language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def CreateMetadataDict(benchmark_spec):
"""Create metadata dict to be used in run results.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
metadata dict
"""
metadata = {
'use_tpu': bool(benchmark_spec.tpus),
'data_dir': benchmark_spec.data_dir,
'model_dir': benchmark_spec.model_dir,
'train_steps': benchmark_spec.train_steps,
'eval_steps': benchmark_spec.eval_steps,
'commit': cloud_tpu_models.GetCommit(benchmark_spec.vms[0]),
'iterations': benchmark_spec.iterations,
'num_train_images': benchmark_spec.num_train_images,
'num_eval_images': benchmark_spec.num_eval_images,
'train_epochs': benchmark_spec.train_epochs,
'eval_epochs': benchmark_spec.eval_epochs,
'num_examples_per_epoch': benchmark_spec.num_examples_per_epoch,
'train_batch_size': benchmark_spec.batch_size,
'eval_batch_size': benchmark_spec.batch_size
}
if benchmark_spec.tpus:
metadata.update({
'train_tpu_num_shards':
benchmark_spec.tpu_groups['train'].GetNumShards(),
'train_tpu_accelerator_type':
benchmark_spec.tpu_groups['train'].GetAcceleratorType()
})
return metadata | def CreateMetadataDict(benchmark_spec):
"""Create metadata dict to be used in run results.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
metadata dict
"""
metadata = {
'use_tpu': bool(benchmark_spec.tpus),
'data_dir': benchmark_spec.data_dir,
'model_dir': benchmark_spec.model_dir,
'train_steps': benchmark_spec.train_steps,
'eval_steps': benchmark_spec.eval_steps,
'commit': cloud_tpu_models.GetCommit(benchmark_spec.vms[0]),
'iterations': benchmark_spec.iterations,
'num_train_images': benchmark_spec.num_train_images,
'num_eval_images': benchmark_spec.num_eval_images,
'train_epochs': benchmark_spec.train_epochs,
'eval_epochs': benchmark_spec.eval_epochs,
'num_examples_per_epoch': benchmark_spec.num_examples_per_epoch,
'train_batch_size': benchmark_spec.batch_size,
'eval_batch_size': benchmark_spec.batch_size
}
if benchmark_spec.tpus:
metadata.update({
'train_tpu_num_shards':
benchmark_spec.tpu_groups['train'].GetNumShards(),
'train_tpu_accelerator_type':
benchmark_spec.tpu_groups['train'].GetAcceleratorType()
})
return metadata |
Python | def ExtractThroughput(regex, output, metadata, metric, unit):
"""Extract throughput from MNIST output.
Args:
regex: string. Regular expression.
output: MNIST output
metadata: dict. Additional metadata to include with the sample.
metric: string. Name of the metric within the benchmark.
unit: string. Units for 'value'.
Returns:
samples containing the throughput
"""
matches = regex_util.ExtractAllMatches(regex, output)
samples = []
for index, value in enumerate(matches):
metadata_with_index = copy.deepcopy(metadata)
metadata_with_index['index'] = index
samples.append(sample.Sample(metric, float(value), unit,
metadata_with_index))
return samples | def ExtractThroughput(regex, output, metadata, metric, unit):
"""Extract throughput from MNIST output.
Args:
regex: string. Regular expression.
output: MNIST output
metadata: dict. Additional metadata to include with the sample.
metric: string. Name of the metric within the benchmark.
unit: string. Units for 'value'.
Returns:
samples containing the throughput
"""
matches = regex_util.ExtractAllMatches(regex, output)
samples = []
for index, value in enumerate(matches):
metadata_with_index = copy.deepcopy(metadata)
metadata_with_index['index'] = index
samples.append(sample.Sample(metric, float(value), unit,
metadata_with_index))
return samples |
Python | def MakeSamplesFromTrainOutput(metadata, output, elapsed_seconds, step):
"""Create a sample containing training metrics.
Args:
metadata: dict contains all the metadata that reports.
output: string, command output
elapsed_seconds: float, elapsed seconds from saved checkpoint.
step: int, the global steps in the training process.
Example output:
perfkitbenchmarker/tests/linux_benchmarks/mnist_benchmark_test.py
Returns:
a Sample containing training metrics, current step, elapsed seconds
"""
samples = []
metadata_copy = metadata.copy()
metadata_copy['step'] = int(step)
metadata_copy['epoch'] = step / metadata['num_examples_per_epoch']
metadata_copy['elapsed_seconds'] = elapsed_seconds
get_mean = lambda matches: sum(float(x) for x in matches) / len(matches)
loss = get_mean(regex_util.ExtractAllMatches(
r'Loss for final step: (\d+\.\d+)', output))
samples.append(sample.Sample('Loss', float(loss), '', metadata_copy))
if 'global_step/sec: ' in output:
global_step_sec = get_mean(regex_util.ExtractAllMatches(
r'global_step/sec: (\S+)', output))
samples.append(sample.Sample(
'Global Steps Per Second', global_step_sec,
'global_steps/sec', metadata_copy))
examples_sec = global_step_sec * metadata['train_batch_size']
if 'examples/sec: ' in output:
examples_sec_log = get_mean(regex_util.ExtractAllMatches(
r'examples/sec: (\S+)', output))
precision = abs(examples_sec_log - examples_sec) / examples_sec_log
assert precision < EXAMPLES_PER_SECOND_PRECISION, 'examples/sec is wrong.'
examples_sec = examples_sec_log
samples.append(sample.Sample('Examples Per Second', examples_sec,
'examples/sec', metadata_copy))
return samples | def MakeSamplesFromTrainOutput(metadata, output, elapsed_seconds, step):
"""Create a sample containing training metrics.
Args:
metadata: dict contains all the metadata that reports.
output: string, command output
elapsed_seconds: float, elapsed seconds from saved checkpoint.
step: int, the global steps in the training process.
Example output:
perfkitbenchmarker/tests/linux_benchmarks/mnist_benchmark_test.py
Returns:
a Sample containing training metrics, current step, elapsed seconds
"""
samples = []
metadata_copy = metadata.copy()
metadata_copy['step'] = int(step)
metadata_copy['epoch'] = step / metadata['num_examples_per_epoch']
metadata_copy['elapsed_seconds'] = elapsed_seconds
get_mean = lambda matches: sum(float(x) for x in matches) / len(matches)
loss = get_mean(regex_util.ExtractAllMatches(
r'Loss for final step: (\d+\.\d+)', output))
samples.append(sample.Sample('Loss', float(loss), '', metadata_copy))
if 'global_step/sec: ' in output:
global_step_sec = get_mean(regex_util.ExtractAllMatches(
r'global_step/sec: (\S+)', output))
samples.append(sample.Sample(
'Global Steps Per Second', global_step_sec,
'global_steps/sec', metadata_copy))
examples_sec = global_step_sec * metadata['train_batch_size']
if 'examples/sec: ' in output:
examples_sec_log = get_mean(regex_util.ExtractAllMatches(
r'examples/sec: (\S+)', output))
precision = abs(examples_sec_log - examples_sec) / examples_sec_log
assert precision < EXAMPLES_PER_SECOND_PRECISION, 'examples/sec is wrong.'
examples_sec = examples_sec_log
samples.append(sample.Sample('Examples Per Second', examples_sec,
'examples/sec', metadata_copy))
return samples |
Python | def MakeSamplesFromEvalOutput(metadata, output, elapsed_seconds):
"""Create a sample containing evaluation metrics.
Args:
metadata: dict contains all the metadata that reports.
output: string, command output
elapsed_seconds: float, elapsed seconds from saved checkpoint.
Example output:
perfkitbenchmarker/tests/linux_benchmarks/mnist_benchmark_test.py
Returns:
a Sample containing evaluation metrics
"""
pattern = (r'Saving dict for global step \d+: accuracy = (\d+\.\d+), '
r'global_step = (\d+), loss = (\d+\.\d+)')
accuracy, step, loss = regex_util.ExtractAllMatches(pattern, output).pop()
metadata_copy = metadata.copy()
step = int(step)
metadata_copy['step'] = step
num_examples_per_epoch = metadata['num_examples_per_epoch']
metadata_copy['epoch'] = step / num_examples_per_epoch
metadata_copy['elapsed_seconds'] = elapsed_seconds
return [sample.Sample('Eval Loss', float(loss), '', metadata_copy),
sample.Sample('Accuracy', float(accuracy) * 100, '%', metadata_copy)] | def MakeSamplesFromEvalOutput(metadata, output, elapsed_seconds):
"""Create a sample containing evaluation metrics.
Args:
metadata: dict contains all the metadata that reports.
output: string, command output
elapsed_seconds: float, elapsed seconds from saved checkpoint.
Example output:
perfkitbenchmarker/tests/linux_benchmarks/mnist_benchmark_test.py
Returns:
a Sample containing evaluation metrics
"""
pattern = (r'Saving dict for global step \d+: accuracy = (\d+\.\d+), '
r'global_step = (\d+), loss = (\d+\.\d+)')
accuracy, step, loss = regex_util.ExtractAllMatches(pattern, output).pop()
metadata_copy = metadata.copy()
step = int(step)
metadata_copy['step'] = step
num_examples_per_epoch = metadata['num_examples_per_epoch']
metadata_copy['epoch'] = step / num_examples_per_epoch
metadata_copy['elapsed_seconds'] = elapsed_seconds
return [sample.Sample('Eval Loss', float(loss), '', metadata_copy),
sample.Sample('Accuracy', float(accuracy) * 100, '%', metadata_copy)] |
Python | def Run(benchmark_spec):
"""Run MNIST on the cluster.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
A list of sample.Sample objects.
"""
_UpdateBenchmarkSpecWithFlags(benchmark_spec)
vm = benchmark_spec.vms[0]
mnist_benchmark_script = 'mnist_tpu.py'
mnist_benchmark_cmd = (
'cd models/official/mnist && '
'python {script} '
'--data_dir={data_dir} '
'--iterations={iterations} '
'--model_dir={model_dir} '
'--batch_size={batch_size}'.format(
script=mnist_benchmark_script,
data_dir=benchmark_spec.data_dir,
iterations=benchmark_spec.iterations,
model_dir=benchmark_spec.model_dir,
batch_size=benchmark_spec.batch_size))
if cuda_toolkit.CheckNvidiaGpuExists(vm):
mnist_benchmark_cmd = '{env} {cmd}'.format(
env=tensorflow.GetEnvironmentVars(vm), cmd=mnist_benchmark_cmd)
samples = []
metadata = CreateMetadataDict(benchmark_spec)
if benchmark_spec.train_steps:
if benchmark_spec.tpus:
tpu = benchmark_spec.tpu_groups['train'].GetName()
num_shards = '--num_shards={}'.format(
benchmark_spec.tpu_groups['train'].GetNumShards())
else:
tpu = num_shards = ''
mnist_benchmark_train_cmd = (
'{cmd} --tpu={tpu} --use_tpu={use_tpu} --train_steps={train_steps} '
'{num_shards} --noenable_predict'.format(
cmd=mnist_benchmark_cmd, tpu=tpu, use_tpu=bool(benchmark_spec.tpus),
train_steps=benchmark_spec.train_steps, num_shards=num_shards))
start = time.time()
stdout, stderr = vm.RobustRemoteCommand(mnist_benchmark_train_cmd,
should_log=True)
elapsed_seconds = (time.time() - start)
samples.extend(MakeSamplesFromTrainOutput(
metadata, stdout + stderr, elapsed_seconds, benchmark_spec.train_steps))
if benchmark_spec.eval_steps:
mnist_benchmark_eval_cmd = (
'{cmd} --tpu="" --use_tpu=False --eval_steps={eval_steps}'.format(
cmd=mnist_benchmark_cmd, eval_steps=benchmark_spec.eval_steps))
stdout, stderr = vm.RobustRemoteCommand(mnist_benchmark_eval_cmd,
should_log=True)
samples.extend(MakeSamplesFromEvalOutput(metadata, stdout + stderr,
elapsed_seconds))
return samples | def Run(benchmark_spec):
"""Run MNIST on the cluster.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
A list of sample.Sample objects.
"""
_UpdateBenchmarkSpecWithFlags(benchmark_spec)
vm = benchmark_spec.vms[0]
mnist_benchmark_script = 'mnist_tpu.py'
mnist_benchmark_cmd = (
'cd models/official/mnist && '
'python {script} '
'--data_dir={data_dir} '
'--iterations={iterations} '
'--model_dir={model_dir} '
'--batch_size={batch_size}'.format(
script=mnist_benchmark_script,
data_dir=benchmark_spec.data_dir,
iterations=benchmark_spec.iterations,
model_dir=benchmark_spec.model_dir,
batch_size=benchmark_spec.batch_size))
if cuda_toolkit.CheckNvidiaGpuExists(vm):
mnist_benchmark_cmd = '{env} {cmd}'.format(
env=tensorflow.GetEnvironmentVars(vm), cmd=mnist_benchmark_cmd)
samples = []
metadata = CreateMetadataDict(benchmark_spec)
if benchmark_spec.train_steps:
if benchmark_spec.tpus:
tpu = benchmark_spec.tpu_groups['train'].GetName()
num_shards = '--num_shards={}'.format(
benchmark_spec.tpu_groups['train'].GetNumShards())
else:
tpu = num_shards = ''
mnist_benchmark_train_cmd = (
'{cmd} --tpu={tpu} --use_tpu={use_tpu} --train_steps={train_steps} '
'{num_shards} --noenable_predict'.format(
cmd=mnist_benchmark_cmd, tpu=tpu, use_tpu=bool(benchmark_spec.tpus),
train_steps=benchmark_spec.train_steps, num_shards=num_shards))
start = time.time()
stdout, stderr = vm.RobustRemoteCommand(mnist_benchmark_train_cmd,
should_log=True)
elapsed_seconds = (time.time() - start)
samples.extend(MakeSamplesFromTrainOutput(
metadata, stdout + stderr, elapsed_seconds, benchmark_spec.train_steps))
if benchmark_spec.eval_steps:
mnist_benchmark_eval_cmd = (
'{cmd} --tpu="" --use_tpu=False --eval_steps={eval_steps}'.format(
cmd=mnist_benchmark_cmd, eval_steps=benchmark_spec.eval_steps))
stdout, stderr = vm.RobustRemoteCommand(mnist_benchmark_eval_cmd,
should_log=True)
samples.extend(MakeSamplesFromEvalOutput(metadata, stdout + stderr,
elapsed_seconds))
return samples |
Python | def Cleanup(benchmark_spec):
"""Cleanup MNIST on the cluster.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
"""
if benchmark_spec.tpus:
vm = benchmark_spec.vms[0]
vm.RemoteCommand(
'{gsutil} rm -r {model_dir}'.format(
gsutil=vm.gsutil_path,
model_dir=benchmark_spec.model_dir), should_log=True)
benchmark_spec.storage_service.CleanupVM(vm) | def Cleanup(benchmark_spec):
"""Cleanup MNIST on the cluster.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
"""
if benchmark_spec.tpus:
vm = benchmark_spec.vms[0]
vm.RemoteCommand(
'{gsutil} rm -r {model_dir}'.format(
gsutil=vm.gsutil_path,
model_dir=benchmark_spec.model_dir), should_log=True)
benchmark_spec.storage_service.CleanupVM(vm) |
Python | def CheckPrerequisites(benchmark_config):
"""Verifies that the required resources are present.
Args:
benchmark_config: Unused.
Raises:
perfkitbenchmarker.data.ResourceNotFound: On missing resource.
"""
del benchmark_config
ycsb.CheckPrerequisites() | def CheckPrerequisites(benchmark_config):
"""Verifies that the required resources are present.
Args:
benchmark_config: Unused.
Raises:
perfkitbenchmarker.data.ResourceNotFound: On missing resource.
"""
del benchmark_config
ycsb.CheckPrerequisites() |
Python | def Prepare(benchmark_spec):
"""Install YCSB on the target vm.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
"""
benchmark_spec.always_call_cleanup = True
benchmark_spec.dynamodb_instance = aws_dynamodb.AwsDynamoDBInstance(
table_name='pkb-{0}'.format(FLAGS.run_uri))
benchmark_spec.dynamodb_instance.Create()
vms = benchmark_spec.vms
# Install required packages.
vm_util.RunThreaded(_Install, vms)
benchmark_spec.executor = ycsb.YCSBExecutor('dynamodb') | def Prepare(benchmark_spec):
"""Install YCSB on the target vm.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
"""
benchmark_spec.always_call_cleanup = True
benchmark_spec.dynamodb_instance = aws_dynamodb.AwsDynamoDBInstance(
table_name='pkb-{0}'.format(FLAGS.run_uri))
benchmark_spec.dynamodb_instance.Create()
vms = benchmark_spec.vms
# Install required packages.
vm_util.RunThreaded(_Install, vms)
benchmark_spec.executor = ycsb.YCSBExecutor('dynamodb') |
Python | def Run(benchmark_spec):
"""Run YCSB on the target vm.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
A list of sample.Sample objects.
"""
vms = benchmark_spec.vms
run_kwargs = {
'dynamodb.awsCredentialsFile': GetRemoteVMCredentialsFullPath(vms[0]),
'dynamodb.primaryKey': FLAGS.aws_dynamodb_primarykey,
'dynamodb.endpoint': benchmark_spec.dynamodb_instance.GetEndPoint(),
'table': 'pkb-{0}'.format(FLAGS.run_uri),
}
if FLAGS.aws_dynamodb_use_sort:
run_kwargs.update({'dynamodb.primaryKeyType': 'HASH_AND_RANGE',
'dynamodb.hashKeyName': FLAGS.aws_dynamodb_primarykey,
'dynamodb.primaryKey': FLAGS.aws_dynamodb_sortkey})
if FLAGS.aws_dynamodb_ycsb_consistentReads:
run_kwargs.update({'dynamodb.consistentReads': 'true'})
load_kwargs = run_kwargs.copy()
if FLAGS['ycsb_preload_threads'].present:
load_kwargs['threads'] = FLAGS['ycsb_preload_threads']
samples = list(benchmark_spec.executor.LoadAndRun(
vms, load_kwargs=load_kwargs, run_kwargs=run_kwargs))
return samples | def Run(benchmark_spec):
"""Run YCSB on the target vm.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
A list of sample.Sample objects.
"""
vms = benchmark_spec.vms
run_kwargs = {
'dynamodb.awsCredentialsFile': GetRemoteVMCredentialsFullPath(vms[0]),
'dynamodb.primaryKey': FLAGS.aws_dynamodb_primarykey,
'dynamodb.endpoint': benchmark_spec.dynamodb_instance.GetEndPoint(),
'table': 'pkb-{0}'.format(FLAGS.run_uri),
}
if FLAGS.aws_dynamodb_use_sort:
run_kwargs.update({'dynamodb.primaryKeyType': 'HASH_AND_RANGE',
'dynamodb.hashKeyName': FLAGS.aws_dynamodb_primarykey,
'dynamodb.primaryKey': FLAGS.aws_dynamodb_sortkey})
if FLAGS.aws_dynamodb_ycsb_consistentReads:
run_kwargs.update({'dynamodb.consistentReads': 'true'})
load_kwargs = run_kwargs.copy()
if FLAGS['ycsb_preload_threads'].present:
load_kwargs['threads'] = FLAGS['ycsb_preload_threads']
samples = list(benchmark_spec.executor.LoadAndRun(
vms, load_kwargs=load_kwargs, run_kwargs=run_kwargs))
return samples |
Python | def Cleanup(benchmark_spec):
"""Cleanup YCSB on the target vm.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
"""
benchmark_spec.dynamodb_instance.Delete() | def Cleanup(benchmark_spec):
"""Cleanup YCSB on the target vm.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
"""
benchmark_spec.dynamodb_instance.Delete() |
Python | def GetRemoteVMCredentialsFullPath(vm):
"""Returns the full path for AWS credentials file."""
home_dir, _ = vm.RemoteCommand('echo ~')
# aws credentials are always located in the 'credentials' directory of .aws
# configurations folder
# https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
return os.path.join(home_dir.rstrip('\n'),
FLAGS.aws_credentials_remote_path, 'credentials') | def GetRemoteVMCredentialsFullPath(vm):
"""Returns the full path for AWS credentials file."""
home_dir, _ = vm.RemoteCommand('echo ~')
# aws credentials are always located in the 'credentials' directory of .aws
# configurations folder
# https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
return os.path.join(home_dir.rstrip('\n'),
FLAGS.aws_credentials_remote_path, 'credentials') |
Python | def _Exists(self):
"""Check to see whether the cluster exists."""
cmd = util.GcloudCommand(self, 'dataproc', 'clusters', 'describe',
self.cluster_id)
self.append_region(cmd)
_, _, retcode = cmd.Issue()
return retcode == 0 | def _Exists(self):
"""Check to see whether the cluster exists."""
cmd = util.GcloudCommand(self, 'dataproc', 'clusters', 'describe',
self.cluster_id)
self.append_region(cmd)
_, _, retcode = cmd.Issue()
return retcode == 0 |
Python | def generate_data(self, source_dir, udpate_default_fs, num_files, size_file):
"""Method to generate data using a distributed job on the cluster."""
cmd = util.GcloudCommand(self, 'dataproc', 'jobs', 'submit', 'hadoop')
cmd.flags['cluster'] = self.cluster_id
cmd.flags['jar'] = TESTDFSIO_JAR_LOCATION
self.append_region(cmd)
job_arguments = [TESTDFSIO_PROGRAM]
if udpate_default_fs:
job_arguments.append('-Dfs.default.name={}'.format(source_dir))
job_arguments.append('-Dtest.build.data={}'.format(source_dir))
job_arguments.extend(['-write', '-nrFiles', str(num_files), '-fileSize',
str(size_file)])
cmd.additional_flags = ['--'] + job_arguments
stdout, stderr, retcode = cmd.Issue(timeout=None)
return {dpb_service.SUCCESS: retcode == 0} | def generate_data(self, source_dir, udpate_default_fs, num_files, size_file):
"""Method to generate data using a distributed job on the cluster."""
cmd = util.GcloudCommand(self, 'dataproc', 'jobs', 'submit', 'hadoop')
cmd.flags['cluster'] = self.cluster_id
cmd.flags['jar'] = TESTDFSIO_JAR_LOCATION
self.append_region(cmd)
job_arguments = [TESTDFSIO_PROGRAM]
if udpate_default_fs:
job_arguments.append('-Dfs.default.name={}'.format(source_dir))
job_arguments.append('-Dtest.build.data={}'.format(source_dir))
job_arguments.extend(['-write', '-nrFiles', str(num_files), '-fileSize',
str(size_file)])
cmd.additional_flags = ['--'] + job_arguments
stdout, stderr, retcode = cmd.Issue(timeout=None)
return {dpb_service.SUCCESS: retcode == 0} |
Python | def read_data(self, source_dir, udpate_default_fs, num_files, size_file):
"""Method to read data using a distributed job on the cluster."""
cmd = util.GcloudCommand(self, 'dataproc', 'jobs', 'submit', 'hadoop')
cmd.flags['cluster'] = self.cluster_id
cmd.flags['jar'] = TESTDFSIO_JAR_LOCATION
self.append_region(cmd)
job_arguments = [TESTDFSIO_PROGRAM]
if udpate_default_fs:
job_arguments.append('-Dfs.default.name={}'.format(source_dir))
job_arguments.append('-Dtest.build.data={}'.format(source_dir))
job_arguments.extend(['-read', '-nrFiles', str(num_files), '-fileSize',
str(size_file)])
cmd.additional_flags = ['--'] + job_arguments
stdout, stderr, retcode = cmd.Issue(timeout=None)
return {dpb_service.SUCCESS: retcode == 0} | def read_data(self, source_dir, udpate_default_fs, num_files, size_file):
"""Method to read data using a distributed job on the cluster."""
cmd = util.GcloudCommand(self, 'dataproc', 'jobs', 'submit', 'hadoop')
cmd.flags['cluster'] = self.cluster_id
cmd.flags['jar'] = TESTDFSIO_JAR_LOCATION
self.append_region(cmd)
job_arguments = [TESTDFSIO_PROGRAM]
if udpate_default_fs:
job_arguments.append('-Dfs.default.name={}'.format(source_dir))
job_arguments.append('-Dtest.build.data={}'.format(source_dir))
job_arguments.extend(['-read', '-nrFiles', str(num_files), '-fileSize',
str(size_file)])
cmd.additional_flags = ['--'] + job_arguments
stdout, stderr, retcode = cmd.Issue(timeout=None)
return {dpb_service.SUCCESS: retcode == 0} |
Python | def distributed_copy(self, source_location, destination_location):
"""Method to copy data using a distributed job on the cluster."""
cmd = util.GcloudCommand(self, 'dataproc', 'jobs', 'submit', 'hadoop')
cmd.flags['cluster'] = self.cluster_id
cmd.flags['class'] = 'org.apache.hadoop.tools.DistCp'
self.append_region(cmd)
job_arguments = (['-m={}'.format(FLAGS.dpb_dataproc_distcp_num_maps)]
if FLAGS.dpb_dataproc_distcp_num_maps is not None else [])
job_arguments.extend([source_location, destination_location])
cmd.additional_flags = ['--'] + job_arguments
stdout, stderr, retcode = cmd.Issue(timeout=None)
return {dpb_service.SUCCESS: retcode == 0} | def distributed_copy(self, source_location, destination_location):
"""Method to copy data using a distributed job on the cluster."""
cmd = util.GcloudCommand(self, 'dataproc', 'jobs', 'submit', 'hadoop')
cmd.flags['cluster'] = self.cluster_id
cmd.flags['class'] = 'org.apache.hadoop.tools.DistCp'
self.append_region(cmd)
job_arguments = (['-m={}'.format(FLAGS.dpb_dataproc_distcp_num_maps)]
if FLAGS.dpb_dataproc_distcp_num_maps is not None else [])
job_arguments.extend([source_location, destination_location])
cmd.additional_flags = ['--'] + job_arguments
stdout, stderr, retcode = cmd.Issue(timeout=None)
return {dpb_service.SUCCESS: retcode == 0} |
Python | def cleanup_data(self, base_dir, udpate_default_fs):
"""Method to cleanup data using a distributed job on the cluster."""
cmd = util.GcloudCommand(self, 'dataproc', 'jobs', 'submit', 'hadoop')
cmd.flags['cluster'] = self.cluster_id
cmd.flags['jar'] = TESTDFSIO_JAR_LOCATION
self.append_region(cmd)
job_arguments = [TESTDFSIO_PROGRAM]
if udpate_default_fs:
job_arguments.append('-Dfs.default.name={}'.format(base_dir))
job_arguments.append('-Dtest.build.data={}'.format(base_dir))
job_arguments.append('-clean')
cmd.additional_flags = ['--'] + job_arguments
stdout, stderr, retcode = cmd.Issue(timeout=None)
if retcode != 0:
return {dpb_service.SUCCESS: False}
if udpate_default_fs:
vm_util.IssueCommand(['gsutil', '-m', 'rm', '-r', base_dir])
return {dpb_service.SUCCESS: True} | def cleanup_data(self, base_dir, udpate_default_fs):
"""Method to cleanup data using a distributed job on the cluster."""
cmd = util.GcloudCommand(self, 'dataproc', 'jobs', 'submit', 'hadoop')
cmd.flags['cluster'] = self.cluster_id
cmd.flags['jar'] = TESTDFSIO_JAR_LOCATION
self.append_region(cmd)
job_arguments = [TESTDFSIO_PROGRAM]
if udpate_default_fs:
job_arguments.append('-Dfs.default.name={}'.format(base_dir))
job_arguments.append('-Dtest.build.data={}'.format(base_dir))
job_arguments.append('-clean')
cmd.additional_flags = ['--'] + job_arguments
stdout, stderr, retcode = cmd.Issue(timeout=None)
if retcode != 0:
return {dpb_service.SUCCESS: False}
if udpate_default_fs:
vm_util.IssueCommand(['gsutil', '-m', 'rm', '-r', base_dir])
return {dpb_service.SUCCESS: True} |
Python | def GetMetadata(self):
"""Return a dictionary of the metadata for this cluster."""
basic_data = super(GcpDpbDataproc, self).GetMetadata()
if self.dpb_dataproc_image_version:
basic_data['dpb_service'] = ('dataproc_{}'.
format(self.dpb_dataproc_image_version))
return basic_data | def GetMetadata(self):
"""Return a dictionary of the metadata for this cluster."""
basic_data = super(GcpDpbDataproc, self).GetMetadata()
if self.dpb_dataproc_image_version:
basic_data['dpb_service'] = ('dataproc_{}'.
format(self.dpb_dataproc_image_version))
return basic_data |
Python | def EbsDriveIsNvme(machine_type):
"""Check if the machine type uses NVMe driver."""
instance_family = machine_type.split('.')[0].lower()
return (instance_family not in NON_EBS_NVME_TYPES or
'metal' in machine_type) | def EbsDriveIsNvme(machine_type):
"""Check if the machine type uses NVMe driver."""
instance_family = machine_type.split('.')[0].lower()
return (instance_family not in NON_EBS_NVME_TYPES or
'metal' in machine_type) |
Python | def Attach(self, vm):
"""Attaches the disk to a VM.
Args:
vm: The AwsVirtualMachine instance to which the disk will be attached.
"""
with self._lock:
self.attached_vm_id = vm.id
if self.attached_vm_id not in AwsDisk.vm_devices:
AwsDisk.vm_devices[self.attached_vm_id] = set(
string.ascii_lowercase)
self.device_letter = min(AwsDisk.vm_devices[self.attached_vm_id])
AwsDisk.vm_devices[self.attached_vm_id].remove(self.device_letter)
device_name = '/dev/xvdb%s' % self.device_letter
attach_cmd = util.AWS_PREFIX + [
'ec2',
'attach-volume',
'--region=%s' % self.region,
'--instance-id=%s' % self.attached_vm_id,
'--volume-id=%s' % self.id,
'--device=%s' % device_name]
logging.info('Attaching AWS volume %s. This may fail if the disk is not '
'ready, but will be retried.', self.id)
util.IssueRetryableCommand(attach_cmd) | def Attach(self, vm):
"""Attaches the disk to a VM.
Args:
vm: The AwsVirtualMachine instance to which the disk will be attached.
"""
with self._lock:
self.attached_vm_id = vm.id
if self.attached_vm_id not in AwsDisk.vm_devices:
AwsDisk.vm_devices[self.attached_vm_id] = set(
string.ascii_lowercase)
self.device_letter = min(AwsDisk.vm_devices[self.attached_vm_id])
AwsDisk.vm_devices[self.attached_vm_id].remove(self.device_letter)
device_name = '/dev/xvdb%s' % self.device_letter
attach_cmd = util.AWS_PREFIX + [
'ec2',
'attach-volume',
'--region=%s' % self.region,
'--instance-id=%s' % self.attached_vm_id,
'--volume-id=%s' % self.id,
'--device=%s' % device_name]
logging.info('Attaching AWS volume %s. This may fail if the disk is not '
'ready, but will be retried.', self.id)
util.IssueRetryableCommand(attach_cmd) |
Python | def GetDevicePath(self):
"""Returns the path to the device inside the VM."""
if self.disk_type == disk.LOCAL:
if LocalDriveIsNvme(self.machine_type):
first_device_letter = 'b'
if EbsDriveIsNvme(self.machine_type):
# If the root drive is also NVME, assume the second drive is the
# local drive.
first_device_letter = 'a'
return '/dev/nvme%sn1' % str(
ord(self.device_letter) - ord(first_device_letter))
return '/dev/xvd%s' % self.device_letter
else:
if EbsDriveIsNvme(self.machine_type):
first_device_letter = 'a'
return '/dev/nvme%sn1' % (
1 + ord(self.device_letter) - ord(first_device_letter))
else:
return '/dev/xvdb%s' % self.device_letter | def GetDevicePath(self):
"""Returns the path to the device inside the VM."""
if self.disk_type == disk.LOCAL:
if LocalDriveIsNvme(self.machine_type):
first_device_letter = 'b'
if EbsDriveIsNvme(self.machine_type):
# If the root drive is also NVME, assume the second drive is the
# local drive.
first_device_letter = 'a'
return '/dev/nvme%sn1' % str(
ord(self.device_letter) - ord(first_device_letter))
return '/dev/xvd%s' % self.device_letter
else:
if EbsDriveIsNvme(self.machine_type):
first_device_letter = 'a'
return '/dev/nvme%sn1' % (
1 + ord(self.device_letter) - ord(first_device_letter))
else:
return '/dev/xvdb%s' % self.device_letter |
Python | def Install(vm, package_name='python-pip'):
"""Install pip on the VM."""
vm.InstallPackages(package_name)
if vm.PYTHON_PIP_PACKAGE_VERSION:
vm.RemoteCommand(
'sudo pip install --upgrade '
'--force-reinstall pip=={0}'.format(vm.PYTHON_PIP_PACKAGE_VERSION))
else:
vm.RemoteCommand('sudo pip install -U pip') # Make pip upgrade pip
# Add a symbolic link to /usr/local/bin/pip if pip ends up there. This lets
# us run pip under sudo since /usr/local/bin is not typically available to
# sudo.
if not vm.TryRemoteCommand('sudo which pip'):
pip_location, _ = vm.RemoteCommand('which pip')
if pip_location.startswith('/usr/local/bin/pip'):
vm.RemoteCommand('sudo ln -s /usr/local/bin/pip /usr/bin/pip')
vm.RemoteCommand('mkdir -p {0} && pip freeze > {0}/requirements.txt'.format(
INSTALL_DIR)) | def Install(vm, package_name='python-pip'):
"""Install pip on the VM."""
vm.InstallPackages(package_name)
if vm.PYTHON_PIP_PACKAGE_VERSION:
vm.RemoteCommand(
'sudo pip install --upgrade '
'--force-reinstall pip=={0}'.format(vm.PYTHON_PIP_PACKAGE_VERSION))
else:
vm.RemoteCommand('sudo pip install -U pip') # Make pip upgrade pip
# Add a symbolic link to /usr/local/bin/pip if pip ends up there. This lets
# us run pip under sudo since /usr/local/bin is not typically available to
# sudo.
if not vm.TryRemoteCommand('sudo which pip'):
pip_location, _ = vm.RemoteCommand('which pip')
if pip_location.startswith('/usr/local/bin/pip'):
vm.RemoteCommand('sudo ln -s /usr/local/bin/pip /usr/bin/pip')
vm.RemoteCommand('mkdir -p {0} && pip freeze > {0}/requirements.txt'.format(
INSTALL_DIR)) |
Python | def YumInstall(vm):
"""Installs the pip package on the VM."""
vm.InstallEpelRepo()
package_name = getattr(vm, 'python_pip_package_config', 'python27-pip')
Install(vm, package_name) | def YumInstall(vm):
"""Installs the pip package on the VM."""
vm.InstallEpelRepo()
package_name = getattr(vm, 'python_pip_package_config', 'python27-pip')
Install(vm, package_name) |
Python | def Uninstall(vm):
"""Uninstalls the pip package on the VM."""
vm.RemoteCommand('pip freeze | grep --fixed-strings --line-regexp '
'--invert-match --file {0}/requirements.txt | '
'xargs --no-run-if-empty sudo pip uninstall -y'.format(
INSTALL_DIR)) | def Uninstall(vm):
"""Uninstalls the pip package on the VM."""
vm.RemoteCommand('pip freeze | grep --fixed-strings --line-regexp '
'--invert-match --file {0}/requirements.txt | '
'xargs --no-run-if-empty sudo pip uninstall -y'.format(
INSTALL_DIR)) |
Python | def _RunMultiClient(clients, target, rate, connections, duration, threads):
"""Run multiple instances of wrk2 against a single target."""
results = []
num_clients = len(clients)
def _RunSingleClient(client, client_number):
"""Run wrk2 from a single client."""
client_results = list(wrk2.Run(
client, target, rate, connections=connections,
duration=duration, threads=threads))
for result in client_results:
result.metadata.update({'client_number': client_number})
results.extend(client_results)
args = [((client, i), {}) for i, client in enumerate(clients)]
vm_util.RunThreaded(_RunSingleClient, args)
requests = 0
errors = 0
max_latency = 0.0
# TODO(ehankland): Since wrk2 keeps an HDR histogram of latencies, we should
# be able to merge them and compute aggregate percentiles.
for result in results:
if result.metric == 'requests':
requests += result.value
elif result.metric == 'errors':
errors += result.value
elif result.metric == 'p100 latency':
max_latency = max(max_latency, result.value)
error_rate = errors / requests
metadata = {
'connections': connections * num_clients,
'threads': threads * num_clients,
'duration': duration,
'rate': rate * num_clients
}
results += [
sample.Sample('aggregate requests', requests, '', metadata),
sample.Sample('aggregate errors', errors, '', metadata),
sample.Sample('aggregate error_rate', error_rate, '', metadata),
sample.Sample('aggregate p100 latency', max_latency, '', metadata)
]
return results | def _RunMultiClient(clients, target, rate, connections, duration, threads):
"""Run multiple instances of wrk2 against a single target."""
results = []
num_clients = len(clients)
def _RunSingleClient(client, client_number):
"""Run wrk2 from a single client."""
client_results = list(wrk2.Run(
client, target, rate, connections=connections,
duration=duration, threads=threads))
for result in client_results:
result.metadata.update({'client_number': client_number})
results.extend(client_results)
args = [((client, i), {}) for i, client in enumerate(clients)]
vm_util.RunThreaded(_RunSingleClient, args)
requests = 0
errors = 0
max_latency = 0.0
# TODO(ehankland): Since wrk2 keeps an HDR histogram of latencies, we should
# be able to merge them and compute aggregate percentiles.
for result in results:
if result.metric == 'requests':
requests += result.value
elif result.metric == 'errors':
errors += result.value
elif result.metric == 'p100 latency':
max_latency = max(max_latency, result.value)
error_rate = errors / requests
metadata = {
'connections': connections * num_clients,
'threads': threads * num_clients,
'duration': duration,
'rate': rate * num_clients
}
results += [
sample.Sample('aggregate requests', requests, '', metadata),
sample.Sample('aggregate errors', errors, '', metadata),
sample.Sample('aggregate error_rate', error_rate, '', metadata),
sample.Sample('aggregate p100 latency', max_latency, '', metadata)
]
return results |
Python | def Run(benchmark_spec):
"""Run a benchmark against the Nginx server.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
A list of sample.Sample objects.
"""
clients = benchmark_spec.vm_groups['clients']
server = benchmark_spec.vm_groups['server'][0]
results = []
for config in FLAGS.nginx_load_configs:
rate, duration, threads, connections = list(map(int, config.split(':')))
target = 'http://%s/random_content' % server.internal_ip
results += _RunMultiClient(clients, target, rate,
connections, duration, threads)
return results | def Run(benchmark_spec):
"""Run a benchmark against the Nginx server.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
A list of sample.Sample objects.
"""
clients = benchmark_spec.vm_groups['clients']
server = benchmark_spec.vm_groups['server'][0]
results = []
for config in FLAGS.nginx_load_configs:
rate, duration, threads, connections = list(map(int, config.split(':')))
target = 'http://%s/random_content' % server.internal_ip
results += _RunMultiClient(clients, target, rate,
connections, duration, threads)
return results |
Python | def _Exists(self):
"""Returns true if the disk exists."""
cmd = util.GcloudCommand(self, 'compute', 'disks', 'describe', self.name)
stdout, _, _ = cmd.Issue(suppress_warning=True)
try:
json.loads(stdout)
except ValueError:
return False
return True | def _Exists(self):
"""Returns true if the disk exists."""
cmd = util.GcloudCommand(self, 'compute', 'disks', 'describe', self.name)
stdout, _, _ = cmd.Issue(suppress_warning=True)
try:
json.loads(stdout)
except ValueError:
return False
return True |
Python | def Attach(self, vm):
"""Attaches the disk to a VM.
Args:
vm: The GceVirtualMachine instance to which the disk will be attached.
"""
self.attached_vm_name = vm.name
cmd = util.GcloudCommand(self, 'compute', 'instances', 'attach-disk',
self.attached_vm_name)
cmd.flags['device-name'] = self.name
cmd.flags['disk'] = self.name
cmd.IssueRetryable() | def Attach(self, vm):
"""Attaches the disk to a VM.
Args:
vm: The GceVirtualMachine instance to which the disk will be attached.
"""
self.attached_vm_name = vm.name
cmd = util.GcloudCommand(self, 'compute', 'instances', 'attach-disk',
self.attached_vm_name)
cmd.flags['device-name'] = self.name
cmd.flags['disk'] = self.name
cmd.IssueRetryable() |
Python | def Detach(self):
"""Detaches the disk from a VM."""
cmd = util.GcloudCommand(self, 'compute', 'instances', 'detach-disk',
self.attached_vm_name)
cmd.flags['device-name'] = self.name
cmd.IssueRetryable()
self.attached_vm_name = None | def Detach(self):
"""Detaches the disk from a VM."""
cmd = util.GcloudCommand(self, 'compute', 'instances', 'detach-disk',
self.attached_vm_name)
cmd.flags['device-name'] = self.name
cmd.IssueRetryable()
self.attached_vm_name = None |
Python | def GetDevicePath(self):
"""Returns the path to the device inside the VM."""
if FLAGS.gce_ssd_interface == SCSI:
return '/dev/disk/by-id/google-%s' % self.name
elif FLAGS.gce_ssd_interface == NVME:
return '/dev/%s' % self.name | def GetDevicePath(self):
"""Returns the path to the device inside the VM."""
if FLAGS.gce_ssd_interface == SCSI:
return '/dev/disk/by-id/google-%s' % self.name
elif FLAGS.gce_ssd_interface == NVME:
return '/dev/%s' % self.name |
Python | def Run(benchmark_spec):
"""Runs act and reports the results."""
vm = benchmark_spec.vms[0]
act.RunActPrep(vm)
samples = []
run_samples = []
for load in FLAGS.act_load:
def _Run(act_load, index):
run_samples.extend(act.RunAct(vm, act_load, index))
if FLAGS.act_parallel:
args = [((float(load), idx), {})
for idx in range(
len(vm.scratch_disks))[FLAGS.act_reserved_partitions:]]
vm_util.RunThreaded(_Run, args)
else:
run_samples.extend(act.RunAct(vm, float(load)))
samples.extend(run_samples)
if FLAGS.act_stop_on_complete and act.IsRunComplete(run_samples):
break
run_samples = []
return samples | def Run(benchmark_spec):
"""Runs act and reports the results."""
vm = benchmark_spec.vms[0]
act.RunActPrep(vm)
samples = []
run_samples = []
for load in FLAGS.act_load:
def _Run(act_load, index):
run_samples.extend(act.RunAct(vm, act_load, index))
if FLAGS.act_parallel:
args = [((float(load), idx), {})
for idx in range(
len(vm.scratch_disks))[FLAGS.act_reserved_partitions:]]
vm_util.RunThreaded(_Run, args)
else:
run_samples.extend(act.RunAct(vm, float(load)))
samples.extend(run_samples)
if FLAGS.act_stop_on_complete and act.IsRunComplete(run_samples):
break
run_samples = []
return samples |
Python | def GetOrBuild(self, image):
"""Finds the image in the registry or builds it.
Args:
image: The PKB name for the image (string).
Returns:
The full image name (including the registry).
"""
full_image = self.GetFullRegistryTag(image)
if not FLAGS.force_container_build:
inspect_cmd = ['docker', 'image', 'inspect', full_image]
_, _, retcode = vm_util.IssueCommand(inspect_cmd, suppress_warning=True)
if retcode == 0:
return full_image
self._Build(image)
return full_image | def GetOrBuild(self, image):
"""Finds the image in the registry or builds it.
Args:
image: The PKB name for the image (string).
Returns:
The full image name (including the registry).
"""
full_image = self.GetFullRegistryTag(image)
if not FLAGS.force_container_build:
inspect_cmd = ['docker', 'image', 'inspect', full_image]
_, _, retcode = vm_util.IssueCommand(inspect_cmd, suppress_warning=True)
if retcode == 0:
return full_image
self._Build(image)
return full_image |
Python | def GetResourceMetadata(self):
"""Returns a dictionary of cluster metadata."""
metadata = {
'cloud': self.CLOUD,
'cluster_type': self.CLUSTER_TYPE,
'machine_type': self.machine_type,
'zone': self.zone,
'size': self.num_nodes,
}
if self.min_nodes != self.num_nodes or self.max_nodes != self.num_nodes:
metadata.update({
'max_size': self.max_nodes,
'min_size': self.min_nodes,
})
if self.gpu_count:
metadata.update({
'gpu_type': self.gpu_type,
'num_gpus': self.gpu_count,
})
return metadata | def GetResourceMetadata(self):
"""Returns a dictionary of cluster metadata."""
metadata = {
'cloud': self.CLOUD,
'cluster_type': self.CLUSTER_TYPE,
'machine_type': self.machine_type,
'zone': self.zone,
'size': self.num_nodes,
}
if self.min_nodes != self.num_nodes or self.max_nodes != self.num_nodes:
metadata.update({
'max_size': self.max_nodes,
'min_size': self.min_nodes,
})
if self.gpu_count:
metadata.update({
'gpu_type': self.gpu_type,
'num_gpus': self.gpu_count,
})
return metadata |
Python | def GetSamples(self):
"""Return samples with information about deployment times."""
samples = []
samples.append(sample.Sample(
'Cluster Creation Time',
self.resource_ready_time - self.create_start_time,
'seconds'))
for container in itertools.chain(*self.containers.values()):
metadata = {'image': container.image.split('/')[-1]}
if container.resource_ready_time and container.create_start_time:
samples.append(sample.Sample(
'Container Deployment Time',
container.resource_ready_time - container.create_start_time,
'seconds', metadata))
if container.delete_end_time and container.delete_start_time:
samples.append(sample.Sample(
'Container Delete Time',
container.delete_end_time - container.delete_start_time,
'seconds', metadata))
for service in self.services.values():
metadata = {'image': service.image.split('/')[-1]}
if service.resource_ready_time and service.create_start_time:
samples.append(sample.Sample(
'Service Deployment Time',
service.resource_ready_time - service.create_start_time,
'seconds', metadata))
if service.delete_end_time and service.delete_start_time:
samples.append(sample.Sample(
'Service Delete Time',
service.delete_end_time - service.delete_start_time,
'seconds', metadata))
return samples | def GetSamples(self):
"""Return samples with information about deployment times."""
samples = []
samples.append(sample.Sample(
'Cluster Creation Time',
self.resource_ready_time - self.create_start_time,
'seconds'))
for container in itertools.chain(*self.containers.values()):
metadata = {'image': container.image.split('/')[-1]}
if container.resource_ready_time and container.create_start_time:
samples.append(sample.Sample(
'Container Deployment Time',
container.resource_ready_time - container.create_start_time,
'seconds', metadata))
if container.delete_end_time and container.delete_start_time:
samples.append(sample.Sample(
'Container Delete Time',
container.delete_end_time - container.delete_start_time,
'seconds', metadata))
for service in self.services.values():
metadata = {'image': service.image.split('/')[-1]}
if service.resource_ready_time and service.create_start_time:
samples.append(sample.Sample(
'Service Deployment Time',
service.resource_ready_time - service.create_start_time,
'seconds', metadata))
if service.delete_end_time and service.delete_start_time:
samples.append(sample.Sample(
'Service Delete Time',
service.delete_end_time - service.delete_start_time,
'seconds', metadata))
return samples |
Python | def _GetPod(self):
"""Gets a representation of the POD and returns it."""
stdout, _, _ = vm_util.IssueCommand([
FLAGS.kubectl, '--kubeconfig', FLAGS.kubeconfig,
'get', 'pod', self.name, '-o', 'yaml'])
pod = yaml.load(stdout)
if pod:
self.ip_address = pod.get('status', {}).get('podIP', None)
return pod | def _GetPod(self):
"""Gets a representation of the POD and returns it."""
stdout, _, _ = vm_util.IssueCommand([
FLAGS.kubectl, '--kubeconfig', FLAGS.kubeconfig,
'get', 'pod', self.name, '-o', 'yaml'])
pod = yaml.load(stdout)
if pod:
self.ip_address = pod.get('status', {}).get('podIP', None)
return pod |
Python | def _GetIpAddress(self):
"""Attempts to set the Service's ip address."""
ingress_name = '%s-ingress' % self.name
get_cmd = [
FLAGS.kubectl, '--kubeconfig', FLAGS.kubeconfig,
'get', 'ing', ingress_name,
'-o', 'jsonpath="{.status.loadBalancer.ingress[*][\'ip\']}"'
]
stdout, _, _ = vm_util.IssueCommand(get_cmd)
ip_address = yaml.load(stdout)
if ip_address:
self.ip_address = ip_address | def _GetIpAddress(self):
"""Attempts to set the Service's ip address."""
ingress_name = '%s-ingress' % self.name
get_cmd = [
FLAGS.kubectl, '--kubeconfig', FLAGS.kubeconfig,
'get', 'ing', ingress_name,
'-o', 'jsonpath="{.status.loadBalancer.ingress[*][\'ip\']}"'
]
stdout, _, _ = vm_util.IssueCommand(get_cmd)
ip_address = yaml.load(stdout)
if ip_address:
self.ip_address = ip_address |
Python | def _Install(vm):
"""Installs the redis package on the VM."""
vm.Install('build_tools')
vm.Install('wget')
redis_url = 'http://download.redis.io/releases/' + _GetRedisTarName()
vm.RemoteCommand('wget %s -P %s' % (redis_url, INSTALL_DIR))
vm.RemoteCommand('cd %s && tar xvfz %s' % (INSTALL_DIR, _GetRedisTarName()))
vm.RemoteCommand('cd %s && make' % _GetRedisDir()) | def _Install(vm):
"""Installs the redis package on the VM."""
vm.Install('build_tools')
vm.Install('wget')
redis_url = 'http://download.redis.io/releases/' + _GetRedisTarName()
vm.RemoteCommand('wget %s -P %s' % (redis_url, INSTALL_DIR))
vm.RemoteCommand('cd %s && tar xvfz %s' % (INSTALL_DIR, _GetRedisTarName()))
vm.RemoteCommand('cd %s && make' % _GetRedisDir()) |
Python | def CheckPrerequisites(benchmark_config):
"""Verifies that the required resources are present.
Raises:
perfkitbenchmarker.data.ResourceNotFound: On missing resource.
"""
for resource in HBASE_CONF_FILES:
data.ResourcePath(resource)
hbase.CheckPrerequisites()
ycsb.CheckPrerequisites()
for scope in REQUIRED_SCOPES:
if scope not in FLAGS.gcloud_scopes:
raise ValueError('Scope {0} required.'.format(scope))
# TODO: extract from gcloud config if available.
if FLAGS.google_bigtable_instance_name:
instance = _GetInstanceDescription(FLAGS.project or _GetDefaultProject(),
FLAGS.google_bigtable_instance_name)
logging.info('Found instance: %s', instance)
else:
logging.info('No instance; will create in Prepare.') | def CheckPrerequisites(benchmark_config):
"""Verifies that the required resources are present.
Raises:
perfkitbenchmarker.data.ResourceNotFound: On missing resource.
"""
for resource in HBASE_CONF_FILES:
data.ResourcePath(resource)
hbase.CheckPrerequisites()
ycsb.CheckPrerequisites()
for scope in REQUIRED_SCOPES:
if scope not in FLAGS.gcloud_scopes:
raise ValueError('Scope {0} required.'.format(scope))
# TODO: extract from gcloud config if available.
if FLAGS.google_bigtable_instance_name:
instance = _GetInstanceDescription(FLAGS.project or _GetDefaultProject(),
FLAGS.google_bigtable_instance_name)
logging.info('Found instance: %s', instance)
else:
logging.info('No instance; will create in Prepare.') |
Python | def _GetInstanceDescription(project, instance_name):
"""Gets the description for a Cloud Bigtable instance.
Args:
project: str. Name of the project in which the instance was created.
instance_name: str. ID of the desired Bigtable instance.
Returns:
A dictionary containing an instance description.
Raises:
KeyError: when the instance was not found.
"""
env = {'CLOUDSDK_CORE_DISABLE_PROMPTS': '1'}
env.update(os.environ)
# List clusters and get the cluster associated with this instance so we can
# read the number of nodes in the cluster.
cmd = [FLAGS.gcloud_path, 'beta', 'bigtable', 'clusters', 'list', '--quiet',
'--format', 'json', '--project', project]
stdout, stderr, returncode = vm_util.IssueCommand(cmd, env=env)
if returncode:
raise IOError('Command "{0}" failed:\nSTDOUT:\n{1}\nSTDERR:\n{2}'.format(
' '.join(cmd), stdout, stderr))
result = json.loads(stdout)
instances = {
instance['name'].split('/')[3]: instance for instance in result
}
try:
return instances[instance_name]
except KeyError:
raise KeyError('Instance {0} not found in {1}'.format(
instance_name, list(instances))) | def _GetInstanceDescription(project, instance_name):
"""Gets the description for a Cloud Bigtable instance.
Args:
project: str. Name of the project in which the instance was created.
instance_name: str. ID of the desired Bigtable instance.
Returns:
A dictionary containing an instance description.
Raises:
KeyError: when the instance was not found.
"""
env = {'CLOUDSDK_CORE_DISABLE_PROMPTS': '1'}
env.update(os.environ)
# List clusters and get the cluster associated with this instance so we can
# read the number of nodes in the cluster.
cmd = [FLAGS.gcloud_path, 'beta', 'bigtable', 'clusters', 'list', '--quiet',
'--format', 'json', '--project', project]
stdout, stderr, returncode = vm_util.IssueCommand(cmd, env=env)
if returncode:
raise IOError('Command "{0}" failed:\nSTDOUT:\n{1}\nSTDERR:\n{2}'.format(
' '.join(cmd), stdout, stderr))
result = json.loads(stdout)
instances = {
instance['name'].split('/')[3]: instance for instance in result
}
try:
return instances[instance_name]
except KeyError:
raise KeyError('Instance {0} not found in {1}'.format(
instance_name, list(instances))) |
Python | def Prepare(benchmark_spec):
"""Prepare the virtual machines to run cloud bigtable.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
"""
benchmark_spec.always_call_cleanup = True
vms = benchmark_spec.vms
# TODO: in the future, it might be nice to change this so that
# a gcp_bigtable.GcpBigtableInstance can be created with an
# flag that says don't create/delete the instance. That would
# reduce the code paths here.
if FLAGS.google_bigtable_instance_name is None:
instance_name = 'pkb-bigtable-{0}'.format(FLAGS.run_uri)
project = FLAGS.project or _GetDefaultProject()
logging.info('Creating bigtable instance %s', instance_name)
zone = FLAGS.google_bigtable_zone_name
benchmark_spec.bigtable_instance = gcp_bigtable.GcpBigtableInstance(
instance_name, CLUSTER_SIZE, project, zone)
benchmark_spec.bigtable_instance.Create()
instance = _GetInstanceDescription(project, instance_name)
logging.info('Instance %s created successfully', instance)
vm_util.RunThreaded(_Install, vms)
# Create table
hbase_ycsb.CreateYCSBTable(vms[0], table_name=_GetTableName(),
use_snappy=False, limit_filesize=False)
table_name = _GetTableName()
# Add hbase conf dir to the classpath.
ycsb_memory = min(vms[0].total_memory_kb // 1024, 4096)
jvm_args = pipes.quote(' -Xmx{0}m'.format(ycsb_memory))
executor_flags = {
'cp': hbase.HBASE_CONF_DIR,
'jvm-args': jvm_args,
'table': table_name}
benchmark_spec.executor = ycsb.YCSBExecutor('hbase10', **executor_flags) | def Prepare(benchmark_spec):
"""Prepare the virtual machines to run cloud bigtable.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
"""
benchmark_spec.always_call_cleanup = True
vms = benchmark_spec.vms
# TODO: in the future, it might be nice to change this so that
# a gcp_bigtable.GcpBigtableInstance can be created with an
# flag that says don't create/delete the instance. That would
# reduce the code paths here.
if FLAGS.google_bigtable_instance_name is None:
instance_name = 'pkb-bigtable-{0}'.format(FLAGS.run_uri)
project = FLAGS.project or _GetDefaultProject()
logging.info('Creating bigtable instance %s', instance_name)
zone = FLAGS.google_bigtable_zone_name
benchmark_spec.bigtable_instance = gcp_bigtable.GcpBigtableInstance(
instance_name, CLUSTER_SIZE, project, zone)
benchmark_spec.bigtable_instance.Create()
instance = _GetInstanceDescription(project, instance_name)
logging.info('Instance %s created successfully', instance)
vm_util.RunThreaded(_Install, vms)
# Create table
hbase_ycsb.CreateYCSBTable(vms[0], table_name=_GetTableName(),
use_snappy=False, limit_filesize=False)
table_name = _GetTableName()
# Add hbase conf dir to the classpath.
ycsb_memory = min(vms[0].total_memory_kb // 1024, 4096)
jvm_args = pipes.quote(' -Xmx{0}m'.format(ycsb_memory))
executor_flags = {
'cp': hbase.HBASE_CONF_DIR,
'jvm-args': jvm_args,
'table': table_name}
benchmark_spec.executor = ycsb.YCSBExecutor('hbase10', **executor_flags) |
Python | def Run(benchmark_spec):
"""Spawn YCSB and gather the results.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
A list of sample.Sample instances.
"""
vms = benchmark_spec.vms
instance_name = (FLAGS.google_bigtable_instance_name or
'pkb-bigtable-{0}'.format(FLAGS.run_uri))
instance_info = _GetInstanceDescription(
FLAGS.project or _GetDefaultProject(), instance_name)
metadata = {'ycsb_client_vms': len(vms),
'bigtable_nodes': instance_info.get('serveNodes')}
# By default YCSB uses a BufferedMutator for Puts / Deletes.
# This leads to incorrect update latencies, since since the call returns
# before the request is acked by the server.
# Disable this behavior during the benchmark run.
run_kwargs = {
'columnfamily': COLUMN_FAMILY,
'clientbuffering': 'false'}
load_kwargs = run_kwargs.copy()
# During the load stage, use a buffered mutator with a single thread.
# The BufferedMutator will handle multiplexing RPCs.
load_kwargs['clientbuffering'] = 'true'
if not FLAGS['ycsb_preload_threads'].present:
load_kwargs['threads'] = 1
samples = list(benchmark_spec.executor.LoadAndRun(
vms, load_kwargs=load_kwargs, run_kwargs=run_kwargs))
for sample in samples:
sample.metadata.update(metadata)
return samples | def Run(benchmark_spec):
"""Spawn YCSB and gather the results.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
A list of sample.Sample instances.
"""
vms = benchmark_spec.vms
instance_name = (FLAGS.google_bigtable_instance_name or
'pkb-bigtable-{0}'.format(FLAGS.run_uri))
instance_info = _GetInstanceDescription(
FLAGS.project or _GetDefaultProject(), instance_name)
metadata = {'ycsb_client_vms': len(vms),
'bigtable_nodes': instance_info.get('serveNodes')}
# By default YCSB uses a BufferedMutator for Puts / Deletes.
# This leads to incorrect update latencies, since since the call returns
# before the request is acked by the server.
# Disable this behavior during the benchmark run.
run_kwargs = {
'columnfamily': COLUMN_FAMILY,
'clientbuffering': 'false'}
load_kwargs = run_kwargs.copy()
# During the load stage, use a buffered mutator with a single thread.
# The BufferedMutator will handle multiplexing RPCs.
load_kwargs['clientbuffering'] = 'true'
if not FLAGS['ycsb_preload_threads'].present:
load_kwargs['threads'] = 1
samples = list(benchmark_spec.executor.LoadAndRun(
vms, load_kwargs=load_kwargs, run_kwargs=run_kwargs))
for sample in samples:
sample.metadata.update(metadata)
return samples |
Python | def Install(vm):
"""Installs TensorFlow models on the VM."""
vm.InstallPackages('git')
vm.RemoteCommand('git clone {}'.format(TF_MODELS_GIT), should_log=True)
vm.RemoteCommand('cd models && git checkout {}'.format(
FLAGS.tensorflow_models_commit_hash)) | def Install(vm):
"""Installs TensorFlow models on the VM."""
vm.InstallPackages('git')
vm.RemoteCommand('git clone {}'.format(TF_MODELS_GIT), should_log=True)
vm.RemoteCommand('cd models && git checkout {}'.format(
FLAGS.tensorflow_models_commit_hash)) |
Python | def StressngCustomStressorsValidator(stressors):
"""Returns whether or not the list of custom stressors is valid."""
valid_stressors = {
'affinity', 'af-alg', 'aio', 'aio-linux', 'apparmor', 'bigheap', 'brk',
'bsearch', 'cache', 'chdir', 'chmod', 'clock', 'clone', 'context', 'cpu',
'cpu-online', 'crypt', 'daemon', 'dentry', 'dir', 'dup', 'epoll',
'eventfd', 'exec', 'fallocate', 'fault', 'fcntl', 'fiemap', 'fifo',
'filename', 'flock', 'fork', 'fp-error', 'fstat', 'futex', 'get',
'getrandom', 'getdent', 'handle', 'hdd', 'heapsort', 'hsearch', 'icache',
'iosync', 'inotify', 'itimer', 'kcmp', 'key', 'kill', 'klog', 'lease',
'link', 'lockbus', 'lockf', 'longjmp', 'lsearch', 'malloc', 'matrix',
'membarrier', 'memcpy', 'memfd', 'mergesort', 'mincore', 'mknod', 'mlock',
'mmap', 'mmapfork', 'mmapmany', 'mremap', 'msg', 'mq', 'nice', 'null',
'numa', 'oom-pipe', 'open', 'personality', 'pipe', 'poll', 'procfs',
'pthread', 'ptrace', 'qsort', 'quota', 'rdrand', 'readahead',
'remap-file-pages', 'rename', 'rlimit', 'seccomp', 'seek', 'sem-posix',
'sem-sysv', 'shm-posix', 'shm-sysv', 'sendfile', 'sigfd', 'sigfpe',
'sigpending', 'sigq', 'sigsegv', 'sigsuspend', 'sleep', 'socket',
'socket-fd', 'socket-pair', 'spawn', 'splice', 'stack', 'str', 'stream',
'switch', 'symlink', 'sync-file', 'sysinfo', 'sysfs', 'tee', 'timer',
'timerfd', 'tsc', 'tsearch', 'udp', 'udp-flood', 'unshare', 'urandom',
'userfaultfd', 'utime', 'vecmath', 'vfork', 'vm', 'vm-rw', 'vm-splice',
'wait', 'wcs', 'xattr', 'yield', 'zero', 'zlib', 'zombie'
}
return valid_stressors.issuperset(set(stressors)) | def StressngCustomStressorsValidator(stressors):
"""Returns whether or not the list of custom stressors is valid."""
valid_stressors = {
'affinity', 'af-alg', 'aio', 'aio-linux', 'apparmor', 'bigheap', 'brk',
'bsearch', 'cache', 'chdir', 'chmod', 'clock', 'clone', 'context', 'cpu',
'cpu-online', 'crypt', 'daemon', 'dentry', 'dir', 'dup', 'epoll',
'eventfd', 'exec', 'fallocate', 'fault', 'fcntl', 'fiemap', 'fifo',
'filename', 'flock', 'fork', 'fp-error', 'fstat', 'futex', 'get',
'getrandom', 'getdent', 'handle', 'hdd', 'heapsort', 'hsearch', 'icache',
'iosync', 'inotify', 'itimer', 'kcmp', 'key', 'kill', 'klog', 'lease',
'link', 'lockbus', 'lockf', 'longjmp', 'lsearch', 'malloc', 'matrix',
'membarrier', 'memcpy', 'memfd', 'mergesort', 'mincore', 'mknod', 'mlock',
'mmap', 'mmapfork', 'mmapmany', 'mremap', 'msg', 'mq', 'nice', 'null',
'numa', 'oom-pipe', 'open', 'personality', 'pipe', 'poll', 'procfs',
'pthread', 'ptrace', 'qsort', 'quota', 'rdrand', 'readahead',
'remap-file-pages', 'rename', 'rlimit', 'seccomp', 'seek', 'sem-posix',
'sem-sysv', 'shm-posix', 'shm-sysv', 'sendfile', 'sigfd', 'sigfpe',
'sigpending', 'sigq', 'sigsegv', 'sigsuspend', 'sleep', 'socket',
'socket-fd', 'socket-pair', 'spawn', 'splice', 'stack', 'str', 'stream',
'switch', 'symlink', 'sync-file', 'sysinfo', 'sysfs', 'tee', 'timer',
'timerfd', 'tsc', 'tsearch', 'udp', 'udp-flood', 'unshare', 'urandom',
'userfaultfd', 'utime', 'vecmath', 'vfork', 'vm', 'vm-rw', 'vm-splice',
'wait', 'wcs', 'xattr', 'yield', 'zero', 'zlib', 'zombie'
}
return valid_stressors.issuperset(set(stressors)) |
Python | def Run(benchmark_spec):
"""Runs stress-ng on the target vm.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
A list of sample.Sample objects.
"""
vm = benchmark_spec.vms[0]
metadata = {
'duration_sec': FLAGS.stress_ng_duration,
'threads': vm.NumCpusForBenchmark()
}
# Rather than running stress-ng with --class cpu,cpu-cache,memory all in one
# RobustRemoteCommand we run each stressor indivually. The reason is that
# RobustRemoteCommand periodically SSHs into the VM, but one of the memory
# stressors stresses the VM so much that SSH instantly returns 255, causing
# the benchmark to fail completely.
cpu_suites = [
'af-alg', 'bsearch', 'context', 'cpu', 'cpu-online', 'crypt', 'fp-error',
'getrandom', 'heapsort', 'hsearch', 'longjmp', 'lsearch', 'matrix',
'mergesort', 'numa', 'qsort', 'rdrand', 'str', 'stream', 'tsc', 'tsearch',
'vecmath', 'wcs', 'zlib'
]
cpu_cache_suites = [
'bsearch', 'cache', 'heapsort', 'hsearch', 'icache', 'lockbus', 'lsearch',
'malloc', 'matrix', 'membarrier', 'memcpy', 'mergesort', 'qsort', 'str',
'stream', 'tsearch', 'vecmath', 'wcs', 'zlib'
]
memory_suites = [
'bsearch', 'context', 'heapsort', 'hsearch', 'lockbus', 'lsearch',
'malloc', 'matrix', 'membarrier', 'memcpy', 'memfd', 'mergesort',
'mincore', 'null', 'numa', 'oom-pipe', 'pipe', 'qsort',
'stack', 'str', 'stream', 'tsearch', 'vm', 'vm-rw',
'wcs', 'zero', 'zlib'
]
stressors = sorted(set(cpu_suites + cpu_cache_suites + memory_suites))
if FLAGS.stress_ng_custom_stressors:
stressors = FLAGS.stress_ng_custom_stressors
samples = []
values_to_geomean_list = []
for stressor in stressors:
cmd = ('stress-ng --{stressor} {numthreads} --metrics-brief '
'-t {duration}'.format(stressor=stressor,
numthreads=vm.NumCpusForBenchmark(),
duration=FLAGS.stress_ng_duration))
stdout, _ = vm.RemoteCommand(cmd)
stressng_sample = _ParseStressngResult(metadata, stdout)
if stressng_sample:
samples.append(stressng_sample)
values_to_geomean_list.append(stressng_sample.value)
# Only calculate geomean if each stressors provided a value
if FLAGS.stress_ng_calc_geomean and len(values_to_geomean_list) == len(
stressors):
geomean_metadata = metadata.copy()
geomean_metadata['stressors'] = stressors
geomean_sample = sample.Sample(
metric='STRESS_NG_GEOMEAN',
value=_GeoMeanOverflow(values_to_geomean_list),
unit='bogus_ops_sec',
metadata=geomean_metadata)
samples.append(geomean_sample)
return samples | def Run(benchmark_spec):
"""Runs stress-ng on the target vm.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
A list of sample.Sample objects.
"""
vm = benchmark_spec.vms[0]
metadata = {
'duration_sec': FLAGS.stress_ng_duration,
'threads': vm.NumCpusForBenchmark()
}
# Rather than running stress-ng with --class cpu,cpu-cache,memory all in one
# RobustRemoteCommand we run each stressor indivually. The reason is that
# RobustRemoteCommand periodically SSHs into the VM, but one of the memory
# stressors stresses the VM so much that SSH instantly returns 255, causing
# the benchmark to fail completely.
cpu_suites = [
'af-alg', 'bsearch', 'context', 'cpu', 'cpu-online', 'crypt', 'fp-error',
'getrandom', 'heapsort', 'hsearch', 'longjmp', 'lsearch', 'matrix',
'mergesort', 'numa', 'qsort', 'rdrand', 'str', 'stream', 'tsc', 'tsearch',
'vecmath', 'wcs', 'zlib'
]
cpu_cache_suites = [
'bsearch', 'cache', 'heapsort', 'hsearch', 'icache', 'lockbus', 'lsearch',
'malloc', 'matrix', 'membarrier', 'memcpy', 'mergesort', 'qsort', 'str',
'stream', 'tsearch', 'vecmath', 'wcs', 'zlib'
]
memory_suites = [
'bsearch', 'context', 'heapsort', 'hsearch', 'lockbus', 'lsearch',
'malloc', 'matrix', 'membarrier', 'memcpy', 'memfd', 'mergesort',
'mincore', 'null', 'numa', 'oom-pipe', 'pipe', 'qsort',
'stack', 'str', 'stream', 'tsearch', 'vm', 'vm-rw',
'wcs', 'zero', 'zlib'
]
stressors = sorted(set(cpu_suites + cpu_cache_suites + memory_suites))
if FLAGS.stress_ng_custom_stressors:
stressors = FLAGS.stress_ng_custom_stressors
samples = []
values_to_geomean_list = []
for stressor in stressors:
cmd = ('stress-ng --{stressor} {numthreads} --metrics-brief '
'-t {duration}'.format(stressor=stressor,
numthreads=vm.NumCpusForBenchmark(),
duration=FLAGS.stress_ng_duration))
stdout, _ = vm.RemoteCommand(cmd)
stressng_sample = _ParseStressngResult(metadata, stdout)
if stressng_sample:
samples.append(stressng_sample)
values_to_geomean_list.append(stressng_sample.value)
# Only calculate geomean if each stressors provided a value
if FLAGS.stress_ng_calc_geomean and len(values_to_geomean_list) == len(
stressors):
geomean_metadata = metadata.copy()
geomean_metadata['stressors'] = stressors
geomean_sample = sample.Sample(
metric='STRESS_NG_GEOMEAN',
value=_GeoMeanOverflow(values_to_geomean_list),
unit='bogus_ops_sec',
metadata=geomean_metadata)
samples.append(geomean_sample)
return samples |
Python | def _Exists(self):
"""Returns True if the availability set exists."""
show_cmd = [azure.AZURE_PATH,
'vm',
'availability-set',
'show',
'--output', 'json',
'--resource-group', self.resource_group.name,
'--name', self.name]
stdout, _, _ = vm_util.IssueCommand(show_cmd)
return bool(json.loads(stdout)) | def _Exists(self):
"""Returns True if the availability set exists."""
show_cmd = [azure.AZURE_PATH,
'vm',
'availability-set',
'show',
'--output', 'json',
'--resource-group', self.resource_group.name,
'--name', self.name]
stdout, _, _ = vm_util.IssueCommand(show_cmd)
return bool(json.loads(stdout)) |
Python | def _PostCreate(self):
"""Get our connection string and our keys."""
self.connection_string = util.GetAzureStorageConnectionString(
self.name, self.resource_group.args)
self.connection_args = ['--connection-string', self.connection_string]
self.key = util.GetAzureStorageAccountKey(
self.name, self.resource_group.args) | def _PostCreate(self):
"""Get our connection string and our keys."""
self.connection_string = util.GetAzureStorageConnectionString(
self.name, self.resource_group.args)
self.connection_args = ['--connection-string', self.connection_string]
self.key = util.GetAzureStorageAccountKey(
self.name, self.resource_group.args) |
Python | def _Exists(self):
"""Returns true if the storage account exists."""
stdout, _, _ = vm_util.IssueCommand(
[azure.AZURE_PATH, 'storage', 'account', 'show',
'--output', 'json',
'--name', self.name] + self.resource_group.args,
suppress_warning=True)
try:
json.loads(stdout)
return True
except ValueError:
return False | def _Exists(self):
"""Returns true if the storage account exists."""
stdout, _, _ = vm_util.IssueCommand(
[azure.AZURE_PATH, 'storage', 'account', 'show',
'--output', 'json',
'--name', self.name] + self.resource_group.args,
suppress_warning=True)
try:
json.loads(stdout)
return True
except ValueError:
return False |
Python | def _Exists(self):
"""Returns true if the virtual network exists."""
stdout, _, _ = vm_util.IssueCommand(
[azure.AZURE_PATH, 'network', 'vnet', 'show',
'--output', 'json',
'--name', self.name] + self.resource_group.args,
suppress_warning=True)
return bool(json.loads(stdout)) | def _Exists(self):
"""Returns true if the virtual network exists."""
stdout, _, _ = vm_util.IssueCommand(
[azure.AZURE_PATH, 'network', 'vnet', 'show',
'--output', 'json',
'--name', self.name] + self.resource_group.args,
suppress_warning=True)
return bool(json.loads(stdout)) |
Python | def AllowPort(self, vm, start_port, end_port=None, source_range=None):
"""Open a port or port range.
Args:
vm: the virtual machine to open the port for.
start_port: either a single port or the start of a range.
end_port: if given, the end of the port range.
source_range: unsupported at present.
Raises:
ValueError: when there are too many firewall rules.
"""
with self.rules_lock:
end_port = end_port or start_port
if (start_port, end_port) in self.rules:
return
port_range = '%s-%s' % (start_port, end_port)
rule_name = 'allow-%s' % port_range
# Azure priorities are between 100 and 4096, but we reserve 4095
# for the special DenyAll rule created by DisallowAllPorts.
rule_priority = 100 + len(self.rules)
if rule_priority >= 4095:
raise ValueError('Too many firewall rules!')
self.rules[(start_port, end_port)] = rule_name
vm_util.IssueRetryableCommand(
[azure.AZURE_PATH, 'network', 'nsg', 'rule', 'create',
'--name', rule_name,
'--destination-port-range', port_range,
'--access', 'Allow',
'--priority', str(rule_priority)]
+ self.resource_group.args
+ self.args) | def AllowPort(self, vm, start_port, end_port=None, source_range=None):
"""Open a port or port range.
Args:
vm: the virtual machine to open the port for.
start_port: either a single port or the start of a range.
end_port: if given, the end of the port range.
source_range: unsupported at present.
Raises:
ValueError: when there are too many firewall rules.
"""
with self.rules_lock:
end_port = end_port or start_port
if (start_port, end_port) in self.rules:
return
port_range = '%s-%s' % (start_port, end_port)
rule_name = 'allow-%s' % port_range
# Azure priorities are between 100 and 4096, but we reserve 4095
# for the special DenyAll rule created by DisallowAllPorts.
rule_priority = 100 + len(self.rules)
if rule_priority >= 4095:
raise ValueError('Too many firewall rules!')
self.rules[(start_port, end_port)] = rule_name
vm_util.IssueRetryableCommand(
[azure.AZURE_PATH, 'network', 'nsg', 'rule', 'create',
'--name', rule_name,
'--destination-port-range', port_range,
'--access', 'Allow',
'--priority', str(rule_priority)]
+ self.resource_group.args
+ self.args) |
Python | def AllowPort(self, vm, start_port, end_port=None, source_range=None):
"""Opens a port on the firewall.
Args:
vm: The BaseVirtualMachine object to open the port for.
start_port: The local port to open.
end_port: if given, open the range [start_port, end_port].
source_range: unsupported at present.
"""
vm.network.nsg.AllowPort(vm, start_port, end_port=end_port,
source_range=source_range) | def AllowPort(self, vm, start_port, end_port=None, source_range=None):
"""Opens a port on the firewall.
Args:
vm: The BaseVirtualMachine object to open the port for.
start_port: The local port to open.
end_port: if given, open the range [start_port, end_port].
source_range: unsupported at present.
"""
vm.network.nsg.AllowPort(vm, start_port, end_port=end_port,
source_range=source_range) |
Python | def _FormatCreateCommand(self):
"""Formats the command for Docker based on vm_spec and flags"""
create_command = ['docker', 'run', '-d', '--name', self.name]
#format scratch disks
for vol in self.scratch_disks:
vol_string = vol.volume_name + ":" + vol.mount_point
create_command.append('-v')
create_command.append(vol_string)
#format cpus option
if self.cpus > 0:
create_command.append('--cpus')
create_command.append(self.cpus)
#format memory option
if self.memory_mb > 0:
create_command.append('-m')
create_command.append(str(self.memory_mb) + 'm')
create_command.append(self.container_image)
create_command.append('/usr/sbin/sshd')
create_command.append('-D')
logging.info("CREATE COMMAND:")
logging.info(create_command)
return create_command | def _FormatCreateCommand(self):
"""Formats the command for Docker based on vm_spec and flags"""
create_command = ['docker', 'run', '-d', '--name', self.name]
#format scratch disks
for vol in self.scratch_disks:
vol_string = vol.volume_name + ":" + vol.mount_point
create_command.append('-v')
create_command.append(vol_string)
#format cpus option
if self.cpus > 0:
create_command.append('--cpus')
create_command.append(self.cpus)
#format memory option
if self.memory_mb > 0:
create_command.append('-m')
create_command.append(str(self.memory_mb) + 'm')
create_command.append(self.container_image)
create_command.append('/usr/sbin/sshd')
create_command.append('-D')
logging.info("CREATE COMMAND:")
logging.info(create_command)
return create_command |
Python | def _PostCreate(self):
"""
Prepares running container. Gets the IP address, copies public keys,
and configures the proxy if one is specified
"""
self._GetIpAddresses()
#Copy ssh key to container to enable ssh login
copy_ssh_command = ['docker', 'cp', self.ssh_public_key,
'%s:/root/.ssh/authorized_keys' % self.name]
vm_util.IssueCommand(copy_ssh_command)
#change ownership of authorized_key file to root in container
chown_command = ['docker', 'exec', self.name, 'chown',
'root:root', '/root/.ssh/authorized_keys']
vm_util.IssueCommand(chown_command)
self._ConfigureProxy()
#self._SetupDevicesPaths() | def _PostCreate(self):
"""
Prepares running container. Gets the IP address, copies public keys,
and configures the proxy if one is specified
"""
self._GetIpAddresses()
#Copy ssh key to container to enable ssh login
copy_ssh_command = ['docker', 'cp', self.ssh_public_key,
'%s:/root/.ssh/authorized_keys' % self.name]
vm_util.IssueCommand(copy_ssh_command)
#change ownership of authorized_key file to root in container
chown_command = ['docker', 'exec', self.name, 'chown',
'root:root', '/root/.ssh/authorized_keys']
vm_util.IssueCommand(chown_command)
self._ConfigureProxy()
#self._SetupDevicesPaths() |
Python | def _Exists(self):
"""
Checks if Container has successful been created an is running
"""
info, returnCode = self._GetContainerInfo()
logging.info("Checking if Docker Container Exists")
if len(info) > 0 and returnCode == 0:
status = info[0]['State']['Running']
if status == "True" or status == True:
logging.info("Docker Container %s is up and running.", self.name)
return True
return False | def _Exists(self):
"""
Checks if Container has successful been created an is running
"""
info, returnCode = self._GetContainerInfo()
logging.info("Checking if Docker Container Exists")
if len(info) > 0 and returnCode == 0:
status = info[0]['State']['Running']
if status == "True" or status == True:
logging.info("Docker Container %s is up and running.", self.name)
return True
return False |
Python | def _CreateVolumes(self):
"""
Creates volumes for scratch disks. These volumes have to be created
BEFORE containers creation because Docker doesn't allow to attach
volume to currently running containers.
"""
self.scratch_disks = docker_disk.CreateDisks(self.disk_specs, self.name) | def _CreateVolumes(self):
"""
Creates volumes for scratch disks. These volumes have to be created
BEFORE containers creation because Docker doesn't allow to attach
volume to currently running containers.
"""
self.scratch_disks = docker_disk.CreateDisks(self.disk_specs, self.name) |
Python | def _GetIpAddresses(self):
"""
Sets the internal and external IP address for the Container.
"""
info, returnCode = self._GetContainerInfo()
ip = False
if len(info) > 0 and returnCode == 0:
ip = info[0]['NetworkSettings']['IPAddress'].encode('ascii')
logging.info("IP: " + str(ip))
self.ip_address = ip
self.internal_ip = ip
else:
logging.warning("IP address information not found") | def _GetIpAddresses(self):
"""
Sets the internal and external IP address for the Container.
"""
info, returnCode = self._GetContainerInfo()
ip = False
if len(info) > 0 and returnCode == 0:
ip = info[0]['NetworkSettings']['IPAddress'].encode('ascii')
logging.info("IP: " + str(ip))
self.ip_address = ip
self.internal_ip = ip
else:
logging.warning("IP address information not found") |
Python | def _GetContainerInfo(self):
"""
Gets Container information from Docker Inspect. Returns the information,
if there is any and a return code. 0
"""
logging.info("Finding Container Information")
inspect_cmd = ['docker', 'inspect', self.name]
info, _, returnCode = vm_util.IssueCommand(inspect_cmd, suppress_warning=True)
info = json.loads(info)
return info, returnCode | def _GetContainerInfo(self):
"""
Gets Container information from Docker Inspect. Returns the information,
if there is any and a return code. 0
"""
logging.info("Finding Container Information")
inspect_cmd = ['docker', 'inspect', self.name]
info, _, returnCode = vm_util.IssueCommand(inspect_cmd, suppress_warning=True)
info = json.loads(info)
return info, returnCode |
Python | def _BuildVolumesBody(self):
"""
Constructs volumes-related part of create command for Docker Container
"""
volumes = []
for scratch_disk in self.scratch_disks:
vol_string = scratch_disk.volume_name + ":" + scratch_disk.mount_point
volumes.append('-v')
volumes.append(vol_string)
return volumes | def _BuildVolumesBody(self):
"""
Constructs volumes-related part of create command for Docker Container
"""
volumes = []
for scratch_disk in self.scratch_disks:
vol_string = scratch_disk.volume_name + ":" + scratch_disk.mount_point
volumes.append('-v')
volumes.append(vol_string)
return volumes |
Python | def _LocalImageExists(self, docker_image_name):
"""
Checks if an image exists locally
Returns boolean
"""
logging.info("Finding Image Information")
inspect_cmd = ['docker', 'image', 'inspect', docker_image_name]
info, _, returnCode = vm_util.IssueCommand(inspect_cmd, suppress_warning=True)
info = json.loads(info)
logging.info("Checking if Docker Image Exists")
if len(info) > 0 and returnCode == 0:
logging.info("Image exists")
return True
logging.info("Image does not exist")
return False | def _LocalImageExists(self, docker_image_name):
"""
Checks if an image exists locally
Returns boolean
"""
logging.info("Finding Image Information")
inspect_cmd = ['docker', 'image', 'inspect', docker_image_name]
info, _, returnCode = vm_util.IssueCommand(inspect_cmd, suppress_warning=True)
info = json.loads(info)
logging.info("Checking if Docker Image Exists")
if len(info) > 0 and returnCode == 0:
logging.info("Image exists")
return True
logging.info("Image does not exist")
return False |
Python | def CreateDisks(disk_specs, vm_name):
"""
Creates instances of KubernetesDisk child classes depending on
scratch disk type.
"""
scratch_disks = []
for disk_num, disk_spec in enumerate(disk_specs):
#disk_class = GetKubernetesDiskClass(disk_spec.disk_type)
#scratch_disk = disk_class(disk_num, disk_spec, vm_name)
#scratch_disk.Create()
logging.info("Creating Disk number: " + str(disk_num))
volume_disk = DockerDisk(disk_spec, disk_num, vm_name)
volume_disk.Create()
scratch_disks.append(volume_disk)
return scratch_disks | def CreateDisks(disk_specs, vm_name):
"""
Creates instances of KubernetesDisk child classes depending on
scratch disk type.
"""
scratch_disks = []
for disk_num, disk_spec in enumerate(disk_specs):
#disk_class = GetKubernetesDiskClass(disk_spec.disk_type)
#scratch_disk = disk_class(disk_num, disk_spec, vm_name)
#scratch_disk.Create()
logging.info("Creating Disk number: " + str(disk_num))
volume_disk = DockerDisk(disk_spec, disk_num, vm_name)
volume_disk.Create()
scratch_disks.append(volume_disk)
return scratch_disks |
Python | def GetConfig(user_config):
"""Load and return benchmark config.
Args:
user_config: user supplied configuration (flags and config file)
Returns:
loaded benchmark configuration
"""
config = configs.LoadConfig(BENCHMARK_CONFIG, user_config, BENCHMARK_NAME)
if 'tpu_groups' in config:
for vm_spec in config['vm_groups']['default']['vm_spec'].values():
vm_spec.pop('gpu_type', None)
vm_spec.pop('gpu_count', None)
return config | def GetConfig(user_config):
"""Load and return benchmark config.
Args:
user_config: user supplied configuration (flags and config file)
Returns:
loaded benchmark configuration
"""
config = configs.LoadConfig(BENCHMARK_CONFIG, user_config, BENCHMARK_NAME)
if 'tpu_groups' in config:
for vm_spec in config['vm_groups']['default']['vm_spec'].values():
vm_spec.pop('gpu_type', None)
vm_spec.pop('gpu_count', None)
return config |
Python | def _UpdateBenchmarkSpecWithFlags(benchmark_spec):
"""Update the benchmark_spec with supplied command line flags.
Args:
benchmark_spec: benchmark specification to update
"""
benchmark_spec.data_dir = FLAGS.imagenet_data_dir
benchmark_spec.benchmark = FLAGS.mlperf_benchmark | def _UpdateBenchmarkSpecWithFlags(benchmark_spec):
"""Update the benchmark_spec with supplied command line flags.
Args:
benchmark_spec: benchmark specification to update
"""
benchmark_spec.data_dir = FLAGS.imagenet_data_dir
benchmark_spec.benchmark = FLAGS.mlperf_benchmark |
Python | def Prepare(benchmark_spec):
"""Install and set up MLPerf on the target vm.
Args:
benchmark_spec: The benchmark specification
"""
mnist_benchmark.Prepare(benchmark_spec)
_UpdateBenchmarkSpecWithFlags(benchmark_spec)
vm = benchmark_spec.vms[0]
vm.RemoteCommand(
'git clone https://github.com/mlperf/results.git', should_log=True)
vm.InstallPackages('python3-pip')
vm.RemoteCommand('pip3 install mlperf_compliance==0.0.10')
if benchmark_spec.tpus:
vm.RemoteCommand('pip3 install --upgrade '
'pyyaml==3.13 '
'oauth2client==4.1.3 '
'google-api-python-client==1.7.4 '
'google-cloud==0.34.0')
vm.RemoteCommand('pip3 install cloud-tpu-profiler==1.12')
else:
vm.Install('nvidia_docker')
vm.RemoteCommand('sudo ln -s /scratch /data')
imagenet_data_dir = posixpath.join('/data', 'imagenet', 'combined')
vm.RemoteCommand('sudo mkdir -p {}'.format(imagenet_data_dir))
vm.RemoteCommand('sudo chmod a+w /data/imagenet/combined')
vm.InstallPreprovisionedBenchmarkData(BENCHMARK_NAME, [_ILSVRC2012_TAR],
imagenet_data_dir)
vm.RemoteCommand('sudo tar -xvf {tar} -C {data_dir}'.format(
tar=posixpath.join(imagenet_data_dir, _ILSVRC2012_TAR),
data_dir=imagenet_data_dir))
# Some of the data are in the sub directory. Copy all the data to current
# directory.
vm.RemoteCommand('find {data_dir} -name "*-*-of-*" -exec mv {{}} {data_dir}'
' \\;'.format(data_dir=imagenet_data_dir))
# Clearing caches.
# https://github.com/mlperf/results/blob/master/v0.5.0/google/cloud_v2.8/resnet-tpuv2-8/code/resnet/model/main.sh#L133
vm.RemoteCommand('sync && echo 3 | sudo tee /proc/sys/vm/drop_caches')
vm.RemoteCommand('python3 -c "import mlperf_compliance;mlperf_compliance.'
'mlperf_log.{}_print(key=\'run_clear_caches\')"'.format(
benchmark_spec.benchmark)) | def Prepare(benchmark_spec):
"""Install and set up MLPerf on the target vm.
Args:
benchmark_spec: The benchmark specification
"""
mnist_benchmark.Prepare(benchmark_spec)
_UpdateBenchmarkSpecWithFlags(benchmark_spec)
vm = benchmark_spec.vms[0]
vm.RemoteCommand(
'git clone https://github.com/mlperf/results.git', should_log=True)
vm.InstallPackages('python3-pip')
vm.RemoteCommand('pip3 install mlperf_compliance==0.0.10')
if benchmark_spec.tpus:
vm.RemoteCommand('pip3 install --upgrade '
'pyyaml==3.13 '
'oauth2client==4.1.3 '
'google-api-python-client==1.7.4 '
'google-cloud==0.34.0')
vm.RemoteCommand('pip3 install cloud-tpu-profiler==1.12')
else:
vm.Install('nvidia_docker')
vm.RemoteCommand('sudo ln -s /scratch /data')
imagenet_data_dir = posixpath.join('/data', 'imagenet', 'combined')
vm.RemoteCommand('sudo mkdir -p {}'.format(imagenet_data_dir))
vm.RemoteCommand('sudo chmod a+w /data/imagenet/combined')
vm.InstallPreprovisionedBenchmarkData(BENCHMARK_NAME, [_ILSVRC2012_TAR],
imagenet_data_dir)
vm.RemoteCommand('sudo tar -xvf {tar} -C {data_dir}'.format(
tar=posixpath.join(imagenet_data_dir, _ILSVRC2012_TAR),
data_dir=imagenet_data_dir))
# Some of the data are in the sub directory. Copy all the data to current
# directory.
vm.RemoteCommand('find {data_dir} -name "*-*-of-*" -exec mv {{}} {data_dir}'
' \\;'.format(data_dir=imagenet_data_dir))
# Clearing caches.
# https://github.com/mlperf/results/blob/master/v0.5.0/google/cloud_v2.8/resnet-tpuv2-8/code/resnet/model/main.sh#L133
vm.RemoteCommand('sync && echo 3 | sudo tee /proc/sys/vm/drop_caches')
vm.RemoteCommand('python3 -c "import mlperf_compliance;mlperf_compliance.'
'mlperf_log.{}_print(key=\'run_clear_caches\')"'.format(
benchmark_spec.benchmark)) |
Python | def _CreateMetadataDict(benchmark_spec):
"""Create metadata dict to be used in run results.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
metadata dict
"""
return mnist_benchmark.CreateMetadataDict(benchmark_spec) | def _CreateMetadataDict(benchmark_spec):
"""Create metadata dict to be used in run results.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
metadata dict
"""
return mnist_benchmark.CreateMetadataDict(benchmark_spec) |
Python | def Run(benchmark_spec):
"""Run MLPerf on the cluster.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
A list of sample.Sample objects.
"""
_UpdateBenchmarkSpecWithFlags(benchmark_spec)
vm = benchmark_spec.vms[0]
if benchmark_spec.tpus:
# For MLPerf v0.5, the benchmake code of different hardware are different.
if benchmark_spec.tpu_groups['train'].GetNumShards() > 8:
code_path = 'cloud_v2.512/resnet-tpuv2-512/code/resnet/model'
elif benchmark_spec.tpu_groups['train'].GetAcceleratorType() == 'v2-8':
code_path = 'cloud_v2.8/resnet-tpuv2-8/code/resnet/model'
elif benchmark_spec.tpu_groups['train'].GetAcceleratorType() == 'v3-8':
code_path = 'cloud_v3.8/resnet-tpuv3-8/code/resnet/model'
else:
raise ValueError(
'MLPerf configurations do not support the hardware in PKB. PKB may '
'need to be updated if this is a new TPU type.')
cmd = 'bash run_helper.sh 2>&1 | tee output.txt'
else:
code_path = 'cloud_v100x8/code/resnet'
cmd = ('sudo nvidia-docker build . -t foo && '
'sudo nvidia-docker run -v $MLP_HOST_DATA_DIR:/data -v '
'$MLP_HOST_OUTPUT_DIR:/output -v /proc:/host_proc -t '
'foo:latest run_helper_8xV100.sh 2>&1 | tee output.txt')
mlperf_benchmark_cmd = (
'export MLP_GCS_MODEL_DIR={model_dir} && '
'export MLP_PATH_GCS_IMAGENET={data_dir} && '
'export MLP_TPU_NAME={tpu_train} && '
'export MLP_PATH_GCS_EUW_IMAGENET={data_dir} && '
'export MLP_GCS_EUW_MODEL_DIR={model_dir} && '
'export MLP_TPU_SIDECAR_NAME={tpu_eval} && '
'export MLP_HOST_DATA_DIR=/data && '
'export MLP_HOST_OUTPUT_DIR=`pwd`/output && '
'export PYTHONPATH=$PYTHONPATH:$PWD/tpu/models && '
'cd results/v0.5.0/google/{code_path} && '
'sed -i "s/python /python3 /g" run_helper*.sh && '
'mkdir -p $MLP_HOST_OUTPUT_DIR && '
'{cmd}'.format(
model_dir=benchmark_spec.model_dir,
data_dir=benchmark_spec.data_dir,
tpu_train=(benchmark_spec.tpu_groups['train'].GetName()
if benchmark_spec.tpus else ''),
tpu_eval=(benchmark_spec.tpu_groups['eval'].GetName()
if benchmark_spec.tpus else ''),
code_path=code_path,
cmd=cmd))
if cuda_toolkit.CheckNvidiaGpuExists(vm):
mlperf_benchmark_cmd = '{env} {cmd}'.format(
env=tensorflow.GetEnvironmentVars(vm), cmd=mlperf_benchmark_cmd)
samples = []
metadata = _CreateMetadataDict(benchmark_spec)
stdout, _ = vm.RobustRemoteCommand(mlperf_benchmark_cmd, should_log=True)
samples.extend(MakeSamplesFromOutput(metadata, stdout))
return samples | def Run(benchmark_spec):
"""Run MLPerf on the cluster.
Args:
benchmark_spec: The benchmark specification. Contains all data that is
required to run the benchmark.
Returns:
A list of sample.Sample objects.
"""
_UpdateBenchmarkSpecWithFlags(benchmark_spec)
vm = benchmark_spec.vms[0]
if benchmark_spec.tpus:
# For MLPerf v0.5, the benchmake code of different hardware are different.
if benchmark_spec.tpu_groups['train'].GetNumShards() > 8:
code_path = 'cloud_v2.512/resnet-tpuv2-512/code/resnet/model'
elif benchmark_spec.tpu_groups['train'].GetAcceleratorType() == 'v2-8':
code_path = 'cloud_v2.8/resnet-tpuv2-8/code/resnet/model'
elif benchmark_spec.tpu_groups['train'].GetAcceleratorType() == 'v3-8':
code_path = 'cloud_v3.8/resnet-tpuv3-8/code/resnet/model'
else:
raise ValueError(
'MLPerf configurations do not support the hardware in PKB. PKB may '
'need to be updated if this is a new TPU type.')
cmd = 'bash run_helper.sh 2>&1 | tee output.txt'
else:
code_path = 'cloud_v100x8/code/resnet'
cmd = ('sudo nvidia-docker build . -t foo && '
'sudo nvidia-docker run -v $MLP_HOST_DATA_DIR:/data -v '
'$MLP_HOST_OUTPUT_DIR:/output -v /proc:/host_proc -t '
'foo:latest run_helper_8xV100.sh 2>&1 | tee output.txt')
mlperf_benchmark_cmd = (
'export MLP_GCS_MODEL_DIR={model_dir} && '
'export MLP_PATH_GCS_IMAGENET={data_dir} && '
'export MLP_TPU_NAME={tpu_train} && '
'export MLP_PATH_GCS_EUW_IMAGENET={data_dir} && '
'export MLP_GCS_EUW_MODEL_DIR={model_dir} && '
'export MLP_TPU_SIDECAR_NAME={tpu_eval} && '
'export MLP_HOST_DATA_DIR=/data && '
'export MLP_HOST_OUTPUT_DIR=`pwd`/output && '
'export PYTHONPATH=$PYTHONPATH:$PWD/tpu/models && '
'cd results/v0.5.0/google/{code_path} && '
'sed -i "s/python /python3 /g" run_helper*.sh && '
'mkdir -p $MLP_HOST_OUTPUT_DIR && '
'{cmd}'.format(
model_dir=benchmark_spec.model_dir,
data_dir=benchmark_spec.data_dir,
tpu_train=(benchmark_spec.tpu_groups['train'].GetName()
if benchmark_spec.tpus else ''),
tpu_eval=(benchmark_spec.tpu_groups['eval'].GetName()
if benchmark_spec.tpus else ''),
code_path=code_path,
cmd=cmd))
if cuda_toolkit.CheckNvidiaGpuExists(vm):
mlperf_benchmark_cmd = '{env} {cmd}'.format(
env=tensorflow.GetEnvironmentVars(vm), cmd=mlperf_benchmark_cmd)
samples = []
metadata = _CreateMetadataDict(benchmark_spec)
stdout, _ = vm.RobustRemoteCommand(mlperf_benchmark_cmd, should_log=True)
samples.extend(MakeSamplesFromOutput(metadata, stdout))
return samples |
Python | def GetEnvironmentVars(vm):
"""Return a string containing TensorFlow-related environment variables.
Args:
vm: vm to get environment varibles
Returns:
string of environment variables
"""
env_vars = []
if cuda_toolkit.CheckNvidiaGpuExists(vm):
output, _ = vm.RemoteCommand('getconf LONG_BIT', should_log=True)
long_bit = output.strip()
lib_name = 'lib' if long_bit == '32' else 'lib64'
env_vars.extend([
'PATH=%s${PATH:+:${PATH}}' %
posixpath.join(FLAGS.cuda_toolkit_installation_dir, 'bin'),
'CUDA_HOME=%s' % FLAGS.cuda_toolkit_installation_dir,
'LD_LIBRARY_PATH=%s${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' %
posixpath.join(FLAGS.cuda_toolkit_installation_dir, lib_name)])
if FLAGS.aws_s3_region:
env_vars.append('AWS_REGION={}'.format(FLAGS.aws_s3_region))
return ' '.join(env_vars) | def GetEnvironmentVars(vm):
"""Return a string containing TensorFlow-related environment variables.
Args:
vm: vm to get environment varibles
Returns:
string of environment variables
"""
env_vars = []
if cuda_toolkit.CheckNvidiaGpuExists(vm):
output, _ = vm.RemoteCommand('getconf LONG_BIT', should_log=True)
long_bit = output.strip()
lib_name = 'lib' if long_bit == '32' else 'lib64'
env_vars.extend([
'PATH=%s${PATH:+:${PATH}}' %
posixpath.join(FLAGS.cuda_toolkit_installation_dir, 'bin'),
'CUDA_HOME=%s' % FLAGS.cuda_toolkit_installation_dir,
'LD_LIBRARY_PATH=%s${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' %
posixpath.join(FLAGS.cuda_toolkit_installation_dir, lib_name)])
if FLAGS.aws_s3_region:
env_vars.append('AWS_REGION={}'.format(FLAGS.aws_s3_region))
return ' '.join(env_vars) |
Python | def Install(vm):
"""Installs TensorFlow on the VM."""
has_gpu = cuda_toolkit.CheckNvidiaGpuExists(vm)
tf_pip_package = (FLAGS.tf_gpu_pip_package if has_gpu else
FLAGS.tf_cpu_pip_package)
if has_gpu:
vm.Install('cuda_toolkit')
vm.Install('cudnn')
# TODO(ferneyhough): Move NCCL installation to its own package.
# Currently this is dependent on CUDA 9 being installed.
vm.RemoteCommand('wget %s' % NCCL_URL)
vm.RemoteCommand('sudo dpkg -i %s' % NCCL_PACKAGE)
vm.RemoteCommand('sudo apt install libnccl2=2.3.5-2+cuda9.0 '
'libnccl-dev=2.3.5-2+cuda9.0')
vm.Install('pip')
vm.RemoteCommand('sudo pip install requests')
vm.RemoteCommand('sudo pip install --upgrade absl-py')
vm.RemoteCommand('sudo pip install --upgrade %s' % tf_pip_package,
should_log=True)
vm.RemoteCommand(
'sudo pip install --upgrade %s' % FLAGS.t2t_pip_package, should_log=True)
vm.InstallPackages('git')
vm.RemoteCommand(
'git clone https://github.com/tensorflow/benchmarks.git', should_log=True)
vm.RemoteCommand(
'cd benchmarks && git checkout {}'.format(FLAGS.tf_cnn_benchmarks_branch)
)
if FLAGS.cloud == 'AWS' and FLAGS.tf_data_dir and (
not FLAGS.tf_use_local_data):
vm.Install('aws_credentials') | def Install(vm):
"""Installs TensorFlow on the VM."""
has_gpu = cuda_toolkit.CheckNvidiaGpuExists(vm)
tf_pip_package = (FLAGS.tf_gpu_pip_package if has_gpu else
FLAGS.tf_cpu_pip_package)
if has_gpu:
vm.Install('cuda_toolkit')
vm.Install('cudnn')
# TODO(ferneyhough): Move NCCL installation to its own package.
# Currently this is dependent on CUDA 9 being installed.
vm.RemoteCommand('wget %s' % NCCL_URL)
vm.RemoteCommand('sudo dpkg -i %s' % NCCL_PACKAGE)
vm.RemoteCommand('sudo apt install libnccl2=2.3.5-2+cuda9.0 '
'libnccl-dev=2.3.5-2+cuda9.0')
vm.Install('pip')
vm.RemoteCommand('sudo pip install requests')
vm.RemoteCommand('sudo pip install --upgrade absl-py')
vm.RemoteCommand('sudo pip install --upgrade %s' % tf_pip_package,
should_log=True)
vm.RemoteCommand(
'sudo pip install --upgrade %s' % FLAGS.t2t_pip_package, should_log=True)
vm.InstallPackages('git')
vm.RemoteCommand(
'git clone https://github.com/tensorflow/benchmarks.git', should_log=True)
vm.RemoteCommand(
'cd benchmarks && git checkout {}'.format(FLAGS.tf_cnn_benchmarks_branch)
)
if FLAGS.cloud == 'AWS' and FLAGS.tf_data_dir and (
not FLAGS.tf_use_local_data):
vm.Install('aws_credentials') |
Python | def GetManagedRelationalDbClass(cloud):
"""Get the ManagedRelationalDb class corresponding to 'cloud'.
Args:
cloud: name of cloud to get the class for
"""
return resource.GetResourceClass(BaseManagedRelationalDb, CLOUD=cloud) | def GetManagedRelationalDbClass(cloud):
"""Get the ManagedRelationalDb class corresponding to 'cloud'.
Args:
cloud: name of cloud to get the class for
"""
return resource.GetResourceClass(BaseManagedRelationalDb, CLOUD=cloud) |
Python | def client_vm(self):
"""Client VM which will drive the database test.
This is required by subclasses to perform client-vm
network-specific tasks, such as getting information about
the VPC, IP address, etc.
"""
if not hasattr(self, '_client_vm'):
raise ManagedRelationalDbPropertyNotSet('client_vm is not set')
return self._client_vm | def client_vm(self):
"""Client VM which will drive the database test.
This is required by subclasses to perform client-vm
network-specific tasks, such as getting information about
the VPC, IP address, etc.
"""
if not hasattr(self, '_client_vm'):
raise ManagedRelationalDbPropertyNotSet('client_vm is not set')
return self._client_vm |
Python | def endpoint(self):
"""Endpoint of the database server (exclusing port)."""
if not hasattr(self, '_endpoint'):
raise ManagedRelationalDbPropertyNotSet('endpoint not set')
return self._endpoint | def endpoint(self):
"""Endpoint of the database server (exclusing port)."""
if not hasattr(self, '_endpoint'):
raise ManagedRelationalDbPropertyNotSet('endpoint not set')
return self._endpoint |
Python | def port(self):
"""Port (int) on which the database server is listening."""
if not hasattr(self, '_port'):
raise ManagedRelationalDbPropertyNotSet('port not set')
return self._port | def port(self):
"""Port (int) on which the database server is listening."""
if not hasattr(self, '_port'):
raise ManagedRelationalDbPropertyNotSet('port not set')
return self._port |
Python | def GetResourceMetadata(self):
"""Returns a dictionary of metadata.
Child classes can extend this if needed.
Raises:
ManagedRelationalDbPropertyNotSet: if any expected metadata is missing.
"""
metadata = {
'zone': self.spec.vm_spec.zone,
'disk_type': self.spec.disk_spec.disk_type,
'disk_size': self.spec.disk_spec.disk_size,
'engine': self.spec.engine,
'high_availability': self.spec.high_availability,
'backup_enabled': self.spec.backup_enabled,
'backup_start_time': self.spec.backup_start_time,
'engine_version': self.spec.engine_version,
}
if (hasattr(self.spec.vm_spec, 'machine_type') and
self.spec.vm_spec.machine_type):
metadata.update({
'machine_type': self.spec.vm_spec.machine_type,
})
elif hasattr(self.spec.vm_spec, 'cpus') and (
hasattr(self.spec.vm_spec, 'memory')):
metadata.update({
'cpus': self.spec.vm_spec.cpus,
})
metadata.update({
'memory': self.spec.vm_spec.memory,
})
elif hasattr(self.spec.vm_spec, 'tier') and (
hasattr(self.spec.vm_spec, 'compute_units')):
metadata.update({
'tier': self.spec.vm_spec.tier,
})
metadata.update({
'compute_units': self.spec.vm_spec.compute_units,
})
else:
raise ManagedRelationalDbPropertyNotSet(
'Machine type of the database must be set.')
return metadata | def GetResourceMetadata(self):
"""Returns a dictionary of metadata.
Child classes can extend this if needed.
Raises:
ManagedRelationalDbPropertyNotSet: if any expected metadata is missing.
"""
metadata = {
'zone': self.spec.vm_spec.zone,
'disk_type': self.spec.disk_spec.disk_type,
'disk_size': self.spec.disk_spec.disk_size,
'engine': self.spec.engine,
'high_availability': self.spec.high_availability,
'backup_enabled': self.spec.backup_enabled,
'backup_start_time': self.spec.backup_start_time,
'engine_version': self.spec.engine_version,
}
if (hasattr(self.spec.vm_spec, 'machine_type') and
self.spec.vm_spec.machine_type):
metadata.update({
'machine_type': self.spec.vm_spec.machine_type,
})
elif hasattr(self.spec.vm_spec, 'cpus') and (
hasattr(self.spec.vm_spec, 'memory')):
metadata.update({
'cpus': self.spec.vm_spec.cpus,
})
metadata.update({
'memory': self.spec.vm_spec.memory,
})
elif hasattr(self.spec.vm_spec, 'tier') and (
hasattr(self.spec.vm_spec, 'compute_units')):
metadata.update({
'tier': self.spec.vm_spec.tier,
})
metadata.update({
'compute_units': self.spec.vm_spec.compute_units,
})
else:
raise ManagedRelationalDbPropertyNotSet(
'Machine type of the database must be set.')
return metadata |
Python | def _Install(vm):
"""Installs the Glibc Benchmark package on the VM."""
vm.Install('node_js')
vm.Install('build_tools')
vm.InstallPackages('bison')
vm.RemoteCommand('cd {0} && mkdir binutils'.format(INSTALL_DIR))
vm.RemoteCommand(
'cd {0} && '
'wget http://ftp.gnu.org/gnu/binutils/binutils-2.30.tar.gz'.format(
BINUTILS_DIR))
vm.RemoteCommand('cd {0} && tar xvf {1}'.format(BINUTILS_DIR, BINUTILS_TAR))
vm.RemoteCommand('cd {0} && mkdir binutils-build && '
'cd binutils-build/ && '
'../binutils-2.30/configure --prefix=/opt/binutils && '
'make -j 4 && sudo make install'.format(BINUTILS_DIR))
vm.Install('gcc5')
vm.RemoteCommand('cd {0} && mkdir glibc'.format(INSTALL_DIR))
vm.RemoteCommand(
'cd {0} && '
'wget https://fossies.org/linux/misc/{1}'.format(GLIBC_DIR, GLIBC_TAR))
vm.RemoteCommand('cd {0} && tar xvf {1}'.format(GLIBC_DIR, GLIBC_TAR))
vm.RemoteCommand(
'cd {0} && mkdir glibc-build && cd glibc-build && '
'../glibc-{1}/configure --prefix=/usr/local/glibc --disable-profile '
'--enable-add-ons --with-headers=/usr/include '
'--with-binutils=/opt/binutils/bin && make && sudo make install'.format(
GLIBC_DIR, GLIBC_VERSION)) | def _Install(vm):
"""Installs the Glibc Benchmark package on the VM."""
vm.Install('node_js')
vm.Install('build_tools')
vm.InstallPackages('bison')
vm.RemoteCommand('cd {0} && mkdir binutils'.format(INSTALL_DIR))
vm.RemoteCommand(
'cd {0} && '
'wget http://ftp.gnu.org/gnu/binutils/binutils-2.30.tar.gz'.format(
BINUTILS_DIR))
vm.RemoteCommand('cd {0} && tar xvf {1}'.format(BINUTILS_DIR, BINUTILS_TAR))
vm.RemoteCommand('cd {0} && mkdir binutils-build && '
'cd binutils-build/ && '
'../binutils-2.30/configure --prefix=/opt/binutils && '
'make -j 4 && sudo make install'.format(BINUTILS_DIR))
vm.Install('gcc5')
vm.RemoteCommand('cd {0} && mkdir glibc'.format(INSTALL_DIR))
vm.RemoteCommand(
'cd {0} && '
'wget https://fossies.org/linux/misc/{1}'.format(GLIBC_DIR, GLIBC_TAR))
vm.RemoteCommand('cd {0} && tar xvf {1}'.format(GLIBC_DIR, GLIBC_TAR))
vm.RemoteCommand(
'cd {0} && mkdir glibc-build && cd glibc-build && '
'../glibc-{1}/configure --prefix=/usr/local/glibc --disable-profile '
'--enable-add-ons --with-headers=/usr/include '
'--with-binutils=/opt/binutils/bin && make && sudo make install'.format(
GLIBC_DIR, GLIBC_VERSION)) |
Python | def _AddTags(self):
"""Tags all VMs in the cluster."""
vms_in_cluster = []
for instance_group in self._GetInstanceGroups():
vms_in_cluster.extend(self._GetInstancesFromInstanceGroup(instance_group))
for vm_name in vms_in_cluster:
cmd = util.GcloudCommand(self, 'compute', 'instances', 'add-metadata',
vm_name)
cmd.flags['metadata'] = util.MakeFormattedDefaultTags()
cmd.Issue() | def _AddTags(self):
"""Tags all VMs in the cluster."""
vms_in_cluster = []
for instance_group in self._GetInstanceGroups():
vms_in_cluster.extend(self._GetInstancesFromInstanceGroup(instance_group))
for vm_name in vms_in_cluster:
cmd = util.GcloudCommand(self, 'compute', 'instances', 'add-metadata',
vm_name)
cmd.flags['metadata'] = util.MakeFormattedDefaultTags()
cmd.Issue() |
Python | def Run(vm, server_ip, server_port):
"""Runs the memtier benchmark on the vm."""
memtier_ratio = '1:{0}'.format(FLAGS.memtier_ratio)
samples = []
for client_count in FLAGS.memtier_clients:
vm.RemoteCommand('rm -f {0}'.format(MEMTIER_RESULTS))
vm.RemoteCommand(
'memtier_benchmark '
'-s {server_ip} '
'-p {server_port} '
'-P {protocol} '
'--run-count {run_count} '
'--requests {requests} '
'--clients {clients} '
'--threads {threads} '
'--ratio {ratio} '
'--data-size {data_size} '
'--key-pattern {key_pattern} '
'--random-data > {output_file}'.format(
server_ip=server_ip,
server_port=server_port,
protocol=FLAGS.memtier_protocol,
run_count=FLAGS.memtier_run_count,
requests=FLAGS.memtier_requests,
clients=client_count,
threads=FLAGS.memtier_threads,
ratio=memtier_ratio,
data_size=FLAGS.memtier_data_size,
key_pattern=FLAGS.memtier_key_pattern,
output_file=MEMTIER_RESULTS))
results, _ = vm.RemoteCommand('cat {0}'.format(MEMTIER_RESULTS))
metadata = GetMetadata()
metadata['memtier_clients'] = client_count
samples.extend(ParseResults(results, metadata))
return samples | def Run(vm, server_ip, server_port):
"""Runs the memtier benchmark on the vm."""
memtier_ratio = '1:{0}'.format(FLAGS.memtier_ratio)
samples = []
for client_count in FLAGS.memtier_clients:
vm.RemoteCommand('rm -f {0}'.format(MEMTIER_RESULTS))
vm.RemoteCommand(
'memtier_benchmark '
'-s {server_ip} '
'-p {server_port} '
'-P {protocol} '
'--run-count {run_count} '
'--requests {requests} '
'--clients {clients} '
'--threads {threads} '
'--ratio {ratio} '
'--data-size {data_size} '
'--key-pattern {key_pattern} '
'--random-data > {output_file}'.format(
server_ip=server_ip,
server_port=server_port,
protocol=FLAGS.memtier_protocol,
run_count=FLAGS.memtier_run_count,
requests=FLAGS.memtier_requests,
clients=client_count,
threads=FLAGS.memtier_threads,
ratio=memtier_ratio,
data_size=FLAGS.memtier_data_size,
key_pattern=FLAGS.memtier_key_pattern,
output_file=MEMTIER_RESULTS))
results, _ = vm.RemoteCommand('cat {0}'.format(MEMTIER_RESULTS))
metadata = GetMetadata()
metadata['memtier_clients'] = client_count
samples.extend(ParseResults(results, metadata))
return samples |
Python | def load(self):
"""
Extract tabular data as |TableData| instances from a JSON text object.
|load_source_desc_text|
:return:
Loaded table data iterator.
|load_table_name_desc|
=================== ==============================================
Format specifier Value after the replacement
=================== ==============================================
``%(filename)s`` ``""``
``%(key)s`` | This replaced the different value
| for each single/multiple JSON tables:
| [single JSON table]
| ``%(format_name)s%(format_id)s``
| [multiple JSON table] Table data key.
``%(format_name)s`` ``"json"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ==============================================
:rtype: |TableData| iterator
.. seealso::
:py:meth:`.JsonTableFileLoader.load()`
"""
formatter = JsonTableFormatter(self.load_dict())
formatter.accept(self)
return formatter.to_table_data() | def load(self):
"""
Extract tabular data as |TableData| instances from a JSON text object.
|load_source_desc_text|
:return:
Loaded table data iterator.
|load_table_name_desc|
=================== ==============================================
Format specifier Value after the replacement
=================== ==============================================
``%(filename)s`` ``""``
``%(key)s`` | This replaced the different value
| for each single/multiple JSON tables:
| [single JSON table]
| ``%(format_name)s%(format_id)s``
| [multiple JSON table] Table data key.
``%(format_name)s`` ``"json"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ==============================================
:rtype: |TableData| iterator
.. seealso::
:py:meth:`.JsonTableFileLoader.load()`
"""
formatter = JsonTableFormatter(self.load_dict())
formatter.accept(self)
return formatter.to_table_data() |
Python | def load(self):
"""
Extract tabular data as |TableData| instances from a dict object.
|load_source_desc_text|
:rtype: |TableData| iterator
.. seealso::
:py:meth:`.JsonTableFileLoader.load()`
"""
self._validate()
self._logger.logging_load()
formatter = JsonTableFormatter(self.source)
formatter.accept(self)
return formatter.to_table_data() | def load(self):
"""
Extract tabular data as |TableData| instances from a dict object.
|load_source_desc_text|
:rtype: |TableData| iterator
.. seealso::
:py:meth:`.JsonTableFileLoader.load()`
"""
self._validate()
self._logger.logging_load()
formatter = JsonTableFormatter(self.source)
formatter.accept(self)
return formatter.to_table_data() |
Python | def create_from_path(self):
"""
Create a file loader from the file extension to loading file.
Supported file extensions are as follows:
========================================= =====================================
Extension Loader
========================================= =====================================
``"csv"`` :py:class:`~.CsvTableTextLoader`
``"xls"``/``"xlsx"`` :py:class:`~.ExcelTableFileLoader`
``"htm"``/``"html"``/``"asp"``/``"aspx"`` :py:class:`~.HtmlTableTextLoader`
``"json"`` :py:class:`~.JsonTableTextLoader`
``"jsonl"``/``"ldjson"``/``"ndjson"`` :py:class:`~.JsonLinesTableTextLoader`
``"ltsv"`` :py:class:`~.LtsvTableTextLoader`
``"md"`` :py:class:`~.MarkdownTableTextLoader`
``"sqlite"``/``"sqlite3"`` :py:class:`~.SqliteFileLoader`
``"tsv"`` :py:class:`~.TsvTableTextLoader`
========================================= =====================================
:return:
Loader that coincides with the file extension of the URL.
:raises pytablereader.UrlError: If unacceptable URL format.
:raises pytablereader.LoaderNotFoundError:
|LoaderNotFoundError_desc| loading the URL.
"""
import requests
url_path = urlparse(self.__url).path
try:
url_extension = get_extension(url_path.rstrip("/"))
except InvalidFilePathError:
raise UrlError("url must include path")
logger.debug(f"TableUrlLoaderFactory: extension={url_extension}")
loader_class = self._get_loader_class(self._get_extension_loader_mapping(), url_extension)
try:
self._fetch_source(loader_class)
except requests.exceptions.ProxyError as e:
raise ProxyError(e)
loader = self._create_from_extension(url_extension)
logger.debug(f"TableUrlLoaderFactory: loader={loader.format_name}")
return loader | def create_from_path(self):
"""
Create a file loader from the file extension to loading file.
Supported file extensions are as follows:
========================================= =====================================
Extension Loader
========================================= =====================================
``"csv"`` :py:class:`~.CsvTableTextLoader`
``"xls"``/``"xlsx"`` :py:class:`~.ExcelTableFileLoader`
``"htm"``/``"html"``/``"asp"``/``"aspx"`` :py:class:`~.HtmlTableTextLoader`
``"json"`` :py:class:`~.JsonTableTextLoader`
``"jsonl"``/``"ldjson"``/``"ndjson"`` :py:class:`~.JsonLinesTableTextLoader`
``"ltsv"`` :py:class:`~.LtsvTableTextLoader`
``"md"`` :py:class:`~.MarkdownTableTextLoader`
``"sqlite"``/``"sqlite3"`` :py:class:`~.SqliteFileLoader`
``"tsv"`` :py:class:`~.TsvTableTextLoader`
========================================= =====================================
:return:
Loader that coincides with the file extension of the URL.
:raises pytablereader.UrlError: If unacceptable URL format.
:raises pytablereader.LoaderNotFoundError:
|LoaderNotFoundError_desc| loading the URL.
"""
import requests
url_path = urlparse(self.__url).path
try:
url_extension = get_extension(url_path.rstrip("/"))
except InvalidFilePathError:
raise UrlError("url must include path")
logger.debug(f"TableUrlLoaderFactory: extension={url_extension}")
loader_class = self._get_loader_class(self._get_extension_loader_mapping(), url_extension)
try:
self._fetch_source(loader_class)
except requests.exceptions.ProxyError as e:
raise ProxyError(e)
loader = self._create_from_extension(url_extension)
logger.debug(f"TableUrlLoaderFactory: loader={loader.format_name}")
return loader |
Python | def create_from_format_name(self, format_name):
"""
Create a file loader from a format name.
Supported file formats are as follows:
========================== ======================================
Format name Loader
========================== ======================================
``"csv"`` :py:class:`~.CsvTableTextLoader`
``"excel"`` :py:class:`~.ExcelTableFileLoader`
``"html"`` :py:class:`~.HtmlTableTextLoader`
``"json"`` :py:class:`~.JsonTableTextLoader`
``"json_lines"`` :py:class:`~.JsonLinesTableTextLoader`
``"jsonl"`` :py:class:`~.JsonLinesTableTextLoader`
``"ldjson"`` :py:class:`~.JsonLinesTableTextLoader`
``"ltsv"`` :py:class:`~.LtsvTableTextLoader`
``"markdown"`` :py:class:`~.MarkdownTableTextLoader`
``"mediawiki"`` :py:class:`~.MediaWikiTableTextLoader`
``"ndjson"`` :py:class:`~.JsonLinesTableTextLoader`
``"sqlite"`` :py:class:`~.SqliteFileLoader`
``"ssv"`` :py:class:`~.CsvTableTextLoader`
``"tsv"`` :py:class:`~.TsvTableTextLoader`
========================== ======================================
:param str format_name: Format name string (case insensitive).
:return: Loader that coincide with the ``format_name``:
:raises pytablereader.LoaderNotFoundError:
|LoaderNotFoundError_desc| the format.
:raises TypeError: If ``format_name`` is not a string.
"""
import requests
logger.debug(f"TableUrlLoaderFactory: name={format_name}")
loader_class = self._get_loader_class(self._get_format_name_loader_mapping(), format_name)
try:
self._fetch_source(loader_class)
except requests.exceptions.ProxyError as e:
raise ProxyError(e)
loader = self._create_from_format_name(format_name)
logger.debug(f"TableUrlLoaderFactory: loader={loader.format_name}")
return loader | def create_from_format_name(self, format_name):
"""
Create a file loader from a format name.
Supported file formats are as follows:
========================== ======================================
Format name Loader
========================== ======================================
``"csv"`` :py:class:`~.CsvTableTextLoader`
``"excel"`` :py:class:`~.ExcelTableFileLoader`
``"html"`` :py:class:`~.HtmlTableTextLoader`
``"json"`` :py:class:`~.JsonTableTextLoader`
``"json_lines"`` :py:class:`~.JsonLinesTableTextLoader`
``"jsonl"`` :py:class:`~.JsonLinesTableTextLoader`
``"ldjson"`` :py:class:`~.JsonLinesTableTextLoader`
``"ltsv"`` :py:class:`~.LtsvTableTextLoader`
``"markdown"`` :py:class:`~.MarkdownTableTextLoader`
``"mediawiki"`` :py:class:`~.MediaWikiTableTextLoader`
``"ndjson"`` :py:class:`~.JsonLinesTableTextLoader`
``"sqlite"`` :py:class:`~.SqliteFileLoader`
``"ssv"`` :py:class:`~.CsvTableTextLoader`
``"tsv"`` :py:class:`~.TsvTableTextLoader`
========================== ======================================
:param str format_name: Format name string (case insensitive).
:return: Loader that coincide with the ``format_name``:
:raises pytablereader.LoaderNotFoundError:
|LoaderNotFoundError_desc| the format.
:raises TypeError: If ``format_name`` is not a string.
"""
import requests
logger.debug(f"TableUrlLoaderFactory: name={format_name}")
loader_class = self._get_loader_class(self._get_format_name_loader_mapping(), format_name)
try:
self._fetch_source(loader_class)
except requests.exceptions.ProxyError as e:
raise ProxyError(e)
loader = self._create_from_format_name(format_name)
logger.debug(f"TableUrlLoaderFactory: loader={loader.format_name}")
return loader |
Python | def load(self):
"""
Load table data from a Google Spreadsheet.
This method consider :py:attr:`.source` as a path to the
credential JSON file to access Google Sheets API.
The method automatically search the header row start from
:py:attr:`.start_row`. The condition of the header row is that
all of the columns have value (except empty columns).
:return:
Loaded table data. Return one |TableData| for each sheet in
the workbook. The table name for data will be determined by
:py:meth:`~.GoogleSheetsTableLoader.make_table_name`.
:rtype: iterator of |TableData|
:raises pytablereader.DataError:
If the header row is not found.
:raises pytablereader.OpenError:
If the spread sheet not found.
"""
import gspread
from oauth2client.service_account import ServiceAccountCredentials
self._validate_table_name()
self._validate_title()
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
credentials = ServiceAccountCredentials.from_json_keyfile_name(self.source, scope)
gc = gspread.authorize(credentials)
try:
for worksheet in gc.open(self.title).worksheets():
self._worksheet = worksheet
self.__all_values = [row for row in worksheet.get_all_values()]
if self._is_empty_sheet():
continue
try:
self.__strip_empty_col()
except ValueError:
continue
value_matrix = self.__all_values[self._get_start_row_idx() :]
try:
headers = value_matrix[0]
rows = value_matrix[1:]
except IndexError:
continue
self.inc_table_count()
yield TableData(
self.make_table_name(),
headers,
rows,
dp_extractor=self.dp_extractor,
type_hints=self._extract_type_hints(headers),
)
except gspread.exceptions.SpreadsheetNotFound:
raise OpenError(f"spreadsheet '{self.title}' not found")
except gspread.exceptions.APIError as e:
raise APIError(e) | def load(self):
"""
Load table data from a Google Spreadsheet.
This method consider :py:attr:`.source` as a path to the
credential JSON file to access Google Sheets API.
The method automatically search the header row start from
:py:attr:`.start_row`. The condition of the header row is that
all of the columns have value (except empty columns).
:return:
Loaded table data. Return one |TableData| for each sheet in
the workbook. The table name for data will be determined by
:py:meth:`~.GoogleSheetsTableLoader.make_table_name`.
:rtype: iterator of |TableData|
:raises pytablereader.DataError:
If the header row is not found.
:raises pytablereader.OpenError:
If the spread sheet not found.
"""
import gspread
from oauth2client.service_account import ServiceAccountCredentials
self._validate_table_name()
self._validate_title()
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
credentials = ServiceAccountCredentials.from_json_keyfile_name(self.source, scope)
gc = gspread.authorize(credentials)
try:
for worksheet in gc.open(self.title).worksheets():
self._worksheet = worksheet
self.__all_values = [row for row in worksheet.get_all_values()]
if self._is_empty_sheet():
continue
try:
self.__strip_empty_col()
except ValueError:
continue
value_matrix = self.__all_values[self._get_start_row_idx() :]
try:
headers = value_matrix[0]
rows = value_matrix[1:]
except IndexError:
continue
self.inc_table_count()
yield TableData(
self.make_table_name(),
headers,
rows,
dp_extractor=self.dp_extractor,
type_hints=self._extract_type_hints(headers),
)
except gspread.exceptions.SpreadsheetNotFound:
raise OpenError(f"spreadsheet '{self.title}' not found")
except gspread.exceptions.APIError as e:
raise APIError(e) |
Python | def load(self):
"""
Extract tabular data as |TableData| instances from a Markdown file.
|load_source_desc_file|
:return:
Loaded table data iterator.
|load_table_name_desc|
=================== ==============================================
Format specifier Value after the replacement
=================== ==============================================
``%(filename)s`` |filename_desc|
``%(key)s`` ``%(format_name)s%(format_id)s``
``%(format_name)s`` ``"markdown"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ==============================================
:rtype: |TableData| iterator
:raises pytablereader.DataError:
If the Markdown data is invalid or empty.
"""
self._validate()
self._logger.logging_load()
self.encoding = get_file_encoding(self.source, self.encoding)
with open(self.source, encoding=self.encoding) as fp:
formatter = MarkdownTableFormatter(fp.read(), self._logger)
formatter.accept(self)
return formatter.to_table_data() | def load(self):
"""
Extract tabular data as |TableData| instances from a Markdown file.
|load_source_desc_file|
:return:
Loaded table data iterator.
|load_table_name_desc|
=================== ==============================================
Format specifier Value after the replacement
=================== ==============================================
``%(filename)s`` |filename_desc|
``%(key)s`` ``%(format_name)s%(format_id)s``
``%(format_name)s`` ``"markdown"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ==============================================
:rtype: |TableData| iterator
:raises pytablereader.DataError:
If the Markdown data is invalid or empty.
"""
self._validate()
self._logger.logging_load()
self.encoding = get_file_encoding(self.source, self.encoding)
with open(self.source, encoding=self.encoding) as fp:
formatter = MarkdownTableFormatter(fp.read(), self._logger)
formatter.accept(self)
return formatter.to_table_data() |
Python | def load(self):
"""
Extract tabular data as |TableData| instances from a Markdown text
object.
|load_source_desc_text|
:return:
Loaded table data iterator.
|load_table_name_desc|
=================== ==============================================
Format specifier Value after the replacement
=================== ==============================================
``%(filename)s`` ``""``
``%(key)s`` ``%(format_name)s%(format_id)s``
``%(format_name)s`` ``"markdown"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ==============================================
:rtype: |TableData| iterator
:raises pytablereader.DataError:
If the Markdown data is invalid or empty.
"""
self._validate()
self._logger.logging_load()
formatter = MarkdownTableFormatter(self.source, self._logger)
formatter.accept(self)
return formatter.to_table_data() | def load(self):
"""
Extract tabular data as |TableData| instances from a Markdown text
object.
|load_source_desc_text|
:return:
Loaded table data iterator.
|load_table_name_desc|
=================== ==============================================
Format specifier Value after the replacement
=================== ==============================================
``%(filename)s`` ``""``
``%(key)s`` ``%(format_name)s%(format_id)s``
``%(format_name)s`` ``"markdown"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ==============================================
:rtype: |TableData| iterator
:raises pytablereader.DataError:
If the Markdown data is invalid or empty.
"""
self._validate()
self._logger.logging_load()
formatter = MarkdownTableFormatter(self.source, self._logger)
formatter.accept(self)
return formatter.to_table_data() |
Python | def load(self):
"""
Extract tabular data as |TableData| instances from a LTSV file.
|load_source_desc_file|
:return:
Loaded table data.
|load_table_name_desc|
=================== ========================================
Format specifier Value after the replacement
=================== ========================================
``%(filename)s`` |filename_desc|
``%(format_name)s`` ``"ltsv"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ========================================
:rtype: |TableData| iterator
:raises pytablereader.InvalidHeaderNameError:
If an invalid label name is included in the LTSV file.
:raises pytablereader.DataError:
If the LTSV data is invalid.
"""
self._validate()
self._logger.logging_load()
self.encoding = get_file_encoding(self.source, self.encoding)
self._ltsv_input_stream = open(self.source, encoding=self.encoding)
for data_matrix in self._to_data_matrix():
formatter = SingleJsonTableConverterA(data_matrix)
formatter.accept(self)
return formatter.to_table_data() | def load(self):
"""
Extract tabular data as |TableData| instances from a LTSV file.
|load_source_desc_file|
:return:
Loaded table data.
|load_table_name_desc|
=================== ========================================
Format specifier Value after the replacement
=================== ========================================
``%(filename)s`` |filename_desc|
``%(format_name)s`` ``"ltsv"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ========================================
:rtype: |TableData| iterator
:raises pytablereader.InvalidHeaderNameError:
If an invalid label name is included in the LTSV file.
:raises pytablereader.DataError:
If the LTSV data is invalid.
"""
self._validate()
self._logger.logging_load()
self.encoding = get_file_encoding(self.source, self.encoding)
self._ltsv_input_stream = open(self.source, encoding=self.encoding)
for data_matrix in self._to_data_matrix():
formatter = SingleJsonTableConverterA(data_matrix)
formatter.accept(self)
return formatter.to_table_data() |
Python | def load(self):
"""
Extract tabular data as |TableData| instances from a LTSV text object.
|load_source_desc_text|
:return:
Loaded table data.
|load_table_name_desc|
=================== ========================================
Format specifier Value after the replacement
=================== ========================================
``%(filename)s`` ``""``
``%(format_name)s`` ``"ltsv"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ========================================
:rtype: |TableData| iterator
:raises pytablereader.InvalidHeaderNameError:
If an invalid label name is included in the LTSV file.
:raises pytablereader.DataError:
If the LTSV data is invalid.
"""
self._validate()
self._logger.logging_load()
self._ltsv_input_stream = self.source.splitlines()
for data_matrix in self._to_data_matrix():
formatter = SingleJsonTableConverterA(data_matrix)
formatter.accept(self)
return formatter.to_table_data() | def load(self):
"""
Extract tabular data as |TableData| instances from a LTSV text object.
|load_source_desc_text|
:return:
Loaded table data.
|load_table_name_desc|
=================== ========================================
Format specifier Value after the replacement
=================== ========================================
``%(filename)s`` ``""``
``%(format_name)s`` ``"ltsv"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ========================================
:rtype: |TableData| iterator
:raises pytablereader.InvalidHeaderNameError:
If an invalid label name is included in the LTSV file.
:raises pytablereader.DataError:
If the LTSV data is invalid.
"""
self._validate()
self._logger.logging_load()
self._ltsv_input_stream = self.source.splitlines()
for data_matrix in self._to_data_matrix():
formatter = SingleJsonTableConverterA(data_matrix)
formatter.accept(self)
return formatter.to_table_data() |
Python | def load(self):
"""
Extract tabular data as |TableData| instances from an Excel file.
|spreadsheet_load_desc|
:return:
Loaded |TableData| iterator.
|TableData| created for each sheet in the workbook.
|load_table_name_desc|
=================== ====================================
Format specifier Value after the replacement
=================== ====================================
``%(filename)s`` Filename of the workbook
``%(sheet)s`` Name of the sheet
``%(format_name)s`` ``"spreadsheet"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ====================================
:rtype: |TableData| iterator
:raises pytablereader.DataError:
If the header row is not found.
:raises pytablereader.error.OpenError:
If failed to open the source file.
"""
try:
import excelrd as xlrd
except ImportError:
import xlrd
self._validate()
self._logger.logging_load()
try:
workbook = xlrd.open_workbook(self.source)
except xlrd.biffh.XLRDError as e:
raise OpenError(e)
for worksheet in workbook.sheets():
self._worksheet = worksheet
if self._is_empty_sheet():
continue
self.__extract_not_empty_col_idx()
try:
start_row_idx = self._get_start_row_idx()
except DataError:
continue
rows = [
self.__get_row_values(row_idx)
for row_idx in range(start_row_idx + 1, self._row_count)
]
self.inc_table_count()
headers = self.__get_row_values(start_row_idx)
yield TableData(
self._make_table_name(),
headers,
rows,
dp_extractor=self.dp_extractor,
type_hints=self._extract_type_hints(headers),
) | def load(self):
"""
Extract tabular data as |TableData| instances from an Excel file.
|spreadsheet_load_desc|
:return:
Loaded |TableData| iterator.
|TableData| created for each sheet in the workbook.
|load_table_name_desc|
=================== ====================================
Format specifier Value after the replacement
=================== ====================================
``%(filename)s`` Filename of the workbook
``%(sheet)s`` Name of the sheet
``%(format_name)s`` ``"spreadsheet"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ====================================
:rtype: |TableData| iterator
:raises pytablereader.DataError:
If the header row is not found.
:raises pytablereader.error.OpenError:
If failed to open the source file.
"""
try:
import excelrd as xlrd
except ImportError:
import xlrd
self._validate()
self._logger.logging_load()
try:
workbook = xlrd.open_workbook(self.source)
except xlrd.biffh.XLRDError as e:
raise OpenError(e)
for worksheet in workbook.sheets():
self._worksheet = worksheet
if self._is_empty_sheet():
continue
self.__extract_not_empty_col_idx()
try:
start_row_idx = self._get_start_row_idx()
except DataError:
continue
rows = [
self.__get_row_values(row_idx)
for row_idx in range(start_row_idx + 1, self._row_count)
]
self.inc_table_count()
headers = self.__get_row_values(start_row_idx)
yield TableData(
self._make_table_name(),
headers,
rows,
dp_extractor=self.dp_extractor,
type_hints=self._extract_type_hints(headers),
) |
Python | def load(self):
"""
Extract tabular data as |TableData| instances from HTML table tags in
a HTML file.
|load_source_desc_file|
:return:
Loaded table data iterator.
|load_table_name_desc|
=================== ==============================================
Format specifier Value after the replacement
=================== ==============================================
``%(filename)s`` |filename_desc|
``%(title)s`` ``<title>`` tag value of the HTML.
``%(key)s`` | This replaced to:
| **(1)** ``id`` attribute of the table tag
| **(2)** ``%(format_name)s%(format_id)s``
| if ``id`` attribute not present in the
| table tag.
``%(format_name)s`` ``"html"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ==============================================
:rtype: |TableData| iterator
:raises pytablereader.DataError:
If the HTML data is invalid or empty.
.. note::
Table tag attributes ignored with loaded |TableData|.
"""
self._validate()
self._logger.logging_load()
self.encoding = get_file_encoding(self.source, self.encoding)
with open(self.source, encoding=self.encoding) as fp:
formatter = HtmlTableFormatter(fp.read(), self._logger)
formatter.accept(self)
return formatter.to_table_data() | def load(self):
"""
Extract tabular data as |TableData| instances from HTML table tags in
a HTML file.
|load_source_desc_file|
:return:
Loaded table data iterator.
|load_table_name_desc|
=================== ==============================================
Format specifier Value after the replacement
=================== ==============================================
``%(filename)s`` |filename_desc|
``%(title)s`` ``<title>`` tag value of the HTML.
``%(key)s`` | This replaced to:
| **(1)** ``id`` attribute of the table tag
| **(2)** ``%(format_name)s%(format_id)s``
| if ``id`` attribute not present in the
| table tag.
``%(format_name)s`` ``"html"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ==============================================
:rtype: |TableData| iterator
:raises pytablereader.DataError:
If the HTML data is invalid or empty.
.. note::
Table tag attributes ignored with loaded |TableData|.
"""
self._validate()
self._logger.logging_load()
self.encoding = get_file_encoding(self.source, self.encoding)
with open(self.source, encoding=self.encoding) as fp:
formatter = HtmlTableFormatter(fp.read(), self._logger)
formatter.accept(self)
return formatter.to_table_data() |
Python | def load(self):
"""
Extract tabular data as |TableData| instances from HTML table tags in
a HTML text object.
|load_source_desc_text|
:return:
Loaded table data iterator.
|load_table_name_desc|
=================== ==============================================
Format specifier Value after the replacement
=================== ==============================================
``%(filename)s`` ``""``
``%(title)s`` ``<title>`` tag value of the HTML.
``%(key)s`` | This replaced to:
| **(1)** ``id`` attribute of the table tag
| **(2)** ``%(format_name)s%(format_id)s``
| if ``id`` attribute is not included
| in the table tag.
``%(format_name)s`` ``"html"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ==============================================
:rtype: |TableData| iterator
:raises pytablereader.DataError:
If the HTML data is invalid or empty.
"""
self._validate()
self._logger.logging_load()
formatter = HtmlTableFormatter(self.source, self._logger)
formatter.accept(self)
return formatter.to_table_data() | def load(self):
"""
Extract tabular data as |TableData| instances from HTML table tags in
a HTML text object.
|load_source_desc_text|
:return:
Loaded table data iterator.
|load_table_name_desc|
=================== ==============================================
Format specifier Value after the replacement
=================== ==============================================
``%(filename)s`` ``""``
``%(title)s`` ``<title>`` tag value of the HTML.
``%(key)s`` | This replaced to:
| **(1)** ``id`` attribute of the table tag
| **(2)** ``%(format_name)s%(format_id)s``
| if ``id`` attribute is not included
| in the table tag.
``%(format_name)s`` ``"html"``
``%(format_id)s`` |format_id_desc|
``%(global_id)s`` |global_id|
=================== ==============================================
:rtype: |TableData| iterator
:raises pytablereader.DataError:
If the HTML data is invalid or empty.
"""
self._validate()
self._logger.logging_load()
formatter = HtmlTableFormatter(self.source, self._logger)
formatter.accept(self)
return formatter.to_table_data() |
Python | def create_from_path(self):
"""
Create a file loader from the file extension to loading file.
Supported file extensions are as follows:
========================== =======================================
Extension Loader
========================== =======================================
``"csv"`` :py:class:`~.CsvTableFileLoader`
``"xls"``/``"xlsx"`` :py:class:`~.ExcelTableFileLoader`
``"htm"``/``"html"`` :py:class:`~.HtmlTableFileLoader`
``"json"`` :py:class:`~.JsonTableFileLoader`
``"jsonl"`` :py:class:`~.JsonLinesTableFileLoader`
``"ldjson"`` :py:class:`~.JsonLinesTableFileLoader`
``"ltsv"`` :py:class:`~.LtsvTableFileLoader`
``"md"`` :py:class:`~.MarkdownTableFileLoader`
``"ndjson"`` :py:class:`~.JsonLinesTableFileLoader`
``"sqlite"``/``"sqlite3"`` :py:class:`~.SqliteFileLoader`
``"tsv"`` :py:class:`~.TsvTableFileLoader`
========================== =======================================
:return:
Loader that coincides with the file extension of the
:py:attr:`.file_extension`.
:raises pytablereader.LoaderNotFoundError:
|LoaderNotFoundError_desc| loading the file.
"""
loader = self._create_from_extension(self.file_extension)
logger.debug(
"TableFileLoaderFactory.create_from_path: extension={}, loader={}".format(
self.file_extension, loader.format_name
)
)
return loader | def create_from_path(self):
"""
Create a file loader from the file extension to loading file.
Supported file extensions are as follows:
========================== =======================================
Extension Loader
========================== =======================================
``"csv"`` :py:class:`~.CsvTableFileLoader`
``"xls"``/``"xlsx"`` :py:class:`~.ExcelTableFileLoader`
``"htm"``/``"html"`` :py:class:`~.HtmlTableFileLoader`
``"json"`` :py:class:`~.JsonTableFileLoader`
``"jsonl"`` :py:class:`~.JsonLinesTableFileLoader`
``"ldjson"`` :py:class:`~.JsonLinesTableFileLoader`
``"ltsv"`` :py:class:`~.LtsvTableFileLoader`
``"md"`` :py:class:`~.MarkdownTableFileLoader`
``"ndjson"`` :py:class:`~.JsonLinesTableFileLoader`
``"sqlite"``/``"sqlite3"`` :py:class:`~.SqliteFileLoader`
``"tsv"`` :py:class:`~.TsvTableFileLoader`
========================== =======================================
:return:
Loader that coincides with the file extension of the
:py:attr:`.file_extension`.
:raises pytablereader.LoaderNotFoundError:
|LoaderNotFoundError_desc| loading the file.
"""
loader = self._create_from_extension(self.file_extension)
logger.debug(
"TableFileLoaderFactory.create_from_path: extension={}, loader={}".format(
self.file_extension, loader.format_name
)
)
return loader |
Python | def create_from_format_name(self, format_name):
"""
Create a file loader from a format name.
Supported file formats are as follows:
================ ======================================
Format name Loader
================ ======================================
``"csv"`` :py:class:`~.CsvTableFileLoader`
``"excel"`` :py:class:`~.ExcelTableFileLoader`
``"html"`` :py:class:`~.HtmlTableFileLoader`
``"json"`` :py:class:`~.JsonTableFileLoader`
``"json"`` :py:class:`~.JsonTableFileLoader`
``"json_lines"`` :py:class:`~.JsonTableFileLoader`
``"jsonl"`` :py:class:`~.JsonLinesTableFileLoader`
``"ltsv"`` :py:class:`~.LtsvTableFileLoader`
``"markdown"`` :py:class:`~.MarkdownTableFileLoader`
``"mediawiki"`` :py:class:`~.MediaWikiTableFileLoader`
``"ndjson"`` :py:class:`~.JsonLinesTableFileLoader`
``"sqlite"`` :py:class:`~.SqliteFileLoader`
``"ssv"`` :py:class:`~.CsvTableFileLoader`
``"tsv"`` :py:class:`~.TsvTableFileLoader`
================ ======================================
:param str format_name: Format name string (case insensitive).
:return: Loader that coincides with the ``format_name``:
:raises pytablereader.LoaderNotFoundError:
|LoaderNotFoundError_desc| the format.
"""
loader = self._create_from_format_name(format_name)
logger.debug(
"TableFileLoaderFactory.create_from_format_name: name={}, loader={}".format(
format_name, loader.format_name
)
)
return loader | def create_from_format_name(self, format_name):
"""
Create a file loader from a format name.
Supported file formats are as follows:
================ ======================================
Format name Loader
================ ======================================
``"csv"`` :py:class:`~.CsvTableFileLoader`
``"excel"`` :py:class:`~.ExcelTableFileLoader`
``"html"`` :py:class:`~.HtmlTableFileLoader`
``"json"`` :py:class:`~.JsonTableFileLoader`
``"json"`` :py:class:`~.JsonTableFileLoader`
``"json_lines"`` :py:class:`~.JsonTableFileLoader`
``"jsonl"`` :py:class:`~.JsonLinesTableFileLoader`
``"ltsv"`` :py:class:`~.LtsvTableFileLoader`
``"markdown"`` :py:class:`~.MarkdownTableFileLoader`
``"mediawiki"`` :py:class:`~.MediaWikiTableFileLoader`
``"ndjson"`` :py:class:`~.JsonLinesTableFileLoader`
``"sqlite"`` :py:class:`~.SqliteFileLoader`
``"ssv"`` :py:class:`~.CsvTableFileLoader`
``"tsv"`` :py:class:`~.TsvTableFileLoader`
================ ======================================
:param str format_name: Format name string (case insensitive).
:return: Loader that coincides with the ``format_name``:
:raises pytablereader.LoaderNotFoundError:
|LoaderNotFoundError_desc| the format.
"""
loader = self._create_from_format_name(format_name)
logger.debug(
"TableFileLoaderFactory.create_from_format_name: name={}, loader={}".format(
format_name, loader.format_name
)
)
return loader |
Python | def load(self):
"""
Extract tabular data as |TableData| instances from a Line-delimited JSON file.
|load_source_desc_file|
:return:
Loaded table data iterator.
|load_table_name_desc|
:rtype: |TableData| iterator
:raises pytablereader.DataError:
If the data is invalid Line-delimited JSON.
:raises pytablereader.error.ValidationError:
If the data is not acceptable Line-delimited JSON format.
"""
formatter = JsonLinesTableFormatter(self.load_dict())
formatter.accept(self)
return formatter.to_table_data() | def load(self):
"""
Extract tabular data as |TableData| instances from a Line-delimited JSON file.
|load_source_desc_file|
:return:
Loaded table data iterator.
|load_table_name_desc|
:rtype: |TableData| iterator
:raises pytablereader.DataError:
If the data is invalid Line-delimited JSON.
:raises pytablereader.error.ValidationError:
If the data is not acceptable Line-delimited JSON format.
"""
formatter = JsonLinesTableFormatter(self.load_dict())
formatter.accept(self)
return formatter.to_table_data() |
Python | def writeBenchScript(dir, benchmark_name, size, output_path):
"""
This method creates a script in dir which will be eventually
passed to the simulated system (to run a specific benchmark
at bootup).
"""
input_file_name = '{}/run_{}_{}'.format(dir, benchmark_name, size)
with open(input_file_name,"w") as f:
f.write('{} {} {}'.format(benchmark_name, size, output_path))
return input_file_name | def writeBenchScript(dir, benchmark_name, size, output_path):
"""
This method creates a script in dir which will be eventually
passed to the simulated system (to run a specific benchmark
at bootup).
"""
input_file_name = '{}/run_{}_{}'.format(dir, benchmark_name, size)
with open(input_file_name,"w") as f:
f.write('{} {} {}'.format(benchmark_name, size, output_path))
return input_file_name |
Python | def boot_linux():
'''
Output 1: False if errors occur, True otherwise
Output 2: exit cause
'''
print("Booting Linux")
exit_event = m5.simulate()
exit_cause = exit_event.getCause()
success = exit_cause == "m5_exit instruction encountered"
if not success:
print("Error while booting linux: {}".format(exit_cause))
exit(1)
print("Booting done")
return success, exit_cause | def boot_linux():
'''
Output 1: False if errors occur, True otherwise
Output 2: exit cause
'''
print("Booting Linux")
exit_event = m5.simulate()
exit_cause = exit_event.getCause()
success = exit_cause == "m5_exit instruction encountered"
if not success:
print("Error while booting linux: {}".format(exit_cause))
exit(1)
print("Booting done")
return success, exit_cause |
Python | def run_spec_benchmark():
'''
Output 1: False if errors occur, True otherwise
Output 2: exit cause
'''
print("Start running benchmark")
exit_event = m5.simulate()
exit_cause = exit_event.getCause()
success = exit_cause == "m5_exit instruction encountered"
if not success:
print("Error while running benchmark: {}".format(exit_cause))
exit(1)
print("Benchmark done")
return success, exit_cause | def run_spec_benchmark():
'''
Output 1: False if errors occur, True otherwise
Output 2: exit cause
'''
print("Start running benchmark")
exit_event = m5.simulate()
exit_cause = exit_event.getCause()
success = exit_cause == "m5_exit instruction encountered"
if not success:
print("Error while running benchmark: {}".format(exit_cause))
exit(1)
print("Benchmark done")
return success, exit_cause |
Python | def copy_spec_logs():
'''
Output 1: False if errors occur, True otherwise
Output 2: exit cause
'''
print("Copying SPEC logs")
exit_event = m5.simulate()
exit_cause = exit_event.getCause()
success = exit_cause == "m5_exit instruction encountered"
if not success:
print("Error while copying SPEC log files: {}".format(exit_cause))
exit(1)
print("Copying done")
return success, exit_cause | def copy_spec_logs():
'''
Output 1: False if errors occur, True otherwise
Output 2: exit cause
'''
print("Copying SPEC logs")
exit_event = m5.simulate()
exit_cause = exit_event.getCause()
success = exit_cause == "m5_exit instruction encountered"
if not success:
print("Error while copying SPEC log files: {}".format(exit_cause))
exit(1)
print("Copying done")
return success, exit_cause |
Python | def publish(config_file):
'''parse config file and publish message'''
try:
with open(config_file) as cfile:
config = json.load(cfile)
client = ibmiotf.device.Client(config)
client.connect()
qos = 2 # Quality of service: exactly once
my_data = {
"insert_args": {
"observed_timestamp": "2018-04-22 13:24:23",
"device_id": "1",
"value": 52.2
}
}
success = client.publishEvent('status', 'json', my_data, qos, on_publish=published)
if not success:
print('failed to publish message')
time.sleep(5)
client.disconnect()
except BaseException as err:
print('publish failed: %r' % err) | def publish(config_file):
'''parse config file and publish message'''
try:
with open(config_file) as cfile:
config = json.load(cfile)
client = ibmiotf.device.Client(config)
client.connect()
qos = 2 # Quality of service: exactly once
my_data = {
"insert_args": {
"observed_timestamp": "2018-04-22 13:24:23",
"device_id": "1",
"value": 52.2
}
}
success = client.publishEvent('status', 'json', my_data, qos, on_publish=published)
if not success:
print('failed to publish message')
time.sleep(5)
client.disconnect()
except BaseException as err:
print('publish failed: %r' % err) |
Python | def switch(
hass,
name,
value
):
"""React to flick of the switch"""
hass.services.call(
DOMAIN,
SERVICE_SWITCH,
{
ATTR_NAME: name,
ATTR_VALUE: value
},
) | def switch(
hass,
name,
value
):
"""React to flick of the switch"""
hass.services.call(
DOMAIN,
SERVICE_SWITCH,
{
ATTR_NAME: name,
ATTR_VALUE: value
},
) |
Python | def switch_template(
hass,
name_template,
value_template
):
"""React to flick of the switch"""
hass.services.call(
DOMAIN,
SERVICE_SWITCH,
{
ATTR_NAME_TEMPLATE: name_template,
ATTR_VALUE_TEMPLATE: value_template
},
) | def switch_template(
hass,
name_template,
value_template
):
"""React to flick of the switch"""
hass.services.call(
DOMAIN,
SERVICE_SWITCH,
{
ATTR_NAME_TEMPLATE: name_template,
ATTR_VALUE_TEMPLATE: value_template
},
) |
Python | def switch_service(call):
"""Handle calls to the switch service."""
global LIGHTS_CONTROL
if LIGHTS_CONTROL is not None:
name = call.data.get(ATTR_NAME)
value = call.data.get(ATTR_VALUE)
if name is None:
name, value = _render_name_value("switch_template", call.data, {}, {})
if name is not None:
LIGHTS_CONTROL.switch(name, value)
else:
_LOGGER.warning("{}: failed to do switch call since LightsControl is not running".format(DOMAIN)) | def switch_service(call):
"""Handle calls to the switch service."""
global LIGHTS_CONTROL
if LIGHTS_CONTROL is not None:
name = call.data.get(ATTR_NAME)
value = call.data.get(ATTR_VALUE)
if name is None:
name, value = _render_name_value("switch_template", call.data, {}, {})
if name is not None:
LIGHTS_CONTROL.switch(name, value)
else:
_LOGGER.warning("{}: failed to do switch call since LightsControl is not running".format(DOMAIN)) |
Python | def sensor_service(call):
"""Handle calls to the sensor service."""
global LIGHTS_CONTROL
if LIGHTS_CONTROL is not None:
name = call.data.get(ATTR_NAME)
value = call.data.get(ATTR_VALUE)
if name is None:
name, value = _render_name_value("sensor_template", call.data, {}, {})
if name is not None:
LIGHTS_CONTROL.sensor(name, value)
else:
_LOGGER.warning("{}: failed to do sensor call since LightsControl is not running".format(DOMAIN)) | def sensor_service(call):
"""Handle calls to the sensor service."""
global LIGHTS_CONTROL
if LIGHTS_CONTROL is not None:
name = call.data.get(ATTR_NAME)
value = call.data.get(ATTR_VALUE)
if name is None:
name, value = _render_name_value("sensor_template", call.data, {}, {})
if name is not None:
LIGHTS_CONTROL.sensor(name, value)
else:
_LOGGER.warning("{}: failed to do sensor call since LightsControl is not running".format(DOMAIN)) |
Python | def watchdog_service(call):
"""Handle calls to the watchdog service."""
global LIGHTS_CONTROL
if LIGHTS_CONTROL is not None:
LIGHTS_CONTROL.watchdog()
else:
_LOGGER.warning("{}: failed to do watchdog call since LightsControl is not running".format(DOMAIN)) | def watchdog_service(call):
"""Handle calls to the watchdog service."""
global LIGHTS_CONTROL
if LIGHTS_CONTROL is not None:
LIGHTS_CONTROL.watchdog()
else:
_LOGGER.warning("{}: failed to do watchdog call since LightsControl is not running".format(DOMAIN)) |
Python | def reload_groups_service(call):
"""Handle calls to the reload_groups service."""
global LIGHTS_CONTROL
if LIGHTS_CONTROL is not None:
LIGHTS_CONTROL.reload_groups()
else:
_LOGGER.warning("{}: failed to do reload_groups call since LightsControl is not running".format(DOMAIN)) | def reload_groups_service(call):
"""Handle calls to the reload_groups service."""
global LIGHTS_CONTROL
if LIGHTS_CONTROL is not None:
LIGHTS_CONTROL.reload_groups()
else:
_LOGGER.warning("{}: failed to do reload_groups call since LightsControl is not running".format(DOMAIN)) |
Python | def restart_service(call):
"""Handle calls to the restart service."""
global LIGHTS_CONTROL
if LIGHTS_CONTROL is not None:
LIGHTS_CONTROL.restart()
else:
_LOGGER.warning("{}: failed to do restart call since LightsControl is not running".format(DOMAIN)) | def restart_service(call):
"""Handle calls to the restart service."""
global LIGHTS_CONTROL
if LIGHTS_CONTROL is not None:
LIGHTS_CONTROL.restart()
else:
_LOGGER.warning("{}: failed to do restart call since LightsControl is not running".format(DOMAIN)) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.