seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf tf.less( matched_iou, self._config_dict['background_iou_high_threshold'])) ignored_matches = tf.logical_and( tf.less(matched_iou, 0.0), tf.greater_equal( matched_iou, self._config_dict['background_iou_high_threshold'])) ignored_matches = tf.logical_and( ignored_matches, tf.less( matched_iou, self._config_dict['foreground_iou_threshold'])) background_indicator = tf.logical_or(negative_matches, ignored_matches) # re-assign negatively matched boxes to the background class. matched_gt_boxes = tf.where( tf.tile(tf.expand_dims(background_indicator, -1), [1, 1, 4]), tf.zeros_like(matched_gt_boxes), matched_gt_boxes) matched_gt_classes = tf.where( background_indicator, tf.zeros_like(matched_gt_classes), matched_gt_classes)
tensorflow.logical_or
12,500
import tensorflow as tf # GPU setup os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, device_count={'GPU': gpu}) config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.5 # Placeholders self.sess = tf.Session(config=config) self.s_dim, self.a_dim = env.observation_space.shape, env.action_space.shape[0] self.a_bound = (env.action_space.high - env.action_space.low) / 2 self.actions = tf.placeholder(tf.float32, [None, self.a_dim], 'action') self.state = tf.placeholder(tf.float32, [None, self.s_dim[0]], 'state') self.advantage = tf.placeholder(tf.float32, [None, 1], 'advantage') self.rewards = tf.placeholder(tf.float32, [None, 1], 'rewards') self.keep_prob = tf.placeholder(tf.float32, name='dropout_keep_prob') # Dateset with experiennce replay self.dataset = tf.data.Dataset.from_tensor_slices({'state': self.state, 'actions': self.actions, 'rewards': self.rewards, 'advantage': self.advantage}) self.dataset = self.dataset.batch(self.MINIBATCH, drop_remainder=True)
tensorflow.placeholder
12,501
import tensorflow as tf :return: """ with tf.variable_scope(name): inputdata = tf.transpose(inputdata, [0, 3, 1, 2]) n, c, h, w = inputdata.get_shape().as_list() group_size = min(group_size, c) inputdata = tf.reshape(inputdata, [-1, group_size, c // group_size, h, w]) mean, var = tf.nn.moments(inputdata, [2, 3, 4], keep_dims=True) inputdata = (inputdata - mean) / tf.sqrt(var + esp) # 每个通道的gamma和beta gamma = tf.Variable(tf.constant(1.0, shape=[c]), dtype=tf.float32, name='gamma') beta = tf.Variable(tf.constant(0.0, shape=[c]), dtype=tf.float32, name='beta') gamma = tf.reshape(gamma, [1, c, 1, 1]) beta = tf.reshape(beta, [1, c, 1, 1])
tensorflow.sqrt
12,502
import tensorflow as tf if kh > 255 or kw > 255: return 1.0 elif kh == 3 and kw == 3: return 9.0 * 7.0 / 64.0 elif kh == 5 and kw == 5: return 25.0 * 10.0 / 256.0 elif kh == 6 and kw == 6: return 36.0 * 7.0 / 256.0 elif kh == 7 and kw == 7: return 49.0 * 21.0 / 1024.0 elif kh == 14 and kw == 14: return 196.0 * 21.0 / 4096.0 else: rec = tf.cast(kw * kh, tf.float32) n_max = 7 + tf.math.ceil(tf.math.log(rec) / tf.math.log(2.)) ns = tf.range(0., n_max) ns_pow = tf.pow(2., ns) ks = tf.round(ns_pow / rec) diffs = tf.math.abs(ks / ns_pow - 1 / rec) n = tf.argmin(diffs) k = ks[n] scale = k / tf.pow(2., tf.cast(n, tf.float32)) scale *= rec return scale
tensorflow.cast
12,503
import tensorflow as tf pmm *= tf.cast( tf.pow(-ones, m) * double_factorial(2 * m - 1), dtype=pmm.dtype) return pmm def _evaluate_legendre_polynomial_loop_cond(x, n, l, m, pmm, pmm1): return tf.cast(tf.math.count_nonzero(n <= l), tf.bool) def _evaluate_legendre_polynomial_loop_body(x, n, l, m, pmm, pmm1): n_float = tf.cast(n, dtype=x.dtype) m_float = tf.cast(m, dtype=x.dtype) pmn = (x * (2.0 * n_float - 1.0) * pmm1 - (n_float + m_float - 1) * pmm) / ( n_float - m_float) pmm = tf.where(tf.less_equal(n, l), pmm1, pmm) pmm1 = tf.where(tf.less_equal(n, l), pmn, pmm1) n += 1 return x, n, l, m, pmm, pmm1 def _evaluate_legendre_polynomial_loop(x, m, l, pmm, pmm1): n = m + 2 x, n, l, m, pmm, pmm1 = tf.while_loop(
tensorflow.cast
12,504
import tensorflow as tf # build regularized distance objective dist_loss1 = self._distance_loss(models[1].encode - models[0].encode) dist_loss2 = self._distance_loss(models[1].encode - models[2].encode) # Stitch it all together and train self.loss_reco = tf.add_n(reco_losses) self.loss_pred = pred_loss_0 + pred_loss_2 self.loss_dist = dist_loss1 + dist_loss2 self.losses = [self.loss_reco, self.loss_pred] def _distance_loss(self, distances):
tensorflow.add_n
12,505
import tensorflow as tf normalizer_fn=None, biases_initializer=None, data_format=data_format, weights_initializer=trunc_normal(0.01), scope=scope + '/self_gating/transformer_W') tile_multiples = [1, t, w, h] tile_multiples.insert(index_c, 1) weights = tf.tile(weights, tile_multiples) weights = tf.nn.sigmoid(weights) return tf.multiply(weights, input_tensor) def s3dg_base(inputs, first_temporal_kernel_size=3, temporal_conv_startat='Conv2d_2c_3x3', gating_startat='Conv2d_2c_3x3',
tensorflow.nn.sigmoid
12,506
import tensorflow as tf def scheduled_sampling(hparams, problem_hparams, dp, sharded_logits, losses, sharded_features, transformed_features, model): """Scheduled sampling.""" target_modality = problem_hparams.target_modality def sample(x): """Multinomial sampling from a n-dimensional tensor.""" vocab_size = target_modality.top_dimensionality samples = tf.multinomial(tf.reshape(x, [-1, vocab_size]), 1) reshaped_samples = tf.reshape(samples, common_layers.shape_list(x)[:-1]) return tf.to_int32(reshaped_samples) def mix_gold_sampled(gold_targets, sampled_targets): return tf.where( tf.less( tf.random_uniform(common_layers.shape_list(sampled_targets)), hparams.scheduled_sampling_gold_mixin_prob), gold_targets,
tensorflow.reshape
12,507
from tensorflow.python.ops import state_ops def _apply_sparse_shared(self, grad, var, indices, scatter_add): lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) mu_t = math_ops.cast(self._mu_t, var.dtype.base_dtype) vstar = self.get_slot(var, "vstar") gold = self.get_slot(var, "gold") # glod is not sparse v_diff = state_ops.assign(vstar, mu_t * (var - vstar), use_locking=self._use_locking) with ops.control_dependencies([v_diff]): # run v_diff operation before scatter_add scaled_grad = scatter_add(vstar, indices, grad) var_update = state_ops.assign_sub(var, lr_t * (scaled_grad + gold)) return control_flow_ops.group(*[var_update, ])
tensorflow.python.ops.state_ops.assign
12,508
import tensorflow as tf # loss = None with tf.name_scope(name, "click_loglikelihood"): ob_prob=tf.nn.softmax(propensity) rel_prob=tf.nn.softmax(train_output) click_prob=ob_prob*rel_prob click_prob_norm=click_prob/tf.reduce_sum(click_prob,axis=1,keep_dims=True) label_dis = labels/ tf.reduce_sum(labels, 1, keep_dims=True)
tensorflow.nn.softmax
12,509
import tensorflow as tf entropy = - tf.reduce_sum(prob_tf * log_prob_tf) bs = tf.to_float(tf.shape(pi.x)[0]) self.loss = pi_loss + 0.5 * vf_loss - entropy * 0.01 # 20 represents the number of "local steps": the number of timesteps # we run the policy before we update the parameters. # The larger local steps is, the lower is the variance in our policy gradients estimate # on the one hand; but on the other hand, we get less frequent parameter updates, which # slows down learning. In this code, we found that making local steps be much # smaller than 20 makes the algorithm more difficult to tune and to get to work. self.runner = RunnerThread(env, pi, 20) grads = tf.gradients(self.loss, pi.var_list) tf.summary.scalar("model/policy_loss", pi_loss / bs) tf.summary.scalar("model/value_loss", vf_loss / bs) tf.summary.scalar("model/entropy", entropy / bs) tf.summary.image("model/state", pi.x) tf.summary.scalar("model/grad_global_norm", tf.global_norm(grads)) tf.summary.scalar("model/var_global_norm", tf.global_norm(pi.var_list)) self.summary_op = tf.summary.merge_all() grads, _ = tf.clip_by_global_norm(grads, 40.0) # copy weights from the parameter server to the local model self.sync = tf.group(*[v1.assign(v2) for v1, v2 in zip(pi.var_list, self.network.var_list)]) grads_and_vars = list(zip(grads, self.network.var_list)) self.inc_step = self.global_step.assign_add(tf.shape(pi.x)[0])
tensorflow.summary.scalar
12,510
import tensorflow as tf self.prev_g = tf.placeholder(tf.float32, (None, None, self.g_dim)) self.ri = tf.placeholder(tf.float32, (None,)) self.s_diff = tf.placeholder(tf.float32, (None, self.g_dim)) def build_perception(self): self._obs = tf.expand_dims(self.obs, -1) # ! self._obs = tf.expand_dims(self._obs, -1) # ! conv1 = tf.layers.conv2d(inputs=self._obs, filters=16, kernel_size=[2, 1], # ! kernel_size = [8,8] activation=tf.nn.elu, strides=1) # ! strides = 4
tensorflow.expand_dims
12,511
import tensorflow as tf resize_b_x = tf.compat.v1.image.resize_bilinear(squeeze_b_x, [y_size_new, z_size_new], align_corners=align) resume_b_x = tf.reshape(resize_b_x, [-1, x_size, y_size_new, z_size_new, c_size], name='resume_bx') # Reorient reoriented = tf.transpose(resume_b_x, [0, 3, 2, 1, 4]) # squeeze and 2d resize squeeze_b_z = tf.reshape(reoriented, [-1, y_size_new, x_size, c_size], name='reshape_bz')
tensorflow.transpose
12,512
import tensorflow as tf min_iou_thresh=0.5, is_class_agnostic=True) nms_masks_expected1 = tf.stack([mask0, mask5, mask4]) nms_scores_expected1 = tf.constant([1.0, 0.8, 0.7], dtype=tf.float32) nms_classes_expected1 = tf.constant([1, 2, 2], dtype=tf.int32) (nms_masks2, nms_scores2, nms_classes2) = isu.instance_non_maximum_suppression_2d_scores(
tensorflow.constant
12,513
from tensorflow.python.ops import check_ops def _log_prob(self, x): x = control_flow_ops.with_dependencies([check_ops.assert_positive(x)] if self.validate_args else [], x)
tensorflow.python.ops.check_ops.assert_positive
12,514
import tensorflow as tf self.n_output = gan_kwargs.get('n_out') #(1024, 3) self.flags = gan_kwargs.get('flags') self.batch_size = gan_kwargs.get('batch_size_value', 32) batch = tf.Variable(0) self.noise_dim = gan_kwargs.get('noise_dim') self.init_lr = gan_kwargs.get('init_lr')
tensorflow.Variable
12,515
import tensorflow as tf from tensor2tensor.data_generators import algorithmic from tensor2tensor.data_generators import problem as problem_module from tensor2tensor.data_generators import problem_hparams from tensor2tensor.layers import modalities from tensor2tensor.utils import test_utils import tensorflow as tf tf.compat.v1.enable_eager_execution() def assert_tensors_equal(sess, t1, t2, n): """Compute tensors `n` times and ensure that they are equal.""" for _ in range(n):
tensorflow.compat.v1.enable_eager_execution
12,516
import tensorflow as tf 'The path to a checkpoint from which to fine-tune.') tf.app.flags.DEFINE_string(
tensorflow.app.flags.DEFINE_string
12,517
import tensorflow as tf conv2 = tf.layers.conv2d(pool1, filters=64*amp_factor, kernel_size=[5, 1], data_format='channels_last', padding= "same", strides=(2, 1), activation=tf.nn.relu) pool2 = conv2 conv3 = tf.layers.conv2d(pool2, filters=128*amp_factor, kernel_size=[5, 1], data_format='channels_last', padding= "same", strides=(2, 1), activation=tf.nn.relu) pool3 = conv3
tensorflow.layers.conv2d
12,518
import tensorflow as tf # hardware related configuration tf.app.flags.DEFINE_integer( 'num_readers', 16, 'The number of parallel readers that read data from the dataset.')
tensorflow.app.flags.DEFINE_integer
12,519
from tensorflow.python.framework import ops input_shape.assert_is_fully_defined() filter_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[1]) filter_shape.assert_is_fully_defined() output_shape = graph_util.tensor_shape_from_node_def_name(graph, node.name) output_shape.assert_is_fully_defined() filter_height = int(filter_shape[0]) filter_width = int(filter_shape[1]) filter_in_depth = int(filter_shape[2]) filter_out_depth = int(filter_shape[3]) return ops.OpStats("weight_parameters", (filter_height * filter_width * filter_in_depth * filter_out_depth)) @ops.RegisterStatistics("BiasAdd", "flops") def _calc_bias_add_flops(graph, node): """Calculates the computing needed for BiasAdd.""" input_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[0]) input_shape.assert_is_fully_defined() input_count = np.prod(input_shape.as_list()) return ops.OpStats("flops", input_count) @ops.RegisterStatistics("BiasAdd", "weight_parameters") def _calc_bias_add_weight_params(graph, node): """Calculates the on-disk weight parameters for BiasAdd.""" bias_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[1]) bias_shape.assert_is_fully_defined()
tensorflow.python.framework.ops.RegisterStatistics
12,520
import tensorflow as tf if self.temperature is not None: logits /= self.temperature if self.tanh_constant is not None: op_tanh = self.tanh_constant / self.op_tanh_reduce logits = op_tanh * tf.tanh(logits) if use_bias: logits += self.b_soft_no_learn op_id = tf.multinomial(logits, 1) op_id = tf.to_int32(op_id) op_id = tf.reshape(op_id, [1]) arc_seq = arc_seq.write(start_id + 2 * i + 1, op_id) curr_log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=op_id) log_prob += curr_log_prob curr_ent = tf.stop_gradient(tf.nn.softmax_cross_entropy_with_logits( logits=logits, labels=tf.nn.softmax(logits))) entropy += curr_ent inputs = tf.nn.embedding_lookup(self.w_emb, op_id) next_c, next_h = stack_lstm(inputs, prev_c, prev_h, self.w_lstm) anchors = anchors.write(layer_id, next_h[-1]) anchors_w_1 = anchors_w_1.write(layer_id, tf.matmul(next_h[-1], self.w_attn_1))
tensorflow.nn.sparse_softmax_cross_entropy_with_logits
12,521
import tensorflow as tf return out def d_layer(layer_input,filters,f_size=4,stride=2,norm=True,name='d_layer'): """Discriminator layer""" with tf.variable_scope(name): if reuse: tf.get_variable_scope().reuse_variables() else: assert tf.get_variable_scope().reuse is False
tensorflow.variable_scope
12,522
import tensorflow as tf # In this notebook we demonstrate Trieste's ability to perform asynchronous Bayesian optimisation, as is suitable for scenarios where the objective function can be run for several points in parallel but where observations might return back at different times. To avoid wasting resources waiting for the evaluation of the whole batch, we immediately request the next point asynchronously, taking into account points that are still being evaluated. Besides saving resources, asynchronous approach also can potentially [improve sample efficiency](https://arxiv.org/abs/1901.10452) in comparison with synchronous batch strategies, although this is highly dependent on the use case. # # To contrast this approach with regular [batch optimization](batch_optimization.ipynb), this notebook also shows how to run parallel synchronous batch approach. # %% # silence TF warnings and info messages, only print errors # https://stackoverflow.com/questions/35911252/disable-tensorflow-debugging-information import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" import tensorflow as tf tf.get_logger().setLevel("ERROR") import numpy as np import time import timeit # %% [markdown] # First, let's define a simple objective that will emulate evaluations taking variable time. We will be using a classic Bayesian optimisation benchmark function [Branin](https://www.sfu.ca/~ssurjano/branin.html) with a sleep call inserted in the middle of the calculation to emulate delay. Our sleep delay is a scaled sum of all input values to make sure delays are uneven. # %% from trieste.objectives import scaled_branin
tensorflow.get_logger
12,523
import tensorflow as tf wd=weight_decay) outputs = tf.nn.conv1d(inputs, kernel,
tensorflow.nn.conv1d
12,524
import tensorflow as tf if self.maxnorm is not None: # Ensure maxnorm constraints are initially satisfied head_init = dense_maxnorm(head_init, self.maxnorm) rel_init = dense_maxnorm(rel_init, self.maxnorm) tail_init = dense_maxnorm(tail_init, self.maxnorm) self.head_embedding_vars = tf.Variable(head_init) self.rel_embedding_vars = tf.Variable(rel_init) self.tail_embedding_vars = tf.Variable(tail_init) # Embedding layer for each (head, rel, tail) triple being fed in as input head_embed = tf.nn.embedding_lookup(self.head_embedding_vars, self.head_input) rel_embed = tf.nn.embedding_lookup(self.rel_embedding_vars, self.rel_input) tail_embed = tf.nn.embedding_lookup(self.tail_embedding_vars, self.tail_input) # Model output raw_output = tf.reduce_sum(tf.mul(tf.mul(head_embed, rel_embed), tail_embed), 1)
tensorflow.Variable
12,525
import tensorflow as tf # Assign to yet another shape data2 = tf.fill([10, 10], 1) a2 = tf.assign(p, data2, validate_shape=False) a2.op.run() self.assertAllEqual(p.eval(), data2.eval()) def testInitRequiredAssignAdd(self): with self.test_session(): p = tf.Variable(tf.fill([1024, 1024], 1), tf.int32) a = tf.assign_add(p, tf.fill([1024, 1024], 0)) with self.assertRaisesOpError("use uninitialized"): a.op.run() def testInitRequiredAssignSub(self): with self.test_session(): p = tf.Variable(tf.fill([1024, 1024], 1),
tensorflow.fill
12,526
import tensorflow as tf for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = _ln(tf.matmul(x, wx), gx, bx) + _ln(tf.matmul(h, wh), gh, bh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(_ln(c, gc, bc)) xs[idx] = h s = tf.concat(axis=1, values=[c, h])
tensorflow.nn.sigmoid
12,527
import tensorflow as tf def dann_loss(source_samples, target_samples, weight, name='dann_loss'): """Adds the domain adversarial (DANN) loss. Args: source_samples: a tensor of shape [num_samples, num_features]. target_samples: a tensor of shape [num_samples, num_features]. weight: the weight of the loss. scope: optional name scope for summary tags. Returns: a scalar tensor representing the correlation loss value. """ with tf.variable_scope(name): batch_size = tf.shape(source_samples)[0] samples = tf.concat(values=[source_samples, target_samples], axis=0) samples = flatten(samples) domain_selection_mask = tf.concat( values=[tf.zeros((batch_size, 1)), tf.ones((batch_size, 1))], axis=0) grl = gradient_reverse(samples) grl = tf.reshape(grl, (-1, samples.get_shape().as_list()[1])) grl = fc(grl, 100, True, None, activation=relu, name='fc1') logits = fc(grl, 1, True, None, activation=None, name='fc2')
tensorflow.variable_scope
12,528
import tensorflow as tf with tf.device('/cpu:0'), tf.name_scope("embedding_tags"): W_tags = tf.get_variable("embed_W_tags", [tags_vocab_size, embedding_size], initializer=initializer) embedded_tags = tf.nn.embedding_lookup(W_tags, self.input_tags) embedded_tags_expanded = tf.expand_dims(embedded_tags, -1) with tf.device('/cpu:0'), tf.name_scope("embedding_deps"): W_deps = tf.get_variable("embed_W_deps", [deps_vocab_size, embedding_size], initializer=initializer) embedded_deps = tf.nn.embedding_lookup(W_deps, self.input_deps) embedded_deps_expanded = tf.expand_dims(embedded_deps, -1) with tf.device('/cpu:0'), tf.name_scope("embedding_head"): W_head = tf.get_variable("embed_W_head", [num_quantized_chars, embedding_size], initializer=initializer) embedded_head = tf.nn.embedding_lookup(W_head, self.input_head) embedded_head_expanded = tf.expand_dims(embedded_head, -1) cnn_inputs = tf.concat( [embedded_text_expand, embedded_tags_expanded, embedded_deps_expanded, embedded_head_expanded], -1) print("-" * 20) print("Embedded Lookup:", cnn_inputs.get_shape()) print("-" * 20) self.layers = [] # Temp(First) Conv Layer with tf.variable_scope("temp_conv") as scope:
tensorflow.expand_dims
12,529
import tensorflow.contrib.layers as layers with tf.variable_scope(scope, reuse=reuse): out = img_in with tf.variable_scope("convnet"): # original architecture out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu) out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu) out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu) out = layers.flatten(out)
tensorflow.contrib.layers.convolution2d
12,530
import tensorflow as tf self.block4_1 = self.res_block_3_layers(self.pool4, [512, 512, 2048], "res5a", True)# 7*7 self.block4_2 = self.res_block_3_layers(self.block4_1, [512, 512, 2048], "res5b")# 7*7 self.block4_3 = self.res_block_3_layers(self.block4_2, [512, 512, 2048], "res5c")# 7*7 # upsample layer begins self.deconv_1 = self.deconv_bn_relu(self.block4_3, name = 'deconv_1',kernel_size = 3, output_channels = 1024, initializer = tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 14*14 self.deconv_2 = self.deconv_bn_relu(self.deconv_1, name = 'deconv_2',kernel_size = 3, output_channels = 512, initializer = tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 28*28 self.deconv_3 = self.deconv_bn_relu(self.deconv_2, name = 'deconv_3',kernel_size = 3, output_channels = 256, initializer = tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 56*56
tensorflow.contrib.layers.variance_scaling_initializer
12,531
import tensorflow as tf return weighted_average, weights def local_attention(state, hidden_states, encoder, encoder_input_length, pos=None, scope=None, context=None, **kwargs): batch_size = tf.shape(state)[0] attn_length = tf.shape(hidden_states)[1] if context is not None and encoder.use_context: state = tf.concat([state, context], axis=1) state_size = state.get_shape()[1].value with tf.variable_scope(scope or 'attention_{}'.format(encoder.name)): encoder_input_length = tf.to_float(tf.expand_dims(encoder_input_length, axis=1)) if pos is not None: pos = tf.reshape(pos, [-1, 1]) pos = tf.minimum(pos, encoder_input_length - 1) if pos is not None and encoder.attn_window_size > 0: # `pred_edits` scenario, where we know the aligned pos # when the windows size is non-zero, we concatenate consecutive encoder states # and map it to the right attention vector size. weights = tf.to_float(tf.one_hot(tf.to_int32(tf.squeeze(pos, axis=1)), depth=attn_length)) weighted_average = []
tensorflow.expand_dims
12,532
import tensorflow as tf w0 = self.w0.read_value() b0 = self.b0.read_value() w1 = self.w1.read_value() b1 = self.b1.read_value() params = (w0, b0, w1, b1) layer0 = tf.matmul(x, w0) + b0 layer1 = tf.nn.sigmoid(layer0) layer2 = tf.matmul(layer1, w1) + b1 predictions = layer2 loss = tf.reduce_mean(tf.losses.sparse_softmax_cross_entropy(logits=predictions, labels=y)) grads = tf.gradients(ys=loss, xs=params) return predictions, loss, grads def build_training_model(self, x, y): """ This method will be called once by all data owners to create a local gradient computation on their machine. """ _, _, grads = self._build_model(x, y) return grads
tensorflow.losses.sparse_softmax_cross_entropy
12,533
from tensorflow.python.ops import nn `false_positives` variables appropriately, and whose value matches `precision`. Raises: ValueError: If `ignore_mask` is not `None` and its shape doesn't match `predictions`, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ default_name = _at_k_name('precision', k, class_id=class_id) with ops.name_scope(name, default_name, (predictions, labels, ignore_mask, weights)) as scope: _, top_k_idx = nn.top_k(predictions, k) return _streaming_sparse_precision_at_k( top_k_idx=top_k_idx, labels=labels, k=k, class_id=class_id, ignore_mask=ignore_mask, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=scope)
tensorflow.python.ops.nn.top_k
12,534
import tensorflow as tf with variable_scope.variable_scope("AttnOutputProjection"): output_t = linear([cell_output] + [context_t], options.gen_hidden_size, True) with tf.variable_scope('output_projection'): w = tf.get_variable('w', [options.gen_hidden_size, vocab.vocab_size+1], dtype=tf.float32) b = tf.get_variable('b', [vocab.vocab_size +1], dtype=tf.float32) # vocab_scores is the vocabulary distribution before applying softmax. # Each entry on the list corresponds to one decoder step vocab_score_t = tf.nn.xw_plus_b(output_t, w, b) # apply the linear layer vocab_score_t = tf.nn.softmax(vocab_score_t) # For pointer-generator model, calc final distribution from copy distribution and vocabulary distribution if options.pointer_gen: vocab_score_t = self.merge_prob_dist_for_one_step(vocab_score_t, attn_dist, p_gen, passage_word_idx, passage_mask) vocab_score_t = _clip_and_normalize(vocab_score_t, 1e-6) return (state_t, context_t, coverage_t, attn_dist, p_gen, vocab_score_t)
tensorflow.nn.softmax
12,535
import tensorflow as tf 'The size of the input image for the model to use.') tf.app.flags.DEFINE_integer( 'heatmap_size', 96, 'The size of the output heatmap of the model.') tf.app.flags.DEFINE_string( 'backbone', 'seresnext50',#or seresnext50 seresnet50 'The backbone network to use for feature pyramid.') tf.app.flags.DEFINE_float( 'heatmap_sigma', 1., 'The sigma of Gaussian which generate the target heatmap.') tf.app.flags.DEFINE_float( 'bbox_border', 25., 'The nearest distance of the crop border to al keypoints.') tf.app.flags.DEFINE_integer( 'train_epochs', 50, 'The number of epochs to use for training.') tf.app.flags.DEFINE_integer( 'epochs_per_eval', 20, 'The number of training epochs to run between evaluations.') tf.app.flags.DEFINE_integer( 'batch_size', 10, 'Batch size for training and evaluation.') tf.app.flags.DEFINE_integer( 'xt_batch_size', 10, 'Batch size for training and evaluation.') tf.app.flags.DEFINE_boolean(
tensorflow.app.flags.DEFINE_integer
12,536
import tensorflow as tf def testGlobalPoolUnknownImageShape(self): tf.reset_default_graph() batch_size = 1 height, width = 250, 300 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes, global_pool=True) self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Conv2d_13_pointwise']
tensorflow.placeholder
12,537
from tensorflow.python.framework import ops init: Tensor to assign to v, Or an object convertible to Tensor e.g. nparray, Or an Initializer that generates a tensor given the shape and type of v. An "Initializer" is a callable that returns a tensor that "v" should be set to. It will be called as init(shape, dtype). name: Optional name for the op. Returns: The operation that initializes v. """ with ops.op_scope([v, init], None, v.op.name + "/"): with ops.name_scope(name) as scope: with ops.device(v.device or ops.get_default_graph().get_default_device()): if callable(init): assert v.get_shape().is_fully_defined(), "Variable shape unknown." # TODO(mrry): Convert to v.shape when the property and # accessor are reconciled (and all initializers support # tf.TensorShape objects). value = init(v.get_shape().as_list(), v.dtype.base_dtype) value = ops.convert_to_tensor(value, name="value")
tensorflow.python.framework.ops.op_scope
12,538
import tensorflow as tf identity = (registry.Modalities.GENERIC, None) if self.has_inputs: p.input_modality["inputs_segmentation"] = identity p.input_modality["inputs_position"] = identity p.input_modality["targets_segmentation"] = identity p.input_modality["targets_position"] = identity def example_reading_spec(self): data_fields = {"targets": tf.VarLenFeature(tf.int64)} if self.has_inputs: data_fields["inputs"] = tf.VarLenFeature(tf.int64) if self.packed_length: if self.has_inputs: data_fields["inputs_segmentation"] = tf.VarLenFeature(tf.int64) data_fields["inputs_position"] = tf.VarLenFeature(tf.int64)
tensorflow.VarLenFeature
12,539
import tensorflow as tf features_proj = tf.matmul(features_flat, w) features_proj = tf.reshape(features_proj, [-1, self.L, self.D]) return features_proj def _attention_layer(self, features, features_proj, h, reuse=False): with tf.variable_scope('attention_layer', reuse=reuse): w = tf.get_variable('w', [self.H, self.D], initializer=self.weight_initializer) b = tf.get_variable('b', [self.D], initializer=self.const_initializer) w_att = tf.get_variable('w_att', [self.D, 1], initializer=self.weight_initializer) h_att = tf.nn.relu(features_proj + tf.expand_dims(tf.matmul(h, w), 1) + b) # (N, L, D) out_att = tf.reshape(tf.matmul(tf.reshape(h_att, [-1, self.D]), w_att), [-1, self.L]) # (N, L) alpha = tf.nn.softmax(out_att) context = tf.reduce_sum(features * tf.expand_dims(alpha, 2), 1, name='context') #(N, D) return context, alpha
tensorflow.get_variable
12,540
import tensorflow as tf outer = tf.matmul(tf.expand_dims(tf.nn.softmax(self.logits1), axis=2), tf.expand_dims(tf.nn.softmax(self.logits2), axis=1)) outer = tf.matrix_band_part(outer, 0, self.max_a_len) self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1) self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1) def _compute_loss(self): def focal_loss(logits, labels, weights=None, alpha=0.25, gamma=2): logits = tf.nn.sigmoid(logits) zeros = array_ops.zeros_like(logits, dtype=logits.dtype) pos_p_sub = array_ops.where(labels > zeros, labels - logits, zeros) neg_p_sub = array_ops.where(labels > zeros, zeros, logits) cross_ent = - alpha * (pos_p_sub ** gamma) * tf.log(tf.clip_by_value(logits, 1e-8, 1.0)) \ - (1 - alpha) * (neg_p_sub ** gamma) * tf.log(tf.clip_by_value(1.0 - logits, 1e-8, 1.0)) return tf.reduce_sum(cross_ent, 1) start_label = tf.one_hot(self.start_label, tf.shape(self.logits1)[1], axis=1) end_label = tf.one_hot(self.end_label, tf.shape(self.logits2)[1], axis=1) if self.config.loss_type == 'cross_entropy': start_loss = tf.nn.softmax_cross_entropy_with_logits( logits=self.logits1, labels=start_label) end_loss = tf.nn.softmax_cross_entropy_with_logits( logits=self.logits2, labels=end_label) self.loss = tf.reduce_mean(start_loss + end_loss) else: start_loss = focal_loss(tf.nn.softmax(self.logits1, -1), start_label)
tensorflow.clip_by_value
12,541
import tensorflow as tf 'image/width': tf.io.FixedLenFeature((), tf.int64), 'image/object/bbox/xmin': tf.io.VarLenFeature(tf.float32), 'image/object/bbox/xmax': tf.io.VarLenFeature(tf.float32), 'image/object/bbox/ymin': tf.io.VarLenFeature(tf.float32), 'image/object/bbox/ymax': tf.io.VarLenFeature(tf.float32), 'image/object/class/label': tf.io.VarLenFeature(tf.int64), 'image/object/area': tf.io.VarLenFeature(tf.float32), 'image/object/is_crowd': tf.io.VarLenFeature(tf.int64), } if include_mask: self._keys_to_features.update({ 'image/object/mask': tf.io.VarLenFeature(tf.string), }) def _decode_image(self, parsed_tensors): """Decodes the image and set its static shape.""" image = tf.io.decode_image(parsed_tensors['image/encoded'], channels=3)
tensorflow.io.VarLenFeature
12,542
import tensorflow as tf # TODO: tf.ones acts as an overridable placeholder but this is still awkward target_weights_nunroll = tf.ones([batch_size, rnn_nunroll], dtype)
tensorflow.ones
12,543
import tensorflow as tf qh_emb = conv(qh_emb, d, bias=True, activation=tf.nn.relu, kernel_size=5, name="char_conv", reuse=True) ch_emb = tf.reduce_max(ch_emb, axis=1) qh_emb = tf.reduce_max(qh_emb, axis=1)
tensorflow.reduce_max
12,544
import tensorflow as tf class ValueEstimator_MountainCarContinuous(): def __init__(self, learning_rate=0.1, par_idx=0,scope="value_estimator"): w_init = tf.random_normal_initializer(0.,.1); with tf.variable_scope(scope+"_"+str(par_idx)):
tensorflow.random_normal_initializer
12,545
import tensorflow as tf decoder_inputs: [batch_size, max_dec_steps]. answer_batch: [batch_size, max_dec_steps] ''' options = self.options input_shape = tf.shape(encoder_states) batch_size = input_shape[0] passage_len = input_shape[1] # map decoder inputs to word embeddings
tensorflow.shape
12,546
import tensorflow as tf logits, label_ids): """Computes the loss and accuracy of the model.""" sentence_log_probs = tf.reshape( logits, [-1, logits.shape[-1]]) sentence_predictions = tf.argmax( logits, axis=-1, output_type=tf.int32) sentence_labels = tf.reshape(label_ids, [-1]) sentence_accuracy = tf.metrics.accuracy( labels=label_ids, predictions=sentence_predictions) sentence_mean_loss = tf.metrics.mean( values=per_example_loss) sentence_f = tf_metrics.f1(label_ids, sentence_predictions,
tensorflow.reshape
12,547
import tensorflow as tf rotations_y = tf.concat([tf_utils.euler_from_rotation_matrix( tf.reshape(detections['rotations_3d'][i], [3, 3]), 1) for i in range(num_boxes)], axis=0) rotations_y = tf.reshape(rotations_y, [-1, 1]) predicted_boxes = tf.concat([detections['translations_3d'], detections['sizes_3d'], rotations_y], axis=1)
tensorflow.concat
12,548
from tensorflow.contrib.eager.python import tfe default=0.5, help="Keep probability for dropout between layers.") parser.add_argument( "--learning_rate", type=float, default=0.01, help="Learning rate to be used during training.") parser.add_argument( "--no_gpu", action="store_true", default=False, help="Disables GPU usage even if a GPU is available.") FLAGS, unparsed = parser.parse_known_args() tfe.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow.contrib.eager.python.tfe.run
12,549
import tensorflow as tf var_names.append(key) tf.logging.info('Warm-starting tensors: %s', sorted(var_names)) vars_to_warm_start = var_names warm_start_settings = tf.estimator.WarmStartSettings( ckpt_to_initialize_from=checkpoint_path, vars_to_warm_start=vars_to_warm_start) else: warm_start_settings = None l2tl_classifier = tf.estimator.Estimator( train_model_fn, config=config, warm_start_from=warm_start_settings) def make_input_dataset(): """Return input dataset.""" def _merge_datasets(train_batch, finetune_batch, target_batch): """Merge different splits.""" train_features, train_labels = train_batch['image'], train_batch['label'] finetune_features, finetune_labels = finetune_batch[ 'image'], finetune_batch['label']
tensorflow.estimator.Estimator
12,550
import tensorflow as tf ''' image += cfg.FLAGS2["pixel_means"] # bgr to rgb (opencv uses bgr) channels = tf.unstack(image, axis=-1) image = tf.stack([channels[2], channels[1], channels[0]], axis=-1) # dims for normalization
tensorflow.unstack
12,551
import tensorflow as tf return None, self._loss, sampled_words def calculate_encoder_features(self, encoder_states, encoder_dim): options = self.options input_shape = tf.shape(encoder_states) batch_size = input_shape[0] passage_len = input_shape[1]
tensorflow.shape
12,552
import tensorflow as tf print("Preprocessing and Initializing...") # Compute number of nodes num_nodes = adj.shape[0] # If features are not used, replace feature matrix by identity matrix if not FLAGS.features: features = sp.identity(adj.shape[0]) # Preprocessing on node features features = sparse_to_tuple(features) num_features = features[2][1] features_nonzero = features[1].shape[0] # Define placeholders placeholders = { 'features': tf.sparse_placeholder(tf.float32), 'adj': tf.sparse_placeholder(tf.float32), 'adj_orig': tf.sparse_placeholder(tf.float32), 'dropout': tf.placeholder_with_default(0., shape = ()) } # Create model model = None if model_name == 'gcn_ae': # Standard Graph Autoencoder model = GCNModelAE(placeholders, num_features, features_nonzero) elif model_name == 'gcn_vae': # Standard Graph Variational Autoencoder
tensorflow.sparse_placeholder
12,553
import tensorflow as tf sigma = tf.clip_by_value(sigma, 0.0, 1.0) norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
tensorflow.distributions.Normal
12,554
import tensorflow as tf vs[0].graph.colocate_with(vs[0]): counter = tf.Variable( 0, name="counter", trainable=False, dtype=tf.int32) with tf.name_scope('AccumGradOptimizer'): ops = [] for s, gv in zip(slots, grads_and_vars): g, v = gv
tensorflow.name_scope
12,555
import tensorflow as tf target_q_ph = q_func(obs_tp1_float, self.num_actions, 'target_q_func', reuse = tf.AUTO_REUSE) if double_q: target_index = tf.math.argmax(q_func(obs_tp1_float, self.num_actions, 'q_func', reuse = tf.AUTO_REUSE), axis = 1, output_type = tf.int32) target_v_ph = tf.gather_nd(target_q_ph, tf.stack([tf.range(tf.shape(target_q_ph)[0]), target_index], axis=1)) else: target_v_ph = tf.math.reduce_max(target_q_ph, axis = 1) backup_ph = self.rew_t_ph + (1 - self.done_mask_ph) * (gamma * target_v_ph) self.total_error = tf.math.reduce_mean(huber_loss(q_func_ph - backup_ph)) q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='q_func') target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_q_func') # construct optimization op (with gradient clipping) self.learning_rate = tf.placeholder(tf.float32, (), name="learning_rate") optimizer = self.optimizer_spec.constructor(learning_rate=self.learning_rate, **self.optimizer_spec.kwargs) self.train_fn = minimize_and_clip(optimizer, self.total_error, var_list=q_func_vars, clip_val=grad_norm_clipping) # update_target_fn will be called periodically to copy Q network to target Q network update_target_fn = [] for var, var_target in zip(sorted(q_func_vars, key=lambda v: v.name), sorted(target_q_func_vars, key=lambda v: v.name)):
tensorflow.get_collection
12,556
import tensorflow as tf shape=[hidden_size, num_attention_heads * head_size], initializer=initializer) w = tf.reshape(w, [hidden_size, num_attention_heads, head_size]) b = tf.get_variable( name="bias", shape=[num_attention_heads * head_size],
tensorflow.get_variable
12,557
import tensorflow as tf ''' Output is of shape (in_w // 2, in_h // 2, out_ch) ''' assert in_w % 2 == 0 and in_h % 2 == 0, 'Width & height ({} & {}) must both be even!'.format(in_w, in_h) with tf.variable_scope('fac_reduc'): # Split area into 2 halves half_1 = tf.nn.avg_pool(X, ksize=(1, 1, 1, 1), strides=(1, 2, 2, 1), padding='VALID') shifted_X = tf.pad(X, ((0, 0), (0, 1), (0, 1), (0, 0)))[:, 1:, 1:, :] half_2 = tf.nn.avg_pool(shifted_X, ksize=(1, 1, 1, 1), strides=(1, 2, 2, 1), padding='VALID') # Apply 1 x 1 convolution to each half separately W_half_1 = self._make_var('W_half_1', (1, 1, in_ch, out_ch >> 1)) X_half_1 = tf.nn.conv2d(half_1, W_half_1, (1, 1, 1, 1), padding='VALID')
tensorflow.nn.avg_pool
12,558
import tensorflow as tf def build_anet(self, state_in, name, reuse=False, batch_size=64): reg = None with tf.variable_scope(name, reuse=reuse): layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg) lstm_a = tf.nn.rnn_cell.LSTMCell(num_units=256)
tensorflow.layers.dense
12,559
import tensorflow as tf epsilon=hparams.vq_epsilon, ema=hparams.ema, means=means) inputs = None batch_size = hparams.batch_size targets = tf.random_uniform([batch_size, hparams.img_len, hparams.img_len, hparams.hidden_size], minval=-1., maxval=1.) target_space_id = None
tensorflow.random_uniform
12,560
import tensorflow as tf tf.greater_equal(target_global_step, FLAGS.first_pretrain_steps), tf.float32) rl_learning_rate = FLAGS.rl_learning_rate * enable_rl_optimizer rl_learning_rate = tf.train.piecewise_constant( target_global_step, [800,], [rl_learning_rate, rl_learning_rate * 0.1]) optimizer = tf.train.AdamOptimizer(rl_learning_rate) target_train_op = optimizer.minimize( rl_empirical_loss, target_global_step, var_list=tf.trainable_variables(rl_scope.name)) out_metric = { 'rl_empirical_loss': rl_empirical_loss, 'rl_entropy_loss': rl_entropy_loss, 'rl_reward': rl_reward, 'rl_step_baseline': rl_step_baseline, 'rl_baseline': rl_baseline, 'rl_advantage': rl_advantage, 'log_prob': log_prob, }
tensorflow.trainable_variables
12,561
import tensorflow as tf NUMBER_OF_CLASSES = 2 def get_input_function(): """A function to get test inputs. Returns an image with one box.""" image = tf.random_uniform([32, 32, 3], dtype=tf.float32) key = tf.constant('image_000000') class_label = tf.random_uniform( [1], minval=0, maxval=NUMBER_OF_CLASSES, dtype=tf.int32) box_label = tf.random_uniform( [1, 4], minval=0.4, maxval=0.6, dtype=tf.float32) multiclass_scores = tf.random_uniform( [1, NUMBER_OF_CLASSES], minval=0.4, maxval=0.6, dtype=tf.float32) return { fields.InputDataFields.image: image, fields.InputDataFields.key: key, fields.InputDataFields.groundtruth_classes: class_label, fields.InputDataFields.groundtruth_boxes: box_label, fields.InputDataFields.multiclass_scores: multiclass_scores }
tensorflow.random_uniform
12,562
import tensorflow as tf # Load IRK weights tmp = np.float32(np.loadtxt('../../Utilities/IRK_weights/Butcher_IRK%d.txt' % (q), ndmin = 2)) weights = np.reshape(tmp[0:q**2+q], (q+1,q)) self.IRK_alpha = weights[0:-1,:] self.IRK_beta = weights[-1:,:] self.IRK_times = tmp[q**2+q:] # tf placeholders and graph self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) self.x0_tf = tf.placeholder(tf.float32, shape=(None, self.x0.shape[1])) self.x1_tf = tf.placeholder(tf.float32, shape=(None, self.x1.shape[1])) self.u0_tf = tf.placeholder(tf.float32, shape=(None, self.u0.shape[1])) self.u1_tf = tf.placeholder(tf.float32, shape=(None, self.u1.shape[1])) self.dummy_x0_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients self.dummy_x1_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients self.U0_pred = self.net_U0(self.x0_tf) # N0 x q self.U1_pred = self.net_U1(self.x1_tf) # N1 x q self.loss = tf.reduce_sum(tf.square(self.u0_tf - self.U0_pred)) + \
tensorflow.placeholder
12,563
import tensorflow as tf if save_interval and checkpoint_path and i != 0 and i % save_interval == 0: self.save(checkpoint_path) if 'validation' in self.datasets and i % validation_interval == 0: metrics = self.evaluate('validation', mute=True) tf.logging.info( 'Iter {:4d}: loss {:.4f}'.format(i, loss) + ''.join([', {} {:.4f}'.format(m, metrics[m]) for m in metrics])) if output_dir is not None: train_writer.add_summary(summaries, i) metrics_summaries = tf.Summary(value=[ tf.Summary.Value(tag=m, simple_value=v) for m, v in metrics.items()]) train_writer.add_summary(metrics_summaries, i) tf.logging.info('Training finished') def predict(self, data, keys='*', batch=False): assert set(data.keys()) >= set(self.data_shape.keys()) if isinstance(keys, str): if keys == '*': op = self.pred_out # just gather all outputs else:
tensorflow.Summary.Value
12,564
import tensorflow as tf for key, value in zip(act_values_dict.keys(), act_values): act_values_dict[key] += value summary = tf.Summary() current_global_step = sess.run(global_step)
tensorflow.Summary
12,565
import tensorflow as tf """ To run: "python -m saliency.integrated_gradients_test" from the PAIR-code/saliency directory. """ def testIntegratedGradientsGetMask(self): with tf.Graph().as_default() as graph: x = tf.placeholder(shape=[None, 3], dtype=tf.float32) y = 5 * x[:, 0] + x[:, 0] * x[:, 1] + tf.sin(x[:, 2]) with tf.Session() as sess: # Calculate the value of `y` at the baseline. x_baseline_val = np.array([[0.5, 0.8, 1.0]], dtype=np.float) y_baseline_val = sess.run(y, feed_dict={x: x_baseline_val}) # Calculate the value of `y` at the input.
tensorflow.placeholder
12,566
import tensorflow as tf all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length],
tensorflow.constant
12,567
import tensorflow as tf Return: A tuple of `SparseTensor` (neibors, weights). neighbors: A `SparseTensor` of `int64`. weights: A `SparseTensor` of `float`. types: A `SparseTensor` of `int32` """ sp_returns = base._LIB_OP.get_full_neighbor(nodes, edge_types) return tf.SparseTensor(*sp_returns[:3]), tf.SparseTensor(*sp_returns[3:6]), \ tf.SparseTensor(*sp_returns[6:]) def get_sorted_full_neighbor(nodes, edge_types): """ Args: nodes: A `Tensor` of `int64`.
tensorflow.SparseTensor
12,568
import tensorflow as tf handle0_value = sess.run( handle, feed_dict={sp_input: input0_val}) handle1_value = sess.run( handle, feed_dict={sp_input: input1_val}) sparse_handles = tf.convert_to_tensor( [handle0_value, handle1_value], dtype=tf.int64) sp_roundtrip = take_many_sparse_from_tensors_map( sparse_map_op=handle.op, sparse_handles=sparse_handles)
tensorflow.convert_to_tensor
12,569
import tensorflow as tf weights_regularizer = tf.contrib.layers.l2_regularizer(cfgs.WEIGHT_DECAY) with tf.variable_scope(tf.get_variable_scope()): for i in range(num_gpu): with tf.device('/gpu:%d' % i): with tf.name_scope('tower_%d' % i): with slim.arg_scope( [slim.model_variable, slim.variable], device='/device:CPU:0'): with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane,
tensorflow.name_scope
12,570
import tensorflow as tf name=name, shape=shape, dtype=dtype, initializer=initializer, collections=collections, trainable=trainable) finally: tf.get_variable_scope().set_partitioner(partitioner) # Using the absolute value enforces nonnegativity. dual_value = tf.abs(dual_variable) if trainable: # To reverse the gradient on the dual variable, multiply the gradient by # -dual_rate_factor dual_value = (tf.stop_gradient( (1.0 + dual_rate_factor) * dual_value) - dual_rate_factor * dual_value) return dual_value, dual_variable
tensorflow.abs
12,571
import tensorflow as tf # Calculate output (+) integration: h2 (8, 9) h2 = self.output_integration( h1=h1, c2=c2, g2=g2, h2=h2, layer=layer) if self.adapation: eta = getattr(self, 'eta_%s' % layer) e = tf.gather(eta, i0, axis=-1) h2 *= e return h1, h2 def full(self, i0, x, l1_h2, l2_h2, l3_h2): """hGRU body. Take the recurrent h2 from a low level and imbue it with information froma high layer. This means to treat the lower layer h2 as the X and the higher layer h2 as the recurrent state. This will serve as I/E from the high layer along with feedback
tensorflow.gather
12,572
import tensorflow as tf with tf.variable_scope('x_entropy'): cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) # Define your AdamOptimiser, using FLAGS.learning_rate to minimixe the loss function decayed_learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, tf.Variable(0, trainable=False), 1000, 0.8) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): optimiser = tf.train.AdamOptimizer(decayed_learning_rate, name="Adam").minimize(cross_entropy) # calculate the prediction and the accuracy accuracy, acc_op = tf.metrics.accuracy(labels=tf.argmax(y_, axis=1), predictions=tf.argmax(y_conv, axis=1)) loss_summary = tf.summary.scalar('Loss', cross_entropy) acc_summary = tf.summary.scalar('Accuracy', accuracy) # summaries for TensorBoard visualisation validation_summary = tf.summary.merge([img_summary, acc_summary]) training_summary = tf.summary.merge([img_summary, loss_summary]) test_summary = tf.summary.merge([img_summary, acc_summary])
tensorflow.argmax
12,573
import tensorflow as tf from tensorflow_metadata.proto.v0 import schema_pb2 def _make_tensors_with_override(): x = tf.compat.v1.placeholder(tf.int64, (None,)) schema_inference.set_tensor_schema_override(x, tf.constant(5), tf.constant(6)) return {'x': x} class SchemaInferenceTest(test_case.TransformTestCase):
tensorflow.constant
12,574
import tensorflow as tf grads, _ = tf.clip_by_global_norm(grads, 40.0) # copy weights from the parameter server to the local model self.sync = tf.group(*[v1.assign(v2) for v1, v2 in zip(pi.var_list, self.network.var_list)]) grads_and_vars = list(zip(grads, self.network.var_list)) self.inc_step = self.global_step.assign_add(tf.shape(pi.x)[0]) # each worker has a different set of adam optimizer parameters opt = tf.train.AdamOptimizer(1e-4) self.train_op = tf.group(opt.apply_gradients(grads_and_vars), self.inc_step) self.summary_writer = None self.local_steps = 0 def start(self, sess, summary_writer): self.runner.start_runner(sess, summary_writer) self.summary_writer = summary_writer
tensorflow.train.AdamOptimizer
12,575
import tensorflow as tf d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all if mask is not None: mask = tf.equal(mask, tf.ones_like(mask)) key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) scores = tf.where(key_masks, scores, paddings) # [B, 1, T] # Activation if softmax_stag: scores = tf.nn.softmax(scores) # [B, 1, T] # Weighted sum if mode == 'SUM': output = tf.matmul(scores, facts) # [B, 1, H] # output = tf.reshape(output, [-1, tf.shape(facts)[-1]]) else: scores = tf.reshape(scores, [-1, tf.shape(facts)[1]]) output = facts * tf.expand_dims(scores, -1) output = tf.reshape(output, tf.shape(facts)) if return_alphas: return output, scores
tensorflow.nn.softmax
12,576
import tensorflow as tf dec, mem = tf.nn.seq2seq.embedding_rnn_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols=2, num_decoder_symbols=5, embedding_size=2) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 5), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 2), res[0].c.shape) self.assertEqual((2, 2), res[0].h.shape) # Test with state_is_tuple=False. with tf.variable_scope("no_tuple"): cell1 = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False) dec, mem = tf.nn.seq2seq.embedding_rnn_seq2seq( enc_inp, dec_inp, cell1, num_encoder_symbols=2, num_decoder_symbols=5, embedding_size=2) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 5), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 4), res[0].shape) # Test externally provided output projection. w = tf.get_variable("proj_w", [2, 5]) b = tf.get_variable("proj_b", [5]) with tf.variable_scope("proj_seq2seq"):
tensorflow.nn.seq2seq.embedding_rnn_seq2seq
12,577
import tensorflow as tf """Define the graph inputs""" batch_size = tf.placeholder(tf.int32, [], name='batch_size') x = tf.placeholder(tf.float32, [None, num_steps, input_size_x], name='x') y = tf.placeholder(tf.float32, [None, num_steps, input_size_y], name='y') input_prob = tf.placeholder(tf.float32, name='input_prob') state_prob = tf.placeholder(tf.float32,name='state_prob')
tensorflow.placeholder
12,578
import tensorflow as tf lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(RNN_SIZE,state_is_tuple=True) c_init = np.zeros((1, lstm_cell.state_size.c), np.float32) h_init = np.zeros((1, lstm_cell.state_size.h), np.float32) state_init = [c_init, h_init] c_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.c]) h_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.h]) state_in = (c_in, h_in) rnn_in = tf.expand_dims(self.h3, [0]) step_size = tf.shape(inputs)[:1] state_in = tf.nn.rnn_cell.LSTMStateTuple(c_in, h_in) lstm_outputs, lstm_state = tf.nn.dynamic_rnn( lstm_cell, rnn_in, initial_state=state_in, sequence_length=step_size, time_major=False) lstm_c, lstm_h = lstm_state state_out = (lstm_c[:1, :], lstm_h[:1, :]) self.rnn_out = tf.reshape(lstm_outputs, [-1, RNN_SIZE]) ''' CHANGES - removed blocking layer - edited out stop_gradient lines (Dont need them) ''' # Value FC value = Dense(units=1, kernel_initializer=normalized_columns_initializer(1.0), bias_initializer=None, activation=None)(inputs=self.rnn_out) # rnn_out_frozen = tf.stop_gradient(self.rnn_out) next_loc_mean = Dense(units=2, kernel_initializer=normalized_columns_initializer(1.0), bias_initializer=None, activation=tf.math.tanh)(inputs=self.rnn_out) # was rnn_out_frozen loc_std = Dense(units=1, kernel_initializer=normalized_columns_initializer(1.0), activation=tf.nn.softplus)(inputs = self.rnn_out) # Policy FC
tensorflow.reshape
12,579
import tensorflow as tf self.loss_GABA = self.lambda_l2*squared_loss(self.images_fake_A,self.image_real_A) + binary_cross_entropy_loss(labels=tf.ones_like(self.D_B_fake),logits=self.D_B_fake) self.loss_GBAB = self.lambda_l2*squared_loss(self.images_fake_B_,self.image_real_B) + binary_cross_entropy_loss(labels=tf.ones_like(self.D_A_fake),logits=self.D_A_fake) self.generator_loss = self.loss_GABA + self.loss_GBAB self.D_B_loss_real = binary_cross_entropy_loss(tf.ones_like(self.D_B_real),self.D_B_real) self.D_B_loss_fake = binary_cross_entropy_loss(tf.zeros_like(self.D_B_fake),self.D_B_fake) self.D_B_loss = (self.D_B_loss_real + self.D_B_loss_fake) / 2.0 self.D_A_loss_real = binary_cross_entropy_loss(tf.ones_like(self.D_A_real),self.D_A_real) self.D_A_loss_fake = binary_cross_entropy_loss(tf.zeros_like(self.D_A_fake),self.D_A_fake)
tensorflow.zeros_like
12,580
import tensorflow as tf # end=int(end) label_id = [0]*max_seq_length label_id[start:end]=[1]*(end-start) if ex_index < 5: tf.logging.info("*** Example ***") tf.logging.info("guid: %s" % (example.guid)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) tf.logging.info("label: {}" .format(label_id))
tensorflow.logging.info
12,581
import tensorflow as tf boxlist2: Mx4 Returns: a tensor with shape [N, M] representing pairwise intersections """ x_min1, y_min1, x_max1, y_max1 = tf.split(boxlist1, 4, axis=1) x_min2, y_min2, x_max2, y_max2 = tf.split(boxlist2, 4, axis=1) all_pairs_min_ymax = tf.minimum(y_max1, tf.transpose(y_max2)) all_pairs_max_ymin = tf.maximum(y_min1, tf.transpose(y_min2)) intersect_heights = tf.maximum(0.0, all_pairs_min_ymax - all_pairs_max_ymin) all_pairs_min_xmax = tf.minimum(x_max1, tf.transpose(x_max2)) all_pairs_max_xmin = tf.maximum(x_min1, tf.transpose(x_min2)) intersect_widths = tf.maximum(0.0, all_pairs_min_xmax - all_pairs_max_xmin) return intersect_heights * intersect_widths @under_name_scope() def pairwise_iou(boxlist1, boxlist2): """Computes pairwise intersection-over-union between box collections. Args: boxlist1: Nx4 floatbox
tensorflow.transpose
12,582
import tensorflow as tf print('Num of sample per eps is %d' % (num_sample)) # Construct predictions image = tf.placeholder(tf.float32, shape=[hps.batch_size, image_size, image_size, num_channel]) ############MNIST and CIFAR10 are different ar here adv_image = tf.placeholder(tf.float32, shape=[hps.batch_size, image_size, image_size, num_channel]) ############MNIST and CIFAR10 are different ar here predict = tf.placeholder(tf.float32, shape=[hps.batch_size, 10]) predict_nor, tsne_logit_nor = models(hps, image, FLAGS.RCE_train, logits=False, tsne_logits=True) predict_adv, tsne_logit_adv = models(hps, adv_image, FLAGS.RCE_train, logits=False, tsne_logits=True) # Calculate entropy argmax_y_onehot = tf.one_hot(tf.argmax(predict, 1), 10, on_value=0.0, off_value=1.0, axis=-1) normalized_y_nonmaximal = tf.reduce_sum(predict * argmax_y_onehot, 1)
tensorflow.placeholder
12,583
import tensorflow as tf params_size_t = self._cell.params_size() self._rnn_params = tf.get_variable( "lstm_params", initializer=tf.random_uniform( [params_size_t], -config.init_scale, config.init_scale), validate_shape=False)
tensorflow.random_uniform
12,584
import tensorflow as tf logits=self.logits2, labels=end_label) self.loss = tf.reduce_mean(start_loss + end_loss) else: start_loss = focal_loss(tf.nn.softmax(self.logits1, -1), start_label) end_loss = focal_loss(tf.nn.softmax(self.logits2, -1), end_label) self.loss = tf.reduce_mean(start_loss + end_loss)
tensorflow.nn.softmax
12,585
import tensorflow as tf class TrainR3DetGWD(Train): def get_gtboxes_and_label(self, gtboxes_and_label_h, gtboxes_and_label_r, num_objects): return gtboxes_and_label_h[:int(num_objects), :].astype(np.float32), \ gtboxes_and_label_r[:int(num_objects), :].astype(np.float32) def main(self): with tf.Graph().as_default() as graph, tf.device('/cpu:0'): num_gpu = len(cfgs.GPU_GROUP.strip().split(',')) global_step = slim.get_or_create_global_step() lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu) tf.summary.scalar('lr', lr) optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM) r3det_gwd = build_whole_network.DetectionNetworkR3DetGWD(cfgs=self.cfgs, is_training=True) with tf.name_scope('get_batch'): if cfgs.IMAGE_PYRAMID: shortside_len_list = tf.constant(cfgs.IMG_SHORT_SIDE_LEN) shortside_len = tf.random_shuffle(shortside_len_list)[0] else: shortside_len = cfgs.IMG_SHORT_SIDE_LEN
tensorflow.summary.scalar
12,586
import tensorflow as tf dataset.training_X, dataset.training_y, dataset.validation_X, dataset.validation_y if not os.path.exists(weights_dir): os.mkdir(weights_dir) if not os.path.exists(weights_dir + '/best_models'): os.mkdir(weights_dir + '/best_models') # Create a saver. saver = tf.train.Saver(max_to_keep=None) if self.is_summary: training_batch_summary_op = tf.merge_all_summaries(key=TRAINING_BATCH_SUMMARIES) training_epoch_summary_op = tf.merge_all_summaries(key=TRAINING_EPOCH_SUMMARIES) validation_batch_summary_op = tf.merge_all_summaries(key=VALIDATION_BATCH_SUMMARIES) validation_epoch_summary_op = tf.merge_all_summaries(key=VALIDATION_EPOCH_SUMMARIES) # Build an initialization operation to run below. init = tf.global_variables_initializer() gpu_options = tf.GPUOptions(
tensorflow.merge_all_summaries
12,587
import tensorflow as tf if FLAGS.profile and hvd.rank() == 0: ProfilerHook = tf.train.ProfilerHook(save_steps=FLAGS.hooking_frequence, output_dir=FLAGS.output_dir, show_dataflow=True, show_memory=True) hooks.append(ProfilerHook) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.estimator.Estimator( model_fn=model_fn, config=run_config) if FLAGS.do_train: tf.logging.info("***** Running training *****") tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
tensorflow.estimator.Estimator
12,588
import tensorflow as tf class Augmentator(object): def __init__(self,type,size=1,mean=0,std=1): self.size = size if type=='scramble': self.augment = self.scramble elif type=='mix_scramble': self.augment = self.mix_scramble elif type=='blur': self.augment = self.gaussian_blur self.pointwise_filter = tf.eye(3, batch_shape=[1, 1]) elif type=='high_low_pass': self.augment = self.high_low_pass self.kernel = self.gaussian_kernel(size,mean,std) self.kernel = tf.tile(self.kernel[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 1]) self.pointwise_filter = tf.eye(3, batch_shape=[1, 1]) self.paddings = [[size,size],[size,size],[0,0]] elif type=='no_op': self.augment = self.no_op
tensorflow.eye
12,589
import tensorflow as tf tf.app.flags.DEFINE_integer('batch_size', 32, "the number of examples in a batch") tf.app.flags.DEFINE_integer('ul_batch_size', 128, "the number of unlabeled examples in a batch") tf.app.flags.DEFINE_integer('eval_batch_size', 100, "the number of eval examples in a batch") tf.app.flags.DEFINE_integer('eval_freq', 5, "") tf.app.flags.DEFINE_integer('num_epochs', 120, "the number of epochs for training") tf.app.flags.DEFINE_integer('epoch_decay_start', 80, "epoch of starting learning rate decay") tf.app.flags.DEFINE_integer('num_iter_per_epoch', 400, "the number of updates per epoch") tf.app.flags.DEFINE_float('learning_rate', 0.001, "initial leanring rate") tf.app.flags.DEFINE_float('mom1', 0.9, "initial momentum rate") tf.app.flags.DEFINE_float('mom2', 0.5, "momentum rate after epoch_decay_start") tf.app.flags.DEFINE_string('method', 'vat', "{vat, vatent, baseline}") if FLAGS.dataset == 'cifar10': from cifar10 import inputs, unlabeled_inputs
tensorflow.app.flags.DEFINE_float
12,590
import tensorflow as tf if not file_pattern: file_pattern = _FILE_PATTERN file_pattern = os.path.join(dataset_dir, file_pattern % split_name) # Allowing None in the signature so that dataset_factory can use the default. if not reader: reader = tf.TFRecordReader keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='png'), 'image/class/label': tf.FixedLenFeature( [], tf.int64, default_value=tf.zeros([], dtype=tf.int64)), } items_to_handlers = { 'image': slim.tfexample_decoder.Image(shape=[32, 32, 3]), 'label': slim.tfexample_decoder.Tensor('image/class/label'), } decoder = slim.tfexample_decoder.TFExampleDecoder( keys_to_features, items_to_handlers) labels_to_names = None
tensorflow.zeros
12,591
import tensorflow as tf str(v.shape).ljust(20)) v_size = np.prod(np.array(v.shape.as_list())).tolist() # mutiple all dimension size total_size += v_size tf.logging.info("Total trainable variables size: %d", total_size) learning_rate = get_learning_rate_decay(params.learning_rate, global_step, params) learning_rate = tf.convert_to_tensor(learning_rate, dtype=tf.float32) tf.summary.scalar("learning_rate", learning_rate) # Create optimizer opt = tf.train.AdamOptimizer(learning_rate, beta1=params.adam_beta1, beta2=params.adam_beta2, epsilon=params.adam_epsilon) if params.update_cycle == 1: train_op = tf.contrib.layers.optimize_loss( name="training", loss=loss, global_step=global_step, learning_rate=learning_rate,
tensorflow.train.AdamOptimizer
12,592
import tensorflow as tf # Graph mode testing with tf.Graph().as_default(): energy_fn, _, _ = l2hmc.get_scg_energy_fn() dynamics = l2hmc.Dynamics( x_dim=hparams.x_dim, minus_loglikelihood_fn=energy_fn, n_steps=hparams.n_steps, eps=hparams.eps) x = tf.placeholder(tf.float32, shape=[None, hparams.x_dim]) x_, v_, x_accept_prob, x_out = dynamics.apply_transition(x) samples = npr.normal(size=[hparams.n_samples, hparams.x_dim]) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) np_x_, np_v_, np_x_accept_prob, np_x_out = sess.run( [x_, v_, x_accept_prob, x_out], feed_dict={x: samples})
tensorflow.placeholder
12,593
import tensorflow as tf instead of an operation that modifies var_matrix. Args: var_matrix: 2D tensor (Variable) maxnorm: the maximum Euclidean norm Returns: A new tensor where all rows have been scaled as necessary ''' axis_norms = tf.sqrt(tf.reduce_sum(tf.square(var_matrix), 1)) scaling = maxnorm / tf.maximum(axis_norms, maxnorm) return var_matrix * tf.expand_dims(scaling, 1) class BaseModel(object): ''' Base class for embedding-based relational learning models that use maxnorm regularization. Subclasses must implement _create_model() and populate self.train_step, and can optionally populate self.post_step for post-processing.
tensorflow.maximum
12,594
import tensorflow as tf if config.decay is not None: self.var_ema = tf.train.ExponentialMovingAverage(config.decay) ema_op = self.var_ema.apply(tf.trainable_variables()) with tf.control_dependencies([ema_op]): self.loss = tf.identity(self.loss) self.assign_vars = [] for var in tf.global_variables(): v = self.var_ema.average(var) if v: self.assign_vars.append(tf.assign(var,v)) def get_loss(self): return self.loss def get_global_step(self): return self.global_step
tensorflow.assign
12,595
from tensorflow.python.framework import ops if not inputs or not isinstance(inputs, (list, tuple)): raise ValueError("inputs must be a list of at least one Tensor with the " "same dtype and shape") inputs = ops.convert_n_to_tensor_or_indexed_slices(inputs) if not all(isinstance(x, ops.Tensor) for x in inputs): raise ValueError("inputs must be a list of at least one Tensor with the "
tensorflow.python.framework.ops.convert_n_to_tensor_or_indexed_slices
12,596
import tensorflow as tf last_layer = tf.nn.tanh(projected) elif dnn_nonlin == 'sigmoid': last_layer = tf.nn.sigmoid(projected) elif dnn_nonlin == 'relu': last_layer = tf.nn.relu(projected) else: raise NotImplementedError() if mode == 'train' and dnn_keep_prob < 1.0: last_layer = tf.nn.dropout(last_layer, dnn_keep_prob) last_layer_size = layer_size print('{}: {}'.format(layer_name, last_layer.get_shape())) export_feat_tensors[layer_name] = last_layer dnn_output = last_layer dnn_output_size = last_layer_size
tensorflow.nn.dropout
12,597
from tensorflow.python.ops import array_ops if self._gate_linear is None: bias_ones = self._bias_initializer if self._bias_initializer is None: bias_ones = init_ops.constant_initializer(1.0, dtype=inputs.dtype) with vs.variable_scope("gates"): # Reset gate and update gate. self._gate_linear = _Linear( [inputs, state], 2 * self._num_units, True, bias_initializer=bias_ones, kernel_initializer=self._kernel_initializer) value = math_ops.sigmoid(self._gate_linear([inputs, state])) r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1) r_state = r * state if self._candidate_linear is None: with vs.variable_scope("candidate"): self._candidate_linear = _Linear( [inputs, r_state], self._num_units, True, bias_initializer=self._bias_initializer, kernel_initializer=self._kernel_initializer) c = self._activation(self._candidate_linear([inputs, r_state])) new_h = (1. - att_score) * state + att_score * c
tensorflow.python.ops.array_ops.split
12,598
import tensorflow as tf from texar.tf.modules.regressors.xlnet_regressor import XLNetRegressor from texar.tf.utils.test import pretrained_test # pylint: disable=too-many-locals, no-member class XLNetRegressorTest(tf.test.TestCase): """Tests :class:`~texar.tf.modules.XLNetRegressor` class. """ @pretrained_test def test_model_loading(self): r"""Tests model loading functionality.""" inputs = tf.placeholder(dtype=tf.int32, shape=[None, None]) for pretrained_model_name in XLNetRegressor.available_checkpoints(): regressor = XLNetRegressor( pretrained_model_name=pretrained_model_name) _ = regressor(inputs) def test_trainable_variables(self): """Tests the functionality of automatically collecting trainable variables. """ inputs = tf.placeholder(dtype=tf.int32, shape=[None, None]) # case 1 hparams = {
tensorflow.placeholder
12,599