seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf dtype=tf.float32, initializer=tf.constant_initializer( self.vocab.word_embeddings[:2], dtype=tf.float32), trainable=True) self.word_mat = tf.concat([self.word_pad_unk_mat, self.pretrained_word_mat], axis=0) self.pretrained_char_mat = tf.get_variable("char_emb_mat", [self.vocab.char_size() - 2, self.vocab.char_embed_dim], dtype=tf.float32, initializer=tf.constant_initializer( self.vocab.char_embeddings[2:], dtype=tf.float32), trainable=False) self.char_pad_unk_mat = tf.get_variable("char_unk_pad", [2, self.pretrained_char_mat.get_shape()[1]], dtype=tf.float32, initializer=tf.constant_initializer( self.vocab.char_embeddings[:2], dtype=tf.float32), trainable=True)
tensorflow.constant_initializer
12,300
from tensorflow.python.platform import gfile output.append(self.vocabulary_.reverse(class_id)) yield ' '.join(output) def save(self, filename): """Saves vocabulary processor into given file. Args: filename: Path to output file. """ with gfile.Open(filename, 'wb') as f: f.write(pickle.dumps(self)) @classmethod def restore(cls, filename): """Restores vocabulary processor from given file. Args: filename: Path to file to load from.
tensorflow.python.platform.gfile.Open
12,301
import tensorflow as tf opt = tf.train.AdamOptimizer(self.LR) self.update_a_op = opt.apply_gradients(zip(self.a_grads, self.pi_params)) self.update_c_op = opt.apply_gradients(zip(self.c_grads, self.vf_params)) self.sess.run(tf.global_variables_initializer()) # Tensorboard if summary_dir is not None: self.writer = tf.summary.FileWriter(summary_dir) tf.summary.scalar('Loss/Policy', loss_pg) tf.summary.scalar('Loss/Value', loss_vf) tf.summary.scalar('Loss/Entropy', - 0.01 * tf.reduce_mean(pi.entropy())) tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode())) tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev())) tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf)) self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES)) # AC net def build_anet(self, state_in, name, reuse=False): reg = tf.contrib.layers.l2_regularizer(1e-3) with tf.variable_scope(name, reuse=reuse): layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg) mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg) # sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg) sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5)) sigma = tf.clip_by_value(sigma, 0.0, 1.0)
tensorflow.reduce_mean
12,302
import tensorflow as tf n_actions = ac_space.nvec if isinstance(ac_space, MultiDiscrete) else ac_space.n with tf.variable_scope("input", reuse=reuse): stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps") with tf.variable_scope(scope, reuse=reuse): if param_noise: act_f, obs_phs = build_act_with_param_noise(q_func, ob_space, ac_space, stochastic_ph, update_eps_ph, sess, param_noise_filter_func=param_noise_filter_func) else:
tensorflow.variable_scope
12,303
import tensorflow as tf for l in range(0,num_layers-1): W = self.xavier_init(size=[layers[l], layers[l+1]]) b = tf.Variable(tf.zeros([1,layers[l+1]], dtype=tf.float32), dtype=tf.float32) weights.append(W) biases.append(b) return weights, biases def xavier_init(self, size): in_dim = size[0] out_dim = size[1] xavier_stddev = np.sqrt(2/(in_dim + out_dim)) return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev), dtype=tf.float32) def neural_net(self, X, weights, biases): num_layers = len(weights) + 1 H = 2.0*(X - self.lb)/(self.ub - self.lb) - 1.0 for l in range(0,num_layers-2): W = weights[l] b = biases[l] H = tf.tanh(tf.add(tf.matmul(H, W), b)) W = weights[-1]
tensorflow.truncated_normal
12,304
import tensorflow as tf if encoder.bidir: rnn = lambda reuse: stack_bidirectional_dynamic_rnn( cells_fw=[get_cell(input_size if j == 0 else 2 * cell_output_size, reuse=reuse) for j in range(encoder.layers)], cells_bw=[get_cell(input_size if j == 0 else 2 * cell_output_size, reuse=reuse) for j in range(encoder.layers)], initial_states_fw=[get_initial_state('initial_state_fw')] * encoder.layers, initial_states_bw=[get_initial_state('initial_state_bw')] * encoder.layers, time_pooling=encoder.time_pooling, pooling_avg=encoder.pooling_avg, **parameters) initializer = CellInitializer(encoder.cell_size) if encoder.orthogonal_init else None with tf.variable_scope(tf.get_variable_scope(), initializer=initializer): try: encoder_outputs_, _, encoder_states_ = rnn(reuse=False) except ValueError: # Multi-task scenario where we're reusing the same RNN parameters encoder_outputs_, _, encoder_states_ = rnn(reuse=True) else: if encoder.time_pooling or encoder.final_state == 'concat_last': raise NotImplementedError if encoder.layers > 1: cell = MultiRNNCell([get_cell(input_size if j == 0 else cell_output_size) for j in range(encoder.layers)]) initial_state = (get_initial_state(),) * encoder.layers
tensorflow.get_variable_scope
12,305
import tensorflow as tf def log_prob_from_logits(x): """numerically stable log_softmax implementation that prevents overflow.""" axis = len(x.get_shape()) - 1 m = tf.reduce_max(x, axis, keep_dims=True) return x - m - tf.log(tf.reduce_sum(tf.exp(x - m), axis, keep_dims=True))
tensorflow.reduce_max
12,306
from tensorflow.python.framework import tensor_util validate_args=True) self.assertTrue(tensor_util.constant_value(normal.is_scalar_event)) self.assertTrue(tensor_util.constant_value(normal.is_scalar_batch)) normal = dists.Normal([mu], [sigma], validate_args=True) self.assertTrue(tensor_util.constant_value(normal.is_scalar_event)) self.assertFalse(tensor_util.constant_value(normal.is_scalar_batch)) mvn = dists.MultivariateNormalDiag([mu], [sigma], validate_args=True) self.assertFalse(tensor_util.constant_value(mvn.is_scalar_event)) self.assertTrue(tensor_util.constant_value(mvn.is_scalar_batch)) mvn = dists.MultivariateNormalDiag([[mu]], [[sigma]], validate_args=True) self.assertFalse(tensor_util.constant_value(mvn.is_scalar_event)) self.assertFalse(tensor_util.constant_value(mvn.is_scalar_batch)) # We now test every codepath within the underlying is_scalar_helper # function. # Test case 1, 2. x = tf.placeholder(dtype=tf.int32, shape=[])
tensorflow.python.framework.tensor_util.constant_value
12,307
from tensorflow.python.framework import ops TypeError: if `alpha` and `beta` are different dtypes. """ parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[alpha, beta]) as ns: with ops.control_dependencies([ check_ops.assert_positive(alpha), check_ops.assert_positive(beta),
tensorflow.python.framework.ops.name_scope
12,308
import tensorflow as tf for _, var in grads_and_vars: with self._maybe_colocate(var): op = self._func(var) if op is not None: assert isinstance(op, tf.Operation), op ops.append(op) update_op = tf.group(update_op, *ops, name=name) return update_op @contextmanager def _maybe_colocate(self, var): G = tf.get_default_graph()
tensorflow.group
12,309
import tensorflow as tf s = tf.matmul(g, f, transpose_b=True) # # [bs, N, N] beta = tf.nn.softmax(s) # attention map print('attention beta dims: ' + str(s.get_shape().as_list()))
tensorflow.nn.softmax
12,310
import tensorflow as tf print('feats_cnn: {}'.format(feats_conv.get_shape())) print('feats_all: {}'.format(feats_all.get_shape())) # Project to RNN size rnn_output = feats_all rnn_output_size = nfeats_tot if do_rnn: with tf.variable_scope('rnn_proj'): rnn_proj_w = tf.get_variable('W', [nfeats_tot, rnn_size], initializer=tf.uniform_unit_scaling_initializer(factor=1.0, dtype=dtype), dtype=dtype) rnn_proj_b = tf.get_variable('b', [rnn_size], initializer=tf.constant_initializer(0.0), dtype=dtype) rnn_inputs = tf.nn.bias_add(tf.matmul(feats_all, rnn_proj_w), rnn_proj_b) rnn_inputs = tf.reshape(rnn_inputs, [batch_size, rnn_nunroll, rnn_size]) rnn_inputs = tf.split(rnn_inputs, rnn_nunroll, axis=1) rnn_inputs = [tf.squeeze(input_, [1]) for input_ in rnn_inputs] if rnn_cell_type == 'rnn': cell_fn = tf.nn.rnn_cell.BasicRNNCell elif rnn_cell_type == 'gru': cell_fn = tf.nn.rnn_cell.GRUCell elif rnn_cell_type == 'lstm': cell_fn = tf.nn.rnn_cell.BasicLSTMCell else: raise NotImplementedError() cell = cell_fn(rnn_size) if mode == 'train' and rnn_keep_prob < 1.0: cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=rnn_keep_prob)
tensorflow.squeeze
12,311
import tensorflow as tf with tf.gfile.Open(p_name) as fd: tf.logging.info("Restoring hyper parameters from %s" % p_name) json_str = fd.readline()
tensorflow.logging.info
12,312
import tensorflow as tf {'x': tf.compat.v1.placeholder(tf.int64, (None,))}, feature_spec={'x': tf.io.FixedLenFeature([], tf.int64)}), dict( testcase_name='fixed_len_string', make_tensors_fn=lambda: {'x': tf.compat.v1.placeholder(tf.string, (None,))}, feature_spec={'x': tf.io.FixedLenFeature([], tf.string)}), dict( testcase_name='fixed_len_float', make_tensors_fn=lambda: {'x': tf.compat.v1.placeholder(tf.float32, (None,))}, feature_spec={'x': tf.io.FixedLenFeature([], tf.float32)}), dict( testcase_name='override', make_tensors_fn=_make_tensors_with_override, feature_spec={'x': tf.io.FixedLenFeature([], tf.int64)}, domains={'x': schema_pb2.IntDomain(is_categorical=True)}), dict( testcase_name='override_with_session', make_tensors_fn=_make_tensors_with_override, feature_spec={'x': tf.io.FixedLenFeature([], tf.int64)}, domains={
tensorflow.io.FixedLenFeature
12,313
import tensorflow as tf [max_predictions_per_seq], tf.int64 ), "masked_lm_ids": tf.FixedLenFeature([max_predictions_per_seq], tf.int64), "masked_lm_weights": tf.FixedLenFeature( [max_predictions_per_seq], tf.float32 ),
tensorflow.FixedLenFeature
12,314
import tensorflow as tf reduction_indices, use_batch_stats) self._build_update_ops_variance(mean, variance, is_training) # Set up optional scale and offset factors. if self._offset: self._set_default_initializer(self.BETA) self._beta = tf.get_variable( self.BETA, shape=self._mean_shape, initializer=self._initializers[self.BETA]) else: self._beta = None if self._scale:
tensorflow.get_variable
12,315
import tensorflow as tf epsilon=self.rprop_epsilon) _opt_op = trainer.apply_gradients(grads) # so when you call _train, you first do the gradient step, then you apply ema with tf.control_dependencies([_opt_op]): _train = tf.group(ema_apply_op) # Ops/Summaries to run, and their names for logging assert norm_grads is not None run_ops = [_train, loss, loss_q, entropy, loss_policy, loss_f, loss_bc, explained_variance, norm_grads]
tensorflow.group
12,316
from tensorflow.python.ops import array_ops @distribution_util.AppendDocstring(_poisson_sample_note) def _cdf(self, x): x = self._assert_valid_sample(x, check_integer=False) return math_ops.igammac(math_ops.floor(x + 1), self.rate) def _log_normalization(self): return self.rate def _log_unnormalized_prob(self, x): x = self._assert_valid_sample(x, check_integer=True) return x * math_ops.log(self.rate) - math_ops.lgamma(x + 1) def _mean(self): return array_ops.identity(self.rate) def _variance(self): return array_ops.identity(self.rate) @distribution_util.AppendDocstring( """Note: when `rate` is an integer, there are actually two modes: `rate` and `rate - 1`. In this case we return the larger, i.e., `rate`.""") def _mode(self): return math_ops.floor(self.rate) def _assert_valid_sample(self, x, check_integer=True): if not self.validate_args: return x
tensorflow.python.ops.array_ops.identity
12,317
import tensorflow as tf maxnorm: the maximum Euclidean norm Returns: An operation that will update var_matrix when run in a Session ''' row_norms = tf.sqrt(tf.reduce_sum(tf.square(var_matrix), 1)) scaling = maxnorm / tf.maximum(row_norms, maxnorm) scaled = var_matrix * tf.expand_dims(scaling, 1) return tf.assign(var_matrix, scaled) def dense_maxnorm(var_matrix, maxnorm=1.0): '''Similar to dense_maxnorm_update(), except this returns a new Tensor instead of an operation that modifies var_matrix. Args:
tensorflow.assign
12,318
import tensorflow as tf tf.app.flags.DEFINE_string('pm', '66661', 'pooling scheme across scales. Each number specifies the number of scales remaining at each layer. The first number has to be the same as used in --num_scales.') tf.app.flags.DEFINE_integer('conv_kernel', 5, 'Size of convolutional kernel') tf.app.flags.DEFINE_integer('pool_kernel', 3, 'Size of spatial pooling kernel') tf.app.flags.DEFINE_integer('feats_per_layer', 32, 'Number of feature channels at each layer') tf.app.flags.DEFINE_boolean('total_pool', True, 'If true, pool all feature maps to 1x1 size in final layer') tf.app.flags.DEFINE_integer('pool_stride', '1', 'If 2, we get progressive pooling - with overlap pooling, AlexNet style') TRAIN_FILE = 'train_{}.tfrecords'.format(records.tfrecord_name()) VALIDATION_FILE = 'validation_{}.tfrecords'.format(records.tfrecord_name())
tensorflow.app.flags.DEFINE_integer
12,319
import tensorflow as tf # TODO(koz4k): Translate it to T2TModel or remove. def feed_forward_gaussian_fun(action_space, config, observations): """Feed-forward Gaussian.""" if not isinstance(action_space, gym.spaces.box.Box): raise ValueError("Expecting continuous action space.") mean_weights_initializer = tf.initializers.variance_scaling( scale=config.init_mean_factor) logstd_initializer = tf.random_normal_initializer(config.init_logstd, 1e-10) flat_observations = tf.reshape(observations, [ tf.shape(observations)[0], tf.shape(observations)[1], functools.reduce(operator.mul, observations.shape.as_list()[2:], 1)]) with tf.variable_scope("network_parameters"): with tf.variable_scope("policy"): x = flat_observations for size in config.policy_layers: x = tf.layers.dense(x, size, activation=tf.nn.relu) mean = tf.layers.dense( x, action_space.shape[0], activation=tf.tanh, kernel_initializer=mean_weights_initializer) logstd = tf.get_variable( "logstd", mean.shape[2:], tf.float32, logstd_initializer)
tensorflow.shape
12,320
import tensorflow as tf return tf.reshape(tf.concat(axis=1, values=h), [-1, nh]) else: return tf.reshape(tf.stack(values=h, axis=1), [-1]) def lstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()] with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale)) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s)
tensorflow.variable_scope
12,321
import tensorflow as tf import TensorflowUtils as utils import read_MITSceneParsingData as scene_parsing import datetime import BatchDatsetReader as dataset from six.moves import xrange import os.path as osp FLAGS = tf.flags.FLAGS tf.flags.DEFINE_integer("batch_size", "2", "batch size for training") tf.flags.DEFINE_string("logs_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\logs", "path to logs directory") tf.flags.DEFINE_string("data_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\Data_zoo\STEM", "path to dataset") tf.flags.DEFINE_float("learning_rate", "1e-4", "Learning rate for Adam Optimizer") tf.flags.DEFINE_string("model_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\Model_zoo", "Path to vgg model mat") tf.flags.DEFINE_bool('debug', "False", "Debug mode: True/ False") tf.flags.DEFINE_string('mode', "train", "Mode train/ test/ visualize") MODEL_URL = 'http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat' MAX_ITERATION = 100 #最大步数 NUM_OF_CLASSESS = 3 #分类数目 IMAGE_SIZE = 2048 #图像大小
tensorflow.flags.DEFINE_float
12,322
from tensorflow.python.framework import ops has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. class_id: Class for which we want binary metrics. weights: `Tensor` whose shape is broadcastable to the the first [D1, ... DN] dimensions of `predictions_idx` and `labels`. name: Name of operation. Returns: A [D1, ... DN] `Tensor` of true positive counts. """ with ops.name_scope(name, 'true_positives', (predictions_idx, labels)): labels, predictions_idx = _maybe_select_class_id( labels, predictions_idx, class_id) tp = set_ops.set_size(set_ops.set_intersection(predictions_idx, labels)) tp = math_ops.to_double(tp) if weights is not None: weights = math_ops.to_double(weights) tp = math_ops.mul(tp, weights) return tp
tensorflow.python.framework.ops.name_scope
12,323
import tensorflow as tf # # hello = tf.constant('Hello, TensorFlow!') # print(sess.run(hello)) # # a = tf.constant(10) # b = tf.constant(32) # print(sess.run(a + b)) # # c = tf.constant('haHa') # print(sess.run(c)) # # sess.close() identity_matrix = tf.diag([1.0, 3.0, 1.0]) A = tf.truncated_normal([2, 3]) B = tf.fill([2, 3], 5.0) C = tf.random_uniform([3, 2], maxval=100) D = tf.convert_to_tensor(np.array([[1., 2., 3.], [-3., -7., -1.], [0., 5., -2.]])) sess = tf.Session() # sess.run(tf.global_variables_initializer()) # print(sess.run(tf.random_normal(mean=10, shape=[10]))) # A = tf.Variable(tf.random_normal(shape=[1, 1])) # sess.run(tf.global_variables_initializer()) # print(sess.run(A)) print('\nI=') print(sess.run(identity_matrix))
tensorflow.truncated_normal
12,324
import tensorflow as tf self.docid_inputs = [] # a list of top documents self.letor_features = tf.placeholder(tf.float32, shape=[None, self.feature_size],
tensorflow.placeholder
12,325
import tensorflow as tf tf.float32, size=self.num_cells + 2, clear_after_read=False) arc_seq = tf.TensorArray(tf.int32, size=self.num_cells * 4) if prev_c is None: assert prev_h is None, "prev_c and prev_h must both be None" prev_c = [tf.zeros([1, self.lstm_size], tf.float32) for _ in range(self.lstm_num_layers)] prev_h = [tf.zeros([1, self.lstm_size], tf.float32) for _ in range(self.lstm_num_layers)] inputs = self.g_emb for layer_id in range(2): next_c, next_h = stack_lstm(inputs, prev_c, prev_h, self.w_lstm)
tensorflow.zeros
12,326
from tensorflow.contrib import framework as contrib_framework def _evaluate_model(self, input_fn, steps, feed_fn=None, metrics=None): if self._config.execution_mode not in ('all', 'evaluate', 'eval_evalset'): return checkpoint_path = saver.latest_checkpoint(self._model_dir) eval_dir = os.path.join(self._model_dir, 'eval') with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) global_step = contrib_framework.create_global_step(g) features, targets = input_fn() self._check_inputs(features, targets) eval_dict = self._get_eval_ops(features, targets, metrics or self._get_default_metric_functions()) eval_results, _ = evaluate( graph=g, output_dir=eval_dir,
tensorflow.contrib.framework.create_global_step
12,327
import tensorflow as tf # scores = scores / (facts.get_shape().as_list()[-1] ** 0.5) # Activation if softmax_stag: scores = tf.nn.softmax(scores) # [B, 1, T] # Weighted sum if mode == 'SUM': output = tf.matmul(scores, facts) # [B, 1, H] # output = tf.reshape(output, [-1, tf.shape(facts)[-1]]) else: scores = tf.reshape(scores, [-1, tf.shape(facts)[1]]) output = facts * tf.expand_dims(scores, -1) output = tf.reshape(output, tf.shape(facts)) return output
tensorflow.matmul
12,328
import tensorflow as tf a0 = logits - tf.reduce_max(logits, 1, keepdims=True) ea0 = tf.exp(a0) z0 = tf.reduce_sum(ea0, 1, keepdims=True) p0 = ea0 / z0
tensorflow.reduce_sum
12,329
import tensorflow as tf tf.expand_dims(stacked, -1), max_outputs=30) sampled = tf.concat([sampled1, sampled2], 3, 'sampled_concat') logits = (LinearWrap(sampled) .FullyConnected('fc1', out_dim=256, nl=tf.nn.relu) .FullyConnected('fc2', out_dim=128, nl=tf.nn.relu) .FullyConnected('fct', out_dim=19, nl=tf.identity)()) tf.nn.softmax(logits, name='prob') cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label) cost = tf.reduce_mean(cost, name='cross_entropy_loss') wrong = tf.to_float(tf.logical_not(tf.nn.in_top_k(logits, label, 1)), name='incorrect_vector') summary.add_moving_summary(tf.reduce_mean(wrong, name='train_error'))
tensorflow.nn.softmax
12,330
import tensorflow as tf ) next_sentence_predictions = tf.argmax( next_sentence_log_probs, axis=-1, output_type=tf.int32 ) next_sentence_labels = tf.reshape(next_sentence_labels, [-1]) next_sentence_accuracy = tf.metrics.accuracy( labels=next_sentence_labels, predictions=next_sentence_predictions ) next_sentence_mean_loss = tf.metrics.mean( values=next_sentence_example_loss ) return { "masked_lm_accuracy": masked_lm_accuracy, "masked_lm_loss": masked_lm_mean_loss, "next_sentence_accuracy": next_sentence_accuracy,
tensorflow.metrics.mean
12,331
import tensorflow as tf self.assertAllClose(res1, res2) self.assertAllClose(res1, res3) def testEmbeddingTiedRNNSeq2Seq(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): enc_inp = [tf.constant(1, tf.int32, shape=[2]) for i in range(2)] dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)] cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) dec, mem = tf.nn.seq2seq.embedding_tied_rnn_seq2seq( enc_inp, dec_inp, cell, num_symbols=5, embedding_size=2) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 5), res[0].shape)
tensorflow.nn.rnn_cell.BasicLSTMCell
12,332
import tensorflow as tf the ranking score of the corresponding example. labels: (tf.Tensor) A tensor of the same shape as `output`. A value >= 1 means a relevant example. propensity_weights: (tf.Tensor) A tensor of the same shape as `output` containing the weight of each element. name: A string used as the name for this variable scope. Returns: (tf.Tensor) A single value tensor containing the loss. (tf.Tensor) A tensor containing the propensity weights. """ loss = None with tf.name_scope(name, "click_weighted_pairwise_loss",[output]): sliced_output = tf.unstack(output, axis=1) sliced_label = tf.unstack(labels, axis=1) sliced_propensity = tf.unstack(propensity_weights, axis=1) for i in range(len(sliced_output)): for j in range(i+1, len(sliced_output)): cur_label_weight = tf.math.sign(sliced_label[i] - sliced_label[j]) cur_propensity = sliced_propensity[i] * sliced_label[i] + sliced_propensity[j] * sliced_label[j] cur_pair_loss = -tf.exp(sliced_output[i]) / (tf.exp(sliced_output[i]) + tf.exp(sliced_output[j])) if loss == None: loss = cur_label_weight * cur_pair_loss * cur_propensity loss += cur_label_weight * cur_pair_loss * cur_propensity batch_size = tf.shape(labels[0])[0] return tf.reduce_sum(loss) / tf.cast(batch_size, dtypes.float32) #/ (tf.reduce_sum(propensity_weights)+1) def click_weighted_log_loss(self, output, labels, propensity_weights, name=None):
tensorflow.unstack
12,333
import tensorflow as tf train_op = opt.apply_gradients(grads_and_vars, global_step) # Validation ''' if params.validation and params.references[0]: files = [params.validation] + list(params.references) eval_inputs = files eval_input_fn = dataset.get_evaluation_input else: print("Don't evaluate") eval_input_fn = None ''' # Add hooks train_hooks = [ tf.train.StopAtStepHook(last_step=params.train_steps), tf.train.NanTensorHook(loss), # Monitors the loss tensor and stops training if loss is NaN tf.train.LoggingTensorHook( { "step": global_step, "loss": loss, "chars": tf.shape(features["chars"]), "source": tf.shape(features["source"]), #"bert": tf.shape(features["bert"]), "lr": learning_rate }, every_n_iter=1 ), tf.train.CheckpointSaverHook(
tensorflow.train.StopAtStepHook
12,334
import tensorflow as tf false_fn=lambda: tf.constant(0, dtype=tf.int64) ) kk = tf.math.add(kk, to_add) kernel[l][m] = kk return tf.convert_to_tensor(kernel, dtype=tf.int64) def dim(self): return self._dim
tensorflow.convert_to_tensor
12,335
import tensorflow as tf c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, x in enumerate(xs): c = c h = h z = tf.matmul(x, wx) + tf.matmul(h, wh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u)
tensorflow.split
12,336
import tensorflow as tf `[num_nodes * count1]`, `[num_nodes * count1 * count2]` ... types: A list of `Tensor` of `int32`, with shapes `[num_nodes * count1]`, `[num_nodes * count1 * count2]` ... """ neighbors_list = [tf.reshape(nodes, [-1])] weights_list = [] type_list = [] for hop_edge_types, count in zip(edge_types, counts):
tensorflow.reshape
12,337
import tensorflow as tf # Implement an exponential learning rate decay every 1000 epochs #Implement a dynamical learning rate global_step = tf.Variable(0., trainable=False) rate = tf.train.exponential_decay(starter_learning, global_step, 500, 0.9) #exponential learning rate decay #rate = starter_learning
tensorflow.Variable
12,338
from tensorflow.contrib.framework import deprecated_args ops.add_to_collections(metrics_collections, mean_distance) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_distance, update_op @deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask') def streaming_percentage_less(values, threshold, ignore_mask=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the percentage of values less than the given threshold. The `streaming_percentage_less` function creates two local variables,
tensorflow.contrib.framework.deprecated_args
12,339
import tensorflow as tf else: entropy = - targets * np.log(targets) - \ (1. - targets) * np.log(1. - targets) return tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.ones_like(logits) * targets, logits=logits) - entropy def _setup_model_loss(self, update_ops=None, num_classes=6): self.learning_rate_d = tf.placeholder(tf.float32, shape=[], name="learning_rate_placeholder") self.learning_rate_g = tf.placeholder(tf.float32, shape=[], name="learning_rate_placeholder") d_optimizer = self._optimizer( self.learning_rate_d, optname=self.cnf.get('optname', 'momentum'), **self.cnf.get('opt_kwargs', {'decay': 0.9}))
tensorflow.placeholder
12,340
import tensorflow as tf 返回 ---- summaryWriter :FileWriter,日志写入器 """ if tf.gfile.Exists(logPath): tf.gfile.DeleteRecursively(logPath) summaryWriter = tf.summary.FileWriter(logPath, graph=tf.get_default_graph()) return summaryWriter
tensorflow.gfile.DeleteRecursively
12,341
import tensorflow as tf tf.app.flags.DEFINE_float('beta', 0.0005, 'Reconstruction from noisy data loss weight') tf.app.flags.DEFINE_float('epsilon', 0.000001, 'Diameter of epsilon sphere comparing to distance to a neighbour. <= 0.5') tf.app.flags.DEFINE_float('gamma', 50., 'Loss weight for large distances') tf.app.flags.DEFINE_float('distance', 0.01, 'Maximum allowed interpoint distance') tf.app.flags.DEFINE_float('delta', 1., 'Loss weight for stacked objective') tf.app.flags.DEFINE_string('comment', '', 'Comment to leave by the model')
tensorflow.app.flags.DEFINE_float
12,342
import tensorflow as tf # once per loop. with (tf.contrib.summary.create_file_writer( params['model_dir'], max_queue=params['iterations_per_loop']).as_default()): with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar( 'total_loss', tf.reduce_mean(total_loss), step=global_step) tf.contrib.summary.scalar( 'total_rpn_loss', tf.reduce_mean(total_rpn_loss), step=global_step) tf.contrib.summary.scalar( 'rpn_score_loss', tf.reduce_mean(rpn_score_loss), step=global_step) tf.contrib.summary.scalar( 'rpn_box_loss', tf.reduce_mean(rpn_box_loss), step=global_step) tf.contrib.summary.scalar( 'total_fast_rcnn_loss', tf.reduce_mean(total_fast_rcnn_loss), step=global_step) tf.contrib.summary.scalar( 'fast_rcnn_class_loss', tf.reduce_mean(fast_rcnn_class_loss), step=global_step) tf.contrib.summary.scalar( 'fast_rcnn_box_loss', tf.reduce_mean(fast_rcnn_box_loss), step=global_step) if params['include_mask']: tf.contrib.summary.scalar( 'mask_loss', tf.reduce_mean(mask_loss), step=global_step) tf.contrib.summary.scalar(
tensorflow.reduce_mean
12,343
import tensorflow as tf a_mask = tf.matrix_band_part(ones, -1, 0) s_ex12 = tf.expand_dims(tf.expand_dims(mask_sequence, 1), 2) s_ex13 = tf.expand_dims(tf.expand_dims(mask_sequence, 1), 3) a_mask = (1 - s_ex13) * (1 - s_ex12) + s_ex13 * a_mask # generate mask of batch x seq_len x seq_len a_mask = tf.reshape(a_mask, (-1, seq_len, seq_len)) out_mask = attention_mask * a_mask else: ones = tf.ones_like(attention_mask[:1]) mask = (tf.matrix_band_part(ones, -1, 0)) out_mask = attention_mask * mask else: out_mask = attention_mask return out_mask
tensorflow.matrix_band_part
12,344
from tensorflow.contrib.eager.python.examples.l2hmc import l2hmc hparams = get_default_hparams() for sample_size in [10, 25, 50, 100, 200]: hparams.n_samples = sample_size energy_fn, _, _ = l2hmc.get_scg_energy_fn() dynamics = l2hmc.Dynamics( x_dim=hparams.x_dim, minus_loglikelihood_fn=energy_fn, n_steps=hparams.n_steps,
tensorflow.contrib.eager.python.examples.l2hmc.l2hmc.Dynamics
12,345
import tensorflow as tf # main with tf.Session() as sess:
tensorflow.Session
12,346
import tensorflow as tf # Ensure maxnorm constraints are initially satisfied entity_init = dense_maxnorm(entity_init, self.maxnorm) self.entity_embedding_vars = tf.Variable(entity_init) self.rel_embedding_vars = tf.Variable(rel_init) # Embedding layer for each (head, rel, tail) triple being fed in as input head_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.head_input) tail_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.tail_input) rel_embed = tf.nn.embedding_lookup(self.rel_embedding_vars, self.rel_input) # Relationship vector acts as a translation in entity embedding space diff_vec = tail_embed - (head_embed + rel_embed) # negative dist so higher scores are better (important for pairwise loss) if self.dist == 'manhattan': raw_output = -tf.reduce_sum(tf.abs(diff_vec), 1) elif self.dist == 'euclidean': # +eps because gradients can misbehave for small values in sqrt raw_output = -tf.sqrt(tf.reduce_sum(tf.square(diff_vec), 1) + self.EPS) elif self.dist == 'sqeuclidean': raw_output = -tf.reduce_sum(tf.square(diff_vec), 1) else: raise Exception('Unknown distance type') # Model output self.output, self.loss = ranking_margin_objective(raw_output, self.margin) # Optimization with postprocessing to limit embedding vars to L2 ball self.train_step = self.opt.minimize(self.loss)
tensorflow.abs
12,347
import tensorflow as tf from planet.tools import filter_variables_lib Objective = collections.namedtuple( 'Objective', 'name, value, goal, include, exclude') def set_up_logging(): """Configure the TensorFlow logger.""" tf.logging.set_verbosity(tf.logging.INFO) logging.getLogger('tensorflow').propagate = False logging.getLogger('tensorflow').format = '%(message)s' logging.basicConfig(level=logging.INFO, format='%(message)s') def save_config(config, logdir=None): """Save a new configuration by name.
tensorflow.logging.set_verbosity
12,348
import tensorflow as tf with tf.gfile.Open(m_name) as fd: tf.logging.info("Restoring model parameters from %s" % m_name) json_str = fd.readline() params.parse_json(json_str) return params def export_params(output_dir, name, params): if not tf.gfile.Exists(output_dir): tf.gfile.MkDir(output_dir) # Save params as params.json filename = os.path.join(output_dir, name) with tf.gfile.Open(filename, "w") as fd: fd.write(params.to_json()) def collect_params(all_params, params): collected = tf.contrib.training.HParams() for k in params.values().keys(): collected.add_hparam(k, getattr(all_params, k)) return collected def merge_parameters(params1, params2):
tensorflow.gfile.Open
12,349
import tensorflow as tf ch_emb = conv(ch_emb, d, bias=True, activation=tf.nn.relu, kernel_size=5, name="char_conv", reuse=None) qh_emb = conv(qh_emb, d, bias=True, activation=tf.nn.relu, kernel_size=5, name="char_conv", reuse=True) ch_emb = tf.reduce_max(ch_emb, axis=1) qh_emb = tf.reduce_max(qh_emb, axis=1) ch_emb = tf.reshape(ch_emb, [N * self.max_p_num, PL, -1]) qh_emb = tf.reshape(qh_emb, [N * self.max_p_num, QL, -1]) c_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.c), 1.0 - self.dropout) q_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.q), 1.0 - self.dropout) c_emb = tf.concat([c_emb, ch_emb], axis=2) q_emb = tf.concat([q_emb, qh_emb], axis=2) self.c_emb = highway(c_emb, size=d, scope="highway", dropout=self.dropout, reuse=None) self.q_emb = highway(q_emb, size=d, scope="highway", dropout=self.dropout, reuse=True) def _encode(self): N, PL, QL, CL, d, dc, nh = self._params() if self.config.fix_pretrained_vector: dc = self.char_mat.get_shape()[-1] with tf.variable_scope("Embedding_Encoder_Layer"): self.c_embed_encoding = residual_block(self.c_emb, num_blocks=1, num_conv_layers=2, kernel_size=7,
tensorflow.concat
12,350
import tensorflow as tf logits1, logits2 = [l for l in self.logits] outer = tf.matmul(tf.expand_dims(tf.nn.softmax(logits1), axis=2), tf.expand_dims(tf.nn.softmax(logits2), axis=1)) outer = tf.matrix_band_part(outer, 0, config.ans_limit) self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1) self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1) losses = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits1, labels=self.y1) losses2 = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits2, labels=self.y2)
tensorflow.reduce_max
12,351
import tensorflow as tf # Generates a new MetaGraphDef. new_saver.export_meta_graph() # Restores from checkpoint. new_saver.restore(sess, saver0_ckpt) # Addes loss and train. labels = tf.constant(0, tf.int32, shape=[100], name="labels") batch_size = tf.size(labels) labels = tf.expand_dims(labels, 1) indices = tf.expand_dims(tf.range(0, batch_size), 1) concated = tf.concat(1, [indices, labels]) onehot_labels = tf.sparse_to_dense( concated, tf.pack([batch_size, 10]), 1.0, 0.0) logits = tf.get_collection("logits")[0] cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, onehot_labels, name="xentropy") loss = tf.reduce_mean(cross_entropy, name="xentropy_mean")
tensorflow.concat
12,352
import tensorflow as tf self.rnn_step_scan, tf.transpose(self.x, [1, 0, 2]),
tensorflow.transpose
12,353
import tensorflow as tf self.sess.run(tf.global_variables_initializer()) # Tensorboard if summary_dir is not None: self.writer = tf.summary.FileWriter(summary_dir) tf.summary.scalar('Loss/Policy', loss_pg) tf.summary.scalar('Loss/Value', loss_vf) tf.summary.scalar('Loss/Entropy', loss_entropy) tf.summary.scalar('Loss/Total', loss) tf.summary.scalar('Var/Epsilon', epsilon_decay) tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode())) tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev())) tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf)) self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES)) # AC net def build_anet(self, state_in, name, reuse=False): reg = tf.contrib.layers.l2_regularizer(1e-3)
tensorflow.summary.scalar
12,354
import tensorflow as tf rows = [tf.concat(tf.unstack(x),axis=1) for x in rows] x_aug = tf.concat(rows,axis=0)
tensorflow.concat
12,355
import tensorflow as tf tf.app.flags.DEFINE_float('learning_rate', 0.0001, '') tf.app.flags.DEFINE_integer('max_steps', 100000, '') tf.app.flags.DEFINE_integer('loss_scale', 1024, '') tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '') tf.app.flags.DEFINE_string('gpu_list', '1', '') tf.app.flags.DEFINE_string('checkpoint_path', '/tmp/east_resnet_v1_50_rbox/', '') tf.app.flags.DEFINE_boolean('restore', False, 'whether to resotre from checkpoint') tf.app.flags.DEFINE_integer('save_checkpoint_steps', 1000, '') tf.app.flags.DEFINE_integer('save_summary_steps', 100, '') tf.app.flags.DEFINE_string('pretrained_model_path', None, '') tf.app.flags.DEFINE_boolean('allow_mix_precision', False, 'whether to allow mix precision') tf.app.flags.DEFINE_boolean('auto_tune', False, 'whether to autotune') tf.app.flags.DEFINE_boolean('use_processed_data', False, 'whether to use processed data') tf.app.flags.DEFINE_string('processed_data', './processed_dataset/', 'where to save preprocessed datasets') import model import icdar
tensorflow.app.flags.DEFINE_string
12,356
import tensorflow as tf a `float`, center loss """ with tf.variable_scope(name): num_features = features.get_shape()[1] centers = tf.get_variable( 'centers', [num_classes, num_features], dtype=tf.float32, initializer=tf.constant_initializer(0), trainable=False) label = tf.reshape(label, [-1]) centers_batch = tf.gather(centers, label) diff = (1 - alpha) * (centers_batch - features) centers = tf.scatter_sub(centers, label, diff) loss = tf.nn.l2_loss(features - centers_batch)
tensorflow.constant_initializer
12,357
import tensorflow as tf train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True) train_hook=tf.train.LoggingTensorHook(['loss/train_loss'],every_n_iter=100) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps,hooks=[train_hook]) if FLAGS.do_eval: eval_examples = processor.get_dev_examples(FLAGS.data_dir) num_actual_eval_examples = len(eval_examples) if FLAGS.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored
tensorflow.train.LoggingTensorHook
12,358
import tensorflow as tf return default_params def bilstm_layer(self, embeddings, nwords): t = tf.transpose(embeddings, perm=[1, 0, 2]) lstm_cell_fw = tf.contrib.rnn.LSTMBlockFusedCell(self.params['lstm_size']) lstm_cell_bw = tf.contrib.rnn.LSTMBlockFusedCell(self.params['lstm_size'])
tensorflow.transpose
12,359
import tensorflow as tf train_step = tf.train.AdamOptimizer( learning_rate=config.learning_rate).minimize(cost) correct_prediction = tf.equal(tf.argmax(pred_Y, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, dtype=tf.float32)) # -------------------------------------------- # step4: Hooray, now train the neural network # -------------------------------------------- # Note that log_device_placement can be turned ON but will cause console spam. # Initializing the variables init = tf.initialize_all_variables() # Add ops to save and restore all the variables. saver = tf.train.Saver() best_accuracy = 0.0 # sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=False)) if (FLAG == 'train') : # If it is the training mode with tf.Session() as sess: # tf.initialize_all_variables().run() sess.run(init) # .run() f.write("---Save model \n")
tensorflow.initialize_all_variables
12,360
import tensorflow as tf # 2nd part of minimize: apply_gradient optimizer_step = self._optimizer.apply_gradients(clipped_grads_and_vars, global_step=self.global_step) update_ops = tf.group(*self.update_ops) self.training_op = tf.group(update_ops, optimizer_step) def set_check_ops(self): self._check_ops = 1 # TODO argo2 This is not working anymore with the new session #with self.sess.graph.as_default(): self._numerics_ops = tf.add_check_numerics_ops() def release(self): super().release() self.sess.close() tf.reset_default_graph() def set_summaries(self): """This function sets summaries and summaryFileWriters, it needs to be invoked before training to keep track of the summaries. (cannot be invoked in create_and_init_network because the FileWriter will corrupt data in the logfolder at each initialization) """
tensorflow.add_check_numerics_ops
12,361
import tensorflow as tf self.build_predictive_model() # builds on top of predictive model. Reuses triplet encoding # build denoising objective models = self.models self.loss_dn = self._noisy_decode(models[1]) self.losses = [self.loss_reco, self.loss_pred, self.loss_dist, self.loss_dn] def _noisy_decode(self, model): """Distort middle encoding with [<= 1/3*dist(neigbour)] and demand good reconstruction""" # dist = l2(x1 - x2) # noise = dist * self.epsilon_sphere_noise() # tf.stop_gradient(noise) noise = tf.random_normal(self.model.encode.get_shape().as_list()) * FLAGS.epsilon noisy_encoding = noise + self.models[1].encode tf.stop_gradient(noisy_encoding) # or maybe here, who knows noisy_decode = interpreter.build_decoder(noisy_encoding, model.config, reuse=True, masks=model.mask_list) loss = interpreter.l2_loss(noisy_decode, self.raw_targets[1], alpha=FLAGS.beta) self.models += [noisy_decode] return loss def _tensor_to_image(self, net): with tf.name_scope('to_image'): if FLAGS.new_blur: net = net[..., :self.batch_shape[-1]] net = tf.nn.relu(net) net = tf.cast(net <= 1, net.dtype) * net * 255 net = tf.cast(net, tf.uint8) return net
tensorflow.stop_gradient
12,362
import tensorflow as tf writer.close() def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([seq_length], tf.int64), "is_real_example": tf.FixedLenFeature([1], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features)
tensorflow.FixedLenFeature
12,363
import tensorflow as tf initializer=tf.constant_initializer(0.0)) def __call__(self,input_var,name=None,w=None,b=None,**kwargs) : w = w if w is not None else self.w b = b if b is not None else self.b if( input_var.shape.ndims > 2 ) : dims = tf.reduce_prod(tf.shape(input_var)[1:]) return tf.matmul(tf.reshape(input_var,[-1,dims]),w) + b else : return tf.matmul(input_var,w)+b def get_variables(self): return {'w':self.w,'b':self.b} class WeightNormLinear(object): def __init__(self,name,input_dim,output_dim,stddev=0.02,epsilon=1e-10) :
tensorflow.reshape
12,364
import tensorflow as tf def testStrippedOpListDef(self): with self.test_session(): # Creates a graph. v0 = tf.Variable(0.0) var = tf.Variable(10.0) tf.add(v0, var) @function.Defun(x=tf.float32) def minus_one(x): return x - 1 minus_one(tf.identity(v0)) save = tf.train.Saver({"v0": v0}) tf.initialize_all_variables() # Generates MetaGraphDef. meta_graph_def = save.export_meta_graph() ops = [o.name for o in meta_graph_def.meta_info_def.stripped_op_list.op] self.assertEqual(ops, ["Add", "Assign", "Const", "Identity", "NoOp", "RestoreSlice", "SaveSlices", "Sub", "Variable"]) if __name__ == "__main__": tf.test.main()
tensorflow.initialize_all_variables
12,365
import tensorflow as tf [int(feature.is_real_example)]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString())
tensorflow.train.Features
12,366
import tensorflow as tf Return: A tuple of `SparseTensor` (neibors, weights). neighbors: A `SparseTensor` of `int64`. weights: A `SparseTensor` of `float`. types: A `SparseTensor` of `int32` """ sp_returns = base._LIB_OP.get_full_neighbor(nodes, edge_types) return tf.SparseTensor(*sp_returns[:3]), tf.SparseTensor(*sp_returns[3:6]), \ tf.SparseTensor(*sp_returns[6:]) def get_sorted_full_neighbor(nodes, edge_types): """ Args: nodes: A `Tensor` of `int64`. edge_types: A 1-D `Tensor` of int32. Specify edge types to filter outgoing edges.
tensorflow.SparseTensor
12,367
import tensorflow as tf self.sample_action = tf.squeeze(pi_eval.sample(1), axis=0) self.eval_action = pi_eval.mode() self.global_step = tf.train.get_or_create_global_step() self.saver = tf.train.Saver()
tensorflow.train.get_or_create_global_step
12,368
import tensorflow as tf predict_nor, tsne_logit_nor = models(hps, image, FLAGS.RCE_train, logits=False, tsne_logits=True) predict_adv, tsne_logit_adv = models(hps, adv_image, FLAGS.RCE_train, logits=False, tsne_logits=True) # Calculate entropy argmax_y_onehot = tf.one_hot(tf.argmax(predict, 1), 10, on_value=0.0, off_value=1.0, axis=-1) normalized_y_nonmaximal = tf.reduce_sum(predict * argmax_y_onehot, 1) entropy = tf.reduce_sum(-tf.log(predict) * predict * argmax_y_onehot, 1) / normalized_y_nonmaximal + tf.log( normalized_y_nonmaximal)
tensorflow.argmax
12,369
import tensorflow as tf :param name: :return: tf.Tensor: a NC tensor named ``output`` with attribute `variables`. """ shape = inputdata.get_shape().as_list()[1:] if None not in shape: inputdata = tf.reshape(inputdata, [-1, int(np.prod(shape))]) else: inputdata = tf.reshape(inputdata, tf.stack([tf.shape(inputdata)[0], -1])) if w_init is None: w_init = tf.contrib.layers.variance_scaling_initializer() if b_init is None: b_init = tf.constant_initializer()
tensorflow.shape
12,370
import tensorflow as tf def add_dense_layer(layer, filter_dims, act_func=tf.nn.relu, scope='dense_layer', use_bn=True, bn_phaze=False, use_bias=False, dilation=[1, 1, 1, 1]): with tf.variable_scope(scope): l = layer if use_bn:
tensorflow.variable_scope
12,371
import tensorflow as tf def _forward(self, x1, x2, **kwargs): log_sigmas = self.parameterizer(x1) z2, fldj = half_gaussianize(x2, log_sigmas) return z2, fldj def _inverse(self, x1, z2, **kwargs): log_sigmas = self.parameterizer(x1) x2, ildj = half_gaussianize(z2, log_sigmas, inverse=tf.constant(True)) return x2, ildj def exponentiate(x, log_lambdas, inverse=tf.constant(False)): if not inverse: z = tf.math.exp(log_lambdas)*x ldj = tf.math.reduce_sum(log_lambdas, axis=[1,2,3]) else: z = x*tf.math.exp(-log_lambdas) ldj = -tf.math.reduce_sum(log_lambdas, axis=[1,2,3]) return z, ldj class Exponentiate(Parameterize): """ Implementation of parameterize for an exponetial prior. """ def __init__(self, input_shape=None, name='gaussianize', *args, **kwargs):
tensorflow.math.exp
12,372
from tensorflow.python.framework import ops total = _create_local('total', shape=[]) count = _create_local('count', shape=[]) if weights is not None: weights = math_ops.to_float(weights) values = math_ops.mul(values, weights) num_values = math_ops.reduce_sum(_broadcast_weights(weights, values)) else: num_values = math_ops.to_float(array_ops.size(values)) total_compute_op = state_ops.assign_add(total, math_ops.reduce_sum(values)) count_compute_op = state_ops.assign_add(count, num_values) mean = _safe_div(total, count, 'value') with ops.control_dependencies([total_compute_op, count_compute_op]): update_op = _safe_div(total, count, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, mean) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean, update_op def streaming_mean_tensor(values, weights=None, metrics_collections=None, updates_collections=None, name=None):
tensorflow.python.framework.ops.control_dependencies
12,373
import tensorflow as tf reshaped_train_labels = tf.transpose(tf.convert_to_tensor(train_labels)) # reshape from [rank_list_size, ?] to [?, rank_list_size] self.propensity_weights = self.get_normalized_weights(self.logits_to_prob(self.propensity)) self.rank_loss = self.loss_func(train_output, reshaped_train_labels, self.propensity_weights) pw_list = tf.unstack(self.propensity_weights, axis=1) # Compute propensity weights self.click_metrics=self.click_loglikelihood(reshaped_train_labels,\ self.propensity,train_output) tf.summary.scalar('click_metrics',self.click_metrics,collections=['train']) for i in range(len(pw_list)): tf.summary.scalar('Inverse Propensity weights %d' % i, tf.reduce_mean(pw_list[i]), collections=['train']) tf.summary.scalar('Rank Loss', tf.reduce_mean(self.rank_loss), collections=['train']) # Compute examination loss
tensorflow.summary.scalar
12,374
import tensorflow as tf self.IRK_times = tmp[q**2+q:] # tf placeholders and graph self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) self.x0_tf = tf.placeholder(tf.float32, shape=(None, self.x0.shape[1])) self.x1_tf = tf.placeholder(tf.float32, shape=(None, self.x1.shape[1])) self.u0_tf = tf.placeholder(tf.float32, shape=(None, self.u0.shape[1])) self.u1_tf = tf.placeholder(tf.float32, shape=(None, self.u1.shape[1])) self.dummy_x0_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients self.dummy_x1_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients self.U0_pred = self.net_U0(self.x0_tf) # N0 x q self.U1_pred = self.net_U1(self.x1_tf) # N1 x q
tensorflow.placeholder
12,375
import tensorflow as tf if init: x = tf.nn.conv2d(x, tf.nn.l2_normalize(V.initialized_value(), [0, 1, 2]), [1] + list(stride) + [1], pad) init_scale=.01 m_init, v_init = tf.nn.moments(x, [0,1,2]) scale_init = init_scale / tf.sqrt(v_init + 1e-10) with tf.control_dependencies([g.assign(g * scale_init), b.assign_add(-m_init * scale_init)]): x = tf.reshape(scale_init, [1, 1, 1, num_filters]) * (x - tf.reshape(m_init, [1, 1, 1, num_filters])) else: V = maybe_avg(V) g = maybe_avg(g) b = maybe_avg(b) # use weight normalization (Salimans & Kingma, 2016) W = tf.reshape(g, [1, 1, 1, num_filters]) * tf.nn.l2_normalize(V, [0, 1, 2]) # calculate convolutional layer output x = tf.nn.bias_add(tf.nn.conv2d(x, W, [1] + list(stride) + [1], pad), b) return x def gated_resnet(x, aux, dim=(32, [3, 3], [1, 1]), activation=tf.nn.elu, scope="gated_resnet", residual=True, dropout=.0, conv=conv2d, training=True, ema=None, init=False): out = conv(activation(x), [dim[0], dim[1], [1, 1]], scope="%s_conv_in"%scope, training=training, ema=ema, init=init) in_shp = x.get_shape().as_list() assert in_shp[1] == in_shp[2] if aux is not None: aux_shp = aux.get_shape().as_list()
tensorflow.nn.l2_normalize
12,376
import tensorflow as tf if self.dale_ratio: new_output = tf.matmul(tf.nn.relu(new_state), tf.matmul(tf.abs(self.W_out) * self.output_Connectivity, self.Dale_out, name="in_2"), transpose_b=True, name="3") \ + self.b_out else: new_output = tf.matmul(tf.nn.relu(new_state), self.W_out * self.output_Connectivity, transpose_b=True, name="3") \ + self.b_out return new_output
tensorflow.nn.relu
12,377
import tensorflow as tf print('\ndeterminant(D)={:.1f}'.format(sess.run(tf.matrix_determinant(D)))) print('\ncholesky(D):') print(sess.run(tf.cholesky(identity_matrix))) print('\nselfAdjointEig(D):') print(sess.run(tf.self_adjoint_eig(D))) print(sess.run(tf.div(13, 4))) print(sess.run(tf.truediv(13, 4))) print(sess.run(tf.floordiv(13, 4))) print(sess.run(tf.mod(13.2, 4))) print(sess.run(tf.cross([1, 0, 0], [0, 1, 0]))) print(sess.run(tf.square([1, 2, 3]))) def custom_polynomial(local_tf, value): return local_tf.subtract(3 * local_tf.square(value), value) + 10 print((sess.run(custom_polynomial(tf, 11)))) alpha = 0.1 val = tf.constant([[2, 3], [1, 4]], dtype=tf.float32) l1 = tf.contrib.layers.l1_regularizer(alpha)(val)
tensorflow.cross
12,378
import tensorflow as tf tf.flags.DEFINE_float('num_epochs_per_decay', 0, """Steps after which learning rate decays.""") tf.flags.DEFINE_float('learning_rate_decay_factor', 0.94, """Learning rate decay factor.""") tf.flags.DEFINE_float('momentum', 0.9, """Momentum for training.""") tf.flags.DEFINE_float('rmsprop_decay', 0.9, """Decay term for RMSProp.""") tf.flags.DEFINE_float('rmsprop_momentum', 0.9, """Momentum in RMSProp.""") tf.flags.DEFINE_float('rmsprop_epsilon', 1.0, """Epsilon term for RMSProp.""")
tensorflow.flags.DEFINE_float
12,379
import tensorflow as tf input_files = [] for input_pattern in FLAGS.input_file.split(","): input_files.extend(tf.gfile.Glob(input_pattern)) tf.logging.info("*** Input Files ***") for input_file in input_files: tf.logging.info(" %s" % input_file) tpu_cluster_resolver = None if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
tensorflow.logging.info
12,380
import tensorflow as tf x_blend_expected_np = sess.run(layers.upscale(layers.downscale(x, 2), 2)) self.assertNDArrayNear(x_blend_np, x_blend_expected_np, 1.0e-6) def test_blend_images_in_transition_stage(self): x_np = np.random.normal(size=[2, 8, 8, 3]) x = tf.constant(x_np, tf.float32) x_blend = networks.blend_images( x, tf.constant(0.2), resolution_schedule=networks.ResolutionSchedule( scale_base=2, num_resolutions=2), num_blocks=2) with self.test_session(use_gpu=True) as sess: x_blend_np = sess.run(x_blend) x_blend_expected_np = 0.8 * sess.run( layers.upscale(layers.downscale(x, 2), 2)) + 0.2 * x_np
tensorflow.constant
12,381
import tensorflow as tf num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"]
tensorflow.logging.info
12,382
import tensorflow as tf # Need to prepare a mask to zero out the padding symbols. # Make a batch_size x max_sequence_len matrix where each # row contains the length repeated max_sequence_len times. lengths_transposed = tf.expand_dims(tf.to_int32(self.seq_lens), 1) lengths_tiled = tf.tile(lengths_transposed, [1, max_sequence_len]) # Make a matrix where each row contains [0, 1, ..., max_sequence_len] r = tf.range(0, max_sequence_len, 1) range_row = tf.expand_dims(r, 0) range_tiled = tf.tile(range_row, [batch_size, 1])
tensorflow.tile
12,383
import tensorflow as tf # L2 weight regularization reg += self.L2_in * tf.reduce_mean(tf.square(tf.abs(self.W_in) * self.input_Connectivity)) reg += self.L2_rec * tf.reduce_mean(tf.square(tf.abs(self.W_rec) * self.rec_Connectivity)) if self.dale_ratio: reg += self.L2_out * tf.reduce_mean(tf.square( tf.matmul(tf.abs(self.W_out) * self.output_Connectivity, self.Dale_out))) else: reg += self.L2_out * tf.reduce_mean(tf.square(tf.abs(self.W_out) * self.output_Connectivity)) # L2 firing rate regularization reg += self.L2_firing_rate * tf.reduce_mean(tf.square(tf.nn.relu(self.states)))
tensorflow.abs
12,384
import tensorflow as tf idx = tf.tile(tf.to_float(tf.range(attn_length)), tf.stack([batch_size])) idx = tf.reshape(idx, [-1, attn_length]) low = pos - encoder.attn_window_size high = pos + encoder.attn_window_size mlow = tf.to_float(idx < low) mhigh = tf.to_float(idx > high) m = mlow + mhigh m += tf.to_float(idx >= encoder_input_length) mask = tf.to_float(tf.equal(m, 0.0))
tensorflow.to_float
12,385
import tensorflow as tf tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small)) loss = tf.reduce_mean(loss) return loss def contra_step_lossV3(pred, tgt, margin=1.0): # Step-wise contrastive loss pred1, pred2 = tf.split(pred, 2, axis=0) tgt1, tgt2 = tf.split(tgt, 2, axis=0) geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small) + margin) loss = tf.reduce_mean(loss) return loss def contra_step_lossV4(pred, tgt): # 50*50 # Step-wise contrastive loss
tensorflow.cast
12,386
import tensorflow as tf # Open session and restore checkpoint sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
tensorflow.ConfigProto
12,387
import tensorflow as tf layer_name = 'layer' + str(i+1) with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE): weights = tf.get_variable('weights', [prev_node, hidden_layers_node[i]], initializer=tf.truncated_normal_initializer(stddev=0.1)) self.nnweights.append(weights) biases = tf.get_variable('biases', [hidden_layers_node[i]], initializer=tf.constant_initializer(0.0)) layer_out = tf.nn.dropout(tf.matmul(prev_x, weights) + biases, dropout_keep_prob) if activation == 'relu': layer_out = tf.nn.relu(layer_out) elif activation == 'sigmoid': layer_out = tf.nn.sigmoid(layer_out) elif activation == 'tanh': layer_out = tf.nn.tanh(layer_out) else:
tensorflow.matmul
12,388
import tensorflow as tf def uint8_resize_bicubic(image, shape): ret = tf.image.resize_bicubic([image], shape) return tf.cast(tf.clip_by_value(ret, 0, 255), tf.uint8)[0]
tensorflow.clip_by_value
12,389
import tensorflow as tf # Add episode indices. with tf.control_dependencies(control_inputs=assignments): num_episodes = tf.count_nonzero(input_tensor=terminal, axis=0, dtype=util.tf_dtype('int')) assignment = tf.assign( ref=self.episode_indices[self.episode_count: self.episode_count + num_episodes], value=tf.boolean_mask(tensor=indices, mask=terminal) ) # Increment episode count. with tf.control_dependencies(control_inputs=(assignment,)): assignment = tf.assign_add(ref=self.episode_count, value=num_episodes) # Increment memory index. with tf.control_dependencies(control_inputs=(assignment,)): assignment = tf.assign( ref=self.episode_indices[-1], value=tf.where(self.memory_index + num_instances > self.capacity, self.episode_indices[self.episode_count - 1], self.capacity - 1)
tensorflow.control_dependencies
12,390
import tensorflow as tf with tf.variable_scope('q1', reuse=True): q1_pi, q1_pi_reg = mlp_variational(tf.concat([x, pi[0]], axis=-1), q1_dropout_mask_phs, list(hidden_sizes) + [1], activation, None, dropout_rate) q1_pi = tf.squeeze(q1_pi, axis=2) with tf.variable_scope('q2'): q2_in_ph = tf.concat([x, a], axis=-1) q2_in_dim = q2_in_ph.shape.as_list()[1] q2_dropout_mask_generator = DropoutMaskGenerator(q2_in_dim, hidden_sizes, model_prob=1.0 - dropout_rate) q2_dropout_mask_phs = q2_dropout_mask_generator.generate_dropout_mask_placeholders() q2, q2_reg = mlp_variational(q2_in_ph, q2_dropout_mask_phs, list(hidden_sizes) + [1], activation, None, dropout_rate) q2 = tf.squeeze(q2, axis=2) else: raise ValueError('Please choose a proper nn_type!') return pi, pi_reg, pi_dropout_mask_generator, pi_dropout_mask_phs,\ q1, q1_reg, q1_dropout_mask_generator, q1_dropout_mask_phs, q1_pi, q1_pi_reg,\ q2, q2_reg, q2_dropout_mask_generator, q2_dropout_mask_phs
tensorflow.squeeze
12,391
import tensorflow as tf true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. """ true_image_shapes = [inputs.shape[:-1].as_list() for _ in range(inputs.shape[-1])] return tf.image.resize_images(inputs, [28, 28]), true_image_shapes def predict(self, preprocessed_inputs, true_image_shapes): """Prediction tensors from inputs tensor. Args: preprocessed_inputs: a [batch, 28, 28, channels] float32 tensor.
tensorflow.image.resize_images
12,392
from tensorflow.python.platform import tf_logging as logging failure_message = "Model diverged with loss = NaN." if self._fail_on_nan_loss: logging.error(failure_message) raise NanLossDuringTrainingError else: logging.warning(failure_message) # We don't raise an error but we return "should stop" so we stop, but # without an exception. return True
tensorflow.python.platform.tf_logging.warning
12,393
import tensorflow as tf def squeeze_targets_preprocess(dataset, training): """Pre-processing function that squeezes last axis of targets.""" del training def squeeze(features, targets): if targets.shape[-1] == 1: targets = tf.squeeze(targets, axis=-1) return features, targets dataset = dataset.map(squeeze) return dataset
tensorflow.squeeze
12,394
import tensorflow as tf """ Used to create a dense layer. :param x: input tensor to the dense layer :param n1: no. of input neurons :param n2: no. of output neurons :param name: name of the entire dense layer.i.e, variable scope name. :return: tensor with shape [batch_size, n2] """ with tf.variable_scope(name, reuse=None): weights = tf.get_variable("weights", shape=[n1, n2], initializer=tf.random_normal_initializer(mean=0., stddev=0.01)) bias = tf.get_variable("bias", shape=[n2], initializer=tf.constant_initializer(0.0)) out = tf.add(tf.matmul(x, weights), bias, name='matmul') return out
tensorflow.variable_scope
12,395
from tensorflow.python.ops import math_ops delta_mean_prediction = _safe_div( (batch_mean_prediction - mean_prediction) * batch_count, update_count, 'delta_mean_prediction') update_mean_prediction = state_ops.assign_add(mean_prediction, delta_mean_prediction) # prev_mean_prediction is E[x_A] in the update equation prev_mean_prediction = update_mean_prediction - delta_mean_prediction # batch_mean_label is E[y_B] in the update equation batch_mean_label = _safe_div( math_ops.reduce_sum(weighted_labels), batch_count, 'batch_mean_label') delta_mean_label = _safe_div((batch_mean_label - mean_label) * batch_count, update_count, 'delta_mean_label') update_mean_label = state_ops.assign_add(mean_label, delta_mean_label) # prev_mean_label is E[y_A] in the update equation prev_mean_label = update_mean_label - delta_mean_label unweighted_batch_coresiduals = ( (predictions - batch_mean_prediction) * (labels - batch_mean_label)) # batch_comoment is C_B in the update equation
tensorflow.python.ops.math_ops.reduce_sum
12,396
import tensorflow as tf if input_layer is None: input_layer = self.top_layer self.top_layer = tf.reshape(input_layer, shape) self.top_size = shape[-1] # HACK This may not always work
tensorflow.reshape
12,397
import tensorflow as tf """ matrices = [tf.convert_to_tensor(matrix, dtype=dtype) for matrix in matrices] blocked_rows = tf.Dimension(0) blocked_cols = tf.Dimension(0) batch_shape = tf.TensorShape(None)
tensorflow.Dimension
12,398
import tensorflow as tf with tf.variable_scope('lstm', reuse=(t!=0)): _, (c, h) = lstm_cell(inputs=tf.concat(axis=1, values=[x[:,t,:], context]), state=[c, h]) logits = self._decode_lstm(x[:,t,:], h, context, dropout=self.dropout, reuse=(t!=0)) loss += tf.reduce_sum(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=captions_out[:, t]) * mask[:, t]) if self.alpha_c > 0: alphas = tf.transpose(tf.stack(alpha_list), (1, 0, 2)) # (N, T, L) alphas_all = tf.reduce_sum(alphas, 1) # (N, L) alpha_reg = self.alpha_c * tf.reduce_sum((16./196 - alphas_all) ** 2) loss += alpha_reg return loss / tf.to_float(batch_size)
tensorflow.stack
12,399