| language
				 stringclasses 6
				values | original_string
				 stringlengths 25 887k | text
				 stringlengths 25 887k | 
|---|---|---|
| 
	Python | 
	def fetchChannelList(self, types=["public_channel", "private_channel", "mpim", "im"]):
        """
        Method returns a list of all channel-like conversations in a workspace.
        Args:
            types:list<str>: Mix and match channel types by providing a comma-separated list of any combination of
            public_channel, private_channel, mpim, im
        """
        channels = []
        logger.debug("fetch channel list for types " + str(types))
        rsp = self.client.api_call(
            "conversations.list",
            types=", ".join(types)
        )
        if rsp["ok"]:
            for cha in rsp["channels"]:
                cha_id = cha["id"]
                channels.append(cha_id)
        else:
            logger.error(json.dumps(rsp, indent=2))
        return channels | 
	def fetchChannelList(self, types=["public_channel", "private_channel", "mpim", "im"]):
        """
        Method returns a list of all channel-like conversations in a workspace.
        Args:
            types:list<str>: Mix and match channel types by providing a comma-separated list of any combination of
            public_channel, private_channel, mpim, im
        """
        channels = []
        logger.debug("fetch channel list for types " + str(types))
        rsp = self.client.api_call(
            "conversations.list",
            types=", ".join(types)
        )
        if rsp["ok"]:
            for cha in rsp["channels"]:
                cha_id = cha["id"]
                channels.append(cha_id)
        else:
            logger.error(json.dumps(rsp, indent=2))
        return channels | 
| 
	Python | 
	def fetchChannelHistory(self, channel):
        """
        This method returns a list of all messages from the specified conversation, latest to oldest.
        Args:
            channel:str: channel id
        Returns:
            msgs:list<str>: list of messages in the form of "date user: text"
        """
        hasMore = True
        cur_cursor = ""
        msgs = []
        sleep(0.5)  # dont spam the server if to much history is fechted
        while hasMore:
            logger.debug("fetch conversation history from " + channel)
            rsp = self.client.api_call(
                "conversations.history",
                channel=channel,
                cursor=cur_cursor
            )
            if rsp["ok"]:
                logging.debug("has more: " + str(rsp["has_more"]))
                hasMore = rsp["has_more"]
                for msg in rsp["messages"]:
                    user = self.userIdDict[msg["user"]]  # user real_name
                    text = msg["text"]
                    ts = int(msg["ts"].split('.')[0])  # unix timestamp
                    date = datetime.utcfromtimestamp(
                        ts).strftime('%Y-%m-%d %H:%M:%S')
                    msgs.append("{} {}: {}".format(date, user, text))
                logger.debug("added {} messages to history from {}".format(
                    len(msgs), channel))
                if hasMore:
                    # get next cursor
                    cur_cursor = rsp["response_metadata"]["next_cursor"]
            else:
                hasMore = False
                logger.error(json.dumps(rsp, indent=2))
        return msgs | 
	def fetchChannelHistory(self, channel):
        """
        This method returns a list of all messages from the specified conversation, latest to oldest.
        Args:
            channel:str: channel id
        Returns:
            msgs:list<str>: list of messages in the form of "date user: text"
        """
        hasMore = True
        cur_cursor = ""
        msgs = []
        sleep(0.5)  # dont spam the server if to much history is fechted
        while hasMore:
            logger.debug("fetch conversation history from " + channel)
            rsp = self.client.api_call(
                "conversations.history",
                channel=channel,
                cursor=cur_cursor
            )
            if rsp["ok"]:
                logging.debug("has more: " + str(rsp["has_more"]))
                hasMore = rsp["has_more"]
                for msg in rsp["messages"]:
                    user = self.userIdDict[msg["user"]]  # user real_name
                    text = msg["text"]
                    ts = int(msg["ts"].split('.')[0])  # unix timestamp
                    date = datetime.utcfromtimestamp(
                        ts).strftime('%Y-%m-%d %H:%M:%S')
                    msgs.append("{} {}: {}".format(date, user, text))
                logger.debug("added {} messages to history from {}".format(
                    len(msgs), channel))
                if hasMore:
                    # get next cursor
                    cur_cursor = rsp["response_metadata"]["next_cursor"]
            else:
                hasMore = False
                logger.error(json.dumps(rsp, indent=2))
        return msgs | 
| 
	Python | 
	def enter_rtm_loop(self, retry=1):
        """
        Starts the real time messaging loop
        """
        try:
            if self.client.rtm_connect(with_team_state=False):
                logger.info("Connected to rtm api...")
                online = True
                while online:
                    event = self.client.rtm_read()
                    self._parse_rtm_event(event)
                    sleep(1)
            else:
                logger.error("Connection Failed")
        except TimeoutError:
            logger.error("Connection timeout!")
            if retry > 0:
                logger.info("try to reconnect: " + str(retry))
                self.enter_rtm_loop(retry=(retry - 1)) | 
	def enter_rtm_loop(self, retry=1):
        """
        Starts the real time messaging loop
        """
        try:
            if self.client.rtm_connect(with_team_state=False):
                logger.info("Connected to rtm api...")
                online = True
                while online:
                    event = self.client.rtm_read()
                    self._parse_rtm_event(event)
                    sleep(1)
            else:
                logger.error("Connection Failed")
        except TimeoutError:
            logger.error("Connection timeout!")
            if retry > 0:
                logger.info("try to reconnect: " + str(retry))
                self.enter_rtm_loop(retry=(retry - 1)) | 
| 
	Python | 
	def _parse_rtm_event(self, event):
        """
        Try to parse an JSON respons and handle it.
        List of possible events and respons format under https://api.slack.com/rtm
        Args:
            event:json: JSON respons from the rtm websocket
        """
        if len(event) == 0:
            return  # got nothing, pass on
        rsp = event[0]  # rtm event comes as an list with one or none element
        try:
            if rsp["type"] == "message":  # got a message
                if "subtype" in rsp:  # has a subtype
                    if rsp["subtype"] == "message_deleted":  # message deleted
                        msg = rsp["previous_message"]["text"]
                        logger.info("\"{}\" got deleted!".format(msg))
                    elif rsp["subtype"] == "message_changed":  # message changed
                        old = rsp["previous_message"]["text"]
                        new = rsp["message"]["text"]
                        logger.info(
                            "\"{}\" got changed to \"{}\"".format(old, new))
                    else:
                        # unexpected rsp
                        logger.warning(json.dumps(event, indent=2))
                else:  # regular message
                    msg = rsp["text"]
                    userId = rsp["user"]
                    logger.info("msg: \"{}\" from \"{}\"".format(
                        msg, self.userIdDict[userId]))
                    if msg.startswith("."):  # msg is a command
                        self._parse_command(msg, userId)
            elif rsp["type"] == "hello":  # server hello
                logger.debug("got hello from server")
            elif rsp["type"] == "user_typing":  # user typing
                logger.info("{} is typing".format(
                    self.userIdDict[rsp["user"]]))
            elif rsp["type"] == "user_change":  # user changed
                name = rsp["user"]["real_name"]
                status = rsp["user"]["profile"]["status_text"]
                # in the assumption that this user entered or left a call
                logger.info("{} changed. Status: {}".format(name, status))
                logger.debug(json.dumps(event, indent=2))
            elif rsp["type"] == "desktop_notification":  # notification
                logger.info("desktop_notification")
            else:
                logger.warning(json.dumps(event, indent=2))  # unexpected rsp
        except KeyError as ke:
            logger.error("KeyError: " + str(ke))
            logger.error(json.dumps(event, indent=2)) | 
	def _parse_rtm_event(self, event):
        """
        Try to parse an JSON respons and handle it.
        List of possible events and respons format under https://api.slack.com/rtm
        Args:
            event:json: JSON respons from the rtm websocket
        """
        if len(event) == 0:
            return  # got nothing, pass on
        rsp = event[0]  # rtm event comes as an list with one or none element
        try:
            if rsp["type"] == "message":  # got a message
                if "subtype" in rsp:  # has a subtype
                    if rsp["subtype"] == "message_deleted":  # message deleted
                        msg = rsp["previous_message"]["text"]
                        logger.info("\"{}\" got deleted!".format(msg))
                    elif rsp["subtype"] == "message_changed":  # message changed
                        old = rsp["previous_message"]["text"]
                        new = rsp["message"]["text"]
                        logger.info(
                            "\"{}\" got changed to \"{}\"".format(old, new))
                    else:
                        # unexpected rsp
                        logger.warning(json.dumps(event, indent=2))
                else:  # regular message
                    msg = rsp["text"]
                    userId = rsp["user"]
                    logger.info("msg: \"{}\" from \"{}\"".format(
                        msg, self.userIdDict[userId]))
                    if msg.startswith("."):  # msg is a command
                        self._parse_command(msg, userId)
            elif rsp["type"] == "hello":  # server hello
                logger.debug("got hello from server")
            elif rsp["type"] == "user_typing":  # user typing
                logger.info("{} is typing".format(
                    self.userIdDict[rsp["user"]]))
            elif rsp["type"] == "user_change":  # user changed
                name = rsp["user"]["real_name"]
                status = rsp["user"]["profile"]["status_text"]
                # in the assumption that this user entered or left a call
                logger.info("{} changed. Status: {}".format(name, status))
                logger.debug(json.dumps(event, indent=2))
            elif rsp["type"] == "desktop_notification":  # notification
                logger.info("desktop_notification")
            else:
                logger.warning(json.dumps(event, indent=2))  # unexpected rsp
        except KeyError as ke:
            logger.error("KeyError: " + str(ke))
            logger.error(json.dumps(event, indent=2)) | 
| 
	Python | 
	def _system_call(self, cmd, timeout=5):
        """
        Calls a given command on the system. DANGEROUS!
        Don't let user input stuff to run arbitrarily commands.
        Args:
            cmd:list<str>: First element of the list is the command, following are arguments.
            timeout:int: Seconds before the execution is aborted.
        Return:
            (out, err): touple of stdout and stderr from the command
        """
        proc = subprocess.Popen(cmd,
                                stdout=subprocess.PIPE,
                                stderr=subprocess.PIPE)
        return proc.communicate(timeout=timeout) | 
	def _system_call(self, cmd, timeout=5):
        """
        Calls a given command on the system. DANGEROUS!
        Don't let user input stuff to run arbitrarily commands.
        Args:
            cmd:list<str>: First element of the list is the command, following are arguments.
            timeout:int: Seconds before the execution is aborted.
        Return:
            (out, err): touple of stdout and stderr from the command
        """
        proc = subprocess.Popen(cmd,
                                stdout=subprocess.PIPE,
                                stderr=subprocess.PIPE)
        return proc.communicate(timeout=timeout) | 
| 
	Python | 
	def handle_pull_request(job: PullRequestJob):
    """Analyse and handle a pull request that has just been updated."""
    if job.pull_request.author == job.settings.robot:
        return handle_parent_pull_request(job, job.pull_request)
    try:
        _handle_pull_request(job)
    except messages.TemplateException as err:
        send_comment(job.settings, job.pull_request, err)
        raise | 
	def handle_pull_request(job: PullRequestJob):
    """Analyse and handle a pull request that has just been updated."""
    if job.pull_request.author == job.settings.robot:
        return handle_parent_pull_request(job, job.pull_request)
    try:
        _handle_pull_request(job)
    except messages.TemplateException as err:
        send_comment(job.settings, job.pull_request, err)
        raise | 
| 
	Python | 
	def handle_commit(job: CommitJob):
    """Handle a job triggered by an updated build status."""
    candidates = [
        branch_factory(job.git.repo, b)
        for b in job.git.repo.get_branches_from_commit(job.commit)
    ]
    if not candidates:
        raise messages.NothingToDo(
            'Could not find any branch for commit {}' .format(job.commit)
        )
    if job.settings.use_queue:
        if any(isinstance(b, QueueBranch) for b in candidates):
            return queueing.handle_merge_queues(QueuesJob(bert_e=job.bert_e))
    def get_parent_branch(branch):
        if isinstance(branch, IntegrationBranch):
            return branch.feature_branch
        else:
            return branch.name
    candidates = list(map(get_parent_branch, candidates))
    prs = list(
        job.project_repo.get_pull_requests(src_branch=candidates)
    )
    if not prs:
        raise messages.NothingToDo(
            'Could not find the main pull request for commit {}' .format(
                job.commit)
        )
    pr = min(prs, key=lambda pr: pr.id)
    return handle_pull_request(
        PullRequestJob(
            bert_e=job.bert_e,
            pull_request=job.project_repo.get_pull_request(int(pr.id))
        )
    ) | 
	def handle_commit(job: CommitJob):
    """Handle a job triggered by an updated build status."""
    candidates = [
        branch_factory(job.git.repo, b)
        for b in job.git.repo.get_branches_from_commit(job.commit)
    ]
    if not candidates:
        raise messages.NothingToDo(
            'Could not find any branch for commit {}' .format(job.commit)
        )
    if job.settings.use_queue:
        if any(isinstance(b, QueueBranch) for b in candidates):
            return queueing.handle_merge_queues(QueuesJob(bert_e=job.bert_e))
    def get_parent_branch(branch):
        if isinstance(branch, IntegrationBranch):
            return branch.feature_branch
        else:
            return branch.name
    candidates = list(map(get_parent_branch, candidates))
    prs = list(
        job.project_repo.get_pull_requests(src_branch=candidates)
    )
    if not prs:
        raise messages.NothingToDo(
            'Could not find the main pull request for commit {}' .format(
                job.commit)
        )
    pr = min(prs, key=lambda pr: pr.id)
    return handle_pull_request(
        PullRequestJob(
            bert_e=job.bert_e,
            pull_request=job.project_repo.get_pull_request(int(pr.id))
        )
    ) | 
| 
	Python | 
	def handle_parent_pull_request(job, child_pr, is_child=True):
    """Handle the parent of an integration pull request."""
    if is_child:
        ids = re.findall(r'\d+', child_pr.description)
        if not ids:
            raise messages.ParentPullRequestNotFound(child_pr.id)
        parent_id, *_ = ids
    else:
        parent_id = child_pr.id
    return handle_pull_request(
        PullRequestJob(
            bert_e=job.bert_e,
            pull_request=job.project_repo.get_pull_request(int(parent_id))
        )
    ) | 
	def handle_parent_pull_request(job, child_pr, is_child=True):
    """Handle the parent of an integration pull request."""
    if is_child:
        ids = re.findall(r'\d+', child_pr.description)
        if not ids:
            raise messages.ParentPullRequestNotFound(child_pr.id)
        parent_id, *_ = ids
    else:
        parent_id = child_pr.id
    return handle_pull_request(
        PullRequestJob(
            bert_e=job.bert_e,
            pull_request=job.project_repo.get_pull_request(int(parent_id))
        )
    ) | 
| 
	Python | 
	def early_checks(job):
    """Early checks to filter out pull requests where no action is needed."""
    status = job.pull_request.status
    if status not in ('OPEN', 'DECLINED'):
        raise messages.NothingToDo("The pull request is '{}'".format(status))
    src, dst = job.pull_request.src_branch, job.pull_request.dst_branch
    if not is_cascade_producer(src) or not is_cascade_consumer(dst):
        raise messages.NotMyJob(src, dst)
    if not job.git.repo.remote_branch_exists(dst):
        raise messages.WrongDestination(dst_branch=dst,
                                        active_options=job.active_options) | 
	def early_checks(job):
    """Early checks to filter out pull requests where no action is needed."""
    status = job.pull_request.status
    if status not in ('OPEN', 'DECLINED'):
        raise messages.NothingToDo("The pull request is '{}'".format(status))
    src, dst = job.pull_request.src_branch, job.pull_request.dst_branch
    if not is_cascade_producer(src) or not is_cascade_consumer(dst):
        raise messages.NotMyJob(src, dst)
    if not job.git.repo.remote_branch_exists(dst):
        raise messages.WrongDestination(dst_branch=dst,
                                        active_options=job.active_options) | 
| 
	Python | 
	def send_greetings(job):
    """Send welcome message to the pull request's author and set default tasks.
    """
    username = job.settings.robot
    if find_comment(job.pull_request, username=username):
        return
    tasks = list(reversed(job.settings.tasks))
    comment = send_comment(
        job.settings, job.pull_request, messages.InitMessage(
            bert_e=username, author=job.pull_request.author_display_name,
            status={}, active_options=job.active_options, tasks=tasks,
            frontend_url=job.bert_e.settings.frontend_url
        )
    )
    for task in tasks:
        create_task(job.settings, task, comment) | 
	def send_greetings(job):
    """Send welcome message to the pull request's author and set default tasks.
    """
    username = job.settings.robot
    if find_comment(job.pull_request, username=username):
        return
    tasks = list(reversed(job.settings.tasks))
    comment = send_comment(
        job.settings, job.pull_request, messages.InitMessage(
            bert_e=username, author=job.pull_request.author_display_name,
            status={}, active_options=job.active_options, tasks=tasks,
            frontend_url=job.bert_e.settings.frontend_url
        )
    )
    for task in tasks:
        create_task(job.settings, task, comment) | 
| 
	Python | 
	def handle_comments(job):
    """Handle options and commands in the pull request's comments.
    Raises:
        UnknownCommand: if an unrecognized command is sent to BertE.
        NotEnoughCredentials: if the author of a message is trying to set an
                              option or call a command he is not allowed to.
    """
    reactor = Reactor()
    admins = job.settings.admins
    pr_author = job.pull_request.author
    reactor.init_settings(job)
    prefix = '@{}'.format(job.settings.robot)
    LOG.debug('looking for prefix: %s', prefix)
    # Handle options
    # Look for options in all of the pull request's comments.
    for comment in job.pull_request.comments:
        author = comment.author
        privileged = author in admins and author != pr_author
        authored = author == pr_author
        text = comment.text
        try:
            reactor.handle_options(job, text, prefix, privileged, authored)
        except NotFound as err:
            raise messages.UnknownCommand(
                active_options=job.active_options, command=err.keyword,
                author=author, comment=text
            ) from err
        except NotPrivileged as err:
            raise messages.NotEnoughCredentials(
                active_options=job.active_options, command=err.keyword,
                author=author, self_pr=(author == pr_author), comment=text
            ) from err
        except NotAuthored as err:
            raise messages.NotAuthor(
                active_options=job.active_options, command=err.keyword,
                author=author, pr_author=pr_author, authored=authored
            ) from err
        except TypeError as err:
            raise messages.IncorrectCommandSyntax(
                extra_message=str(err), active_options=job.active_options
            ) from err
    # Handle commands
    # Look for commands in comments posted after BertE's last message.
    for comment in reversed(job.pull_request.comments):
        author = comment.author
        if author == job.settings.robot:
            return
        privileged = author in admins and author != pr_author
        text = comment.text
        try:
            reactor.handle_commands(job, text, prefix, privileged)
        except NotFound as err:
            raise messages.UnknownCommand(
                active_options=job.active_options, command=err.keyword,
                author=author, comment=text
            ) from err
        except NotPrivileged as err:
            raise messages.NotEnoughCredentials(
                active_options=job.active_options, command=err.keyword,
                author=author, self_pr=(author == pr_author), comment=text
            ) from err | 
	def handle_comments(job):
    """Handle options and commands in the pull request's comments.
    Raises:
        UnknownCommand: if an unrecognized command is sent to BertE.
        NotEnoughCredentials: if the author of a message is trying to set an
                              option or call a command he is not allowed to.
    """
    reactor = Reactor()
    admins = job.settings.admins
    pr_author = job.pull_request.author
    reactor.init_settings(job)
    prefix = '@{}'.format(job.settings.robot)
    LOG.debug('looking for prefix: %s', prefix)
    # Handle options
    # Look for options in all of the pull request's comments.
    for comment in job.pull_request.comments:
        author = comment.author
        privileged = author in admins and author != pr_author
        authored = author == pr_author
        text = comment.text
        try:
            reactor.handle_options(job, text, prefix, privileged, authored)
        except NotFound as err:
            raise messages.UnknownCommand(
                active_options=job.active_options, command=err.keyword,
                author=author, comment=text
            ) from err
        except NotPrivileged as err:
            raise messages.NotEnoughCredentials(
                active_options=job.active_options, command=err.keyword,
                author=author, self_pr=(author == pr_author), comment=text
            ) from err
        except NotAuthored as err:
            raise messages.NotAuthor(
                active_options=job.active_options, command=err.keyword,
                author=author, pr_author=pr_author, authored=authored
            ) from err
        except TypeError as err:
            raise messages.IncorrectCommandSyntax(
                extra_message=str(err), active_options=job.active_options
            ) from err
    # Handle commands
    # Look for commands in comments posted after BertE's last message.
    for comment in reversed(job.pull_request.comments):
        author = comment.author
        if author == job.settings.robot:
            return
        privileged = author in admins and author != pr_author
        text = comment.text
        try:
            reactor.handle_commands(job, text, prefix, privileged)
        except NotFound as err:
            raise messages.UnknownCommand(
                active_options=job.active_options, command=err.keyword,
                author=author, comment=text
            ) from err
        except NotPrivileged as err:
            raise messages.NotEnoughCredentials(
                active_options=job.active_options, command=err.keyword,
                author=author, self_pr=(author == pr_author), comment=text
            ) from err | 
| 
	Python | 
	def check_commit_diff(job):
    """Check for divergence between a PR's source and destination branches.
    raises:
        SourceBranchTooOld: if the branches have diverged.
    """
    threshold = job.settings.max_commit_diff
    LOG.debug('max_commit_diff: %d', job.settings.max_commit_diff)
    if threshold < 1:
        # Feature is deactivated (default)
        return
    commits = list(job.git.dst_branch.get_commit_diff(job.git.src_branch))
    LOG.debug('commit_diff: %d', len(commits))
    if len(commits) > threshold:
        raise messages.SourceBranchTooOld(
            src_branch=job.git.src_branch.name,
            dst_branch=job.git.dst_branch.name,
            threshold=threshold,
            active_options=job.active_options
        ) | 
	def check_commit_diff(job):
    """Check for divergence between a PR's source and destination branches.
    raises:
        SourceBranchTooOld: if the branches have diverged.
    """
    threshold = job.settings.max_commit_diff
    LOG.debug('max_commit_diff: %d', job.settings.max_commit_diff)
    if threshold < 1:
        # Feature is deactivated (default)
        return
    commits = list(job.git.dst_branch.get_commit_diff(job.git.src_branch))
    LOG.debug('commit_diff: %d', len(commits))
    if len(commits) > threshold:
        raise messages.SourceBranchTooOld(
            src_branch=job.git.src_branch.name,
            dst_branch=job.git.dst_branch.name,
            threshold=threshold,
            active_options=job.active_options
        ) | 
| 
	Python | 
	def check_branch_compatibility(job):
    """Check that the pull request's source and destination branches are
    compatible with one another.
    For example, check that the user is not trying to merge a new feature
    into any older development/* branch.
    Raises:
        IncompatibleSourceBranchPrefix: if the prefix of the source branch
                                        is incorrect.
    """
    if bypass_incompatible_branch(job):
        return
    src_branch = job.git.src_branch
    for dst_branch in job.git.cascade.dst_branches:
        if src_branch.prefix not in dst_branch.allow_prefixes:
            raise messages.IncompatibleSourceBranchPrefix(
                source=src_branch,
                destination=job.git.dst_branch,
                active_options=job.active_options
            ) | 
	def check_branch_compatibility(job):
    """Check that the pull request's source and destination branches are
    compatible with one another.
    For example, check that the user is not trying to merge a new feature
    into any older development/* branch.
    Raises:
        IncompatibleSourceBranchPrefix: if the prefix of the source branch
                                        is incorrect.
    """
    if bypass_incompatible_branch(job):
        return
    src_branch = job.git.src_branch
    for dst_branch in job.git.cascade.dst_branches:
        if src_branch.prefix not in dst_branch.allow_prefixes:
            raise messages.IncompatibleSourceBranchPrefix(
                source=src_branch,
                destination=job.git.dst_branch,
                active_options=job.active_options
            ) | 
| 
	Python | 
	def check_dependencies(job):
    """Check the pull request's dependencies, if any.
    Raises:
        AfterPullRequest: if the current pull request depends on other open
                          pull requests to be merged.
        NothingToDo: if the wait option is set then nothing will be checked.
    """
    if job.settings.wait:
        raise messages.NothingToDo('wait option is set')
    after_prs = job.settings.after_pull_request
    if not after_prs:
        return
    prs = []
    for pr_id in after_prs:
        try:
            prs.append(job.project_repo.get_pull_request(int(pr_id)))
        except Exception as err:
            raise messages.IncorrectPullRequestNumber(
                pr_id=pr_id, active_options=job.active_options
            ) from err
        opened = [p for p in prs if p.status == 'OPEN']
        merged = [p for p in prs if p.status == 'MERGED']
        declined = [p for p in prs if p.status == 'DECLINED']
    if len(after_prs) != len(merged):
        raise messages.AfterPullRequest(
            opened_prs=opened, declined_prs=declined,
            active_options=job.active_options
        ) | 
	def check_dependencies(job):
    """Check the pull request's dependencies, if any.
    Raises:
        AfterPullRequest: if the current pull request depends on other open
                          pull requests to be merged.
        NothingToDo: if the wait option is set then nothing will be checked.
    """
    if job.settings.wait:
        raise messages.NothingToDo('wait option is set')
    after_prs = job.settings.after_pull_request
    if not after_prs:
        return
    prs = []
    for pr_id in after_prs:
        try:
            prs.append(job.project_repo.get_pull_request(int(pr_id)))
        except Exception as err:
            raise messages.IncorrectPullRequestNumber(
                pr_id=pr_id, active_options=job.active_options
            ) from err
        opened = [p for p in prs if p.status == 'OPEN']
        merged = [p for p in prs if p.status == 'MERGED']
        declined = [p for p in prs if p.status == 'DECLINED']
    if len(after_prs) != len(merged):
        raise messages.AfterPullRequest(
            opened_prs=opened, declined_prs=declined,
            active_options=job.active_options
        ) | 
| 
	Python | 
	def handle_declined_pull_request(job):
    """The pull request was declined.
    Decline integration pull requests and cleanup integration branches.
    Raises:
        PullRequestDeclined: if some cleanup was done.
        NothingToDo: if everything was already clean.
    """
    build_branch_cascade(job)
    changed = False
    src_branch = job.pull_request.src_branch
    dst_branches = job.git.cascade.dst_branches
    wbranch_names = ['w/{}/{}'.format(b.version, src_branch)
                     for b in dst_branches]
    open_prs = list(
        job.project_repo.get_pull_requests(src_branch=wbranch_names)
    )
    for name, dst_branch in zip(wbranch_names, dst_branches):
        for pr in open_prs:
            if (pr.status == 'OPEN' and
                    pr.src_branch == name and
                    pr.dst_branch == dst_branch.name):
                pr.decline()
                changed = True
                break
        wbranch = branch_factory(job.git.repo, name)
        wbranch.src_branch = src_branch
        wbranch.dst_branch = dst_branch
        if wbranch.exists():
            wbranch.remove()
            changed = True
    if changed:
        push(job.git.repo, prune=True)
        raise messages.PullRequestDeclined()
    else:
        raise messages.NothingToDo() | 
	def handle_declined_pull_request(job):
    """The pull request was declined.
    Decline integration pull requests and cleanup integration branches.
    Raises:
        PullRequestDeclined: if some cleanup was done.
        NothingToDo: if everything was already clean.
    """
    build_branch_cascade(job)
    changed = False
    src_branch = job.pull_request.src_branch
    dst_branches = job.git.cascade.dst_branches
    wbranch_names = ['w/{}/{}'.format(b.version, src_branch)
                     for b in dst_branches]
    open_prs = list(
        job.project_repo.get_pull_requests(src_branch=wbranch_names)
    )
    for name, dst_branch in zip(wbranch_names, dst_branches):
        for pr in open_prs:
            if (pr.status == 'OPEN' and
                    pr.src_branch == name and
                    pr.dst_branch == dst_branch.name):
                pr.decline()
                changed = True
                break
        wbranch = branch_factory(job.git.repo, name)
        wbranch.src_branch = src_branch
        wbranch.dst_branch = dst_branch
        if wbranch.exists():
            wbranch.remove()
            changed = True
    if changed:
        push(job.git.repo, prune=True)
        raise messages.PullRequestDeclined()
    else:
        raise messages.NothingToDo() | 
| 
	Python | 
	def check_in_sync(job, wbranches) -> bool:
    """Validate that each integration branch contains the last commit from its
    predecessor.
    Returns:
        True: if integration branches are in sync.
        False: otherwise.
    """
    prev = job.git.src_branch
    for branch in wbranches:
        if not branch.includes_commit(prev.get_latest_commit()):
            return False
        prev = branch
    return True | 
	def check_in_sync(job, wbranches) -> bool:
    """Validate that each integration branch contains the last commit from its
    predecessor.
    Returns:
        True: if integration branches are in sync.
        False: otherwise.
    """
    prev = job.git.src_branch
    for branch in wbranches:
        if not branch.includes_commit(prev.get_latest_commit()):
            return False
        prev = branch
    return True | 
| 
	Python | 
	def check_pull_request_skew(job, wbranches, child_prs):
    """Check potential skew between local commit and commit in PR.
    Three cases are possible:
    - the local commit and the commit we obtained in the PR
      object are identical; nothing to do.
    - the local commit, that has just been pushed by Bert-E,
      does not reflect yet in the PR object we obtained from
      bitbucket (the cache mechanism from BB mean the PR is still
      pointing to a previous commit); the solution is to update
      the PR object with the latest commit we know of.
    - the local commit is outdated, someone else has pushed new
      commits on the integration branch, and it reflects in the PR
      object; in this case we abort the process, Bert-E will be
      called again on the new commits.
    Raises:
        PullRequestSkewDetected: if a skew is detected.
    """
    for branch, pull_request in zip(wbranches, child_prs):
        branch_sha1 = branch.get_latest_commit()
        pr_sha1 = pull_request.src_commit  # 12 hex hash
        if branch_sha1.startswith(pr_sha1):
            continue
        if branch.includes_commit(pr_sha1):
            LOG.warning('Skew detected (expected commit: %s, '
                        'got PR commit: %s).', branch_sha1, pr_sha1)
            LOG.warning('Updating the integration PR locally.')
            pull_request.src_commit = branch_sha1
            continue
        raise messages.PullRequestSkewDetected(pull_request.id, branch_sha1,
                                               pr_sha1) | 
	def check_pull_request_skew(job, wbranches, child_prs):
    """Check potential skew between local commit and commit in PR.
    Three cases are possible:
    - the local commit and the commit we obtained in the PR
      object are identical; nothing to do.
    - the local commit, that has just been pushed by Bert-E,
      does not reflect yet in the PR object we obtained from
      bitbucket (the cache mechanism from BB mean the PR is still
      pointing to a previous commit); the solution is to update
      the PR object with the latest commit we know of.
    - the local commit is outdated, someone else has pushed new
      commits on the integration branch, and it reflects in the PR
      object; in this case we abort the process, Bert-E will be
      called again on the new commits.
    Raises:
        PullRequestSkewDetected: if a skew is detected.
    """
    for branch, pull_request in zip(wbranches, child_prs):
        branch_sha1 = branch.get_latest_commit()
        pr_sha1 = pull_request.src_commit  # 12 hex hash
        if branch_sha1.startswith(pr_sha1):
            continue
        if branch.includes_commit(pr_sha1):
            LOG.warning('Skew detected (expected commit: %s, '
                        'got PR commit: %s).', branch_sha1, pr_sha1)
            LOG.warning('Updating the integration PR locally.')
            pull_request.src_commit = branch_sha1
            continue
        raise messages.PullRequestSkewDetected(pull_request.id, branch_sha1,
                                               pr_sha1) | 
| 
	Python | 
	def check_approvals(job):
    """Check approval of a pull request by author, peers, and leaders.
    Raises:
        - ApprovalRequired
    """
    required_peer_approvals = job.settings.required_peer_approvals
    current_peer_approvals = 0
    if bypass_peer_approval(job):
        current_peer_approvals = required_peer_approvals
    required_leader_approvals = job.settings.required_leader_approvals
    current_leader_approvals = 0
    if bypass_leader_approval(job):
        current_leader_approvals = required_leader_approvals
    approved_by_author = (
        not job.settings.need_author_approval or
        bypass_author_approval(job) or
        job.settings.approve
    )
    requires_unanimity = job.settings.unanimity
    is_unanimous = True
    if (approved_by_author and
            (current_peer_approvals >= required_peer_approvals) and
            (current_leader_approvals >= required_leader_approvals) and
            not requires_unanimity):
        return
    # NB: when author hasn't approved the PR, author isn't listed in
    # 'participants'
    username = job.settings.robot
    participants = set(job.pull_request.get_participants())
    approvals = set(job.pull_request.get_approvals())
    if job.settings.approve:
        approvals.add(job.pull_request.author)
    # Exclude Bert-E from consideration
    participants -= {username}
    leaders = set(job.settings.project_leaders)
    is_unanimous = approvals - {username} == participants
    approved_by_author |= job.pull_request.author in approvals
    current_leader_approvals += len(approvals.intersection(leaders))
    if (job.pull_request.author in leaders and
            job.pull_request.author not in approvals):
        # if a project leader creates a PR and has not approved it
        # (which is not possible on Github for example), always count
        # one additional mandatory approval
        current_leader_approvals += 1
    missing_leader_approvals = (
        required_leader_approvals - current_leader_approvals)
    peer_approvals = approvals - {job.pull_request.author}
    current_peer_approvals += len(peer_approvals)
    missing_peer_approvals = (
        required_peer_approvals - current_peer_approvals)
    change_requests = set(job.pull_request.get_change_requests())
    LOG.info('approvals: %s' % locals())
    if not approved_by_author or \
            missing_leader_approvals > 0 or \
            missing_peer_approvals > 0 or \
            (requires_unanimity and not is_unanimous) or \
            len(change_requests) > 0:
        raise messages.ApprovalRequired(
            pr=job.pull_request,
            required_leader_approvals=required_leader_approvals,
            leaders=list(leaders),
            required_peer_approvals=required_peer_approvals,
            requires_unanimity=requires_unanimity,
            requires_author_approval=job.settings.need_author_approval,
            pr_author_options=job.settings.pr_author_options,
            active_options=job.active_options,
            change_requesters=list(change_requests)
        ) | 
	def check_approvals(job):
    """Check approval of a pull request by author, peers, and leaders.
    Raises:
        - ApprovalRequired
    """
    required_peer_approvals = job.settings.required_peer_approvals
    current_peer_approvals = 0
    if bypass_peer_approval(job):
        current_peer_approvals = required_peer_approvals
    required_leader_approvals = job.settings.required_leader_approvals
    current_leader_approvals = 0
    if bypass_leader_approval(job):
        current_leader_approvals = required_leader_approvals
    approved_by_author = (
        not job.settings.need_author_approval or
        bypass_author_approval(job) or
        job.settings.approve
    )
    requires_unanimity = job.settings.unanimity
    is_unanimous = True
    if (approved_by_author and
            (current_peer_approvals >= required_peer_approvals) and
            (current_leader_approvals >= required_leader_approvals) and
            not requires_unanimity):
        return
    # NB: when author hasn't approved the PR, author isn't listed in
    # 'participants'
    username = job.settings.robot
    participants = set(job.pull_request.get_participants())
    approvals = set(job.pull_request.get_approvals())
    if job.settings.approve:
        approvals.add(job.pull_request.author)
    # Exclude Bert-E from consideration
    participants -= {username}
    leaders = set(job.settings.project_leaders)
    is_unanimous = approvals - {username} == participants
    approved_by_author |= job.pull_request.author in approvals
    current_leader_approvals += len(approvals.intersection(leaders))
    if (job.pull_request.author in leaders and
            job.pull_request.author not in approvals):
        # if a project leader creates a PR and has not approved it
        # (which is not possible on Github for example), always count
        # one additional mandatory approval
        current_leader_approvals += 1
    missing_leader_approvals = (
        required_leader_approvals - current_leader_approvals)
    peer_approvals = approvals - {job.pull_request.author}
    current_peer_approvals += len(peer_approvals)
    missing_peer_approvals = (
        required_peer_approvals - current_peer_approvals)
    change_requests = set(job.pull_request.get_change_requests())
    LOG.info('approvals: %s' % locals())
    if not approved_by_author or \
            missing_leader_approvals > 0 or \
            missing_peer_approvals > 0 or \
            (requires_unanimity and not is_unanimous) or \
            len(change_requests) > 0:
        raise messages.ApprovalRequired(
            pr=job.pull_request,
            required_leader_approvals=required_leader_approvals,
            leaders=list(leaders),
            required_peer_approvals=required_peer_approvals,
            requires_unanimity=requires_unanimity,
            requires_author_approval=job.settings.need_author_approval,
            pr_author_options=job.settings.pr_author_options,
            active_options=job.active_options,
            change_requesters=list(change_requests)
        ) | 
| 
	Python | 
	def check_build_status(job, wbranches):
    """Check the build statuses of the integration pull requests.
    Raises:
        BuildFailed: if a build failed or was stopped.
        BuildNotStarted: if a build hasn't started yet.
        BuildInProgress: if a build is still in progress.
    """
    if bypass_build_status(job):
        return
    key = job.settings.build_key
    if not key:
        return
    ordered_state = {
        status: idx for idx, status in enumerate(
            ('SUCCESSFUL', 'INPROGRESS', 'NOTSTARTED', 'STOPPED', 'FAILED'))
    }
    def status(branch):
        return job.project_repo.get_build_status(
            branch.get_latest_commit(), key)
    statuses = {b.name: status(b) for b in wbranches}
    worst = max(wbranches, key=lambda b: ordered_state[statuses[b.name]])
    worst_status = statuses[worst.name]
    if worst_status in ('FAILED', 'STOPPED'):
        raise messages.BuildFailed(
            active_options=job.active_options,
            branch=worst.name,
            build_url=job.project_repo.get_build_url(
                worst.get_latest_commit,
                key),
            commit_url=job.project_repo.get_commit_url(
                worst.get_latest_commit()),
        )
    elif worst_status == 'NOTSTARTED':
        raise messages.BuildNotStarted()
    elif worst_status == 'INPROGRESS':
        raise messages.BuildInProgress()
    assert worst_status == 'SUCCESSFUL' | 
	def check_build_status(job, wbranches):
    """Check the build statuses of the integration pull requests.
    Raises:
        BuildFailed: if a build failed or was stopped.
        BuildNotStarted: if a build hasn't started yet.
        BuildInProgress: if a build is still in progress.
    """
    if bypass_build_status(job):
        return
    key = job.settings.build_key
    if not key:
        return
    ordered_state = {
        status: idx for idx, status in enumerate(
            ('SUCCESSFUL', 'INPROGRESS', 'NOTSTARTED', 'STOPPED', 'FAILED'))
    }
    def status(branch):
        return job.project_repo.get_build_status(
            branch.get_latest_commit(), key)
    statuses = {b.name: status(b) for b in wbranches}
    worst = max(wbranches, key=lambda b: ordered_state[statuses[b.name]])
    worst_status = statuses[worst.name]
    if worst_status in ('FAILED', 'STOPPED'):
        raise messages.BuildFailed(
            active_options=job.active_options,
            branch=worst.name,
            build_url=job.project_repo.get_build_url(
                worst.get_latest_commit,
                key),
            commit_url=job.project_repo.get_commit_url(
                worst.get_latest_commit()),
        )
    elif worst_status == 'NOTSTARTED':
        raise messages.BuildNotStarted()
    elif worst_status == 'INPROGRESS':
        raise messages.BuildInProgress()
    assert worst_status == 'SUCCESSFUL' | 
| 
	Python | 
	def _patch_url(self, url):
        """Patch URLs if it is relative to the API root.
        Returns: an absolute url corresponding to client.base_url / url
        """
        if not url.startswith('http'):
            url = '/'.join((self.base_url, url.lstrip('/')))
        return url | 
	def _patch_url(self, url):
        """Patch URLs if it is relative to the API root.
        Returns: an absolute url corresponding to client.base_url / url
        """
        if not url.startswith('http'):
            url = '/'.join((self.base_url, url.lstrip('/')))
        return url | 
| 
	Python | 
	def _cache_value(self, method, url, params, res):
        """Put a request result in the query cache.
        If the response's headers contain an ETag or a Last-Modified field,
        the response can be used in subsequent calls to avoid hitting github's
        rate limit.
        Args:
            - method (str): request method (e.g. GET)
            - url (str): request url
            - params (dict): request parameter dict as per requests library's
                             params argument
            - res (requests.Response): the request's response
        Returns:
            The response that was put in cache.
        """
        key = self._mk_key(url, params)
        headers = res.headers
        etag = headers.get('ETag', None)
        date = headers.get('Last-Modified', None)
        if etag or date:
            self.query_cache[method].set(key, CacheEntry(res, etag, date))
        return res | 
	def _cache_value(self, method, url, params, res):
        """Put a request result in the query cache.
        If the response's headers contain an ETag or a Last-Modified field,
        the response can be used in subsequent calls to avoid hitting github's
        rate limit.
        Args:
            - method (str): request method (e.g. GET)
            - url (str): request url
            - params (dict): request parameter dict as per requests library's
                             params argument
            - res (requests.Response): the request's response
        Returns:
            The response that was put in cache.
        """
        key = self._mk_key(url, params)
        headers = res.headers
        etag = headers.get('ETag', None)
        date = headers.get('Last-Modified', None)
        if etag or date:
            self.query_cache[method].set(key, CacheEntry(res, etag, date))
        return res | 
| 
	Python | 
	def _get_cached_value(self, method, url, params):
        """Get a value from the cache if any.
        This method is intended to be called before performing an HTTP request,
        in order to define the special headers used by GitHub's rate-limit
        system.
        If the request that follows returns a HTTP 304 code, this means that:
            - the cached value returned by this method can be returned as a
              valid result
            - the request wasn't decremented from GitHub's rate limit counter
        Args:
            - method (str): request method (e.g. GET)
            - url (str): request url
            - params (dict): request parameter dict as per requests library's
                             params argument
        Returns:
            A (response, headers) tuple.
            - response is the last response we've received for this request
              (possibly None).
            - headers is a dictionary defining 'If-None-Match' and
              'If-Modified-Since' headers to add to the request.
        See: the _get() method to understand how it is used.
        """
        key = self._mk_key(url, params)
        entry = self.query_cache[method].get(key, None)
        headers = {
            'If-None-Match': None,
            'If-Modified-Since': None
        }
        if entry is None:
            return None, headers
        if entry.etag:
            headers['If-None-Match'] = entry.etag
        elif entry.date:
            headers['If-Modified-Since'] = entry.date
        return entry.obj, headers | 
	def _get_cached_value(self, method, url, params):
        """Get a value from the cache if any.
        This method is intended to be called before performing an HTTP request,
        in order to define the special headers used by GitHub's rate-limit
        system.
        If the request that follows returns a HTTP 304 code, this means that:
            - the cached value returned by this method can be returned as a
              valid result
            - the request wasn't decremented from GitHub's rate limit counter
        Args:
            - method (str): request method (e.g. GET)
            - url (str): request url
            - params (dict): request parameter dict as per requests library's
                             params argument
        Returns:
            A (response, headers) tuple.
            - response is the last response we've received for this request
              (possibly None).
            - headers is a dictionary defining 'If-None-Match' and
              'If-Modified-Since' headers to add to the request.
        See: the _get() method to understand how it is used.
        """
        key = self._mk_key(url, params)
        entry = self.query_cache[method].get(key, None)
        headers = {
            'If-None-Match': None,
            'If-Modified-Since': None
        }
        if entry is None:
            return None, headers
        if entry.etag:
            headers['If-None-Match'] = entry.etag
        elif entry.date:
            headers['If-Modified-Since'] = entry.date
        return entry.obj, headers | 
| 
	Python | 
	def _get(self, url, **kwargs):
        """Perform a GET request using the rate-limit cache system.
        This method is not supposed to be called by other objects. Instead, it
        is wrapped by the get() and iter_get() methods.
        Returns:
            A requests.Response object
        """
        params = kwargs.get('params', {})
        url = self._patch_url(url)
        res, headers = self._get_cached_value('GET', url, params)
        if headers:
            kwargs.setdefault('headers', {}).update(headers)
        response = self.session.get(url, **kwargs)
        if response.status_code == 304:
            LOG.debug('Not Modified. Returning cached result')
            return res
        response.raise_for_status()
        return self._cache_value('GET', url, params, response) | 
	def _get(self, url, **kwargs):
        """Perform a GET request using the rate-limit cache system.
        This method is not supposed to be called by other objects. Instead, it
        is wrapped by the get() and iter_get() methods.
        Returns:
            A requests.Response object
        """
        params = kwargs.get('params', {})
        url = self._patch_url(url)
        res, headers = self._get_cached_value('GET', url, params)
        if headers:
            kwargs.setdefault('headers', {}).update(headers)
        response = self.session.get(url, **kwargs)
        if response.status_code == 304:
            LOG.debug('Not Modified. Returning cached result')
            return res
        response.raise_for_status()
        return self._cache_value('GET', url, params, response) | 
| 
	Python | 
	def post(self, url, data, **kwargs):
        """Perform a POST request to the github API.
        Args: same as requests.post()
        Returns: a deserialized json structure
        Raises:
            requests.HTTPError
        """
        url = self._patch_url(url)
        response = self.session.post(url, data=data, **kwargs)
        response.raise_for_status()
        return json.loads(response.text) | 
	def post(self, url, data, **kwargs):
        """Perform a POST request to the github API.
        Args: same as requests.post()
        Returns: a deserialized json structure
        Raises:
            requests.HTTPError
        """
        url = self._patch_url(url)
        response = self.session.post(url, data=data, **kwargs)
        response.raise_for_status()
        return json.loads(response.text) | 
| 
	Python | 
	def patch(self, url, data, **kwargs):
        """Perform a PATCH request to the github API.
        Args: same as requests.patch()
        Returns: a deserialized json structure
        Raises:
            requests.HTTPError
        """
        url = self._patch_url(url)
        response = self.session.post(url, data=data, **kwargs)
        response.raise_for_status()
        return json.loads(response.text) | 
	def patch(self, url, data, **kwargs):
        """Perform a PATCH request to the github API.
        Args: same as requests.patch()
        Returns: a deserialized json structure
        Raises:
            requests.HTTPError
        """
        url = self._patch_url(url)
        response = self.session.post(url, data=data, **kwargs)
        response.raise_for_status()
        return json.loads(response.text) | 
| 
	Python | 
	def delete(self, url, **kwargs):
        """Perform a DELETE request on the github API.
        Args: same as requests.delete()
        Raises: requests.HTTPError
        """
        url = self._patch_url(url)
        response = self.session.delete(url, **kwargs)
        response.raise_for_status() | 
	def delete(self, url, **kwargs):
        """Perform a DELETE request on the github API.
        Args: same as requests.delete()
        Raises: requests.HTTPError
        """
        url = self._patch_url(url)
        response = self.session.delete(url, **kwargs)
        response.raise_for_status() | 
| 
	Python | 
	def put(self, url, **kwargs):
        """Perform a PUT request to the Github API.
        Args: same as requests.put()
        Raises: requests.HTTPError
        """
        url = self._patch_url(url)
        response = self.session.put(url, **kwargs)
        response.raise_for_status() | 
	def put(self, url, **kwargs):
        """Perform a PUT request to the Github API.
        Args: same as requests.put()
        Raises: requests.HTTPError
        """
        url = self._patch_url(url)
        response = self.session.put(url, **kwargs)
        response.raise_for_status() | 
| 
	Python | 
	def iter_get(self, url, per_page=100, **kwargs):
        """Perform a paginated GET request to the Github API.
        This method handles cache verfication and uses conditional requests
        + a local cache to avoid consuming API calls as counted by Github's
        rate limit system.
        Args:
            - per_page: number of objects to get per page (max & default: 100)
            - same as requests.get()
        Yields: deserialized json structures
        Raises: requests.HTTPError
        """
        params = kwargs.setdefault('params', {})
        params.setdefault('per_page', per_page)
        next_page = url
        while next_page:
            response = self._get(next_page, **kwargs)
            yield from json.loads(response.text)
            next_page = None
            if 'link' not in response.headers:
                break
            for link_rel in response.headers['link'].split(','):
                link, rel = link_rel.split(';')
                if 'rel="next"' in rel.strip():
                    next_page = link.strip(' <>')
                    break
            # Params are already contained in the next page's url
            params.clear() | 
	def iter_get(self, url, per_page=100, **kwargs):
        """Perform a paginated GET request to the Github API.
        This method handles cache verfication and uses conditional requests
        + a local cache to avoid consuming API calls as counted by Github's
        rate limit system.
        Args:
            - per_page: number of objects to get per page (max & default: 100)
            - same as requests.get()
        Yields: deserialized json structures
        Raises: requests.HTTPError
        """
        params = kwargs.setdefault('params', {})
        params.setdefault('per_page', per_page)
        next_page = url
        while next_page:
            response = self._get(next_page, **kwargs)
            yield from json.loads(response.text)
            next_page = None
            if 'link' not in response.headers:
                break
            for link_rel in response.headers['link'].split(','):
                link, rel = link_rel.split(';')
                if 'rel="next"' in rel.strip():
                    next_page = link.strip(' <>')
                    break
            # Params are already contained in the next page's url
            params.clear() | 
| 
	Python | 
	def pull_request(self) -> PullRequest:
        """Get the PullRequest associated with this issue comment event."""
        pr_dict = self.data['issue'].get('pull_request')
        if pr_dict:
            try:
                return PullRequest.get(client=self.client, url=pr_dict['url'])
            except HTTPError:
                LOG.error("No pull request at url %s", pr_dict['url'])
        LOG.debug("Issue #%d is not a pull request",
                  self.data['issue']['number']) | 
	def pull_request(self) -> PullRequest:
        """Get the PullRequest associated with this issue comment event."""
        pr_dict = self.data['issue'].get('pull_request')
        if pr_dict:
            try:
                return PullRequest.get(client=self.client, url=pr_dict['url'])
            except HTTPError:
                LOG.error("No pull request at url %s", pr_dict['url'])
        LOG.debug("Issue #%d is not a pull request",
                  self.data['issue']['number']) | 
| 
	Python | 
	def build(self, repo):
        """Collect q branches from repository, add them to the collection."""
        cmd = 'git branch -r --list origin/q/*'
        for branch in repo.cmd(cmd).split('\n')[:-1]:
            match_ = re.match(r'\s*origin/(?P<name>.*)', branch)
            if not match_:
                continue
            try:
                branch = branch_factory(repo, match_.group('name'))
            except errors.UnrecognizedBranchPattern:
                continue
            self._add_branch(branch)
        self.finalize() | 
	def build(self, repo):
        """Collect q branches from repository, add them to the collection."""
        cmd = 'git branch -r --list origin/q/*'
        for branch in repo.cmd(cmd).split('\n')[:-1]:
            match_ = re.match(r'\s*origin/(?P<name>.*)', branch)
            if not match_:
                continue
            try:
                branch = branch_factory(repo, match_.group('name'))
            except errors.UnrecognizedBranchPattern:
                continue
            self._add_branch(branch)
        self.finalize() | 
| 
	Python | 
	def mergeable_queues(self):
        """Return a collection of queues suitable for merge.
        This only works after the collection is validated.
        """
        if self._mergeable_queues is None:
            self._process()
        return self._mergeable_queues | 
	def mergeable_queues(self):
        """Return a collection of queues suitable for merge.
        This only works after the collection is validated.
        """
        if self._mergeable_queues is None:
            self._process()
        return self._mergeable_queues | 
| 
	Python | 
	def mergeable_prs(self):
        """Return the list of pull requests suitable for merge.
        This only works after the collection is validated.
        """
        if self._mergeable_queues is None:
            self._process()
        return self._mergeable_prs | 
	def mergeable_prs(self):
        """Return the list of pull requests suitable for merge.
        This only works after the collection is validated.
        """
        if self._mergeable_queues is None:
            self._process()
        return self._mergeable_prs | 
| 
	Python | 
	def _add_branch(self, branch):
        """Add a single branch to the queue collection."""
        if not isinstance(branch, (QueueBranch, QueueIntegrationBranch)):
            raise errors.InvalidQueueBranch(branch)
        self._validated = False
        # make sure we have a local copy of the branch
        # (enables get_latest_commit)
        branch.checkout()
        version = branch.version_t
        if version not in self._queues.keys():
            self._queues[version] = {
                QueueBranch: None,
                QueueIntegrationBranch: []
            }
            # Sort the top dict again
            self._queues = OrderedDict(sorted(self._queues.items(),
                                              key=cmp_to_key(compare_queues)))
        if isinstance(branch, QueueBranch):
            self._queues[version][QueueBranch] = branch
        else:
            self._queues[version][QueueIntegrationBranch].append(branch) | 
	def _add_branch(self, branch):
        """Add a single branch to the queue collection."""
        if not isinstance(branch, (QueueBranch, QueueIntegrationBranch)):
            raise errors.InvalidQueueBranch(branch)
        self._validated = False
        # make sure we have a local copy of the branch
        # (enables get_latest_commit)
        branch.checkout()
        version = branch.version_t
        if version not in self._queues.keys():
            self._queues[version] = {
                QueueBranch: None,
                QueueIntegrationBranch: []
            }
            # Sort the top dict again
            self._queues = OrderedDict(sorted(self._queues.items(),
                                              key=cmp_to_key(compare_queues)))
        if isinstance(branch, QueueBranch):
            self._queues[version][QueueBranch] = branch
        else:
            self._queues[version][QueueIntegrationBranch].append(branch) | 
| 
	Python | 
	def _horizontal_validation(self, version):
        """Validation of the queue collection on one given version.
        Called by validate().
        """
        masterq = self._queues[version][QueueBranch]
        # check master queue state
        if not masterq:
            yield errors.MasterQueueMissing(version)
        else:
            if not masterq.includes_commit(masterq.dst_branch):
                yield errors.MasterQueueLateVsDev(masterq, masterq.dst_branch)
            if not self._queues[version][QueueIntegrationBranch]:
                # check master queue points to dev
                if (masterq.get_latest_commit() !=
                        masterq.dst_branch.get_latest_commit()):
                    yield errors.MasterQueueNotInSync(masterq,
                                                      masterq.dst_branch)
            else:
                # check state of master queue wrt to greatest integration
                # queue
                greatest_intq = (
                    self._queues[version][QueueIntegrationBranch][0]
                )
                if (greatest_intq.get_latest_commit() !=
                        masterq.get_latest_commit()):
                    if greatest_intq.includes_commit(masterq):
                        yield errors.MasterQueueLateVsInt(masterq,
                                                          greatest_intq)
                    elif masterq.includes_commit(greatest_intq):
                        yield errors.MasterQueueYoungerThanInt(masterq,
                                                               greatest_intq)
                    else:
                        yield errors.MasterQueueDiverged(masterq,
                                                         greatest_intq)
            # check each integration queue contains the previous one
            nextq = masterq
            for intq in self._queues[version][QueueIntegrationBranch]:
                if not nextq.includes_commit(intq):
                    yield errors.QueueInclusionIssue(nextq, intq)
                nextq = intq
            if not nextq.includes_commit(masterq.dst_branch):
                yield errors.QueueInclusionIssue(nextq, masterq.dst_branch) | 
	def _horizontal_validation(self, version):
        """Validation of the queue collection on one given version.
        Called by validate().
        """
        masterq = self._queues[version][QueueBranch]
        # check master queue state
        if not masterq:
            yield errors.MasterQueueMissing(version)
        else:
            if not masterq.includes_commit(masterq.dst_branch):
                yield errors.MasterQueueLateVsDev(masterq, masterq.dst_branch)
            if not self._queues[version][QueueIntegrationBranch]:
                # check master queue points to dev
                if (masterq.get_latest_commit() !=
                        masterq.dst_branch.get_latest_commit()):
                    yield errors.MasterQueueNotInSync(masterq,
                                                      masterq.dst_branch)
            else:
                # check state of master queue wrt to greatest integration
                # queue
                greatest_intq = (
                    self._queues[version][QueueIntegrationBranch][0]
                )
                if (greatest_intq.get_latest_commit() !=
                        masterq.get_latest_commit()):
                    if greatest_intq.includes_commit(masterq):
                        yield errors.MasterQueueLateVsInt(masterq,
                                                          greatest_intq)
                    elif masterq.includes_commit(greatest_intq):
                        yield errors.MasterQueueYoungerThanInt(masterq,
                                                               greatest_intq)
                    else:
                        yield errors.MasterQueueDiverged(masterq,
                                                         greatest_intq)
            # check each integration queue contains the previous one
            nextq = masterq
            for intq in self._queues[version][QueueIntegrationBranch]:
                if not nextq.includes_commit(intq):
                    yield errors.QueueInclusionIssue(nextq, intq)
                nextq = intq
            if not nextq.includes_commit(masterq.dst_branch):
                yield errors.QueueInclusionIssue(nextq, masterq.dst_branch) | 
| 
	Python | 
	def _vertical_validation(self, stack, versions):
        """Validation of the queue collection on one given merge path.
        Called by validate().
        """
        prs = self._extract_pr_ids(stack)
        last_version = versions[-1]
        hf_detected = False
        if len(list(stack.keys())) == 1:
            if len(list(stack.keys())[0]) == 4:
                hf_detected = True
        # check all subsequent versions have a master queue
        has_queues = False
        for version in versions:
            if version not in stack:
                if has_queues and not hf_detected:
                    yield errors.MasterQueueMissing(version)
                continue
            has_queues = True
            if not stack[version][QueueBranch]:
                yield errors.MasterQueueMissing(version)
        # check queues are sync'ed vertically and included in each other
        # (last one corresponds to same PR on all versions..., and so on)
        # other way to say it: each version has all the PR_ids of the
        # previous version
        if last_version in stack:
            while stack[last_version][QueueIntegrationBranch]:
                next_vqint = stack[last_version][QueueIntegrationBranch].pop(0)
                pr = next_vqint.pr_id
                if pr not in prs:
                    # early fail
                    break
                for version in reversed(versions[:-1]):
                    if version not in stack:
                        # supposedly finished
                        break
                    if len(version) == 4:
                        # skip hf from check loop
                        continue
                    if (stack[version][QueueIntegrationBranch] and
                            stack[version][QueueIntegrationBranch][0].pr_id ==
                            pr):
                        vqint = stack[version][QueueIntegrationBranch].pop(0)
                        # take this opportunity to check vertical inclusion
                        if not next_vqint.includes_commit(vqint):
                            yield errors.QueueInclusionIssue(next_vqint, vqint)
                        next_vqint = vqint
                    else:
                        # this pr is supposedly entirely removed from the stack
                        # if it comes back again, its an error
                        break
                prs.remove(pr)
            # skip hf from stack and prs before final checks
            for version in versions:
                if len(version) == 4:
                    if version not in stack:
                        continue
                    while stack[version][QueueIntegrationBranch]:
                        pr_id = stack[version][QueueIntegrationBranch][0].pr_id
                        stack[version][QueueIntegrationBranch].pop(0)
                        if pr_id in prs:
                            prs.remove(pr_id)
            if prs:
                # after this algorithm prs should be empty
                yield errors.QueueInconsistentPullRequestsOrder()
            else:
                # and stack should be empty too
                for version in versions:
                    if (version in stack and
                            stack[version][QueueIntegrationBranch]):
                        yield errors.QueueInconsistentPullRequestsOrder() | 
	def _vertical_validation(self, stack, versions):
        """Validation of the queue collection on one given merge path.
        Called by validate().
        """
        prs = self._extract_pr_ids(stack)
        last_version = versions[-1]
        hf_detected = False
        if len(list(stack.keys())) == 1:
            if len(list(stack.keys())[0]) == 4:
                hf_detected = True
        # check all subsequent versions have a master queue
        has_queues = False
        for version in versions:
            if version not in stack:
                if has_queues and not hf_detected:
                    yield errors.MasterQueueMissing(version)
                continue
            has_queues = True
            if not stack[version][QueueBranch]:
                yield errors.MasterQueueMissing(version)
        # check queues are sync'ed vertically and included in each other
        # (last one corresponds to same PR on all versions..., and so on)
        # other way to say it: each version has all the PR_ids of the
        # previous version
        if last_version in stack:
            while stack[last_version][QueueIntegrationBranch]:
                next_vqint = stack[last_version][QueueIntegrationBranch].pop(0)
                pr = next_vqint.pr_id
                if pr not in prs:
                    # early fail
                    break
                for version in reversed(versions[:-1]):
                    if version not in stack:
                        # supposedly finished
                        break
                    if len(version) == 4:
                        # skip hf from check loop
                        continue
                    if (stack[version][QueueIntegrationBranch] and
                            stack[version][QueueIntegrationBranch][0].pr_id ==
                            pr):
                        vqint = stack[version][QueueIntegrationBranch].pop(0)
                        # take this opportunity to check vertical inclusion
                        if not next_vqint.includes_commit(vqint):
                            yield errors.QueueInclusionIssue(next_vqint, vqint)
                        next_vqint = vqint
                    else:
                        # this pr is supposedly entirely removed from the stack
                        # if it comes back again, its an error
                        break
                prs.remove(pr)
            # skip hf from stack and prs before final checks
            for version in versions:
                if len(version) == 4:
                    if version not in stack:
                        continue
                    while stack[version][QueueIntegrationBranch]:
                        pr_id = stack[version][QueueIntegrationBranch][0].pr_id
                        stack[version][QueueIntegrationBranch].pop(0)
                        if pr_id in prs:
                            prs.remove(pr_id)
            if prs:
                # after this algorithm prs should be empty
                yield errors.QueueInconsistentPullRequestsOrder()
            else:
                # and stack should be empty too
                for version in versions:
                    if (version in stack and
                            stack[version][QueueIntegrationBranch]):
                        yield errors.QueueInconsistentPullRequestsOrder() | 
| 
	Python | 
	def validate(self):
        """Check the state of queues declared via add_branch.
        The following checks are performed:
        - horizontal checks: on a given branch version, each integration
            queue must include the previous one; the master queue must
            point to the last integration queue; In case there is no
            integration queue (nothing queued for this version), the
            master queue must point on the corresponding development
            branch.
        - vertical checks: across versions, on each merge path, the queues
            must be in the correct order (pr1 queued first, pr2 then, ...);
            when a pr is queued in a version, it must be present in all the
            following integration queues; for a given pr, the queues must be
            included in each other.
        - completeness: in order to detect missing integration queues
            (manuel delete for example), deconstruct the master queues
            by reverting merge commits; each result should not differ in
            content from the previous integration queue; The last diff is
            checked vs the corresponding development branch. TODO
        """
        errs = []
        versions = self._queues.keys()
        if not versions:
            # no queues, cool stuff
            self._validated = True
            return
        for version in versions:
            errs.extend(self._horizontal_validation(version))
        for merge_path in self.merge_paths:
            versions = [branch.version_t for branch in merge_path]
            stack = deepcopy(self._queues)
            # remove versions not on this merge_path from consideration
            for version in list(stack.keys()):
                if version not in versions:
                    stack.pop(version)
            errs.extend(self._vertical_validation(stack, versions))
        if errs:
            raise errors.IncoherentQueues(errs)
        self._validated = True | 
	def validate(self):
        """Check the state of queues declared via add_branch.
        The following checks are performed:
        - horizontal checks: on a given branch version, each integration
            queue must include the previous one; the master queue must
            point to the last integration queue; In case there is no
            integration queue (nothing queued for this version), the
            master queue must point on the corresponding development
            branch.
        - vertical checks: across versions, on each merge path, the queues
            must be in the correct order (pr1 queued first, pr2 then, ...);
            when a pr is queued in a version, it must be present in all the
            following integration queues; for a given pr, the queues must be
            included in each other.
        - completeness: in order to detect missing integration queues
            (manuel delete for example), deconstruct the master queues
            by reverting merge commits; each result should not differ in
            content from the previous integration queue; The last diff is
            checked vs the corresponding development branch. TODO
        """
        errs = []
        versions = self._queues.keys()
        if not versions:
            # no queues, cool stuff
            self._validated = True
            return
        for version in versions:
            errs.extend(self._horizontal_validation(version))
        for merge_path in self.merge_paths:
            versions = [branch.version_t for branch in merge_path]
            stack = deepcopy(self._queues)
            # remove versions not on this merge_path from consideration
            for version in list(stack.keys()):
                if version not in versions:
                    stack.pop(version)
            errs.extend(self._vertical_validation(stack, versions))
        if errs:
            raise errors.IncoherentQueues(errs)
        self._validated = True | 
| 
	Python | 
	def _recursive_lookup(self, queues):
        """Given a set of queues, remove all queues that can't be merged,
        based on the build status obtained from the repository manager.
        A pull request must be removed from the list if the build on at least
        one version is FAILED, and if this failure is not recovered by
        a later pull request.
        Return once a mergeable set is identified or the set is empty.
        """
        first_failed_pr = 0
        for version in queues.keys():
            qints = queues[version][QueueIntegrationBranch]
            if qints:
                qint = qints[0]
                status = self.bbrepo.get_build_status(
                    qint.get_latest_commit(),
                    self.build_key
                )
                if status != 'SUCCESSFUL':
                    first_failed_pr = qint.pr_id
                    break
        if first_failed_pr == 0:
            # all tip queues are pass, merge as it is
            return
        # remove all queues that don't pass globally,
        # up to the identified failed pr, and retry
        for version in queues.keys():
            intqs = queues[version][QueueIntegrationBranch]
            if all([inq.pr_id != first_failed_pr for inq in intqs]):
                # do not pop anything if failed pr is not on the current path
                continue
            while intqs:
                intq = intqs.pop(0)
                if intq.pr_id == first_failed_pr:
                    break
        self._recursive_lookup(queues) | 
	def _recursive_lookup(self, queues):
        """Given a set of queues, remove all queues that can't be merged,
        based on the build status obtained from the repository manager.
        A pull request must be removed from the list if the build on at least
        one version is FAILED, and if this failure is not recovered by
        a later pull request.
        Return once a mergeable set is identified or the set is empty.
        """
        first_failed_pr = 0
        for version in queues.keys():
            qints = queues[version][QueueIntegrationBranch]
            if qints:
                qint = qints[0]
                status = self.bbrepo.get_build_status(
                    qint.get_latest_commit(),
                    self.build_key
                )
                if status != 'SUCCESSFUL':
                    first_failed_pr = qint.pr_id
                    break
        if first_failed_pr == 0:
            # all tip queues are pass, merge as it is
            return
        # remove all queues that don't pass globally,
        # up to the identified failed pr, and retry
        for version in queues.keys():
            intqs = queues[version][QueueIntegrationBranch]
            if all([inq.pr_id != first_failed_pr for inq in intqs]):
                # do not pop anything if failed pr is not on the current path
                continue
            while intqs:
                intq = intqs.pop(0)
                if intq.pr_id == first_failed_pr:
                    break
        self._recursive_lookup(queues) | 
| 
	Python | 
	def _extract_pr_ids(self, queues):
        """Return list of pull requests present in a set of queues.
        This is obtained by reading pr ids from the greatest
        development queue branch, so assumes that this branch
        contains a reference to all pull requests in queues (this
        is normally the case if everything was queued by Bert-E.
        Return (list):
            pull request ids in provided queue set (in the order
                of addition to the queue, from oldest to newest)
        """
        prs_hf = []
        prs = []
        # identify version corresponding to last dev queue
        # (i.e. ignore stab queues)
        greatest_dev = None
        for version in reversed(queues.keys()):
            if len(version) == 2 and greatest_dev is None:
                greatest_dev = version
            if len(version) == 4:
                # we may not catch the hf pr_id later from greatest_dev
                # so insert them now
                for qint in queues[version][QueueIntegrationBranch]:
                    if qint.pr_id not in prs_hf:
                        prs_hf.insert(0, qint.pr_id)
        if greatest_dev:
            for qint in queues[greatest_dev][QueueIntegrationBranch]:
                if qint.pr_id not in prs_hf + prs:
                    prs.insert(0, qint.pr_id)
        return prs_hf + prs | 
	def _extract_pr_ids(self, queues):
        """Return list of pull requests present in a set of queues.
        This is obtained by reading pr ids from the greatest
        development queue branch, so assumes that this branch
        contains a reference to all pull requests in queues (this
        is normally the case if everything was queued by Bert-E.
        Return (list):
            pull request ids in provided queue set (in the order
                of addition to the queue, from oldest to newest)
        """
        prs_hf = []
        prs = []
        # identify version corresponding to last dev queue
        # (i.e. ignore stab queues)
        greatest_dev = None
        for version in reversed(queues.keys()):
            if len(version) == 2 and greatest_dev is None:
                greatest_dev = version
            if len(version) == 4:
                # we may not catch the hf pr_id later from greatest_dev
                # so insert them now
                for qint in queues[version][QueueIntegrationBranch]:
                    if qint.pr_id not in prs_hf:
                        prs_hf.insert(0, qint.pr_id)
        if greatest_dev:
            for qint in queues[greatest_dev][QueueIntegrationBranch]:
                if qint.pr_id not in prs_hf + prs:
                    prs.insert(0, qint.pr_id)
        return prs_hf + prs | 
| 
	Python | 
	def _remove_unmergeable(self, prs, queues):
        """Given a set of queues, remove all queues that are not in
        the provided list of pull request ids.
        """
        for version in queues.keys():
            while (queues[version][QueueIntegrationBranch] and
                    queues[version][QueueIntegrationBranch][0].pr_id not in
                    prs):
                queues[version][QueueIntegrationBranch].pop(0) | 
	def _remove_unmergeable(self, prs, queues):
        """Given a set of queues, remove all queues that are not in
        the provided list of pull request ids.
        """
        for version in queues.keys():
            while (queues[version][QueueIntegrationBranch] and
                    queues[version][QueueIntegrationBranch][0].pr_id not in
                    prs):
                queues[version][QueueIntegrationBranch].pop(0) | 
| 
	Python | 
	def _process(self):
        """Given a sorted list of queues, identify most buildable series.
        We need to look at mergeable PRs from the point of view
        of all the possible merge_paths individually, then merge
        the results in a super-mergeable status.
        Populates:
            - _mergeable_queues (list): queues corresponding to the
                mergeable PRs
            - _mergeable_prs (list): pull requests affected by the merge
        """
        if not self._validated:
            raise errors.QueuesNotValidated()
        mergeable_prs = self._extract_pr_ids(self._queues)
        if not self.force_merge:
            for merge_path in self.merge_paths:
                versions = [branch.version_t for branch in merge_path]
                stack = deepcopy(self._queues)
                # remove versions not on this merge_path from consideration
                for version in list(stack.keys()):
                    # exclude hf version from this pop process
                    if version not in versions and len(version) < 4:
                        stack.pop(version)
                # obtain list of mergeable prs on this merge_path
                self._recursive_lookup(stack)
                path_mergeable_prs = self._extract_pr_ids(stack)
                # smallest table is the common denominator
                if len(path_mergeable_prs) < len(mergeable_prs):
                    mergeable_prs = path_mergeable_prs
        self._mergeable_prs = mergeable_prs
        mergeable_queues = deepcopy(self._queues)
        self._remove_unmergeable(mergeable_prs, mergeable_queues)
        self._mergeable_queues = mergeable_queues | 
	def _process(self):
        """Given a sorted list of queues, identify most buildable series.
        We need to look at mergeable PRs from the point of view
        of all the possible merge_paths individually, then merge
        the results in a super-mergeable status.
        Populates:
            - _mergeable_queues (list): queues corresponding to the
                mergeable PRs
            - _mergeable_prs (list): pull requests affected by the merge
        """
        if not self._validated:
            raise errors.QueuesNotValidated()
        mergeable_prs = self._extract_pr_ids(self._queues)
        if not self.force_merge:
            for merge_path in self.merge_paths:
                versions = [branch.version_t for branch in merge_path]
                stack = deepcopy(self._queues)
                # remove versions not on this merge_path from consideration
                for version in list(stack.keys()):
                    # exclude hf version from this pop process
                    if version not in versions and len(version) < 4:
                        stack.pop(version)
                # obtain list of mergeable prs on this merge_path
                self._recursive_lookup(stack)
                path_mergeable_prs = self._extract_pr_ids(stack)
                # smallest table is the common denominator
                if len(path_mergeable_prs) < len(mergeable_prs):
                    mergeable_prs = path_mergeable_prs
        self._mergeable_prs = mergeable_prs
        mergeable_queues = deepcopy(self._queues)
        self._remove_unmergeable(mergeable_prs, mergeable_queues)
        self._mergeable_queues = mergeable_queues | 
| 
	Python | 
	def finalize(self):
        """Finalize the collection of queues.
        Assumes _queues has been populated by calls to add_branch.
        """
        # order integration queues by content
        for version in self._queues.keys():
            self._queues[version][
                QueueIntegrationBranch].sort(reverse=True) | 
	def finalize(self):
        """Finalize the collection of queues.
        Assumes _queues has been populated by calls to add_branch.
        """
        # order integration queues by content
        for version in self._queues.keys():
            self._queues[version][
                QueueIntegrationBranch].sort(reverse=True) | 
| 
	Python | 
	def queued_prs(self):
        """Ordered list of queued PR IDs (oldest first)."""
        if not self._queues:
            return []
        # Find last_entry for which there is not a hf entry
        last_entry = None
        pr_ids = []
        for key in list(reversed(self._queues.keys())):
            if len(key) < 4:
                last_entry = self._queues[key]
                break
        if last_entry is not None:
            pr_ids = list(reversed([branch.pr_id for branch in
                                    last_entry[QueueIntegrationBranch]]))
        # Add hotfix PRs that are not seen from the queues top key
        pr_hf_ids = []
        for key in list(reversed(self._queues.keys())):
            if len(key) == 4:
                entry = self._queues[key]
                new_pr_ids = list([branch.pr_id for branch in
                                   entry[QueueIntegrationBranch]])
                for pr_hf_id in new_pr_ids:
                    if pr_hf_id not in pr_hf_ids:
                        pr_hf_ids = [pr_hf_id] + pr_hf_ids
        # Remove hotfix PRs from the first set
        pr_non_hf_ids = []
        for pr_id in pr_ids:
            if pr_id not in pr_hf_ids:
                pr_non_hf_ids = pr_non_hf_ids + [pr_id]
        return pr_hf_ids + pr_non_hf_ids | 
	def queued_prs(self):
        """Ordered list of queued PR IDs (oldest first)."""
        if not self._queues:
            return []
        # Find last_entry for which there is not a hf entry
        last_entry = None
        pr_ids = []
        for key in list(reversed(self._queues.keys())):
            if len(key) < 4:
                last_entry = self._queues[key]
                break
        if last_entry is not None:
            pr_ids = list(reversed([branch.pr_id for branch in
                                    last_entry[QueueIntegrationBranch]]))
        # Add hotfix PRs that are not seen from the queues top key
        pr_hf_ids = []
        for key in list(reversed(self._queues.keys())):
            if len(key) == 4:
                entry = self._queues[key]
                new_pr_ids = list([branch.pr_id for branch in
                                   entry[QueueIntegrationBranch]])
                for pr_hf_id in new_pr_ids:
                    if pr_hf_id not in pr_hf_ids:
                        pr_hf_ids = [pr_hf_id] + pr_hf_ids
        # Remove hotfix PRs from the first set
        pr_non_hf_ids = []
        for pr_id in pr_ids:
            if pr_id not in pr_hf_ids:
                pr_non_hf_ids = pr_non_hf_ids + [pr_id]
        return pr_hf_ids + pr_non_hf_ids | 
| 
	Python | 
	def update_micro(self, tag):
        """Update development branch latest micro based on tag."""
        pattern = r"^(?P<major>\d+)\.(?P<minor>\d+)\.(?P<micro>\d+)" \
                  r"(\.(?P<hfrev>\d+)|)$"
        match = re.match(pattern, tag)
        if not match:
            LOG.debug("Ignore tag: %s", tag)
            return
        LOG.debug("Consider tag: %s", tag)
        major = int(match.groupdict()['major'])
        minor = int(match.groupdict()['minor'])
        micro = int(match.groupdict()['micro'])
        hfrev = 0  # default hfrev
        if match.groupdict()['hfrev'] is not None:
            hfrev = int(match.groupdict()['hfrev'])
        try:
            branches = self._cascade[(major, minor)]
        except KeyError:
            LOG.debug("Ignore tag: %s", tag)
            return
        hf_branch = branches[HotfixBranch]
        stb_branch = branches[StabilizationBranch]
        dev_branch = branches[DevelopmentBranch]
        if hf_branch:
            if hf_branch.micro == micro:
                hf_branch.hfrev = max(hfrev + 1, hf_branch.hfrev)
                hf_branch.version = '%d.%d.%d.%d' % (hf_branch.major,
                                                     hf_branch.minor,
                                                     hf_branch.micro,
                                                     hf_branch.hfrev)
            if stb_branch is not None and \
               stb_branch.micro == hf_branch.micro:
                # We have a hotfix branch but we did not remove the
                # stabilization branch.
                raise errors.DeprecatedStabilizationBranch(stb_branch.name,
                                                           hf_branch.name)
        if stb_branch is not None and stb_branch.micro <= micro:
            # We have a tag but we did not remove the stabilization branch.
            raise errors.DeprecatedStabilizationBranch(stb_branch.name, tag)
        if dev_branch:
            dev_branch.micro = max(micro, dev_branch.micro) | 
	def update_micro(self, tag):
        """Update development branch latest micro based on tag."""
        pattern = r"^(?P<major>\d+)\.(?P<minor>\d+)\.(?P<micro>\d+)" \
                  r"(\.(?P<hfrev>\d+)|)$"
        match = re.match(pattern, tag)
        if not match:
            LOG.debug("Ignore tag: %s", tag)
            return
        LOG.debug("Consider tag: %s", tag)
        major = int(match.groupdict()['major'])
        minor = int(match.groupdict()['minor'])
        micro = int(match.groupdict()['micro'])
        hfrev = 0  # default hfrev
        if match.groupdict()['hfrev'] is not None:
            hfrev = int(match.groupdict()['hfrev'])
        try:
            branches = self._cascade[(major, minor)]
        except KeyError:
            LOG.debug("Ignore tag: %s", tag)
            return
        hf_branch = branches[HotfixBranch]
        stb_branch = branches[StabilizationBranch]
        dev_branch = branches[DevelopmentBranch]
        if hf_branch:
            if hf_branch.micro == micro:
                hf_branch.hfrev = max(hfrev + 1, hf_branch.hfrev)
                hf_branch.version = '%d.%d.%d.%d' % (hf_branch.major,
                                                     hf_branch.minor,
                                                     hf_branch.micro,
                                                     hf_branch.hfrev)
            if stb_branch is not None and \
               stb_branch.micro == hf_branch.micro:
                # We have a hotfix branch but we did not remove the
                # stabilization branch.
                raise errors.DeprecatedStabilizationBranch(stb_branch.name,
                                                           hf_branch.name)
        if stb_branch is not None and stb_branch.micro <= micro:
            # We have a tag but we did not remove the stabilization branch.
            raise errors.DeprecatedStabilizationBranch(stb_branch.name, tag)
        if dev_branch:
            dev_branch.micro = max(micro, dev_branch.micro) | 
| 
	Python | 
	def _set_target_versions(self, dst_branch):
        """Compute list of expected Jira FixVersion/s.
        Must be called after the cascade has been finalised.
        """
        for (major, minor), branch_set in self._cascade.items():
            dev_branch = branch_set[DevelopmentBranch]
            stb_branch = branch_set[StabilizationBranch]
            hf_branch = branch_set[HotfixBranch]
            if hf_branch and dst_branch.name.startswith('hotfix/'):
                self.target_versions.append('%d.%d.%d.%d' % (
                    hf_branch.major, hf_branch.minor, hf_branch.micro,
                    hf_branch.hfrev))
            if stb_branch:
                self.target_versions.append('%d.%d.%d' % (
                    major, minor, stb_branch.micro))
            elif dev_branch:
                offset = 2 if dev_branch.has_stabilization else 1
                self.target_versions.append('%d.%d.%d' % (
                    major, minor, dev_branch.micro + offset)) | 
	def _set_target_versions(self, dst_branch):
        """Compute list of expected Jira FixVersion/s.
        Must be called after the cascade has been finalised.
        """
        for (major, minor), branch_set in self._cascade.items():
            dev_branch = branch_set[DevelopmentBranch]
            stb_branch = branch_set[StabilizationBranch]
            hf_branch = branch_set[HotfixBranch]
            if hf_branch and dst_branch.name.startswith('hotfix/'):
                self.target_versions.append('%d.%d.%d.%d' % (
                    hf_branch.major, hf_branch.minor, hf_branch.micro,
                    hf_branch.hfrev))
            if stb_branch:
                self.target_versions.append('%d.%d.%d' % (
                    major, minor, stb_branch.micro))
            elif dev_branch:
                offset = 2 if dev_branch.has_stabilization else 1
                self.target_versions.append('%d.%d.%d' % (
                    major, minor, dev_branch.micro + offset)) | 
| 
	Python | 
	def finalize(self, dst_branch):
        """Finalize cascade considering given destination.
        Assumes the cascade has been populated by calls to add_branch
        and update_micro. The local lists keeping track
        Args:
            dst_branch: where the pull request wants to merge
        Raises:
        Returns:
            list: list of destination branches
            list: list of ignored destination branches
        """
        self.get_merge_paths()  # populate merge paths before removing data
        ignore_stb_branches = False
        include_dev_branches = False
        dev_branch = None
        dst_hf = dst_branch.name.startswith('hotfix/')
        for (major, minor), branch_set in list(self._cascade.items()):
            dev_branch = branch_set[DevelopmentBranch]
            stb_branch = branch_set[StabilizationBranch]
            hf_branch = branch_set[HotfixBranch]
            # we have to target at least a hf or a dev branch
            if dev_branch is None and hf_branch is None:
                raise errors.DevBranchDoesNotExist(
                    'development/%d.%d' % (major, minor))
            # remember if a stab is attached before it is removed
            # from path, for the correct target_version computation
            if stb_branch:
                dev_branch.has_stabilization = True
            # remove untargetted branches from cascade
            if dst_branch == dev_branch:
                include_dev_branches = True
                ignore_stb_branches = True
            if stb_branch and (ignore_stb_branches or dst_hf):
                branch_set[StabilizationBranch] = None
                self.ignored_branches.append(stb_branch.name)
            if dst_branch == stb_branch:
                include_dev_branches = True
                ignore_stb_branches = True
            if not include_dev_branches or dst_hf:
                if branch_set[DevelopmentBranch]:
                    branch_set[DevelopmentBranch] = None
                    self.ignored_branches.append(dev_branch.name)
                if branch_set[StabilizationBranch]:
                    branch_set[StabilizationBranch] = None
                    self.ignored_branches.append(stb_branch.name)
                if not dst_hf:
                    del self._cascade[(major, minor)]
                    continue
                if not hf_branch or hf_branch.name != dst_branch.name:
                    if branch_set[HotfixBranch]:
                        branch_set[HotfixBranch] = None
                        self.ignored_branches.append(hf_branch.name)
                    del self._cascade[(major, minor)]
            # add to dst_branches in the correct order
            if not dst_hf:
                if branch_set[StabilizationBranch]:
                    self.dst_branches.append(stb_branch)
                if branch_set[DevelopmentBranch]:
                    self.dst_branches.append(dev_branch)
            else:
                if branch_set[HotfixBranch]:
                    if dst_branch.name == hf_branch.name:
                        self.dst_branches.append(hf_branch)
        if not dev_branch and not dst_hf:
            raise errors.NotASingleDevBranch()
        self._set_target_versions(dst_branch)
        self.ignored_branches.sort() | 
	def finalize(self, dst_branch):
        """Finalize cascade considering given destination.
        Assumes the cascade has been populated by calls to add_branch
        and update_micro. The local lists keeping track
        Args:
            dst_branch: where the pull request wants to merge
        Raises:
        Returns:
            list: list of destination branches
            list: list of ignored destination branches
        """
        self.get_merge_paths()  # populate merge paths before removing data
        ignore_stb_branches = False
        include_dev_branches = False
        dev_branch = None
        dst_hf = dst_branch.name.startswith('hotfix/')
        for (major, minor), branch_set in list(self._cascade.items()):
            dev_branch = branch_set[DevelopmentBranch]
            stb_branch = branch_set[StabilizationBranch]
            hf_branch = branch_set[HotfixBranch]
            # we have to target at least a hf or a dev branch
            if dev_branch is None and hf_branch is None:
                raise errors.DevBranchDoesNotExist(
                    'development/%d.%d' % (major, minor))
            # remember if a stab is attached before it is removed
            # from path, for the correct target_version computation
            if stb_branch:
                dev_branch.has_stabilization = True
            # remove untargetted branches from cascade
            if dst_branch == dev_branch:
                include_dev_branches = True
                ignore_stb_branches = True
            if stb_branch and (ignore_stb_branches or dst_hf):
                branch_set[StabilizationBranch] = None
                self.ignored_branches.append(stb_branch.name)
            if dst_branch == stb_branch:
                include_dev_branches = True
                ignore_stb_branches = True
            if not include_dev_branches or dst_hf:
                if branch_set[DevelopmentBranch]:
                    branch_set[DevelopmentBranch] = None
                    self.ignored_branches.append(dev_branch.name)
                if branch_set[StabilizationBranch]:
                    branch_set[StabilizationBranch] = None
                    self.ignored_branches.append(stb_branch.name)
                if not dst_hf:
                    del self._cascade[(major, minor)]
                    continue
                if not hf_branch or hf_branch.name != dst_branch.name:
                    if branch_set[HotfixBranch]:
                        branch_set[HotfixBranch] = None
                        self.ignored_branches.append(hf_branch.name)
                    del self._cascade[(major, minor)]
            # add to dst_branches in the correct order
            if not dst_hf:
                if branch_set[StabilizationBranch]:
                    self.dst_branches.append(stb_branch)
                if branch_set[DevelopmentBranch]:
                    self.dst_branches.append(dev_branch)
            else:
                if branch_set[HotfixBranch]:
                    if dst_branch.name == hf_branch.name:
                        self.dst_branches.append(hf_branch)
        if not dev_branch and not dst_hf:
            raise errors.NotASingleDevBranch()
        self._set_target_versions(dst_branch)
        self.ignored_branches.sort() | 
| 
	Python | 
	def branch_factory(repo: git.Repository, branch_name: str) -> GWFBranch:
    """Construct a GWFBranch object corresponding to the branch_name.
    Args:
        repo: corresponding git repository.
        branch_name: name of the branch to construct.
    Returns:
        The constructed GWFBranch.
    Raises:
        UnrecognizedBranchPattern if the branch name is invalid.
    """
    for cls in [StabilizationBranch, DevelopmentBranch, ReleaseBranch,
                QueueBranch, QueueIntegrationBranch,
                FeatureBranch, HotfixBranch, LegacyHotfixBranch,
                IntegrationBranch, UserBranch]:
        try:
            branch = cls(repo, branch_name)
            return branch
        except errors.BranchNameInvalid:
            pass
    raise errors.UnrecognizedBranchPattern(branch_name) | 
	def branch_factory(repo: git.Repository, branch_name: str) -> GWFBranch:
    """Construct a GWFBranch object corresponding to the branch_name.
    Args:
        repo: corresponding git repository.
        branch_name: name of the branch to construct.
    Returns:
        The constructed GWFBranch.
    Raises:
        UnrecognizedBranchPattern if the branch name is invalid.
    """
    for cls in [StabilizationBranch, DevelopmentBranch, ReleaseBranch,
                QueueBranch, QueueIntegrationBranch,
                FeatureBranch, HotfixBranch, LegacyHotfixBranch,
                IntegrationBranch, UserBranch]:
        try:
            branch = cls(repo, branch_name)
            return branch
        except errors.BranchNameInvalid:
            pass
    raise errors.UnrecognizedBranchPattern(branch_name) | 
| 
	Python | 
	def build_branch_cascade(job):
    """Initialize the job's branch cascade."""
    cascade = job.git.cascade
    if cascade.dst_branches:
        # Do not rebuild cascade
        return cascade
    cascade.build(job.git.repo, job.git.dst_branch)
    LOG.debug(cascade.dst_branches)
    return cascade | 
	def build_branch_cascade(job):
    """Initialize the job's branch cascade."""
    cascade = job.git.cascade
    if cascade.dst_branches:
        # Do not rebuild cascade
        return cascade
    cascade.build(job.git.repo, job.git.dst_branch)
    LOG.debug(cascade.dst_branches)
    return cascade | 
| 
	Python | 
	def ignore_files(dir: str, files: list[str]):
    """
    Returns a list of files to ignore.
    To be used by shutil.copytree()
    """
    return [f for f in files if Path(dir, f).is_file()] | 
	def ignore_files(dir: str, files: list[str]):
    """
    Returns a list of files to ignore.
    To be used by shutil.copytree()
    """
    return [f for f in files if Path(dir, f).is_file()] | 
| 
	Python | 
	def resize_image(
    image: Image.Image, max_width: int = 0, max_height: int = 0
) -> Image.Image:
    """
    Resize an image and return it.
    :param image: A Pill.Image object.
    :param max_width: The max width the processed image can have.
    :param max_height: The max height the processed image can have.
    """
    old_width, old_height = image.size[0], image.size[1]
    @cache
    def get_proper_sizes(
        max_width: int, max_height: int, old_width: int, old_height: int
    ) -> tuple[int, int]:
        new_width, new_height = max_width, max_height
        if max_width == 0:
            """If width is not set."""
            new_width = round(old_width * (max_height / old_height))
        elif max_height == 0:
            """If height is not set."""
            new_height = round(old_height * (max_width / old_width))
        else:
            if old_width > old_height:
                """If image's original width is bigger than original height."""
                new_height = round(old_height * (new_width / old_width))
            elif old_height > old_width:
                """If image's original height is bigger than original width."""
                new_width = round(old_width * (new_height / old_height))
            elif old_width == old_height:
                """If image's original width and height are the same."""
                if max_width > max_height:
                    """If new width is bigger than new height."""
                    new_width = max_height
                elif max_height > max_width:
                    """If new height is bigger than new width."""
                    new_height = max_height
        if new_width > max_width and max_width != 0:
            new_width = max_width
            new_height = round(old_height * (new_width / old_width))
        if new_height > max_height and max_height != 0:
            new_height = max_height
            new_width = round(old_width * (new_height / old_height))
        new_width = new_width
        new_height = new_height
        return new_width, new_height
    new_width, new_height = get_proper_sizes(
        max_width, max_height, old_width, old_height
    )
    image = image.resize((new_width, new_height), Image.LANCZOS)
    return image | 
	def resize_image(
    image: Image.Image, max_width: int = 0, max_height: int = 0
) -> Image.Image:
    """
    Resize an image and return it.
    :param image: A Pill.Image object.
    :param max_width: The max width the processed image can have.
    :param max_height: The max height the processed image can have.
    """
    old_width, old_height = image.size[0], image.size[1]
    @cache
    def get_proper_sizes(
        max_width: int, max_height: int, old_width: int, old_height: int
    ) -> tuple[int, int]:
        new_width, new_height = max_width, max_height
        if max_width == 0:
            """If width is not set."""
            new_width = round(old_width * (max_height / old_height))
        elif max_height == 0:
            """If height is not set."""
            new_height = round(old_height * (max_width / old_width))
        else:
            if old_width > old_height:
                """If image's original width is bigger than original height."""
                new_height = round(old_height * (new_width / old_width))
            elif old_height > old_width:
                """If image's original height is bigger than original width."""
                new_width = round(old_width * (new_height / old_height))
            elif old_width == old_height:
                """If image's original width and height are the same."""
                if max_width > max_height:
                    """If new width is bigger than new height."""
                    new_width = max_height
                elif max_height > max_width:
                    """If new height is bigger than new width."""
                    new_height = max_height
        if new_width > max_width and max_width != 0:
            new_width = max_width
            new_height = round(old_height * (new_width / old_width))
        if new_height > max_height and max_height != 0:
            new_height = max_height
            new_width = round(old_width * (new_height / old_height))
        new_width = new_width
        new_height = new_height
        return new_width, new_height
    new_width, new_height = get_proper_sizes(
        max_width, max_height, old_width, old_height
    )
    image = image.resize((new_width, new_height), Image.LANCZOS)
    return image | 
| 
	Python | 
	def dir_generator() -> tuple[Path, Path, Path]:
        """Generates files and folders for the test."""
        parent_dir = Path(tmp_path, "parent")
        first_child = Path(parent_dir, "first_child")
        second_child = Path(first_child, "second_child")
        parent_dir.mkdir()
        first_child.mkdir()
        second_child.mkdir()
        tmp_img = Image.new("RGB", (original_width, original_height))
        for index, dir in enumerate((parent_dir, first_child, second_child)):
            for i in range(index + 1):
                img_path = Path(dir, f"image-{i}.jpg")
                tmp_img.save(img_path)
        return parent_dir, first_child, second_child | 
	def dir_generator() -> tuple[Path, Path, Path]:
        """Generates files and folders for the test."""
        parent_dir = Path(tmp_path, "parent")
        first_child = Path(parent_dir, "first_child")
        second_child = Path(first_child, "second_child")
        parent_dir.mkdir()
        first_child.mkdir()
        second_child.mkdir()
        tmp_img = Image.new("RGB", (original_width, original_height))
        for index, dir in enumerate((parent_dir, first_child, second_child)):
            for i in range(index + 1):
                img_path = Path(dir, f"image-{i}.jpg")
                tmp_img.save(img_path)
        return parent_dir, first_child, second_child | 
| 
	Python | 
	def SanityCheckName(self,name):
		"""The way to check that the name is good.
		For now we only allow letters, numbers and underscores.
		The name is used directly as part of a file-name and should therefore be nice."""
		import re
		if not re.match("""[a-zA-Z0-9_]+""", name):
			raise self.NameError(name) | 
	def SanityCheckName(self,name):
		"""The way to check that the name is good.
		For now we only allow letters, numbers and underscores.
		The name is used directly as part of a file-name and should therefore be nice."""
		import re
		if not re.match("""[a-zA-Z0-9_]+""", name):
			raise self.NameError(name) | 
| 
	Python | 
	def SessionName(self,name, nocheck=False):
		"""The only way anyone whould ever contruct the session name"""
		if not nocheck:
			self.SanityCheckName(name)
		return self.session_dir + os.sep + self.session_pattern % name | 
	def SessionName(self,name, nocheck=False):
		"""The only way anyone whould ever contruct the session name"""
		if not nocheck:
			self.SanityCheckName(name)
		return self.session_dir + os.sep + self.session_pattern % name | 
| 
	Python | 
	def StateName(self,name, nocheck=False):
		"""The only way anyone should ever construct the state name"""
		if not nocheck:
			self.SanityCheckName(name)
		return self.session_dir + os.sep + self.state_pattern % name | 
	def StateName(self,name, nocheck=False):
		"""The only way anyone should ever construct the state name"""
		if not nocheck:
			self.SanityCheckName(name)
		return self.session_dir + os.sep + self.state_pattern % name | 
| 
	Python | 
	def ConstructDifference(self, old_env, new_env ):
		"""Construct the dictionary of EWDiffObjects that is called a 'state'."""
		from EnvironmentObjects import EWDiffObject
		diff = {}
		#consider all keys that are in either einvironment, old or new
		for key in set(new_env.keys() + old_env.keys()):
			if key not in new_env:
				#it must be in old_env
				diff[key] = EWDiffObject(old=old_env[key])
				# new is none, this corresponds to a removal
			elif key not in old_env:
				# it must be in new_env
				diff[key] = EWDiffObject(new=new_env[key])
				# old is none, this is an addition
			else:
				# maybe nothing changed? This is most likely.
				if old_env[key] != new_env[key]:
					# something changed
					diff[key] = EWDiffObject(old=old_env[key], new=new_env[key])
		return diff | 
	def ConstructDifference(self, old_env, new_env ):
		"""Construct the dictionary of EWDiffObjects that is called a 'state'."""
		from EnvironmentObjects import EWDiffObject
		diff = {}
		#consider all keys that are in either einvironment, old or new
		for key in set(new_env.keys() + old_env.keys()):
			if key not in new_env:
				#it must be in old_env
				diff[key] = EWDiffObject(old=old_env[key])
				# new is none, this corresponds to a removal
			elif key not in old_env:
				# it must be in new_env
				diff[key] = EWDiffObject(new=new_env[key])
				# old is none, this is an addition
			else:
				# maybe nothing changed? This is most likely.
				if old_env[key] != new_env[key]:
					# something changed
					diff[key] = EWDiffObject(old=old_env[key], new=new_env[key])
		return diff | 
| 
	Python | 
	def GetStateOrSessionDiff(self,name):
		import os
		log("Session Dir",os.listdir(self.session_dir))
		"""If an existing saved state by this name is found, return that,if an open session by this name is found, construct the difference to the present."""
		session_file_name = self.SessionName(name)
		state_file_name = self.StateName(name)
		try:
			diff = self.GetState(name)
		except:
			log()
			log("session wans't available. making it.")
			try:
				diff = self.ConstructDifference(self.GetSession(name), self.shell.environment)
			except:
				log()
				log("that didn't work either")
				raise self.UnknownName(name)
		return diff | 
	def GetStateOrSessionDiff(self,name):
		import os
		log("Session Dir",os.listdir(self.session_dir))
		"""If an existing saved state by this name is found, return that,if an open session by this name is found, construct the difference to the present."""
		session_file_name = self.SessionName(name)
		state_file_name = self.StateName(name)
		try:
			diff = self.GetState(name)
		except:
			log()
			log("session wans't available. making it.")
			try:
				diff = self.ConstructDifference(self.GetSession(name), self.shell.environment)
			except:
				log()
				log("that didn't work either")
				raise self.UnknownName(name)
		return diff | 
| 
	Python | 
	def CloseSession(self,name):
		"""Close an existing open recording session"""
		oldsession = self.GetSession(name)
		diff = self.ConstructDifference(oldsession, self.shell.environment)
		self.WriteState(name, diff)
		
		# Remove the session file, thereby closing the session
		import os
		os.remove(self.SessionName(name)) | 
	def CloseSession(self,name):
		"""Close an existing open recording session"""
		oldsession = self.GetSession(name)
		diff = self.ConstructDifference(oldsession, self.shell.environment)
		self.WriteState(name, diff)
		
		# Remove the session file, thereby closing the session
		import os
		os.remove(self.SessionName(name)) | 
| 
	Python | 
	def undo(self,name):
		"""remove the changes associated with a state."""
		import os
		if not os.path.exists(self.StateName(name)) and os.path.exists(self.SessionName(name)):
			force = ("-f" in sys.argv or "--force" in sys.argv)
			if force:
				self.ClearState(name)
				self.CloseSession(name)
			else:
				print >>sys.stderr, "Session %s is open. Do you want to close it? "  % name,
				user=raw_input()
				log("Question:","Session %s is open. Do you want to close it? "  % name,"answer:",user)
				if re.match("""y(es?)?""",user):
					print >>sys.stderr," --> Closing."
					self.UserClearState(name)
					self.CloseSession(name)
				else:
					print >>sys.stderr," --> Using open session."
		
		return self.redo(name,Reverse=True) | 
	def undo(self,name):
		"""remove the changes associated with a state."""
		import os
		if not os.path.exists(self.StateName(name)) and os.path.exists(self.SessionName(name)):
			force = ("-f" in sys.argv or "--force" in sys.argv)
			if force:
				self.ClearState(name)
				self.CloseSession(name)
			else:
				print >>sys.stderr, "Session %s is open. Do you want to close it? "  % name,
				user=raw_input()
				log("Question:","Session %s is open. Do you want to close it? "  % name,"answer:",user)
				if re.match("""y(es?)?""",user):
					print >>sys.stderr," --> Closing."
					self.UserClearState(name)
					self.CloseSession(name)
				else:
					print >>sys.stderr," --> Using open session."
		
		return self.redo(name,Reverse=True) | 
| 
	Python | 
	def GetShellParser(shell_var):
    """Decides which shell environment reader and diff writer to use."""
    if shell_var == "/bin/bash":
        from Bash import BashInteractor
        return BashInteractor
    else:
        raise Exception("Unknown shell.") | 
	def GetShellParser(shell_var):
    """Decides which shell environment reader and diff writer to use."""
    if shell_var == "/bin/bash":
        from Bash import BashInteractor
        return BashInteractor
    else:
        raise Exception("Unknown shell.") | 
| 
	Python | 
	def _crop_center(image):
	"""Returns a cropped square image."""
	shape = image.shape
	new_shape = min(shape[1], shape[2])
	offset_y = max(shape[1] - shape[2], 0) // 2
	offset_x = max(shape[2] - shape[1], 0) // 2
	return tf.image.crop_to_bounding_box(image, offset_y, offset_x, new_shape, new_shape) | 
	def _crop_center(image):
	"""Returns a cropped square image."""
	shape = image.shape
	new_shape = min(shape[1], shape[2])
	offset_y = max(shape[1] - shape[2], 0) // 2
	offset_x = max(shape[2] - shape[1], 0) // 2
	return tf.image.crop_to_bounding_box(image, offset_y, offset_x, new_shape, new_shape) | 
| 
	Python | 
	def fseq(options):
    '''
    Call peaks using F-seq
    '''
    # parse options
    if not which('fseq'):
        sys.exit('Error: No F-seq installed!')
    folder = check_dir(options['<rampagedir>'])
    flength = options['-l']
    wig_flag = options['--wig']
    percent = float(options['-p'])
    with open(os.path.join(folder, 'total_counts.txt'), 'r') as f:
        total = int(f.read().rstrip())
    # run F-seq
    flist = {'+': 'rampage_plus_5end.bed', '-': 'rampage_minus_5end.bed'}
    all_peak_f = os.path.join(folder, 'rampage_peaks.txt')
    with open(all_peak_f, 'w') as out:
        for strand in flist:
            peak_f = run_fseq(folder, flist[strand], strand, flength, wig_flag,
                              percent)
            with open(peak_f, 'r') as f:
                for line in f:
                    if total:  # calculate RPM
                        reads = int(line.rstrip().split()[9])
                        rpm = reads * 1000000.0 / total
                        out.write(line.rstrip() + '\t%f\n' % rpm)
                    else:
                        out.write(line) | 
	def fseq(options):
    '''
    Call peaks using F-seq
    '''
    # parse options
    if not which('fseq'):
        sys.exit('Error: No F-seq installed!')
    folder = check_dir(options['<rampagedir>'])
    flength = options['-l']
    wig_flag = options['--wig']
    percent = float(options['-p'])
    with open(os.path.join(folder, 'total_counts.txt'), 'r') as f:
        total = int(f.read().rstrip())
    # run F-seq
    flist = {'+': 'rampage_plus_5end.bed', '-': 'rampage_minus_5end.bed'}
    all_peak_f = os.path.join(folder, 'rampage_peaks.txt')
    with open(all_peak_f, 'w') as out:
        for strand in flist:
            peak_f = run_fseq(folder, flist[strand], strand, flength, wig_flag,
                              percent)
            with open(peak_f, 'r') as f:
                for line in f:
                    if total:  # calculate RPM
                        reads = int(line.rstrip().split()[9])
                        rpm = reads * 1000000.0 / total
                        out.write(line.rstrip() + '\t%f\n' % rpm)
                    else:
                        out.write(line) | 
| 
	Python | 
	def forward(self, support, support_mask, query, query_mask):
        """Att-Induction Networks forward.
        Args:
            support: torch.Tensor, [-1, N, K, max_length]
            support_mask: torch.Tensor, [-1, N, K, max_length]
            query: torch.Tensor, [-1, totalQ, max_length]
            query_mask: torch.Tensor, [-1, totalQ, max_length]
            
        Returns:
            relation_score: torch.Tensor, [B, totalQ, N]
            predict_label: torch.Tensor, [B, totalQ]"""
        B, N, K = support.size()[:3]
        totalQ = query.size()[1]  # Number of query instances for each batch
        
        # 1. Encoder
        support = support.view(-1, self.max_length)  # [B * N * K, max_length]
        support_mask = support_mask.view(-1, self.max_length)
        query = query.view(-1, self.max_length)  # [B * totalQ, max_length]
        query_mask = query_mask.view(-1, self.max_length)
        support = self.encoder(support, support_mask)  # [B * N * K, D]
        query = self.encoder(query, query_mask)  # [B * totalQ, D]
        support = support.view(-1, N, K, self.hidden_size)  # [B, N, K, D]
        query = query.view(-1, totalQ, self.hidden_size)  # [B, totalQ, D]
        # 2. Induction
        # 2.1 Attention score
        support_att = support.unsqueeze(1).expand(-1, totalQ, -1, -1, -1)  # [B, totalQ, N, K, D]
        query_att = query.unsqueeze(2).unsqueeze(3).expand(-1, -1, N, -1, -1) # [B, totalQ, N, 1, D]
        support_query_att = torch.cat((query_att, support_att), dim=3)  # [B, totalQ, N, 1 + K, D]
        support_query_att = support_query_att.view(-1, 1 + K, self.hidden_size).transpose(0, 1)  # [1 + K, B * totalQ * N , D]
        att_score = self.self_att(support_query_att, support_query_att, support_query_att)[0]  # [1 + K, B * totalQ * N , D]
        att_score = support_query_att + self.dropout(att_score)
        att_score = self.layer_norm(att_score)
        att_score = att_score[0].view(-1, totalQ, N, self.hidden_size)  # [B, totalQ, N, D]
        att_score = att_score.unsqueeze(3)  # [B, totalQ, N, 1, D]
        # 2.2 Attention-based dynamic routing
        support_hat = self.__squash(self.fc_induction(support).unsqueeze(1).expand(-1, totalQ, -1, -1, -1))  # [B, totalQ, N, K, D]
        b = torch.zeros(B, totalQ, N, K, 1, device=self.current_device, requires_grad=False)  # [B, totalQ, N, K, 1]
        for _ in range(self.induction_iters):
            d = F.softmax(b, dim=3)  # [B, totalQ, N, K, 1]
            c_hat = torch.mul(d, support_hat).sum(3, keepdims=True)  # [B, totalQ, N, 1, D]
            c = self.__squash(c_hat)  # [B, totalQ, N, 1, D]
            b = b + torch.mul(att_score, torch.tanh(torch.mul(support_hat, c))).sum(-1, keepdims=True)  # [B, totalQ, N, K, 1]
        
        # 3. Relation
        c = c.squeeze(3)  # [B, totalQ, N, D]
        query = query.unsqueeze(2).expand(-1, -1, N, -1)  # [B, totalQ, N, D]
        query = query.contiguous()
        relation_score = self.relation(c, query)  # [B, totalQ, N]
        predict_label = relation_score.argmax(dim=-1, keepdims=False)  # [B, totalQ]
        return relation_score, predict_label | 
	def forward(self, support, support_mask, query, query_mask):
        """Att-Induction Networks forward.
        Args:
            support: torch.Tensor, [-1, N, K, max_length]
            support_mask: torch.Tensor, [-1, N, K, max_length]
            query: torch.Tensor, [-1, totalQ, max_length]
            query_mask: torch.Tensor, [-1, totalQ, max_length]
            
        Returns:
            relation_score: torch.Tensor, [B, totalQ, N]
            predict_label: torch.Tensor, [B, totalQ]"""
        B, N, K = support.size()[:3]
        totalQ = query.size()[1]  # Number of query instances for each batch
        
        # 1. Encoder
        support = support.view(-1, self.max_length)  # [B * N * K, max_length]
        support_mask = support_mask.view(-1, self.max_length)
        query = query.view(-1, self.max_length)  # [B * totalQ, max_length]
        query_mask = query_mask.view(-1, self.max_length)
        support = self.encoder(support, support_mask)  # [B * N * K, D]
        query = self.encoder(query, query_mask)  # [B * totalQ, D]
        support = support.view(-1, N, K, self.hidden_size)  # [B, N, K, D]
        query = query.view(-1, totalQ, self.hidden_size)  # [B, totalQ, D]
        # 2. Induction
        # 2.1 Attention score
        support_att = support.unsqueeze(1).expand(-1, totalQ, -1, -1, -1)  # [B, totalQ, N, K, D]
        query_att = query.unsqueeze(2).unsqueeze(3).expand(-1, -1, N, -1, -1) # [B, totalQ, N, 1, D]
        support_query_att = torch.cat((query_att, support_att), dim=3)  # [B, totalQ, N, 1 + K, D]
        support_query_att = support_query_att.view(-1, 1 + K, self.hidden_size).transpose(0, 1)  # [1 + K, B * totalQ * N , D]
        att_score = self.self_att(support_query_att, support_query_att, support_query_att)[0]  # [1 + K, B * totalQ * N , D]
        att_score = support_query_att + self.dropout(att_score)
        att_score = self.layer_norm(att_score)
        att_score = att_score[0].view(-1, totalQ, N, self.hidden_size)  # [B, totalQ, N, D]
        att_score = att_score.unsqueeze(3)  # [B, totalQ, N, 1, D]
        # 2.2 Attention-based dynamic routing
        support_hat = self.__squash(self.fc_induction(support).unsqueeze(1).expand(-1, totalQ, -1, -1, -1))  # [B, totalQ, N, K, D]
        b = torch.zeros(B, totalQ, N, K, 1, device=self.current_device, requires_grad=False)  # [B, totalQ, N, K, 1]
        for _ in range(self.induction_iters):
            d = F.softmax(b, dim=3)  # [B, totalQ, N, K, 1]
            c_hat = torch.mul(d, support_hat).sum(3, keepdims=True)  # [B, totalQ, N, 1, D]
            c = self.__squash(c_hat)  # [B, totalQ, N, 1, D]
            b = b + torch.mul(att_score, torch.tanh(torch.mul(support_hat, c))).sum(-1, keepdims=True)  # [B, totalQ, N, K, 1]
        
        # 3. Relation
        c = c.squeeze(3)  # [B, totalQ, N, D]
        query = query.unsqueeze(2).expand(-1, -1, N, -1)  # [B, totalQ, N, D]
        query = query.contiguous()
        relation_score = self.relation(c, query)  # [B, totalQ, N]
        predict_label = relation_score.argmax(dim=-1, keepdims=False)  # [B, totalQ]
        return relation_score, predict_label | 
| 
	Python | 
	def forward(self, tokens, lengths):
        """Self-Attention Bi-LSTM encoder forward.
        
        Args:
            tokens: torch.Tensor, [-1, max_length]
            lengths: torch.Tensor, [-1, max_length]
        
        Returns:
            sentence_embedding: torch.Tensor, [-1, 2 * hidden_size]"""
        embedding = self.word_embedding(tokens)  # [-1, max_length, word_vec_dim]
        lengths = lengths[:, 0]  # [-1]
        embedding = nn.utils.rnn.pack_padded_sequence(
            embedding,
            lengths,
            batch_first=True,
            enforce_sorted=False
        )
        output, _ = self.bilstm(embedding)  # packed sequence. Throw away (h_n, c_n)
        output, _ = nn.utils.rnn.pad_packed_sequence(
            output,
            batch_first=True,
            padding_value=0.0,
            total_length=self.max_length
        )  # [-1, max_length, 2 * hidden_size]. Throw away lengths tensor
        att_score = torch.tanh(self.att1(output))  # [-1, max_length, att_dim]
        att_score = F.softmax(self.att2(att_score), dim=1)  # [-1, max_length, 1]
        output = torch.mul(att_score, output).sum(dim=1, keepdim=False)  # [-1, 2 * hidden_size]
        return output | 
	def forward(self, tokens, lengths):
        """Self-Attention Bi-LSTM encoder forward.
        
        Args:
            tokens: torch.Tensor, [-1, max_length]
            lengths: torch.Tensor, [-1, max_length]
        
        Returns:
            sentence_embedding: torch.Tensor, [-1, 2 * hidden_size]"""
        embedding = self.word_embedding(tokens)  # [-1, max_length, word_vec_dim]
        lengths = lengths[:, 0]  # [-1]
        embedding = nn.utils.rnn.pack_padded_sequence(
            embedding,
            lengths,
            batch_first=True,
            enforce_sorted=False
        )
        output, _ = self.bilstm(embedding)  # packed sequence. Throw away (h_n, c_n)
        output, _ = nn.utils.rnn.pad_packed_sequence(
            output,
            batch_first=True,
            padding_value=0.0,
            total_length=self.max_length
        )  # [-1, max_length, 2 * hidden_size]. Throw away lengths tensor
        att_score = torch.tanh(self.att1(output))  # [-1, max_length, att_dim]
        att_score = F.softmax(self.att2(att_score), dim=1)  # [-1, max_length, 1]
        output = torch.mul(att_score, output).sum(dim=1, keepdim=False)  # [-1, 2 * hidden_size]
        return output | 
| 
	Python | 
	def glove_preprocessing(word_vec_file, output_path):
    """Transforming English word embedding txt into .npy embedding matrix and JSON index file."""
    token2idx = {}
    word_vec = []
    with open(word_vec_file, "r") as f:
        line = f.readline()
        index = 0
        while line:
            line = line.strip().split()
            token, vec = line[0], line[1:]
            vec = list(map(float, vec))
            if token in token2idx:
                raise ValueError("{} is existed!".format(token))
            else:
                token2idx[token] = index
            word_vec.append(vec)
            index += 1
            line = f.readline()
    word_vec = np.array(word_vec)
    assert len(token2idx) == np.shape(word_vec)[0], "Length is not same!"
    json.dump(token2idx, open(os.path.join(output_path, "token2idx.json"), "w"))
    np.save(os.path.join(output_path, "word_vec.npy"), word_vec) | 
	def glove_preprocessing(word_vec_file, output_path):
    """Transforming English word embedding txt into .npy embedding matrix and JSON index file."""
    token2idx = {}
    word_vec = []
    with open(word_vec_file, "r") as f:
        line = f.readline()
        index = 0
        while line:
            line = line.strip().split()
            token, vec = line[0], line[1:]
            vec = list(map(float, vec))
            if token in token2idx:
                raise ValueError("{} is existed!".format(token))
            else:
                token2idx[token] = index
            word_vec.append(vec)
            index += 1
            line = f.readline()
    word_vec = np.array(word_vec)
    assert len(token2idx) == np.shape(word_vec)[0], "Length is not same!"
    json.dump(token2idx, open(os.path.join(output_path, "token2idx.json"), "w"))
    np.save(os.path.join(output_path, "word_vec.npy"), word_vec) | 
| 
	Python | 
	def chinese_word_vec_preprocessing(word_vec_file, output_path):
    """Transforming Chinese word embedding txt into .npy embedding matrix and JSON index file."""
    token2idx = {}
    word_vec = []
    with open(word_vec_file, "r") as f:
        line = f.readline()  # 1292607 300
        line = f.readline()
        index = 0
        while line:
            line = line.rstrip().split(" ")
            # print(line)
            token, vec = line[0], line[1:]
            vec = list(map(float, vec))
            if token in token2idx:
                print("{} is existed!".format(token))
                line = f.readline()
                continue
            else:
                token2idx[token] = index
            word_vec.append(vec)
            index += 1
            line = f.readline()
            if index % 100000 == 0:
                print("{:d} done!".format(index))
    word_vec = np.array(word_vec)
    assert len(token2idx) == np.shape(word_vec)[0], "Length is not same!"
    json.dump(token2idx, open(os.path.join(output_path, "token2idx.json"), "w"))
    np.save(os.path.join(output_path, "word_vec.npy"), word_vec) | 
	def chinese_word_vec_preprocessing(word_vec_file, output_path):
    """Transforming Chinese word embedding txt into .npy embedding matrix and JSON index file."""
    token2idx = {}
    word_vec = []
    with open(word_vec_file, "r") as f:
        line = f.readline()  # 1292607 300
        line = f.readline()
        index = 0
        while line:
            line = line.rstrip().split(" ")
            # print(line)
            token, vec = line[0], line[1:]
            vec = list(map(float, vec))
            if token in token2idx:
                print("{} is existed!".format(token))
                line = f.readline()
                continue
            else:
                token2idx[token] = index
            word_vec.append(vec)
            index += 1
            line = f.readline()
            if index % 100000 == 0:
                print("{:d} done!".format(index))
    word_vec = np.array(word_vec)
    assert len(token2idx) == np.shape(word_vec)[0], "Length is not same!"
    json.dump(token2idx, open(os.path.join(output_path, "token2idx.json"), "w"))
    np.save(os.path.join(output_path, "word_vec.npy"), word_vec) | 
| 
	Python | 
	def make_train_indices(test_indices, n_examples, downsample=False, labels=None):
    """Makes a set of train indices from a set of test indices.
    test_indices: List of test indices.
    n_examples: Number of total (testing + training) examples.
    downsample: Whether to downsample. Default False.
    labels: Binary labels. Only needed if downsample is True.
    -> sorted list of training indices.
    """
    if downsample and labels is None:
        raise ValueError('labels must be specified if downsample is specified')
    training = sorted(set(range(n_examples)) - set(test_indices))
    if not downsample:
        logging.debug('Not downsampling...')
        return training
    logging.debug('Downsampling...')
    training = numpy.array(training)
    positives = training[labels[training] == 1]
    negatives = training[labels[training] == 0]
    if positives.shape[0] > negatives.shape[0]:
        numpy.random.shuffle(positives)
        positives = positives[:negatives.shape[0]]
        training = numpy.concatenate([positives, negatives])
    else:
        numpy.random.shuffle(negatives)
        negatives = negatives[:positives.shape[0]]
        training = numpy.concatenate([negatives, positives])
    training.sort()
    logging.debug('Positive examples: {}'.format(positives.shape[0]))
    logging.debug('Negative examples: {}'.format(negatives.shape[0]))
    logging.debug('Total examples: {}'.format(training.shape[0]))
    assert training.shape[0] == positives.shape[0] + negatives.shape[0]
    return training | 
	def make_train_indices(test_indices, n_examples, downsample=False, labels=None):
    """Makes a set of train indices from a set of test indices.
    test_indices: List of test indices.
    n_examples: Number of total (testing + training) examples.
    downsample: Whether to downsample. Default False.
    labels: Binary labels. Only needed if downsample is True.
    -> sorted list of training indices.
    """
    if downsample and labels is None:
        raise ValueError('labels must be specified if downsample is specified')
    training = sorted(set(range(n_examples)) - set(test_indices))
    if not downsample:
        logging.debug('Not downsampling...')
        return training
    logging.debug('Downsampling...')
    training = numpy.array(training)
    positives = training[labels[training] == 1]
    negatives = training[labels[training] == 0]
    if positives.shape[0] > negatives.shape[0]:
        numpy.random.shuffle(positives)
        positives = positives[:negatives.shape[0]]
        training = numpy.concatenate([positives, negatives])
    else:
        numpy.random.shuffle(negatives)
        negatives = negatives[:positives.shape[0]]
        training = numpy.concatenate([negatives, positives])
    training.sort()
    logging.debug('Positive examples: {}'.format(positives.shape[0]))
    logging.debug('Negative examples: {}'.format(negatives.shape[0]))
    logging.debug('Total examples: {}'.format(training.shape[0]))
    assert training.shape[0] == positives.shape[0] + negatives.shape[0]
    return training | 
| 
	Python | 
	def lr(results, method_name, split_id, features, targets, test_indices, C=1.0,
       overwrite=False, n_train=None, selection='passive'):
    """Run logistic regression and store results.
    results: Results object.
    features: (n_examples, n_features) array of features.
    targets: (n_examples,) array of binary targets.
    test_indices: List of integer testing indices.
    method_name: Name of this method in the results.
    split_id: ID of the split in the results.
    C: Regularisation parameter. Default 1.0. Higher values mean less
        regularisation.
    overwrite: Whether to overwrite existing results (default False).
    n_train: Number of training examples. Default as many as possible.
    selection: How to select training examples. Default 'passive'.
    """
    assert max(test_indices) < features.shape[0]
    assert min(test_indices) >= 0
    if results.has_run(method_name, split_id) and not overwrite:
        logging.info('Skipping trial {}:{}.'.format(method_name, split_id))
        return
    train_indices = make_train_indices(test_indices, features.shape[0])
    if n_train is not None and n_train != len(train_indices):
        assert n_train <= len(train_indices)
        train_indices, _ = sklearn.cross_validation.train_test_split(
            train_indices, train_size=n_train, stratify=targets[train_indices])
        train_indices.sort()
    lr = sklearn.linear_model.LogisticRegression(class_weight='balanced', C=C,
                                                 n_jobs=-1)
    logging.debug('Fitting {} instances.'.format(len(features)))
    lr.fit(features[train_indices], targets[train_indices])
    logging.debug('Fit complete. Storing...'.format(len(features)))
    results.store_trial(
        method_name, split_id,
        lr.predict_proba(features[test_indices])[:, 1],
        indices=test_indices, params=lr_to_params(lr)) | 
	def lr(results, method_name, split_id, features, targets, test_indices, C=1.0,
       overwrite=False, n_train=None, selection='passive'):
    """Run logistic regression and store results.
    results: Results object.
    features: (n_examples, n_features) array of features.
    targets: (n_examples,) array of binary targets.
    test_indices: List of integer testing indices.
    method_name: Name of this method in the results.
    split_id: ID of the split in the results.
    C: Regularisation parameter. Default 1.0. Higher values mean less
        regularisation.
    overwrite: Whether to overwrite existing results (default False).
    n_train: Number of training examples. Default as many as possible.
    selection: How to select training examples. Default 'passive'.
    """
    assert max(test_indices) < features.shape[0]
    assert min(test_indices) >= 0
    if results.has_run(method_name, split_id) and not overwrite:
        logging.info('Skipping trial {}:{}.'.format(method_name, split_id))
        return
    train_indices = make_train_indices(test_indices, features.shape[0])
    if n_train is not None and n_train != len(train_indices):
        assert n_train <= len(train_indices)
        train_indices, _ = sklearn.cross_validation.train_test_split(
            train_indices, train_size=n_train, stratify=targets[train_indices])
        train_indices.sort()
    lr = sklearn.linear_model.LogisticRegression(class_weight='balanced', C=C,
                                                 n_jobs=-1)
    logging.debug('Fitting {} instances.'.format(len(features)))
    lr.fit(features[train_indices], targets[train_indices])
    logging.debug('Fit complete. Storing...'.format(len(features)))
    results.store_trial(
        method_name, split_id,
        lr.predict_proba(features[test_indices])[:, 1],
        indices=test_indices, params=lr_to_params(lr)) | 
| 
	Python | 
	def rf(results, method_name, split_id, features, targets, test_indices,
       overwrite=False):
    """Run random forest and store results.
    Does not store the model as random forests are difficult to serialise.
    results: Results object.
    features: (n_examples, n_features) array of features.
    targets: (n_examples,) array of binary targets.
    test_indices: List of integer testing indices.
    method_name: Name of this method in the results.
    split_id: ID of the split in the results.
    overwrite: Whether to overwrite existing results (default False).
    """
    assert max(test_indices) < features.shape[0]
    assert min(test_indices) >= 0
    train_indices = make_train_indices(test_indices, features.shape[0])
    if results.has_run(method_name, split_id) and not overwrite:
        logging.info('Skipping trial {}:{}.'.format(method_name, split_id))
        return
    rf = sklearn.ensemble.RandomForestClassifier(class_weight='balanced')
    rf.fit(features[train_indices], targets[train_indices])
    results.store_trial(
        method_name, split_id,
        rf.predict_proba(features[test_indices])[:, 1],
        indices=test_indices, params=numpy.zeros((results.n_params,))) | 
	def rf(results, method_name, split_id, features, targets, test_indices,
       overwrite=False):
    """Run random forest and store results.
    Does not store the model as random forests are difficult to serialise.
    results: Results object.
    features: (n_examples, n_features) array of features.
    targets: (n_examples,) array of binary targets.
    test_indices: List of integer testing indices.
    method_name: Name of this method in the results.
    split_id: ID of the split in the results.
    overwrite: Whether to overwrite existing results (default False).
    """
    assert max(test_indices) < features.shape[0]
    assert min(test_indices) >= 0
    train_indices = make_train_indices(test_indices, features.shape[0])
    if results.has_run(method_name, split_id) and not overwrite:
        logging.info('Skipping trial {}:{}.'.format(method_name, split_id))
        return
    rf = sklearn.ensemble.RandomForestClassifier(class_weight='balanced')
    rf.fit(features[train_indices], targets[train_indices])
    results.store_trial(
        method_name, split_id,
        rf.predict_proba(features[test_indices])[:, 1],
        indices=test_indices, params=numpy.zeros((results.n_params,))) | 
| 
	Python | 
	def raykar(results, method_name, split_id, features, targets, test_indices,
           overwrite=False, n_restarts=5, downsample=False):
    """Run the Raykar algorithm and store results.
    results: Results object.
    features: (n_examples, n_features) array of features.
    targets: (n_labellers, n_examples) masked array of binary targets.
    test_indices: List of integer testing indices.
    method_name: Name of this method in the results.
    split_id: ID of the split in the results.
    overwrite: Whether to overwrite existing results (default False).
    n_restarts: Number of random restarts. Default 5.
    downsample: Whether to downsample. Default False.
    """
    assert max(test_indices) < features.shape[0]
    assert min(test_indices) >= 0
    train_indices = make_train_indices(test_indices, features.shape[0],
                                       downsample=downsample,
                                       labels=majority_vote(targets))
    if results.has_run(method_name, split_id) and not overwrite:
        logging.info('Skipping trial {}:{}.'.format(method_name, split_id))
        return
    rc = RaykarClassifier(n_restarts=n_restarts)
    rc.fit(features[train_indices], targets[:, train_indices])
    results.store_trial(
        method_name, split_id,
        rc.predict_proba(features[test_indices]),
        indices=test_indices, params=rc.serialise()) | 
	def raykar(results, method_name, split_id, features, targets, test_indices,
           overwrite=False, n_restarts=5, downsample=False):
    """Run the Raykar algorithm and store results.
    results: Results object.
    features: (n_examples, n_features) array of features.
    targets: (n_labellers, n_examples) masked array of binary targets.
    test_indices: List of integer testing indices.
    method_name: Name of this method in the results.
    split_id: ID of the split in the results.
    overwrite: Whether to overwrite existing results (default False).
    n_restarts: Number of random restarts. Default 5.
    downsample: Whether to downsample. Default False.
    """
    assert max(test_indices) < features.shape[0]
    assert min(test_indices) >= 0
    train_indices = make_train_indices(test_indices, features.shape[0],
                                       downsample=downsample,
                                       labels=majority_vote(targets))
    if results.has_run(method_name, split_id) and not overwrite:
        logging.info('Skipping trial {}:{}.'.format(method_name, split_id))
        return
    rc = RaykarClassifier(n_restarts=n_restarts)
    rc.fit(features[train_indices], targets[:, train_indices])
    results.store_trial(
        method_name, split_id,
        rc.predict_proba(features[test_indices]),
        indices=test_indices, params=rc.serialise()) | 
| 
	Python | 
	def yan(results, method_name, split_id, features, targets, test_indices,
        overwrite=False, n_restarts=5):
    """Run the Yan algorithm and store results.
    results: Results object.
    features: (n_examples, n_features) array of features.
    targets: (n_labellers, n_examples) masked array of binary targets.
    test_indices: List of integer testing indices.
    method_name: Name of this method in the results.
    split_id: ID of the split in the results.
    overwrite: Whether to overwrite existing results (default False).
    n_restarts: Number of random restarts. Default 5.
    """
    assert max(test_indices) < features.shape[0]
    assert min(test_indices) >= 0
    train_indices = make_train_indices(test_indices, features.shape[0])
    if results.has_run(method_name, split_id) and not overwrite:
        logging.info('Skipping trial {}:{}.'.format(method_name, split_id))
        return
    yc = YanClassifier(n_restarts=n_restarts)
    yc.fit(features[train_indices], targets[:, train_indices])
    results.store_trial(method_name, split_id,
            yc.predict_proba(features[test_indices]),
            indices=test_indices, params=yc.serialise()) | 
	def yan(results, method_name, split_id, features, targets, test_indices,
        overwrite=False, n_restarts=5):
    """Run the Yan algorithm and store results.
    results: Results object.
    features: (n_examples, n_features) array of features.
    targets: (n_labellers, n_examples) masked array of binary targets.
    test_indices: List of integer testing indices.
    method_name: Name of this method in the results.
    split_id: ID of the split in the results.
    overwrite: Whether to overwrite existing results (default False).
    n_restarts: Number of random restarts. Default 5.
    """
    assert max(test_indices) < features.shape[0]
    assert min(test_indices) >= 0
    train_indices = make_train_indices(test_indices, features.shape[0])
    if results.has_run(method_name, split_id) and not overwrite:
        logging.info('Skipping trial {}:{}.'.format(method_name, split_id))
        return
    yc = YanClassifier(n_restarts=n_restarts)
    yc.fit(features[train_indices], targets[:, train_indices])
    results.store_trial(method_name, split_id,
            yc.predict_proba(features[test_indices]),
            indices=test_indices, params=yc.serialise()) | 
| 
	Python | 
	def generate(f_h5, out_f_h5, field='cdfs'):
    """Generates potential hosts and their astronomical features.
    f_h5: crowdastro input HDF5 file.
    out_f_h5: Training data output HDF5 file.
    """
    ir_survey = f_h5.attrs['ir_survey']
    if ir_survey == 'swire':
        swire = f_h5['/swire/{}/numeric'.format(field)]
        fluxes = swire[:, 2:7]
        # Skip stellarities.
        distances = swire[:, 8].reshape((-1, 1))
        images = swire[:, 9:]
        coords = swire[:, :2]
        s1_s2 = fluxes[:, 0] / fluxes[:, 1]
        s2_s3 = fluxes[:, 1] / fluxes[:, 2]
        s3_s4 = fluxes[:, 2] / fluxes[:, 3]
        astro_features = numpy.concatenate(
                [fluxes,
                 s1_s2.reshape((-1, 1)),
                 s2_s3.reshape((-1, 1)),
                 s3_s4.reshape((-1, 1))], axis=1)
    elif ir_survey == 'wise':
        wise = f_h5['/wise/{}/numeric'.format(field)]
        magnitudes = wise[:, 2:6]
        distances = wise[:, 6].reshape((-1, 1))
        images = wise[:, 7:]
        coords = wise[:, :2]
        # Magnitude differences are probably useful features.
        w1_w2 = magnitudes[:, 0] - magnitudes[:, 1]
        w2_w3 = magnitudes[:, 1] - magnitudes[:, 2]
        # Converting the magnitudes to a linear scale seems to improve
        # performance.
        linearised_magnitudes = numpy.power(10, -0.4 * magnitudes)
        w1_w2 = numpy.power(10, -0.4 * w1_w2)
        w2_w3 = numpy.power(10, -0.4 * w2_w3)
        astro_features = numpy.concatenate(
                [linearised_magnitudes,
                 w1_w2.reshape((-1, 1)),
                 w2_w3.reshape((-1, 1))], axis=1)
    n_features = config['surveys'][ir_survey]['n_features']
    assert astro_features.shape[1] + distances.shape[1] == n_features
    # We now need to find the labels for each.
    if field == 'cdfs':
      truths = set(f_h5['/atlas/cdfs/consensus_objects'][:, 1])
      labels = numpy.array([o in truths for o in range(len(astro_features))])
      assert len(labels) == len(astro_features)
      out_f_h5.create_dataset('labels', data=labels)
    assert len(astro_features) == len(distances)
    assert len(distances) == len(images)
    features = numpy.hstack([astro_features, distances, images])
    n_astro = features.shape[1] - images.shape[1]
    # Save to HDF5.
    out_f_h5.create_dataset('raw_features', data=features)
    out_f_h5.create_dataset('positions', data=coords)
    out_f_h5.attrs['ir_survey'] = ir_survey
    out_f_h5.attrs['field'] = field | 
	def generate(f_h5, out_f_h5, field='cdfs'):
    """Generates potential hosts and their astronomical features.
    f_h5: crowdastro input HDF5 file.
    out_f_h5: Training data output HDF5 file.
    """
    ir_survey = f_h5.attrs['ir_survey']
    if ir_survey == 'swire':
        swire = f_h5['/swire/{}/numeric'.format(field)]
        fluxes = swire[:, 2:7]
        # Skip stellarities.
        distances = swire[:, 8].reshape((-1, 1))
        images = swire[:, 9:]
        coords = swire[:, :2]
        s1_s2 = fluxes[:, 0] / fluxes[:, 1]
        s2_s3 = fluxes[:, 1] / fluxes[:, 2]
        s3_s4 = fluxes[:, 2] / fluxes[:, 3]
        astro_features = numpy.concatenate(
                [fluxes,
                 s1_s2.reshape((-1, 1)),
                 s2_s3.reshape((-1, 1)),
                 s3_s4.reshape((-1, 1))], axis=1)
    elif ir_survey == 'wise':
        wise = f_h5['/wise/{}/numeric'.format(field)]
        magnitudes = wise[:, 2:6]
        distances = wise[:, 6].reshape((-1, 1))
        images = wise[:, 7:]
        coords = wise[:, :2]
        # Magnitude differences are probably useful features.
        w1_w2 = magnitudes[:, 0] - magnitudes[:, 1]
        w2_w3 = magnitudes[:, 1] - magnitudes[:, 2]
        # Converting the magnitudes to a linear scale seems to improve
        # performance.
        linearised_magnitudes = numpy.power(10, -0.4 * magnitudes)
        w1_w2 = numpy.power(10, -0.4 * w1_w2)
        w2_w3 = numpy.power(10, -0.4 * w2_w3)
        astro_features = numpy.concatenate(
                [linearised_magnitudes,
                 w1_w2.reshape((-1, 1)),
                 w2_w3.reshape((-1, 1))], axis=1)
    n_features = config['surveys'][ir_survey]['n_features']
    assert astro_features.shape[1] + distances.shape[1] == n_features
    # We now need to find the labels for each.
    if field == 'cdfs':
      truths = set(f_h5['/atlas/cdfs/consensus_objects'][:, 1])
      labels = numpy.array([o in truths for o in range(len(astro_features))])
      assert len(labels) == len(astro_features)
      out_f_h5.create_dataset('labels', data=labels)
    assert len(astro_features) == len(distances)
    assert len(distances) == len(images)
    features = numpy.hstack([astro_features, distances, images])
    n_astro = features.shape[1] - images.shape[1]
    # Save to HDF5.
    out_f_h5.create_dataset('raw_features', data=features)
    out_f_h5.create_dataset('positions', data=coords)
    out_f_h5.attrs['ir_survey'] = ir_survey
    out_f_h5.attrs['field'] = field | 
| 
	Python | 
	def compute_disagreement(self):
        """Finds disagreement for all objects in the pool."""
        labels = numpy.array([c.predict(self.pool) for c in self.classifiers])
        # Each column is the classifications of one data point.
        n_agree = labels.sum(axis=0)
        self.disagreement = numpy.ma.masked_array(
                numpy.abs(n_agree - self.n_classifiers // 2),
                mask=~self.labels.mask) | 
	def compute_disagreement(self):
        """Finds disagreement for all objects in the pool."""
        labels = numpy.array([c.predict(self.pool) for c in self.classifiers])
        # Each column is the classifications of one data point.
        n_agree = labels.sum(axis=0)
        self.disagreement = numpy.ma.masked_array(
                numpy.abs(n_agree - self.n_classifiers // 2),
                mask=~self.labels.mask) | 
| 
	Python | 
	def score(self, test_xs, test_ts):
        """Finds cross-entropy error on test data."""
        return numpy.mean([
                sklearn.metrics.log_loss(
                        test_ts, c.predict(test_xs))
                for c in self.classifiers]) | 
	def score(self, test_xs, test_ts):
        """Finds cross-entropy error on test data."""
        return numpy.mean([
                sklearn.metrics.log_loss(
                        test_ts, c.predict(test_xs))
                for c in self.classifiers]) | 
| 
	Python | 
	def ba(self, test_xs, test_ts):
        """Finds balanced accuracy on test data."""
        # labels = numpy.zeros((self.n_classifiers, len(test_xs)))
        # for c in range(self.n_classifiers):
        #     preds = self.classifiers[c].predict(test_xs)
        #     labels[c, :] = preds
        # labels = numpy.ma.MaskedArray(labels, mask=numpy.zeros(labels.shape))
        # return balanced_accuracy(test_ts, majority_vote(labels))
        return balanced_accuracy(
            test_ts, self.reference_classifier.predict(test_xs)) | 
	def ba(self, test_xs, test_ts):
        """Finds balanced accuracy on test data."""
        # labels = numpy.zeros((self.n_classifiers, len(test_xs)))
        # for c in range(self.n_classifiers):
        #     preds = self.classifiers[c].predict(test_xs)
        #     labels[c, :] = preds
        # labels = numpy.ma.MaskedArray(labels, mask=numpy.zeros(labels.shape))
        # return balanced_accuracy(test_ts, majority_vote(labels))
        return balanced_accuracy(
            test_ts, self.reference_classifier.predict(test_xs)) | 
| 
	Python | 
	def unpack(params, n_dim, n_annotators):
    """Unpacks an array of parameters into a, b, and h."""
    a = params[:n_dim]
    b = params[n_dim]
    h = params[n_dim + 1:]
    assert h.shape[0] == n_annotators
    return a, b, h | 
	def unpack(params, n_dim, n_annotators):
    """Unpacks an array of parameters into a, b, and h."""
    a = params[:n_dim]
    b = params[n_dim]
    h = params[n_dim + 1:]
    assert h.shape[0] == n_annotators
    return a, b, h | 
| 
	Python | 
	def sample_index(self):
        """Finds index of a random unlabelled point."""
        unlabelled = self.labels.mask.nonzero()[0]
        if len(unlabelled):
            index = numpy.random.choice(unlabelled)
            return index
        return 0 | 
	def sample_index(self):
        """Finds index of a random unlabelled point."""
        unlabelled = self.labels.mask.nonzero()[0]
        if len(unlabelled):
            index = numpy.random.choice(unlabelled)
            return index
        return 0 | 
| 
	Python | 
	def sample_indices(self, n):
        """Finds indices of n random unlabelled points."""
        indices = set()
        unlabelled = self.labels.mask.nonzero()[0]
        if len(unlabelled) < n:
            return unlabelled
        while len(indices) < n:
            index = numpy.random.choice(unlabelled)
            indices.add(index)
        return sorted(indices) | 
	def sample_indices(self, n):
        """Finds indices of n random unlabelled points."""
        indices = set()
        unlabelled = self.labels.mask.nonzero()[0]
        if len(unlabelled) < n:
            return unlabelled
        while len(indices) < n:
            index = numpy.random.choice(unlabelled)
            indices.add(index)
        return sorted(indices) | 
| 
	Python | 
	def sample_index(self):
        """Finds index of a random unlabelled point."""
        unlabelled = self.labels.mask.nonzero()[0]
        unlabelled_groundtruth = self.labels.data[unlabelled]
        if len(unlabelled):
            if numpy.random.random() < 0.5:
                index = numpy.random.choice(
                    unlabelled[unlabelled_groundtruth == 1])
            else:
                index = numpy.random.choice(
                    unlabelled[unlabelled_groundtruth == 0])
            return index
        return 0 | 
	def sample_index(self):
        """Finds index of a random unlabelled point."""
        unlabelled = self.labels.mask.nonzero()[0]
        unlabelled_groundtruth = self.labels.data[unlabelled]
        if len(unlabelled):
            if numpy.random.random() < 0.5:
                index = numpy.random.choice(
                    unlabelled[unlabelled_groundtruth == 1])
            else:
                index = numpy.random.choice(
                    unlabelled[unlabelled_groundtruth == 0])
            return index
        return 0 | 
| 
	Python | 
	def sample_indices(self, n):
        """Finds indices of n random unlabelled points."""
        indices = set()
        unlabelled = self.labels.mask.nonzero()[0]
        if len(unlabelled) < n:
            return unlabelled
        unlabelled_groundtruth = self.labels.data[unlabelled]
        while len(indices) < n:
            if ((numpy.random.random() < 0.5 and
                    len(unlabelled[unlabelled_groundtruth == 1]) > 0) or
                    len(unlabelled[unlabelled_groundtruth == 0]) == 0):
                index = numpy.random.choice(
                    unlabelled[unlabelled_groundtruth == 1])
            else:
                index = numpy.random.choice(
                    unlabelled[unlabelled_groundtruth == 0])
            indices.add(index)
        return sorted(indices) | 
	def sample_indices(self, n):
        """Finds indices of n random unlabelled points."""
        indices = set()
        unlabelled = self.labels.mask.nonzero()[0]
        if len(unlabelled) < n:
            return unlabelled
        unlabelled_groundtruth = self.labels.data[unlabelled]
        while len(indices) < n:
            if ((numpy.random.random() < 0.5 and
                    len(unlabelled[unlabelled_groundtruth == 1]) > 0) or
                    len(unlabelled[unlabelled_groundtruth == 0]) == 0):
                index = numpy.random.choice(
                    unlabelled[unlabelled_groundtruth == 1])
            else:
                index = numpy.random.choice(
                    unlabelled[unlabelled_groundtruth == 0])
            indices.add(index)
        return sorted(indices) | 
| 
	Python | 
	def compute_uncertainties(self):
        """Finds uncertainties for all objects in the pool."""
        # To keep things simple, I'll use the (negative) proximity to the
        # decision boundary as the uncertainty. Note that the uncertainties
        # array is masked such that labelled points have no uncertainty.
        probs = self.classifier.predict_proba(self.pool)[:, 1]
        self.uncertainties = numpy.ma.masked_array(-numpy.abs(probs - 0.5),
                                                   mask=~self.labels.mask) | 
	def compute_uncertainties(self):
        """Finds uncertainties for all objects in the pool."""
        # To keep things simple, I'll use the (negative) proximity to the
        # decision boundary as the uncertainty. Note that the uncertainties
        # array is masked such that labelled points have no uncertainty.
        probs = self.classifier.predict_proba(self.pool)[:, 1]
        self.uncertainties = numpy.ma.masked_array(-numpy.abs(probs - 0.5),
                                                   mask=~self.labels.mask) | 
| 
	Python | 
	def _top_n_accurate_targets(crowdastro_h5, y_true, n_annotators=5,
                            threshold=700):
    """Get the labels of the top n most accurate annotators assessed against
    y_true, above a threshold number of annotations."""
    ir_survey = crowdastro_h5.attrs['ir_survey']
    labels = crowdastro_h5['/{}/cdfs/rgz_raw_labels'.format(ir_survey)].value
    labels_mask = crowdastro_h5[
        '/{}/cdfs/rgz_raw_labels_mask'.format(ir_survey)].value
    labels = numpy.ma.MaskedArray(labels, mask=labels_mask)
    # Compare each annotator to the Norris labels. Get their balanced accuracy.
    annotator_accuracies = []
    for t in range(labels.shape[0]):
        cm = sklearn.metrics.confusion_matrix(y_true[~labels[t].mask],
                                              labels[t][~labels[t].mask])
        if cm.shape[0] == 1:
            continue
        tp = cm[1, 1]
        n, p = cm.sum(axis=1)
        tn = cm[0, 0]
        if not n or not p or p + n < threshold:
            annotator_accuracies.append(0)
            continue
        ba = (tp / p + tn / n) / 2
        annotator_accuracies.append(ba)
    ranked_annotators = numpy.argsort(annotator_accuracies)
    top_n_annotators = ranked_annotators[-n_annotators:]
    return labels[top_n_annotators] | 
	def _top_n_accurate_targets(crowdastro_h5, y_true, n_annotators=5,
                            threshold=700):
    """Get the labels of the top n most accurate annotators assessed against
    y_true, above a threshold number of annotations."""
    ir_survey = crowdastro_h5.attrs['ir_survey']
    labels = crowdastro_h5['/{}/cdfs/rgz_raw_labels'.format(ir_survey)].value
    labels_mask = crowdastro_h5[
        '/{}/cdfs/rgz_raw_labels_mask'.format(ir_survey)].value
    labels = numpy.ma.MaskedArray(labels, mask=labels_mask)
    # Compare each annotator to the Norris labels. Get their balanced accuracy.
    annotator_accuracies = []
    for t in range(labels.shape[0]):
        cm = sklearn.metrics.confusion_matrix(y_true[~labels[t].mask],
                                              labels[t][~labels[t].mask])
        if cm.shape[0] == 1:
            continue
        tp = cm[1, 1]
        n, p = cm.sum(axis=1)
        tn = cm[0, 0]
        if not n or not p or p + n < threshold:
            annotator_accuracies.append(0)
            continue
        ba = (tp / p + tn / n) / 2
        annotator_accuracies.append(ba)
    ranked_annotators = numpy.argsort(annotator_accuracies)
    top_n_annotators = ranked_annotators[-n_annotators:]
    return labels[top_n_annotators] | 
| 
	Python | 
	def top_n_accurate_targets(crowdastro_h5, n_annotators=5, threshold=700):
    """Get the labels of the top n most accurate annotators, assessed
    against the groundtruth, above a threshold number of annotations.
    """
    ir_survey = crowdastro_h5.attrs['ir_survey']
    norris = crowdastro_h5['/{}/cdfs/norris_labels'.format(ir_survey)].value
    return _top_n_accurate_targets(crowdastro_h5, norris,
                                   n_annotators=n_annotators,
                                   threshold=threshold) | 
	def top_n_accurate_targets(crowdastro_h5, n_annotators=5, threshold=700):
    """Get the labels of the top n most accurate annotators, assessed
    against the groundtruth, above a threshold number of annotations.
    """
    ir_survey = crowdastro_h5.attrs['ir_survey']
    norris = crowdastro_h5['/{}/cdfs/norris_labels'.format(ir_survey)].value
    return _top_n_accurate_targets(crowdastro_h5, norris,
                                   n_annotators=n_annotators,
                                   threshold=threshold) | 
| 
	Python | 
	def top_n_mv_accurate_targets(crowdastro_h5, n_annotators=5, threshold=700):
    """Get the labels of the top n most accurate annotators, assessed
    against the majority vote, above a threshold number of annotations.
    """
    ir_survey = crowdastro_h5.attrs['ir_survey']
    labels = crowdastro_h5['/{}/cdfs/rgz_raw_labels'.format(ir_survey)].value
    labels_mask = crowdastro_h5[
        '/{}/cdfs/rgz_raw_labels_mask'.format(ir_survey)].value
    labels = numpy.ma.MaskedArray(labels, mask=labels_mask)
    mv = majority_vote(labels)
    return _top_n_accurate_targets(crowdastro_h5, mv,
                                   n_annotators=n_annotators,
                                   threshold=threshold) | 
	def top_n_mv_accurate_targets(crowdastro_h5, n_annotators=5, threshold=700):
    """Get the labels of the top n most accurate annotators, assessed
    against the majority vote, above a threshold number of annotations.
    """
    ir_survey = crowdastro_h5.attrs['ir_survey']
    labels = crowdastro_h5['/{}/cdfs/rgz_raw_labels'.format(ir_survey)].value
    labels_mask = crowdastro_h5[
        '/{}/cdfs/rgz_raw_labels_mask'.format(ir_survey)].value
    labels = numpy.ma.MaskedArray(labels, mask=labels_mask)
    mv = majority_vote(labels)
    return _top_n_accurate_targets(crowdastro_h5, mv,
                                   n_annotators=n_annotators,
                                   threshold=threshold) | 
| 
	Python | 
	def top_n_prolific_targets(crowdastro_h5, n_annotators=5):
    """Get the labels of the top n most prolific annotators."""
    labels = crowdastro_h5['/wise/cdfs/rgz_raw_labels'].value
    labels_mask = crowdastro_h5['/wise/cdfs/rgz_raw_labels_mask'].value
    labels = numpy.ma.MaskedArray(labels, mask=labels_mask)
    n_seen = labels_mask.sum(axis=1)
    top_seen = numpy.argsort(n_seen)[-n_annotators:]
    return labels[top_seen] | 
	def top_n_prolific_targets(crowdastro_h5, n_annotators=5):
    """Get the labels of the top n most prolific annotators."""
    labels = crowdastro_h5['/wise/cdfs/rgz_raw_labels'].value
    labels_mask = crowdastro_h5['/wise/cdfs/rgz_raw_labels_mask'].value
    labels = numpy.ma.MaskedArray(labels, mask=labels_mask)
    n_seen = labels_mask.sum(axis=1)
    top_seen = numpy.argsort(n_seen)[-n_annotators:]
    return labels[top_seen] | 
| 
	Python | 
	def _unpack(self, params, n_dim, n_annotators):
        """Unpacks an array of parameters into a and w."""
        a = params[:n_dim]
        w = params[n_dim:].reshape((n_annotators, n_dim))
        return a, w | 
	def _unpack(self, params, n_dim, n_annotators):
        """Unpacks an array of parameters into a and w."""
        a = params[:n_dim]
        w = params[n_dim:].reshape((n_annotators, n_dim))
        return a, w | 
| 
	Python | 
	def predict(self, x):
        """Classify data points using logistic regression.
        x: Data points. (n_samples, n_dim) NumPy array.
        """
        return numpy.round(self.predict_proba(x)) | 
	def predict(self, x):
        """Classify data points using logistic regression.
        x: Data points. (n_samples, n_dim) NumPy array.
        """
        return numpy.round(self.predict_proba(x)) | 
| 
	Python | 
	def predict_proba(self, x):
        """Predict probabilities of data points using logistic regression.
        x: Data points. (n_samples, n_dim) NumPy array.
        """
        x = numpy.hstack([x, numpy.ones((x.shape[0], 1))])
        return logistic_regression(self.a_, x) | 
	def predict_proba(self, x):
        """Predict probabilities of data points using logistic regression.
        x: Data points. (n_samples, n_dim) NumPy array.
        """
        x = numpy.hstack([x, numpy.ones((x.shape[0], 1))])
        return logistic_regression(self.a_, x) | 
| 
	Python | 
	def score(self, X, Y):
        """Computes the likelihood of labels and data under the model.
        X: (n_samples, n_features) NumPy array of data.
        Y: (n_labellers, n_samples) NumPy masked array of crowd labels.
        """
        X = numpy.hstack([X, numpy.ones((X.shape[0], 1))])
        return self._likelihood(self.a_, self.w_, X, Y) | 
	def score(self, X, Y):
        """Computes the likelihood of labels and data under the model.
        X: (n_samples, n_features) NumPy array of data.
        Y: (n_labellers, n_samples) NumPy masked array of crowd labels.
        """
        X = numpy.hstack([X, numpy.ones((X.shape[0], 1))])
        return self._likelihood(self.a_, self.w_, X, Y) | 
| 
	Python | 
	def _likelihood(self, a, w, X, Y):
        """Computes the likelihood of labels and data under a model.
        X: (n_samples, n_features) NumPy array of data.
        Y: (n_labellers, n_samples) NumPy masked array of crowd labels.
        """
        lh = 1
        for i in range(X.shape[0]):
            for t in range(Y.shape[0]):
                if Y.mask[t, i]:
                    continue
                lr = logistic_regression(a, X[i])
                p1 = self._annotator_model(w[t], X[i], Y[t, i], 1) * lr
                p0 = self._annotator_model(w[t], X[i], Y[t, i], 0) * (1 - lr)
                lh *= p1 + p0
        return lh | 
	def _likelihood(self, a, w, X, Y):
        """Computes the likelihood of labels and data under a model.
        X: (n_samples, n_features) NumPy array of data.
        Y: (n_labellers, n_samples) NumPy masked array of crowd labels.
        """
        lh = 1
        for i in range(X.shape[0]):
            for t in range(Y.shape[0]):
                if Y.mask[t, i]:
                    continue
                lr = logistic_regression(a, X[i])
                p1 = self._annotator_model(w[t], X[i], Y[t, i], 1) * lr
                p0 = self._annotator_model(w[t], X[i], Y[t, i], 0) * (1 - lr)
                lh *= p1 + p0
        return lh | 
| 
	Python | 
	def require_atlas(f):
    """Decorator that ensures a subject (the first argument) is from the ATLAS
    survey.
    """
    def g(subject, *args, **kwargs):
        if subject['metadata']['survey'] != 'atlas':
            raise ValueError('Subject not from ATLAS survey.')
        return f(subject, *args, **kwargs)
    return g | 
	def require_atlas(f):
    """Decorator that ensures a subject (the first argument) is from the ATLAS
    survey.
    """
    def g(subject, *args, **kwargs):
        if subject['metadata']['survey'] != 'atlas':
            raise ValueError('Subject not from ATLAS survey.')
        return f(subject, *args, **kwargs)
    return g | 
| 
	Python | 
	def open_fits(subject, field, wavelength, size='2x2'):
    """Opens a FITS image of a subject.
    Can be used as a context handler.
    subject: RGZ subject dict, from the ATLAS survey.
    field: 'elais' or 'cdfs'
    wavelength: 'ir' or 'radio'
    size: Optional. '2x2' or '5x5'.
    -> FITS image file.
    """
    if field not in {'elais-s1', 'cdfs'}:
        raise ValueError('field must be either "elais-s1" or "cdfs".')
    if wavelength not in {'ir', 'radio'}:
        raise ValueError('wavelength must be either "ir" or "radio".')
    cid = subject['metadata']['source']
    filename = '{}_{}.fits'.format(cid, wavelength)
    path = os.path.join(config['data_sources']['{}_fits'.format(field)], size,
                        filename)
    
    return astropy.io.fits.open(path, ignore_blank=True) | 
	def open_fits(subject, field, wavelength, size='2x2'):
    """Opens a FITS image of a subject.
    Can be used as a context handler.
    subject: RGZ subject dict, from the ATLAS survey.
    field: 'elais' or 'cdfs'
    wavelength: 'ir' or 'radio'
    size: Optional. '2x2' or '5x5'.
    -> FITS image file.
    """
    if field not in {'elais-s1', 'cdfs'}:
        raise ValueError('field must be either "elais-s1" or "cdfs".')
    if wavelength not in {'ir', 'radio'}:
        raise ValueError('wavelength must be either "ir" or "radio".')
    cid = subject['metadata']['source']
    filename = '{}_{}.fits'.format(cid, wavelength)
    path = os.path.join(config['data_sources']['{}_fits'.format(field)], size,
                        filename)
    
    return astropy.io.fits.open(path, ignore_blank=True) | 
| 
	Python | 
	def train(x, y, epsilon=1e-5, lr_init=False, skip_zeros=False):
    """Expectation-maximisation algorithm from Yan et al. (2010).
    x: Data. (n_samples, n_dim) NumPy array
    y: Labels. (n_annotators, n_samples) NumPy array
    epsilon: Convergence threshold. Default 1e-5. float
    lr_init: Initialised with logistic regression. Default False.
    skip_zeros: Whether to detect and skip zero probabilities. Default False.
    """
    # TODO(MatthewJA): Restore skip_zeros functionality.
    n_samples, n_dim = x.shape
    n_annotators, n_samples_ = y.shape
    assert n_samples == n_samples_, 'Label array has wrong number of labels.'
    # Compute majority vote labels (for debugging + logistic regression init).
    majority_y = numpy.zeros((n_samples,))
    for i in range(n_samples):
        labels = y[:, i]
        if labels.mask is False:
            counter = collections.Counter(labels)
        else:
            counter = collections.Counter(labels[~labels.mask])
        if counter:
            majority_y[i] = max(counter, key=counter.get)
        else:
            # No labels for this data point.
            majority_y[i] = numpy.random.randint(2)  # ¯\_(ツ)_/¯
    logging.info('Initialising...')
    if lr_init:
        # For our initial guess, we'll fit logistic regression to the majority
        # vote.
        lr_ab = sklearn.linear_model.LogisticRegression()
        lr_ab.fit(x, majority_y)
        a = lr_ab.coef_.ravel()
        b = lr_ab.intercept_[0]
    else:
        a = numpy.random.normal(size=(n_dim,))
        b = numpy.random.normal()
    w = numpy.random.normal(size=(n_annotators, n_dim))
    g = numpy.ones((n_annotators,))
    logging.debug('Initial a: %s', a)
    logging.debug('Initial b: %s', b)
    logging.debug('Initial w: %s', w)
    logging.debug('Initial g: %s', g)
    assert x.shape == (n_samples, n_dim)
    assert y.shape == (n_annotators, n_samples)
    logging.info('Iterating until convergence...')
    iters = 0
    while True:  # Until convergence (checked later).
        iters += 1
        logging.info('Iteration %d', iters)
        a_, b_, w_, g_ = em_step(
                n_samples, n_annotators, n_dim, a, b, w, g, x, y)
        # Check convergence.
        dist = numpy.linalg.norm(a - a_) ** 2 + (b - b_) ** 2
        logging.debug('Distance: {:.02f}'.format(dist))
        if dist <= epsilon:
            return a_, b_, w_, g_
        a, b, w, g = a_, b_, w_, g_ | 
	def train(x, y, epsilon=1e-5, lr_init=False, skip_zeros=False):
    """Expectation-maximisation algorithm from Yan et al. (2010).
    x: Data. (n_samples, n_dim) NumPy array
    y: Labels. (n_annotators, n_samples) NumPy array
    epsilon: Convergence threshold. Default 1e-5. float
    lr_init: Initialised with logistic regression. Default False.
    skip_zeros: Whether to detect and skip zero probabilities. Default False.
    """
    # TODO(MatthewJA): Restore skip_zeros functionality.
    n_samples, n_dim = x.shape
    n_annotators, n_samples_ = y.shape
    assert n_samples == n_samples_, 'Label array has wrong number of labels.'
    # Compute majority vote labels (for debugging + logistic regression init).
    majority_y = numpy.zeros((n_samples,))
    for i in range(n_samples):
        labels = y[:, i]
        if labels.mask is False:
            counter = collections.Counter(labels)
        else:
            counter = collections.Counter(labels[~labels.mask])
        if counter:
            majority_y[i] = max(counter, key=counter.get)
        else:
            # No labels for this data point.
            majority_y[i] = numpy.random.randint(2)  # ¯\_(ツ)_/¯
    logging.info('Initialising...')
    if lr_init:
        # For our initial guess, we'll fit logistic regression to the majority
        # vote.
        lr_ab = sklearn.linear_model.LogisticRegression()
        lr_ab.fit(x, majority_y)
        a = lr_ab.coef_.ravel()
        b = lr_ab.intercept_[0]
    else:
        a = numpy.random.normal(size=(n_dim,))
        b = numpy.random.normal()
    w = numpy.random.normal(size=(n_annotators, n_dim))
    g = numpy.ones((n_annotators,))
    logging.debug('Initial a: %s', a)
    logging.debug('Initial b: %s', b)
    logging.debug('Initial w: %s', w)
    logging.debug('Initial g: %s', g)
    assert x.shape == (n_samples, n_dim)
    assert y.shape == (n_annotators, n_samples)
    logging.info('Iterating until convergence...')
    iters = 0
    while True:  # Until convergence (checked later).
        iters += 1
        logging.info('Iteration %d', iters)
        a_, b_, w_, g_ = em_step(
                n_samples, n_annotators, n_dim, a, b, w, g, x, y)
        # Check convergence.
        dist = numpy.linalg.norm(a - a_) ** 2 + (b - b_) ** 2
        logging.debug('Distance: {:.02f}'.format(dist))
        if dist <= epsilon:
            return a_, b_, w_, g_
        a, b, w, g = a_, b_, w_, g_ | 
| 
	Python | 
	def run_sample(data_path, catalogue_path, limit=0):
    """Runs the consensus algorithm described in Banfield et al., 2015."""
    # TODO(MatthewJA): Reimplement the 'update' argument.
    # TODO(MatthewJA): Reimplement the 'do_plot' argument.
    # TODO(MatthewJA): This only works for ATLAS subjects.
    # TODO(MatthewJA): The original code only worked on FIRST subjects. Have I
    # broken anything by running ATLAS subjects through it?
    paths = load_contours.make_pathdict(data_path, catalogue_path)
    sample_subjects = [cz for cz in subjects.find({
        'metadata.survey': 'atlas'
    }).limit(limit)]
    logging.debug('Found {} subjects.'.format(len(sample_subjects)))
    zooniverse_ids = [cz['zooniverse_id'] for cz in sample_subjects]
    with open('%s/csv/%s.csv' % (rgz_dir, PATH_STEM), 'w') as csv_file:
        writer = csv.writer(csv_file)
        writer.writerow([
            'zooniverse_id',
            'first_id',
            'n_users',
            'n_total',
            'consensus_level',
            'n_radio',
            'label',
            'bbox',
            'ir_peak',
        ])
        for idx, zid in enumerate(zooniverse_ids):
            logging.debug('Zooniverse ID: {}'.format(zid))
            if not idx % 100:
                # Progress.
                now = datetime.datetime.now().strftime('%H:%M:%S.%f')
                progress = idx / len(zooniverse_ids)
                logging.info('{:.02%} {}'.format(progress, now))
            cons = consensus(zid)
            cons['consensus_level'] = cons['n_users'] / cons['n_total']
            # CSV.
            for ans in cons['answer'].values():
                try:
                    ir_peak = ans['ir_peak']
                except KeyError:
                    ir_peak = ans.get('ir', None)
                writer.writerow([
                    cons['zid'],
                    cons['source'],
                    cons['n_users'],
                    cons['n_total'],
                    cons['consensus_level'],
                    len(ans['xmax']),
                    alpha(ans['ind']),
                    bbox_unravel(ans['bbox']),
                    ir_peak,
                ])
    # CSV
    cmaster = pandas.read_csv('%s/csv/%s.csv' % (rgz_dir, PATH_STEM))
    cmaster75 = cmaster[cmaster['consensus_level'] >= 0.75]
    cmaster75.to_csv('%s/csv/%s_75.csv' % (rgz_dir, PATH_STEM), index=False)
    logging.info('Completed consensus.') | 
	def run_sample(data_path, catalogue_path, limit=0):
    """Runs the consensus algorithm described in Banfield et al., 2015."""
    # TODO(MatthewJA): Reimplement the 'update' argument.
    # TODO(MatthewJA): Reimplement the 'do_plot' argument.
    # TODO(MatthewJA): This only works for ATLAS subjects.
    # TODO(MatthewJA): The original code only worked on FIRST subjects. Have I
    # broken anything by running ATLAS subjects through it?
    paths = load_contours.make_pathdict(data_path, catalogue_path)
    sample_subjects = [cz for cz in subjects.find({
        'metadata.survey': 'atlas'
    }).limit(limit)]
    logging.debug('Found {} subjects.'.format(len(sample_subjects)))
    zooniverse_ids = [cz['zooniverse_id'] for cz in sample_subjects]
    with open('%s/csv/%s.csv' % (rgz_dir, PATH_STEM), 'w') as csv_file:
        writer = csv.writer(csv_file)
        writer.writerow([
            'zooniverse_id',
            'first_id',
            'n_users',
            'n_total',
            'consensus_level',
            'n_radio',
            'label',
            'bbox',
            'ir_peak',
        ])
        for idx, zid in enumerate(zooniverse_ids):
            logging.debug('Zooniverse ID: {}'.format(zid))
            if not idx % 100:
                # Progress.
                now = datetime.datetime.now().strftime('%H:%M:%S.%f')
                progress = idx / len(zooniverse_ids)
                logging.info('{:.02%} {}'.format(progress, now))
            cons = consensus(zid)
            cons['consensus_level'] = cons['n_users'] / cons['n_total']
            # CSV.
            for ans in cons['answer'].values():
                try:
                    ir_peak = ans['ir_peak']
                except KeyError:
                    ir_peak = ans.get('ir', None)
                writer.writerow([
                    cons['zid'],
                    cons['source'],
                    cons['n_users'],
                    cons['n_total'],
                    cons['consensus_level'],
                    len(ans['xmax']),
                    alpha(ans['ind']),
                    bbox_unravel(ans['bbox']),
                    ir_peak,
                ])
    # CSV
    cmaster = pandas.read_csv('%s/csv/%s.csv' % (rgz_dir, PATH_STEM))
    cmaster75 = cmaster[cmaster['consensus_level'] >= 0.75]
    cmaster75.to_csv('%s/csv/%s_75.csv' % (rgz_dir, PATH_STEM), index=False)
    logging.info('Completed consensus.') | 
| 
	Python | 
	def hash_file(f):
    """Finds the MD5 hash of a file.
    File must be opened in bytes mode.
    """
    h = hashlib.md5()
    chunk_size = 65536  # 64 KiB
    for chunk in iter(lambda: f.read(chunk_size), b''):
        h.update(chunk)
    return h.hexdigest() | 
	def hash_file(f):
    """Finds the MD5 hash of a file.
    File must be opened in bytes mode.
    """
    h = hashlib.md5()
    chunk_size = 65536  # 64 KiB
    for chunk in iter(lambda: f.read(chunk_size), b''):
        h.update(chunk)
    return h.hexdigest() | 
| 
	Python | 
	def prep_h5(f_h5, ir_survey):
    """Creates hierarchy in HDF5 file."""
    f_h5.create_group('/atlas/cdfs')
    f_h5.create_group('/atlas/elais')
    f_h5.create_group('/{}/cdfs'.format(ir_survey))
    f_h5.create_group('/{}/elais'.format(ir_survey))
    f_h5.attrs['version'] = VERSION
    f_h5.attrs['ir_survey'] = ir_survey | 
	def prep_h5(f_h5, ir_survey):
    """Creates hierarchy in HDF5 file."""
    f_h5.create_group('/atlas/cdfs')
    f_h5.create_group('/atlas/elais')
    f_h5.create_group('/{}/cdfs'.format(ir_survey))
    f_h5.create_group('/{}/elais'.format(ir_survey))
    f_h5.attrs['version'] = VERSION
    f_h5.attrs['ir_survey'] = ir_survey | 
| 
	Python | 
	def import_atlas(f_h5, test=False, field='cdfs'):
    """Imports the ATLAS dataset into crowdastro, as well as associated SWIRE.
    f_h5: An HDF5 file.
    test: Flag to run on only 10 subjects. Default False.
    """
    from . import rgz_data as data
    # Fetch groups from HDF5.
    cdfs = f_h5['/atlas/{}'.format(field)]
    # First pass, I'll find coords, names, and Zooniverse IDs, as well as how
    # many data points there are.
    coords = []
    names = []
    zooniverse_ids = []
    if (field == 'cdfs'):
        # We need the ATLAS name, but we can only get it by going through the
        # ATLAS catalogue and finding the nearest component.
        # https://github.com/chengsoonong/crowdastro/issues/63
        # Fortunately, @jbanfield has already done this, so we can just load
        # that CSV and match the names.
        # TODO(MatthewJA): This matches the ATLAS component ID, but maybe we
        # should be using the name instead.
        rgz_to_atlas = {}
        with open(config['data_sources']['rgz_to_atlas']) as f:
            reader = csv.DictReader(f)
            for row in reader:
                rgz_to_atlas[row['ID_RGZ']] = row['ID']
        all_subjects = data.get_all_subjects(survey='atlas', field=field)
        if test:
            all_subjects = all_subjects.limit(10)
        for subject in all_subjects:
            ra, dec = subject['coords']
            zooniverse_id = subject['zooniverse_id']
            rgz_source_id = subject['metadata']['source']
            if rgz_source_id not in rgz_to_atlas:
                logging.debug('Skipping %s; no matching ATLAS component.',
                              zooniverse_id)
                continue
            name = rgz_to_atlas[rgz_source_id]
            # Store the results.
            coords.append((ra, dec))
            names.append(name)
            zooniverse_ids.append(zooniverse_id)
    elif (field == 'elais'):
        atlascatalogue = ascii.read(config['data_sources']['atlas_catalogue'])
        ras, decs = atlascatalogue['RA_deg'], atlascatalogue['Dec_deg']
        e_ids = atlascatalogue['ID']
        fields = atlascatalogue['field']
        # Store the results.
        for ra, dec, e_id, field_ in zip(ras, decs, e_ids, fields):
            if (field_ == 'ELAIS-S1'):
                coords.append((ra, dec))
                names.append(e_id)
                zooniverse_ids.append(e_id)
    n_cdfs = len(names)
    # Sort the data by Zooniverse ID.
    coords_to_zooniverse_ids = dict(zip(coords, zooniverse_ids))
    names_to_zooniverse_ids = dict(zip(names, zooniverse_ids))
    coords.sort(key=coords_to_zooniverse_ids.get)
    names.sort(key=names_to_zooniverse_ids.get)
    zooniverse_ids.sort()
    # Begin to store the data. We will have two tables: one for numeric data,
    # and one for strings. We will have to preallocate the numeric table so that
    # we aren't storing huge amounts of image data in memory.
    # Strings.
    dtype = [('zooniverse_id', '<S{}'.format(MAX_ZOONIVERSE_ID_LENGTH)),
             ('name', '<S{}'.format(MAX_NAME_LENGTH))]
    string_data = numpy.array(list(zip(zooniverse_ids, names)), dtype=dtype)
    cdfs.create_dataset('string', data=string_data, dtype=dtype)
    # Numeric.
    image_size = (config['surveys']['atlas']['fits_width'] *
                  config['surveys']['atlas']['fits_height'])
    # RA, DEC, radio, (distance to SWIRE object added later)
    dim = (n_cdfs, 1 + 1 + image_size)
    numeric = cdfs.create_dataset('_numeric', shape=dim, dtype='float32')
    # Load image patches and store numeric data.
    with astropy.io.fits.open(
            config['data_sources']['atlas_{}_image'.format(field)],
            ignore_blank=True) as atlas_image:
        wcs = astropy.wcs.WCS(atlas_image[0].header).dropaxis(3).dropaxis(2)
        pix_coords = wcs.all_world2pix(coords, FITS_CONVENTION)
        assert pix_coords.shape[1] == 2
        logging.debug('Fetching %d ATLAS images.', len(pix_coords))
        for index, (x, y) in enumerate(pix_coords):
            radio = atlas_image[0].data[
                0, 0,  # stokes, freq
                int(y) - config['surveys']['atlas']['fits_height'] // 2:
                int(y) + config['surveys']['atlas']['fits_height'] // 2,
                int(x) - config['surveys']['atlas']['fits_width'] // 2:
                int(x) + config['surveys']['atlas']['fits_width'] // 2]
            numeric[index, 0] = coords[index][0]
            numeric[index, 1] = coords[index][1]
            numeric[index, 2:2 + image_size] = radio.reshape(-1)
    logging.debug('ATLAS imported.') | 
	def import_atlas(f_h5, test=False, field='cdfs'):
    """Imports the ATLAS dataset into crowdastro, as well as associated SWIRE.
    f_h5: An HDF5 file.
    test: Flag to run on only 10 subjects. Default False.
    """
    from . import rgz_data as data
    # Fetch groups from HDF5.
    cdfs = f_h5['/atlas/{}'.format(field)]
    # First pass, I'll find coords, names, and Zooniverse IDs, as well as how
    # many data points there are.
    coords = []
    names = []
    zooniverse_ids = []
    if (field == 'cdfs'):
        # We need the ATLAS name, but we can only get it by going through the
        # ATLAS catalogue and finding the nearest component.
        # https://github.com/chengsoonong/crowdastro/issues/63
        # Fortunately, @jbanfield has already done this, so we can just load
        # that CSV and match the names.
        # TODO(MatthewJA): This matches the ATLAS component ID, but maybe we
        # should be using the name instead.
        rgz_to_atlas = {}
        with open(config['data_sources']['rgz_to_atlas']) as f:
            reader = csv.DictReader(f)
            for row in reader:
                rgz_to_atlas[row['ID_RGZ']] = row['ID']
        all_subjects = data.get_all_subjects(survey='atlas', field=field)
        if test:
            all_subjects = all_subjects.limit(10)
        for subject in all_subjects:
            ra, dec = subject['coords']
            zooniverse_id = subject['zooniverse_id']
            rgz_source_id = subject['metadata']['source']
            if rgz_source_id not in rgz_to_atlas:
                logging.debug('Skipping %s; no matching ATLAS component.',
                              zooniverse_id)
                continue
            name = rgz_to_atlas[rgz_source_id]
            # Store the results.
            coords.append((ra, dec))
            names.append(name)
            zooniverse_ids.append(zooniverse_id)
    elif (field == 'elais'):
        atlascatalogue = ascii.read(config['data_sources']['atlas_catalogue'])
        ras, decs = atlascatalogue['RA_deg'], atlascatalogue['Dec_deg']
        e_ids = atlascatalogue['ID']
        fields = atlascatalogue['field']
        # Store the results.
        for ra, dec, e_id, field_ in zip(ras, decs, e_ids, fields):
            if (field_ == 'ELAIS-S1'):
                coords.append((ra, dec))
                names.append(e_id)
                zooniverse_ids.append(e_id)
    n_cdfs = len(names)
    # Sort the data by Zooniverse ID.
    coords_to_zooniverse_ids = dict(zip(coords, zooniverse_ids))
    names_to_zooniverse_ids = dict(zip(names, zooniverse_ids))
    coords.sort(key=coords_to_zooniverse_ids.get)
    names.sort(key=names_to_zooniverse_ids.get)
    zooniverse_ids.sort()
    # Begin to store the data. We will have two tables: one for numeric data,
    # and one for strings. We will have to preallocate the numeric table so that
    # we aren't storing huge amounts of image data in memory.
    # Strings.
    dtype = [('zooniverse_id', '<S{}'.format(MAX_ZOONIVERSE_ID_LENGTH)),
             ('name', '<S{}'.format(MAX_NAME_LENGTH))]
    string_data = numpy.array(list(zip(zooniverse_ids, names)), dtype=dtype)
    cdfs.create_dataset('string', data=string_data, dtype=dtype)
    # Numeric.
    image_size = (config['surveys']['atlas']['fits_width'] *
                  config['surveys']['atlas']['fits_height'])
    # RA, DEC, radio, (distance to SWIRE object added later)
    dim = (n_cdfs, 1 + 1 + image_size)
    numeric = cdfs.create_dataset('_numeric', shape=dim, dtype='float32')
    # Load image patches and store numeric data.
    with astropy.io.fits.open(
            config['data_sources']['atlas_{}_image'.format(field)],
            ignore_blank=True) as atlas_image:
        wcs = astropy.wcs.WCS(atlas_image[0].header).dropaxis(3).dropaxis(2)
        pix_coords = wcs.all_world2pix(coords, FITS_CONVENTION)
        assert pix_coords.shape[1] == 2
        logging.debug('Fetching %d ATLAS images.', len(pix_coords))
        for index, (x, y) in enumerate(pix_coords):
            radio = atlas_image[0].data[
                0, 0,  # stokes, freq
                int(y) - config['surveys']['atlas']['fits_height'] // 2:
                int(y) + config['surveys']['atlas']['fits_height'] // 2,
                int(x) - config['surveys']['atlas']['fits_width'] // 2:
                int(x) + config['surveys']['atlas']['fits_width'] // 2]
            numeric[index, 0] = coords[index][0]
            numeric[index, 1] = coords[index][1]
            numeric[index, 2:2 + image_size] = radio.reshape(-1)
    logging.debug('ATLAS imported.') | 
| 
	Python | 
	def import_norris(f_h5):
    """Imports the Norris et al. (2006) labels.
    f_h5: crowdastro HDF5 file with WISE or SWIRE already imported.
    """
    ir_survey = f_h5.attrs['ir_survey']
    ir_positions = f_h5['/{}/cdfs/numeric'.format(ir_survey)][:, :2]
    ir_tree = sklearn.neighbors.KDTree(ir_positions)
    norris_dat = astropy.io.ascii.read(config['data_sources']['norris_coords'])
    norris_swire = norris_dat['SWIRE']
    norris_coords = []
    for s in norris_swire:
        s = s.strip()
        if len(s) < 19:
            continue
        # e.g. J032931.44-281722.0
        ra_hr = s[1:3]
        ra_min = s[3:5]
        ra_sec = s[5:10]
        dec_sgn = s[10]
        dec_deg = s[11:13]
        dec_min = s[13:15]
        dec_sec = s[15:19]
        ra = '{} {} {}'.format(ra_hr, ra_min, ra_sec)
        dec = '{}{} {} {}'.format(dec_sgn, dec_deg, dec_min, dec_sec)
        logging.debug('Reading Norris coordinate: {}; {}'.format(ra, dec))
        coord = SkyCoord(ra=ra, dec=dec,
                         unit=('hourangle, deg'))
        norris_coords.append(coord)
    norris_labels = numpy.zeros((ir_positions.shape[0],))
    for skycoord in norris_coords:
        # Find a neighbour.
        ra = skycoord.ra.degree
        dec = skycoord.dec.degree
        ((dist,),), ((ir,),) = ir_tree.query([(ra, dec)])
        if dist < config['surveys'][ir_survey]['distance_cutoff']:
            norris_labels[ir] = 1
    f_h5.create_dataset('/{}/cdfs/norris_labels'.format(ir_survey),
                        data=norris_labels) | 
	def import_norris(f_h5):
    """Imports the Norris et al. (2006) labels.
    f_h5: crowdastro HDF5 file with WISE or SWIRE already imported.
    """
    ir_survey = f_h5.attrs['ir_survey']
    ir_positions = f_h5['/{}/cdfs/numeric'.format(ir_survey)][:, :2]
    ir_tree = sklearn.neighbors.KDTree(ir_positions)
    norris_dat = astropy.io.ascii.read(config['data_sources']['norris_coords'])
    norris_swire = norris_dat['SWIRE']
    norris_coords = []
    for s in norris_swire:
        s = s.strip()
        if len(s) < 19:
            continue
        # e.g. J032931.44-281722.0
        ra_hr = s[1:3]
        ra_min = s[3:5]
        ra_sec = s[5:10]
        dec_sgn = s[10]
        dec_deg = s[11:13]
        dec_min = s[13:15]
        dec_sec = s[15:19]
        ra = '{} {} {}'.format(ra_hr, ra_min, ra_sec)
        dec = '{}{} {} {}'.format(dec_sgn, dec_deg, dec_min, dec_sec)
        logging.debug('Reading Norris coordinate: {}; {}'.format(ra, dec))
        coord = SkyCoord(ra=ra, dec=dec,
                         unit=('hourangle, deg'))
        norris_coords.append(coord)
    norris_labels = numpy.zeros((ir_positions.shape[0],))
    for skycoord in norris_coords:
        # Find a neighbour.
        ra = skycoord.ra.degree
        dec = skycoord.dec.degree
        ((dist,),), ((ir,),) = ir_tree.query([(ra, dec)])
        if dist < config['surveys'][ir_survey]['distance_cutoff']:
            norris_labels[ir] = 1
    f_h5.create_dataset('/{}/cdfs/norris_labels'.format(ir_survey),
                        data=norris_labels) | 
| 
	Python | 
	def import_fan(f_h5):
    """Imports the Fan et al. (2015) labels.
    f_h5: crowdastro HDF5 file with WISE or SWIRE already imported.
    """
    ir_survey = f_h5.attrs['ir_survey']
    ir_names = f_h5['/{}/cdfs/string'.format(ir_survey)]
    ir_positions = f_h5['/{}/cdfs/numeric'.format(ir_survey)][:, :2]
    ir_tree = sklearn.neighbors.KDTree(ir_positions)
    fan_coords = []
    with open(config['data_sources']['fan_swire'], 'r') as fan_dat:
        for row in csv.DictReader(fan_dat):
            ra_hr = row['swire'][8:10]
            ra_min = row['swire'][10:12]
            ra_sec = row['swire'][12:17]
            dec_sgn = row['swire'][17]
            dec_deg = row['swire'][18:20]
            dec_min = row['swire'][20:22]
            dec_sec = row['swire'][22:26]
            ra = '{} {} {}'.format(ra_hr, ra_min, ra_sec)
            dec = '{}{} {} {}'.format(dec_sgn, dec_deg, dec_min, dec_sec)
            fan_coords.append((ra, dec))
    fan_labels = numpy.zeros((ir_positions.shape[0],))
    for ra, dec in fan_coords:
        # Find a neighbour.
        skycoord = SkyCoord(ra=ra, dec=dec, unit=('hourangle', 'deg'))
        ra = skycoord.ra.degree
        dec = skycoord.dec.degree
        ((dist,),), ((ir,),) = ir_tree.query([(ra, dec)])
        if dist < config['surveys'][ir_survey]['distance_cutoff']:
            fan_labels[ir] = 1
    f_h5.create_dataset('/{}/cdfs/fan_labels'.format(ir_survey),
                         data=fan_labels) | 
	def import_fan(f_h5):
    """Imports the Fan et al. (2015) labels.
    f_h5: crowdastro HDF5 file with WISE or SWIRE already imported.
    """
    ir_survey = f_h5.attrs['ir_survey']
    ir_names = f_h5['/{}/cdfs/string'.format(ir_survey)]
    ir_positions = f_h5['/{}/cdfs/numeric'.format(ir_survey)][:, :2]
    ir_tree = sklearn.neighbors.KDTree(ir_positions)
    fan_coords = []
    with open(config['data_sources']['fan_swire'], 'r') as fan_dat:
        for row in csv.DictReader(fan_dat):
            ra_hr = row['swire'][8:10]
            ra_min = row['swire'][10:12]
            ra_sec = row['swire'][12:17]
            dec_sgn = row['swire'][17]
            dec_deg = row['swire'][18:20]
            dec_min = row['swire'][20:22]
            dec_sec = row['swire'][22:26]
            ra = '{} {} {}'.format(ra_hr, ra_min, ra_sec)
            dec = '{}{} {} {}'.format(dec_sgn, dec_deg, dec_min, dec_sec)
            fan_coords.append((ra, dec))
    fan_labels = numpy.zeros((ir_positions.shape[0],))
    for ra, dec in fan_coords:
        # Find a neighbour.
        skycoord = SkyCoord(ra=ra, dec=dec, unit=('hourangle', 'deg'))
        ra = skycoord.ra.degree
        dec = skycoord.dec.degree
        ((dist,),), ((ir,),) = ir_tree.query([(ra, dec)])
        if dist < config['surveys'][ir_survey]['distance_cutoff']:
            fan_labels[ir] = 1
    f_h5.create_dataset('/{}/cdfs/fan_labels'.format(ir_survey),
                         data=fan_labels) | 
| 
	Python | 
	def contains(bbox, point):
    """Checks if point is within bbox.
    bbox: [[x0, x1], [y0, y1]]
    point: [x, y]
    -> bool
    """
    return (bbox[0][0] <= point[0] <= bbox[0][1] and
            bbox[1][0] <= point[1] <= bbox[1][1]) | 
	def contains(bbox, point):
    """Checks if point is within bbox.
    bbox: [[x0, x1], [y0, y1]]
    point: [x, y]
    -> bool
    """
    return (bbox[0][0] <= point[0] <= bbox[0][1] and
            bbox[1][0] <= point[1] <= bbox[1][1]) | 
| 
	Python | 
	def make_radio_combination_signature(radio_annotation, wcs, atlas_positions,
                                     subject, pix_offset):
    """Generates a unique signature for a radio annotation.
    radio_annotation: 'radio' dictionary from a classification.
    wcs: World coordinate system associated with the ATLAS image.
    atlas_positions: [[RA, DEC]] NumPy array.
    subject: RGZ subject dict.
    pix_offset: (x, y) pixel position of this radio subject on the ATLAS image.
    -> Something immutable
    """
    from . import rgz_data as data
    # TODO(MatthewJA): This only works on ATLAS. Generalise.
    # My choice of immutable object will be stringified crowdastro ATLAS
    # indices.
    zooniverse_id = subject['zooniverse_id']
    subject_fits = data.get_radio_fits(subject)
    subject_wcs = astropy.wcs.WCS(subject_fits.header)
    atlas_ids = []
    x_offset, y_offset = pix_offset
    for c in radio_annotation.values():
        # Note that the x scale is not the same as the IR scale, but the scale
        # factor is included in the annotation, so I have multiplied this out
        # here for consistency.
        scale_width = c.get('scale_width', '')
        scale_height = c.get('scale_height', '')
        if scale_width:
            scale_width = float(scale_width)
        else:
            # Sometimes, there's no scale, so I've included a default scale.
            scale_width = config['surveys']['atlas']['scale_width']
        if scale_height:
            scale_height = float(scale_height)
        else:
            scale_height = config['surveys']['atlas']['scale_height']
        # These numbers are in terms of the PNG images, so I need to multiply by
        # the click-to-fits ratio.
        scale_width *= config['surveys']['atlas']['click_to_fits_x']
        scale_height *= config['surveys']['atlas']['click_to_fits_y']
        subject_bbox = [
            [
                float(c['xmin']) * scale_width,
                float(c['xmax']) * scale_width,
            ],
            [
                float(c['ymin']) * scale_height,
                float(c['ymax']) * scale_height,
            ],
        ]
        # ...and by the mosaic ratio. There's probably double-up here, but this
        # makes more sense.
        scale_width *= config['surveys']['atlas']['mosaic_scale_x']
        scale_height *= config['surveys']['atlas']['mosaic_scale_y']
        # Get the bounding box of the radio source in pixels.
        # Format: [xs, ys]
        bbox = [
            [
                float(c['xmin']) * scale_width,
                float(c['xmax']) * scale_width,
            ],
            [
                float(c['ymin']) * scale_height,
                float(c['ymax']) * scale_height,
            ],
        ]
        assert bbox[0][0] < bbox[0][1]
        assert bbox[1][0] < bbox[1][1]
        # Convert the bounding box into RA/DEC.
        bbox = wcs.all_pix2world(bbox[0] + x_offset, bbox[1] + y_offset,
                                 FITS_CONVENTION)
        subject_bbox = subject_wcs.all_pix2world(subject_bbox[0],
                subject_bbox[1], FITS_CONVENTION)
        # TODO(MatthewJA): Remove (or disable) this sanity check.
        # The bbox is backwards along the x-axis for some reason.
        bbox[0] = bbox[0][::-1]
        assert bbox[0][0] < bbox[0][1]
        assert bbox[1][0] < bbox[1][1]
        bbox = numpy.array(bbox)
        # What is this radio source called? Check if we have an object in the
        # bounding box. We'll cache these results because there is a lot of
        # overlap.
        cache_key = tuple(tuple(b) for b in bbox)
        if cache_key in bbox_cache_:
            index = bbox_cache_[cache_key]
        else:
            x_gt_min = atlas_positions[:, 0] >= bbox[0, 0]
            x_lt_max = atlas_positions[:, 0] <= bbox[0, 1]
            y_gt_min = atlas_positions[:, 1] >= bbox[1, 0]
            y_lt_max = atlas_positions[:, 1] <= bbox[1, 1]
            within = numpy.all([x_gt_min, x_lt_max, y_gt_min, y_lt_max], axis=0)
            indices = numpy.where(within)[0]
            if len(indices) == 0:
                logging.debug('Skipping radio source not in catalogue for '
                              '%s', zooniverse_id)
                continue
            else:
                if len(indices) > 1:
                    logging.debug('Found multiple (%d) ATLAS matches '
                                  'for %s', len(indices), zooniverse_id)
                index = indices[0]
            bbox_cache_[cache_key] = index
        atlas_ids.append(str(index))
    atlas_ids.sort()
    if not atlas_ids:
        raise CatalogueError('No catalogued radio sources.')
    return ';'.join(atlas_ids) | 
	def make_radio_combination_signature(radio_annotation, wcs, atlas_positions,
                                     subject, pix_offset):
    """Generates a unique signature for a radio annotation.
    radio_annotation: 'radio' dictionary from a classification.
    wcs: World coordinate system associated with the ATLAS image.
    atlas_positions: [[RA, DEC]] NumPy array.
    subject: RGZ subject dict.
    pix_offset: (x, y) pixel position of this radio subject on the ATLAS image.
    -> Something immutable
    """
    from . import rgz_data as data
    # TODO(MatthewJA): This only works on ATLAS. Generalise.
    # My choice of immutable object will be stringified crowdastro ATLAS
    # indices.
    zooniverse_id = subject['zooniverse_id']
    subject_fits = data.get_radio_fits(subject)
    subject_wcs = astropy.wcs.WCS(subject_fits.header)
    atlas_ids = []
    x_offset, y_offset = pix_offset
    for c in radio_annotation.values():
        # Note that the x scale is not the same as the IR scale, but the scale
        # factor is included in the annotation, so I have multiplied this out
        # here for consistency.
        scale_width = c.get('scale_width', '')
        scale_height = c.get('scale_height', '')
        if scale_width:
            scale_width = float(scale_width)
        else:
            # Sometimes, there's no scale, so I've included a default scale.
            scale_width = config['surveys']['atlas']['scale_width']
        if scale_height:
            scale_height = float(scale_height)
        else:
            scale_height = config['surveys']['atlas']['scale_height']
        # These numbers are in terms of the PNG images, so I need to multiply by
        # the click-to-fits ratio.
        scale_width *= config['surveys']['atlas']['click_to_fits_x']
        scale_height *= config['surveys']['atlas']['click_to_fits_y']
        subject_bbox = [
            [
                float(c['xmin']) * scale_width,
                float(c['xmax']) * scale_width,
            ],
            [
                float(c['ymin']) * scale_height,
                float(c['ymax']) * scale_height,
            ],
        ]
        # ...and by the mosaic ratio. There's probably double-up here, but this
        # makes more sense.
        scale_width *= config['surveys']['atlas']['mosaic_scale_x']
        scale_height *= config['surveys']['atlas']['mosaic_scale_y']
        # Get the bounding box of the radio source in pixels.
        # Format: [xs, ys]
        bbox = [
            [
                float(c['xmin']) * scale_width,
                float(c['xmax']) * scale_width,
            ],
            [
                float(c['ymin']) * scale_height,
                float(c['ymax']) * scale_height,
            ],
        ]
        assert bbox[0][0] < bbox[0][1]
        assert bbox[1][0] < bbox[1][1]
        # Convert the bounding box into RA/DEC.
        bbox = wcs.all_pix2world(bbox[0] + x_offset, bbox[1] + y_offset,
                                 FITS_CONVENTION)
        subject_bbox = subject_wcs.all_pix2world(subject_bbox[0],
                subject_bbox[1], FITS_CONVENTION)
        # TODO(MatthewJA): Remove (or disable) this sanity check.
        # The bbox is backwards along the x-axis for some reason.
        bbox[0] = bbox[0][::-1]
        assert bbox[0][0] < bbox[0][1]
        assert bbox[1][0] < bbox[1][1]
        bbox = numpy.array(bbox)
        # What is this radio source called? Check if we have an object in the
        # bounding box. We'll cache these results because there is a lot of
        # overlap.
        cache_key = tuple(tuple(b) for b in bbox)
        if cache_key in bbox_cache_:
            index = bbox_cache_[cache_key]
        else:
            x_gt_min = atlas_positions[:, 0] >= bbox[0, 0]
            x_lt_max = atlas_positions[:, 0] <= bbox[0, 1]
            y_gt_min = atlas_positions[:, 1] >= bbox[1, 0]
            y_lt_max = atlas_positions[:, 1] <= bbox[1, 1]
            within = numpy.all([x_gt_min, x_lt_max, y_gt_min, y_lt_max], axis=0)
            indices = numpy.where(within)[0]
            if len(indices) == 0:
                logging.debug('Skipping radio source not in catalogue for '
                              '%s', zooniverse_id)
                continue
            else:
                if len(indices) > 1:
                    logging.debug('Found multiple (%d) ATLAS matches '
                                  'for %s', len(indices), zooniverse_id)
                index = indices[0]
            bbox_cache_[cache_key] = index
        atlas_ids.append(str(index))
    atlas_ids.sort()
    if not atlas_ids:
        raise CatalogueError('No catalogued radio sources.')
    return ';'.join(atlas_ids) | 
| 
	Python | 
	def parse_classification(classification, subject, atlas_positions, wcs,
                         pix_offset):
    """Converts a raw RGZ classification into a classification dict.
    Scales all positions and flips y axis of clicks.
    classification: RGZ classification dict.
    subject: Associated RGZ subject dict.
    atlas_positions: [[RA, DEC]] NumPy array.
    wcs: World coordinate system of the ATLAS image.
    pix_offset: (x, y) pixel position of this radio subject on the ATLAS image.
    -> dict mapping radio signature to list of corresponding IR host pixel
        locations.
    """
    result = {}
    n_invalid = 0
    for annotation in classification['annotations']:
        if 'radio' not in annotation:
            # This is a metadata annotation and we can ignore it.
            continue
        if annotation['radio'] == 'No Contours':
            # I'm not sure how this occurs. I'm going to ignore it.
            continue
        try:
            radio_signature = make_radio_combination_signature(
                    annotation['radio'], wcs, atlas_positions,
                    subject, pix_offset)
        except CatalogueError:
            # Ignore invalid annotations.
            n_invalid += 1
            logging.debug('Ignoring invalid annotation for %s.',
                          subject['zooniverse_id'])
            continue
        ir_locations = []
        if annotation['ir'] != 'No Sources':
            for ir_click in annotation['ir']:
                ir_x = float(annotation['ir'][ir_click]['x'])
                ir_y = float(annotation['ir'][ir_click]['y'])
                # Rescale to a consistent size.
                ir_x *= config['surveys']['atlas']['click_to_fits_x']
                ir_y *= config['surveys']['atlas']['click_to_fits_y']
                # Ignore out-of-range data.
                if not 0 <= ir_x <= config['surveys']['atlas']['fits_width']:
                    n_invalid += 1
                    continue
                if not 0 <= ir_y <= config['surveys']['atlas']['fits_height']:
                    n_invalid += 1
                    continue
                # Flip the y axis to match other data conventions.
                ir_y = config['surveys']['atlas']['fits_height'] - ir_y
                # Rescale to match the mosaic WCS.
                ir_x *= config['surveys']['atlas']['mosaic_scale_x']
                ir_y *= config['surveys']['atlas']['mosaic_scale_y']
                # Move to the reference location of the radio subject.
                ir_x += pix_offset[0]
                ir_y += pix_offset[1]
                # Convert the location into RA/DEC.
                (ir_x,), (ir_y,) = wcs.wcs_pix2world([ir_x], [ir_y], 1)
                ir_location = (ir_x, ir_y)
                ir_locations.append(ir_location)
            result[radio_signature] = ir_locations
    if n_invalid:
        logging.debug('%d invalid annotations for %s.', n_invalid,
                      subject['zooniverse_id'])
    return result | 
	def parse_classification(classification, subject, atlas_positions, wcs,
                         pix_offset):
    """Converts a raw RGZ classification into a classification dict.
    Scales all positions and flips y axis of clicks.
    classification: RGZ classification dict.
    subject: Associated RGZ subject dict.
    atlas_positions: [[RA, DEC]] NumPy array.
    wcs: World coordinate system of the ATLAS image.
    pix_offset: (x, y) pixel position of this radio subject on the ATLAS image.
    -> dict mapping radio signature to list of corresponding IR host pixel
        locations.
    """
    result = {}
    n_invalid = 0
    for annotation in classification['annotations']:
        if 'radio' not in annotation:
            # This is a metadata annotation and we can ignore it.
            continue
        if annotation['radio'] == 'No Contours':
            # I'm not sure how this occurs. I'm going to ignore it.
            continue
        try:
            radio_signature = make_radio_combination_signature(
                    annotation['radio'], wcs, atlas_positions,
                    subject, pix_offset)
        except CatalogueError:
            # Ignore invalid annotations.
            n_invalid += 1
            logging.debug('Ignoring invalid annotation for %s.',
                          subject['zooniverse_id'])
            continue
        ir_locations = []
        if annotation['ir'] != 'No Sources':
            for ir_click in annotation['ir']:
                ir_x = float(annotation['ir'][ir_click]['x'])
                ir_y = float(annotation['ir'][ir_click]['y'])
                # Rescale to a consistent size.
                ir_x *= config['surveys']['atlas']['click_to_fits_x']
                ir_y *= config['surveys']['atlas']['click_to_fits_y']
                # Ignore out-of-range data.
                if not 0 <= ir_x <= config['surveys']['atlas']['fits_width']:
                    n_invalid += 1
                    continue
                if not 0 <= ir_y <= config['surveys']['atlas']['fits_height']:
                    n_invalid += 1
                    continue
                # Flip the y axis to match other data conventions.
                ir_y = config['surveys']['atlas']['fits_height'] - ir_y
                # Rescale to match the mosaic WCS.
                ir_x *= config['surveys']['atlas']['mosaic_scale_x']
                ir_y *= config['surveys']['atlas']['mosaic_scale_y']
                # Move to the reference location of the radio subject.
                ir_x += pix_offset[0]
                ir_y += pix_offset[1]
                # Convert the location into RA/DEC.
                (ir_x,), (ir_y,) = wcs.wcs_pix2world([ir_x], [ir_y], 1)
                ir_location = (ir_x, ir_y)
                ir_locations.append(ir_location)
            result[radio_signature] = ir_locations
    if n_invalid:
        logging.debug('%d invalid annotations for %s.', n_invalid,
                      subject['zooniverse_id'])
    return result | 
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.
