seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
return self_attention
def self_all_attention(facts, ATTENTION_SIZE, mask, stag='null'):
if len(facts.get_shape().as_list()) == 2:
facts = tf.expand_dims(facts, 1)
def cond(batch, output, i):
return tf.less(i, tf.shape(batch)[1])
| tensorflow.expand_dims | 12,700 |
import tensorflow as tf
bh = tf.get_variable("bh", [nh*4], initializer=tf.constant_initializer(0.0))
b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0))
gc = tf.get_variable("gc", [nh], initializer=tf.constant_initializer(1.0))
bc = tf.get_variable("bc", [nh], initializer=tf.constant_initializer(0.0))
c, h = tf.split(axis=1, num_or_size_splits=2, value=s)
for idx, (x, m) in enumerate(zip(xs, ms)):
c = c*(1-m)
h = h*(1-m)
z = _ln(tf.matmul(x, wx), gx, bx) + _ln(tf.matmul(h, wh), gh, bh) + b
i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z)
i = tf.nn.sigmoid(i)
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
u = tf.tanh(u)
c = f*c + i*u
h = o*tf.tanh(_ln(c, gc, bc))
xs[idx] = h
s = tf.concat(axis=1, values=[c, h])
return xs, s
| tensorflow.split | 12,701 |
import tensorflow as tf
(1 - self.terminals_ph_n) *( self.gamma**self.n_step_length ) * self.value_target_n)
qf1_loss_n = 0.5 * tf.reduce_mean(((q_backup_n - qf1) ** 2)*self.weight_ph)
qf1_loss_n_col = tf.reduce_mean(((q_backup_n - qf1) ** 2),1)
qf2_loss_n = 0.5 * tf.reduce_mean(((q_backup_n - qf2) ** 2)*self.weight_ph)
| tensorflow.reduce_mean | 12,702 |
import tensorflow as tf
# assume square patch
n_row,n_col,n_channel = x.shape
n_patch = n_row*n_col // (self.size**2)
patches = tf.image.extract_patches(tf.expand_dims(x,0),sizes=[1,self.size,self.size,1],strides=[1,self.size,self.size,1],rates=[1, 1, 1, 1],padding='VALID')
patches = tf.reshape(patches,[n_patch,self.size,self.size,n_channel])
patches = tf.random.shuffle(patches)
# rand_idx = tf.reshape(tf.random.shuffle(tf.range(0,n_patch)),[n_patch])
# patches = tf.gather(patches, rand_idx, axis=0)
rows = tf.split(patches,n_col//self.size,axis=0)
rows = [tf.concat(tf.unstack(x),axis=1) for x in rows]
| tensorflow.random.shuffle | 12,703 |
import tensorflow as tf
tensor1 = dataset1.make_one_shot_iterator().get_next()["targets"]
tensor2 = dataset2.make_one_shot_iterator().get_next()["targets"]
with tf.Session() as sess:
self.assertTrue(assert_tensors_equal(sess, tensor1, tensor2, 20))
@test_utils.run_in_graph_and_eager_modes()
| tensorflow.Session | 12,704 |
import tensorflow as tf
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
| tensorflow.nn.softmax | 12,705 |
import tensorflow as tf
if encoder.attend_inputs:
encoder_outputs.append(encoder_inputs_)
elif encoder.attend_both:
encoder_outputs.append(tf.concat([encoder_inputs_, encoder_outputs_], axis=2))
else:
encoder_outputs.append(encoder_outputs_)
| tensorflow.concat | 12,706 |
import tensorflow as tf
else:
return tf.reshape(tf.stack(values=h, axis=1), [-1])
def lstm(xs, s, scope, nh, init_scale=1.0):
nbatch, nin = [v.value for v in xs[0].get_shape()]
nsteps = len(xs)
with tf.variable_scope(scope):
wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale))
wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale))
b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0))
c, h = tf.split(axis=1, num_or_size_splits=2, value=s)
for idx, x in enumerate(xs):
c = c
h = h
z = tf.matmul(x, wx) + tf.matmul(h, wh) + b
i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z)
i = tf.nn.sigmoid(i)
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
u = tf.tanh(u)
c = f*c + i*u
h = o*tf.tanh(c)
| tensorflow.split | 12,707 |
import tensorflow as tf
[5, 8], minval=-10, maxval=10.0, dtype=tf.float32)
distances1 = isu.inputs_distances_to_centers(inputs, centers)
num_centers = tf.shape(centers)[0]
inputs_reshaped = tf.tile(tf.expand_dims(inputs, axis=1),
tf.stack([1, num_centers, 1]))
distances2 = tf.reduce_sum(tf.square(inputs_reshaped - centers), axis=2)
self.assertAllClose(distances1.numpy(), distances2.numpy(), atol=0.001)
def test_pairwise_iou_matrix(self):
mask0 = tf.constant([[1, 0],
[0, 1]], dtype=tf.float32)
mask1 = tf.constant([[1, 1],
[0, 1]], dtype=tf.float32)
mask2 = tf.constant([[1, 0],
[1, 1]], dtype=tf.float32)
mask3 = tf.constant([[1, 1],
[1, 1]], dtype=tf.float32)
mask4 = tf.constant([[0, 0],
[0, 0]], dtype=tf.float32)
mask5 = tf.constant([[1, 0],
[1, 0]], dtype=tf.float32)
masks1 = tf.stack([mask0, mask1, mask2])
masks2 = tf.stack([mask3, mask4, mask5])
ious = isu.get_pairwise_iou_matrix(masks1, masks2)
expected_ious = tf.constant([[0.5, 0.0, 1.0/3.0],
[0.75, 0.0, 0.25],
| tensorflow.constant | 12,708 |
import tensorflow as tf
q_func_ph = tf.gather_nd(self.Q_vals, tf.stack([tf.range(tf.shape(self.Q_vals)[0]), self.act_t_ph], axis=1))
target_q_ph = q_func(obs_tp1_float, self.num_actions, 'target_q_func', reuse = tf.AUTO_REUSE)
if double_q:
target_index = tf.math.argmax(q_func(obs_tp1_float, self.num_actions, 'q_func', reuse = tf.AUTO_REUSE), axis = 1, output_type = tf.int32)
target_v_ph = tf.gather_nd(target_q_ph, tf.stack([tf.range(tf.shape(target_q_ph)[0]), target_index], axis=1))
else:
target_v_ph = tf.math.reduce_max(target_q_ph, axis = 1)
backup_ph = self.rew_t_ph + (1 - self.done_mask_ph) * (gamma * target_v_ph)
self.total_error = tf.math.reduce_mean(huber_loss(q_func_ph - backup_ph))
q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='q_func')
target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_q_func')
| tensorflow.math.reduce_max | 12,709 |
import tensorflow as tf
pos_feats = tf.to_float(tf.stack([src_pos, trg_pos, src_len], axis=2))
pos_feats = tf.log(1 + pos_feats)
y += dense(pos_feats, encoder.attn_size, use_bias=False, name='P_a')
if encoder.attn_filters:
filter_shape = [encoder.attn_filter_length * 2 + 1, 1, 1, encoder.attn_filters]
filter_ = get_variable('filter', filter_shape)
prev_weights = tf.reshape(prev_weights, tf.stack([batch_size, time_steps, 1, 1]))
conv = tf.nn.conv2d(prev_weights, filter_, [1, 1, 1, 1], 'SAME')
conv = tf.squeeze(conv, axis=2)
y += dense(conv, encoder.attn_size, use_bias=False, name='C_a')
v = get_variable('v_a', [encoder.attn_size])
return tf.reduce_sum(v * tf.tanh(y), axis=2)
| tensorflow.stack | 12,710 |
from tensorflow.python.framework import ops
# statically, then we are unlikely to know the shape of the
# gradients either.
return [tensor_shape.unknown_shape(ndims=4)]
@ops.RegisterShape("DepthwiseConv2dNativeBackpropFilter")
def _DepthwiseConv2dNativeBackpropFilterShape(op):
"""Shape function for the DepthwiseConv2dNativeBackpropFilter op."""
filter_shape = tensor_util.constant_value(op.inputs[1])
if filter_shape is not None:
return [tensor_shape.TensorShape(filter_shape.tolist())]
else:
return [tensor_shape.unknown_shape(ndims=4)]
@ops.RegisterShape("DepthwiseConv2dNativeBackpropInput")
def _DepthwiseConv2dNativeBackpropInputShape(op):
"""Shape function for the DepthwiseConv2dNativeBackpropInput op."""
input_shape = tensor_util.constant_value(op.inputs[0])
if input_shape is not None:
return [tensor_shape.TensorShape(input_shape.tolist())]
else:
return [tensor_shape.unknown_shape(ndims=4)]
@ops.RegisterShape("MaxPoolGrad")
@ops.RegisterShape("MaxPoolGradWithArgmax")
def _MaxPoolGradShape(op):
"""Shape function for the MaxPoolGrad op."""
orig_input_shape = op.inputs[0].get_shape().with_rank(4)
| tensorflow.python.framework.ops.RegisterShape | 12,711 |
import tensorflow as tf
def resnet_bottleneck_v1(self,
depth,
depth_bottleneck,
stride,
input_layer=None,
in_size=None):
if input_layer is None:
input_layer = self.top_layer
if in_size is None:
in_size = self.top_size
name = 'resnet_v1' + str(self.counts['resnet_v1'])
self.counts['resnet_v1'] += 1
with tf.variable_scope(name):
if depth == in_size:
if stride == 1:
shortcut = input_layer
else:
shortcut = self.mpool(
1,
1,
stride,
stride,
input_layer=input_layer,
num_channels_in=in_size)
else:
| tensorflow.variable_scope | 12,712 |
from tensorflow.python.platform import gfile
# Restore "v0" from that checkpoint.
save.restore(sess, name)
self.assertEqual(v0.eval(), 2.0)
class CheckpointStateTest(tf.test.TestCase):
def _TestDir(self, test_name):
test_dir = os.path.join(self.get_temp_dir(), test_name)
if os.path.exists(test_dir):
shutil.rmtree(test_dir)
gfile.MakeDirs(test_dir)
return test_dir
def testAbsPath(self):
save_dir = self._TestDir("abs_paths")
abs_path = os.path.join(save_dir, "model-0")
ckpt = tf.train.generate_checkpoint_state_proto(save_dir, abs_path)
self.assertEqual(ckpt.model_checkpoint_path, abs_path)
self.assertTrue(os.path.isabs(ckpt.model_checkpoint_path))
self.assertEqual(len(ckpt.all_model_checkpoint_paths), 1)
self.assertEqual(ckpt.all_model_checkpoint_paths[-1], abs_path)
| tensorflow.python.platform.gfile.MakeDirs | 12,713 |
import tensorflow as tf
def neural_net(self, X, weights, biases):
num_layers = len(weights) + 1
H = 2.0*(X - self.lb)/(self.ub - self.lb) - 1.0
for l in range(0,num_layers-2):
W = weights[l]
b = biases[l]
H = tf.tanh(tf.add(tf.matmul(H, W), b))
W = weights[-1]
b = biases[-1]
Y = tf.add(tf.matmul(H, W), b)
return Y
def fwd_gradients_0(self, U, x):
g = tf.gradients(U, x, grad_ys=self.dummy_x0_tf)[0]
return tf.gradients(g, self.dummy_x0_tf)[0]
def fwd_gradients_1(self, U, x):
g = tf.gradients(U, x, grad_ys=self.dummy_x1_tf)[0]
return tf.gradients(g, self.dummy_x1_tf)[0]
| tensorflow.matmul | 12,714 |
import tensorflow as tf
for Deep Face Recognition" (http://ydwen.github.io/papers/WenECCV16.pdf)
Args:
features: 2-D `tensor` [batch_size, feature_length], input features
label: 1-D `tensor` [batch_size], input label
alpha: center loss parameter
num_classes: a `int` numof classes for training
Returns:
a `float`, center loss
"""
with tf.variable_scope(name):
num_features = features.get_shape()[1]
centers = tf.get_variable(
'centers', [num_classes, num_features],
dtype=tf.float32,
initializer=tf.constant_initializer(0),
trainable=False)
label = tf.reshape(label, [-1])
centers_batch = tf.gather(centers, label)
diff = (1 - alpha) * (centers_batch - features)
centers = tf.scatter_sub(centers, label, diff)
| tensorflow.variable_scope | 12,715 |
from tensorflow.python.ops import random_ops
"""
with ops.op_scope([x], name, "dropout") as name:
x = ops.convert_to_tensor(x, name="x")
if isinstance(keep_prob, float) and not 0 < keep_prob <= 1:
raise ValueError("keep_prob must be a scalar tensor or a float in the "
"range (0, 1], got %g" % keep_prob)
keep_prob = ops.convert_to_tensor(
keep_prob, dtype=x.dtype, name="keep_prob")
keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())
noise_shape = noise_shape or array_ops.shape(x)
# uniform [keep_prob, 1.0 + keep_prob)
random_tensor = keep_prob
random_tensor += random_ops.random_uniform(
noise_shape, seed=seed, dtype=x.dtype)
# 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob)
binary_tensor = math_ops.floor(random_tensor)
ret = x * math_ops.inv(keep_prob) * binary_tensor
ret.set_shape(x.get_shape())
return ret
def top_k(input, k=1, sorted=True, name=None):
"""Finds values and indices of the `k` largest entries for the last dimension.
If the input is a vector (rank-1), finds the `k` largest entries in the vector
| tensorflow.python.ops.random_ops.random_uniform | 12,716 |
import tensorflow as tf
with tf.variable_scope("bw_{}".format(layer)):
inputs_bw = tf.reverse_sequence(
| tensorflow.reverse_sequence | 12,717 |
import tensorflow as tf
raise ValueError("`token_type_ids` must be specified if"
"`use_token_type` is True.")
token_type_table = tf.get_variable(
name=token_type_embedding_name,
shape=[token_type_vocab_size, width],
initializer=create_initializer(initializer_range))
# This vocab will be small so we always do one-hot here, since it is always
# faster for a small vocabulary.
flat_token_type_ids = tf.reshape(token_type_ids, [-1])
one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
token_type_embeddings = tf.reshape(token_type_embeddings,
[batch_size, seq_length, width])
output += token_type_embeddings
if use_position_embeddings:
assert_op = tf.assert_less_equal(seq_length, max_position_embeddings)
with tf.control_dependencies([assert_op]):
| tensorflow.one_hot | 12,718 |
import tensorflow as tf
# Must have `strides[0] = strides[3] = 1 `.
# For the most common case of the same horizontal and vertices strides, `strides = [1, stride, stride, 1] `.
return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME', name='conv_2d')
| tensorflow.nn.conv2d | 12,719 |
import tensorflow as tf
# CNN
cnn_output = feats_audio
if do_cnn:
layer_last = feats_audio
nfilt_last = audio_nchannels
for i, ((ntime, nband, nfilt), (ptime, pband)) in enumerate(zip(cnn_filter_shapes, cnn_pool)):
layer_name = 'cnn_{}'.format(i)
with tf.variable_scope(layer_name):
filters = tf.get_variable('filters', [ntime, nband, nfilt_last, nfilt], initializer=cnn_init, dtype=dtype)
biases = tf.get_variable('biases', [nfilt], initializer=tf.constant_initializer(0.1), dtype=dtype)
if cnn_rnn_zack:
padding = 'SAME'
else:
padding = 'VALID'
conv = tf.nn.conv2d(layer_last, filters, [1, 1, 1, 1], padding=padding)
| tensorflow.get_variable | 12,720 |
from tensorflow.python.framework import tensor_shape
def _SelectShape(op):
# All three inputs must have the same shape.
return [op.inputs[0].get_shape()
.merge_with(op.inputs[1].get_shape())
.merge_with(op.inputs[2].get_shape())]
@ops.RegisterShape("ArgMax")
@ops.RegisterShape("ArgMin")
def _ArgOpShape(op):
"""Common shape function for arg-reduction ops."""
dimension_shape = op.inputs[1].get_shape()
dimension_shape.assert_is_compatible_with(tensor_shape.scalar())
input_shape = op.inputs[0].get_shape()
if input_shape.ndims is None:
return [tensor_shape.unknown_shape()]
elif input_shape.ndims <= 1:
return [tensor_shape.scalar()]
dimension = tensor_util.ConstantValue(op.inputs[1])
if dimension is None:
return [tensor_shape.unknown_shape(ndims=input_shape.ndims - 1)]
elif 0 <= dimension and dimension < input_shape.ndims:
returned_shape = []
| tensorflow.python.framework.tensor_shape.scalar | 12,721 |
import tensorflow as tf
nbatch, nin = [v.value for v in xs[0].get_shape()]
nsteps = len(xs)
with tf.variable_scope(scope):
wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale))
wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale))
b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0))
c, h = tf.split(axis=1, num_or_size_splits=2, value=s)
for idx, x in enumerate(xs):
c = c
h = h
z = tf.matmul(x, wx) + tf.matmul(h, wh) + b
i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z)
i = tf.nn.sigmoid(i)
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
u = tf.tanh(u)
c = f*c + i*u
h = o*tf.tanh(c)
xs[idx] = h
s = tf.concat(axis=1, values=[c, h])
return xs, s
def ortho_init(scale=1.0):
def _ortho_init(shape, dtype, partition_info=None):
#lasagne ortho init for tf
shape = tuple(shape)
if len(shape) == 2:
flat_shape = shape
| tensorflow.nn.sigmoid | 12,722 |
import tensorflow as tf
use_tpu=FLAGS.use_tpu,
bsz=FLAGS.predict_batch_size)
checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best")
result = estimator.predict(
input_fn=predict_input_fn,
checkpoint_path=checkpoint_path)
output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
output_submit_file = os.path.join(FLAGS.output_dir, "submit_results.tsv")
with tf.gfile.GFile(output_predict_file, "w") as pred_writer,\
tf.gfile.GFile(output_submit_file, "w") as sub_writer:
sub_writer.write("index" + "\t" + "prediction\n")
num_written_lines = 0
tf.logging.info("***** Predict results *****")
for (i, (example, prediction)) in\
enumerate(zip(predict_examples, result)):
probabilities = prediction["probabilities"]
if i >= num_actual_predict_examples:
break
output_line = "\t".join(
str(class_probability)
| tensorflow.gfile.GFile | 12,723 |
import tensorflow as tf
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
perturbed_stochastic_actions = tf.where(chose_random, random_actions, perturbed_deterministic_actions)
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
perturbed_output_actions = tf.cond(stochastic_ph, lambda: perturbed_stochastic_actions,
lambda: deterministic_actions)
output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
updates = [
update_eps_expr,
tf.cond(reset_ph, lambda: perturb_vars(original_scope="model", perturbed_scope="perturbed_model/model"),
lambda: tf.group(*[])),
| tensorflow.cond | 12,724 |
from tensorflow.python.ops import math_ops
with variable_scope.variable_scope(name, 'sensitivity_at_specificity',
[predictions, labels]):
kepsilon = 1e-7 # to account for floating point imprecisions
thresholds = [(i + 1) * 1.0 / (num_thresholds - 1)
for i in range(num_thresholds-2)]
thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon]
(tp, fn, tn, fp, tp_update_op, fn_update_op, tn_update_op,
fp_update_op) = _tp_fn_tn_fp(predictions, labels, thresholds, weights)
assert array_ops.squeeze(fp).get_shape().as_list()[0] == num_thresholds
def compute_sensitivity_at_specificity(name):
specificities = math_ops.div(tn, tn + fp + kepsilon)
tf_index = math_ops.argmin(math_ops.abs(specificities - specificity), 0)
tf_index = math_ops.cast(tf_index, dtypes.int32)
# Now, we have the implicit threshold, so compute the sensitivity:
return math_ops.div(tp[tf_index],
tp[tf_index] + fn[tf_index] + kepsilon,
name)
sensitivity = compute_sensitivity_at_specificity('value')
with ops.control_dependencies(
[tp_update_op, fn_update_op, tn_update_op, fp_update_op]):
update_op = compute_sensitivity_at_specificity('update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, sensitivity)
| tensorflow.python.ops.math_ops.cast | 12,725 |
import tensorflow as tf
labels: 2D tensor or array,[batch_size, num_classes] ground truth labels or target labels.
label_smoothing: a float, used to smooth the labels for better generalization
if greater than 0 then smooth the labels.
y_pow: int, to whcih the labels should be raised; useful if model diverge. e.g. y_pow=2
num_ratings: numbers of rater to used, typically num_classes of the model
batch_size: batch_size of the training or validation ops
log_scale: a float, used to multiply the clipped log loss, e.g: 0.5
log_offset:a float minimum log loss offset to substract from original log loss; e.g. 0.50
name: Optional scope/name for op_scope.
Returns:
A tensor with the kappa log loss.
"""
with tf.name_scope(name):
num_classes = labels.get_shape()[-1].value
labels = tf.cast(labels, predictions.dtype)
if label_smoothing > 0:
smooth_positives = 1.0 - label_smoothing
smooth_negatives = label_smoothing / num_classes
labels = labels * smooth_positives + smooth_negatives
log_loss_res = log_loss(predictions, labels)
kappa_loss_res = kappa_loss(
predictions, labels, y_pow=y_pow, num_ratings=num_classes, batch_size=batch_size)
return kappa_loss_res + log_scale * (log_loss_res - log_offset)
| tensorflow.name_scope | 12,726 |
from tensorflow.python.framework import ops
strides: A list of ints that has length >= 4. The stride of the sliding
window for each dimension of the input tensor.
padding: A string, either `'VALID'` or `'SAME'`. The padding algorithm.
data_format: A string. 'NHWC' and 'NCHW" are supported.
name: Optional name for the operation.
Returns:
A `Tensor` with type `tf.float32`. The max pooled output tensor.
"""
with ops.op_scope([value], name, "MaxPool") as name:
value = ops.convert_to_tensor(value, name="input")
return gen_nn_ops._max_pool(value, ksize=ksize, strides=strides,
padding=padding,
data_format=data_format,
name=name)
ops.RegisterShape("Relu")(common_shapes.unchanged_shape)
ops.RegisterShape("Relu6")(common_shapes.unchanged_shape)
ops.RegisterShape("Elu")(common_shapes.unchanged_shape)
| tensorflow.python.framework.ops.convert_to_tensor | 12,727 |
from tensorflow.contrib.eager.python.examples.spinn import data
f.write("%s " % word)
for j in range(data.WORD_VECTOR_LEN):
f.write("%.5f" % (i * 0.1))
if j < data.WORD_VECTOR_LEN - 1:
f.write(" ")
else:
f.write("\n")
return fake_train_file
def testInferSpinnWorks(self):
"""Test inference with the spinn model."""
snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0")
self._create_test_data(snli_1_0_dir)
vocab = data.load_vocabulary(self._temp_data_dir)
word2index, embed = data.load_word_vectors(self._temp_data_dir, vocab)
config = _test_spinn_config(
data.WORD_VECTOR_LEN, 4,
logdir=os.path.join(self._temp_data_dir, "logdir"),
inference_sentences=("( foo ( bar . ) )", "( bar ( foo . ) )"))
logits = spinn.train_or_infer_spinn(
embed, word2index, None, None, None, config)
self.assertEqual(tf.float32, logits.dtype)
self.assertEqual((3,), logits.shape)
def testInferSpinnThrowsErrorIfOnlyOneSentenceIsSpecified(self):
snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0")
self._create_test_data(snli_1_0_dir)
| tensorflow.contrib.eager.python.examples.spinn.data.load_vocabulary | 12,728 |
import tensorflow as tf
gtboxes_and_label_h, gtboxes_and_label_q = tf.py_func(self.get_gtboxes_and_label,
inp=[inputs_list[i][1],
inputs_list[i][2],
inputs_list[i][3]],
Tout=[tf.float32, tf.float32])
gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [cfgs.BATCH_SIZE, -1, 5])
# Unnecessary, if you have already sorted when making tfrecord and no data augmentation.
gtboxes_and_label_q = tf.py_func(func=re_order,
inp=[tf.reshape(gtboxes_and_label_q, [-1, 9]), True],
Tout=[tf.float32])
gtboxes_and_label_q = tf.reshape(gtboxes_and_label_q, [cfgs.BATCH_SIZE, -1, 9])
img = inputs_list[i][0]
img_shape = inputs_list[i][-2:]
h_crop = tf.reduce_max(img_shape[0])
w_crop = tf.reduce_max(img_shape[1])
img = tf.image.crop_to_bounding_box(image=img,
offset_height=0,
| tensorflow.reshape | 12,729 |
from tensorflow.python.platform import test
if __name__ == "__main__":
test.main()
| tensorflow.python.platform.test.main | 12,730 |
from tensorflow.python.framework import ops
logits = self._logits(features, is_training=True)
if self._enable_centered_bias:
centered_bias_step = [self._centered_bias_step(targets, features)]
else:
centered_bias_step = []
with ops.control_dependencies(centered_bias_step):
loss = self._target_column.loss(logits, targets, features)
logging_ops.scalar_summary("loss", loss)
linear_train_step = self._linear_model.get_train_step(loss)
dnn_train_step = (self._dnn_model.get_train_step(loss)
if self._dnn_model else [])
with ops.control_dependencies(linear_train_step + dnn_train_step):
with ops.get_default_graph().colocate_with(global_step):
return state_ops.assign_add(global_step, 1).op, loss
def _get_eval_ops(self, features, targets, metrics=None):
raise NotImplementedError
def _get_predict_ops(self, features):
"""See base class."""
features = self._get_feature_dict(features)
logits = self._logits(features)
return self._target_column.logits_to_predictions(logits, proba=True)
def _get_feature_ops_from_example(self, examples_batch):
column_types = layers.create_feature_spec_for_parsing((
| tensorflow.python.framework.ops.get_default_graph | 12,731 |
import tensorflow as tf
inp=[gtboxes_and_label_r[:, -2], cfgs.ANGLE_RANGE,
cfgs.OMEGA, cfgs.ANGLE_MODE],
Tout=tf.float32)
img = inputs_list[i][0]
img_shape = inputs_list[i][-2:]
img = tf.image.crop_to_bounding_box(image=img,
offset_height=0,
offset_width=0,
target_height=tf.cast(img_shape[0], tf.int32),
target_width=tf.cast(img_shape[1], tf.int32))
outputs = r3det_dcl.build_whole_detection_network(input_img_batch=img,
gtboxes_batch_h=gtboxes_and_label_h,
gtboxes_batch_r=gtboxes_and_label_r,
gt_encode_label=gt_encode_label,
gpu_id=i)
gtboxes_in_img_h = self.drawer.draw_boxes_with_categories(img_batch=img,
| tensorflow.cast | 12,732 |
import tensorflow as tf
if self.hidden_init == 'identity':
l1_h2 = tf.identity(x)
l2_h2 = tf.zeros(l2_shape, dtype=self.dtype)
l3_h2 = tf.zeros(l3_shape, dtype=self.dtype)
elif self.hidden_init == 'random':
l1_h2 = tf.random_normal(x_shape, dtype=self.dtype)
l2_h2 = tf.random_normal(l2_shape, dtype=self.dtype)
l3_h2 = tf.random_normal(l3_shape, dtype=self.dtype)
elif self.hidden_init == 'zeros':
l1_h2 = tf.zeros(x_shape, dtype=self.dtype)
l2_h2 = tf.zeros(l2_shape, dtype=self.dtype)
l3_h2 = tf.zeros(l3_shape, dtype=self.dtype)
else:
raise RuntimeError
# While loop
elems = [
i0,
| tensorflow.zeros | 12,733 |
import tensorflow as tf
w_z0_y0_x1 = tf.expand_dims(((x - x0_f) * (y1_f - y) *
(z1_f - z) * x0_valid * y1_valid * z1_valid),
1)
w_z0_y1_x0 = tf.expand_dims(((x1_f - x) * (y - y0_f) *
(z1_f - z) * x1_valid * y0_valid * z1_valid),
1)
w_z0_y1_x1 = tf.expand_dims(((x - x0_f) * (y - y0_f) *
(z1_f - z) * x0_valid * y0_valid * z1_valid),
1)
w_z1_y0_x0 = tf.expand_dims(((x1_f - x) * (y1_f - y) *
(z - z0_f) * x1_valid * y1_valid * z0_valid),
1)
w_z1_y0_x1 = tf.expand_dims(((x - x0_f) * (y1_f - y) *
(z - z0_f) * x0_valid * y1_valid * z0_valid),
1)
w_z1_y1_x0 = tf.expand_dims(((x1_f - x) * (y - y0_f) *
(z - z0_f) * x1_valid * y0_valid * z0_valid),
1)
w_z1_y1_x1 = tf.expand_dims(((x - x0_f) * (y - y0_f) *
(z - z0_f) * x0_valid * y0_valid * z0_valid),
1)
output = tf.add_n([
w_z0_y0_x0 * i_z0_y0_x0, w_z0_y0_x1 * i_z0_y0_x1,
w_z0_y1_x0 * i_z0_y1_x0, w_z0_y1_x1 * i_z0_y1_x1,
w_z1_y0_x0 * i_z1_y0_x0, w_z1_y0_x1 * i_z1_y0_x1,
w_z1_y1_x0 * i_z1_y1_x0, w_z1_y1_x1 * i_z1_y1_x1
])
return output
| tensorflow.expand_dims | 12,734 |
import tensorflow as tf
def cls_loss(ratio=3):
def _cls_loss(y_true, y_pred):
# y_true [batch_size, num_anchor, num_classes+1]
# y_pred [batch_size, num_anchor, num_classes]
labels = y_true
anchor_state = y_true[:, :, -1] # -1 是需要忽略的, 0 是背景, 1 是存在目标
classification = y_pred
# 找出存在目标的先验框
indices_for_object = tf.where(keras.backend.equal(anchor_state, 1))
labels_for_object = tf.gather_nd(labels, indices_for_object)
classification_for_object = tf.gather_nd(classification, indices_for_object)
cls_loss_for_object = keras.backend.binary_crossentropy(labels_for_object, classification_for_object)
# 找出实际上为背景的先验框
indices_for_back = tf.where(keras.backend.equal(anchor_state, 0))
labels_for_back = tf.gather_nd(labels, indices_for_back)
classification_for_back = tf.gather_nd(classification, indices_for_back)
# 计算每一个先验框应该有的权重
cls_loss_for_back = keras.backend.binary_crossentropy(labels_for_back, classification_for_back)
# 标准化,实际上是正样本的数量
| tensorflow.gather_nd | 12,735 |
import tensorflow as tf
scope.reuse_variables()
print('D in:', X.get_shape().as_list())
rate = [2, 3, 4]
X = atrous_convs(X, "d_atrous_0", rate = rate, depth=256, reuse=reuse)
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('d_1', X, 512, size=1, stride=1, padding="SAME")
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('d_2', X, 512, size=1, stride=1, padding="SAME")
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('d_3', X, 512, size=1, stride=1, padding="SAME")
| tensorflow.nn.leaky_relu | 12,736 |
import tensorflow as tf
target_y = tf.cast(target_y64, tf.int32)
adversarial_sample = attacks.jsma.jsma(models, images, hps, RCE_train, target_y,epochs=epoch_jsma, eps=eps,
clip_min=-0.5, clip_max=0.5, pair=False, min_proba=0.0)
elif method=='smda':
print('Attacking method is smda')
if target_labels==None:
print('Target label is the argmin label')
model_target_y = models(hps, images, FLAGS.RCE_train, logits=False)
target_y64 = tf.argmin(model_target_y,axis=1)
else:
target_y64=target_labels
target_y = tf.cast(target_y64, tf.int32)
adversarial_sample = attacks.smda.smda(models, images, hps, RCE_train, target_y, epochs=epoch_jsma, eps=eps,
clip_min=-0.5, clip_max=0.5, min_proba=0.0)
else:
print('Not recognized method')
adversarial_sample = None
return adversarial_sample
def tSNE_visual(hps,num_batch):
# Construct graph
images, labels = input_name.build_input(
| tensorflow.cast | 12,737 |
import tensorflow as tf
batch_size = tf.shape(targets)[0]
time_steps = tf.shape(targets)[1]
logits_ = tf.reshape(logits, tf.stack([time_steps * batch_size, logits.get_shape()[2].value]))
targets_ = tf.reshape(targets, tf.stack([time_steps * batch_size]))
crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_, labels=targets_)
crossent = tf.reshape(crossent, tf.stack([batch_size, time_steps]))
if rewards is not None:
crossent *= tf.stop_gradient(rewards)
log_perp = tf.reduce_sum(crossent * weights, axis=1)
if average_across_timesteps:
total_size = tf.reduce_sum(weights, axis=1)
total_size += 1e-12 # just to avoid division by 0 for all-0 weights
log_perp /= total_size
cost = tf.reduce_sum(log_perp)
if average_across_batch:
return cost / tf.to_float(batch_size)
else:
return cost
def reinforce_baseline(decoder_states, reward):
"""
Center the reward by computing a baseline reward over decoder states.
| tensorflow.reduce_sum | 12,738 |
import tensorflow as tf
FLAGS.enable_check_numerics = False
with self.session():
tf.global_variables_initializer().run()
self.assertFalse(has_nan_or_inf.eval())
| tensorflow.global_variables_initializer | 12,739 |
import tensorflow as tf
def _MergeOneToken(tokens, i):
return tf.expand_dims(
self._MergeTokens((tokens[i], tokens[i + 1])), axis=-1)
def _MergeCandidates(tokens, candidates):
"""Merge in the reverse binary tree."""
best_id = tf.argmin(candidates, output_type=tf.int32)
# Perform the merge at position best_id.
tokens = tf.concat(
[tokens[:best_id], [candidates[best_id]], tokens[best_id + 2:]],
axis=0)
# Recompute the merge candidates.
# Only the neighbors of best_id need to be recomputed.
empty = tf.zeros([0], dtype=candidates.dtype)
def _MergeLeft():
| tensorflow.concat | 12,740 |
import tensorflow as tf
if hparams.predict_linear:
tf.summary.scalar("linear_loss", model.linear_loss)
for i in range(hparams.tacotron_num_gpus):
tf.summary.histogram("mel_outputs %d" % i, model.tower_linear_outputs[i])
tf.summary.histogram("mel_targets %d" % i, model.tower_linear_targets[i])
tf.summary.scalar("regularization_loss", model.regularization_loss)
tf.summary.scalar("stop_token_loss", model.stop_token_loss)
tf.summary.scalar("loss", model.loss)
tf.summary.scalar("learning_rate", model.learning_rate) # Control learning rate decay speed
if hparams.tacotron_teacher_forcing_mode == "scheduled":
tf.summary.scalar("teacher_forcing_ratio", model.ratio) # Control teacher forcing
# ratio decay when mode = "scheduled"
gradient_norms = [tf.norm(grad) for grad in model.gradients]
tf.summary.histogram("gradient_norm", gradient_norms)
tf.summary.scalar("max_gradient_norm", tf.reduce_max(gradient_norms)) # visualize
# gradients (in case of explosion)
return tf.summary.merge_all()
def add_eval_stats(summary_writer, step, linear_loss, before_loss, after_loss, stop_token_loss,
loss):
| tensorflow.summary.scalar | 12,741 |
import tensorflow as tf
# dimensional representation of the segment.
with tf.variable_scope("pooler"):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token. We assume that this has been pre-trained
first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)
self.pooled_output = tf.layers.dense(
first_token_tensor,
config.hidden_size,
| tensorflow.squeeze | 12,742 |
import tensorflow as tf
flat_with_target = tf.concat([flat, tgt], axis=0)
new_features = {}
new_features['image'] = flat_with_target
predict_image_weight = predict_image_train_weight if training else 0.0
mask_begin = tf.ones_like(flat)
mask_begin = tf.cast(mask_begin, tf.float32) * predict_image_weight
mask_end = tf.cast(tf.ones_like(tgt), tf.float32)
new_features['mask'] = tf.concat([mask_begin, mask_end], axis=0)
return new_features, flat_with_target
| tensorflow.cast | 12,743 |
from tensorflow.python.ops import math_ops
```
where digamma(alpha) is the digamma function.""")
def _entropy(self):
return (self.alpha +
math_ops.log(self.beta) +
math_ops.lgamma(self.alpha) -
(1. + self.alpha) * math_ops.digamma(self.alpha))
@distribution_util.AppendDocstring(
| tensorflow.python.ops.math_ops.log | 12,744 |
import tensorflow as tf
tf.compat.v2.summary.scalar(
name="relabel_task_optimal", data=relabel_opt_frac, step=global_step)
# What are the average Q values of the original tasks?
if batch_size == num_tasks:
indices = tf.transpose(tf.stack([orig_indices, orig_indices], axis=0))
orig_q_vals = tf.gather_nd(logits_vec, indices)
tf.compat.v2.summary.scalar(
name="orig_q_vals",
data=tf.reduce_mean(orig_q_vals),
step=global_step,
)
# What are the average Q values of the relabelled tasks?
indices = tf.transpose(
tf.stack([orig_indices, tf.squeeze(relabel_indices)], axis=0))
relabel_q_vals = tf.gather_nd(logits_vec, indices)
tf.compat.v2.summary.scalar(
name="relabel_q_vals",
data=tf.reduce_mean(relabel_q_vals),
step=global_step,
)
max_q = tf.reduce_max(logits_vec, axis=1)
tf.compat.v2.summary.scalar(
name="max_q", data=tf.reduce_mean(max_q), step=global_step)
### End metrics
# For both state-centric and goal-centric relabelling, the implementation of
| tensorflow.squeeze | 12,745 |
import tensorflow as tf
if name in config.heads and name not in config.gradient_heads:
features = tf.stop_gradient(raw_features)
| tensorflow.stop_gradient | 12,746 |
from tensorflow.contrib.layers.python.layers import feature_column as contrib_feature_column
def testThatLeafIndexIsInPredictions(self):
learner_config = learner_pb2.LearnerConfig()
learner_config.num_classes = 2
learner_config.constraints.max_tree_depth = 1
model_dir = tempfile.mkdtemp()
config = run_config.RunConfig()
classifier = estimator.GradientBoostedDecisionTreeClassifier(
learner_config=learner_config,
num_trees=1,
examples_per_layer=3,
model_dir=model_dir,
config=config,
feature_columns=[contrib_feature_column.real_valued_column("x")],
output_leaf_index=True)
classifier.fit(input_fn=_train_input_fn, steps=15)
result_iter = classifier.predict(input_fn=_eval_input_fn)
for prediction_dict in result_iter:
self.assertTrue("leaf_index" in prediction_dict)
self.assertTrue("logits" in prediction_dict)
def testFitAndEvaluateDontThrowExceptionWithCoreForEstimator(self):
learner_config = learner_pb2.LearnerConfig()
learner_config.num_classes = 2
learner_config.constraints.max_tree_depth = 1
| tensorflow.contrib.layers.python.layers.feature_column.real_valued_column | 12,747 |
import tensorflow as tf
patches = tf.reshape(patches,[n_patch,patch_size,patch_size,n_channel])
patches = tf.random.shuffle(patches)
rows = tf.split(patches,n_col//patch_size,axis=0)
rows = [tf.concat(tf.unstack(x),axis=1) for x in rows]
x_aug = tf.concat(rows,axis=0)
| tensorflow.unstack | 12,748 |
import tensorflow as tf
# outputs, state = tf.contrib.rnn.static_rnn(cell, inputs,
# initial_state=self._initial_state)
outputs = []
with tf.variable_scope("RNN"):
for time_step in range(self.num_steps):
if time_step > 0: tf.get_variable_scope().reuse_variables()
(cell_output, state) = cell(inputs[:, time_step, :], state)
outputs.append(cell_output)
output = tf.reshape(tf.concat(outputs, 1), [-1, config.hidden_size])
return output, state
def assign_lr(self, session, lr_value):
session.run(self._lr_update, feed_dict={self._new_lr: lr_value})
def export_ops(self, name):
"""Exports ops to collections."""
| tensorflow.concat | 12,749 |
import tensorflow as tf
prev_c = [tf.zeros([1, self.lstm_size], tf.float32)
for _ in range(self.lstm_num_layers)]
prev_h = [tf.zeros([1, self.lstm_size], tf.float32)
for _ in range(self.lstm_num_layers)]
inputs = self.g_emb
for layer_id in range(2):
next_c, next_h = stack_lstm(inputs, prev_c, prev_h, self.w_lstm)
prev_c, prev_h = next_c, next_h
anchors = anchors.write(layer_id, tf.zeros_like(next_h[-1]))
anchors_w_1 = anchors_w_1.write(
layer_id, tf.matmul(next_h[-1], self.w_attn_1))
def _condition(layer_id, *args):
return tf.less(layer_id, self.num_cells + 2)
def _body(layer_id, inputs, prev_c, prev_h, anchors, anchors_w_1, arc_seq,
entropy, log_prob):
indices = tf.range(0, layer_id, dtype=tf.int32)
start_id = 4 * (layer_id - 2)
prev_layers = []
for i in range(2): # index_1, index_2
| tensorflow.matmul | 12,750 |
from tensorflow.python.ops import array_ops
values = math_ops.mul(values, weights)
num_values = math_ops.reduce_sum(_broadcast_weights(weights, values))
else:
num_values = math_ops.to_float(array_ops.size(values))
total_compute_op = state_ops.assign_add(total, math_ops.reduce_sum(values))
| tensorflow.python.ops.array_ops.size | 12,751 |
import tensorflow as tf
if options.use_coverage:
with variable_scope.variable_scope("coverage"):
w_c = variable_scope.get_variable("w_c", [options.attention_vec_size])
w_c = tf.expand_dims(tf.expand_dims(w_c, axis=0), axis=0)
# For each step, dec_input => lstm_output => vocab_score
| tensorflow.expand_dims | 12,752 |
from tensorflow.python.ops import math_ops
def get_weight_tensor(self, features):
if not self._weight_column_name:
return None
else:
return array_ops.reshape(
math_ops.to_float(features[self._weight_column_name]),
shape=(-1,))
def loss(self, logits, target, features):
"""Returns loss tensor for this head.
| tensorflow.python.ops.math_ops.to_float | 12,753 |
import tensorflow as tf
# tf.losses.add_loss(mse_loss)
# Add weight decay to the loss. We exclude the batch norm variables because
# doing so leads to a small improvement in accuracy.
loss = mse_loss + params['weight_decay'] * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'batch_normalization' not in v.name])
total_loss = tf.identity(loss, name='total_loss')
tf.summary.scalar('loss', total_loss)
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, predictions=predictions, eval_metric_ops=metrics)
if mode == tf.estimator.ModeKeys.TRAIN:
global_step = tf.train.get_or_create_global_step()
lr_values = [params['warmup_learning_rate']] + [base_learning_rate * decay for decay in params['lr_decay_factors']]
learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32),
[params['warmup_steps']] + [int(float(ep)*params['steps_per_epoch']) for ep in params['decay_boundaries']],
lr_values)
truncated_learning_rate = tf.maximum(learning_rate, tf.constant(params['end_learning_rate'], dtype=learning_rate.dtype), name='learning_rate')
tf.summary.scalar('lr', truncated_learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate=truncated_learning_rate,
momentum=params['momentum'])
| tensorflow.train.get_or_create_global_step | 12,754 |
import tensorflow as tf
dtype=_x.dtype)
input_shape = list(_x.get_shape())
reduction_axes = list(range(len(input_shape)))
del reduction_axes[axis]
broadcast_shape = [1] * len(input_shape)
broadcast_shape[axis] = input_shape[axis]
# case: train mode (uses stats of the current batch)
mean = tf.reduce_mean(_x, axis=reduction_axes)
brodcast_mean = tf.reshape(mean, broadcast_shape)
std = tf.reduce_mean(tf.square(_x - brodcast_mean) + epsilon, axis=reduction_axes)
std = tf.sqrt(std)
brodcast_std = tf.reshape(std, broadcast_shape)
x_normed = (_x - brodcast_mean) / (brodcast_std + epsilon)
# x_normed = tf.layers.batch_normalization(_x, center=False, scale=False)
x_p = tf.sigmoid(x_normed)
| tensorflow.reduce_mean | 12,755 |
from tensorflow.python.training import adagrad
linear_feature_columns=(bucketized_feature,),
linear_optimizer=ftrl.FtrlOptimizer(learning_rate=0.1),
dnn_feature_columns=(cont_feature,),
dnn_hidden_units=(3, 3),
dnn_optimizer=adagrad.AdagradOptimizer(learning_rate=0.1))
input_fn = test_data.iris_input_logistic_fn
metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate(
| tensorflow.python.training.adagrad.AdagradOptimizer | 12,756 |
import tensorflow as tf
slim = tf.contrib.slim
global first
first = True
classnum=12
testnum = tf.placeholder(tf.int32)
trainnum = tf.placeholder(tf.int32)
validnum = tf.placeholder(tf.int32)
learnrate = tf.placeholder(tf.float32)
def getinputs(path):
filename_queue=tf.train.string_input_producer([path])
reader=tf.TFRecordReader()
_,serialized_example=reader.read(filename_queue)
features=tf.parse_single_example(serialized_example,
features={
'label':tf.FixedLenFeature([], tf.int64),
| tensorflow.placeholder | 12,757 |
import tensorflow as tf
def _train_batch_sizes(self):
"""Shamelessly copied from `resnet50_test.py`.
Note: This is targeted towards ImageNet. CIFAR-10 should allow more
aggressive batch sizes.
Returns:
A tuple of possible batch sizes
"""
for device in device_lib.list_local_devices():
if tf.DeviceSpec.from_string(device.name).device_type == "GPU":
if "K20" in device.physical_device_desc:
return (16,)
if "P100" in device.physical_device_desc:
return (16, 32, 64)
if tf.DeviceSpec.from_string(device.name).device_type == "TPU":
return (32,)
return (16, 32)
def _force_device_sync(self):
"""Shamelessly copied from `resnet50_test.py`."""
| tensorflow.DeviceSpec.from_string | 12,758 |
import tensorflow as tf
"""
Test RNN graph single layer
"""
def test_rnn_kstep(test_data_x,test_data_y, preds, rnn_outputs, g, checkpoint, input_prob, output_prob, state_prob, num_test, kstep = 3):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
result= {}
"read the trained graph"
| tensorflow.Session | 12,759 |
from tensorflow.python.framework import ops
metric = math_ops.div(tp, math_ops.add(tp, fn), name=scope)
update = math_ops.div(
tp_update, math_ops.add(tp_update, fn_update), name='update')
if metrics_collections:
ops.add_to_collections(metrics_collections, metric)
if updates_collections:
ops.add_to_collections(updates_collections, update)
return metric, update
| tensorflow.python.framework.ops.add_to_collections | 12,760 |
import tensorflow as tf
return tf.nn.relu(layer)
with tf.variable_scope('norm_layer_%s%d' % (prefix, id)) as vs:
if norm_type == 'batch_norm':
if is_training:
try:
layer = tf.contrib.layers.batch_norm(layer, is_training=True, center=True,
scale=False, decay=decay, activation_fn=activation_fn, updates_collections=None, scope=vs) # updates_collections=None
except ValueError:
layer = tf.contrib.layers.batch_norm(layer, is_training=True, center=True,
scale=False, decay=decay, activation_fn=activation_fn, updates_collections=None, scope=vs, reuse=True) # updates_collections=None
| tensorflow.contrib.layers.batch_norm | 12,761 |
import tensorflow as tf
regularizer=regularizer)
b = tf.get_variable('b', [2048], initializer=tf.constant_initializer(1.0))
out = tf.matmul(self.fc1, w) + b
self.fc2 = tf.nn.relu(out)
# fc3
with tf.variable_scope('fc3'):
w = tf.get_variable('w', [self.fc2.get_shape()[1], num_classes], initializer=initializer,
regularizer=regularizer)
b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(1.0))
self.fc3 = tf.matmul(self.fc2, w) + b
# Calculate Mean cross-entropy loss
with tf.name_scope("loss"):
self.predictions = tf.argmax(self.fc3, 1, name="predictions")
losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.fc3, labels=self.input_y)
regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
self.loss = tf.reduce_mean(losses) + sum(regularization_losses)
# Accuracy
with tf.name_scope("accuracy"):
correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
| tensorflow.name_scope | 12,762 |
import tensorflow as tf
The learning phase flag is a bool tensor (0 = test, 1 = train)
to be passed as input to any Keras function
that uses a different behavior at train time and test time.
"""
graph = tf.get_default_graph()
if graph not in _GRAPH_LEARNING_PHASES:
phase = tf.placeholder(dtype='bool', name='keras_learning_phase')
_GRAPH_LEARNING_PHASES[graph] = phase
| tensorflow.get_default_graph | 12,763 |
import tensorflow as tf
tf.expand_dims(tf.nn.softmax(logits2), axis=1))
outer = tf.matrix_band_part(outer, 0, config.ans_limit)
self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits1, labels=self.y1)
losses2 = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits2, labels=self.y2)
self.loss = tf.reduce_mean(losses + losses2)
if config.l2_norm is not None:
variables = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
l2_loss = tf.contrib.layers.apply_regularization(regularizer, variables)
self.loss += l2_loss
if config.decay is not None:
self.var_ema = tf.train.ExponentialMovingAverage(config.decay)
ema_op = self.var_ema.apply(tf.trainable_variables())
with tf.control_dependencies([ema_op]):
self.loss = tf.identity(self.loss)
self.assign_vars = []
| tensorflow.get_collection | 12,764 |
import tensorflow as tf
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_real_example = None
| tensorflow.logging.info | 12,765 |
import tensorflow as tf
qdist = distributions.QuantizedDistribution(
base_dist_cls=distributions.Normal,
mu=mu,
sigma=sigma)
x = np.arange(-100, 100, 2).astype(dtype)
tf.initialize_all_variables().run()
proba = qdist.log_prob(x)
grads = tf.gradients(proba, [mu, sigma])
self._assert_all_finite(proba.eval())
self._assert_all_finite(grads[0].eval())
self._assert_all_finite(grads[1].eval())
def test_prob_and_grad_gives_finite_results_for_common_events(self):
with self.test_session():
mu = tf.Variable(0.0, name="mu")
| tensorflow.gradients | 12,766 |
import tensorflow as tf
ni = len(cell_inputs + blocks)
b = len(blocks)
# Count usage of inputs
block_uses = []
for bi in range(b):
idx1 = cell_arch[bi][0]
idx2 = cell_arch[bi][2]
block_use = tf.one_hot(idx1, ni, dtype=tf.int32) + tf.one_hot(idx2, ni, dtype=tf.int32)
block_uses.append(block_use)
block_uses = tf.add_n(block_uses)
unused_indices = tf.reshape(tf.cast(tf.where(tf.equal(block_uses, 0)), tf.int32), [-1])
num_out_blocks = tf.size(unused_indices)
# Select only unused blocks
with tf.variable_scope('select'):
| tensorflow.one_hot | 12,767 |
from tensorflow.python.platform import gfile
self.assertTrue(gfile.Exists(s1))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s1)))
# Exercise the third helper.
# Adding s2 again (but helper is unaware of previous s2)
s2 = save3.save(sess, os.path.join(save_dir, "s2"))
self.assertEqual([s2], save3.last_checkpoints)
# Created by the first helper.
self.assertTrue(gfile.Exists(s1))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s1)))
# Deleted by the first helper.
self.assertFalse(gfile.Exists(s3))
self.assertFalse(gfile.Exists(save._MetaGraphFilename(s3)))
self.assertTrue(gfile.Exists(s2))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s2)))
# Adding s1 (s3 should not be deleted because helper is unaware of it)
s1 = save3.save(sess, os.path.join(save_dir, "s1"))
self.assertEqual([s2, s1], save3.last_checkpoints)
self.assertFalse(gfile.Exists(s3))
self.assertFalse(gfile.Exists(save._MetaGraphFilename(s3)))
self.assertTrue(gfile.Exists(s2))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s2)))
self.assertTrue(gfile.Exists(s1))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s1)))
def testSharded(self):
| tensorflow.python.platform.gfile.Exists | 12,768 |
import tensorflow as tf
length=histories_vocabulary_length,
size=histories_embedding_size,
name='encoder_embedding'
)
with tf.name_scope("UtterancesEncoder"):
conv3 = encoder_embedding
# conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2))
conv3 = conv2d_bn(
input=conv3,
| tensorflow.name_scope | 12,769 |
from tensorflow.python.platform import gfile
self.assertEqual(ckpt.all_model_checkpoint_paths[-1], rel_path)
self.assertEqual(ckpt.all_model_checkpoint_paths[0], abs_path)
class MetaGraphTest(tf.test.TestCase):
def _TestDir(self, test_name):
test_dir = os.path.join(self.get_temp_dir(), test_name)
if os.path.exists(test_dir):
shutil.rmtree(test_dir)
gfile.MakeDirs(test_dir)
return test_dir
def testAddCollectionDef(self):
test_dir = self._TestDir("good_collection")
filename = os.path.join(test_dir, "metafile")
with self.test_session():
# Creates a graph.
v0 = tf.Variable(10.0, name="v0")
var = tf.Variable(tf.constant(0, dtype=tf.int64))
| tensorflow.python.platform.gfile.MakeDirs | 12,770 |
import tensorflow as tf
divider = tf.constant(resample, dtype=tf.float32)
def sample_compute(cur_loss, i):
batch1 = tf.gather(batch, tf.random.shuffle(index))
batch2 = tf.gather(batch, tf.random.shuffle(index))
pred1 = tf.slice(batch1, [0, 0], [num_sam, 1])
pred2 = tf.slice(batch2, [0, 0], [num_sam, 1])
tgt1 = tf.slice(batch1, [0, 1], [num_sam, 1])
tgt2 = tf.slice(batch2, [0, 1], [num_sam, 1])
loss = cur_loss + compute_contra_loss(pred1, pred2, tgt1, tgt2)
print(loss)
return (loss, i + 1)
# def sample_compute(i):
| tensorflow.slice | 12,771 |
import tensorflow as tf
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits, probabilities)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
| tensorflow.nn.log_softmax | 12,772 |
import tensorflow as tf
mean_z = tf.reduce_mean(labeled_poses[1][:, 2])
samples_world = grid.generate(
(mean_x - 0.5, 0.0, mean_z - 0.5), (mean_x + 0.5, 1.0, mean_z + 0.5),
[self.resolution, self.resolution, self.resolution])
samples_world = tf.reshape(samples_world, [-1, 3])
status = False
if status:
_, axs = plt.subplots(3, 3)
fig_obj_count = 0
# Do the same for the ground truth and predictions
num_collisions = 0
prev_intersection = 0
sdf_values = tf.zeros_like(samples_world)[:, 0:1]
for classes, sdfs, poses in [(predicted_classes,
predicted_sdfs,
predicted_poses)]:
for i in range(classes.shape[0]):
sdf = tf.expand_dims(sdfs[i], -1)
sdf = sdf * -1.0 # inside positive, outside zero
samples_object = centernet_utils.transform_pointcloud(
tf.reshape(samples_world, [1, 1, -1, 3]),
tf.reshape(poses[2][i], [1, 1, 3]),
tf.reshape(poses[0][i], [1, 1, 3, 3]),
tf.reshape(poses[1][i], [1, 1, 3]), inverse=True) * 2.0
samples_object = (samples_object * (29.0/32.0) / 2.0 + 0.5) * 32.0 - 0.5
samples = tf.squeeze(samples_object)
| tensorflow.zeros_like | 12,773 |
import tensorflow as tf
length: a tensor of shape [1] or an integer, indicating the first dimension
of the input tensor t after padding, assuming length <= t.shape[0].
Returns:
padded_t: the padded tensor, whose first dimension is length. If the length
is an integer, the first dimension of padded_t is set to length
statically.
"""
t_rank = tf.rank(t)
t_shape = tf.shape(t)
t_d0 = t_shape[0]
pad_d0 = tf.expand_dims(length - t_d0, 0)
pad_shape = tf.cond(
tf.greater(t_rank, 1), lambda: tf.concat([pad_d0, t_shape[1:]], 0),
lambda: tf.expand_dims(length - t_d0, 0))
padded_t = tf.concat([t, tf.zeros(pad_shape, dtype=t.dtype)], 0)
if not _is_tensor(length):
padded_t = _set_dim_0(padded_t, length)
| tensorflow.shape | 12,774 |
import tensorflow as tf
unfiltered_vocabulary_size: A tf.int64 tensor containing the unfiltered
vocab size.
filtered_vocabulary_size: A tf.int64 tensor containing the filtered vocab
size.
"""
if not common.IS_ANNOTATIONS_PB_AVAILABLE:
return
from tensorflow_transform import annotations_pb2 # pylint: disable=g-import-not-at-top
message_type = annotations_pb2.VocabularyMetadata.DESCRIPTOR.full_name
unfiltered_vocabulary_size = tf.expand_dims(unfiltered_vocabulary_size, 0)
filtered_vocabulary_size = tf.expand_dims(filtered_vocabulary_size, 0)
file_name = tf.convert_to_tensor([vocab_filename])
descriptor_source = descriptor_pb2.FileDescriptorSet()
annotations_pb2.VocabularyMetadata.DESCRIPTOR.file.CopyToProto(
descriptor_source.file.add())
descriptor_source_str = b'bytes://' + descriptor_source.SerializeToString()
message_proto = tf_utils._encode_proto( # pylint: disable=protected-access
{
'unfiltered_vocabulary_size': unfiltered_vocabulary_size,
'filtered_vocabulary_size': filtered_vocabulary_size,
'file_name': file_name,
| tensorflow.expand_dims | 12,775 |
import tensorflow as tf
recon_loss_A = tf.reduce_mean(tf.abs(A - ABA), name='recon_loss')
# gan loss
G_loss_A, D_loss_A = LSGAN_losses(A_dis_real, A_dis_fake)
with tf.name_scope('LossB'):
recon_loss_B = tf.reduce_mean(tf.abs(B - BAB), name='recon_loss')
G_loss_B, D_loss_B = LSGAN_losses(B_dis_real, B_dis_fake)
LAMBDA = 10.0
self.g_loss = tf.add((G_loss_A + G_loss_B),
(recon_loss_A + recon_loss_B) * LAMBDA, name='G_loss_total')
self.d_loss = tf.add(D_loss_A, D_loss_B, name='D_loss_total')
self.collect_variables('gen', 'discrim')
add_moving_summary(recon_loss_A, recon_loss_B, self.g_loss, self.d_loss)
def _get_optimizer(self):
lr = tf.get_variable('learning_rate', initializer=2e-4, trainable=False)
return tf.train.AdamOptimizer(lr, beta1=0.5, epsilon=1e-3)
def get_data(datadir, isTrain=True):
| tensorflow.add | 12,776 |
import tensorflow as tf
scope = tf.get_variable_scope()
with tf.variable_scope(scope):
if self._max_diffusion_step == 0:
pass
else:
for support in self._supports:
x1 = tf.sparse_tensor_dense_matmul(support, x0)
x = self._concat(x, x1)
for _ in range(2, self._max_diffusion_step + 1):
x2 = 2 * tf.sparse_tensor_dense_matmul(support, x1) - x0
x = self._concat(x, x2)
x1, x0 = x2, x1
num_matrices = len(self._supports) * self._max_diffusion_step + 1 # Adds for x itself.
x = tf.reshape(x, shape=[num_matrices, self._num_nodes, input_size, batch_size])
x = tf.transpose(x, perm=[3, 1, 2, 0]) # (batch_size, num_nodes, input_size, order)
x = tf.reshape(x, shape=[batch_size * self._num_nodes, input_size * num_matrices])
weights = tf.get_variable(
'weights', [input_size * num_matrices, output_size],
dtype=dtype,
initializer=tf.contrib.layers.xavier_initializer())
x = tf.matmul(
x, weights) # (batch_size * self._num_nodes, output_size)
biases = tf.get_variable("biases", [output_size],
dtype=dtype,
initializer=tf.constant_initializer(
bias_start, dtype=dtype))
x = tf.nn.bias_add(x, biases)
| tensorflow.reshape | 12,777 |
import tensorflow as tf
bert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
output_bias = tf.get_variable(
"output_bias",
shape=[bert_config.vocab_size],
initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
label_ids = tf.reshape(label_ids, [-1])
label_weights = tf.reshape(label_weights, [-1])
one_hot_labels = tf.one_hot(
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
| tensorflow.matmul | 12,778 |
import tensorflow as tf
if w_init is None:
w_init = tf.contrib.layers.variance_scaling_initializer()
if b_init is None:
b_init = tf.constant_initializer()
w = tf.get_variable('W', filter_shape, initializer=w_init)
b = None
if use_bias:
b = tf.get_variable('b', [out_channel], initializer=b_init)
if split == 1:
conv = tf.nn.conv2d(inputdata, w, strides, padding, data_format=data_format)
else:
inputs = tf.split(inputdata, split, channel_axis)
kernels = tf.split(w, split, 3)
outputs = [tf.nn.conv2d(i, k, strides, padding, data_format=data_format)
for i, k in zip(inputs, kernels)]
| tensorflow.get_variable | 12,779 |
import tensorflow as tf
super(TweetSeqModel, self).__init__(batch_size, max_sequence_len,
out_vocab_size, c2v,
dropout_keep_prob)
weights = tf.constant(weights, dtype=tf.float32, name='class_weights')
def GetCell():
"""Creates an LSTM cell with dropout."""
c = tf.nn.rnn_cell.LSTMCell(hidden_size,
use_peepholes=model_params['peepholes'],
num_proj=proj_size)
if dropout_keep_prob is not None:
c = tf.nn.rnn_cell.DropoutWrapper(c, input_keep_prob=dropout_keep_prob)
return c
# Create the bi-directional LSTM
with tf.variable_scope('wordrnn'):
with tf.variable_scope('fw'):
cell_fw = GetCell()
with tf.variable_scope('bw'):
cell_bw = GetCell()
rnnout, _, _ = tf.nn.bidirectional_rnn(cell_fw, cell_bw, self._inputs,
dtype=tf.float32,
sequence_length=self.seq_lens)
| tensorflow.nn.rnn_cell.DropoutWrapper | 12,780 |
import tensorflow as tf
def xavier_init(self, size):
in_dim = size[0]
out_dim = size[1]
xavier_stddev = np.sqrt(2/(in_dim + out_dim))
return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev), dtype=tf.float32)
def neural_net(self, X, weights, biases):
num_layers = len(weights) + 1
H = 2.0*(X - self.lb)/(self.ub - self.lb) - 1.0
for l in range(0,num_layers-2):
W1, W2 = weights[l]
b = biases[l]
H1 = tf.add(tf.matmul(H, W1), b)
H2 = tf.matmul(H, W2)
H = tf.tanh(tf.add(H1 * H2, H1))
W1, W2 = weights[-1]
b = biases[-1]
H1 = tf.add(tf.matmul(H, W1), b)
H2 = tf.matmul(H, W2)
Y = tf.add(H1 * H2, H1)
return Y
def fwd_gradients_0(self, U, x):
g = tf.gradients(U, x, grad_ys=self.dummy_x0_tf)[0]
return tf.gradients(g, self.dummy_x0_tf)[0]
def fwd_gradients_1(self, U, x):
g = tf.gradients(U, x, grad_ys=self.dummy_x1_tf)[0]
return tf.gradients(g, self.dummy_x1_tf)[0]
| tensorflow.add | 12,781 |
import tensorflow as tf
self.Dale_out,
name="in_2"),
transpose_b=True, name="3")\
+ self.b_out
else:
new_output = tf.matmul(tf.nn.relu(new_state), self.W_out * self.output_Connectivity,
transpose_b=True, name="3") + self.b_out
return new_output
def compute_predictions(self):
| tensorflow.nn.relu | 12,782 |
import tensorflow as tf
x_batch_minus_min, x_batch_max = tf_utils.reduce_batch_minus_min_and_max(
x, reduce_instance_dims)
minus_x_min, x_max = _numeric_combine( # pylint: disable=unbalanced-tuple-unpacking
inputs=[x_batch_minus_min, x_batch_max],
fn=combine_fn,
default_accumulator_value=default_accumulator_value,
reduce_instance_dims=reduce_instance_dims)
return tf.cast(0 - minus_x_min, output_dtype), tf.cast(x_max, output_dtype)
def _min_and_max_per_key(
x: common_types.TensorType,
key: common_types.TensorType,
reduce_instance_dims: bool = True,
key_vocabulary_filename: Optional[str] = None,
| tensorflow.cast | 12,783 |
import tensorflow as tf
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
l2 = tf.matmul(l1, self.w2)+self.b2
l2=tf.nn.relu(l2)
l3=tf.matmul(l2, self.w3)+self.b3
| tensorflow.matmul | 12,784 |
import tensorflow as tf
lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu*cfgs.BATCH_SIZE)
tf.summary.scalar('lr', lr)
| tensorflow.summary.scalar | 12,785 |
import tensorflow as tf
initializer=tf.constant_initializer(0.0))
layer_out = tf.nn.dropout(tf.matmul(prev_x, weights) + biases, dropout_keep_prob)
if activation == 'relu':
layer_out = tf.nn.relu(layer_out)
elif activation == 'sigmoid':
layer_out = tf.nn.sigmoid(layer_out)
elif activation == 'tanh':
layer_out = tf.nn.tanh(layer_out)
else:
raise NotImplementedError('activation not recognized')
prev_node = hidden_layers_node[i]
| tensorflow.nn.sigmoid | 12,786 |
import tensorflow as tf
# Initializing the variables
init = tf.initialize_all_variables()
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
best_accuracy = 0.0
# sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=False))
if (FLAG == 'train') : # If it is the training mode
with tf.Session() as sess:
# tf.initialize_all_variables().run()
sess.run(init) # .run()
f.write("---Save model \n")
# Start training for each batch and loop epochs
for i in range(config.training_epochs):
for start, end in zip(range(0, config.train_count, config.batch_size), # (0, 7352, 1500)
| tensorflow.Session | 12,787 |
import tensorflow as tf
target_logits = do_cls(
target_avg_pool, target_num_classes, name='final_target_dense')
is_prediction_correct = tf.equal(
tf.argmax(tf.identity(target_logits), axis=1),
tf.argmax(target_one_hot_labels, axis=1))
acc = tf.reduce_mean(tf.cast(is_prediction_correct, tf.float32))
| tensorflow.identity | 12,788 |
import tensorflow as tf
with tf.variable_scope("lm_aggregation"):
self.lm_weights = tf.nn.softmax(tf.get_variable("lm_scores", [lm_num_layers], initializer=tf.constant_initializer(0.0)))
self.lm_scaling = tf.get_variable("lm_scaling", [], initializer=tf.constant_initializer(1.0))
flattened_lm_emb = tf.reshape(lm_emb, [num_sentences * max_sentence_length * lm_emb_size, lm_num_layers])
flattened_aggregated_lm_emb = tf.matmul(flattened_lm_emb, tf.expand_dims(self.lm_weights, 1)) # [num_sentences * max_sentence_length * emb, 1]
aggregated_lm_emb = tf.reshape(flattened_aggregated_lm_emb, [num_sentences, max_sentence_length, lm_emb_size])
| tensorflow.reshape | 12,789 |
import tensorflow as tf
Returns:
TensorTrain object containing a TT-tensor
"""
shape = np.array(shape)
_validate_input_parameters(is_tensor=True, shape=shape)
num_dims = shape.size
tt_rank = np.ones(num_dims + 1)
tt_cores = num_dims * [None]
with tf.name_scope(name):
for i in range(num_dims):
curr_core_shape = (1, shape[i], 1)
tt_cores[i] = tf.zeros(curr_core_shape, dtype=dtype)
return TensorTrain(tt_cores, shape, tt_rank)
def eye(shape, dtype=tf.float32, name='t3f_eye'):
| tensorflow.name_scope | 12,790 |
from tensorflow.python.framework import ops
monitor.set_estimator(estimator)
if deprecated_monitors:
hooks.append(RunHookAdapterForMonitors(deprecated_monitors))
return hooks
def _as_graph_element(obj):
"""Retrieves Graph element."""
graph = ops.get_default_graph()
if not isinstance(obj, six.string_types):
if not hasattr(obj, "graph") or obj.graph != graph:
raise ValueError("Passed %s should have graph attribute that is equal "
"to current graph %s." % (obj, graph))
return obj
if ":" in obj:
element = graph.as_graph_element(obj)
else:
element = graph.as_graph_element(obj + ":0")
| tensorflow.python.framework.ops.get_default_graph | 12,791 |
import tensorflow as tf
def format_number(n):
"""Formats number with thousands commas."""
locale.setlocale(locale.LC_ALL, 'en_US')
return locale.format('%d', n, grouping=True)
def atoi(text):
return int(text) if text.isdigit() else text
def natural_keys(text):
return [atoi(c) for c in re.split(r'(\d+)', text)]
def read_text_lines(filepath):
with tf.gfile.Open(filepath, 'r') as f:
lines = f.readlines()
lines = [l.rstrip() for l in lines]
return lines
| tensorflow.gfile.Open | 12,792 |
import tensorflow as tf
img = tf.image.crop_to_bounding_box(image=img,
offset_height=0,
offset_width=0,
target_height=tf.cast(h_crop, tf.int32),
target_width=tf.cast(w_crop, tf.int32))
outputs = fcos.build_whole_detection_network(input_img_batch=img,
gtboxes_batch_h=gtboxes_and_label_h,
gtboxes_batch_r=gtboxes_and_label_q,
gpu_id=i)
gtboxes_in_img_q = self.drawer.draw_boxes_with_categories(
img_batch=tf.expand_dims(img[0, :, :, :], axis=0),
boxes=gtboxes_and_label_q[0, :, :-1],
labels=gtboxes_and_label_q[0, :, -1],
method=2)
tf.summary.image('Compare/gtboxes_q_gpu:%d' % i, gtboxes_in_img_q)
gtboxes_in_img_h = self.drawer.draw_boxes_with_categories(
img_batch=tf.expand_dims(img[0, :, :, :], axis=0),
boxes=gtboxes_and_label_h[0, :, :-1],
labels=gtboxes_and_label_h[0, :, -1],
method=0)
| tensorflow.expand_dims | 12,793 |
import tensorflow as tf
loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def _train_step(inputs, labels, training):
logit, embedding_vector = tf_sparse_demo(inputs, training=training)
loss = loss_fn(labels, logit)
grads = tf.gradients(loss, tf_sparse_demo.trainable_variables,
colocate_gradients_with_ops=True,
unconnected_gradients=tf.UnconnectedGradients.NONE)
train_op = optimizer.apply_gradients(zip(grads, tf_sparse_demo.trainable_variables))
with tf.control_dependencies([train_op]):
loss = tf.identity(loss)
return loss, embedding_vector
dataset = utils.tf_dataset(*random_samples, batchsize=args.global_batch_size,
to_sparse_tensor=True, repeat=1)
train_iterator = dataset.make_initializable_iterator()
iterator_init = train_iterator.initializer
| tensorflow.identity | 12,794 |
import tensorflow as tf
def __init__(self, wpm_filepath, merge_prob=1.):
"""Create a WPM encoder.
Args:
wpm_filepath: a path to the file containing the vocabulary.
merge_prob: the probability of merging tokens while encoding.
"""
# Load vocabulary file.
self._pieces = []
with tf.gfile.Open(wpm_filepath, 'r') as f:
for line in f.readlines():
line = line.decode('utf-8')
piece = line.strip().split('\t')[0]
self._pieces.append(piece)
self._merge_prob = merge_prob
def _TokenToString(self, token):
return py_x_ops.vocab_id_to_token(token, vocab=self._pieces)
| tensorflow.gfile.Open | 12,795 |
import tensorflow as tf
input_files = []
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern))
tf.logging.info("*** Input Files ***")
| tensorflow.gfile.Glob | 12,796 |
import tensorflow as tf
def _double_factorial_loop_body(n, result, two):
result = tf.where(tf.greater_equal(n, two), result * n, result)
return n - two, result, two
def _double_factorial_loop_condition(n, result, two):
return tf.cast(tf.math.count_nonzero(tf.greater_equal(n, two)), tf.bool)
def double_factorial(n: TensorLike) -> TensorLike:
n = tf.convert_to_tensor(value=n)
two = tf.ones_like(n) * 2
result = tf.ones_like(n)
_, result, _ = tf.while_loop(
cond=_double_factorial_loop_condition,
body=_double_factorial_loop_body,
loop_vars=[n, result, two])
return result
def factorial(n: TensorLike) -> TensorLike:
n = tf.convert_to_tensor(value=n)
return tf.exp(tf.math.lgamma(n + 1))
def generate_l_m_permutations(
max_band: int,
| tensorflow.while_loop | 12,797 |
import tensorflow as tf
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
# Mask
if mask is not None:
# key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T]
| tensorflow.shape | 12,798 |
import tensorflow as tf
image_pyramid=[image_scale],
is_training=False,
fine_tune_batch_norm=False)
if add_flipped_images:
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
outputs_to_scales_to_logits_reversed = multi_scale_logits(
tf.reverse_v2(images, [2]),
model_options=model_options,
image_pyramid=[image_scale],
| tensorflow.get_variable_scope | 12,799 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.