seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf initializer=tf.constant_initializer(b_init)) b_soft_no_learn = np.array( [0.25, 0.25] + [-0.25] * (self.num_branches - 2), dtype=np.float32) b_soft_no_learn = np.reshape(b_soft_no_learn, [1, self.num_branches]) self.b_soft_no_learn = tf.constant(b_soft_no_learn, dtype=tf.float32) with tf.variable_scope("attention"): self.w_attn_1 = tf.get_variable("w_1", [self.lstm_size, self.lstm_size]) self.w_attn_2 = tf.get_variable("w_2", [self.lstm_size, self.lstm_size]) self.v_attn = tf.get_variable("v", [self.lstm_size, 1]) def _build_sampler(self, prev_c=None, prev_h=None, use_bias=False): """Build the sampler ops and the log_prob ops.""" print ("-" * 80)
tensorflow.get_variable
12,400
import tensorflow as tf num_steps=2, ).prefetch(3) self._iterator = iter(dataset) experience, unused_info = next(self._iterator) if self._relabel_type in ["soft", "random"]: experience = self._soft_relabel(experience) elif self._relabel_type in ["last", "future"]: # Reassign the next_states to have the same goal as the current states _, tasks = self._task_distribution.split(experience.observation[:, 0]) next_states, _ = self._task_distribution.split(experience.observation[:, 1]) next_states_and_tasks = self._task_distribution.combine( next_states, tasks) new_observation = tf.concat( [ experience.observation[:, 0][:, None], next_states_and_tasks[:, None] ], axis=1, ) assert new_observation.shape == experience.observation.shape experience = experience.replace(observation=new_observation) if self._relabel_type is not None: # Recompute rewards and done flags states, tasks = self._task_distribution.split(experience.observation[:, 0])
tensorflow.concat
12,401
import tensorflow as tf uniques: ([1.0, 2.0, 3.0]) output final index: ([[0, 1], [1, 2], [2, 2], [0, 1]] ) """ t_flatten = tf.reshape(t, shape=(-1,)) uniques, index = tf.unique(t_flatten) return uniques, tf.reshape(index, shape=tf.shape(t)) class _ClusterPreserveInfo(object): """ClusterPreserveInfo.""" def __init__(self, weight_attrs, quantize_config_attrs):
tensorflow.reshape
12,402
import tensorflow as tf def f(a): return a f(tf.constant([1])) # Intentionally using tf.Session() instead of self.test_session() to have # control over closing the session. test_session() is a cached session. with tf.Session(): coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord) time.sleep(_SLEEP_TIME) coord.request_stop() # Calls close operation. coord.join() # Session closed.
tensorflow.Session
12,403
import tensorflow as tf logits) = classifier.classifier(model_config, model.get_pooled_output(), num_labels, label_ids, dropout_prob) label_loss = tf.reduce_sum(per_example_loss * features["label_ratio"]) / (1e-10+tf.reduce_sum(features["label_ratio"])) tf.get_variable_scope().reuse_variables() (tgt_loss, tgt_per_example_loss,
tensorflow.reduce_sum
12,404
import tensorflow as tf use_xavier: bool, whether to use xavier initializer Returns: Variable Tensor """ if use_xavier: initializer = tf.contrib.layers.xavier_initializer() var = _variable_on_cpu(name, shape, initializer) else: # initializer = tf.truncated_normal_initializer(stddev=stddev) with tf.device('/cpu:0'): var = tf.truncated_normal(shape, stddev=np.sqrt(2 / shape[-1])) var = tf.round(var * tf.constant(1000, dtype=tf.float32)) / tf.constant(1000, dtype=tf.float32) var = tf.Variable(var, name='weights') if wd is not None: weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var
tensorflow.device
12,405
import tensorflow as tf # saved model restoring if args.restore: # Restore saved model if the user requested it, default = True try: checkpoint_state = tf.train.get_checkpoint_state(save_dir) if checkpoint_state and checkpoint_state.model_checkpoint_path: log("Loading checkpoint {}".format(checkpoint_state.model_checkpoint_path), slack=True)
tensorflow.train.get_checkpoint_state
12,406
import tensorflow as tf initializer=tf.random_normal_initializer(stddev=stddev)) # print("w", w.get_shape()) try: deconv = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape, strides=[1, d_h, d_w, 1])
tensorflow.nn.conv2d_transpose
12,407
import tensorflow as tf class StackedBilstmCrfModel(Model): @classmethod def default_params(cls): default_params = { 'stacked_layers': 2 } return default_params def bilstm_layer(self, embeddings, nwords): t = tf.transpose(embeddings, perm=[1, 0, 2]) lstm_cell_fw = tf.contrib.rnn.LSTMBlockFusedCell(self.params['lstm_size']) lstm_cell_bw = tf.contrib.rnn.LSTMBlockFusedCell(self.params['lstm_size']) lstm_cell_bw = tf.contrib.rnn.TimeReversedFusedRNN(lstm_cell_bw) output_fw, _ = lstm_cell_fw(t, dtype=tf.float32, sequence_length=nwords) output_bw, _ = lstm_cell_bw(t, dtype=tf.float32, sequence_length=nwords) output = tf.concat([output_fw, output_bw], axis=-1) # transpose it back output = tf.transpose(output, perm=[1, 0, 2]) return output def call(self, embeddings, nwords):
tensorflow.contrib.rnn.LSTMBlockFusedCell
12,408
import tensorflow as tf l[:, :, :, :, 2 * nr_mix:3 * nr_mix]) * sel, 4) # sample from logistic & clip to interval # we don't actually round to the nearest 8bit value when sampling u = tf.random_uniform(tf.shape(means), minval=1e-5, maxval=1. - 1e-5) x = means + tf.exp(log_scales) * (tf.log(u) - tf.log(1. - u)) x0 = tf.minimum(tf.maximum(x[:, :, :, 0], -1.), 1.)
tensorflow.shape
12,409
import tensorflow as tf init_fw, init_bw = self.inits[layer] mask_fw, mask_bw = self.dropout_mask[layer] with tf.variable_scope("fw_{}".format(layer)): out_fw, _ = tf.nn.dynamic_rnn( gru_fw, outputs[-1] * mask_fw, seq_len, initial_state=init_fw, dtype=tf.float32) with tf.variable_scope("bw_{}".format(layer)): inputs_bw = tf.reverse_sequence( outputs[-1] * mask_bw, seq_lengths=seq_len, seq_dim=1, batch_dim=0) out_bw, _ = tf.nn.dynamic_rnn( gru_bw, inputs_bw, seq_len, initial_state=init_bw, dtype=tf.float32) out_bw = tf.reverse_sequence( out_bw, seq_lengths=seq_len, seq_dim=1, batch_dim=0) outputs.append(tf.concat([out_fw, out_bw], axis=2)) if concat_layers: res = tf.concat(outputs[1:], axis=2) else: res = outputs[-1] return res class ptr_net: def __init__(self, batch, hidden, keep_prob=1.0, is_train=None, scope="ptr_net"): self.gru = tf.contrib.rnn.GRUCell(hidden) self.batch = batch
tensorflow.concat
12,410
import tensorflow as tf self.end_label = tf.placeholder(tf.int32, [None], "answer_label2") else: self.c = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_p_len], "context") self.q = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_q_len], "question") self.ch = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_p_len, self.config.max_ch_len], "context_char") self.qh = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_q_len, self.config.max_ch_len], "question_char") self.start_label = tf.placeholder(tf.int32, [self.config.batch_size], "answer_label1") self.end_label = tf.placeholder(tf.int32, [self.config.batch_size], "answer_label2")
tensorflow.placeholder
12,411
import tensorflow as tf self.actions = tf.placeholder(tf.float32, [None, self.a_dim], 'action') self.state = tf.placeholder(tf.float32, [None, self.s_dim[0]], 'state') self.advantage = tf.placeholder(tf.float32, [None, 1], 'advantage') self.rewards = tf.placeholder(tf.float32, [None, 1], 'rewards') self.keep_prob = tf.placeholder(tf.float32, name='dropout_keep_prob') # Dateset with experiennce replay self.dataset = tf.data.Dataset.from_tensor_slices({'state': self.state, 'actions': self.actions, 'rewards': self.rewards, 'advantage': self.advantage}) self.dataset = self.dataset.batch(self.MINIBATCH, drop_remainder=True) self.data_iter = self.dataset.make_initializable_iterator() batch = self.data_iter.get_next() # Call ppo net
tensorflow.data.Dataset.from_tensor_slices
12,412
import tensorflow as tf x_blend_np = sess.run(x_blend) x_blend_expected_np = 0.8 * sess.run( layers.upscale(layers.downscale(x, 2), 2)) + 0.2 * x_np self.assertNDArrayNear(x_blend_np, x_blend_expected_np, 1.0e-6) def test_num_filters(self): self.assertEqual(networks.num_filters(1, 4096, 1, 256), 256) self.assertEqual(networks.num_filters(5, 4096, 1, 256), 128) def test_generator_grad_norm_progress(self): stable_stage_num_images = 2 transition_stage_num_images = 3 current_image_id_ph = tf.placeholder(tf.int32, []) progress = networks.compute_progress( current_image_id_ph, stable_stage_num_images, transition_stage_num_images, num_blocks=3) z = tf.random_normal([2, 10], dtype=tf.float32) x, _ = networks.generator( z, progress, _num_filters_stub, networks.ResolutionSchedule( start_resolutions=(4, 4), scale_base=2, num_resolutions=3)) fake_loss = tf.reduce_sum(tf.square(x)) grad_norms = [
tensorflow.placeholder
12,413
import tensorflow as tf # In the demo, we are doing a simple classification task on the entire # segment. # # If you want to use the token-level output, use model_bak.get_sequence_output() # instead. output_layer = model.get_pooled_output() hidden_size = output_layer.shape[-1].value output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
tensorflow.zeros_initializer
12,414
import tensorflow as tf Args: xs: 4-D `tensor` [batch_size, height, width, channels], input Returns: a `float` decov loss """ with tf.name_scope(name): x = tf.reshape(xs, [int(xs.get_shape()[0]), -1]) m = tf.reduce_mean(x, 0, True) z = tf.expand_dims(x - m, 2) corr = tf.reduce_mean(tf.matmul(z, tf.transpose(z, perm=[0, 2, 1])), 0) corr_frob_sqr = tf.reduce_sum(tf.square(corr)) corr_diag_sqr = tf.reduce_sum(tf.square(tf.diag_part(corr))) loss = 0.5 * (corr_frob_sqr - corr_diag_sqr) return loss
tensorflow.reduce_mean
12,415
import tensorflow as tf else: raise ValueError('Number of scales must stay constant or decrease, got {}'.format(FLAGS.pm)) out = tf.nn.max_pool3d(bottom, ksize=[1,kernel_size,1,1,1], strides=[1,1,1,1,1], padding='VALID') shape = out.get_shape() print('scale{}'.format(l + 1)) print('\t{} --> {}'.format(bottom.name, out.name)) print('\t{} --> {}'.format(bottom.get_shape(), out.get_shape())) with tf.variable_scope('fully_connected'): bottom = out bottom_shape = bottom.get_shape().as_list() reshape = tf.reshape( bottom, [-1, bottom_shape[1] * bottom_shape[2] * bottom_shape[3] * bottom_shape[4]]) W_fc1 = weight_variable([bottom_shape[1] * bottom_shape[2] * bottom_shape[3] * bottom_shape[4], NUM_CLASSES()])
tensorflow.variable_scope
12,416
import tensorflow as tf pos = beam_search.resize_like(pos, symbol) max_pos = beam_search.resize_like(max_pos, symbol) pos += tf.to_float(is_not_ins) if max_pos is not None: pos = tf.minimum(pos, tf.to_float(max_pos)) return pos def generate(state, input_, context): if decoder.pred_use_lstm_state is False: # for back-compatibility
tensorflow.to_float
12,417
import tensorflow as tf """Decorator to capture ops created in the block. with capture_ops() as ops: # create some ops print(ops) # => prints ops created. """ micros = int(time.time()*10**6) scope_name = str(micros) op_list = [] with tf.name_scope(scope_name): yield op_list g = tf.get_default_graph() op_list.extend(ge.select_ops(scope_name+"/.*", graph=g)) def _to_op(tensor_or_op): if hasattr(tensor_or_op, "op"): return tensor_or_op.op
tensorflow.name_scope
12,418
import tensorflow as tf network = resnet_model.imagenet_resnet_v2( resnet_size=18, num_classes=class_num, mode='se', data_format=None) inputs= network(inputs=inputs, is_training=training) feat = tf.nn.l2_normalize(inputs, 1, 1e-10, name='feat') inputs = tf.layers.dense(inputs=inputs, units=class_num) # inputs = tf.layers.dense(inputs=feat, units=class_num) inputs = tf.identity(inputs, 'final_dense') return inputs, feat # image_size = 32, img_channels = 3, class_num = 10 in cifar10 x = tf.placeholder(tf.float32, shape=[None, image_size, image_size, img_channels]) label = tf.placeholder(tf.float32, shape=[None,]) one_hot_labels = tf.one_hot(indices=tf.cast(label, tf.int32), depth=class_num) training_flag = tf.placeholder(tf.bool) learning_rate = tf.placeholder(tf.float32, name='learning_rate') logits, feat = resnet_model_fn(x, training=training_flag) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=one_hot_labels, logits=logits)) Focal_loss = tf.reduce_mean(focal_loss(one_hot_labels, logits, alpha=0.5)) l2_loss = weight_decay * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables()]) Center_loss, Centers = center_loss(feat, tf.cast(label, dtype=tf.int32), 0.95, class_num) Total_loss = cost + l2_loss optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=momentum, use_nesterov=True) # Batch norm requires update_ops to be added as a train_op dependency. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops):
tensorflow.placeholder
12,419
import tensorflow as tf # Book keeping step = 0 time_window = ValueWindow(100) loss_window = ValueWindow(100) saver = tf.train.Saver(max_to_keep=5) log("Tacotron training set to a maximum of {} steps".format(args.tacotron_train_steps)) # Memory allocation on the GPU as needed config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True # Train with tf.Session(config=config) as sess: try: summary_writer = tf.summary.FileWriter(tensorboard_dir, sess.graph) sess.run(tf.global_variables_initializer()) # saved model restoring if args.restore: # Restore saved model if the user requested it, default = True try: checkpoint_state = tf.train.get_checkpoint_state(save_dir) if checkpoint_state and checkpoint_state.model_checkpoint_path: log("Loading checkpoint {}".format(checkpoint_state.model_checkpoint_path), slack=True)
tensorflow.Session
12,420
import tensorflow as tf simple_value=before_loss), tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_after_loss", simple_value=after_loss), tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/stop_token_loss", simple_value=stop_token_loss), tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_loss", simple_value=loss),
tensorflow.Summary.Value
12,421
import tensorflow as tf height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Conv2d_13_pointwise'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024]) def testGlobalPoolUnknownImageShape(self): tf.reset_default_graph() batch_size = 1 height, width = 250, 300 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess:
tensorflow.global_variables_initializer
12,422
import tensorflow as tf return blk_indices_crop def _strides_one(): # Calculate otuput indices when strides = 1. return blk_indices[:, :q_shape[1], :q_shape[2], :] strides_gt_one = tf.logical_or(tf.greater(strides[1], 1), tf.greater(strides[2], 1)) blk_indices_crop = tf.cond(strides_gt_one, _strides_gt_one, _strides_one) y = tf.scatter_nd(blk_indices_crop, q, out_shape) return y return tf.cond( tf.equal(tf.size(blk_indices_), 0), lambda: tf.zeros(out_shape, dtype=x.dtype), _conv_nonzero) # returns an int64 start timer handle that should be passed to cuda_timer_end_op def cuda_timer_start_op(): return sbnet_module.cuda_timer_start() # returns a float def cuda_timer_end_op(start_timer): return sbnet_module.cuda_timer_end(start_timer)
tensorflow.zeros
12,423
import tensorflow as tf return x def lstm(): ''' Build LSTM cell ''' pass def loss(logits, labels): ''' Compute loss ''' with tf.name_scope('loss') as scope: cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels, name='cross-entropy') loss = tf.reduce_mean(cross_entropy, name='loss') tf.summary.scalar(scope+'/loss', loss) return loss def accuracy(logits, labels): ''' Evaluate the quality of the logits at predicting the label ''' # for summary with tf.name_scope('accuracy') as scope:
tensorflow.nn.softmax_cross_entropy_with_logits
12,424
import tensorflow as tf output_dims = get_deconv2d_output_dims(input_dims, filter_dims, stride_dims, padding) with tf.variable_scope(scope): deconv_weight = tf.Variable( tf.random_normal([filter_h, filter_w, num_channels_out, num_channels_in], stddev=0.1, dtype=tf.float32)) deconv_bias = tf.Variable(tf.zeros([num_channels_out], dtype=tf.float32)) map = tf.nn.conv2d_transpose(input_data, deconv_weight, output_dims, strides=[1, stride_h, stride_w, 1], padding=padding) map = tf.nn.bias_add(map, deconv_bias) activation = non_linear_fn(map)
tensorflow.zeros
12,425
import tensorflow as tf LTA = tf.matmul(L, A_tiled, transpose_a=True) # R x M x N else: # pragma: no cover raise ValueError("Bad dimension for q_sqrt: %s" % str(q_sqrt.get_shape().ndims)) if full_cov: fvar = fvar + tf.matmul(LTA, LTA, transpose_a=True) # R x N x N else: fvar = fvar + tf.reduce_sum(tf.square(LTA), 1) # R x N if not full_cov: fvar = tf.transpose(fvar) # N x R return fmean, fvar # N x R, R x N x N or N x R
tensorflow.square
12,426
import tensorflow as tf def correlation(x, y): x = x - tf.reduce_mean(x, axis=-1, keepdims=True) y = y - tf.reduce_mean(y, axis=-1, keepdims=True) x = tf.nn.l2_normalize(x, -1) y = tf.nn.l2_normalize(y, -1) return -tf.reduce_sum(x*y, axis=-1) # higher the better def kd(x, y): x_prob = tf.nn.softmax(x) print(x_prob.get_shape(), y.get_shape(), tf.reduce_sum(x_prob * y, axis=-1).get_shape()) return -tf.reduce_sum(x_prob * y, axis=-1) # higher the better def mse(x, y): x = x - tf.reduce_mean(x, axis=-1, keepdims=True) y = y - tf.reduce_mean(y, axis=-1, keepdims=True) return tf.reduce_sum((x-y)**2, axis=-1) # lower the better def kd_distance(x, y, dist_type):
tensorflow.reduce_sum
12,427
import tensorflow as tf # we don't actually round to the nearest 8bit value when sampling u = tf.random_uniform(tf.shape(means), minval=1e-5, maxval=1. - 1e-5) x = means + tf.exp(log_scales) * (tf.log(u) - tf.log(1. - u)) x0 = tf.minimum(tf.maximum(x[:, :, :, 0], -1.), 1.) x1 = tf.minimum(tf.maximum( x[:, :, :, 1] + coeffs[:, :, :, 0] * x0, -1.), 1.) x2 = tf.minimum(tf.maximum( x[:, :, :, 2] + coeffs[:, :, :, 1] * x0 + coeffs[:, :, :, 2] * x1, -1.), 1.)
tensorflow.maximum
12,428
import tensorflow as tf true_positives_lower_bound(labels, logits, weights, surrogate_type), 'false_positives_upper_bound': false_positives_upper_bound(labels, logits, weights, surrogate_type) } return loss, other_outputs def precision_at_recall_loss(labels, logits, target_recall, weights=1.0, dual_rate_factor=0.1, label_priors=None, surrogate_type='xent', lambdas_initializer=tf.constant_initializer(1.0), reuse=None, variables_collections=None, trainable=True, scope=None): """Computes precision at recall loss. The loss is based on a surrogate of the form wt * loss(-) + lambdas * (pi * (b - 1) + wt * loss(+)) where: - loss(-) is the cross-entropy loss on the negative examples - loss(+) is the cross-entropy loss on the positive examples - wt is a scalar or tensor of per-example weights - b is the target recall - pi is the label_priors. The per-example weights change not only the coefficients of individual
tensorflow.constant_initializer
12,429
import tensorflow as tf inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)] out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
tensorflow.placeholder
12,430
import tensorflow as tf global_step=self.global_step) ranker_updates = opt_ranker.apply_gradients(zip(ranking_model_gradients, ranking_model_params)) self.updates = tf.group(denoise_updates, ranker_updates) def DenoisingNet(self, list_size, forward_only=False, scope=None): with tf.variable_scope(scope or "denoising_model"): # If we are in testing, do not compute propensity if forward_only: return tf.ones_like(self.output)#, tf.ones_like(self.output) input_vec_size = list_size*4 def propensity_network(input_data, index): reuse = None if index < 1 else True propensity_initializer = tf.constant_initializer(0.001) if self.hparams.constant_propensity_initialization else None with tf.variable_scope("propensity_network", initializer=propensity_initializer, reuse=reuse): output_data = input_data current_size = input_vec_size output_sizes = [ int((list_size+1)/2) + 1, int((list_size+1)/4) + 1, 1 ] for i in range(len(output_sizes)): expand_W = tf.get_variable("W_%d" % i, [current_size, output_sizes[i]]) expand_b = tf.get_variable("b_%d" % i, [output_sizes[i]]) output_data = tf.nn.bias_add(tf.matmul(output_data, expand_W), expand_b)
tensorflow.constant_initializer
12,431
import tensorflow as tf # Build the processing and model for the worker. with tf.device(self.cpu_device): nclass, images_splits, labels_splits = add_image_preprocessing( self.dataset, input_nchan, image_size, self.batch_size, len(self.devices), input_data_type, self.resize_method, not FLAGS.eval) update_ops = None staging_delta_ops = [] for device_num in range(len(self.devices)): with self.variable_mgr.create_outer_variable_scope( device_num), tf.name_scope('tower_%i' % device_num) as name_scope: results = self.add_forward_pass_and_gradients( images_splits[device_num], labels_splits[device_num], nclass, phase_train, device_num, input_data_type, data_type, input_nchan, use_synthetic_gpu_images, gpu_copy_stage_ops, gpu_compute_stage_ops, gpu_grad_stage_ops) if phase_train: losses.append(results[0]) device_grads.append(results[1]) else: all_logits.append(results[0]) all_top_1_ops.append(results[1])
tensorflow.name_scope
12,432
import tensorflow as tf print("episodes %d" % len(episode_rewards)) print("exploration %f" % exploration.value(t)) print("learning_rate %f" % optimizer_spec.lr_schedule.value(t)) mean_rew_summ = tf.Summary(value=[tf.Summary.Value(tag='mean_rew',simple_value=mean_episode_reward)]) best_mean_rew_summ = tf.Summary(value=[tf.Summary.Value(tag='best_mean_rew',simple_value=best_mean_episode_reward)]) writer.add_summary(mean_rew_summ, global_step=t)
tensorflow.Summary.Value
12,433
import tensorflow as tf i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f)
tensorflow.nn.sigmoid
12,434
import tensorflow as tf } _EVAL_FEATURE_MAP = { movielens.USER_COLUMN: tf.FixedLenFeature([], dtype=tf.string), movielens.ITEM_COLUMN: tf.FixedLenFeature([], dtype=tf.string), rconst.DUPLICATE_MASK: tf.FixedLenFeature([], dtype=tf.string) } class DatasetManager(object): """Helper class for handling TensorFlow specific data tasks.
tensorflow.FixedLenFeature
12,435
import tensorflow as tf num_classes = self._hparams.num_classes is_binary = num_classes == 1 is_binary = is_binary or (num_classes <= 0 and logits.shape[1] == 1) if is_binary: pred = tf.greater(logits, 0) logits = tf.reshape(logits, [-1]) else: pred = tf.argmax(logits, 1) pred = tf.cast(tf.reshape(pred, [-1]), tf.int64)
tensorflow.greater
12,436
import tensorflow as tf z_t = 1 / z_t d_t = 1 / z_t x_t /= z_t y_t /= z_t x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) d_t_flat = tf.reshape(d_t, (1, -1)) ones = tf.ones_like(x_t_flat) grid = tf.concat([d_t_flat, y_t_flat, x_t_flat, ones], 0) return grid def _transform(theta, input_dim, out_size, z_near, z_far): with tf.variable_scope('_transform'): num_batch = input_dim.get_shape().as_list()[0] num_channels = input_dim.get_shape().as_list()[4] theta = tf.reshape(theta, (-1, 4, 4)) theta = tf.cast(theta, 'float32') out_depth = out_size[0]
tensorflow.concat
12,437
import tensorflow.contrib.slim as slim with tf.variable_scope(tf.get_variable_scope()): for i in range(num_gpu): with tf.device('/gpu:%d' % i): with tf.name_scope('tower_%d' % i): with slim.arg_scope( [slim.model_variable, slim.variable], device='/device:CPU:0'): with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane, slim.conv2d_transpose, slim.separable_conv2d,
tensorflow.contrib.slim.arg_scope
12,438
import tensorflow as tf with config.unlocked: config.logdir = logdir message = 'Start a new run and write summaries and checkpoints to {}.' tf.logging.info(message.format(config.logdir)) tf.gfile.MakeDirs(config.logdir) config_path = os.path.join(config.logdir, 'config.yaml') with tf.gfile.GFile(config_path, 'w') as file_: yaml.dump( config, file_, yaml.Dumper, allow_unicode=True, default_flow_style=False) else:
tensorflow.gfile.GFile
12,439
import tensorflow as tf else: initializer = tf.random_normal_initializer(stddev=weight_scale) with tf.device('/cpu:0'): embedding = get_variable('embedding_{}'.format(decoder.name), shape=embedding_shape, initializer=initializer) input_shape = tf.shape(decoder_inputs) batch_size = input_shape[0] time_steps = input_shape[1] scope_name = 'decoder_{}'.format(decoder.name) scope_name += '/' + '_'.join(encoder.name for encoder in encoders)
tensorflow.shape
12,440
import tensorflow as tf if encoder.conv_lstm_size: cell = BasicConvLSTMCell([feature_size, channels], encoder.conv_lstm_size, 1) encoder_inputs_, _ = tf.nn.bidirectional_dynamic_rnn( cell, cell, encoder_inputs_, dtype=tf.float32
tensorflow.nn.bidirectional_dynamic_rnn
12,441
import tensorflow as tf follows:[x, y, z, length, width, height, yaw]. box2: Input tensor with shape [B, 7] where the inner dimensions are as follows:[x, y, z, length, width, height, yaw]. Returns: The IoU between the two bounding boxes. """ box1 = box1.numpy() if isinstance(box1, tf.Tensor) else box1 box2 = box2.numpy() if isinstance(box2, tf.Tensor) else box2 box1 = box1.astype(np.float32) box2 = box2.astype(np.float32) # rotates around z, while we rotate around y so need to swap center_1 = tf.reshape(box1[0:3][[0, 2, 1]], [1, 3]) center_2 = tf.reshape(box2[0:3][[0, 2, 1]], [1, 3]) rotation_z_1 = tf.reshape(box1[-1], [1]) rotation_z_2 = tf.reshape(box2[-1], [1]) length_1 = tf.reshape(box1[3 + 0], [1]) height_1 = tf.reshape(box1[3 + 2], [1]) width_1 = tf.reshape(box1[3 + 1], [1]) length_2 = tf.reshape(box2[3 + 0], [1]) height_2 = tf.reshape(box2[3 + 2], [1]) width_2 = tf.reshape(box2[3 + 1], [1]) iou = np.squeeze(np_box_ops.iou3d_7dof_box( length_1, height_1, width_1, center_1, rotation_z_1,
tensorflow.reshape
12,442
import tensorflow as tf os.mkdir(weights_dir + '/best_models') # Create a saver. saver = tf.train.Saver(max_to_keep=None) if self.is_summary: training_batch_summary_op = tf.merge_all_summaries(key=TRAINING_BATCH_SUMMARIES) training_epoch_summary_op = tf.merge_all_summaries(key=TRAINING_EPOCH_SUMMARIES) validation_batch_summary_op = tf.merge_all_summaries(key=VALIDATION_BATCH_SUMMARIES) validation_epoch_summary_op = tf.merge_all_summaries(key=VALIDATION_EPOCH_SUMMARIES) # Build an initialization operation to run below. init = tf.global_variables_initializer()
tensorflow.merge_all_summaries
12,443
import tensorflow as tf clf_h = tf.reshape(h, [-1, n_embd]) pool_idx = tf.cast(tf.argmax(tf.cast(tf.equal(X[:, :, 0], clf_token), tf.float32), 1), tf.int32) clf_h = tf.gather(clf_h, tf.range(shape_list(X)[0], dtype=tf.int32)*n_ctx+pool_idx) clf_h = tf.reshape(clf_h, [-1, 2, n_embd]) if train and clf_pdrop > 0: shape = shape_list(clf_h) shape[1] = 1 clf_h = tf.nn.dropout(clf_h, 1-clf_pdrop, shape) clf_h = tf.reshape(clf_h, [-1, n_embd]) clf_logits = clf(clf_h, 1, train=train) clf_logits = tf.reshape(clf_logits, [-1, 2]) clf_losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=clf_logits, labels=Y) return clf_logits, clf_losses, lm_losses def mgpu_train(*xs): gpu_ops = []
tensorflow.reshape
12,444
import tensorflow as tf config = get_config() eval_config = get_config() eval_config.batch_size = 1 eval_config.num_steps = 1 with tf.Graph().as_default(): initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale) with tf.name_scope("Train"): train_input = PTBInput(config=config, data=train_data, name="TrainInput") with tf.variable_scope("Model", reuse=None, initializer=initializer): m = PTBModel(is_training=True, config=config, input_=train_input) tf.summary.scalar("Training Loss", m.cost) tf.summary.scalar("Learning Rate", m.lr) with tf.name_scope("Valid"): valid_input = PTBInput(config=config, data=valid_data, name="ValidInput") with tf.variable_scope("Model", reuse=True, initializer=initializer): mvalid = PTBModel(is_training=False, config=config, input_=valid_input) tf.summary.scalar("Validation Loss", mvalid.cost) with tf.name_scope("Test"): test_input = PTBInput( config=eval_config, data=test_data, name="TestInput") with tf.variable_scope("Model", reuse=True, initializer=initializer): mtest = PTBModel(is_training=False, config=eval_config, input_=test_input)
tensorflow.summary.scalar
12,445
import tensorflow as tf import tensorflow as tf import numpy as np try: import cPickle except: import _pickle as cPickle def relu(x, name, alpha): if alpha > 0: return tf.maximum(alpha * x, x, name=name) else: return tf.nn.relu(x, name=name) def get_variable(name, shape, dtype, initializer, trainable=True, regularizer=None): with tf.device('/cpu:0'): var = tf.get_variable(name, shape=shape, dtype=dtype, initializer=initializer, regularizer=regularizer, trainable=trainable, collections=[tf.GraphKeys.WEIGHTS, tf.GraphKeys.GLOBAL_VARIABLES])
tensorflow.maximum
12,446
import tensorflow as tf z = tf.expand_dims(z, 0) loc, scale = hyper_decoder(z) return tf.squeeze(loc, [0]), tf.squeeze(scale, [0]) locs, scales = tf.map_fn(loop_hyper_deocder, z_hats, dtype=(tf.float32, tf.float32), parallel_iterations=1, back_prop=False) lower_bound = 1e-9# TODO scales = tf.maximum(scales, lower_bound) print("Hyper Decoder") z_strings, z_min_v, z_max_v = entropy_bottleneck.compress(zs) z_shape = tf.shape(zs)[:] print("Entropy Encode (Hyper)")
tensorflow.maximum
12,447
import tensorflow as tf return tf.matmul(hidden, w) def build_loss(self): cutoff_vf_manager = tf.reshape(tf.stop_gradient(self.manager_vf), [-1]) dot = tf.reduce_sum(tf.multiply(self.s_diff, self.g), axis=1) gcut = tf.stop_gradient(self.g) mag = tf.norm(self.s_diff, axis=1) * tf.norm(gcut, axis=1) + .0001 dcos = dot / mag manager_loss = -tf.reduce_sum((self.r - cutoff_vf_manager) * dcos)
tensorflow.stop_gradient
12,448
import tensorflow as tf loss: A `Tensor` of the same shape as `logits` with the component-wise loss. other_outputs: An empty dictionary, for consistency. Raises: ValueError: If `surrogate_type` is not `xent` or `hinge`. """ with tf.name_scope(scope, 'roc_auc', [labels, logits, weights]): # Convert inputs to tensors and standardize dtypes. labels, logits, weights, original_shape = _prepare_labels_logits_weights(labels, logits, weights) # Create tensors of pairwise differences for logits and labels, and # pairwise products of weights. These have shape # [batch_size, batch_size, num_labels]. logits_difference = tf.expand_dims(logits, 0) - tf.expand_dims(logits, 1) labels_difference = tf.expand_dims(labels, 0) - tf.expand_dims(labels, 1) weights_product = tf.expand_dims(weights, 0) * tf.expand_dims(weights, 1) signed_logits_difference = labels_difference * logits_difference raw_loss = losses_utils.weighted_surrogate_loss( labels=tf.ones_like(signed_logits_difference), logits=signed_logits_difference, surrogate_type=surrogate_type) weighted_loss = weights_product * raw_loss # Zero out entries of the loss where labels_difference zero (so loss is only
tensorflow.expand_dims
12,449
import tensorflow as tf # Re-Initialize from the checkpoint so that you will have the latest models up. tf.train.init_from_checkpoint(ckpt_dir, {'main_level/agent/online/network_0/': 'main_level/agent/online/network_0'}) tf.train.init_from_checkpoint(ckpt_dir, {'main_level/agent/online/network_1/': 'main_level/agent/online/network_1'}) # Create a new session with a new tf graph. sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) sess.run(tf.global_variables_initializer()) # initialize the checkpoint. # This is the node that will accept the input. input_nodes = tf.get_default_graph().get_tensor_by_name('main_level/agent/main/online/' + \ 'network_0/observation/observation:0') # This is the node that will produce the output. output_nodes = tf.get_default_graph().get_operation_by_name('main_level/agent/main/online/' + \ 'network_1/ppo_head_0/policy') # Save the model as a servable model. tf.saved_model.simple_save(session=sess, export_dir='model', inputs={"observation": input_nodes}, outputs={"policy": output_nodes.outputs[0]}) # Move to the appropriate folder. Don't mind the directory, this just works. # rl-cart-pole is the name of the model. Remember it. shutil.move('model/', model_dir + '/model/tf-model/00000001/') # EASE will pick it up and upload to the right path. print("Success") def _save_onnx_model(self):
tensorflow.get_default_graph
12,450
import tensorflow as tf if FLAGS.write_to_disk: image_write_ops = tf.write_file( '%s/%s'% (FLAGS.eval_dir, 'conditional_gan.png'), tf.image.encode_png(data_provider.float_image_to_uint8( reshaped_img[0]))) # For unit testing, use `run_eval_loop=False`. if not run_eval_loop: return tf.contrib.training.evaluate_repeatedly( FLAGS.checkpoint_dir, hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir), tf.contrib.training.StopAfterNEvalsHook(1)], eval_ops=image_write_ops, max_number_of_evaluations=FLAGS.max_number_of_evaluations) def _get_generator_inputs(num_images_per_class, num_classes, noise_dims): # Since we want a grid of numbers for the conditional generator, manually # construct the desired class labels. num_images_generated = num_images_per_class * num_classes noise = tf.random_normal([num_images_generated, noise_dims]) labels = [lbl for lbl in range(num_classes) for _
tensorflow.contrib.training.StopAfterNEvalsHook
12,451
import tensorflow as tf self.compute_shape(l2_shape[3], self.ff_pool_strides[1][2]), final_dim] else: l2_shape = tf.identity(x_shape) # Initialize hidden layer activities
tensorflow.identity
12,452
import tensorflow as tf self.resolution]) inter = tf.transpose(tf.reduce_max(inter, axis=a)) im = axs[fig_obj_count, mtype * 2 + 1].matshow(inter.numpy()) plt.colorbar(im, ax=axs[fig_obj_count, mtype * 2 + 1]) print(mtype, fig_obj_count, 1) if mtype == 1: values = sdf_values inter = tf.reshape(values, [self.resolution, self.resolution, self.resolution]) inter = tf.transpose(tf.reduce_max(inter, axis=a)) im = axs[fig_obj_count, 4].matshow(inter.numpy()) plt.colorbar(im, ax=axs[fig_obj_count, 4]) print(mtype, fig_obj_count, 2) fig_obj_count += 1
tensorflow.reshape
12,453
import tensorflow as tf self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1) self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1) def _compute_loss(self): def focal_loss(logits, labels, weights=None, alpha=0.25, gamma=2): logits = tf.nn.sigmoid(logits) zeros = array_ops.zeros_like(logits, dtype=logits.dtype) pos_p_sub = array_ops.where(labels > zeros, labels - logits, zeros) neg_p_sub = array_ops.where(labels > zeros, zeros, logits) cross_ent = - alpha * (pos_p_sub ** gamma) * tf.log(tf.clip_by_value(logits, 1e-8, 1.0)) \ - (1 - alpha) * (neg_p_sub ** gamma) * tf.log(tf.clip_by_value(1.0 - logits, 1e-8, 1.0)) return tf.reduce_sum(cross_ent, 1) start_label = tf.one_hot(self.start_label, tf.shape(self.logits1)[1], axis=1) end_label = tf.one_hot(self.end_label, tf.shape(self.logits2)[1], axis=1) if self.config.loss_type == 'cross_entropy': start_loss = tf.nn.softmax_cross_entropy_with_logits( logits=self.logits1, labels=start_label) end_loss = tf.nn.softmax_cross_entropy_with_logits( logits=self.logits2, labels=end_label) self.loss = tf.reduce_mean(start_loss + end_loss) else: start_loss = focal_loss(tf.nn.softmax(self.logits1, -1), start_label) end_loss = focal_loss(tf.nn.softmax(self.logits2, -1), end_label) self.loss = tf.reduce_mean(start_loss + end_loss) self.logger.info("loss type %s" % self.config.loss_type)
tensorflow.shape
12,454
import tensorflow as tf tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32.
tensorflow.FixedLenFeature
12,455
import tensorflow as tf meta_graph_def = slice_saver.export_meta_graph(filename) with tf.Graph().as_default(): # Restores from MetaGraphDef. new_saver = tf.train.import_meta_graph(filename) # Generates a new MetaGraphDef. new_meta_graph_def = new_saver.export_meta_graph() # It should be the same as the original. self.assertProtoEquals(meta_graph_def, new_meta_graph_def) def _testGraphExtensionSave(self): test_dir = self._TestDir("graph_extension") filename = os.path.join(test_dir, "metafile") saver0_ckpt = os.path.join(test_dir, "saver0.ckpt") with self.test_session(graph=tf.Graph()) as sess: # Creates an inference graph. # Hidden 1 images = tf.constant(1.2, tf.float32, shape=[100, 28]) with tf.name_scope("hidden1"): weights = tf.Variable( tf.truncated_normal([28, 128], stddev=1.0 / math.sqrt(float(28))), name="weights") biases = tf.Variable(tf.zeros([128]), name="biases") hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases) # Hidden 2 with tf.name_scope("hidden2"):
tensorflow.Graph
12,456
import tensorflow as tf with tf.variable_scope('soft_replacement'): self.target_replace_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)] self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") train_log_dir = 'logs/' + current_time self.summary_writer = tf.summary.FileWriter(train_log_dir, self.sess.graph) def _build_net(self): # we use parameter sharing among agents with tf.variable_scope(self.name): # ------------------ all inputs ------------------------ self.S = tf.placeholder(tf.float32, [None, self.num_global_s], name='S') # input Global State self.s = tf.placeholder(tf.float32, [None, self.num_s], name='s1') # input state for agent1 self.S_ = tf.placeholder(tf.float32, [None, self.num_global_s], name='S_') # input Next Global State self.s_ = tf.placeholder(tf.float32, [None, self.num_s], name='s1_') # input next state for agent1 self.R = tf.placeholder(tf.float32, [None, ], name='R') # input Reward self.a = tf.placeholder(tf.float32, [None, self.num_a], name='a') # input Action onehot for agent1 self.done = tf.placeholder(tf.float32, [None, ], name='done') # input Done info ??? self.q_m_ = tf.placeholder(tf.float32, [None, ], name='q_value_next_max')
tensorflow.variable_scope
12,457
from tensorflow.contrib import tpu as contrib_tpu # Compute accuracy accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean( values=per_example_loss, weights=is_real_example) return {"matthew_corr": (mcc, tf.group(tp_op, tn_op, fp_op, fn_op)), "eval_accuracy": accuracy, "eval_loss": loss,} eval_metrics = (metric_fn, [per_example_loss, label_ids, logits, is_real_example]) output_spec = contrib_tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics, scaffold_fn=scaffold_fn) else: output_spec = contrib_tpu.TPUEstimatorSpec( mode=mode, predictions={ "probabilities": probabilities, "predictions": predictions }, scaffold_fn=scaffold_fn) return output_spec
tensorflow.contrib.tpu.TPUEstimatorSpec
12,458
import tensorflow as tf if i == num_gpu - 1: regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) # weight_decay_loss = tf.add_n(slim.losses.get_regularization_losses()) total_losses = total_losses + tf.add_n(regularization_losses) tf.get_variable_scope().reuse_variables() grads = optimizer.compute_gradients(total_losses) if cfgs.GRADIENT_CLIPPING_BY_NORM is not None: grads = slim.learning.clip_gradient_norms(grads, cfgs.GRADIENT_CLIPPING_BY_NORM) tower_grads.append(grads) self.log_printer(fcos, optimizer, global_step, tower_grads, total_loss_dict, num_gpu*cfgs.BATCH_SIZE, graph)
tensorflow.get_variable_scope
12,459
import tensorflow as tf rf, stride, pad='VALID', init_scale=1.0, data_format='NHWC', one_dim_bias=False): channel_ax = 3 strides = [1, stride, stride, 1] bshape = [1, 1, 1, nf] bias_var_shape = [nf] if one_dim_bias else [1, nf, 1, 1] nin = x.get_shape()[channel_ax].value wshape = [rf, rf, nin, nf] with tf.variable_scope(scope): w = tf.get_variable( "w", wshape, initializer=self.ortho_init(init_scale)) b = tf.get_variable( "b", bias_var_shape, initializer=tf.constant_initializer(0.0)) if not one_dim_bias and data_format == 'NHWC': b = tf.reshape(b, bshape) return tf.nn.conv2d( x, w,
tensorflow.variable_scope
12,460
import tensorflow as tf input_eval = tf.expand_dims(input_eval, 0) predictions, hidden = model(input_eval, hidden) predicted_id = tf.argmax(predictions[-1]).numpy() start_string += " " + idx2word[predicted_id] out_string += " " + idx2word[predicted_id]
tensorflow.argmax
12,461
import tensorflow as tf # We do not allow the loss to become negative. cost = tf.where(cost > 0, cost, 0, name='value') return cost
tensorflow.where
12,462
import tensorflow as tf pred = tf.argmax(logits, 1) pred = tf.cast(tf.reshape(pred, [-1]), tf.int64)
tensorflow.reshape
12,463
import tensorflow as tf utils.add_gradient_summary(grad, var) return optimizer.apply_gradients(grads) def main(argv=None): keep_probability = tf.placeholder(tf.float32, name="keep_probabilty") image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="input_image") #debug annotation = tf.placeholder(tf.int32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1], name="annotation") # annotation = tf.placeholder(tf.int32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="annotation")
tensorflow.placeholder
12,464
import tensorflow as tf minval=0, maxval=self.config.n_classes, dtype=tf.int32) global_step = tf.Variable(0., trainable=False) model = revnet.RevNet(config=config) _, saved_hidden = model(x)
tensorflow.Variable
12,465
import tensorflow as tf model_io_fn = model_io.ModelIO(model_io_config) tvars = model_io_fn.get_params(model_config.scope, not_storage_params=not_storage_params) print(tvars) if load_pretrained == "yes": model_io_fn.load_pretrained(tvars, init_checkpoint, exclude_scope=exclude_scope) if mode == tf.estimator.ModeKeys.TRAIN: optimizer_fn = optimizer.Optimizer(opt_config) model_io_fn.print_params(tvars, string=", trainable params") update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer_fn.get_train_op(loss, tvars, opt_config.init_lr, opt_config.num_train_steps, **kargs) model_io_fn.set_saver() if kargs.get("task_index", 1) == 0 and kargs.get("run_config", None): training_hooks = [] elif kargs.get("task_index", 1) == 0: model_io_fn.get_hooks(kargs.get("checkpoint_dir", None), kargs.get("num_storage_steps", 1000))
tensorflow.get_collection
12,466
import tensorflow as tf def evaluate(defun=False): model = mnist.create_model(data_format()) dataset = random_dataset() if defun: model.call = tfe.defun(model.call) with tf.device(device()): mnist_eager.test(model, dataset) class MNISTTest(tf.test.TestCase): """Run tests for MNIST eager loop.""" def setUp(self): if not keras_utils.is_v2_0(): tf.compat.v1.enable_v2_behavior() super(MNISTTest, self).setUp() def test_train(self): train(defun=False) def test_evaluate(self): evaluate(defun=False) def test_train_with_defun(self): train(defun=True) def test_evaluate_with_defun(self): evaluate(defun=True)
tensorflow.compat.v1.enable_v2_behavior
12,467
import tensorflow as tf def export_params(output_dir, name, params): if not tf.gfile.Exists(output_dir): tf.gfile.MkDir(output_dir)
tensorflow.gfile.MkDir
12,468
import tensorflow as tf dtype=tf.float32) self.assertAllClose(ious.numpy(), expected_ious.numpy()) def test_instance_non_maximum_suppression_1d_scores(self): mask0 = tf.constant([[1, 0], [0, 1]], dtype=tf.float32) mask1 = tf.constant([[1, 1], [0, 1]], dtype=tf.float32)
tensorflow.constant
12,469
import tensorflow as tf broadcast_mean = tf.reshape(mean, target_shape) broadcast_var = tf.reshape(var, target_shape) broadcast_gamma = tf.reshape(gamma, target_shape) broadcast_beta = tf.reshape(beta, target_shape) normed = tf.nn.batch_normalization(x, broadcast_mean, broadcast_var, broadcast_beta, broadcast_gamma, epsilon)
tensorflow.reshape
12,470
from tensorflow.python.ops import math_ops @distribution_util.AppendDocstring(_poisson_sample_note) def _log_cdf(self, x): return math_ops.log(self.cdf(x)) @distribution_util.AppendDocstring(_poisson_sample_note) def _cdf(self, x): x = self._assert_valid_sample(x, check_integer=False) return math_ops.igammac(math_ops.floor(x + 1), self.rate) def _log_normalization(self): return self.rate def _log_unnormalized_prob(self, x): x = self._assert_valid_sample(x, check_integer=True) return x * math_ops.log(self.rate) - math_ops.lgamma(x + 1) def _mean(self): return array_ops.identity(self.rate) def _variance(self): return array_ops.identity(self.rate) @distribution_util.AppendDocstring( """Note: when `rate` is an integer, there are actually two modes: `rate` and `rate - 1`. In this case we return the larger, i.e., `rate`.""") def _mode(self): return math_ops.floor(self.rate)
tensorflow.python.ops.math_ops.log
12,471
import tensorflow as tf learning_rate=FLAGS.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, predict_batch_size=FLAGS.predict_batch_size)
tensorflow.contrib.tpu.TPUEstimator
12,472
from tensorflow.python.framework import ops b_is_sparse: If `True`, `b` is treated as a sparse matrix. name: Name for the operation (optional). Returns: A `Tensor` of the same type as `a`. """ with ops.op_scope([a, b], name, "MatMul") as name: a = ops.convert_to_tensor(a, name="a") b = ops.convert_to_tensor(b, name="b") if a.dtype == types.float32 and (a_is_sparse or b_is_sparse): return sparse_matmul(a, b, transpose_a=transpose_a, transpose_b=transpose_b, a_is_sparse=a_is_sparse, b_is_sparse=b_is_sparse, name=name)
tensorflow.python.framework.ops.convert_to_tensor
12,473
import tensorflow as tf b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) gc = tf.get_variable("gc", [nh], initializer=tf.constant_initializer(1.0)) bc = tf.get_variable("bc", [nh], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = _ln(tf.matmul(x, wx), gx, bx) + _ln(tf.matmul(h, wh), gh, bh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(_ln(c, gc, bc)) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s def conv_to_fc(x): nh = np.prod([v.value for v in x.get_shape()[1:]]) x = tf.reshape(x, [-1, nh]) return x def discount_with_dones(rewards, dones, gamma): discounted = [] r = 0
tensorflow.tanh
12,474
import tensorflow as tf chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions) update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps)) _act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph], outputs=output_actions, givens={update_eps_ph: -1.0, stochastic_ph: True},
tensorflow.cond
12,475
import tensorflow as tf 'parameter_server, replicated, distributed_replicated, independent')) tf.flags.DEFINE_boolean( 'use_nccl', True, 'Whether to use nccl all-reduce primitives where possible') # Distributed training flags. tf.flags.DEFINE_string('job_name', '', 'One of "ps", "worker", "". Empty for local training') tf.flags.DEFINE_string('ps_hosts', '', 'Comma-separated list of target hosts') tf.flags.DEFINE_string('worker_hosts', '', 'Comma-separated list of target hosts') tf.flags.DEFINE_integer('task_index', 0, 'Index of task within the job') tf.flags.DEFINE_string('server_protocol', 'grpc', 'protocol for servers') tf.flags.DEFINE_boolean('cross_replica_sync', True, '') # Summary and Save & load checkpoints.
tensorflow.flags.DEFINE_string
12,476
import tensorflow as tf with tf.name_scope(clone.scope): clone_loss, clone_grad = _optimize_clone( optimizer, clone, num_clones, regularization_losses, **kwargs) if clone_loss is not None: clones_losses.append(clone_loss) grads_and_vars.append(clone_grad) # Only use regularization_losses for the first clone regularization_losses = None # Compute the total_loss summing all the clones_losses. total_loss = tf.add_n(clones_losses, name='total_loss') # Sum the gradients accross clones. grads_and_vars = _sum_clones_gradients(grads_and_vars) return total_loss, grads_and_vars def deploy(config, model_fn, args=None,
tensorflow.add_n
12,477
import tensorflow as tf print(pred_Y) # Loss,train_step,evaluation l2 = config.lambda_loss_amount * \ sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables()) # Softmax loss and L2 cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(pred_Y, Y)) + l2 train_step = tf.train.AdamOptimizer( learning_rate=config.learning_rate).minimize(cost) correct_prediction = tf.equal(tf.argmax(pred_Y, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, dtype=tf.float32)) # -------------------------------------------- # step4: Hooray, now train the neural network
tensorflow.train.AdamOptimizer
12,478
import tensorflow as tf def loss_function(logits, labels): # global cross_entropy # HACK TESTING cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=labels, name='xentropy') loss = tf.reduce_mean(cross_entropy, name='xentropy_mean') return loss
tensorflow.reduce_mean
12,479
import tensorflow as tf bh = tf.get_variable("bh", [nh*4], initializer=tf.constant_initializer(0.0)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) gc = tf.get_variable("gc", [nh], initializer=tf.constant_initializer(1.0)) bc = tf.get_variable("bc", [nh], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = _ln(tf.matmul(x, wx), gx, bx) + _ln(tf.matmul(h, wh), gh, bh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(_ln(c, gc, bc)) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s
tensorflow.matmul
12,480
import tensorflow as tf TensorFlow works with the (y_min, x_min, y_max, x_max) order while we work with the (x_min, y_min, x_max, y_min). While both encoding options have its advantages and disadvantages we decided to use the (x_min, y_min, x_max, y_min), forcing use to switch to TensorFlow's every time we want to use a std function that handles bounding boxes. Args: bboxes: A Tensor of shape (total_bboxes, 4) Returns: bboxes: A Tensor of shape (total_bboxes, 4) with the order swaped. """ with tf.name_scope('BoundingBoxTransform/change_order'): first_min, second_min, first_max, second_max = tf.unstack( bboxes, axis=1 ) bboxes = tf.stack( [second_min, first_min, second_max, first_max], axis=1 ) return bboxes if __name__ == '__main__': import numpy as np bboxes = tf.placeholder(tf.float32) bboxes_val = [[10, 10, 20, 22]]
tensorflow.unstack
12,481
import tensorflow as tf
tensorflow.shape
12,482
import tensorflow as tf Returns: loss: Loss tensor of type float. """ with tf.name_scope('segment_loss'): # logits = tf.reshape(logits, (-1, num_classes)) epsilon = tf.constant(value=1e-7) labels = tf.to_float(labels) # labels = tf.to_float(tf.reshape(labels, (-1, num_classes))) softmax = tf.nn.softmax(logits) + epsilon
tensorflow.constant
12,483
import tensorflow as tf def generate_seq2seq_mask(attention_mask, mask_sequence, seq_type, **kargs): if seq_type == 'seq2seq': if mask_sequence is not None: seq_shape = get_shape_list(mask_sequence, expected_rank=2) seq_len = seq_shape[1] ones = tf.ones((1, seq_len, seq_len)) a_mask = tf.matrix_band_part(ones, -1, 0) s_ex12 = tf.expand_dims(tf.expand_dims(mask_sequence, 1), 2) s_ex13 = tf.expand_dims(tf.expand_dims(mask_sequence, 1), 3) a_mask = (1 - s_ex13) * (1 - s_ex12) + s_ex13 * a_mask # generate mask of batch x seq_len x seq_len a_mask = tf.reshape(a_mask, (-1, seq_len, seq_len)) out_mask = attention_mask * a_mask else: ones = tf.ones_like(attention_mask[:1]) mask = (tf.matrix_band_part(ones, -1, 0))
tensorflow.expand_dims
12,484
import tensorflow as tf mvn = tfd.MultivariateNormalDiag([[mu]], [[sigma]], validate_args=True) self.assertFalse(tf.contrib.util.constant_value(mvn.is_scalar_event())) self.assertFalse(tf.contrib.util.constant_value(mvn.is_scalar_batch())) # We now test every codepath within the underlying is_scalar_helper # function. # Test case 1, 2. x = tf.placeholder_with_default(input=1, shape=[]) # None would fire an exception were it actually executed. self.assertTrue(normal._is_scalar_helper(x.shape, lambda: None)) self.assertTrue( normal._is_scalar_helper(tf.TensorShape(None), lambda: tf.shape(x))) x = tf.placeholder_with_default(input=[1], shape=[1]) # None would fire an exception were it actually executed. self.assertFalse(normal._is_scalar_helper(x.shape, lambda: None)) self.assertFalse( normal._is_scalar_helper(tf.TensorShape(None), lambda: tf.shape(x))) # There's no notion of partially known shapes in eager mode, so exit # early. if tf.executing_eagerly(): return # Test case 3. x = tf.placeholder_with_default(input=1, shape=None) is_scalar = normal._is_scalar_helper(x.shape, lambda: tf.shape(x))
tensorflow.placeholder_with_default
12,485
import tensorflow as tf [inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix]), m2, m3 ], axis=3) centered_inputs = inputs - means inv_stdv = tf.exp(-log_scales) plus_in = inv_stdv * (centered_inputs + 1. / 255.) cdf_plus = tf.nn.sigmoid(plus_in) min_in = inv_stdv * (centered_inputs - 1. / 255.) cdf_min = tf.nn.sigmoid(min_in) log_cdf_plus = plus_in - tf.nn.softplus(plus_in) log_one_minus_cdf_min = -tf.nn.softplus(min_in) cdf_delta = cdf_plus - cdf_min mid_in = inv_stdv * centered_inputs log_pdf_mid = mid_in - log_scales - 2. * tf.nn.softplus(mid_in) log_probs = tf.select( inputs < -0.999, log_cdf_plus, tf.select( inputs > 0.999, log_one_minus_cdf_min, tf.select(cdf_delta > 1e-5, tf.log(tf.maximum(cdf_delta, 1e-12)), log_pdf_mid - np.log(127.5))))
tensorflow.nn.softplus
12,486
from tensorflow.python.platform import gfile self.assertTrue(gfile.Exists(s3)) # Create a second helper, identical to the first. save2 = tf.train.Saver(saver_def=save.as_saver_def()) save2.set_last_checkpoints(save.last_checkpoints) # Create a third helper, with the same configuration but no knowledge of # previous checkpoints. save3 = tf.train.Saver(saver_def=save.as_saver_def()) # Exercise the first helper. # Adding s2 again (old s2 is removed first, then new s2 appended) s2 = save.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s3, s2], save.last_checkpoints) self.assertFalse(gfile.Exists(s1)) self.assertFalse(gfile.Exists(save._MetaGraphFilename(s1))) self.assertTrue(gfile.Exists(s3)) self.assertTrue(gfile.Exists(save._MetaGraphFilename(s3))) self.assertTrue(gfile.Exists(s2)) self.assertTrue(gfile.Exists(save._MetaGraphFilename(s2))) # Adding s1 (s3 should now be deleted as oldest in list) s1 = save.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([s2, s1], save.last_checkpoints) self.assertFalse(gfile.Exists(s3)) self.assertFalse(gfile.Exists(save._MetaGraphFilename(s3))) self.assertTrue(gfile.Exists(s2)) self.assertTrue(gfile.Exists(save._MetaGraphFilename(s2))) self.assertTrue(gfile.Exists(s1))
tensorflow.python.platform.gfile.Exists
12,487
import tensorflow as tf if (rightmost_transposed_ndims is None) == (perm is None): raise ValueError('Must specify exactly one of ' '`rightmost_transposed_ndims` and `perm`.') if rightmost_transposed_ndims is not None: rightmost_transposed_ndims = tf.convert_to_tensor( value=rightmost_transposed_ndims, dtype=np.int32, name='rightmost_transposed_ndims') rightmost_transposed_ndims_ = tf.get_static_value( rightmost_transposed_ndims) with tf.control_dependencies(_maybe_validate_rightmost_transposed_ndims( rightmost_transposed_ndims, validate_args)): rightmost_transposed_ndims = tf.identity(rightmost_transposed_ndims) perm = tf.range( start=rightmost_transposed_ndims - 1, limit=-1,
tensorflow.get_static_value
12,488
import tensorflow as tf @layer def embedding_layer(tensor, vocab_size=None, embedding_dim=None, embedding_matrix=None, **opts): if embedding_matrix is None: initializer = tf.contrib.layers.xavier_initializer(uniform=True) embedding_matrix = tf.get_variable("embedding_matrix", initializer=initializer(shape=(vocab_size, embedding_dim))) out = tf.nn.embedding_lookup(embedding_matrix, tensor) return out @layer def recurrent_layer(tensor, cell=None, hidden_dims=128, sequence_length=None, decoder_fn=None, activation=tf.nn.tanh, initializer=tf.orthogonal_initializer(), initial_state=None, keep_prob=1.0, return_final_state=False, return_next_cell_input=True, **opts): if cell is None: cell = tf.contrib.rnn.BasicRNNCell(hidden_dims, activation=activation) # cell = tf.contrib.rnn.LSTMCell(hidden_dims, activation=activation) if keep_prob < 1.0: keep_prob = _global_keep_prob(keep_prob) cell = tf.contrib.rnn.DropoutWrapper(cell, keep_prob, keep_prob) if opts.get("name"): tf.add_to_collection(opts.get("name"), cell)
tensorflow.orthogonal_initializer
12,489
import tensorflow as tf tf.set_random_seed(random_seed) #make reproducible results input_size_x += input_size_y """Define the graph inputs""" batch_size = tf.placeholder(tf.int32, [], name='batch_size') x = tf.placeholder(tf.float32, [None, num_steps, input_size_x], name='x') y = tf.placeholder(tf.float32, [None, num_steps, input_size_y], name='y') input_prob = tf.placeholder(tf.float32, name='input_prob') state_prob = tf.placeholder(tf.float32,name='state_prob') output_prob = tf.placeholder(tf.float32,name='output_prob') rnn_inputs = x """Define a single cell with variational dropout""" def get_a_cell(state_size,input_prob,state_prob,num_input): if cell_type == 'LSTM':
tensorflow.placeholder
12,490
import tensorflow as tf self.seq_lens = tf.placeholder(tf.int64, [batch_size], name='seq_lens') self.x = tf.placeholder(tf.int32, [batch_size, max_sequence_len], name='x')
tensorflow.placeholder
12,491
from tensorflow.python.ops import parsing_ops image = image_ops.resize_bilinear(image, [height, width]) return array_ops.squeeze(image, [0]) def _create_tfrecord_dataset(tmpdir): if not gfile.Exists(tmpdir): gfile.MakeDirs(tmpdir) data_sources = test_utils.create_tfrecord_files(tmpdir, num_files=1) keys_to_features = { 'image/encoded': parsing_ops.FixedLenFeature( shape=(), dtype=dtypes.string, default_value=''), 'image/format': parsing_ops.FixedLenFeature( shape=(), dtype=dtypes.string, default_value='jpeg'), 'image/class/label': parsing_ops.FixedLenFeature( shape=[1], dtype=dtypes.int64, default_value=array_ops.zeros( [1], dtype=dtypes.int64)) } items_to_handlers = { 'image': tfexample_decoder.Image(), 'label': tfexample_decoder.Tensor('image/class/label'), }
tensorflow.python.ops.parsing_ops.FixedLenFeature
12,492
import tensorflow as tf self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape) res = sess.run([mem]) self.assertEqual(2, len(res[0])) self.assertEqual((2, 2), res[0][0].c.shape) self.assertEqual((2, 2), res[0][0].h.shape) self.assertEqual((2, 2), res[0][1].c.shape) self.assertEqual((2, 2), res[0][1].h.shape) # pylint: disable=unused-variable,invalid-name def testDynamicAttentionDecoderStateIsTuple(self): with self.test_session() as sess: with tf.variable_scope( "root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) cell = tf.nn.rnn_cell.MultiRNNCell(cells=[cell] * 2, state_is_tuple=True) inp = tf.constant(0.5, shape=[2, 2, 2]) enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32) attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size]) for e in enc_outputs]) dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state, attn_states, cell, output_size=4) sess.run([tf.global_variables_initializer()]) res = sess.run(dec)
tensorflow.constant_initializer
12,493
from tensorflow.python.ops import state_ops predictions_idx=predictions_idx, labels=labels, class_id=class_id, weights=weights) batch_total_fn = math_ops.to_double(math_ops.reduce_sum(fn)) var = contrib_variables.local_variable( array_ops.zeros([], dtype=dtypes.float64), name=scope) return var, state_ops.assign_add(var, batch_total_fn, name='update') def streaming_mean_absolute_error(predictions, labels, weights=None, metrics_collections=None, updates_collections=None,
tensorflow.python.ops.state_ops.assign_add
12,494
from tensorflow.contrib.layers.python.layers import utils shifted_sum_x, shifted_sum_x2, shift, name="normalize_moments") second_moment = variance + tf.square(mean) return mean, variance, second_moment def build_moving_stats(): return ( tf.identity(self._moving_mean), tf.identity(self._moving_variance), tf.identity(self._moving_second_moment), ) mean, variance, second_moment = utils.smart_cond( use_batch_stats, build_batch_stats, build_moving_stats, ) return mean, variance, second_moment def _build_update_ops_variance(self, mean, variance, is_training): """Builds the moving average update ops when using moving variance. Args: mean: The mean value to update with. variance: The variance value to update with. is_training: Boolean Tensor to indicate if we're currently in
tensorflow.contrib.layers.python.layers.utils.smart_cond
12,495
from tensorflow.python.framework import ops Returns: A `Tensor` with the same type as `value`. """ with ops.op_scope([value, bias], name, "BiasAdd") as name: value = ops.convert_to_tensor(value, name="input") bias = ops.convert_to_tensor(bias, dtype=value.dtype, name="bias") return gen_nn_ops._bias_add(value, bias, data_format=data_format, name=name) ops.RegisterShape("BiasAdd")(common_shapes.bias_add_shape)
tensorflow.python.framework.ops.convert_to_tensor
12,496
from tensorflow.python.ops import array_ops nn_activations.append( layers.fully_connected( nn_activations[-1], self.params.layer_size)) nn_activations_tensor = array_ops.concat( nn_activations, 1, name="flattened_nn_activations") return nn_activations_tensor
tensorflow.python.ops.array_ops.concat
12,497
import tensorflow as tf self.assertEqual(model.tasks[0], model.GetTask()) self.assertEqual(model.tasks[0], model.SampleTask(None)) def testExponentialMovingAverage(self): p = base_model.SingleTaskModel.Params() p.task = BaseTaskTest.TestParams() p.task.input = base_input_generator.BaseSequenceInputGenerator.Params() p.train.ema_decay = 0.9 model = p.cls(p) model._task.CreateChild('a', layers.BatchNormLayer.Params().Set(name='a', dim=1)) model._task._train_op = tf.no_op() model._task.ApplyExponentialMovingAverage(model.ema) with tf.variable_scope('', reuse=True): beta = tf.get_variable('a/beta/var') mean = tf.get_variable('a/moving_mean/var') self.assertIsNotNone(model.ema.average(beta)) self.assertIsNone(model.ema.average(mean)) class MultiTaskModelTest(tf.test.TestCase):
tensorflow.no_op
12,498
import tensorflow as tf logit_probs = predictions[:, :, :, :nr_mix] predictions = tf.reshape(predictions[:, :, :, nr_mix:], inputs_shape + [nr_mix * 3]) means = predictions[:, :, :, :, :nr_mix] log_scales = tf.maximum(predictions[:, :, :, :, nr_mix:2 * nr_mix], -7.) coeffs = tf.nn.tanh(predictions[:, :, :, :, 2 * nr_mix:3 * nr_mix]) inputs = tf.reshape(inputs, inputs_shape + [1]) + tf.zeros(inputs_shape + [nr_mix]) m2 = tf.reshape(means[:, :, :, 1, :] + coeffs[:, :, :, 0, :] * inputs[:, :, :, 0, :], [inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix]) m3 = tf.reshape( means[:, :, :, 2, :] + coeffs[:, :, :, 1, :] * inputs[:, :, :, 0, :] + coeffs[:, :, :, 2, :] * inputs[:, :, :, 1, :], [inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix])
tensorflow.reshape
12,499