seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
return filename
class TranslateDistillProblem(TranslateProblem):
"""Base class for translation problems."""
def is_generate_per_split(self):
return True
def example_reading_spec(self):
data_fields = {"dist_targets": tf.VarLenFeature(tf.int64)}
if self.has_inputs:
data_fields["inputs"] = tf.VarLenFeature(tf.int64)
# hack: ignoring true targets and putting dist_targets in targets
data_items_to_decoders = {
"inputs": tf.contrib.slim.tfexample_decoder.Tensor("inputs"),
"targets": tf.contrib.slim.tfexample_decoder.Tensor("dist_targets"),
}
return (data_fields, data_items_to_decoders)
def get_or_create_vocab(self, data_dir, tmp_dir, force_get=False):
"""Get vocab for distill problems."""
# We assume that vocab file is present in data_dir directory where the
# data generated will be stored.
| tensorflow.VarLenFeature | 12,900 |
import tensorflow as tf
[rank_assertions[0]],
tf.shape(image_list[0]))
image_height = image_shape[0]
image_width = image_shape[1]
crop_size_assert = tf.Assert(
tf.logical_and(
tf.greater_equal(image_height, crop_height),
tf.greater_equal(image_width, crop_width)),
['Crop size greater than the image size.'])
asserts = [rank_assertions[0], crop_size_assert]
for i in range(1, len(image_list)):
image = image_list[i]
| tensorflow.greater_equal | 12,901 |
import tensorflow as tf
self.saver_train = tf.train.Saver(self.vars)
def __build_eval(self):
"""Build the evaluation graph."""
with tf.Graph().as_default():
# create a TF session for the current graph
config = tf.ConfigProto()
if FLAGS.enbl_multi_gpu:
config.gpu_options.visible_device_list = str(mgw.local_rank()) # pylint: disable=no-member
else:
config.gpu_options.visible_device_list = '0' # pylint: disable=no-member
self.sess_eval = tf.Session(config=config)
# data input pipeline
with tf.variable_scope(self.data_scope):
iterator = self.build_dataset_eval()
images, labels = iterator.get_next()
# model definition - distilled model
if FLAGS.enbl_dst:
logits_dst = self.helper_dst.calc_logits(self.sess_eval, images)
# model definition - weight-sparsified model
| tensorflow.Session | 12,902 |
import tensorflow as tf
heatmap_size,
tf.reshape(pred_heatmap * 255., [-1, heatmap_size, heatmap_size]),
| tensorflow.reshape | 12,903 |
import tensorflow as tf
padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
[5, 6, 1])
def test_gray_images_and_additional_channels(self):
input_tensor_dict = {
fields.InputDataFields.image:
tf.placeholder(tf.float32, [None, None, 3]),
fields.InputDataFields.image_additional_channels:
tf.placeholder(tf.float32, [None, None, 2]),
}
# pad_input_data_to_static_shape assumes that image is already concatenated
# with additional channels.
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
tensor_dict=input_tensor_dict,
max_num_boxes=3,
num_classes=3,
| tensorflow.placeholder | 12,904 |
import tensorflow as tf
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
use_xavier: bool, whether to use xavier initializer
Returns:
Variable Tensor
"""
if use_xavier:
initializer = tf.contrib.layers.xavier_initializer()
var = _variable_on_cpu(name, shape, initializer)
else:
# initializer = tf.truncated_normal_initializer(stddev=stddev)
with tf.device('/cpu:0'):
var = tf.truncated_normal(shape, stddev=np.sqrt(2 / shape[-1]))
var = tf.round(var * tf.constant(1000, dtype=tf.float32)) / tf.constant(1000, dtype=tf.float32)
var = tf.Variable(var, name='weights')
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def conv1d(inputs,
num_output_channels,
kernel_size,
scope,
stride=1,
padding='SAME',
| tensorflow.constant | 12,905 |
import tensorflow as tf
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits, probabilities)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
| tensorflow.one_hot | 12,906 |
import tensorflow as tf
self.dropout_mask = []
self.scope = scope
for layer in range(num_layers):
input_size_ = input_size if layer == 0 else 2 * num_units
gru_fw = tf.contrib.rnn.GRUCell(num_units)
gru_bw = tf.contrib.rnn.GRUCell(num_units)
init_fw = tf.tile(tf.Variable(
tf.zeros([1, num_units])), [batch_size, 1])
init_bw = tf.tile(tf.Variable(
tf.zeros([1, num_units])), [batch_size, 1])
mask_fw = dropout(tf.ones([batch_size, 1, input_size_], dtype=tf.float32),
keep_prob=keep_prob, is_train=is_train, mode=None)
mask_bw = dropout(tf.ones([batch_size, 1, input_size_], dtype=tf.float32),
keep_prob=keep_prob, is_train=is_train, mode=None)
self.grus.append((gru_fw, gru_bw, ))
self.inits.append((init_fw, init_bw, ))
self.dropout_mask.append((mask_fw, mask_bw, ))
def __call__(self, inputs, seq_len, keep_prob=1.0, is_train=None, concat_layers=True):
outputs = [inputs]
| tensorflow.ones | 12,907 |
import tensorflow as tf
graph_results = _train_step(inputs, labels, training=True)
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
if "plugin" in args.optimizer:
init_op = tf.group(init_op, emb_opt.initializer)
save_op = list()
for i, embedding_layer in enumerate(sok_sparse_demo.embedding_layers):
control_inputs = [save_op[-1]] if save_op else None
with tf.control_dependencies(control_inputs):
if args.save_params:
filepath = r"./embedding_variables/"
utils.try_make_dirs(filepath)
op = sok_saver.dump_to_file(embedding_layer.embedding_variable, filepath)
else:
op = tf.constant(1.0)
save_op.append(op)
sok_results = list()
with tf.Session() as sess:
sess.run(sok_init_op)
sess.run([init_op, iterator_init])
sess.run(restore_op)
sess.graph.finalize()
for step in range(args.iter_num):
loss_v, emb_vector_v = sess.run([*graph_results])
print("*" * 80)
print(f"Step: {step}, loss: {loss_v}, embedding_vector:\n{emb_vector_v}")
| tensorflow.constant | 12,908 |
import tensorflow as tf
"""
mu, var = self.build_posterior_mean_var(X, Y, test_points, True)
jitter = tfhacks.eye(tf.shape(mu)[0], var.dtype) * 1e-06
L = tf.batch_cholesky(tf.transpose(var, (2, 0, 1)) + jitter)
V_shape = [tf.shape(L)[0], tf.shape(L)[1], num_samples]
V = tf.random_normal(V_shape, dtype=L.dtype)
samples = tf.expand_dims(tf.transpose(mu), -1) + tf.batch_matmul(L, V)
return tf.transpose(samples)
| tensorflow.shape | 12,909 |
from tensorflow.python.ops import variables as vars_
if not isinstance(opt, optimizer_.Optimizer):
raise ValueError("Unrecognized optimizer: function should return "
"subclass of Optimizer. Got %s." % str(opt))
else:
raise ValueError("Unrecognized optimizer: should be string, "
"subclass of Optimizer, instance of "
"subclass of Optimizer or function with one argument. "
"Got %s." % str(optimizer))
# All trainable variables, if specific variables are not specified.
if variables is None:
variables = vars_.trainable_variables()
# Compute gradients.
gradients = opt.compute_gradients(
loss,
variables,
colocate_gradients_with_ops=colocate_gradients_with_ops)
# Optionally add gradient noise.
if gradient_noise_scale is not None:
gradients = _add_scaled_noise_to_gradients(gradients,
| tensorflow.python.ops.variables.trainable_variables | 12,910 |
import tensorflow as tf
output = state[:, -cell_output_size:]
if decoder.conditional_rnn:
with tf.variable_scope('conditional_1'):
output, state = update(state, input_)
elif decoder.update_first:
| tensorflow.variable_scope | 12,911 |
import tensorflow as tf
cell_drop=tf.contrib.rnn.DropoutWrapper(lstm,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
elif activation == 'relu':
lstm=tf.nn.rnn_cell.LSTMCell(num_units=state_size, activation = tf.nn.relu, state_is_tuple=True)
cell_drop=tf.contrib.rnn.DropoutWrapper(lstm,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
else: #tanh by default
lstm=tf.nn.rnn_cell.LSTMCell(num_units=state_size, state_is_tuple=True)
cell_drop=tf.contrib.rnn.DropoutWrapper(lstm,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
elif cell_type == 'GRU':
if activation == 'linear':
gru=tf.nn.rnn_cell.GRUCell(state_size, activation = tf.identity)
cell_drop=tf.contrib.rnn.DropoutWrapper(gru,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
elif activation == 'relu':
gru=tf.nn.rnn_cell.GRUCell(state_size, activation = tf.nn.relu)
cell_drop=tf.contrib.rnn.DropoutWrapper(gru,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
else:
gru=tf.nn.rnn_cell.GRUCell(state_size)
cell_drop=tf.contrib.rnn.DropoutWrapper(gru,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
else:
if activation == 'linear':
cell_basic = tf.contrib.rnn.BasicRNNCell(state_size,activation=tf.identity)
| tensorflow.nn.rnn_cell.GRUCell | 12,912 |
import tensorflow as tf
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag)
query = prelu(query)
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
| tensorflow.concat | 12,913 |
import tensorflow as tf
[6, 6, 5, 4, 0, 1, 2, 3, 3], #
[6, 6, 5, 4, 0, 1, 2, 3, 3], #
],
[
[6, 6, 5, 4, 0, 1, 2, 3, 3], #
[6, 6, 5, 4, 0, 1, 2, 3, 3], #
[6, 6, 5, 4, 0, 1, 2, 3, 3], #
],
]
self.assertAllEqual(
expected,
relative_pos_gen.make_local_relative_att_ids(
seq_len=3, local_radius=4, batch_size=tf.shape(dummy_batch)[0]))
def test_make_local_relative_att_ids_invalid_arguments(self):
relative_pos_gen = feature_utils.RelativePositionGenerator(max_distance=3)
with self.assertRaises(ValueError):
relative_pos_gen.make_local_relative_att_ids(seq_len=0, local_radius=3)
with self.assertRaises(ValueError):
relative_pos_gen.make_local_relative_att_ids(seq_len=5, local_radius=0)
with self.assertRaises(ValueError):
| tensorflow.shape | 12,914 |
import tensorflow as tf
with tf.variable_scope("conv_block_" + str(num_filters) + "_" + name):
for i in range(2):
with tf.variable_scope("conv1d_%s" % str(i)):
filter_shape = [3, inputs.get_shape()[2], num_filters]
W = tf.get_variable(name='W', shape=filter_shape,
initializer=he_normal,
regularizer=regularizer)
inputs = tf.nn.conv1d(inputs, W, stride=1, padding="SAME")
| tensorflow.get_variable | 12,915 |
import tensorflow as tf
with self.test_session():
x = tf.constant([1.0, 2.0], tf.float64)
y = tf.constant([2.0, 3.0], tf.float64)
z = tf.py_func(my_func, [x, y], [tf.float64])
self.assertAllEqual(
z[0].eval(),
my_func([1.0, 2.0], [2.0, 3.0]).astype(np.float64))
# a bit exotic type (complex64)
with self.test_session():
x = tf.constant(1+2j, tf.complex64)
y = tf.constant(3+4j, tf.complex64)
z, = tf.py_func(my_func, [x, y], [tf.complex64])
self.assertAllClose(z.eval(), my_func(1+2j, 3+4j))
# a bit excotic function (rfft)
with self.test_session():
x = tf.constant([1., 2., 3., 4.], tf.float32)
def rfft(x):
return np.fft.rfft(x).astype(np.complex64)
| tensorflow.constant | 12,916 |
import tensorflow as tf
config.add_hparam("n_classes", 10)
config.add_hparam("dataset", "cifar-10")
x = tf.random_normal(
shape=(self.config.batch_size,) + self.config.input_shape)
t = tf.random_uniform(
shape=(self.config.batch_size,),
minval=0,
maxval=self.config.n_classes,
dtype=tf.int32)
global_step = tf.Variable(0., trainable=False)
model = revnet.RevNet(config=config)
_, saved_hidden = model(x)
grads, _ = model.compute_gradients(saved_hidden=saved_hidden, labels=t)
optimizer = tf.train.AdamOptimizer(learning_rate=1e-3)
train_op = optimizer.apply_gradients(
zip(grads, model.trainable_variables), global_step=global_step)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for _ in range(1):
sess.run(train_op)
# Benchmark related
def device_and_data_format():
return ("/gpu:0",
"channels_first") if tf.test.is_gpu_available() else ("/cpu:0",
| tensorflow.train.AdamOptimizer | 12,917 |
import tensorflow as tf
use_pretrained,
pretrained_model_file_path):
kwargs = {'pretrained': use_pretrained}
net = get_model(model_name, **kwargs)
input_image_size = net.in_size[0] if hasattr(net, 'in_size') else 224
x = tf.placeholder(
dtype=tf.float32,
shape=(None, 3, input_image_size, input_image_size),
name='xx')
y_net = net(x)
if use_pretrained or pretrained_model_file_path:
| tensorflow.placeholder | 12,918 |
import tensorflow as tf
Returns:
Nx#class logits
"""
def optimizer(self):
lr = tf.get_variable('learning_rate', initializer=0.1, trainable=False)
tf.summary.scalar('learning_rate-summary', lr)
return tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True)
def image_preprocess(self, image):
with tf.name_scope('image_preprocess'):
| tensorflow.get_variable | 12,919 |
import tensorflow as tf
pred1, pred2 = tf.split(pred, 2, axis=0)
tgt1, tgt2 = tf.split(tgt, 2, axis=0)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small))
loss = tf.reduce_mean(loss)
| tensorflow.where | 12,920 |
import tensorflow as tf
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
init_op=tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
scaffold_fn=tf.train.Scaffold(init_op=init_op)
# def train_scafflod():
# tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
#
# scaffold_fn=tf.train.Scaffold(init_fn=train_scafflod)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
| tensorflow.train.init_from_checkpoint | 12,921 |
import tensorflow as tf
processed_l1_h2,
getattr(self, 'ff_bias_%s' % idx))
processed_l1_h2 = self.ff_nl(processed_l1_h2)
if self.batch_norm:
with tf.variable_scope(
'l1_h2_bn_ff_%s' % idx,
reuse=self.scope_reuse) as scope:
processed_l1_h2 = tf.contrib.layers.batch_norm(
| tensorflow.variable_scope | 12,922 |
import tensorflow as tf
num_items = params["num_items"]
users = tf.random_uniform([batch_size], dtype=tf.int32, minval=0,
maxval=num_users)
items = tf.random_uniform([batch_size], dtype=tf.int32, minval=0,
maxval=num_items)
if is_training:
| tensorflow.random_uniform | 12,923 |
import tensorflow as tf
X = tf.nn.avg_pool(X, ksize=(1, filter_size, filter_size, 1), strides=[1, stride, stride, 1], padding='SAME')
X = tf.reshape(X, (-1, w // stride, h // stride, ch)) # Sanity shape check
return X
def _add_identity_op(self, X, input_idx, ni, w, h, ch, is_reduction, is_dynamic, is_train):
stride = 2 if is_reduction else 1
with tf.variable_scope('identity_op'):
# If stride > 1, calibrate, else, just return itself
if stride > 1:
X = self._calibrate(X, w, h, ch, w // stride, h // stride, ch, is_train=is_train)
X = tf.reshape(X, (-1, w // stride, h // stride, ch)) # Sanity shape check
return X
| tensorflow.variable_scope | 12,924 |
import tensorflow as tf
logits = tf.reshape(logits, [self.batch_size, self.num_steps, vocab_size])
loss = tf.contrib.seq2seq.sequence_loss(
logits,
input_.targets,
tf.ones([self.batch_size, self.num_steps], dtype=tf.float32),
average_across_timesteps=False,
average_across_batch=True)
self._cost = tf.reduce_sum(loss)
| tensorflow.ones | 12,925 |
import tensorflow as tf
# AC net
def build_anet(self, state_in, name, reuse=False, batch_size=64):
reg = None
with tf.variable_scope(name, reuse=reuse):
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
lstm_a = tf.nn.rnn_cell.LSTMCell(num_units=256)
lstm_a = tf.nn.rnn_cell.DropoutWrapper(lstm_a, output_keep_prob=self.keep_prob)
state_init_a = lstm_a.zero_state(batch_size=batch_size, dtype=tf.float32)
lstm_ain = tf.expand_dims(layer_a2, axis=1)
out_a, state_final_a = tf.nn.dynamic_rnn(cell=lstm_a, inputs=lstm_ain, initial_state=state_init_a)
cell_out_a = tf.reshape(out_a, [-1, 256])
mu = tf.layers.dense(cell_out_a, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
sigma = tf.layers.dense(cell_out_a, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
| tensorflow.nn.rnn_cell.DropoutWrapper | 12,926 |
import tensorflow as tf
best_target_per_prior_index = tf.math.argmax(ious, axis=1)
# size: num_targets
best_prior_per_target = tf.math.reduce_max(ious, axis=0)
best_prior_per_target_index = tf.math.argmax(ious, axis=0)
| tensorflow.math.reduce_max | 12,927 |
import tensorflow as tf
rnn_outputs = \
tf.scan(
self.output_step_scan,
rnn_states,
initializer=tf.zeros([self.N_batch, self.N_out]),
parallel_iterations= 1)
return tf.transpose(rnn_outputs, [1, 0, 2]), tf.unstack(rnn_states)
# fix spectral radius of recurrent matrix
def initial_W(self):
| tensorflow.unstack | 12,928 |
import tensorflow as tf
b8 = utils.bias_variable([150], name="b8")
# W_h = utils.weight_variable([1, 7, 7, 4], name="Wh")
conv8 = tf.reshape(utils.conv2d_basic(relu_dropout7, W8, b8),[-1,4*4*150])
fc1 = tf.reshape(tf.layers.dense(conv8,4*4*150,activation = tf.nn.relu),[-1,4,4,150])
| tensorflow.layers.dense | 12,929 |
from tensorflow.contrib.metrics.python.ops import metric_ops
def _streaming_auc(predictions, labels, weights=None):
return metric_ops.streaming_auc(
predictions, labels, weights=_float_weights_or_none(weights))
def _accuracy_at_threshold(threshold):
def _accuracy_metric(predictions, labels, weights=None):
threshold_predictions = math_ops.to_float(
math_ops.greater_equal(predictions, threshold))
return metric_ops.streaming_accuracy(
predictions=threshold_predictions, labels=labels, weights=weights)
return _accuracy_metric
def _streaming_at_threshold(streaming_metrics_fn, threshold):
def _streaming_metrics(predictions, labels, weights=None):
precision_tensor, update_op = streaming_metrics_fn(
predictions,
labels=labels,
| tensorflow.contrib.metrics.python.ops.metric_ops.streaming_accuracy | 12,930 |
import tensorflow as tf
tf.reshape(byte, shape=[]), 3, **JPEG_OPT)
image = resize_shortest_edge(image, jpeg_shape, 224)
image = center_crop(image, 224)
return image
image = tf.cond(is_bad, bad, good)
# TODO other imgproc
image = lighting(image, 0.1,
eigval=np.array([0.2175, 0.0188, 0.0045], dtype='float32') * 255.0,
eigvec=np.array([[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203]], dtype='float32'))
image = tf.image.random_flip_left_right(image)
image = tf.reverse(image, axis=[2]) # to BGR
return image
return training_mapper if isTrain else validation_mapper
"""
====== Model & Evaluation =======
"""
| tensorflow.image.random_flip_left_right | 12,931 |
import tensorflow as tf
dis_train_op = while_loop(cond, body, inputs)
# tf.contrib.gan's train op does not manage global steps in it
train_op = tf.group(
dis_train_op,
gan_train_ops.generator_train_op,
global_step.assign_add(1))
if params['use_tpu']:
# TPU version of EstimatorSpec
return tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,)
else:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
| tensorflow.contrib.tpu.TPUEstimatorSpec | 12,932 |
import tensorflow as tf
"""
if max_cpus > 1:
from garage.sampler import singleton_pool
singleton_pool.initialize(max_cpus)
self.sess = sess or tf.Session()
self.sess_entered = False
self.has_setup = False
self.plot = False
| tensorflow.Session | 12,933 |
from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined
# distributed jobs, such as "/job:ps" which are not present.
config._cluster_spec = server_lib.ClusterSpec({})
classifier = dnn_linear_combined.DNNLinearCombinedClassifier(
linear_feature_columns=(sparse_feature,),
dnn_feature_columns=(embedding_feature,),
| tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined.DNNLinearCombinedClassifier | 12,934 |
import tensorflow as tf
all_perturbed_vars = scope_vars(absolute_scope_name(perturbed_scope))
assert len(all_vars) == len(all_perturbed_vars)
perturb_ops = []
for var, perturbed_var in zip(all_vars, all_perturbed_vars):
if param_noise_filter_func(perturbed_var):
# Perturb this variable.
op = tf.assign(perturbed_var, var + tf.random_normal(shape=tf.shape(var), mean=0., stddev=param_noise_scale))
else:
# Do not perturb, just assign.
op = tf.assign(perturbed_var, var)
perturb_ops.append(op)
assert len(perturb_ops) == len(all_vars)
return tf.group(*perturb_ops)
# Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy
# of the network and measures the effect of that perturbation in action space. If the perturbation
# is too big, reduce scale of perturbation, otherwise increase.
q_values_adaptive = q_func(observations_ph.get(), num_actions, scope="adaptive_q_func")
perturb_for_adaption = perturb_vars(original_scope="q_func", perturbed_scope="adaptive_q_func")
kl = tf.reduce_sum(tf.nn.softmax(q_values) * (tf.log(tf.nn.softmax(q_values)) - tf.log(tf.nn.softmax(q_values_adaptive))), axis=-1)
mean_kl = tf.reduce_mean(kl)
def update_scale():
with tf.control_dependencies([perturb_for_adaption]):
update_scale_expr = tf.cond(mean_kl < param_noise_threshold,
| tensorflow.group | 12,935 |
import tensorflow as tf
output = self.activation(net_input) # output: p_s * b_s * o_s
return output
@property
def regularization(self):
return self.model_lam * (
self.model_prob * tf.reduce_sum(tf.square(self.model_W)) +
tf.reduce_sum(tf.square(self.model_b))
)
# def generate_dropout_mask_placeholders(x_dim, hidden_sizes=(32,)):
# dropout_mask_placeholders = []
# for l, size in enumerate((x_dim, *hidden_sizes)):
# dropout_mask_placeholders.append(tf.placeholder(dtype=tf.float32, shape=(size,),
| tensorflow.square | 12,936 |
from tensorflow.contrib.opt.python.training import variable_clipping_optimizer
def _setupDense(self, is_distributed, dtype):
with self._maybeWithDevice("/job:ps" if is_distributed else None):
var0 = variables.Variable([[0.0, 1.0], [2.0, 3.0]], dtype=dtype)
var1 = variables.Variable([4.0, 5.0], dtype=dtype)
with self._maybeWithDevice("/job:worker" if is_distributed else None):
grads0 = constant_op.constant([[0.1, 0.1], [0.1, 0.1]], dtype=dtype)
grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
sgd = gradient_descent.GradientDescentOptimizer(3.0)
clip_opt = variable_clipping_optimizer.VariableClippingOptimizer(
sgd, {var0: [1]}, 2.0)
update_op = clip_opt.apply_gradients(
list(zip([grads0, grads1], [var0, var1])))
variables.global_variables_initializer().run()
return var0, var1, update_op
def _assertDenseCorrect(self, var0, var1, update_op):
| tensorflow.contrib.opt.python.training.variable_clipping_optimizer.VariableClippingOptimizer | 12,937 |
import tensorflow as tf
shapes = tf.shape(input_var)
shapes = tf.stack([shapes[0],shapes[1]*self.strides[1],shapes[2]*self.strides[2],tf.shape(self.b)[0]])
def _init():
v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,3])
t = tf.nn.conv2d_transpose(input_var,v_norm,
output_shape=shapes,
strides=self.strides,
| tensorflow.nn.l2_normalize | 12,938 |
import tensorflow as tf
combined_idx = use_identity * distances + (1 - use_identity) * logspace_idx
return tf.clip_by_value(combined_idx, 0, 9)
def get_slow_antecedent_scores(self, top_span_emb, top_antecedents, top_antecedent_emb, top_antecedent_offsets, top_span_speaker_ids, genre_emb):
k = util.shape(top_span_emb, 0)
c = util.shape(top_antecedents, 1)
feature_emb_list = []
if self.config["use_metadata"]:
top_antecedent_speaker_ids = tf.gather(top_span_speaker_ids, top_antecedents) # [k, c]
same_speaker = tf.equal(tf.expand_dims(top_span_speaker_ids, 1), top_antecedent_speaker_ids) # [k, c]
speaker_pair_emb = tf.gather(tf.get_variable("same_speaker_emb", [2, self.config["feature_size"]]), tf.to_int32(same_speaker)) # [k, c, emb]
feature_emb_list.append(speaker_pair_emb)
tiled_genre_emb = tf.tile(tf.expand_dims(tf.expand_dims(genre_emb, 0), 0), [k, c, 1]) # [k, c, emb]
feature_emb_list.append(tiled_genre_emb)
if self.config["use_features"]:
antecedent_distance_buckets = self.bucket_distance(top_antecedent_offsets) # [k, c]
antecedent_distance_emb = tf.gather(tf.get_variable("antecedent_distance_emb", [10, self.config["feature_size"]]), antecedent_distance_buckets) # [k, c]
feature_emb_list.append(antecedent_distance_emb)
feature_emb = tf.concat(feature_emb_list, 2) # [k, c, emb]
| tensorflow.to_int32 | 12,939 |
import tensorflow as tf
def apply_attack_carlini(hps):
# Construct graph
images, labels = input_name.build_input(
FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) # FLAGS.mode='attack', batch_size=200
Res = model_name.ResNet(hps, images, FLAGS.mode, Reuse=False)
Res.build_graph()
saver = tf.train.Saver()
# Open session and restore checkpoint
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
tf.train.start_queue_runners(sess)
sess.run(tf.global_variables_initializer())
ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) # Choose dir according to rt
tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
saver.restore(sess, ckpt_state.model_checkpoint_path)
num_sample = hps.batch_size * FLAGS.eval_batch_count
# Initialize results to save
entropy_test_adv_all = np.array([])
confidence_test_adv_all = np.array([])
entropy_test_nor_all = np.array([])
confidence_test_nor_all = np.array([])
logits_adv_all = np.reshape(np.array([]), (0, 64))
logits_nor_all = np.reshape(np.array([]), (0, 64))
labels_adv_all = np.array([])
labels_true_all = np.array([])
labels_nor_all = np.array([])
| tensorflow.logging.info | 12,940 |
import tensorflow as tf
#
# %%
def plot_samples(samples, parameters, y_axis_label):
plt.figure(figsize=(8, 4))
for val, param in zip(samples, parameters):
plt.plot(tf.squeeze(val), label=param_to_name[param])
plt.legend(bbox_to_anchor=(1.0, 1.0))
plt.xlabel("HMC iteration")
plt.ylabel(y_axis_label)
| tensorflow.squeeze | 12,941 |
import tensorflow as tf
Returns:
samples: an integer `Tensor`.
logits: a list of `Tensor`s, one per datashard.
losses: a dictionary: {loss-name (string): floating point `Scalar`}.
"""
logits, losses = self(features) # pylint: disable=not-callable
if self.hparams.sampling_method == "argmax":
samples = tf.argmax(logits, axis=-1)
else:
assert self.hparams.sampling_method == "random"
def multinomial_squeeze(logits, temperature=1.0):
logits_shape = common_layers.shape_list(logits)
reshaped_logits = (
tf.reshape(logits, [-1, logits_shape[-1]]) / temperature)
choices = tf.multinomial(reshaped_logits, 1)
choices = tf.reshape(choices, logits_shape[:-1])
return choices
samples = multinomial_squeeze(logits, self.hparams.sampling_temp)
return samples, logits, losses
def _shard_features(self, features): # pylint: disable=missing-docstring
sharded_features = dict()
for k, v in six.iteritems(features):
v = tf.convert_to_tensor(v)
v_shape = common_layers.shape_list(v)
| tensorflow.reshape | 12,942 |
import tensorflow as tf
import tensorflow as tf
import model3 as M
import datareader
import numpy as np
import tqdm
import network
def grad_loss(x, model):
x2d, x3d = x
with tf.GradientTape() as tape:
pred, K, reprojected, crit_fake = model(x2d)
crit_real = model.crit(x3d)
crit_dis = tf.reduce_mean(tf.square(crit_real - tf.ones_like(crit_real))) + tf.reduce_mean(tf.square(crit_fake - tf.zeros_like(crit_fake)))
crit_gen = tf.reduce_mean(tf.square(crit_fake - tf.ones_like(crit_fake)))
rep_loss = tf.reduce_mean(tf.square(pred - x2d))
KK = tf.matmul(K, K, transpose_b=True)
K_trace = tf.expand_dims(tf.expand_dims(tf.trace(KK), -1), -1)
K_loss = tf.reduce_mean(tf.abs(KK / K_trace - tf.eye(2)))
loss_total_gen = crit_gen + rep_loss + K_loss
gen_var = model.get_gen_vars()
dis_var = model.dis.trainable_variables
| tensorflow.ones_like | 12,943 |
import tensorflow as tf
def _get_optimizer(self):
lr = tf.get_variable('learning_rate', initializer=5e-4, trainable=False)
opt = tf.train.AdamOptimizer(lr, epsilon=1e-3)
return optimizer.apply_grad_processors(
| tensorflow.train.AdamOptimizer | 12,944 |
import tensorflow as tf
# target for LM loss
tgt = tf.transpose(features["target"], [1, 0])
# target mask for LM loss
tgt_mask = tf.transpose(features["target_mask"], [1, 0])
# construct xlnet config and save to model_dir
xlnet_config = xlnet.XLNetConfig(FLAGS=FLAGS)
| tensorflow.transpose | 12,945 |
import tensorflow as tf
idx_z1_y1_x0 = base_z1_y1 + x0_clip
idx_z1_y1_x1 = base_z1_y1 + x1_clip
# Use indices to lookup pixels in the flat image and restore
# channels dim
im_flat = tf.reshape(im, tf.stack([-1, channels]))
im_flat = tf.to_float(im_flat)
i_z0_y0_x0 = tf.gather(im_flat, idx_z0_y0_x0)
i_z0_y0_x1 = tf.gather(im_flat, idx_z0_y0_x1)
i_z0_y1_x0 = tf.gather(im_flat, idx_z0_y1_x0)
i_z0_y1_x1 = tf.gather(im_flat, idx_z0_y1_x1)
i_z1_y0_x0 = tf.gather(im_flat, idx_z1_y0_x0)
i_z1_y0_x1 = tf.gather(im_flat, idx_z1_y0_x1)
i_z1_y1_x0 = tf.gather(im_flat, idx_z1_y1_x0)
i_z1_y1_x1 = tf.gather(im_flat, idx_z1_y1_x1)
# Finally calculate interpolated values.
x0_f = tf.to_float(x0)
| tensorflow.gather | 12,946 |
import tensorflow as tf
self.optimizer_func = tf.train.AdagradOptimizer
if self.hparams.grad_strategy == 'sgd':
self.optimizer_func = tf.train.GradientDescentOptimizer
self.separate_gradient_update()
tf.summary.scalar('Gradient Norm', self.norm, collections=['train'])
tf.summary.scalar('Learning Rate', self.ranker_learning_rate, collections=['train'])
tf.summary.scalar('Final Loss', tf.reduce_mean(self.loss), collections=['train'])
clipped_labels = tf.clip_by_value(reshaped_train_labels, clip_value_min=0, clip_value_max=1)
pad_removed_train_output = self.remove_padding_for_metric_eval(self.docid_inputs, train_output)
for metric in self.exp_settings['metrics']:
for topn in self.exp_settings['metrics_topn']:
list_weights = tf.reduce_mean(self.propensity_weights * clipped_labels, axis=1, keep_dims=True)
metric_value = utils.make_ranking_metric_fn(metric, topn)(reshaped_train_labels, pad_removed_train_output, None)
tf.summary.scalar('%s_%d' % (metric, topn), metric_value, collections=['train'])
weighted_metric_value = utils.make_ranking_metric_fn(metric, topn)(reshaped_train_labels, pad_removed_train_output, list_weights)
tf.summary.scalar('Weighted_%s_%d' % (metric, topn), weighted_metric_value, collections=['train'])
self.train_summary = tf.summary.merge_all(key='train')
self.eval_summary = tf.summary.merge_all(key='eval')
self.saver = tf.train.Saver(tf.global_variables())
def separate_gradient_update(self):
denoise_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "denoising_model")
ranking_model_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "ranking_model")
self.weighs_propen=denoise_params
| tensorflow.reduce_mean | 12,947 |
import tensorflow as tf
for i in range(classes.shape[0]):
sdf = tf.expand_dims(sdfs[i], -1)
sdf = sdf * -1.0 # inside positive, outside zero
samples_object = centernet_utils.transform_pointcloud(
tf.reshape(samples_world, [1, 1, -1, 3]),
tf.reshape(poses[2][i], [1, 1, 3]),
tf.reshape(poses[0][i], [1, 1, 3, 3]),
tf.reshape(poses[1][i], [1, 1, 3]), inverse=True) * 2.0
samples_object = (samples_object * (29.0/32.0) / 2.0 + 0.5) * 32.0 - 0.5
samples = tf.squeeze(samples_object)
interpolated = trilinear.interpolate(sdf, samples)
occupancy_value = tf.math.sign(tf.nn.relu(interpolated + self.tol))
sdf_values += occupancy_value
intersection = tf.reduce_sum(tf.math.sign(tf.nn.relu(sdf_values - 1)))
if intersection > prev_intersection:
prev_intersection = intersection
num_collisions += 1
status2 = False
if status2:
a = 1
values = interpolated
inter = tf.reshape(values, [self.resolution,
self.resolution,
self.resolution])
inter = tf.transpose(tf.reduce_max(inter, axis=a))
im = axs[fig_obj_count, 0].matshow(inter.numpy())
| tensorflow.nn.relu | 12,948 |
import tensorflow as tf
with tf.variable_scope('lstm', reuse=(t!=0)):
_, (c, h) = lstm_cell(inputs=tf.concat(axis=1, values=[x[:,t,:], context]), state=[c, h])
| tensorflow.concat | 12,949 |
import tensorflow as tf
Args:
predictions: 4D tensor or array, [batch_size, width, height, out_channels]
predictions of the network .
inputs: 4D tensor or array, [batch_size, width, height, num_classes]
ground truth labels or target labels.
name: Optional scope/name for op_scope.
Returns:
A tensor with the discretized mix logistic loss.
"""
with tf.name_scope(name):
inputs_shape = list(map(int, inputs.get_shape()))
predictions_shape = list(map(int, predictions.get_shape()))
nr_mix = int(predictions_shape[-1] / 10)
logit_probs = predictions[:, :, :, :nr_mix]
predictions = tf.reshape(predictions[:, :, :, nr_mix:], inputs_shape + [nr_mix * 3])
means = predictions[:, :, :, :, :nr_mix]
log_scales = tf.maximum(predictions[:, :, :, :, nr_mix:2 * nr_mix], -7.)
coeffs = tf.nn.tanh(predictions[:, :, :, :, 2 * nr_mix:3 * nr_mix])
inputs = tf.reshape(inputs, inputs_shape + [1]) + tf.zeros(inputs_shape + [nr_mix])
m2 = tf.reshape(means[:, :, :, 1, :] + coeffs[:, :, :, 0, :] * inputs[:, :, :, 0, :],
[inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix])
m3 = tf.reshape(
means[:, :, :, 2, :] + coeffs[:, :, :, 1, :] * inputs[:, :, :, 0, :] +
coeffs[:, :, :, 2, :] * inputs[:, :, :, 1, :],
[inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix])
means = tf.concat([
tf.reshape(means[:, :, :, 0, :],
[inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix]), m2, m3
],
| tensorflow.reshape | 12,950 |
import tensorflow as tf
For Pendulum-v0
"""
class PolicyEstimator_Pendulum():
def __init__(self, entropy_beta=0.01, learning_rate=0.01, par_idx=0,scope="policy_estimator"):
w_init = tf.random_normal_initializer(0.,.1);
with tf.variable_scope(scope+"_"+str(par_idx)):
# state, target and action
self.state = tf.placeholder(tf.float32, [None,num_state], name="state")
self.target = tf.placeholder(tf.float32,[None,1], name="target")
self.a_his = tf.placeholder(tf.float32, [None, num_action], name="action_hist")
# layers
l_a = tf.layers.dense(self.state, 200, tf.nn.relu6, kernel_initializer=w_init, name='la')
self.mu = tf.layers.dense(l_a, num_action, tf.nn.tanh, kernel_initializer=w_init, name='mu') # estimated action value
self.sigma = tf.layers.dense(l_a, num_action, tf.nn.softplus, kernel_initializer=w_init, name='sigma') # estimated variance
# wrap output
self.mu = self.mu * action_bound[1];
self.sigma = self.sigma + 1e-4
# get action from distribution
self.normal_dist = tf.contrib.distributions.Normal(self.mu, self.sigma)
self.action = tf.squeeze(self.normal_dist.sample(1),axis=0);
self.action = tf.clip_by_value(self.action, action_bound[0], action_bound[1])
# Loss and train op
self.loss = -self.normal_dist.log_prob(self.a_his) * self.target
| tensorflow.layers.dense | 12,951 |
import tensorflow as tf
d = tf.contrib.layers.conv2d(layer_input,filters,kernel_size=f_size,stride=stride,padding=padding)
if norm:
d = tf.contrib.layers.batch_norm(d)
d = lrelu(d,alpha=0.2)
return d
#def common_deconv2d(layer_input,skip_input, filters,f_size=4,stride=2,dropout_rate=0,name='common_deconv2d'):
def common_deconv2d(layer_input,filters,f_size=4,stride=2,padding='SAME',dropout_rate=0,name='common_deconv2d'):
"""Layers used during upsampling"""
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
u = tf.contrib.layers.conv2d_transpose(layer_input,filters,f_size,stride=stride,padding=padding)
if dropout_rate:
u = tf.contrib.layers.dropout(u,keep_prob=dropout_rate)
u = tf.contrib.layers.batch_norm(u)
u = tf.nn.relu(u)
# u = tf.contrib.keras.layers.concatenate([skip_input,u])
| tensorflow.get_variable_scope | 12,952 |
import tensorflow as tf
optimizer = tf.train.GradientDescentOptimizer(self._lr)
self._train_op = optimizer.apply_gradients(
zip(grads, tvars),
global_step=tf.train.get_or_create_global_step())
self._new_lr = tf.placeholder(
| tensorflow.train.get_or_create_global_step | 12,953 |
import tensorflow as tf
if self.demo:
self.c = tf.placeholder(tf.int32, [None, self.config.max_p_len], "context")
self.q = tf.placeholder(tf.int32, [None, self.config.max_q_len], "question")
self.ch = tf.placeholder(tf.int32, [None, self.config.max_p_len, self.config.max_ch_len], "context_char")
| tensorflow.placeholder | 12,954 |
import tensorflow as tf
'especially for TPU inference.')
flags.DEFINE_string('model_name', 'amoeba_net',
'Serving model name used for the model server.')
flags.DEFINE_multi_integer(
'inference_batch_sizes', [8],
'Known inference batch sizes used to warm up for each core.')
FLAGS = flags.FLAGS
def build_run_config():
"""Return RunConfig for TPU estimator."""
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu,
zone=FLAGS.tpu_zone,
project=FLAGS.gcp_project)
eval_steps = FLAGS.num_eval_images // FLAGS.eval_batch_size
iterations_per_loop = (eval_steps if FLAGS.mode == 'eval'
else FLAGS.iterations_per_loop)
save_checkpoints_steps = FLAGS.save_checkpoints_steps or iterations_per_loop
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=FLAGS.model_dir,
| tensorflow.contrib.cluster_resolver.TPUClusterResolver | 12,955 |
import tensorflow as tf
def _to_tensor(x, dtype):
x = tf.convert_to_tensor(x)
if x.dtype != dtype:
x = tf.cast(x, dtype)
return x
| tensorflow.cast | 12,956 |
import tensorflow as tf
activeBlockIndices = op.inputs[2]
bsize = op.inputs[3]
bstride = op.inputs[4]
boffset = op.inputs[5]
transpose = op.get_attr("transpose")
# if scatter is overlapping then gradient should still work
# because we are overwriting the same values
# compute dOutput/dx
result = sbnet_module.sparse_scatter(
grad,
binCounts,
activeBlockIndices,
tf.zeros_like(x), # output base tensor to add on top of
dynamic_bsize=bsize,
dynamic_bstride=bstride,
dynamic_boffset=boffset,
add=True,
transpose=transpose,
atomic=True)
return [result, None, None, None, None, None] # no gradients wrt indices or block params
@ops.RegisterGradient("SparseScatter")
def _sparse_scatter_grad(op, grad):
| tensorflow.zeros_like | 12,957 |
import tensorflow as tf
row_splits=[0, 4, 4, 7, 8, 8]),
}
with tf.compat.v1.Session(graph=graph) as session:
schema = schema_inference.infer_feature_schema(outputs, graph, session)
| tensorflow.compat.v1.Session | 12,958 |
import tensorflow as tf
indices = np.column_stack((L.row, L.col))
L = tf.SparseTensor(indices, L.data, L.shape)
return tf.sparse_reorder(L)
@property
def output_size(self):
output_size = self._num_nodes * self._num_units
if self._num_proj is not None:
output_size = self._num_nodes * self._num_proj
return output_size
@staticmethod
def _concat(x, x_):
x_ = tf.expand_dims(x_, 0)
return tf.concat([x, x_], axis=0)
def __call__(self, inputs, bias_start=0.0):
"""Graph convolution between input and the graph matrix.
:param args: a 2D Tensor or a list of 2D, batch x n, Tensors.
:param output_size:
:param bias:
:param bias_start:
:param scope:
:return:
"""
# Reshape input to (batch_size, num_nodes, input_dim)
output_size = self._num_units
batch_size = inputs.get_shape()[0].value
| tensorflow.concat | 12,959 |
import tensorflow as tf
# TODO: test with huber loss (it would avoid too high values)
qf1_loss = 0.5 * tf.reduce_mean(((q_backup - qf1) ** 2)*self.weight_ph)
qf1_loss_col = tf.reduce_mean(((q_backup - qf1) ** 2),1)
qf2_loss = 0.5 * tf.reduce_mean(((q_backup - qf2) ** 2)*self.weight_ph)
if self.n_step:
q_backup_n = tf.stop_gradient(
self.rewards_ph_n +
(1 - self.terminals_ph_n) *( self.gamma**self.n_step_length ) * self.value_target_n)
qf1_loss_n = 0.5 * tf.reduce_mean(((q_backup_n - qf1) ** 2)*self.weight_ph)
qf1_loss_n_col = tf.reduce_mean(((q_backup_n - qf1) ** 2),1)
| tensorflow.stop_gradient | 12,960 |
import tensorflow as tf
self.param_eta_non_lin = init_eta
self.param_omega_non_lin = init_omega
param_eta = tf.placeholder(dtype=tf.float32, shape=[], name="param_eta")
param_omega = tf.placeholder(dtype=tf.float32, shape=[], name="param_omega")
old_entropy = tf.placeholder(dtype=tf.float32, shape=[], name="old_entropy")
varphis = tf.placeholder(dtype=tf.float32, shape=[None, None], name="varphis")
Kt = tf.placeholder(dtype=tf.float32, shape=[None, None], name="Kt")
prec = tf.placeholder(dtype=tf.float32, shape=[None, None], name="prec")
Waa = tf.placeholder(dtype=tf.float32, shape=[None, None], name="Waa")
Wsa = tf.placeholder(dtype=tf.float32, shape=[None, None], name="Wsa")
wa = tf.placeholder(dtype=tf.float32, shape=[None, None], name="wa")
# varphis = ext.new_tensor(
# 'varphis',
# ndim=2,
# dtype=theano.config.floatX
# )
| tensorflow.placeholder | 12,961 |
import tensorflow as tf
tf.logging.info('Warm-starting tensors: %s', sorted(var_names))
vars_to_warm_start = var_names
warm_start_settings = tf.estimator.WarmStartSettings(
ckpt_to_initialize_from=checkpoint_path,
vars_to_warm_start=vars_to_warm_start)
| tensorflow.estimator.WarmStartSettings | 12,962 |
from tensorflow.python.ops import math_ops
or if either `metrics_collections` or `updates_collections` are not a list
or tuple.
"""
with variable_scope.variable_scope(name, 'mean', [values, weights]):
total = _create_local('total_tensor', shape=values.get_shape())
count = _create_local('count_tensor', shape=values.get_shape())
num_values = array_ops.ones_like(values)
if weights is not None:
weights = math_ops.to_float(weights)
values = math_ops.mul(values, weights)
num_values = math_ops.mul(num_values, weights)
total_compute_op = state_ops.assign_add(total, values)
count_compute_op = state_ops.assign_add(count, num_values)
def compute_mean(total, count, name):
non_zero_count = math_ops.maximum(count,
array_ops.ones_like(count),
name=name)
return math_ops.truediv(total, non_zero_count, name=name)
| tensorflow.python.ops.math_ops.mul | 12,963 |
import tensorflow as tf
with tf.variable_scope('softmax'):
W = tf.get_variable('W', [self.num_hidden, self.num_classes],
# initializer=tf.random_uniform_initializer(-0.003, 0.003))
initializer=tf.contrib.layers.xavier_initializer())
# initializer=tf.truncated_normal_initializer(stddev=0.1))
b = tf.get_variable('b', [self.num_classes], initializer=tf.constant_initializer(0.1))
logits = tf.matmul(last_outputs, W) + b
self.embed_inputs = embed_inputs
return logits
| tensorflow.constant_initializer | 12,964 |
from tensorflow.python.ops import variable_scope as vs
* `optimizer` has the wrong type.
* `clip_gradients` is neither float nor callable.
* `learning_rate` and `learning_rate_decay_fn` are supplied, but no
`global_step` is available.
* `gradients` is empty.
"""
loss = ops.convert_to_tensor(loss)
contrib_framework.assert_scalar(loss)
if global_step is None:
global_step = train.get_global_step()
else:
train.assert_global_step(global_step)
with vs.variable_scope(name, "OptimizeLoss", [loss, global_step]):
# Update ops take UPDATE_OPS collection if not provided.
if update_ops is None:
update_ops = set(ops.get_collection(ops.GraphKeys.UPDATE_OPS))
# Make sure update ops are ran before computing loss.
if update_ops:
loss = control_flow_ops.with_dependencies(list(update_ops), loss)
# Learning rate variable, with possible decay.
lr = None
if learning_rate is not None:
if (isinstance(learning_rate, ops.Tensor) and
| tensorflow.python.ops.variable_scope.variable_scope | 12,965 |
import tensorflow as tf
out = tf.reduce_mean(loss)
tf.summary.scalar('cost', out)
| tensorflow.summary.scalar | 12,966 |
import tensorflow as tf
x = tf.layers.dense(flat_x, 256, activation=tf.nn.relu)
x = tf.layers.dense(flat_x, 128, activation=tf.nn.relu)
logits = tf.layers.dense(x, self.hparams.problem.num_actions)
value = tf.layers.dense(x, 1)[..., 0]
return {"target_policy": logits, "target_value": value}
@registry.register_model
| tensorflow.layers.dense | 12,967 |
import tensorflow as tf
xent = xent * loss_weights
xent = tf.reduce_sum(xent, axis=-1)
| tensorflow.reduce_sum | 12,968 |
import tensorflow as tf
num_out_channels, [k_height, k_width],
strides=[d_height, d_width],
padding='VALID',
data_format=self.channel_pos,
use_bias=False)
if batch_norm is None:
batch_norm = self.use_batch_norm
if not batch_norm:
biases = tf.get_variable(
'biases', [num_out_channels], self.data_type,
tf.constant_initializer(0.0))
biased = tf.reshape(
tf.nn.bias_add(
conv, biases, data_format=self.data_format),
conv.get_shape())
else:
self.top_layer = conv
self.top_size = num_out_channels
biased = self.batch_norm(**self.batch_norm_config)
if activation == 'relu':
| tensorflow.constant_initializer | 12,969 |
from tensorflow.python.framework import ops
def binary_op_wrapper(x, y):
with ops.op_scope([x, y], None, op_name) as name:
assert isinstance(x, ops.Tensor)
y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y")
return func(x, y, name=name)
ops.Tensor._override_operator("__%s__" % op_name, binary_op_wrapper)
| tensorflow.python.framework.ops.convert_to_tensor | 12,970 |
import tensorflow as tf
self.dropout_mask = []
for layer in range(num_layers):
input_size_ = input_size if layer == 0 else 2 * num_units
gru_fw = tf.contrib.cudnn_rnn.CudnnGRU(1, num_units)
gru_bw = tf.contrib.cudnn_rnn.CudnnGRU(1, num_units)
init_fw = tf.tile(tf.Variable(
tf.zeros([1, 1, num_units])), [1, batch_size, 1])
init_bw = tf.tile(tf.Variable(
tf.zeros([1, 1, num_units])), [1, batch_size, 1])
mask_fw = dropout(tf.ones([1, batch_size, input_size_], dtype=tf.float32),
keep_prob=keep_prob, is_train=is_train, mode=None)
mask_bw = dropout(tf.ones([1, batch_size, input_size_], dtype=tf.float32),
| tensorflow.zeros | 12,971 |
import tensorflow as tf
dec, mem = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp, cell1, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 5), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 4), res[0].shape)
# Test externally provided output projection.
w = tf.get_variable("proj_w", [2, 5])
b = tf.get_variable("proj_b", [5])
with tf.variable_scope("proj_seq2seq"):
dec, _ = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, output_projection=(w, b))
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 2), res[0].shape)
# Test that previous-feeding model ignores inputs after the first.
dec_inp2 = [tf.constant(0, tf.int32, shape=[2]) for _ in range(3)]
with tf.variable_scope("other"):
d3, _ = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2,
feed_previous=tf.constant(True))
| tensorflow.nn.seq2seq.embedding_rnn_seq2seq | 12,972 |
import tensorflow as tf
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True)
cell = tf.nn.rnn_cell.MultiRNNCell(cells=[cell] * 2,
state_is_tuple=True)
inp = [tf.constant(0.5, shape=[2, 2])] * 2
enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32)
attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size])
for e in enc_outputs])
dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
dec, mem = tf.nn.seq2seq.attention_decoder(
dec_inp, enc_state,
attn_states, cell, output_size=4)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 4), res[0].shape)
res = sess.run([mem])
self.assertEqual(2, len(res[0]))
self.assertEqual((2, 2), res[0][0].c.shape)
self.assertEqual((2, 2), res[0][0].h.shape)
self.assertEqual((2, 2), res[0][1].c.shape)
self.assertEqual((2, 2), res[0][1].h.shape)
# pylint: disable=unused-variable,invalid-name
| tensorflow.global_variables_initializer | 12,973 |
import tensorflow as tf
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
batch_size = params["batch_size"]
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.apply(tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
| tensorflow.data.TFRecordDataset | 12,974 |
import tensorflow as tf
def add_eval_stats(summary_writer, step, linear_loss, before_loss, after_loss, stop_token_loss,
loss):
values = [
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_before_loss",
simple_value=before_loss),
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_after_loss",
simple_value=after_loss),
| tensorflow.Summary.Value | 12,975 |
import tensorflow as tf
span_emb_list.append(span_width_emb)
if self.config["model_heads"]:
span_indices = tf.expand_dims(tf.range(self.config["max_span_width"]), 0) + tf.expand_dims(span_starts, 1) # [k, max_span_width]
span_indices = tf.minimum(util.shape(context_outputs, 0) - 1, span_indices) # [k, max_span_width]
span_text_emb = tf.gather(head_emb, span_indices) # [k, max_span_width, emb]
| tensorflow.range | 12,976 |
import tensorflow as tf
if q_sqrt is not None:
if q_sqrt.get_shape().ndims == 2:
LTA = A * tf.expand_dims(tf.transpose(q_sqrt), 2) # R x M x N
elif q_sqrt.get_shape().ndims == 3:
L = tf.matrix_band_part(q_sqrt, -1, 0) # R x M x M
A_tiled = tf.tile(tf.expand_dims(A, 0), tf.stack([num_func, 1, 1]))
LTA = tf.matmul(L, A_tiled, transpose_a=True) # R x M x N
else: # pragma: no cover
raise ValueError("Bad dimension for q_sqrt: %s" %
str(q_sqrt.get_shape().ndims))
if full_cov:
fvar = fvar + tf.matmul(LTA, LTA, transpose_a=True) # R x N x N
else:
| tensorflow.matmul | 12,977 |
import tensorflow as tf
hparams.add_hparam("kv_filter_width", 1)
return hparams
class LatentLayersTest(tf.test.TestCase):
@tf.contrib.eager.run_test_in_graph_and_eager_modes()
def testTransformerAutoencoder(self):
hparams = imagetransformer_latent_tiny()
hparams.mode = tf.estimator.ModeKeys.TRAIN
block_dim = int(hparams.hidden_size // hparams.num_blocks)
block_v_size = 2**(hparams.bottleneck_bits /
| tensorflow.contrib.eager.run_test_in_graph_and_eager_modes | 12,978 |
import tensorflow as tf
raise ValueError("Expected hparams.coupling to be in %s, got %s" %
(exp_coupling, self.hparams.coupling))
if self.is_training:
init_features = self.create_init_batch(features)
init_op = self.objective_tower(init_features, init=True)
init_op = tf.Print(
init_op, [init_op], message="Triggering data-dependent init.",
first_n=20)
tf.add_to_collection("glow_init_op", init_op)
train_op = self.objective_tower(features, init=False)
| tensorflow.Print | 12,979 |
import tensorflow as tf
cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32)
final_loss = tf.reduce_mean(loss)
return final_loss, cstr_pct
def contra_traj_lossV7(pred, tgt, horizon=12, temp=100):
horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon)
# horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon)
pred_flat1, pred_flat2 = tf.reshape(horizon_pred, [-1, 1]), tf.reshape(horizon_pred, [1, -1])
tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt, [-1, 1]), tf.reshape(horizon_tgt, [1, -1])
tgt_dif = tgt_flat1 - tgt_flat2
pred_dif = pred_flat1 - pred_flat2
geq = tf.cast(tgt_dif > 0, tf.bool)
tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif)
pred_posi_dif = tf.where(geq, pred_dif, -pred_dif)
loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif)
cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32)
unorm_w = tf.exp((tgt_flat1 + tgt_flat2)/temp)
loss = unorm_w * loss / (tf.reduce_sum(unorm_w))
a = tf.print(tf.reduce_sum(unorm_w))
with tf.control_dependencies([a]):
final_loss = tf.reduce_sum(loss)
return final_loss, cstr_pct
def contra_traj_lossV8(pred, tgt, horizon=12):
| tensorflow.where | 12,980 |
import tensorflow as tf
if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
raise ValueError(
"At least one of `do_train`, `do_eval` or `do_predict' must be True.")
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
if FLAGS.max_seq_length > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length %d because the BERT model "
"was only trained up to sequence length %d" %
(FLAGS.max_seq_length, bert_config.max_position_embeddings))
tf.gfile.MakeDirs(FLAGS.output_dir)
task_name = FLAGS.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
label_list = processor.get_labels()
tokenizer = tokenization.FullTokenizer(
| tensorflow.gfile.MakeDirs | 12,981 |
import tensorflow as tf
img_h2 = lrelu(conv2d(img_h1, nf2, d_h=ns2, d_w=ns2, name='h2_conv'))
img_h3 = lrelu(conv2d(img_h2, nf3, d_h=ns3, d_w=ns3, name='h3_conv'))
print(img_h3.get_shape())
img_h4 = lrelu(linear(tf.nn.dropout(tf.reshape(img_h3, [self.batch_size, -1]), keep_prob), featsize, 'h4_lin'))
img_z = lrelu(linear(tf.nn.dropout(img_h4, keep_prob), featsize, 'hz_lin'))
return img_h0, img_h1, img_h2, img_h3, img_h4, img_z
with tf.variable_scope("conv") as scope:
srcimg_h0, srcimg_h1, srcimg_h2, srcimg_h3, srcimg_h4, srcimg_z = encode(srcimg)
scope.reuse_variables()
tgtimg_h0, tgtimg_h1, tgtimg_h2, tgtimg_h3, tgtimg_h4, tgtimg_z = encode(tgtimg)
tgtctx_h0, tgtctx_h1, tgtctx_h2, tgtctx_h3, tgtctx_h4, tgtctx_z = encode(tgtctx)
with tf.variable_scope("translate") as scope:
trans_h0 = lrelu(linear(tf.nn.dropout(tf.concat([srcimg_z, tgtctx_z], 1), keep_prob), featsize, 'trans_h0'))
trans_z = linear(tf.nn.dropout(trans_h0, keep_prob), featsize, 'trans_z')
self.translated_z = trans_z
s_h, s_w = self.output_height, self.output_width
s_h0, s_h1, s_h2, s_h3 = \
int(s_h/ns0), int(s_h/ns0/ns1), int(s_h/ns0/ns1/ns2), int(s_h/ns0/ns1/ns2/ns3)
s_w0, s_w1, s_w2, s_w3 = \
int(s_w/ns0), int(s_w/ns0/ns1), int(s_w/ns0/ns1/ns2), int(s_w/ns0/ns1/ns2/ns3)
def decode(z, skip_h3, skip_h2, skip_h1, skip_h0):
z_ = lrelu(linear(tf.nn.dropout(z, keep_prob), nf3*s_h3*s_w3, 'd_h0_lin'))
h0 = tf.nn.dropout(tf.reshape(z_, [-1, s_h3, s_w3, nf3]), keep_prob)
import IPython
IPython.embed()
h1 = lrelu(deconv2d(tf.concat([h0, skip_h3], 3),
| tensorflow.nn.dropout | 12,982 |
import tensorflow as tf
num_blocks=3)
z = tf.random_normal([2, 10], dtype=tf.float32)
x, _ = networks.generator(
z, progress, _num_filters_stub,
networks.ResolutionSchedule(
start_resolutions=(4, 4), scale_base=2, num_resolutions=3))
fake_loss = tf.reduce_sum(tf.square(x))
grad_norms = [
_get_grad_norm(
fake_loss, tf.trainable_variables('.*/progressive_gan_block_1/.*')),
_get_grad_norm(
fake_loss, tf.trainable_variables('.*/progressive_gan_block_2/.*')),
_get_grad_norm(
fake_loss, tf.trainable_variables('.*/progressive_gan_block_3/.*'))
]
grad_norms_output = None
with self.test_session(use_gpu=True) as sess:
sess.run(tf.global_variables_initializer())
x1_np = sess.run(x, feed_dict={current_image_id_ph: 0.12})
x2_np = sess.run(x, feed_dict={current_image_id_ph: 1.8})
grad_norms_output = np.array([
sess.run(grad_norms, feed_dict={current_image_id_ph: i})
for i in range(15) # total num of images
])
| tensorflow.trainable_variables | 12,983 |
import tensorflow as tf
with tf.variable_scope("other"):
d3, _ = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2,
feed_previous=tf.constant(True))
sess.run([tf.global_variables_initializer()])
tf.get_variable_scope().reuse_variables()
d1, _ = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, feed_previous=True)
| tensorflow.global_variables_initializer | 12,984 |
import tensorflow as tf
tf.summary.scalar('Gradient Norm', self.norm, collections=['train'])
tf.summary.scalar('Learning Rate', self.ranker_learning_rate, collections=['train'])
tf.summary.scalar('Final Loss', tf.reduce_mean(self.loss), collections=['train'])
clipped_labels = tf.clip_by_value(reshaped_train_labels, clip_value_min=0, clip_value_max=1)
pad_removed_train_output = self.remove_padding_for_metric_eval(self.docid_inputs, train_output)
for metric in self.exp_settings['metrics']:
for topn in self.exp_settings['metrics_topn']:
list_weights = tf.reduce_mean(self.propensity_weights * clipped_labels, axis=1, keep_dims=True)
metric_value = utils.make_ranking_metric_fn(metric, topn)(reshaped_train_labels, pad_removed_train_output, None)
tf.summary.scalar('%s_%d' % (metric, topn), metric_value, collections=['train'])
weighted_metric_value = utils.make_ranking_metric_fn(metric, topn)(reshaped_train_labels, pad_removed_train_output, list_weights)
tf.summary.scalar('Weighted_%s_%d' % (metric, topn), weighted_metric_value, collections=['train'])
self.train_summary = tf.summary.merge_all(key='train')
self.eval_summary = tf.summary.merge_all(key='eval')
self.saver = tf.train.Saver(tf.global_variables())
def separate_gradient_update(self):
denoise_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "denoising_model")
ranking_model_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "ranking_model")
self.weighs_propen=denoise_params
if self.hparams.l2_loss > 0:
for p in denoise_params:
# self.weighs_propen=p
# p=tf.Print(p,[p],message="show the weights")
self.exam_loss += self.hparams.l1_loss * tf.reduce_sum(tf.abs(p))
for p in ranking_model_params:
self.rank_loss += self.hparams.l2_loss * tf.nn.l2_loss(p)
| tensorflow.summary.merge_all | 12,985 |
import tensorflow as tf
num_acts = self.act_space
# Calculate U
self.worker_lstm = SingleStepLSTM(tf.expand_dims(self.z, [0]),
size=num_acts * self.k,
step_size=tf.shape(self.obs)[:1])
flat_logits = self.worker_lstm.output
self.worker_vf = self.build_value(flat_logits)
U = tf.reshape(flat_logits, [-1, num_acts, self.k])
# Calculate w
cut_g = tf.stop_gradient(self.g)
cut_g = tf.expand_dims(cut_g, [1])
gstack = tf.concat([self.prev_g, cut_g], axis=1)
self.last_c_g = gstack[:, 1:]
# print self.last_c_g
gsum = tf.reduce_sum(gstack, axis=1)
phi = tf.get_variable("phi", (self.g_dim, self.k))
w = tf.matmul(gsum, phi)
w = tf.expand_dims(w, [2])
# Calculate policy and sample
logits = tf.reshape(tf.matmul(U, w), [-1, num_acts])
self.pi = tf.nn.softmax(logits)
self.log_pi = tf.nn.log_softmax(logits)
self.sample = policy_utils.categorical_sample(
| tensorflow.expand_dims | 12,986 |
import tensorflow as tf
print(sess.run(tf.div(13, 4)))
print(sess.run(tf.truediv(13, 4)))
print(sess.run(tf.floordiv(13, 4)))
print(sess.run(tf.mod(13.2, 4)))
| tensorflow.floordiv | 12,987 |
import tensorflow as tf
if mode != 'gen':
neg_log_lhoods = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=targets)
if target_weight_strategy == 'rect':
avg_neg_log_lhood = tf.reduce_mean(neg_log_lhoods)
else:
neg_log_lhoods = tf.multiply(neg_log_lhoods, target_weights)
# be careful to have at least one weight be nonzero
# should we be taking the mean elem-wise by batch? i think this is a big bug
avg_neg_log_lhood = tf.reduce_sum(neg_log_lhoods) / tf.reduce_sum(target_weights)
neg_log_lhoods_inspect = tf.reshape(neg_log_lhoods, [batch_size, rnn_nunroll])
# Train op
if mode == 'train':
lr = tf.Variable(0.0, trainable=False)
self._lr = lr
self._lr_summary = tf.summary.scalar('learning_rate', self._lr)
tvars = tf.trainable_variables()
| tensorflow.reshape | 12,988 |
import tensorflow as tf
# ===============================================================================DECODER
with tf.variable_scope(decoderscope) as scope:
if reuse_decoder: scope.reuse_variables()
# print('vnet scope', is_train, reuse_unet)
# print('VNET Latent:', X.get_shape().as_list())
with tf.variable_scope('decoder'):
X = decoder_conf('d3', X, 512, F, 1, norm, reuse_decoder, is_train, self.args.dropout) # 12 > 14
if self.args.skip_connections: X = tf.concat((X, X2), axis=-1)
X = decoder_conf('u4', X, 256, F, 2, norm, reuse_decoder, is_train, self.args.dropout) # 14 > 28
X = decoder_conf('d4', X, 256, F, 1, norm, reuse_decoder, is_train, self.args.dropout) # 28 > 30
if self.args.skip_connections: X = tf.concat((X, X1), axis=-1)
X = decoder_conf('u5', X, 128, F, 2, norm, reuse_decoder, is_train, self.args.dropout) # 30 > 60
X_LATE = X
X = decoder_conf('d5', X, 128, F, 1, norm, reuse_decoder, is_train, self.args.dropout) # 60 > 62
if self.args.skip_connections: X = tf.concat((X, X0), axis=-1)
| tensorflow.concat | 12,989 |
import tensorflow as tf
output = tf.concat([output_fw, output_bw], axis=-1)
else:
outputs = outputs_fw
hidden = hidden_fw
output = output_fw
outputs = tf.transpose(outputs, perm=[1, 0, 2])
return (outputs, hidden, output)
| tensorflow.transpose | 12,990 |
import tensorflow as tf
import numpy as np
import tensorflow as tf
from evaluation import factory
def write_summary(logs, summary_writer, current_step):
"""Write out summaries of current training step for the checkpoint."""
with tf.Graph().as_default():
summaries = [tf.Summary.Value(tag=tag, simple_value=value)
for tag, value in logs.items()]
tf_summary = tf.Summary(value=summaries)
summary_writer.add_summary(tf_summary, current_step)
class TpuExecutor(object):
| tensorflow.Graph | 12,991 |
import tensorflow as tf
if all([isinstance(output, list) for output in outputs]):
if all([all(
[isinstance(entry, tf.Tensor) for entry in output_list])
for output_list in outputs]):
return [tf.stack(output_tuple) for output_tuple in zip(*outputs)]
raise ValueError('`fn` should return a Tensor or a list of Tensors.')
| tensorflow.stack | 12,992 |
import tensorflow as tf
for i in range(self.n_gpus):
worker = '/gpu:{}'.format(i)
device_setter = tf.train.replica_device_setter(
worker_device=worker, ps_device='/cpu:0', ps_tasks=1)
with tf.name_scope('{}_{}'.format(mode, i)) as scope:
with tf.device(device_setter):
net_outputs = self._model(shards[i], mode, **self.config)
if mode == Mode.TRAIN:
loss = self._loss(net_outputs, shards[i], **self.config)
loss += tf.reduce_sum(
tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES,
scope))
model_params = tf.trainable_variables()
grad = tf.gradients(loss, model_params)
tower_losses.append(loss)
tower_gradvars.append(zip(grad, model_params))
if i == 0:
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
scope)
elif mode == Mode.EVAL:
tower_metrics.append(self._metrics(
net_outputs, shards[i], **self.config))
else:
tower_preds.append(net_outputs)
if mode == Mode.TRAIN:
| tensorflow.gradients | 12,993 |
import tensorflow as tf
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 4), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 2), res[0].shape)
def testBasicRNNSeq2Seq(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
inp = [tf.constant(0.5, shape=[2, 2])] * 2
dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
cell = tf.nn.rnn_cell.OutputProjectionWrapper(
tf.nn.rnn_cell.GRUCell(2), 4)
dec, mem = tf.nn.seq2seq.basic_rnn_seq2seq(inp, dec_inp, cell)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 4), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 2), res[0].shape)
| tensorflow.constant | 12,994 |
import tensorflow as tf
linear_var = tf.Variable(tf.linspace(start=0.0, stop=1.0, num=3)) # Generates [0.0, 0.5, 1.0] includes the end
sequence_var = tf.Variable(tf.range(start=6, limit=15, delta=3)) # Generates [6, 9, 12] doesn't include the end
sess.run(linear_var.initializer)
sess.run(sequence_var.initializer)
print(sess.run(linear_var))
print(sess.run(sequence_var))
rnorm_var = tf.random_normal([row_dim, col_dim], mean=0.0, stddev=1.0)
runif_var = tf.random_uniform([row_dim, col_dim], minval=0, maxval=4)
print(sess.run(rnorm_var))
print(sess.run(runif_var))
ops.reset_default_graph()
sess = tf.Session()
my_var = tf.Variable(tf.zeros([1,20]))
| tensorflow.random_normal | 12,995 |
import tensorflow as tf
if monotonicity_weight:
monotonicity_dist = monotonicity_dist or 1.0
batch_size = tf.shape(attention_weights)[0]
src_len = tf.shape(attention_weights)[2]
trg_len = tf.shape(attention_weights)[1]
src_indices = tf.tile(tf.reshape(tf.range(src_len), shape=[1, 1, src_len]), [batch_size, trg_len, 1])
trg_indices = tf.tile(tf.reshape(tf.range(trg_len), shape=[1, trg_len, 1]), [batch_size, 1, src_len])
source_length = encoder_input_length[0]
target_length = tf.to_int32(tf.reduce_sum(trg_mask, axis=1))
true_src_len = tf.reshape(source_length, shape=[batch_size, 1, 1]) - 1
true_trg_len = tf.reshape(target_length, shape=[batch_size, 1, 1]) - 1
src_mask = tf.to_float(tf.sequence_mask(source_length, maxlen=src_len))
mask = tf.matmul(tf.expand_dims(trg_mask, axis=2), tf.expand_dims(src_mask, axis=1))
monotonous = tf.sqrt(((true_trg_len * src_indices - true_src_len * trg_indices) ** 2)
/ (true_trg_len**2 + true_src_len**2))
monotonous = tf.to_float(monotonous < monotonicity_dist)
non_monotonous = (1 - monotonous) * mask
attn_loss = tf.reduce_sum(attention_weights * tf.stop_gradient(non_monotonous)) / tf.to_float(batch_size)
| tensorflow.reshape | 12,996 |
import tensorflow as tf
return image
image = tf.cond(is_bad, bad, good)
# TODO other imgproc
| tensorflow.cond | 12,997 |
import tensorflow as tf
images, labels = input_name.build_input(
FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) # FLAGS.mode='attack', batch_size=200
Res = model_name.ResNet(hps, images, FLAGS.mode, Reuse=False)
Res.build_graph()
saver = tf.train.Saver()
# Open session and restore checkpoint
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
tf.train.start_queue_runners(sess)
sess.run(tf.global_variables_initializer())
ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) # Choose dir according to rt
tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
saver.restore(sess, ckpt_state.model_checkpoint_path)
model_carlini = models_carlini(hps)
if FLAGS.attack_method == 'carliniLi':
| tensorflow.global_variables_initializer | 12,998 |
import tensorflow as tf
def test_inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
l2 = tf.matmul(l1, self.w2)+self.b2
l2=tf.nn.relu(l2)
l3=tf.matmul(l2, self.w3)+self.b3
l3=tf.nn.relu(l3)
out=tf.matmul(l3, self.w4)+self.b4
return out
def valid_inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
l2 = tf.matmul(l1, self.w2)+self.b2
l2=tf.nn.relu(l2)
l3=tf.matmul(l2, self.w3)+self.b3
l3=tf.nn.relu(l3)
out=tf.matmul(l3, self.w4)+self.b4
return out
def softmax_loss(self,predicts,labels):
predicts=tf.nn.softmax(predicts)
labels=tf.one_hot(labels,classnum)
loss=-tf.reduce_sum(labels*tf.log(predicts))
return loss
def optimer(self,loss,lr=0.001):
| tensorflow.nn.relu | 12,999 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.