the username to guarantee uniqueness in the database.
"""
User = apps.get_model("core", "User")
duplicated_emails = (
User.objects.values("email").alias(count=Count("id")).filter(count__gte=2)
)
users_to_update = [
user
for user in User.objects.filter(email__in=duplicated_emails).annotate(
n_comparisons=Count("comparisons"),
rank_comparisons=Window(
expression=RowNumber(),
partition_by=[F("email")],
order_by=F("n_comparisons").desc(),
),
)
if user.rank_comparisons > 1
]
for u in users_to_update:
new_email = f"{u.username}@invalid"
logging.info(
'Updating email for user "%s", from "%s" to "%s"',
u.username,
u.email,
new_email,
)
u.email = new_email
u.save(update_fields=["email"]) | def remove_duplicated_email(apps, schema_editor):
"""
Find users with duplicated emails, and update email of the accounts associated
with the fewer comparisons (to preserve only 1 per original address).
Their 'email' value will be replaced with an invalid address derived
from the username to guarantee uniqueness in the database.
"""
User = apps.get_model("core", "User")
duplicated_emails = (
User.objects.values("email").alias(count=Count("id")).filter(count__gte=2)
)
users_to_update = [
user
for user in User.objects.filter(email__in=duplicated_emails).annotate(
n_comparisons=Count("comparisons"),
rank_comparisons=Window(
expression=RowNumber(),
partition_by=[F("email")],
order_by=F("n_comparisons").desc(),
),
)
if user.rank_comparisons > 1
]
for u in users_to_update:
new_email = f"{u.username}@invalid"
logging.info(
'Updating email for user "%s", from "%s" to "%s"',
u.username,
u.email,
new_email,
)
u.email = new_email
u.save(update_fields=["email"]) |
Python | def expand_dic(vid_vidx, l_vid_new):
"""Expands a dictionnary to include new videos IDs
vid_vidx: dictionnary of {video ID: video idx}
l_vid_new: int list of video ID
Returns:
- dictionnary of {video ID: video idx} updated (bigger)
"""
idx = len(vid_vidx)
for vid_new in l_vid_new:
if vid_new not in vid_vidx:
vid_vidx[vid_new] = idx
idx += 1
return vid_vidx | def expand_dic(vid_vidx, l_vid_new):
"""Expands a dictionnary to include new videos IDs
vid_vidx: dictionnary of {video ID: video idx}
l_vid_new: int list of video ID
Returns:
- dictionnary of {video ID: video idx} updated (bigger)
"""
idx = len(vid_vidx)
for vid_new in l_vid_new:
if vid_new not in vid_vidx:
vid_vidx[vid_new] = idx
idx += 1
return vid_vidx |
Python | def save_to_pickle(obj, name="pickle"):
"""save python object to pickle file"""
filename = "{}.p".format(name)
with open(filename, "wb") as filehandler:
pickle.dump(obj, filehandler) | def save_to_pickle(obj, name="pickle"):
"""save python object to pickle file"""
filename = "{}.p".format(name)
with open(filename, "wb") as filehandler:
pickle.dump(obj, filehandler) |
Python | def load_from_pickle(name="pickle"):
"""load python object from pickle file"""
filename = "{}.p".format(name)
with open(filename, "rb") as filehandler:
obj = pickle.load(filehandler)
return obj | def load_from_pickle(name="pickle"):
"""load python object from pickle file"""
filename = "{}.p".format(name)
with open(filename, "rb") as filehandler:
obj = pickle.load(filehandler)
return obj |
Python | def comparison_already_exists(self, poll_id, request):
"""Return True if the comparison already exist, False instead."""
try:
comparison = Comparison.get_comparison(
request.user,
poll_id,
"{}{}{}".format(
Entity.UID_YT_NAMESPACE,
Entity.UID_DELIMITER,
request.data["entity_a"]["video_id"],
),
"{}{}{}".format(
Entity.UID_YT_NAMESPACE,
Entity.UID_DELIMITER,
request.data["entity_b"]["video_id"],
),
)
# if one field is missing, do not raise error yet and let django rest
# framework checks the request integrity
except KeyError:
return False
except ObjectDoesNotExist:
return False
if comparison:
return True
else:
return False | def comparison_already_exists(self, poll_id, request):
"""Return True if the comparison already exist, False instead."""
try:
comparison = Comparison.get_comparison(
request.user,
poll_id,
"{}{}{}".format(
Entity.UID_YT_NAMESPACE,
Entity.UID_DELIMITER,
request.data["entity_a"]["video_id"],
),
"{}{}{}".format(
Entity.UID_YT_NAMESPACE,
Entity.UID_DELIMITER,
request.data["entity_b"]["video_id"],
),
)
# if one field is missing, do not raise error yet and let django rest
# framework checks the request integrity
except KeyError:
return False
except ObjectDoesNotExist:
return False
if comparison:
return True
else:
return False |
Python | def _plot_var(l_hist, l_metrics):
''' add curve of asked indexes of history to the plot '''
epochs = range(1, len(l_hist[0]['fit']) + 1)
for metric in l_metrics:
vals = np.asarray(
[hist[metric] for hist in l_hist]
)
vals_m, vals_l, vals_u = _means_bounds(vals)
style, color = next(STYLES), next(COLORS)
plt.plot(
epochs, vals_m, label=METRICS[metric]["lab"], linestyle=style, color=color
)
plt.fill_between(epochs, vals_u, vals_l, alpha=INTENS, color=color) | def _plot_var(l_hist, l_metrics):
''' add curve of asked indexes of history to the plot '''
epochs = range(1, len(l_hist[0]['fit']) + 1)
for metric in l_metrics:
vals = np.asarray(
[hist[metric] for hist in l_hist]
)
vals_m, vals_l, vals_u = _means_bounds(vals)
style, color = next(STYLES), next(COLORS)
plt.plot(
epochs, vals_m, label=METRICS[metric]["lab"], linestyle=style, color=color
)
plt.fill_between(epochs, vals_u, vals_l, alpha=INTENS, color=color) |
Python | def _plotfull_var(l_hist, l_metrics, title=None, path=None):
''' plot metrics asked in -l_metrics and save if -path provided '''
_plot_var(l_hist, l_metrics)
metric = l_metrics[0]
_legendize(METRICS[metric]["ord"])
_title_save(title, path, suff="{}.png".format(METRICS[metric]["f_name"])) | def _plotfull_var(l_hist, l_metrics, title=None, path=None):
''' plot metrics asked in -l_metrics and save if -path provided '''
_plot_var(l_hist, l_metrics)
metric = l_metrics[0]
_legendize(METRICS[metric]["ord"])
_title_save(title, path, suff="{}.png".format(METRICS[metric]["f_name"])) |
Python | def gradsp_var(l_hist, title=None, path=None):
''' plot scalar product of gradients between 2 consecutive epochs
from a list of historys
'''
_plotfull_var(l_hist, ['grad_sp', 'grad_norm'], title, path) | def gradsp_var(l_hist, title=None, path=None):
''' plot scalar product of gradients between 2 consecutive epochs
from a list of historys
'''
_plotfull_var(l_hist, ['grad_sp', 'grad_norm'], title, path) |
Python | def error_var(l_hist, title=None, path=None):
'''Plots difference between predictions and ground truths
from a list of historys
'''
_plotfull_var(l_hist, ['error_glob', 'error_loc'], title, path) | def error_var(l_hist, title=None, path=None):
'''Plots difference between predictions and ground truths
from a list of historys
'''
_plotfull_var(l_hist, ['error_glob', 'error_loc'], title, path) |
Python | def plot_metrics(l_hist, title=None, path=None):
"""plot and save the different metrics from list of historys"""
loss_var(l_hist, title, path)
l2_var(l_hist, title, path)
gradsp_var(l_hist, title, path)
if 'error_glob' in l_hist[0]: # if we are in test mode
_plotfull_var(l_hist, ['error_glob'], title, path)
_plotfull_var(l_hist, ['error_loc'], title, path) | def plot_metrics(l_hist, title=None, path=None):
"""plot and save the different metrics from list of historys"""
loss_var(l_hist, title, path)
l2_var(l_hist, title, path)
gradsp_var(l_hist, title, path)
if 'error_glob' in l_hist[0]: # if we are in test mode
_plotfull_var(l_hist, ['error_glob'], title, path)
_plotfull_var(l_hist, ['error_loc'], title, path) |
Python | def plot_density(tens, title=None, path=None, name="hist.png"):
"""Saves histogram of repartition
tens (tensor): data of which we want repartition
"""
arr = np.array(tens)
_ = plt.hist(arr, density=False, label=title, bins=40)
_legendize("Number", "Value")
_title_save(title, path, name) | def plot_density(tens, title=None, path=None, name="hist.png"):
"""Saves histogram of repartition
tens (tensor): data of which we want repartition
"""
arr = np.array(tens)
_ = plt.hist(arr, density=False, label=title, bins=40)
_legendize("Number", "Value")
_title_save(title, path, name) |
Python | def plot_s_predict_gt(s_predict, s_gt, path, name='s_correlation.png'):
""" Saves cloud of point of s parameters (test mode only)
s_predict (float list): predicted s parameters
s_gt (float list): ground truth s parameters
"""
plt.plot(s_predict, s_gt, 'ro')
_legendize('ground truths', 'predicted')
_title_save('s parameters', path, name) | def plot_s_predict_gt(s_predict, s_gt, path, name='s_correlation.png'):
""" Saves cloud of point of s parameters (test mode only)
s_predict (float list): predicted s parameters
s_gt (float list): ground truth s parameters
"""
plt.plot(s_predict, s_gt, 'ro')
_legendize('ground truths', 'predicted')
_title_save('s parameters', path, name) |
Python | def plot_loc_uncerts(l_nb_comps, l_uncerts, path, name='uncertainties.png'):
""" Saves local uncertainties in function of number of ratings
l_nb_vids (int list): number of comparisons for each video by each user
l_uncert (float list): uncertainty for each video of each user
"""
plt.plot(l_nb_comps, l_uncerts, 'ro')
_legendize('uncertainty', 'number of comparisons')
_title_save('Local uncertainties', path, name) | def plot_loc_uncerts(l_nb_comps, l_uncerts, path, name='uncertainties.png'):
""" Saves local uncertainties in function of number of ratings
l_nb_vids (int list): number of comparisons for each video by each user
l_uncert (float list): uncertainty for each video of each user
"""
plt.plot(l_nb_comps, l_uncerts, 'ro')
_legendize('uncertainty', 'number of comparisons')
_title_save('Local uncertainties', path, name) |
Python | def can_include(self):
"""Whether this module is allowed to include other modules.
This is allowed only if the module was compiled from a file since
include paths are relative to the file in which they are mentioned.
"""
return self.path is not None | def can_include(self):
"""Whether this module is allowed to include other modules.
This is allowed only if the module was compiled from a file since
include paths are relative to the file in which they are mentioned.
"""
return self.path is not None |
Python | def add_include(self, name, module_spec):
"""Adds a module as an included module.
:param name:
Name under which the included module should be exposed in the
current module.
:param module_spec:
ModuleSpec of the included module.
"""
assert name, 'name is required'
assert self.can_include
if name in self.includes:
raise ThriftCompilerError(
'Cannot include module "%s" as "%s" in "%s". '
'The name is already taken.'
% (module_spec.name, name, self.path)
)
self.includes[name] = module_spec
self.scope.add_include(name, module_spec.scope, module_spec.surface) | def add_include(self, name, module_spec):
"""Adds a module as an included module.
:param name:
Name under which the included module should be exposed in the
current module.
:param module_spec:
ModuleSpec of the included module.
"""
assert name, 'name is required'
assert self.can_include
if name in self.includes:
raise ThriftCompilerError(
'Cannot include module "%s" as "%s" in "%s". '
'The name is already taken.'
% (module_spec.name, name, self.path)
)
self.includes[name] = module_spec
self.scope.add_include(name, module_spec.scope, module_spec.surface) |
Python | def link(self):
"""Link all the types in this module and all included modules."""
if self.linked:
return self
self.linked = True
included_modules = []
# Link includes
for include in self.includes.values():
included_modules.append(include.link().surface)
self.scope.add_surface('__includes__', tuple(included_modules))
self.scope.add_surface('__thrift_source__', self.thrift_source)
# Link self
for linker in LINKERS:
linker(self.scope).link()
self.scope.add_surface('loads', Deserializer(self.protocol))
self.scope.add_surface('dumps', Serializer(self.protocol))
return self | def link(self):
"""Link all the types in this module and all included modules."""
if self.linked:
return self
self.linked = True
included_modules = []
# Link includes
for include in self.includes.values():
included_modules.append(include.link().surface)
self.scope.add_surface('__includes__', tuple(included_modules))
self.scope.add_surface('__thrift_source__', self.thrift_source)
# Link self
for linker in LINKERS:
linker(self.scope).link()
self.scope.add_surface('loads', Deserializer(self.protocol))
self.scope.add_surface('dumps', Serializer(self.protocol))
return self |
Python | def sendMessage(self, msg, channel):
"""
This method posts a message to a public channel, private channel, or direct message/IM channel.
"""
logger.debug('send \"{}\" to \"{}\"'.format(msg, channel))
return self.client.api_call(
"chat.postMessage",
channel=channel,
text=msg,
as_user=True
) | def sendMessage(self, msg, channel):
"""
This method posts a message to a public channel, private channel, or direct message/IM channel.
"""
logger.debug('send \"{}\" to \"{}\"'.format(msg, channel))
return self.client.api_call(
"chat.postMessage",
channel=channel,
text=msg,
as_user=True
) |
Subsets and Splits