text
stringlengths
29
320k
id
stringlengths
22
166
metadata
dict
__index_level_0__
int64
0
195
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utility that checks the list of models in the tips in the task-specific pages of the doc is up to date and potentially fixes it. Use from the root of the repo with: ```bash python utils/check_task_guides.py ``` for a check that will error in case of inconsistencies (used by `make repo-consistency`). To auto-fix issues run: ```bash python utils/check_task_guides.py --fix_and_overwrite ``` which is used by `make fix-copies`. """ import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py TRANSFORMERS_PATH = "src/transformers" PATH_TO_TASK_GUIDES = "docs/source/en/tasks" def _find_text_in_file(filename: str, start_prompt: str, end_prompt: str) -> str: """ Find the text in filename between two prompts. Args: filename (`str`): The file to search into. start_prompt (`str`): A string to look for at the start of the content searched. end_prompt (`str`): A string that will mark the end of the content to look for. Returns: `str`: The content between the prompts. """ with open(filename, "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() # Find the start prompt. start_index = 0 while not lines[start_index].startswith(start_prompt): start_index += 1 start_index += 1 # Now go until the end prompt. end_index = start_index while not lines[end_index].startswith(end_prompt): end_index += 1 end_index -= 1 while len(lines[start_index]) <= 1: start_index += 1 while len(lines[end_index]) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index]), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. transformers_module = direct_transformers_import(TRANSFORMERS_PATH) # Map between a task guide and the corresponding auto class. TASK_GUIDE_TO_MODELS = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). SPECIAL_TASK_GUIDE_TO_MODEL_TYPES = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def get_model_list_for_task(task_guide: str) -> str: """ Return the list of models supporting a given task. Args: task_guide (`str`): The name of the task guide to check. Returns: `str`: The list of models supporting this task, as links to their respective doc pages separated by commas. """ model_maping_names = TASK_GUIDE_TO_MODELS[task_guide] special_model_types = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(task_guide, set()) model_names = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"[{name}](../model_doc/{code})" for code, name in model_names.items()]) + "\n" def check_model_list_for_task(task_guide: str, overwrite: bool = False): """ For a given task guide, checks the model list in the generated tip for consistency with the state of the lib and updates it if needed. Args: task_guide (`str`): The name of the task guide to check. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the table when it's not up to date. """ current_list, start_index, end_index, lines = _find_text_in_file( filename=os.path.join(PATH_TO_TASK_GUIDES, task_guide), start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->", end_prompt="<!--End of the generated tip-->", ) new_list = get_model_list_for_task(task_guide) if current_list != new_list: if overwrite: with open(os.path.join(PATH_TO_TASK_GUIDES, task_guide), "w", encoding="utf-8", newline="\n") as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:]) else: raise ValueError( f"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") args = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
transformers/utils/check_task_guides.py/0
{ "file_path": "transformers/utils/check_task_guides.py", "repo_id": "transformers", "token_count": 2721 }
181
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utility that prepares the repository for releases (or patches) by updating all versions in the relevant places. It also performs some post-release cleanup, by updating the links in the main README to respective model doc pages (from main to stable). To prepare for a release, use from the root of the repo on the release branch with: ```bash python release.py ``` or use `make pre-release`. To prepare for a patch release, use from the root of the repo on the release branch with: ```bash python release.py --patch ``` or use `make pre-patch`. To do the post-release cleanup, use from the root of the repo on the main branch with: ```bash python release.py --post_release ``` or use `make post-release`. """ import argparse import os import re import packaging.version # All paths are defined with the intent that this script should be run from the root of the repo. PATH_TO_EXAMPLES = "examples/" # This maps a type of file to the pattern to look for when searching where the version is defined, as well as the # template to follow when replacing it with the new version. REPLACE_PATTERNS = { "examples": (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), "init": (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), "setup": (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), } # This maps a type of file to its path in Transformers REPLACE_FILES = { "init": "src/transformers/__init__.py", "setup": "setup.py", } README_FILE = "README.md" def update_version_in_file(fname: str, version: str, file_type: str): """ Update the version of Transformers in one file. Args: fname (`str`): The path to the file where we want to update the version. version (`str`): The new version to set in the file. file_type (`str`): The type of the file (should be a key in `REPLACE_PATTERNS`). """ with open(fname, "r", encoding="utf-8", newline="\n") as f: code = f.read() re_pattern, replace = REPLACE_PATTERNS[file_type] replace = replace.replace("VERSION", version) code = re_pattern.sub(replace, code) with open(fname, "w", encoding="utf-8", newline="\n") as f: f.write(code) def update_version_in_examples(version: str): """ Update the version in all examples files. Args: version (`str`): The new version to set in the examples. """ for folder, directories, fnames in os.walk(PATH_TO_EXAMPLES): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects") if "legacy" in directories: directories.remove("legacy") for fname in fnames: if fname.endswith(".py"): update_version_in_file(os.path.join(folder, fname), version, file_type="examples") def global_version_update(version: str, patch: bool = False): """ Update the version in all needed files. Args: version (`str`): The new version to set everywhere. patch (`bool`, *optional*, defaults to `False`): Whether or not this is a patch release. """ for pattern, fname in REPLACE_FILES.items(): update_version_in_file(fname, version, pattern) if not patch: # We don't update the version in the examples for patch releases. update_version_in_examples(version) def clean_main_ref_in_model_list(): """ Replace the links from main doc to stable doc in the model list of the README. """ # If the introduction or the conclusion of the list change, the prompts may need to be updated. _start_prompt = "🤗 Transformers currently provides the following architectures" _end_prompt = "1. Want to contribute a new model?" with open(README_FILE, "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() # Find the start of the list. start_index = 0 while not lines[start_index].startswith(_start_prompt): start_index += 1 start_index += 1 index = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt): if lines[index].startswith("1."): lines[index] = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc", "https://huggingface.co/docs/transformers/model_doc", ) index += 1 with open(README_FILE, "w", encoding="utf-8", newline="\n") as f: f.writelines(lines) def get_version() -> packaging.version.Version: """ Reads the current version in the main __init__. """ with open(REPLACE_FILES["init"], "r") as f: code = f.read() default_version = REPLACE_PATTERNS["init"][0].search(code).groups()[0] return packaging.version.parse(default_version) def pre_release_work(patch: bool = False): """ Do all the necessary pre-release steps: - figure out the next minor release version and ask confirmation - update the version eveywhere - clean-up the model list in the main README Args: patch (`bool`, *optional*, defaults to `False`): Whether or not this is a patch release. """ # First let's get the default version: base version if we are in dev, bump minor otherwise. default_version = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!") if default_version.is_devrelease: default_version = default_version.base_version elif patch: default_version = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: default_version = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if we have found the right version. version = input(f"Which version are you releasing? [{default_version}]") if len(version) == 0: version = default_version print(f"Updating version to {version}.") global_version_update(version, patch=patch) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`.") clean_main_ref_in_model_list() def post_release_work(): """ Do all the necesarry post-release steps: - figure out the next dev version and ask confirmation - update the version eveywhere - clean-up the model list in the main README """ # First let's get the current version current_version = get_version() dev_version = f"{current_version.major}.{current_version.minor + 1}.0.dev0" current_version = current_version.base_version # Check with the user we got that right. version = input(f"Which version are we developing now? [{dev_version}]") if len(version) == 0: version = dev_version print(f"Updating version to {version}.") global_version_update(version) print("Cleaning main README, don't forget to run `make fix-copies`.") clean_main_ref_in_model_list() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") args = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
transformers/utils/release.py/0
{ "file_path": "transformers/utils/release.py", "repo_id": "transformers", "token_count": 2931 }
182
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A script running `create_dummy_models.py` with a pre-defined set of arguments. This file is intended to be used in a CI workflow file without the need of specifying arguments. It creates and uploads tiny models for all model classes (if their tiny versions are not on the Hub yet), as well as produces an updated version of `tests/utils/tiny_model_summary.json`. That updated file should be merged into the `main` branch of `transformers` so the pipeline testing will use the latest created/updated tiny models. """ import argparse import copy import json import multiprocessing import os import time from create_dummy_models import COMPOSITE_MODELS, create_tiny_models from huggingface_hub import ModelFilter, hf_api import transformers from transformers import AutoFeatureExtractor, AutoImageProcessor, AutoTokenizer from transformers.image_processing_utils import BaseImageProcessor def get_all_model_names(): model_names = set() # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way. for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]: module = getattr(transformers.models.auto, module_name, None) if module is None: continue # all mappings in a single auto modeling file mapping_names = [ x for x in dir(module) if x.endswith("_MAPPING_NAMES") and (x.startswith("MODEL_") or x.startswith("TF_MODEL_") or x.startswith("FLAX_MODEL_")) ] for name in mapping_names: mapping = getattr(module, name) if mapping is not None: for v in mapping.values(): if isinstance(v, (list, tuple)): model_names.update(v) elif isinstance(v, str): model_names.add(v) return sorted(model_names) def get_tiny_model_names_from_repo(): # All model names defined in auto mappings model_names = set(get_all_model_names()) with open("tests/utils/tiny_model_summary.json") as fp: tiny_model_info = json.load(fp) tiny_models_names = set() for model_base_name in tiny_model_info: tiny_models_names.update(tiny_model_info[model_base_name]["model_classes"]) # Remove a tiny model name if one of its framework implementation hasn't yet a tiny version on the Hub. not_on_hub = model_names.difference(tiny_models_names) for model_name in copy.copy(tiny_models_names): if not model_name.startswith("TF") and f"TF{model_name}" in not_on_hub: tiny_models_names.remove(model_name) elif model_name.startswith("TF") and model_name[2:] in not_on_hub: tiny_models_names.remove(model_name) return sorted(tiny_models_names) def get_tiny_model_summary_from_hub(output_path): special_models = COMPOSITE_MODELS.values() # All tiny model base names on Hub model_names = get_all_model_names() models = hf_api.list_models( filter=ModelFilter( author="hf-internal-testing", ) ) _models = set() for x in models: model = x.modelId org, model = model.split("/") if not model.startswith("tiny-random-"): continue model = model.replace("tiny-random-", "") if not model[0].isupper(): continue if model not in model_names and model not in special_models: continue _models.add(model) models = sorted(_models) # All tiny model names on Hub summary = {} for model in models: repo_id = f"hf-internal-testing/tiny-random-{model}" model = model.split("-")[0] try: repo_info = hf_api.repo_info(repo_id) content = { "tokenizer_classes": set(), "processor_classes": set(), "model_classes": set(), "sha": repo_info.sha, } except Exception: continue try: time.sleep(1) tokenizer_fast = AutoTokenizer.from_pretrained(repo_id) content["tokenizer_classes"].add(tokenizer_fast.__class__.__name__) except Exception: pass try: time.sleep(1) tokenizer_slow = AutoTokenizer.from_pretrained(repo_id, use_fast=False) content["tokenizer_classes"].add(tokenizer_slow.__class__.__name__) except Exception: pass try: time.sleep(1) img_p = AutoImageProcessor.from_pretrained(repo_id) content["processor_classes"].add(img_p.__class__.__name__) except Exception: pass try: time.sleep(1) feat_p = AutoFeatureExtractor.from_pretrained(repo_id) if not isinstance(feat_p, BaseImageProcessor): content["processor_classes"].add(feat_p.__class__.__name__) except Exception: pass try: time.sleep(1) model_class = getattr(transformers, model) m = model_class.from_pretrained(repo_id) content["model_classes"].add(m.__class__.__name__) except Exception: pass try: time.sleep(1) model_class = getattr(transformers, f"TF{model}") m = model_class.from_pretrained(repo_id) content["model_classes"].add(m.__class__.__name__) except Exception: pass content["tokenizer_classes"] = sorted(content["tokenizer_classes"]) content["processor_classes"] = sorted(content["processor_classes"]) content["model_classes"] = sorted(content["model_classes"]) summary[model] = content with open(os.path.join(output_path, "hub_tiny_model_summary.json"), "w") as fp: json.dump(summary, fp, ensure_ascii=False, indent=4) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--num_workers", default=1, type=int, help="The number of workers to run.") args = parser.parse_args() # This has to be `spawn` to avoid hanging forever! multiprocessing.set_start_method("spawn") output_path = "tiny_models" all = True model_types = None models_to_skip = get_tiny_model_names_from_repo() no_check = True upload = True organization = "hf-internal-testing" create_tiny_models( output_path, all, model_types, models_to_skip, no_check, upload, organization, token=os.environ.get("TOKEN", None), num_workers=args.num_workers, )
transformers/utils/update_tiny_models.py/0
{ "file_path": "transformers/utils/update_tiny_models.py", "repo_id": "transformers", "token_count": 3072 }
183
[run] source=transformers omit = # skip convertion scripts from testing for now */convert_* */__main__.py [report] exclude_lines = pragma: no cover raise except register_parameter
transformers/.coveragerc/0
{ "file_path": "transformers/.coveragerc", "repo_id": "transformers", "token_count": 81 }
0
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-23-11.html#rel-23-11 FROM nvcr.io/nvidia/pytorch:23.11-py3 LABEL maintainer="Hugging Face" ARG DEBIAN_FRONTEND=noninteractive # Example: `cu102`, `cu113`, etc. ARG CUDA='cu121' RUN apt -y update RUN apt install -y libaio-dev RUN python3 -m pip install --no-cache-dir --upgrade pip ARG REF=main RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF RUN python3 -m pip uninstall -y torch torchvision torchaudio # Install **nightly** release PyTorch (flag `--pre`) # (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.) # (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops) RUN python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing] RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate # Uninstall `transformer-engine` shipped with the base image RUN python3 -m pip uninstall -y transformer-engine # Uninstall `torch-tensorrt` and `apex` shipped with the base image RUN python3 -m pip uninstall -y torch-tensorrt apex # Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout) RUN python3 -m pip uninstall -y deepspeed # This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.) # Issue: https://github.com/microsoft/DeepSpeed/issues/2010 # RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \ # DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1 ## For `torchdynamo` tests ## (see https://github.com/huggingface/transformers/pull/17765) #RUN git clone https://github.com/pytorch/functorch #RUN python3 -m pip install --no-cache-dir ./functorch[aot] #RUN cd functorch && python3 setup.py develop # #RUN git clone https://github.com/pytorch/torchdynamo #RUN python3 -m pip install -r ./torchdynamo/requirements.txt #RUN cd torchdynamo && python3 setup.py develop # ## install TensorRT #RUN python3 -m pip install --no-cache-dir -U nvidia-pyindex #RUN python3 -m pip install --no-cache-dir -U nvidia-tensorrt==8.2.4.2 # ## install torch_tensorrt (fx path) #RUN git clone https://github.com/pytorch/TensorRT.git #RUN cd TensorRT/py && python3 setup.py install --fx-only # When installing in editable mode, `transformers` is not recognized as a package. # this line must be added in order for python to be aware of transformers. RUN cd transformers && python3 setup.py develop # Disable for now as deepspeed is not installed above. To be enabled once the issue is fixed. # RUN python3 -c "from deepspeed.launcher.runner import main"
transformers/docker/transformers-pytorch-deepspeed-nightly-gpu/Dockerfile/0
{ "file_path": "transformers/docker/transformers-pytorch-deepspeed-nightly-gpu/Dockerfile", "repo_id": "transformers", "token_count": 1028 }
1
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Vortrainierte Instanzen mit einer AutoClass laden Bei so vielen verschiedenen Transformator-Architekturen kann es eine Herausforderung sein, eine für Ihren Checkpoint zu erstellen. Als Teil der 🤗 Transformers Kernphilosophie, die Bibliothek leicht, einfach und flexibel nutzbar zu machen, leitet eine `AutoClass` automatisch die richtige Architektur aus einem gegebenen Checkpoint ab und lädt sie. Mit der Methode `from_pretrained()` kann man schnell ein vortrainiertes Modell für eine beliebige Architektur laden, so dass man keine Zeit und Ressourcen aufwenden muss, um ein Modell von Grund auf zu trainieren. Die Erstellung dieser Art von Checkpoint-agnostischem Code bedeutet, dass Ihr Code, wenn er für einen Checkpoint funktioniert, auch mit einem anderen Checkpoint funktionieren wird - solange er für eine ähnliche Aufgabe trainiert wurde - selbst wenn die Architektur unterschiedlich ist. <Tip> Denken Sie daran, dass sich die Architektur auf das Skelett des Modells bezieht und die Checkpoints die Gewichte für eine bestimmte Architektur sind. Zum Beispiel ist [BERT](https://huggingface.co/google-bert/bert-base-uncased) eine Architektur, während `google-bert/bert-base-uncased` ein Checkpoint ist. Modell ist ein allgemeiner Begriff, der entweder Architektur oder Prüfpunkt bedeuten kann. </Tip> In dieser Anleitung lernen Sie, wie man: * Einen vortrainierten Tokenizer lädt. * Einen vortrainierten Merkmalsextraktor lädt. * Einen vortrainierten Prozessor lädt. * Ein vortrainiertes Modell lädt. ## AutoTokenizer Nahezu jede NLP-Aufgabe beginnt mit einem Tokenizer. Ein Tokenizer wandelt Ihre Eingabe in ein Format um, das vom Modell verarbeitet werden kann. Laden Sie einen Tokenizer mit [`AutoTokenizer.from_pretrained`]: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") ``` Dann tokenisieren Sie Ihre Eingabe wie unten gezeigt: ```py >>> sequence = "In a hole in the ground there lived a hobbit." >>> print(tokenizer(sequence)) {'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` ## AutoFeatureExtractor Für Audio- und Bildverarbeitungsaufgaben verarbeitet ein Merkmalsextraktor das Audiosignal oder Bild in das richtige Eingabeformat. Laden Sie einen Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained( ... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition" ... ) ``` ## AutoProcessor Multimodale Aufgaben erfordern einen Prozessor, der zwei Arten von Vorverarbeitungswerkzeugen kombiniert. Das Modell [LayoutLMV2](model_doc/layoutlmv2) beispielsweise benötigt einen Feature-Extraktor für Bilder und einen Tokenizer für Text; ein Prozessor kombiniert beide. Laden Sie einen Prozessor mit [`AutoProcessor.from_pretrained`]: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased") ``` ## AutoModel <frameworkcontent> <pt> Mit den `AutoModelFor`-Klassen können Sie schließlich ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`AutoModelForSequenceClassification.from_pretrained`]: ```py >>> from transformers import AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur für eine andere Aufgabe zu laden: ```py >>> from transformers import AutoModelForTokenClassification >>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` <Tip warning={true}> Für PyTorch-Modelle verwendet die Methode `from_pretrained()` `torch.load()`, die intern `pickle` verwendet und als unsicher bekannt ist. Generell sollte man niemals ein Modell laden, das aus einer nicht vertrauenswürdigen Quelle stammen könnte, oder das manipuliert worden sein könnte. Dieses Sicherheitsrisiko wird für öffentliche Modelle, die auf dem Hugging Face Hub gehostet werden, teilweise gemildert, da diese bei jeder Übertragung [auf Malware](https://huggingface.co/docs/hub/security-malware) gescannt werden. Siehe die [Hub-Dokumentation](https://huggingface.co/docs/hub/security) für Best Practices wie [signierte Commit-Verifizierung](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) mit GPG. TensorFlow- und Flax-Checkpoints sind nicht betroffen und können in PyTorch-Architekturen mit den Kwargs `from_tf` und `from_flax` für die Methode `from_pretrained` geladen werden, um dieses Problem zu umgehen. </Tip> Im Allgemeinen empfehlen wir die Verwendung der Klasse "AutoTokenizer" und der Klasse "AutoModelFor", um trainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten. </pt> <tf> Mit den Klassen `TFAutoModelFor` schließlich können Sie ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`TFAutoModelForSequenceClassification.from_pretrained`]: ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur für eine andere Aufgabe zu laden: ```py >>> from transformers import TFAutoModelForTokenClassification >>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` Im Allgemeinen empfehlen wir, die Klasse "AutoTokenizer" und die Klasse "TFAutoModelFor" zu verwenden, um vortrainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten. </tf> </frameworkcontent>
transformers/docs/source/de/autoclass_tutorial.md/0
{ "file_path": "transformers/docs/source/de/autoclass_tutorial.md", "repo_id": "transformers", "token_count": 2644 }
2
# Optimizing inference perf_infer_gpu_many: perf_infer_gpu_one
transformers/docs/source/en/_redirects.yml/0
{ "file_path": "transformers/docs/source/en/_redirects.yml", "repo_id": "transformers", "token_count": 25 }
3
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Custom Tools and Prompts <Tip> If you are not aware of what tools and agents are in the context of transformers, we recommend you read the [Transformers Agents](transformers_agents) page first. </Tip> <Tip warning={true}> Transformers Agents is an experimental API that is subject to change at any time. Results returned by the agents can vary as the APIs or underlying models are prone to change. </Tip> Creating and using custom tools and prompts is paramount to empowering the agent and having it perform new tasks. In this guide we'll take a look at: - How to customize the prompt - How to use custom tools - How to create custom tools ## Customizing the prompt As explained in [Transformers Agents](transformers_agents) agents can run in [`~Agent.run`] and [`~Agent.chat`] mode. Both the `run` and `chat` modes underlie the same logic. The language model powering the agent is conditioned on a long prompt and completes the prompt by generating the next tokens until the stop token is reached. The only difference between the two modes is that during the `chat` mode the prompt is extended with previous user inputs and model generations. This allows the agent to have access to past interactions, seemingly giving the agent some kind of memory. ### Structure of the prompt Let's take a closer look at how the prompt is structured to understand how it can be best customized. The prompt is structured broadly into four parts. - 1. Introduction: how the agent should behave, explanation of the concept of tools. - 2. Description of all the tools. This is defined by a `<<all_tools>>` token that is dynamically replaced at runtime with the tools defined/chosen by the user. - 3. A set of examples of tasks and their solution - 4. Current example, and request for solution. To better understand each part, let's look at a shortened version of how the `run` prompt can look like: ````text I will ask you to perform a task, your job is to come up with a series of simple commands in Python that will perform the task. [...] You can print intermediate results if it makes sense to do so. Tools: - document_qa: This is a tool that answers a question about a document (pdf). It takes an input named `document` which should be the document containing the information, as well as a `question` that is the question about the document. It returns a text that contains the answer to the question. - image_captioner: This is a tool that generates a description of an image. It takes an input named `image` which should be the image to the caption and returns a text that contains the description in English. [...] Task: "Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French." I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image. Answer: ```py translated_question = translator(question=question, src_lang="French", tgt_lang="English") print(f"The translated question is {translated_question}.") answer = image_qa(image=image, question=translated_question) print(f"The answer is {answer}") ``` Task: "Identify the oldest person in the `document` and create an image showcasing the result as a banner." I will use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer. Answer: ```py answer = document_qa(document, question="What is the oldest person?") print(f"The answer is {answer}.") image = image_generator("A banner showing " + answer) ``` [...] Task: "Draw me a picture of rivers and lakes" I will use the following ```` The introduction (the text before *"Tools:"*) explains precisely how the model shall behave and what it should do. This part most likely does not need to be customized as the agent shall always behave the same way. The second part (the bullet points below *"Tools"*) is dynamically added upon calling `run` or `chat`. There are exactly as many bullet points as there are tools in `agent.toolbox` and each bullet point consists of the name and description of the tool: ```text - <tool.name>: <tool.description> ``` Let's verify this quickly by loading the document_qa tool and printing out the name and description. ```py from transformers import load_tool document_qa = load_tool("document-question-answering") print(f"- {document_qa.name}: {document_qa.description}") ``` which gives: ```text - document_qa: This is a tool that answers a question about a document (pdf). It takes an input named `document` which should be the document containing the information, as well as a `question` that is the question about the document. It returns a text that contains the answer to the question. ``` We can see that the tool name is short and precise. The description includes two parts, the first explaining what the tool does and the second states what input arguments and return values are expected. A good tool name and tool description are very important for the agent to correctly use it. Note that the only information the agent has about the tool is its name and description, so one should make sure that both are precisely written and match the style of the existing tools in the toolbox. In particular make sure the description mentions all the arguments expected by name in code-style, along with the expected type and a description of what they are. <Tip> Check the naming and description of the curated Transformers tools to better understand what name and description a tool is expected to have. You can see all tools with the [`Agent.toolbox`] property. </Tip> The third part includes a set of curated examples that show the agent exactly what code it should produce for what kind of user request. The large language models empowering the agent are extremely good at recognizing patterns in a prompt and repeating the pattern with new data. Therefore, it is very important that the examples are written in a way that maximizes the likelihood of the agent to generating correct, executable code in practice. Let's have a look at one example: ````text Task: "Identify the oldest person in the `document` and create an image showcasing the result as a banner." I will use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer. Answer: ```py answer = document_qa(document, question="What is the oldest person?") print(f"The answer is {answer}.") image = image_generator("A banner showing " + answer) ``` ```` The pattern the model is prompted to repeat has three parts: The task statement, the agent's explanation of what it intends to do, and finally the generated code. Every example that is part of the prompt has this exact pattern, thus making sure that the agent will reproduce exactly the same pattern when generating new tokens. The prompt examples are curated by the Transformers team and rigorously evaluated on a set of [problem statements](https://github.com/huggingface/transformers/blob/main/src/transformers/tools/evaluate_agent.py) to ensure that the agent's prompt is as good as possible to solve real use cases of the agent. The final part of the prompt corresponds to: ```text Task: "Draw me a picture of rivers and lakes" I will use the following ``` is a final and unfinished example that the agent is tasked to complete. The unfinished example is dynamically created based on the actual user input. For the above example, the user ran: ```py agent.run("Draw me a picture of rivers and lakes") ``` The user input - *a.k.a* the task: *"Draw me a picture of rivers and lakes"* is cast into the prompt template: "Task: <task> \n\n I will use the following". This sentence makes up the final lines of the prompt the agent is conditioned on, therefore strongly influencing the agent to finish the example exactly in the same way it was previously done in the examples. Without going into too much detail, the chat template has the same prompt structure with the examples having a slightly different style, *e.g.*: ````text [...] ===== Human: Answer the question in the variable `question` about the image stored in the variable `image`. Assistant: I will use the tool `image_qa` to answer the question on the input image. ```py answer = image_qa(text=question, image=image) print(f"The answer is {answer}") ``` Human: I tried this code, it worked but didn't give me a good result. The question is in French Assistant: In this case, the question needs to be translated first. I will use the tool `translator` to do this. ```py translated_question = translator(question=question, src_lang="French", tgt_lang="English") print(f"The translated question is {translated_question}.") answer = image_qa(text=translated_question, image=image) print(f"The answer is {answer}") ``` ===== [...] ```` Contrary, to the examples of the `run` prompt, each `chat` prompt example has one or more exchanges between the *Human* and the *Assistant*. Every exchange is structured similarly to the example of the `run` prompt. The user's input is appended to behind *Human:* and the agent is prompted to first generate what needs to be done before generating code. An exchange can be based on previous exchanges, therefore allowing the user to refer to past exchanges as is done *e.g.* above by the user's input of "I tried **this** code" refers to the previously generated code of the agent. Upon running `.chat`, the user's input or *task* is cast into an unfinished example of the form: ```text Human: <user-input>\n\nAssistant: ``` which the agent completes. Contrary to the `run` command, the `chat` command then appends the completed example to the prompt, thus giving the agent more context for the next `chat` turn. Great now that we know how the prompt is structured, let's see how we can customize it! ### Writing good user inputs While large language models are getting better and better at understanding users' intentions, it helps enormously to be as precise as possible to help the agent pick the correct task. What does it mean to be as precise as possible? The agent sees a list of tool names and their description in its prompt. The more tools are added the more difficult it becomes for the agent to choose the correct tool and it's even more difficult to choose the correct sequences of tools to run. Let's look at a common failure case, here we will only return the code to analyze it. ```py from transformers import HfAgent agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") agent.run("Show me a tree", return_code=True) ``` gives: ```text ==Explanation from the agent== I will use the following tool: `image_segmenter` to create a segmentation mask for the image. ==Code generated by the agent== mask = image_segmenter(image, prompt="tree") ``` which is probably not what we wanted. Instead, it is more likely that we want an image of a tree to be generated. To steer the agent more towards using a specific tool it can therefore be very helpful to use important keywords that are present in the tool's name and description. Let's have a look. ```py agent.toolbox["image_generator"].description ``` ```text 'This is a tool that creates an image according to a prompt, which is a text description. It takes an input named `prompt` which contains the image description and outputs an image. ``` The name and description make use of the keywords "image", "prompt", "create" and "generate". Using these words will most likely work better here. Let's refine our prompt a bit. ```py agent.run("Create an image of a tree", return_code=True) ``` gives: ```text ==Explanation from the agent== I will use the following tool `image_generator` to generate an image of a tree. ==Code generated by the agent== image = image_generator(prompt="tree") ``` Much better! That looks more like what we want. In short, when you notice that the agent struggles to correctly map your task to the correct tools, try looking up the most pertinent keywords of the tool's name and description and try refining your task request with it. ### Customizing the tool descriptions As we've seen before the agent has access to each of the tools' names and descriptions. The base tools should have very precise names and descriptions, however, you might find that it could help to change the the description or name of a tool for your specific use case. This might become especially important when you've added multiple tools that are very similar or if you want to use your agent only for a certain domain, *e.g.* image generation and transformations. A common problem is that the agent confuses image generation with image transformation/modification when used a lot for image generation tasks, *e.g.* ```py agent.run("Make an image of a house and a car", return_code=True) ``` returns ```text ==Explanation from the agent== I will use the following tools `image_generator` to generate an image of a house and `image_transformer` to transform the image of a car into the image of a house. ==Code generated by the agent== house_image = image_generator(prompt="A house") car_image = image_generator(prompt="A car") house_car_image = image_transformer(image=car_image, prompt="A house") ``` which is probably not exactly what we want here. It seems like the agent has a difficult time to understand the difference between `image_generator` and `image_transformer` and often uses the two together. We can help the agent here by changing the tool name and description of `image_transformer`. Let's instead call it `modifier` to disassociate it a bit from "image" and "prompt": ```py agent.toolbox["modifier"] = agent.toolbox.pop("image_transformer") agent.toolbox["modifier"].description = agent.toolbox["modifier"].description.replace( "transforms an image according to a prompt", "modifies an image" ) ``` Now "modify" is a strong cue to use the new image processor which should help with the above prompt. Let's run it again. ```py agent.run("Make an image of a house and a car", return_code=True) ``` Now we're getting: ```text ==Explanation from the agent== I will use the following tools: `image_generator` to generate an image of a house, then `image_generator` to generate an image of a car. ==Code generated by the agent== house_image = image_generator(prompt="A house") car_image = image_generator(prompt="A car") ``` which is definitely closer to what we had in mind! However, we want to have both the house and car in the same image. Steering the task more toward single image generation should help: ```py agent.run("Create image: 'A house and car'", return_code=True) ``` ```text ==Explanation from the agent== I will use the following tool: `image_generator` to generate an image. ==Code generated by the agent== image = image_generator(prompt="A house and car") ``` <Tip warning={true}> Agents are still brittle for many use cases, especially when it comes to slightly more complex use cases like generating an image of multiple objects. Both the agent itself and the underlying prompt will be further improved in the coming months making sure that agents become more robust to a variety of user inputs. </Tip> ### Customizing the whole prompt To give the user maximum flexibility, the whole prompt template as explained in [above](#structure-of-the-prompt) can be overwritten by the user. In this case make sure that your custom prompt includes an introduction section, a tool section, an example section, and an unfinished example section. If you want to overwrite the `run` prompt template, you can do as follows: ```py template = """ [...] """ agent = HfAgent(your_endpoint, run_prompt_template=template) ``` <Tip warning={true}> Please make sure to have the `<<all_tools>>` string and the `<<prompt>>` defined somewhere in the `template` so that the agent can be aware of the tools, it has available to it as well as correctly insert the user's prompt. </Tip> Similarly, one can overwrite the `chat` prompt template. Note that the `chat` mode always uses the following format for the exchanges: ```text Human: <<task>> Assistant: ``` Therefore it is important that the examples of the custom `chat` prompt template also make use of this format. You can overwrite the `chat` template at instantiation as follows. ```python template = """ [...] """ agent = HfAgent(url_endpoint=your_endpoint, chat_prompt_template=template) ``` <Tip warning={true}> Please make sure to have the `<<all_tools>>` string defined somewhere in the `template` so that the agent can be aware of the tools, it has available to it. </Tip> In both cases, you can pass a repo ID instead of the prompt template if you would like to use a template hosted by someone in the community. The default prompts live in [this repo](https://huggingface.co/datasets/huggingface-tools/default-prompts) as an example. To upload your custom prompt on a repo on the Hub and share it with the community just make sure: - to use a dataset repository - to put the prompt template for the `run` command in a file named `run_prompt_template.txt` - to put the prompt template for the `chat` command in a file named `chat_prompt_template.txt` ## Using custom tools In this section, we'll be leveraging two existing custom tools that are specific to image generation: - We replace [huggingface-tools/image-transformation](https://huggingface.co/spaces/huggingface-tools/image-transformation), with [diffusers/controlnet-canny-tool](https://huggingface.co/spaces/diffusers/controlnet-canny-tool) to allow for more image modifications. - We add a new tool for image upscaling to the default toolbox: [diffusers/latent-upscaler-tool](https://huggingface.co/spaces/diffusers/latent-upscaler-tool) replace the existing image-transformation tool. We'll start by loading the custom tools with the convenient [`load_tool`] function: ```py from transformers import load_tool controlnet_transformer = load_tool("diffusers/controlnet-canny-tool") upscaler = load_tool("diffusers/latent-upscaler-tool") ``` Upon adding custom tools to an agent, the tools' descriptions and names are automatically included in the agents' prompts. Thus, it is imperative that custom tools have a well-written description and name in order for the agent to understand how to use them. Let's take a look at the description and name of `controlnet_transformer`: ```py print(f"Description: '{controlnet_transformer.description}'") print(f"Name: '{controlnet_transformer.name}'") ``` gives ```text Description: 'This is a tool that transforms an image with ControlNet according to a prompt. It takes two inputs: `image`, which should be the image to transform, and `prompt`, which should be the prompt to use to change it. It returns the modified image.' Name: 'image_transformer' ``` The name and description are accurate and fit the style of the [curated set of tools](./transformers_agents#a-curated-set-of-tools). Next, let's instantiate an agent with `controlnet_transformer` and `upscaler`: ```py tools = [controlnet_transformer, upscaler] agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder", additional_tools=tools) ``` This command should give you the following info: ```text image_transformer has been replaced by <transformers_modules.diffusers.controlnet-canny-tool.bd76182c7777eba9612fc03c0 8718a60c0aa6312.image_transformation.ControlNetTransformationTool object at 0x7f1d3bfa3a00> as provided in `additional_tools` ``` The set of curated tools already has an `image_transformer` tool which is hereby replaced with our custom tool. <Tip> Overwriting existing tools can be beneficial if we want to use a custom tool exactly for the same task as an existing tool because the agent is well-versed in using the specific task. Beware that the custom tool should follow the exact same API as the overwritten tool in this case, or you should adapt the prompt template to make sure all examples using that tool are updated. </Tip> The upscaler tool was given the name `image_upscaler` which is not yet present in the default toolbox and is therefore simply added to the list of tools. You can always have a look at the toolbox that is currently available to the agent via the `agent.toolbox` attribute: ```py print("\n".join([f"- {a}" for a in agent.toolbox.keys()])) ``` ```text - document_qa - image_captioner - image_qa - image_segmenter - transcriber - summarizer - text_classifier - text_qa - text_reader - translator - image_transformer - text_downloader - image_generator - video_generator - image_upscaler ``` Note how `image_upscaler` is now part of the agents' toolbox. Let's now try out the new tools! We will re-use the image we generated in [Transformers Agents Quickstart](./transformers_agents#single-execution-run). ```py from diffusers.utils import load_image image = load_image( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" ) ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200> Let's transform the image into a beautiful winter landscape: ```py image = agent.run("Transform the image: 'A frozen lake and snowy forest'", image=image) ``` ```text ==Explanation from the agent== I will use the following tool: `image_transformer` to transform the image. ==Code generated by the agent== image = image_transformer(image, prompt="A frozen lake and snowy forest") ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes_winter.png" width=200> The new image processing tool is based on ControlNet which can make very strong modifications to the image. By default the image processing tool returns an image of size 512x512 pixels. Let's see if we can upscale it. ```py image = agent.run("Upscale the image", image) ``` ```text ==Explanation from the agent== I will use the following tool: `image_upscaler` to upscale the image. ==Code generated by the agent== upscaled_image = image_upscaler(image) ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes_winter_upscale.png" width=400> The agent automatically mapped our prompt "Upscale the image" to the just added upscaler tool purely based on the description and name of the upscaler tool and was able to correctly run it. Next, let's have a look at how you can create a new custom tool. ### Adding new tools In this section, we show how to create a new tool that can be added to the agent. #### Creating a new tool We'll first start by creating a tool. We'll add the not-so-useful yet fun task of fetching the model on the Hugging Face Hub with the most downloads for a given task. We can do that with the following code: ```python from huggingface_hub import list_models task = "text-classification" model = next(iter(list_models(filter=task, sort="downloads", direction=-1))) print(model.id) ``` For the task `text-classification`, this returns `'facebook/bart-large-mnli'`, for `translation` it returns `'google-t5/t5-base`. How do we convert this to a tool that the agent can leverage? All tools depend on the superclass `Tool` that holds the main attributes necessary. We'll create a class that inherits from it: ```python from transformers import Tool class HFModelDownloadsTool(Tool): pass ``` This class has a few needs: - An attribute `name`, which corresponds to the name of the tool itself. To be in tune with other tools which have a performative name, we'll name it `model_download_counter`. - An attribute `description`, which will be used to populate the prompt of the agent. - `inputs` and `outputs` attributes. Defining this will help the python interpreter make educated choices about types, and will allow for a gradio-demo to be spawned when we push our tool to the Hub. They're both a list of expected values, which can be `text`, `image`, or `audio`. - A `__call__` method which contains the inference code. This is the code we've played with above! Here's what our class looks like now: ```python from transformers import Tool from huggingface_hub import list_models class HFModelDownloadsTool(Tool): name = "model_download_counter" description = ( "This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. " "It takes the name of the category (such as text-classification, depth-estimation, etc), and " "returns the name of the checkpoint." ) inputs = ["text"] outputs = ["text"] def __call__(self, task: str): model = next(iter(list_models(filter=task, sort="downloads", direction=-1))) return model.id ``` We now have our tool handy. Save it in a file and import it from your main script. Let's name this file `model_downloads.py`, so the resulting import code looks like this: ```python from model_downloads import HFModelDownloadsTool tool = HFModelDownloadsTool() ``` In order to let others benefit from it and for simpler initialization, we recommend pushing it to the Hub under your namespace. To do so, just call `push_to_hub` on the `tool` variable: ```python tool.push_to_hub("hf-model-downloads") ``` You now have your code on the Hub! Let's take a look at the final step, which is to have the agent use it. #### Having the agent use the tool We now have our tool that lives on the Hub which can be instantiated as such (change the user name for your tool): ```python from transformers import load_tool tool = load_tool("lysandre/hf-model-downloads") ``` In order to use it in the agent, simply pass it in the `additional_tools` parameter of the agent initialization method: ```python from transformers import HfAgent agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder", additional_tools=[tool]) agent.run( "Can you read out loud the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?" ) ``` which outputs the following: ```text ==Code generated by the agent== model = model_download_counter(task="text-to-video") print(f"The model with the most downloads is {model}.") audio_model = text_reader(model) ==Result== The model with the most downloads is damo-vilab/text-to-video-ms-1.7b. ``` and generates the following audio. | **Audio** | |------------------------------------------------------------------------------------------------------------------------------------------------------| | <audio controls><source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/damo.wav" type="audio/wav"/> | <Tip> Depending on the LLM, some are quite brittle and require very exact prompts in order to work well. Having a well-defined name and description of the tool is paramount to having it be leveraged by the agent. </Tip> ### Replacing existing tools Replacing existing tools can be done simply by assigning a new item to the agent's toolbox. Here's how one would do so: ```python from transformers import HfAgent, load_tool agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") agent.toolbox["image-transformation"] = load_tool("diffusers/controlnet-canny-tool") ``` <Tip> Beware when replacing tools with others! This will also adjust the agent's prompt. This can be good if you have a better prompt suited for the task, but it can also result in your tool being selected way more than others or for other tools to be selected instead of the one you have defined. </Tip> ## Leveraging gradio-tools [gradio-tools](https://github.com/freddyaboulton/gradio-tools) is a powerful library that allows using Hugging Face Spaces as tools. It supports many existing Spaces as well as custom Spaces to be designed with it. We offer support for `gradio_tools` by using the `Tool.from_gradio` method. For example, we want to take advantage of the `StableDiffusionPromptGeneratorTool` tool offered in the `gradio-tools` toolkit so as to improve our prompts and generate better images. We first import the tool from `gradio_tools` and instantiate it: ```python from gradio_tools import StableDiffusionPromptGeneratorTool gradio_tool = StableDiffusionPromptGeneratorTool() ``` We pass that instance to the `Tool.from_gradio` method: ```python from transformers import Tool tool = Tool.from_gradio(gradio_tool) ``` Now we can manage it exactly as we would a usual custom tool. We leverage it to improve our prompt ` a rabbit wearing a space suit`: ```python from transformers import HfAgent agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder", additional_tools=[tool]) agent.run("Generate an image of the `prompt` after improving it.", prompt="A rabbit wearing a space suit") ``` The model adequately leverages the tool: ```text ==Explanation from the agent== I will use the following tools: `StableDiffusionPromptGenerator` to improve the prompt, then `image_generator` to generate an image according to the improved prompt. ==Code generated by the agent== improved_prompt = StableDiffusionPromptGenerator(prompt) print(f"The improved prompt is {improved_prompt}.") image = image_generator(improved_prompt) ``` Before finally generating the image: <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"> <Tip warning={true}> gradio-tools requires *textual* inputs and outputs, even when working with different modalities. This implementation works with image and audio objects. The two are currently incompatible, but will rapidly become compatible as we work to improve the support. </Tip> ## Future compatibility with Langchain We love Langchain and think it has a very compelling suite of tools. In order to handle these tools, Langchain requires *textual* inputs and outputs, even when working with different modalities. This is often the serialized version (i.e., saved to disk) of the objects. This difference means that multi-modality isn't handled between transformers-agents and langchain. We aim for this limitation to be resolved in future versions, and welcome any help from avid langchain users to help us achieve this compatibility. We would love to have better support. If you would like to help, please [open an issue](https://github.com/huggingface/transformers/issues/new) and share what you have in mind.
transformers/docs/source/en/custom_tools.md/0
{ "file_path": "transformers/docs/source/en/custom_tools.md", "repo_id": "transformers", "token_count": 8666 }
4
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Models The base classes [`PreTrainedModel`], [`TFPreTrainedModel`], and [`FlaxPreTrainedModel`] implement the common methods for loading/saving a model either from a local file or directory, or from a pretrained model configuration provided by the library (downloaded from HuggingFace's AWS S3 repository). [`PreTrainedModel`] and [`TFPreTrainedModel`] also implement a few methods which are common among all the models to: - resize the input token embeddings when new tokens are added to the vocabulary - prune the attention heads of the model. The other methods that are common to each model are defined in [`~modeling_utils.ModuleUtilsMixin`] (for the PyTorch models) and [`~modeling_tf_utils.TFModuleUtilsMixin`] (for the TensorFlow models) or for text generation, [`~generation.GenerationMixin`] (for the PyTorch models), [`~generation.TFGenerationMixin`] (for the TensorFlow models) and [`~generation.FlaxGenerationMixin`] (for the Flax/JAX models). ## PreTrainedModel [[autodoc]] PreTrainedModel - push_to_hub - all <a id='from_pretrained-torch-dtype'></a> ### Large model loading In Transformers 4.20.0, the [`~PreTrainedModel.from_pretrained`] method has been reworked to accommodate large models using [Accelerate](https://huggingface.co/docs/accelerate/big_modeling). This requires Accelerate >= 0.9.0 and PyTorch >= 1.9.0. Instead of creating the full model, then loading the pretrained weights inside it (which takes twice the size of the model in RAM, one for the randomly initialized model, one for the weights), there is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. This option can be activated with `low_cpu_mem_usage=True`. The model is first created on the Meta device (with empty weights) and the state dict is then loaded inside it (shard by shard in the case of a sharded checkpoint). This way the maximum RAM used is the full size of the model only. ```py from transformers import AutoModelForSeq2SeqLM t0pp = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp", low_cpu_mem_usage=True) ``` Moreover, you can directly place the model on different devices if it doesn't fully fit in RAM (only works for inference for now). With `device_map="auto"`, Accelerate will determine where to put each layer to maximize the use of your fastest devices (GPUs) and offload the rest on the CPU, or even the hard drive if you don't have enough GPU RAM (or CPU RAM). Even if the model is split across several devices, it will run as you would normally expect. When passing a `device_map`, `low_cpu_mem_usage` is automatically set to `True`, so you don't need to specify it: ```py from transformers import AutoModelForSeq2SeqLM t0pp = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp", device_map="auto") ``` You can inspect how the model was split across devices by looking at its `hf_device_map` attribute: ```py t0pp.hf_device_map ``` ```python out {'shared': 0, 'decoder.embed_tokens': 0, 'encoder': 0, 'decoder.block.0': 0, 'decoder.block.1': 1, 'decoder.block.2': 1, 'decoder.block.3': 1, 'decoder.block.4': 1, 'decoder.block.5': 1, 'decoder.block.6': 1, 'decoder.block.7': 1, 'decoder.block.8': 1, 'decoder.block.9': 1, 'decoder.block.10': 1, 'decoder.block.11': 1, 'decoder.block.12': 1, 'decoder.block.13': 1, 'decoder.block.14': 1, 'decoder.block.15': 1, 'decoder.block.16': 1, 'decoder.block.17': 1, 'decoder.block.18': 1, 'decoder.block.19': 1, 'decoder.block.20': 1, 'decoder.block.21': 1, 'decoder.block.22': 'cpu', 'decoder.block.23': 'cpu', 'decoder.final_layer_norm': 'cpu', 'decoder.dropout': 'cpu', 'lm_head': 'cpu'} ``` You can also write your own device map following the same format (a dictionary layer name to device). It should map all parameters of the model to a given device, but you don't have to detail where all the submodules of one layer go if that layer is entirely on the same device. For instance, the following device map would work properly for T0pp (as long as you have the GPU memory): ```python device_map = {"shared": 0, "encoder": 0, "decoder": 1, "lm_head": 1} ``` Another way to minimize the memory impact of your model is to instantiate it at a lower precision dtype (like `torch.float16`) or use direct quantization techniques as described below. ### Model Instantiation dtype Under Pytorch a model normally gets instantiated with `torch.float32` format. This can be an issue if one tries to load a model whose weights are in fp16, since it'd require twice as much memory. To overcome this limitation, you can either explicitly pass the desired `dtype` using `torch_dtype` argument: ```python model = T5ForConditionalGeneration.from_pretrained("t5", torch_dtype=torch.float16) ``` or, if you want the model to always load in the most optimal memory pattern, you can use the special value `"auto"`, and then `dtype` will be automatically derived from the model's weights: ```python model = T5ForConditionalGeneration.from_pretrained("t5", torch_dtype="auto") ``` Models instantiated from scratch can also be told which `dtype` to use with: ```python config = T5Config.from_pretrained("t5") model = AutoModel.from_config(config) ``` Due to Pytorch design, this functionality is only available for floating dtypes. ## ModuleUtilsMixin [[autodoc]] modeling_utils.ModuleUtilsMixin ## TFPreTrainedModel [[autodoc]] TFPreTrainedModel - push_to_hub - all ## TFModelUtilsMixin [[autodoc]] modeling_tf_utils.TFModelUtilsMixin ## FlaxPreTrainedModel [[autodoc]] FlaxPreTrainedModel - push_to_hub - all ## Pushing to the Hub [[autodoc]] utils.PushToHubMixin ## Sharded checkpoints [[autodoc]] modeling_utils.load_sharded_checkpoint
transformers/docs/source/en/main_classes/model.md/0
{ "file_path": "transformers/docs/source/en/main_classes/model.md", "repo_id": "transformers", "token_count": 2010 }
5
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Bark ## Overview Bark is a transformer-based text-to-speech model proposed by Suno AI in [suno-ai/bark](https://github.com/suno-ai/bark). Bark is made of 4 main models: - [`BarkSemanticModel`] (also referred to as the 'text' model): a causal auto-regressive transformer model that takes as input tokenized text, and predicts semantic text tokens that capture the meaning of the text. - [`BarkCoarseModel`] (also referred to as the 'coarse acoustics' model): a causal autoregressive transformer, that takes as input the results of the [`BarkSemanticModel`] model. It aims at predicting the first two audio codebooks necessary for EnCodec. - [`BarkFineModel`] (the 'fine acoustics' model), this time a non-causal autoencoder transformer, which iteratively predicts the last codebooks based on the sum of the previous codebooks embeddings. - having predicted all the codebook channels from the [`EncodecModel`], Bark uses it to decode the output audio array. It should be noted that each of the first three modules can support conditional speaker embeddings to condition the output sound according to specific predefined voice. This model was contributed by [Yoach Lacombe (ylacombe)](https://huggingface.co/ylacombe) and [Sanchit Gandhi (sanchit-gandhi)](https://github.com/sanchit-gandhi). The original code can be found [here](https://github.com/suno-ai/bark). ### Optimizing Bark Bark can be optimized with just a few extra lines of code, which **significantly reduces its memory footprint** and **accelerates inference**. #### Using half-precision You can speed up inference and reduce memory footprint by 50% simply by loading the model in half-precision. ```python from transformers import BarkModel import torch device = "cuda" if torch.cuda.is_available() else "cpu" model = BarkModel.from_pretrained("suno/bark-small", torch_dtype=torch.float16).to(device) ``` #### Using CPU offload As mentioned above, Bark is made up of 4 sub-models, which are called up sequentially during audio generation. In other words, while one sub-model is in use, the other sub-models are idle. If you're using a CUDA device, a simple solution to benefit from an 80% reduction in memory footprint is to offload the submodels from GPU to CPU when they're idle. This operation is called *CPU offloading*. You can use it with one line of code as follows: ```python model.enable_cpu_offload() ``` Note that 🤗 Accelerate must be installed before using this feature. [Here's how to install it.](https://huggingface.co/docs/accelerate/basic_tutorials/install) #### Using Better Transformer Better Transformer is an 🤗 Optimum feature that performs kernel fusion under the hood. You can gain 20% to 30% in speed with zero performance degradation. It only requires one line of code to export the model to 🤗 Better Transformer: ```python model = model.to_bettertransformer() ``` Note that 🤗 Optimum must be installed before using this feature. [Here's how to install it.](https://huggingface.co/docs/optimum/installation) #### Using Flash Attention 2 Flash Attention 2 is an even faster, optimized version of the previous optimization. ##### Installation First, check whether your hardware is compatible with Flash Attention 2. The latest list of compatible hardware can be found in the [official documentation](https://github.com/Dao-AILab/flash-attention#installation-and-features). If your hardware is not compatible with Flash Attention 2, you can still benefit from attention kernel optimisations through Better Transformer support covered [above](https://huggingface.co/docs/transformers/main/en/model_doc/bark#using-better-transformer). Next, [install](https://github.com/Dao-AILab/flash-attention#installation-and-features) the latest version of Flash Attention 2: ```bash pip install -U flash-attn --no-build-isolation ``` ##### Usage To load a model using Flash Attention 2, we can pass the `attn_implementation="flash_attention_2"` flag to [`.from_pretrained`](https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.PreTrainedModel.from_pretrained). We'll also load the model in half-precision (e.g. `torch.float16`), since it results in almost no degradation to audio quality but significantly lower memory usage and faster inference: ```python model = BarkModel.from_pretrained("suno/bark-small", torch_dtype=torch.float16, attn_implementation="flash_attention_2").to(device) ``` ##### Performance comparison The following diagram shows the latency for the native attention implementation (no optimisation) against Better Transformer and Flash Attention 2. In all cases, we generate 400 semantic tokens on a 40GB A100 GPU with PyTorch 2.1. Flash Attention 2 is also consistently faster than Better Transformer, and its performance improves even more as batch sizes increase: <div style="text-align: center"> <img src="https://huggingface.co/datasets/ylacombe/benchmark-comparison/resolve/main/Bark%20Optimization%20Benchmark.png"> </div> To put this into perspective, on an NVIDIA A100 and when generating 400 semantic tokens with a batch size of 16, you can get 17 times the [throughput](https://huggingface.co/blog/optimizing-bark#throughput) and still be 2 seconds faster than generating sentences one by one with the native model implementation. In other words, all the samples will be generated 17 times faster. At batch size 8, on an NVIDIA A100, Flash Attention 2 is also 10% faster than Better Transformer, and at batch size 16, 25%. #### Combining optimization techniques You can combine optimization techniques, and use CPU offload, half-precision and Flash Attention 2 (or 🤗 Better Transformer) all at once. ```python from transformers import BarkModel import torch device = "cuda" if torch.cuda.is_available() else "cpu" # load in fp16 and use Flash Attention 2 model = BarkModel.from_pretrained("suno/bark-small", torch_dtype=torch.float16, attn_implementation="flash_attention_2").to(device) # enable CPU offload model.enable_cpu_offload() ``` Find out more on inference optimization techniques [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one). ### Usage tips Suno offers a library of voice presets in a number of languages [here](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c). These presets are also uploaded in the hub [here](https://huggingface.co/suno/bark-small/tree/main/speaker_embeddings) or [here](https://huggingface.co/suno/bark/tree/main/speaker_embeddings). ```python >>> from transformers import AutoProcessor, BarkModel >>> processor = AutoProcessor.from_pretrained("suno/bark") >>> model = BarkModel.from_pretrained("suno/bark") >>> voice_preset = "v2/en_speaker_6" >>> inputs = processor("Hello, my dog is cute", voice_preset=voice_preset) >>> audio_array = model.generate(**inputs) >>> audio_array = audio_array.cpu().numpy().squeeze() ``` Bark can generate highly realistic, **multilingual** speech as well as other audio - including music, background noise and simple sound effects. ```python >>> # Multilingual speech - simplified Chinese >>> inputs = processor("惊人的!我会说中文") >>> # Multilingual speech - French - let's use a voice_preset as well >>> inputs = processor("Incroyable! Je peux générer du son.", voice_preset="fr_speaker_5") >>> # Bark can also generate music. You can help it out by adding music notes around your lyrics. >>> inputs = processor("♪ Hello, my dog is cute ♪") >>> audio_array = model.generate(**inputs) >>> audio_array = audio_array.cpu().numpy().squeeze() ``` The model can also produce **nonverbal communications** like laughing, sighing and crying. ```python >>> # Adding non-speech cues to the input text >>> inputs = processor("Hello uh ... [clears throat], my dog is cute [laughter]") >>> audio_array = model.generate(**inputs) >>> audio_array = audio_array.cpu().numpy().squeeze() ``` To save the audio, simply take the sample rate from the model config and some scipy utility: ```python >>> from scipy.io.wavfile import write as write_wav >>> # save audio to disk, but first take the sample rate from the model config >>> sample_rate = model.generation_config.sample_rate >>> write_wav("bark_generation.wav", sample_rate, audio_array) ``` ## BarkConfig [[autodoc]] BarkConfig - all ## BarkProcessor [[autodoc]] BarkProcessor - all - __call__ ## BarkModel [[autodoc]] BarkModel - generate - enable_cpu_offload ## BarkSemanticModel [[autodoc]] BarkSemanticModel - forward ## BarkCoarseModel [[autodoc]] BarkCoarseModel - forward ## BarkFineModel [[autodoc]] BarkFineModel - forward ## BarkCausalModel [[autodoc]] BarkCausalModel - forward ## BarkCoarseConfig [[autodoc]] BarkCoarseConfig - all ## BarkFineConfig [[autodoc]] BarkFineConfig - all ## BarkSemanticConfig [[autodoc]] BarkSemanticConfig - all
transformers/docs/source/en/model_doc/bark.md/0
{ "file_path": "transformers/docs/source/en/model_doc/bark.md", "repo_id": "transformers", "token_count": 2760 }
6
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BLIP ## Overview The BLIP model was proposed in [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi. BLIP is a model that is able to perform various multi-modal tasks including: - Visual Question Answering - Image-Text retrieval (Image-text matching) - Image Captioning The abstract from the paper is the following: *Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.* ![BLIP.gif](https://cdn-uploads.huggingface.co/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif) This model was contributed by [ybelkada](https://huggingface.co/ybelkada). The original code can be found [here](https://github.com/salesforce/BLIP). ## Resources - [Jupyter notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) on how to fine-tune BLIP for image captioning on a custom dataset ## BlipConfig [[autodoc]] BlipConfig - from_text_vision_configs ## BlipTextConfig [[autodoc]] BlipTextConfig ## BlipVisionConfig [[autodoc]] BlipVisionConfig ## BlipProcessor [[autodoc]] BlipProcessor ## BlipImageProcessor [[autodoc]] BlipImageProcessor - preprocess <frameworkcontent> <pt> ## BlipModel [[autodoc]] BlipModel - forward - get_text_features - get_image_features ## BlipTextModel [[autodoc]] BlipTextModel - forward ## BlipVisionModel [[autodoc]] BlipVisionModel - forward ## BlipForConditionalGeneration [[autodoc]] BlipForConditionalGeneration - forward ## BlipForImageTextRetrieval [[autodoc]] BlipForImageTextRetrieval - forward ## BlipForQuestionAnswering [[autodoc]] BlipForQuestionAnswering - forward </pt> <tf> ## TFBlipModel [[autodoc]] TFBlipModel - call - get_text_features - get_image_features ## TFBlipTextModel [[autodoc]] TFBlipTextModel - call ## TFBlipVisionModel [[autodoc]] TFBlipVisionModel - call ## TFBlipForConditionalGeneration [[autodoc]] TFBlipForConditionalGeneration - call ## TFBlipForImageTextRetrieval [[autodoc]] TFBlipForImageTextRetrieval - call ## TFBlipForQuestionAnswering [[autodoc]] TFBlipForQuestionAnswering - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/blip.md/0
{ "file_path": "transformers/docs/source/en/model_doc/blip.md", "repo_id": "transformers", "token_count": 1242 }
7
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # ConvBERT <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=convbert"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-convbert-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/conv-bert-base"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview The ConvBERT model was proposed in [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan. The abstract from the paper is the following: *Pre-trained language models like BERT and its variants have recently achieved impressive performance in various natural language understanding tasks. However, BERT heavily relies on the global self-attention block and thus suffers large memory footprint and computation cost. Although all its attention heads query on the whole input sequence for generating the attention map from a global perspective, we observe some heads only need to learn local dependencies, which means the existence of computation redundancy. We therefore propose a novel span-based dynamic convolution to replace these self-attention heads to directly model local dependencies. The novel convolution heads, together with the rest self-attention heads, form a new mixed attention block that is more efficient at both global and local context learning. We equip BERT with this mixed attention design and build a ConvBERT model. Experiments have shown that ConvBERT significantly outperforms BERT and its variants in various downstream tasks, with lower training cost and fewer model parameters. Remarkably, ConvBERTbase model achieves 86.4 GLUE score, 0.7 higher than ELECTRAbase, while using less than 1/4 training cost. Code and pre-trained models will be released.* This model was contributed by [abhishek](https://huggingface.co/abhishek). The original implementation can be found here: https://github.com/yitu-opensource/ConvBert ## Usage tips ConvBERT training tips are similar to those of BERT. For usage tips refer to [BERT documentation](bert). ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## ConvBertConfig [[autodoc]] ConvBertConfig ## ConvBertTokenizer [[autodoc]] ConvBertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## ConvBertTokenizerFast [[autodoc]] ConvBertTokenizerFast <frameworkcontent> <pt> ## ConvBertModel [[autodoc]] ConvBertModel - forward ## ConvBertForMaskedLM [[autodoc]] ConvBertForMaskedLM - forward ## ConvBertForSequenceClassification [[autodoc]] ConvBertForSequenceClassification - forward ## ConvBertForMultipleChoice [[autodoc]] ConvBertForMultipleChoice - forward ## ConvBertForTokenClassification [[autodoc]] ConvBertForTokenClassification - forward ## ConvBertForQuestionAnswering [[autodoc]] ConvBertForQuestionAnswering - forward </pt> <tf> ## TFConvBertModel [[autodoc]] TFConvBertModel - call ## TFConvBertForMaskedLM [[autodoc]] TFConvBertForMaskedLM - call ## TFConvBertForSequenceClassification [[autodoc]] TFConvBertForSequenceClassification - call ## TFConvBertForMultipleChoice [[autodoc]] TFConvBertForMultipleChoice - call ## TFConvBertForTokenClassification [[autodoc]] TFConvBertForTokenClassification - call ## TFConvBertForQuestionAnswering [[autodoc]] TFConvBertForQuestionAnswering - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/convbert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/convbert.md", "repo_id": "transformers", "token_count": 1393 }
8
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # DETR ## Overview The DETR model was proposed in [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov and Sergey Zagoruyko. DETR consists of a convolutional backbone followed by an encoder-decoder Transformer which can be trained end-to-end for object detection. It greatly simplifies a lot of the complexity of models like Faster-R-CNN and Mask-R-CNN, which use things like region proposals, non-maximum suppression procedure and anchor generation. Moreover, DETR can also be naturally extended to perform panoptic segmentation, by simply adding a mask head on top of the decoder outputs. The abstract from the paper is the following: *We present a new method that views object detection as a direct set prediction problem. Our approach streamlines the detection pipeline, effectively removing the need for many hand-designed components like a non-maximum suppression procedure or anchor generation that explicitly encode our prior knowledge about the task. The main ingredients of the new framework, called DEtection TRansformer or DETR, are a set-based global loss that forces unique predictions via bipartite matching, and a transformer encoder-decoder architecture. Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. The new model is conceptually simple and does not require a specialized library, unlike many other modern detectors. DETR demonstrates accuracy and run-time performance on par with the well-established and highly-optimized Faster RCNN baseline on the challenging COCO object detection dataset. Moreover, DETR can be easily generalized to produce panoptic segmentation in a unified manner. We show that it significantly outperforms competitive baselines.* This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/facebookresearch/detr). ## How DETR works Here's a TLDR explaining how [`~transformers.DetrForObjectDetection`] works: First, an image is sent through a pre-trained convolutional backbone (in the paper, the authors use ResNet-50/ResNet-101). Let's assume we also add a batch dimension. This means that the input to the backbone is a tensor of shape `(batch_size, 3, height, width)`, assuming the image has 3 color channels (RGB). The CNN backbone outputs a new lower-resolution feature map, typically of shape `(batch_size, 2048, height/32, width/32)`. This is then projected to match the hidden dimension of the Transformer of DETR, which is `256` by default, using a `nn.Conv2D` layer. So now, we have a tensor of shape `(batch_size, 256, height/32, width/32).` Next, the feature map is flattened and transposed to obtain a tensor of shape `(batch_size, seq_len, d_model)` = `(batch_size, width/32*height/32, 256)`. So a difference with NLP models is that the sequence length is actually longer than usual, but with a smaller `d_model` (which in NLP is typically 768 or higher). Next, this is sent through the encoder, outputting `encoder_hidden_states` of the same shape (you can consider these as image features). Next, so-called **object queries** are sent through the decoder. This is a tensor of shape `(batch_size, num_queries, d_model)`, with `num_queries` typically set to 100 and initialized with zeros. These input embeddings are learnt positional encodings that the authors refer to as object queries, and similarly to the encoder, they are added to the input of each attention layer. Each object query will look for a particular object in the image. The decoder updates these embeddings through multiple self-attention and encoder-decoder attention layers to output `decoder_hidden_states` of the same shape: `(batch_size, num_queries, d_model)`. Next, two heads are added on top for object detection: a linear layer for classifying each object query into one of the objects or "no object", and a MLP to predict bounding boxes for each query. The model is trained using a **bipartite matching loss**: so what we actually do is compare the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The [Hungarian matching algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) is used to find an optimal one-to-one mapping of each of the N queries to each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and [generalized IoU loss](https://giou.stanford.edu/) (for the bounding boxes) are used to optimize the parameters of the model. DETR can be naturally extended to perform panoptic segmentation (which unifies semantic segmentation and instance segmentation). [`~transformers.DetrForSegmentation`] adds a segmentation mask head on top of [`~transformers.DetrForObjectDetection`]. The mask head can be trained either jointly, or in a two steps process, where one first trains a [`~transformers.DetrForObjectDetection`] model to detect bounding boxes around both "things" (instances) and "stuff" (background things like trees, roads, sky), then freeze all the weights and train only the mask head for 25 epochs. Experimentally, these two approaches give similar results. Note that predicting boxes is required for the training to be possible, since the Hungarian matching is computed using distances between boxes. ## Usage tips - DETR uses so-called **object queries** to detect objects in an image. The number of queries determines the maximum number of objects that can be detected in a single image, and is set to 100 by default (see parameter `num_queries` of [`~transformers.DetrConfig`]). Note that it's good to have some slack (in COCO, the authors used 100, while the maximum number of objects in a COCO image is ~70). - The decoder of DETR updates the query embeddings in parallel. This is different from language models like GPT-2, which use autoregressive decoding instead of parallel. Hence, no causal attention mask is used. - DETR adds position embeddings to the hidden states at each self-attention and cross-attention layer before projecting to queries and keys. For the position embeddings of the image, one can choose between fixed sinusoidal or learned absolute position embeddings. By default, the parameter `position_embedding_type` of [`~transformers.DetrConfig`] is set to `"sine"`. - During training, the authors of DETR did find it helpful to use auxiliary losses in the decoder, especially to help the model output the correct number of objects of each class. If you set the parameter `auxiliary_loss` of [`~transformers.DetrConfig`] to `True`, then prediction feedforward neural networks and Hungarian losses are added after each decoder layer (with the FFNs sharing parameters). - If you want to train the model in a distributed environment across multiple nodes, then one should update the _num_boxes_ variable in the _DetrLoss_ class of _modeling_detr.py_. When training on multiple nodes, this should be set to the average number of target boxes across all nodes, as can be seen in the original implementation [here](https://github.com/facebookresearch/detr/blob/a54b77800eb8e64e3ad0d8237789fcbf2f8350c5/models/detr.py#L227-L232). - [`~transformers.DetrForObjectDetection`] and [`~transformers.DetrForSegmentation`] can be initialized with any convolutional backbone available in the [timm library](https://github.com/rwightman/pytorch-image-models). Initializing with a MobileNet backbone for example can be done by setting the `backbone` attribute of [`~transformers.DetrConfig`] to `"tf_mobilenetv3_small_075"`, and then initializing the model with that config. - DETR resizes the input images such that the shortest side is at least a certain amount of pixels while the longest is at most 1333 pixels. At training time, scale augmentation is used such that the shortest side is randomly set to at least 480 and at most 800 pixels. At inference time, the shortest side is set to 800. One can use [`~transformers.DetrImageProcessor`] to prepare images (and optional annotations in COCO format) for the model. Due to this resizing, images in a batch can have different sizes. DETR solves this by padding images up to the largest size in a batch, and by creating a pixel mask that indicates which pixels are real/which are padding. Alternatively, one can also define a custom `collate_fn` in order to batch images together, using [`~transformers.DetrImageProcessor.pad_and_create_pixel_mask`]. - The size of the images will determine the amount of memory being used, and will thus determine the `batch_size`. It is advised to use a batch size of 2 per GPU. See [this Github thread](https://github.com/facebookresearch/detr/issues/150) for more info. There are three ways to instantiate a DETR model (depending on what you prefer): Option 1: Instantiate DETR with pre-trained weights for entire model ```py >>> from transformers import DetrForObjectDetection >>> model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") ``` Option 2: Instantiate DETR with randomly initialized weights for Transformer, but pre-trained weights for backbone ```py >>> from transformers import DetrConfig, DetrForObjectDetection >>> config = DetrConfig() >>> model = DetrForObjectDetection(config) ``` Option 3: Instantiate DETR with randomly initialized weights for backbone + Transformer ```py >>> config = DetrConfig(use_pretrained_backbone=False) >>> model = DetrForObjectDetection(config) ``` As a summary, consider the following table: | Task | Object detection | Instance segmentation | Panoptic segmentation | |------|------------------|-----------------------|-----------------------| | **Description** | Predicting bounding boxes and class labels around objects in an image | Predicting masks around objects (i.e. instances) in an image | Predicting masks around both objects (i.e. instances) as well as "stuff" (i.e. background things like trees and roads) in an image | | **Model** | [`~transformers.DetrForObjectDetection`] | [`~transformers.DetrForSegmentation`] | [`~transformers.DetrForSegmentation`] | | **Example dataset** | COCO detection | COCO detection, COCO panoptic | COCO panoptic | | | **Format of annotations to provide to** [`~transformers.DetrImageProcessor`] | {'image_id': `int`, 'annotations': `List[Dict]`} each Dict being a COCO object annotation | {'image_id': `int`, 'annotations': `List[Dict]`} (in case of COCO detection) or {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} (in case of COCO panoptic) | {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} and masks_path (path to directory containing PNG files of the masks) | | **Postprocessing** (i.e. converting the output of the model to Pascal VOC format) | [`~transformers.DetrImageProcessor.post_process`] | [`~transformers.DetrImageProcessor.post_process_segmentation`] | [`~transformers.DetrImageProcessor.post_process_segmentation`], [`~transformers.DetrImageProcessor.post_process_panoptic`] | | **evaluators** | `CocoEvaluator` with `iou_types="bbox"` | `CocoEvaluator` with `iou_types="bbox"` or `"segm"` | `CocoEvaluator` with `iou_tupes="bbox"` or `"segm"`, `PanopticEvaluator` | In short, one should prepare the data either in COCO detection or COCO panoptic format, then use [`~transformers.DetrImageProcessor`] to create `pixel_values`, `pixel_mask` and optional `labels`, which can then be used to train (or fine-tune) a model. For evaluation, one should first convert the outputs of the model using one of the postprocessing methods of [`~transformers.DetrImageProcessor`]. These can be be provided to either `CocoEvaluator` or `PanopticEvaluator`, which allow you to calculate metrics like mean Average Precision (mAP) and Panoptic Quality (PQ). The latter objects are implemented in the [original repository](https://github.com/facebookresearch/detr). See the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) for more info regarding evaluation. ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DETR. <PipelineTag pipeline="object-detection"/> - All example notebooks illustrating fine-tuning [`DetrForObjectDetection`] and [`DetrForSegmentation`] on a custom dataset an be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR). - See also: [Object detection task guide](../tasks/object_detection) If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## DetrConfig [[autodoc]] DetrConfig ## DetrImageProcessor [[autodoc]] DetrImageProcessor - preprocess - post_process_object_detection - post_process_semantic_segmentation - post_process_instance_segmentation - post_process_panoptic_segmentation ## DetrFeatureExtractor [[autodoc]] DetrFeatureExtractor - __call__ - post_process_object_detection - post_process_semantic_segmentation - post_process_instance_segmentation - post_process_panoptic_segmentation ## DETR specific outputs [[autodoc]] models.detr.modeling_detr.DetrModelOutput [[autodoc]] models.detr.modeling_detr.DetrObjectDetectionOutput [[autodoc]] models.detr.modeling_detr.DetrSegmentationOutput ## DetrModel [[autodoc]] DetrModel - forward ## DetrForObjectDetection [[autodoc]] DetrForObjectDetection - forward ## DetrForSegmentation [[autodoc]] DetrForSegmentation - forward
transformers/docs/source/en/model_doc/detr.md/0
{ "file_path": "transformers/docs/source/en/model_doc/detr.md", "repo_id": "transformers", "token_count": 4104 }
9
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # ESM ## Overview This page provides code and pre-trained weights for Transformer protein language models from Meta AI's Fundamental AI Research Team, providing the state-of-the-art ESMFold and ESM-2, and the previously released ESM-1b and ESM-1v. Transformer protein language models were introduced in the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. The first version of this paper was [preprinted in 2019](https://www.biorxiv.org/content/10.1101/622803v1?versioned=true). ESM-2 outperforms all tested single-sequence protein language models across a range of structure prediction tasks, and enables atomic resolution structure prediction. It was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido and Alexander Rives. Also introduced in this paper was ESMFold. It uses an ESM-2 stem with a head that can predict folded protein structures with state-of-the-art accuracy. Unlike [AlphaFold2](https://www.nature.com/articles/s41586-021-03819-2), it relies on the token embeddings from the large pre-trained protein language model stem and does not perform a multiple sequence alignment (MSA) step at inference time, which means that ESMFold checkpoints are fully "standalone" - they do not require a database of known protein sequences and structures with associated external query tools to make predictions, and are much faster as a result. The abstract from "Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences" is *In the field of artificial intelligence, a combination of scale in data and model capacity enabled by unsupervised learning has led to major advances in representation learning and statistical generation. In the life sciences, the anticipated growth of sequencing promises unprecedented data on natural sequence diversity. Protein language modeling at the scale of evolution is a logical step toward predictive and generative artificial intelligence for biology. To this end, we use unsupervised learning to train a deep contextual language model on 86 billion amino acids across 250 million protein sequences spanning evolutionary diversity. The resulting model contains information about biological properties in its representations. The representations are learned from sequence data alone. The learned representation space has a multiscale organization reflecting structure from the level of biochemical properties of amino acids to remote homology of proteins. Information about secondary and tertiary structure is encoded in the representations and can be identified by linear projections. Representation learning produces features that generalize across a range of applications, enabling state-of-the-art supervised prediction of mutational effect and secondary structure and improving state-of-the-art features for long-range contact prediction.* The abstract from "Language models of protein sequences at the scale of evolution enable accurate structure prediction" is *Large language models have recently been shown to develop emergent capabilities with scale, going beyond simple pattern matching to perform higher level reasoning and generate lifelike images and text. While language models trained on protein sequences have been studied at a smaller scale, little is known about what they learn about biology as they are scaled up. In this work we train models up to 15 billion parameters, the largest language models of proteins to be evaluated to date. We find that as models are scaled they learn information enabling the prediction of the three-dimensional structure of a protein at the resolution of individual atoms. We present ESMFold for high accuracy end-to-end atomic level structure prediction directly from the individual sequence of a protein. ESMFold has similar accuracy to AlphaFold2 and RoseTTAFold for sequences with low perplexity that are well understood by the language model. ESMFold inference is an order of magnitude faster than AlphaFold2, enabling exploration of the structural space of metagenomic proteins in practical timescales.* The original code can be found [here](https://github.com/facebookresearch/esm) and was was developed by the Fundamental AI Research team at Meta AI. ESM-1b, ESM-1v and ESM-2 were contributed to huggingface by [jasonliu](https://huggingface.co/jasonliu) and [Matt](https://huggingface.co/Rocketknight1). ESMFold was contributed to huggingface by [Matt](https://huggingface.co/Rocketknight1) and [Sylvain](https://huggingface.co/sgugger), with a big thank you to Nikita Smetanin, Roshan Rao and Tom Sercu for their help throughout the process! ## Usage tips - ESM models are trained with a masked language modeling (MLM) objective. - The HuggingFace port of ESMFold uses portions of the [openfold](https://github.com/aqlaboratory/openfold) library. The `openfold` library is licensed under the Apache License 2.0. ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Masked language modeling task guide](../tasks/masked_language_modeling) ## EsmConfig [[autodoc]] EsmConfig - all ## EsmTokenizer [[autodoc]] EsmTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary <frameworkcontent> <pt> ## EsmModel [[autodoc]] EsmModel - forward ## EsmForMaskedLM [[autodoc]] EsmForMaskedLM - forward ## EsmForSequenceClassification [[autodoc]] EsmForSequenceClassification - forward ## EsmForTokenClassification [[autodoc]] EsmForTokenClassification - forward ## EsmForProteinFolding [[autodoc]] EsmForProteinFolding - forward </pt> <tf> ## TFEsmModel [[autodoc]] TFEsmModel - call ## TFEsmForMaskedLM [[autodoc]] TFEsmForMaskedLM - call ## TFEsmForSequenceClassification [[autodoc]] TFEsmForSequenceClassification - call ## TFEsmForTokenClassification [[autodoc]] TFEsmForTokenClassification - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/esm.md/0
{ "file_path": "transformers/docs/source/en/model_doc/esm.md", "repo_id": "transformers", "token_count": 1906 }
10
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # OpenAI GPT2 <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=gpt2"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-gpt2-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/gpt2"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview OpenAI GPT-2 model was proposed in [Language Models are Unsupervised Multitask Learners](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever from [OpenAI](https://huggingface.co/openai). It's a causal (unidirectional) transformer pretrained using language modeling on a very large corpus of ~40 GB of text data. The abstract from the paper is the following: *GPT-2 is a large transformer-based language model with 1.5 billion parameters, trained on a dataset[1] of 8 million web pages. GPT-2 is trained with a simple objective: predict the next word, given all of the previous words within some text. The diversity of the dataset causes this simple goal to contain naturally occurring demonstrations of many tasks across diverse domains. GPT-2 is a direct scale-up of GPT, with more than 10X the parameters and trained on more than 10X the amount of data.* [Write With Transformer](https://transformer.huggingface.co/doc/gpt2-large) is a webapp created and hosted by Hugging Face showcasing the generative capabilities of several models. GPT-2 is one of them and is available in five different sizes: small, medium, large, xl and a distilled version of the small checkpoint: *distilgpt-2*. This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://openai.com/blog/better-language-models/). ## Usage tips - GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. - GPT-2 was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next token in a sequence. Leveraging this feature allows GPT-2 to generate syntactically coherent text as it can be observed in the *run_generation.py* example script. - The model can take the *past_key_values* (for PyTorch) or *past* (for TF) as input, which is the previously computed key/value attention pairs. Using this (*past_key_values* or *past*) value prevents the model from re-computing pre-computed values in the context of text generation. For PyTorch, see *past_key_values* argument of the [`GPT2Model.forward`] method, or for TF the *past* argument of the [`TFGPT2Model.call`] method for more information on its usage. - Enabling the *scale_attn_by_inverse_layer_idx* and *reorder_and_upcast_attn* flags will apply the training stability improvements from [Mistral](https://github.com/stanford-crfm/mistral/) (for PyTorch only). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with GPT2. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <PipelineTag pipeline="text-generation"/> - A blog on how to [Finetune a non-English GPT-2 Model with Hugging Face](https://www.philschmid.de/fine-tune-a-non-english-gpt-2-model-with-huggingface). - A blog on [How to generate text: using different decoding methods for language generation with Transformers](https://huggingface.co/blog/how-to-generate) with GPT-2. - A blog on [Training CodeParrot 🦜 from Scratch](https://huggingface.co/blog/codeparrot), a large GPT-2 model. - A blog on [Faster Text Generation with TensorFlow and XLA](https://huggingface.co/blog/tf-xla-generate) with GPT-2. - A blog on [How to train a Language Model with Megatron-LM](https://huggingface.co/blog/megatron-training) with a GPT-2 model. - A notebook on how to [finetune GPT2 to generate lyrics in the style of your favorite artist](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb). 🌎 - A notebook on how to [finetune GPT2 to generate tweets in the style of your favorite Twitter user](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb). 🌎 - [Causal language modeling](https://huggingface.co/course/en/chapter7/6?fw=pt#training-a-causal-language-model-from-scratch) chapter of the 🤗 Hugging Face Course. - [`GPT2LMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#gpt-2gpt-and-causal-language-modeling), [text generation example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation), and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb). - [`TFGPT2LMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_clmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb). - [`FlaxGPT2LMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#causal-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb). - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Causal language modeling task guide](../tasks/language_modeling) ## GPT2Config [[autodoc]] GPT2Config ## GPT2Tokenizer [[autodoc]] GPT2Tokenizer - save_vocabulary ## GPT2TokenizerFast [[autodoc]] GPT2TokenizerFast ## GPT2 specific outputs [[autodoc]] models.gpt2.modeling_gpt2.GPT2DoubleHeadsModelOutput [[autodoc]] models.gpt2.modeling_tf_gpt2.TFGPT2DoubleHeadsModelOutput <frameworkcontent> <pt> ## GPT2Model [[autodoc]] GPT2Model - forward ## GPT2LMHeadModel [[autodoc]] GPT2LMHeadModel - forward ## GPT2DoubleHeadsModel [[autodoc]] GPT2DoubleHeadsModel - forward ## GPT2ForQuestionAnswering [[autodoc]] GPT2ForQuestionAnswering - forward ## GPT2ForSequenceClassification [[autodoc]] GPT2ForSequenceClassification - forward ## GPT2ForTokenClassification [[autodoc]] GPT2ForTokenClassification - forward </pt> <tf> ## TFGPT2Model [[autodoc]] TFGPT2Model - call ## TFGPT2LMHeadModel [[autodoc]] TFGPT2LMHeadModel - call ## TFGPT2DoubleHeadsModel [[autodoc]] TFGPT2DoubleHeadsModel - call ## TFGPT2ForSequenceClassification [[autodoc]] TFGPT2ForSequenceClassification - call ## TFSequenceClassifierOutputWithPast [[autodoc]] modeling_tf_outputs.TFSequenceClassifierOutputWithPast ## TFGPT2Tokenizer [[autodoc]] TFGPT2Tokenizer </tf> <jax> ## FlaxGPT2Model [[autodoc]] FlaxGPT2Model - __call__ ## FlaxGPT2LMHeadModel [[autodoc]] FlaxGPT2LMHeadModel - __call__ </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/gpt2.md/0
{ "file_path": "transformers/docs/source/en/model_doc/gpt2.md", "repo_id": "transformers", "token_count": 2619 }
11
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Jukebox ## Overview The Jukebox model was proposed in [Jukebox: A generative model for music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever. It introduces a generative music model which can produce minute long samples that can be conditioned on an artist, genres and lyrics. The abstract from the paper is the following: *We introduce Jukebox, a model that generates music with singing in the raw audio domain. We tackle the long context of raw audio using a multiscale VQ-VAE to compress it to discrete codes, and modeling those using autoregressive Transformers. We show that the combined model at scale can generate high-fidelity and diverse songs with coherence up to multiple minutes. We can condition on artist and genre to steer the musical and vocal style, and on unaligned lyrics to make the singing more controllable. We are releasing thousands of non cherry-picked samples, along with model weights and code.* As shown on the following figure, Jukebox is made of 3 `priors` which are decoder only models. They follow the architecture described in [Generating Long Sequences with Sparse Transformers](https://arxiv.org/abs/1904.10509), modified to support longer context length. First, a autoencoder is used to encode the text lyrics. Next, the first (also called `top_prior`) prior attends to the last hidden states extracted from the lyrics encoder. The priors are linked to the previous priors respectively via an `AudioConditioner` module. The`AudioConditioner` upsamples the outputs of the previous prior to raw tokens at a certain audio frame per second resolution. The metadata such as *artist, genre and timing* are passed to each prior, in the form of a start token and positional embedding for the timing data. The hidden states are mapped to the closest codebook vector from the VQVAE in order to convert them to raw audio. ![JukeboxModel](https://gist.githubusercontent.com/ArthurZucker/92c1acaae62ebf1b6a951710bdd8b6af/raw/c9c517bf4eff61393f6c7dec9366ef02bdd059a3/jukebox.svg) This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ). The original code can be found [here](https://github.com/openai/jukebox). ## Usage tips - This model only supports inference. This is for a few reasons, mostly because it requires a crazy amount of memory to train. Feel free to open a PR and add what's missing to have a full integration with the hugging face trainer! - This model is very slow, and takes 8h to generate a minute long audio using the 5b top prior on a V100 GPU. In order automaticallay handle the device on which the model should execute, use `accelerate`. - Contrary to the paper, the order of the priors goes from `0` to `1` as it felt more intuitive : we sample starting from `0`. - Primed sampling (conditioning the sampling on raw audio) requires more memory than ancestral sampling and should be used with `fp16` set to `True`. This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ). The original code can be found [here](https://github.com/openai/jukebox). ## JukeboxConfig [[autodoc]] JukeboxConfig ## JukeboxPriorConfig [[autodoc]] JukeboxPriorConfig ## JukeboxVQVAEConfig [[autodoc]] JukeboxVQVAEConfig ## JukeboxTokenizer [[autodoc]] JukeboxTokenizer - save_vocabulary ## JukeboxModel [[autodoc]] JukeboxModel - ancestral_sample - primed_sample - continue_sample - upsample - _sample ## JukeboxPrior [[autodoc]] JukeboxPrior - sample - forward ## JukeboxVQVAE [[autodoc]] JukeboxVQVAE - forward - encode - decode
transformers/docs/source/en/model_doc/jukebox.md/0
{ "file_path": "transformers/docs/source/en/model_doc/jukebox.md", "repo_id": "transformers", "token_count": 1219 }
12
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # M2M100 ## Overview The M2M100 model was proposed in [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin. The abstract from the paper is the following: *Existing work in translation demonstrated the potential of massively multilingual machine translation by training a single model able to translate between any pair of languages. However, much of this work is English-Centric by training only on data which was translated from or to English. While this is supported by large sources of training data, it does not reflect translation needs worldwide. In this work, we create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages. We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining. Then, we explore how to effectively increase model capacity through a combination of dense scaling and language-specific sparse parameters to create high quality models. Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT. We open-source our scripts so that others may reproduce the data, evaluation, and final M2M-100 model.* This model was contributed by [valhalla](https://huggingface.co/valhalla). ## Usage tips and examples M2M100 is a multilingual encoder-decoder (seq-to-seq) model primarily intended for translation tasks. As the model is multilingual it expects the sequences in a certain format: A special language id token is used as prefix in both the source and target text. The source text format is `[lang_code] X [eos]`, where `lang_code` is source language id for source text and target language id for target text, with `X` being the source or target text. The [`M2M100Tokenizer`] depends on `sentencepiece` so be sure to install it before running the examples. To install `sentencepiece` run `pip install sentencepiece`. **Supervised Training** ```python from transformers import M2M100Config, M2M100ForConditionalGeneration, M2M100Tokenizer model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="en", tgt_lang="fr") src_text = "Life is like a box of chocolates." tgt_text = "La vie est comme une boîte de chocolat." model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") loss = model(**model_inputs).loss # forward pass ``` **Generation** M2M100 uses the `eos_token_id` as the `decoder_start_token_id` for generation with the target language id being forced as the first generated token. To force the target language id as the first generated token, pass the *forced_bos_token_id* parameter to the *generate* method. The following example shows how to translate between Hindi to French and Chinese to English using the *facebook/m2m100_418M* checkpoint. ```python >>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer >>> hi_text = "जीवन एक चॉकलेट बॉक्स की तरह है।" >>> chinese_text = "生活就像一盒巧克力。" >>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") >>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") >>> # translate Hindi to French >>> tokenizer.src_lang = "hi" >>> encoded_hi = tokenizer(hi_text, return_tensors="pt") >>> generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.get_lang_id("fr")) >>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) "La vie est comme une boîte de chocolat." >>> # translate Chinese to English >>> tokenizer.src_lang = "zh" >>> encoded_zh = tokenizer(chinese_text, return_tensors="pt") >>> generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en")) >>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) "Life is like a box of chocolate." ``` ## Resources - [Translation task guide](../tasks/translation) - [Summarization task guide](../tasks/summarization) ## M2M100Config [[autodoc]] M2M100Config ## M2M100Tokenizer [[autodoc]] M2M100Tokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## M2M100Model [[autodoc]] M2M100Model - forward ## M2M100ForConditionalGeneration [[autodoc]] M2M100ForConditionalGeneration - forward
transformers/docs/source/en/model_doc/m2m_100.md/0
{ "file_path": "transformers/docs/source/en/model_doc/m2m_100.md", "repo_id": "transformers", "token_count": 1685 }
13
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # MMS ## Overview The MMS model was proposed in [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli The abstract from the paper is the following: *Expanding the language coverage of speech technology has the potential to improve access to information for many more people. However, current speech technology is restricted to about one hundred languages which is a small fraction of the over 7,000 languages spoken around the world. The Massively Multilingual Speech (MMS) project increases the number of supported languages by 10-40x, depending on the task. The main ingredients are a new dataset based on readings of publicly available religious texts and effectively leveraging self-supervised learning. We built pre-trained wav2vec 2.0 models covering 1,406 languages, a single multilingual automatic speech recognition model for 1,107 languages, speech synthesis models for the same number of languages, as well as a language identification model for 4,017 languages. Experiments show that our multilingual speech recognition model more than halves the word error rate of Whisper on 54 languages of the FLEURS benchmark while being trained on a small fraction of the labeled data.* Here are the different models open sourced in the MMS project. The models and code are originally released [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mms). We have add them to the `transformers` framework, making them easier to use. ### Automatic Speech Recognition (ASR) The ASR model checkpoints can be found here : [mms-1b-fl102](https://huggingface.co/facebook/mms-1b-fl102), [mms-1b-l1107](https://huggingface.co/facebook/mms-1b-l1107), [mms-1b-all](https://huggingface.co/facebook/mms-1b-all). For best accuracy, use the `mms-1b-all` model. Tips: - All ASR models accept a float array corresponding to the raw waveform of the speech signal. The raw waveform should be pre-processed with [`Wav2Vec2FeatureExtractor`]. - The models were trained using connectionist temporal classification (CTC) so the model output has to be decoded using [`Wav2Vec2CTCTokenizer`]. - You can load different language adapter weights for different languages via [`~Wav2Vec2PreTrainedModel.load_adapter`]. Language adapters only consists of roughly 2 million parameters and can therefore be efficiently loaded on the fly when needed. #### Loading By default MMS loads adapter weights for English. If you want to load adapter weights of another language make sure to specify `target_lang=<your-chosen-target-lang>` as well as `"ignore_mismatched_sizes=True`. The `ignore_mismatched_sizes=True` keyword has to be passed to allow the language model head to be resized according to the vocabulary of the specified language. Similarly, the processor should be loaded with the same target language ```py from transformers import Wav2Vec2ForCTC, AutoProcessor model_id = "facebook/mms-1b-all" target_lang = "fra" processor = AutoProcessor.from_pretrained(model_id, target_lang=target_lang) model = Wav2Vec2ForCTC.from_pretrained(model_id, target_lang=target_lang, ignore_mismatched_sizes=True) ``` <Tip> You can safely ignore a warning such as: ```text Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/mms-1b-all and are newly initialized because the shapes did not match: - lm_head.bias: found shape torch.Size([154]) in the checkpoint and torch.Size([314]) in the model instantiated - lm_head.weight: found shape torch.Size([154, 1280]) in the checkpoint and torch.Size([314, 1280]) in the model instantiated You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. ``` </Tip> If you want to use the ASR pipeline, you can load your chosen target language as such: ```py from transformers import pipeline model_id = "facebook/mms-1b-all" target_lang = "fra" pipe = pipeline(model=model_id, model_kwargs={"target_lang": "fra", "ignore_mismatched_sizes": True}) ``` #### Inference Next, let's look at how we can run MMS in inference and change adapter layers after having called [`~PretrainedModel.from_pretrained`] First, we load audio data in different languages using the [Datasets](https://github.com/huggingface/datasets). ```py from datasets import load_dataset, Audio # English stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True) stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000)) en_sample = next(iter(stream_data))["audio"]["array"] # French stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "fr", split="test", streaming=True) stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000)) fr_sample = next(iter(stream_data))["audio"]["array"] ``` Next, we load the model and processor ```py from transformers import Wav2Vec2ForCTC, AutoProcessor import torch model_id = "facebook/mms-1b-all" processor = AutoProcessor.from_pretrained(model_id) model = Wav2Vec2ForCTC.from_pretrained(model_id) ``` Now we process the audio data, pass the processed audio data to the model and transcribe the model output, just like we usually do for [`Wav2Vec2ForCTC`]. ```py inputs = processor(en_sample, sampling_rate=16_000, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits ids = torch.argmax(outputs, dim=-1)[0] transcription = processor.decode(ids) # 'joe keton disapproved of films and buster also had reservations about the media' ``` We can now keep the same model in memory and simply switch out the language adapters by calling the convenient [`~Wav2Vec2ForCTC.load_adapter`] function for the model and [`~Wav2Vec2CTCTokenizer.set_target_lang`] for the tokenizer. We pass the target language as an input - `"fra"` for French. ```py processor.tokenizer.set_target_lang("fra") model.load_adapter("fra") inputs = processor(fr_sample, sampling_rate=16_000, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits ids = torch.argmax(outputs, dim=-1)[0] transcription = processor.decode(ids) # "ce dernier est volé tout au long de l'histoire romaine" ``` In the same way the language can be switched out for all other supported languages. Please have a look at: ```py processor.tokenizer.vocab.keys() ``` to see all supported languages. To further improve performance from ASR models, language model decoding can be used. See the documentation [here](https://huggingface.co/facebook/mms-1b-all) for further details. ### Speech Synthesis (TTS) MMS-TTS uses the same model architecture as VITS, which was added to 🤗 Transformers in v4.33. MMS trains a separate model checkpoint for each of the 1100+ languages in the project. All available checkpoints can be found on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts), and the inference documentation under [VITS](https://huggingface.co/docs/transformers/main/en/model_doc/vits). #### Inference To use the MMS model, first update to the latest version of the Transformers library: ```bash pip install --upgrade transformers accelerate ``` Since the flow-based model in VITS is non-deterministic, it is good practice to set a seed to ensure reproducibility of the outputs. - For languages with a Roman alphabet, such as English or French, the tokenizer can be used directly to pre-process the text inputs. The following code example runs a forward pass using the MMS-TTS English checkpoint: ```python import torch from transformers import VitsTokenizer, VitsModel, set_seed tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") model = VitsModel.from_pretrained("facebook/mms-tts-eng") inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt") set_seed(555) # make deterministic with torch.no_grad(): outputs = model(**inputs) waveform = outputs.waveform[0] ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("synthesized_speech.wav", rate=model.config.sampling_rate, data=waveform) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(waveform, rate=model.config.sampling_rate) ``` For certain languages with non-Roman alphabets, such as Arabic, Mandarin or Hindi, the [`uroman`](https://github.com/isi-nlp/uroman) perl package is required to pre-process the text inputs to the Roman alphabet. You can check whether you require the `uroman` package for your language by inspecting the `is_uroman` attribute of the pre-trained `tokenizer`: ```python from transformers import VitsTokenizer tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") print(tokenizer.is_uroman) ``` If required, you should apply the uroman package to your text inputs **prior** to passing them to the `VitsTokenizer`, since currently the tokenizer does not support performing the pre-processing itself. To do this, first clone the uroman repository to your local machine and set the bash variable `UROMAN` to the local path: ```bash git clone https://github.com/isi-nlp/uroman.git cd uroman export UROMAN=$(pwd) ``` You can then pre-process the text input using the following code snippet. You can either rely on using the bash variable `UROMAN` to point to the uroman repository, or you can pass the uroman directory as an argument to the `uromaize` function: ```python import torch from transformers import VitsTokenizer, VitsModel, set_seed import os import subprocess tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-kor") model = VitsModel.from_pretrained("facebook/mms-tts-kor") def uromanize(input_string, uroman_path): """Convert non-Roman strings to Roman using the `uroman` perl package.""" script_path = os.path.join(uroman_path, "bin", "uroman.pl") command = ["perl", script_path] process = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Execute the perl command stdout, stderr = process.communicate(input=input_string.encode()) if process.returncode != 0: raise ValueError(f"Error {process.returncode}: {stderr.decode()}") # Return the output as a string and skip the new-line character at the end return stdout.decode()[:-1] text = "이봐 무슨 일이야" uromaized_text = uromanize(text, uroman_path=os.environ["UROMAN"]) inputs = tokenizer(text=uromaized_text, return_tensors="pt") set_seed(555) # make deterministic with torch.no_grad(): outputs = model(inputs["input_ids"]) waveform = outputs.waveform[0] ``` **Tips:** * The MMS-TTS checkpoints are trained on lower-cased, un-punctuated text. By default, the `VitsTokenizer` *normalizes* the inputs by removing any casing and punctuation, to avoid passing out-of-vocabulary characters to the model. Hence, the model is agnostic to casing and punctuation, so these should be avoided in the text prompt. You can disable normalisation by setting `normalize=False` in the call to the tokenizer, but this will lead to un-expected behaviour and is discouraged. * The speaking rate can be varied by setting the attribute `model.speaking_rate` to a chosen value. Likewise, the randomness of the noise is controlled by `model.noise_scale`: ```python import torch from transformers import VitsTokenizer, VitsModel, set_seed tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") model = VitsModel.from_pretrained("facebook/mms-tts-eng") inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt") # make deterministic set_seed(555) # make speech faster and more noisy model.speaking_rate = 1.5 model.noise_scale = 0.8 with torch.no_grad(): outputs = model(**inputs) ``` ### Language Identification (LID) Different LID models are available based on the number of languages they can recognize - [126](https://huggingface.co/facebook/mms-lid-126), [256](https://huggingface.co/facebook/mms-lid-256), [512](https://huggingface.co/facebook/mms-lid-512), [1024](https://huggingface.co/facebook/mms-lid-1024), [2048](https://huggingface.co/facebook/mms-lid-2048), [4017](https://huggingface.co/facebook/mms-lid-4017). #### Inference First, we install transformers and some other libraries ```bash pip install torch accelerate datasets[audio] pip install --upgrade transformers ```` Next, we load a couple of audio samples via `datasets`. Make sure that the audio data is sampled to 16000 kHz. ```py from datasets import load_dataset, Audio # English stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True) stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000)) en_sample = next(iter(stream_data))["audio"]["array"] # Arabic stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "ar", split="test", streaming=True) stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000)) ar_sample = next(iter(stream_data))["audio"]["array"] ``` Next, we load the model and processor ```py from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor import torch model_id = "facebook/mms-lid-126" processor = AutoFeatureExtractor.from_pretrained(model_id) model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id) ``` Now we process the audio data, pass the processed audio data to the model to classify it into a language, just like we usually do for Wav2Vec2 audio classification models such as [ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition](https://huggingface.co/harshit345/xlsr-wav2vec-speech-emotion-recognition) ```py # English inputs = processor(en_sample, sampling_rate=16_000, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits lang_id = torch.argmax(outputs, dim=-1)[0].item() detected_lang = model.config.id2label[lang_id] # 'eng' # Arabic inputs = processor(ar_sample, sampling_rate=16_000, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits lang_id = torch.argmax(outputs, dim=-1)[0].item() detected_lang = model.config.id2label[lang_id] # 'ara' ``` To see all the supported languages of a checkpoint, you can print out the language ids as follows: ```py processor.id2label.values() ``` ### Audio Pretrained Models Pretrained models are available for two different sizes - [300M](https://huggingface.co/facebook/mms-300m) , [1Bil](https://huggingface.co/facebook/mms-1b). <Tip> The MMS for ASR architecture is based on the Wav2Vec2 model, refer to [Wav2Vec2's documentation page](wav2vec2) for further details on how to finetune with models for various downstream tasks. MMS-TTS uses the same model architecture as VITS, refer to [VITS's documentation page](vits) for API reference. </Tip>
transformers/docs/source/en/model_doc/mms.md/0
{ "file_path": "transformers/docs/source/en/model_doc/mms.md", "repo_id": "transformers", "token_count": 4924 }
14
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. specific language governing permissions and limitations under the License. --> # Nougat ## Overview The Nougat model was proposed in [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic. Nougat uses the same architecture as [Donut](donut), meaning an image Transformer encoder and an autoregressive text Transformer decoder to translate scientific PDFs to markdown, enabling easier access to them. The abstract from the paper is the following: *Scientific knowledge is predominantly stored in books and scientific journals, often in the form of PDFs. However, the PDF format leads to a loss of semantic information, particularly for mathematical expressions. We propose Nougat (Neural Optical Understanding for Academic Documents), a Visual Transformer model that performs an Optical Character Recognition (OCR) task for processing scientific documents into a markup language, and demonstrate the effectiveness of our model on a new dataset of scientific documents. The proposed approach offers a promising solution to enhance the accessibility of scientific knowledge in the digital age, by bridging the gap between human-readable documents and machine-readable text. We release the models and code to accelerate future work on scientific text recognition.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/nougat_architecture.jpg" alt="drawing" width="600"/> <small> Nougat high-level overview. Taken from the <a href="https://arxiv.org/abs/2308.13418">original paper</a>. </small> This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/facebookresearch/nougat). ## Usage tips - The quickest way to get started with Nougat is by checking the [tutorial notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Nougat), which show how to use the model at inference time as well as fine-tuning on custom data. - Nougat is always used within the [VisionEncoderDecoder](vision-encoder-decoder) framework. The model is identical to [Donut](donut) in terms of architecture. ## Inference Nougat's [`VisionEncoderDecoder`] model accepts images as input and makes use of [`~generation.GenerationMixin.generate`] to autoregressively generate text given the input image. The [`NougatImageProcessor`] class is responsible for preprocessing the input image and [`NougatTokenizerFast`] decodes the generated target tokens to the target string. The [`NougatProcessor`] wraps [`NougatImageProcessor`] and [`NougatTokenizerFast`] classes into a single instance to both extract the input features and decode the predicted token ids. - Step-by-step PDF transcription ```py >>> from huggingface_hub import hf_hub_download >>> import re >>> from PIL import Image >>> from transformers import NougatProcessor, VisionEncoderDecoderModel >>> from datasets import load_dataset >>> import torch >>> processor = NougatProcessor.from_pretrained("facebook/nougat-base") >>> model = VisionEncoderDecoderModel.from_pretrained("facebook/nougat-base") >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> model.to(device) # doctest: +IGNORE_RESULT >>> # prepare PDF image for the model >>> filepath = hf_hub_download(repo_id="hf-internal-testing/fixtures_docvqa", filename="nougat_paper.png", repo_type="dataset") >>> image = Image.open(filepath) >>> pixel_values = processor(image, return_tensors="pt").pixel_values >>> # generate transcription (here we only generate 30 tokens) >>> outputs = model.generate( ... pixel_values.to(device), ... min_length=1, ... max_new_tokens=30, ... bad_words_ids=[[processor.tokenizer.unk_token_id]], ... ) >>> sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0] >>> sequence = processor.post_process_generation(sequence, fix_markdown=False) >>> # note: we're using repr here such for the sake of printing the \n characters, feel free to just print the sequence >>> print(repr(sequence)) '\n\n# Nougat: Neural Optical Understanding for Academic Documents\n\n Lukas Blecher\n\nCorrespondence to: lblecher@' ``` See the [model hub](https://huggingface.co/models?filter=nougat) to look for Nougat checkpoints. <Tip> The model is identical to [Donut](donut) in terms of architecture. </Tip> ## NougatImageProcessor [[autodoc]] NougatImageProcessor - preprocess ## NougatTokenizerFast [[autodoc]] NougatTokenizerFast ## NougatProcessor [[autodoc]] NougatProcessor - __call__ - from_pretrained - save_pretrained - batch_decode - decode - post_process_generation
transformers/docs/source/en/model_doc/nougat.md/0
{ "file_path": "transformers/docs/source/en/model_doc/nougat.md", "repo_id": "transformers", "token_count": 1549 }
15
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # RoBERTa <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=roberta"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-roberta-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/roberta-base"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> <a href="https://huggingface.co/papers/1907.11692"> <img alt="Paper page" src="https://img.shields.io/badge/Paper%20page-1907.11692-green"> </a> </div> ## Overview The RoBERTa model was proposed in [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, [Myle Ott](https://huggingface.co/myleott), Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. It is based on Google's BERT model released in 2018. It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining objective and training with much larger mini-batches and learning rates. The abstract from the paper is the following: *Language model pretraining has led to significant performance gains but careful comparison between different approaches is challenging. Training is computationally expensive, often done on private datasets of different sizes, and, as we will show, hyperparameter choices have significant impact on the final results. We present a replication study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key hyperparameters and training data size. We find that BERT was significantly undertrained, and can match or exceed the performance of every model published after it. Our best model achieves state-of-the-art results on GLUE, RACE and SQuAD. These results highlight the importance of previously overlooked design choices, and raise questions about the source of recently reported improvements. We release our models and code.* This model was contributed by [julien-c](https://huggingface.co/julien-c). The original code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/roberta). ## Usage tips - This implementation is the same as [`BertModel`] with a tiny embeddings tweak as well as a setup for Roberta pretrained models. - RoBERTa has the same architecture as BERT, but uses a byte-level BPE as a tokenizer (same as GPT-2) and uses a different pretraining scheme. - RoBERTa doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or `</s>`) - Same as BERT with better pretraining tricks: * dynamic masking: tokens are masked differently at each epoch, whereas BERT does it once and for all * together to reach 512 tokens (so the sentences are in an order than may span several documents) * train with larger batches * use BPE with bytes as a subunit and not characters (because of unicode characters) - [CamemBERT](camembert) is a wrapper around RoBERTa. Refer to this page for usage examples. ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with RoBERTa. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <PipelineTag pipeline="text-classification"/> - A blog on [Getting Started with Sentiment Analysis on Twitter](https://huggingface.co/blog/sentiment-analysis-twitter) using RoBERTa and the [Inference API](https://huggingface.co/inference-api). - A blog on [Opinion Classification with Kili and Hugging Face AutoTrain](https://huggingface.co/blog/opinion-classification-with-kili) using RoBERTa. - A notebook on how to [finetune RoBERTa for sentiment analysis](https://colab.research.google.com/github/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb). 🌎 - [`RobertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb). - [`TFRobertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb). - [`FlaxRobertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb). - [Text classification task guide](../tasks/sequence_classification) <PipelineTag pipeline="token-classification"/> - [`RobertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb). - [`TFRobertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb). - [`FlaxRobertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification). - [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the 🤗 Hugging Face Course. - [Token classification task guide](../tasks/token_classification) <PipelineTag pipeline="fill-mask"/> - A blog on [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train) with RoBERTa. - [`RobertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb). - [`TFRobertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb). - [`FlaxRobertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb). - [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course. - [Masked language modeling task guide](../tasks/masked_language_modeling) <PipelineTag pipeline="question-answering"/> - A blog on [Accelerated Inference with Optimum and Transformers Pipelines](https://huggingface.co/blog/optimum-inference) with RoBERTa for question answering. - [`RobertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb). - [`TFRobertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb). - [`FlaxRobertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/question-answering). - [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the 🤗 Hugging Face Course. - [Question answering task guide](../tasks/question_answering) **Multiple choice** - [`RobertaForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb). - [`TFRobertaForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb). - [Multiple choice task guide](../tasks/multiple_choice) ## RobertaConfig [[autodoc]] RobertaConfig ## RobertaTokenizer [[autodoc]] RobertaTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## RobertaTokenizerFast [[autodoc]] RobertaTokenizerFast - build_inputs_with_special_tokens <frameworkcontent> <pt> ## RobertaModel [[autodoc]] RobertaModel - forward ## RobertaForCausalLM [[autodoc]] RobertaForCausalLM - forward ## RobertaForMaskedLM [[autodoc]] RobertaForMaskedLM - forward ## RobertaForSequenceClassification [[autodoc]] RobertaForSequenceClassification - forward ## RobertaForMultipleChoice [[autodoc]] RobertaForMultipleChoice - forward ## RobertaForTokenClassification [[autodoc]] RobertaForTokenClassification - forward ## RobertaForQuestionAnswering [[autodoc]] RobertaForQuestionAnswering - forward </pt> <tf> ## TFRobertaModel [[autodoc]] TFRobertaModel - call ## TFRobertaForCausalLM [[autodoc]] TFRobertaForCausalLM - call ## TFRobertaForMaskedLM [[autodoc]] TFRobertaForMaskedLM - call ## TFRobertaForSequenceClassification [[autodoc]] TFRobertaForSequenceClassification - call ## TFRobertaForMultipleChoice [[autodoc]] TFRobertaForMultipleChoice - call ## TFRobertaForTokenClassification [[autodoc]] TFRobertaForTokenClassification - call ## TFRobertaForQuestionAnswering [[autodoc]] TFRobertaForQuestionAnswering - call </tf> <jax> ## FlaxRobertaModel [[autodoc]] FlaxRobertaModel - __call__ ## FlaxRobertaForCausalLM [[autodoc]] FlaxRobertaForCausalLM - __call__ ## FlaxRobertaForMaskedLM [[autodoc]] FlaxRobertaForMaskedLM - __call__ ## FlaxRobertaForSequenceClassification [[autodoc]] FlaxRobertaForSequenceClassification - __call__ ## FlaxRobertaForMultipleChoice [[autodoc]] FlaxRobertaForMultipleChoice - __call__ ## FlaxRobertaForTokenClassification [[autodoc]] FlaxRobertaForTokenClassification - __call__ ## FlaxRobertaForQuestionAnswering [[autodoc]] FlaxRobertaForQuestionAnswering - __call__ </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/roberta.md/0
{ "file_path": "transformers/docs/source/en/model_doc/roberta.md", "repo_id": "transformers", "token_count": 3783 }
16
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # SqueezeBERT ## Overview The SqueezeBERT model was proposed in [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, Kurt W. Keutzer. It's a bidirectional transformer similar to the BERT model. The key difference between the BERT architecture and the SqueezeBERT architecture is that SqueezeBERT uses [grouped convolutions](https://blog.yani.io/filter-group-tutorial) instead of fully-connected layers for the Q, K, V and FFN layers. The abstract from the paper is the following: *Humans read and write hundreds of billions of messages every day. Further, due to the availability of large datasets, large computing systems, and better neural network models, natural language processing (NLP) technology has made significant strides in understanding, proofreading, and organizing these messages. Thus, there is a significant opportunity to deploy NLP in myriad applications to help web users, social networks, and businesses. In particular, we consider smartphones and other mobile devices as crucial platforms for deploying NLP models at scale. However, today's highly-accurate NLP neural network models such as BERT and RoBERTa are extremely computationally expensive, with BERT-base taking 1.7 seconds to classify a text snippet on a Pixel 3 smartphone. In this work, we observe that methods such as grouped convolutions have yielded significant speedups for computer vision networks, but many of these techniques have not been adopted by NLP neural network designers. We demonstrate how to replace several operations in self-attention layers with grouped convolutions, and we use this technique in a novel network architecture called SqueezeBERT, which runs 4.3x faster than BERT-base on the Pixel 3 while achieving competitive accuracy on the GLUE test set. The SqueezeBERT code will be released.* This model was contributed by [forresti](https://huggingface.co/forresti). ## Usage tips - SqueezeBERT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. - SqueezeBERT is similar to BERT and therefore relies on the masked language modeling (MLM) objective. It is therefore efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation. Models trained with a causal language modeling (CLM) objective are better in that regard. - For best results when finetuning on sequence classification tasks, it is recommended to start with the *squeezebert/squeezebert-mnli-headless* checkpoint. ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## SqueezeBertConfig [[autodoc]] SqueezeBertConfig ## SqueezeBertTokenizer [[autodoc]] SqueezeBertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## SqueezeBertTokenizerFast [[autodoc]] SqueezeBertTokenizerFast ## SqueezeBertModel [[autodoc]] SqueezeBertModel ## SqueezeBertForMaskedLM [[autodoc]] SqueezeBertForMaskedLM ## SqueezeBertForSequenceClassification [[autodoc]] SqueezeBertForSequenceClassification ## SqueezeBertForMultipleChoice [[autodoc]] SqueezeBertForMultipleChoice ## SqueezeBertForTokenClassification [[autodoc]] SqueezeBertForTokenClassification ## SqueezeBertForQuestionAnswering [[autodoc]] SqueezeBertForQuestionAnswering
transformers/docs/source/en/model_doc/squeezebert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/squeezebert.md", "repo_id": "transformers", "token_count": 1205 }
17
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. specific language governing permissions and limitations under the License. --> # TrOCR ## Overview The TrOCR model was proposed in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei. TrOCR consists of an image Transformer encoder and an autoregressive text Transformer decoder to perform [optical character recognition (OCR)](https://en.wikipedia.org/wiki/Optical_character_recognition). The abstract from the paper is the following: *Text recognition is a long-standing research problem for document digitalization. Existing approaches for text recognition are usually built based on CNN for image understanding and RNN for char-level text generation. In addition, another language model is usually needed to improve the overall accuracy as a post-processing step. In this paper, we propose an end-to-end text recognition approach with pre-trained image Transformer and text Transformer models, namely TrOCR, which leverages the Transformer architecture for both image understanding and wordpiece-level text generation. The TrOCR model is simple but effective, and can be pre-trained with large-scale synthetic data and fine-tuned with human-labeled datasets. Experiments show that the TrOCR model outperforms the current state-of-the-art models on both printed and handwritten text recognition tasks.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/trocr_architecture.jpg" alt="drawing" width="600"/> <small> TrOCR architecture. Taken from the <a href="https://arxiv.org/abs/2109.10282">original paper</a>. </small> Please refer to the [`VisionEncoderDecoder`] class on how to use this model. This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/microsoft/unilm/tree/6f60612e7cc86a2a1ae85c47231507a587ab4e01/trocr). ## Usage tips - The quickest way to get started with TrOCR is by checking the [tutorial notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/TrOCR), which show how to use the model at inference time as well as fine-tuning on custom data. - TrOCR is pre-trained in 2 stages before being fine-tuned on downstream datasets. It achieves state-of-the-art results on both printed (e.g. the [SROIE dataset](https://paperswithcode.com/dataset/sroie) and handwritten (e.g. the [IAM Handwriting dataset](https://fki.tic.heia-fr.ch/databases/iam-handwriting-database>) text recognition tasks. For more information, see the [official models](https://huggingface.co/models?other=trocr>). - TrOCR is always used within the [VisionEncoderDecoder](vision-encoder-decoder) framework. ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with TrOCR. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <PipelineTag pipeline="text-classification"/> - A blog post on [Accelerating Document AI](https://huggingface.co/blog/document-ai) with TrOCR. - A blog post on how to [Document AI](https://github.com/philschmid/document-ai-transformers) with TrOCR. - A notebook on how to [finetune TrOCR on IAM Handwriting Database using Seq2SeqTrainer](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TrOCR/Fine_tune_TrOCR_on_IAM_Handwriting_Database_using_Seq2SeqTrainer.ipynb). - A notebook on [inference with TrOCR](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TrOCR/Inference_with_TrOCR_%2B_Gradio_demo.ipynb) and Gradio demo. - A notebook on [finetune TrOCR on the IAM Handwriting Database](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TrOCR/Fine_tune_TrOCR_on_IAM_Handwriting_Database_using_native_PyTorch.ipynb) using native PyTorch. - A notebook on [evaluating TrOCR on the IAM test set](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TrOCR/Evaluating_TrOCR_base_handwritten_on_the_IAM_test_set.ipynb). <PipelineTag pipeline="text-generation"/> - [Casual language modeling](https://huggingface.co/docs/transformers/tasks/language_modeling) task guide. ⚡️ Inference - An interactive-demo on [TrOCR handwritten character recognition](https://huggingface.co/spaces/nielsr/TrOCR-handwritten). ## Inference TrOCR's [`VisionEncoderDecoder`] model accepts images as input and makes use of [`~generation.GenerationMixin.generate`] to autoregressively generate text given the input image. The [`ViTImageProcessor`/`DeiTImageProcessor`] class is responsible for preprocessing the input image and [`RobertaTokenizer`/`XLMRobertaTokenizer`] decodes the generated target tokens to the target string. The [`TrOCRProcessor`] wraps [`ViTImageProcessor`/`DeiTImageProcessor`] and [`RobertaTokenizer`/`XLMRobertaTokenizer`] into a single instance to both extract the input features and decode the predicted token ids. - Step-by-step Optical Character Recognition (OCR) ``` py >>> from transformers import TrOCRProcessor, VisionEncoderDecoderModel >>> import requests >>> from PIL import Image >>> processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") >>> model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") >>> # load image from the IAM dataset >>> url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" >>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB") >>> pixel_values = processor(image, return_tensors="pt").pixel_values >>> generated_ids = model.generate(pixel_values) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` See the [model hub](https://huggingface.co/models?filter=trocr) to look for TrOCR checkpoints. ## TrOCRConfig [[autodoc]] TrOCRConfig ## TrOCRProcessor [[autodoc]] TrOCRProcessor - __call__ - from_pretrained - save_pretrained - batch_decode - decode ## TrOCRForCausalLM [[autodoc]] TrOCRForCausalLM - forward
transformers/docs/source/en/model_doc/trocr.md/0
{ "file_path": "transformers/docs/source/en/model_doc/trocr.md", "repo_id": "transformers", "token_count": 2132 }
18
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Vision Transformer (ViT) ## Overview The Vision Transformer (ViT) model was proposed in [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. It's the first paper that successfully trains a Transformer encoder on ImageNet, attaining very good results compared to familiar convolutional architectures. The abstract from the paper is the following: *While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vit_architecture.jpg" alt="drawing" width="600"/> <small> ViT architecture. Taken from the <a href="https://arxiv.org/abs/2010.11929">original paper.</a> </small> Following the original Vision Transformer, some follow-up works have been made: - [DeiT](deit) (Data-efficient Image Transformers) by Facebook AI. DeiT models are distilled vision transformers. The authors of DeiT also released more efficiently trained ViT models, which you can directly plug into [`ViTModel`] or [`ViTForImageClassification`]. There are 4 variants available (in 3 different sizes): *facebook/deit-tiny-patch16-224*, *facebook/deit-small-patch16-224*, *facebook/deit-base-patch16-224* and *facebook/deit-base-patch16-384*. Note that one should use [`DeiTImageProcessor`] in order to prepare images for the model. - [BEiT](beit) (BERT pre-training of Image Transformers) by Microsoft Research. BEiT models outperform supervised pre-trained vision transformers using a self-supervised method inspired by BERT (masked image modeling) and based on a VQ-VAE. - DINO (a method for self-supervised training of Vision Transformers) by Facebook AI. Vision Transformers trained using the DINO method show very interesting properties not seen with convolutional models. They are capable of segmenting objects, without having ever been trained to do so. DINO checkpoints can be found on the [hub](https://huggingface.co/models?other=dino). - [MAE](vit_mae) (Masked Autoencoders) by Facebook AI. By pre-training Vision Transformers to reconstruct pixel values for a high portion (75%) of masked patches (using an asymmetric encoder-decoder architecture), the authors show that this simple method outperforms supervised pre-training after fine-tuning. This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code (written in JAX) can be found [here](https://github.com/google-research/vision_transformer). Note that we converted the weights from Ross Wightman's [timm library](https://github.com/rwightman/pytorch-image-models), who already converted the weights from JAX to PyTorch. Credits go to him! ## Usage tips - To feed images to the Transformer encoder, each image is split into a sequence of fixed-size non-overlapping patches, which are then linearly embedded. A [CLS] token is added to serve as representation of an entire image, which can be used for classification. The authors also add absolute position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder. - As the Vision Transformer expects each image to be of the same size (resolution), one can use [`ViTImageProcessor`] to resize (or rescale) and normalize images for the model. - Both the patch resolution and image resolution used during pre-training or fine-tuning are reflected in the name of each checkpoint. For example, `google/vit-base-patch16-224` refers to a base-sized architecture with patch resolution of 16x16 and fine-tuning resolution of 224x224. All checkpoints can be found on the [hub](https://huggingface.co/models?search=vit). - The available checkpoints are either (1) pre-trained on [ImageNet-21k](http://www.image-net.org/) (a collection of 14 million images and 21k classes) only, or (2) also fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/) (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes). - The Vision Transformer was pre-trained using a resolution of 224x224. During fine-tuning, it is often beneficial to use a higher resolution than pre-training [(Touvron et al., 2019)](https://arxiv.org/abs/1906.06423), [(Kolesnikov et al., 2020)](https://arxiv.org/abs/1912.11370). In order to fine-tune at higher resolution, the authors perform 2D interpolation of the pre-trained position embeddings, according to their location in the original image. - The best results are obtained with supervised pre-training, which is not the case in NLP. The authors also performed an experiment with a self-supervised pre-training objective, namely masked patched prediction (inspired by masked language modeling). With this approach, the smaller ViT-B/16 model achieves 79.9% accuracy on ImageNet, a significant improvement of 2% to training from scratch, but still 4% behind supervised pre-training. ## Resources Demo notebooks regarding inference as well as fine-tuning ViT on custom data can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/VisionTransformer). A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ViT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. `ViTForImageClassification` is supported by: <PipelineTag pipeline="image-classification"/> - A blog post on how to [Fine-Tune ViT for Image Classification with Hugging Face Transformers](https://huggingface.co/blog/fine-tune-vit) - A blog post on [Image Classification with Hugging Face Transformers and `Keras`](https://www.philschmid.de/image-classification-huggingface-transformers-keras) - A notebook on [Fine-tuning for Image Classification with Hugging Face Transformers](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb) - A notebook on how to [Fine-tune the Vision Transformer on CIFAR-10 with the Hugging Face Trainer](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb) - A notebook on how to [Fine-tune the Vision Transformer on CIFAR-10 with PyTorch Lightning](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_PyTorch_Lightning.ipynb) ⚗️ Optimization - A blog post on how to [Accelerate Vision Transformer (ViT) with Quantization using Optimum](https://www.philschmid.de/optimizing-vision-transformer) ⚡️ Inference - A notebook on [Quick demo: Vision Transformer (ViT) by Google Brain](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Quick_demo_of_HuggingFace_version_of_Vision_Transformer_inference.ipynb) 🚀 Deploy - A blog post on [Deploying Tensorflow Vision Models in Hugging Face with TF Serving](https://huggingface.co/blog/tf-serving-vision) - A blog post on [Deploying Hugging Face ViT on Vertex AI](https://huggingface.co/blog/deploy-vertex-ai) - A blog post on [Deploying Hugging Face ViT on Kubernetes with TF Serving](https://huggingface.co/blog/deploy-tfserving-kubernetes) ## ViTConfig [[autodoc]] ViTConfig ## ViTFeatureExtractor [[autodoc]] ViTFeatureExtractor - __call__ ## ViTImageProcessor [[autodoc]] ViTImageProcessor - preprocess <frameworkcontent> <pt> ## ViTModel [[autodoc]] ViTModel - forward ## ViTForMaskedImageModeling [[autodoc]] ViTForMaskedImageModeling - forward ## ViTForImageClassification [[autodoc]] ViTForImageClassification - forward </pt> <tf> ## TFViTModel [[autodoc]] TFViTModel - call ## TFViTForImageClassification [[autodoc]] TFViTForImageClassification - call </tf> <jax> ## FlaxVitModel [[autodoc]] FlaxViTModel - __call__ ## FlaxViTForImageClassification [[autodoc]] FlaxViTForImageClassification - __call__ </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/vit.md/0
{ "file_path": "transformers/docs/source/en/model_doc/vit.md", "repo_id": "transformers", "token_count": 2815 }
19
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # XLM-ProphetNet <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=xprophetnet"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-xprophetnet-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/xprophetnet-large-wiki100-cased-xglue-ntg"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> **DISCLAIMER:** If you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title) and assign @patrickvonplaten ## Overview The XLM-ProphetNet model was proposed in [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training,](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, Ming Zhou on 13 Jan, 2020. XLM-ProphetNet is an encoder-decoder model and can predict n-future tokens for "ngram" language modeling instead of just the next token. Its architecture is identical to ProhpetNet, but the model was trained on the multi-lingual "wiki100" Wikipedia dump. XLM-ProphetNet's model architecture and pretraining objective is same as ProphetNet, but XLM-ProphetNet was pre-trained on the cross-lingual dataset XGLUE. The abstract from the paper is the following: *In this paper, we present a new sequence-to-sequence pretraining model called ProphetNet, which introduces a novel self-supervised objective named future n-gram prediction and the proposed n-stream self-attention mechanism. Instead of the optimization of one-step ahead prediction in traditional sequence-to-sequence model, the ProphetNet is optimized by n-step ahead prediction which predicts the next n tokens simultaneously based on previous context tokens at each time step. The future n-gram prediction explicitly encourages the model to plan for the future tokens and prevent overfitting on strong local correlations. We pre-train ProphetNet using a base scale dataset (16GB) and a large scale dataset (160GB) respectively. Then we conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for abstractive summarization and question generation tasks. Experimental results show that ProphetNet achieves new state-of-the-art results on all these datasets compared to the models using the same scale pretraining corpus.* The Authors' code can be found [here](https://github.com/microsoft/ProphetNet). ## Resources - [Causal language modeling task guide](../tasks/language_modeling) - [Translation task guide](../tasks/translation) - [Summarization task guide](../tasks/summarization) ## XLMProphetNetConfig [[autodoc]] XLMProphetNetConfig ## XLMProphetNetTokenizer [[autodoc]] XLMProphetNetTokenizer ## XLMProphetNetModel [[autodoc]] XLMProphetNetModel ## XLMProphetNetEncoder [[autodoc]] XLMProphetNetEncoder ## XLMProphetNetDecoder [[autodoc]] XLMProphetNetDecoder ## XLMProphetNetForConditionalGeneration [[autodoc]] XLMProphetNetForConditionalGeneration ## XLMProphetNetForCausalLM [[autodoc]] XLMProphetNetForCausalLM
transformers/docs/source/en/model_doc/xlm-prophetnet.md/0
{ "file_path": "transformers/docs/source/en/model_doc/xlm-prophetnet.md", "repo_id": "transformers", "token_count": 1127 }
20
<!--⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Using pipelines for a webserver <Tip> Creating an inference engine is a complex topic, and the "best" solution will most likely depend on your problem space. Are you on CPU or GPU? Do you want the lowest latency, the highest throughput, support for many models, or just highly optimize 1 specific model? There are many ways to tackle this topic, so what we are going to present is a good default to get started which may not necessarily be the most optimal solution for you. </Tip> The key thing to understand is that we can use an iterator, just like you would [on a dataset](pipeline_tutorial#using-pipelines-on-a-dataset), since a webserver is basically a system that waits for requests and treats them as they come in. Usually webservers are multiplexed (multithreaded, async, etc..) to handle various requests concurrently. Pipelines on the other hand (and mostly the underlying models) are not really great for parallelism; they take up a lot of RAM, so it's best to give them all the available resources when they are running or it's a compute-intensive job. We are going to solve that by having the webserver handle the light load of receiving and sending requests, and having a single thread handling the actual work. This example is going to use `starlette`. The actual framework is not really important, but you might have to tune or change the code if you are using another one to achieve the same effect. Create `server.py`: ```py from starlette.applications import Starlette from starlette.responses import JSONResponse from starlette.routing import Route from transformers import pipeline import asyncio async def homepage(request): payload = await request.body() string = payload.decode("utf-8") response_q = asyncio.Queue() await request.app.model_queue.put((string, response_q)) output = await response_q.get() return JSONResponse(output) async def server_loop(q): pipe = pipeline(model="google-bert/bert-base-uncased") while True: (string, response_q) = await q.get() out = pipe(string) await response_q.put(out) app = Starlette( routes=[ Route("/", homepage, methods=["POST"]), ], ) @app.on_event("startup") async def startup_event(): q = asyncio.Queue() app.model_queue = q asyncio.create_task(server_loop(q)) ``` Now you can start it with: ```bash uvicorn server:app ``` And you can query it: ```bash curl -X POST -d "test [MASK]" http://localhost:8000/ #[{"score":0.7742936015129089,"token":1012,"token_str":".","sequence":"test."},...] ``` And there you go, now you have a good idea of how to create a webserver! What is really important is that we load the model only **once**, so there are no copies of the model on the webserver. This way, no unnecessary RAM is being used. Then the queuing mechanism allows you to do fancy stuff like maybe accumulating a few items before inferring to use dynamic batching: <Tip warning={true}> The code sample below is intentionally written like pseudo-code for readability. Do not run this without checking if it makes sense for your system resources! </Tip> ```py (string, rq) = await q.get() strings = [] queues = [] while True: try: (string, rq) = await asyncio.wait_for(q.get(), timeout=0.001) # 1ms except asyncio.exceptions.TimeoutError: break strings.append(string) queues.append(rq) strings outs = pipe(strings, batch_size=len(strings)) for rq, out in zip(queues, outs): await rq.put(out) ``` Again, the proposed code is optimized for readability, not for being the best code. First of all, there's no batch size limit which is usually not a great idea. Next, the timeout is reset on every queue fetch, meaning you could wait much more than 1ms before running the inference (delaying the first request by that much). It would be better to have a single 1ms deadline. This will always wait for 1ms even if the queue is empty, which might not be the best since you probably want to start doing inference if there's nothing in the queue. But maybe it does make sense if batching is really crucial for your use case. Again, there's really no one best solution. ## Few things you might want to consider ### Error checking There's a lot that can go wrong in production: out of memory, out of space, loading the model might fail, the query might be wrong, the query might be correct but still fail to run because of a model misconfiguration, and so on. Generally, it's good if the server outputs the errors to the user, so adding a lot of `try..except` statements to show those errors is a good idea. But keep in mind it may also be a security risk to reveal all those errors depending on your security context. ### Circuit breaking Webservers usually look better when they do circuit breaking. It means they return proper errors when they're overloaded instead of just waiting for the query indefinitely. Return a 503 error instead of waiting for a super long time or a 504 after a long time. This is relatively easy to implement in the proposed code since there is a single queue. Looking at the queue size is a basic way to start returning errors before your webserver fails under load. ### Blocking the main thread Currently PyTorch is not async aware, and computation will block the main thread while running. That means it would be better if PyTorch was forced to run on its own thread/process. This wasn't done here because the code is a lot more complex (mostly because threads and async and queues don't play nice together). But ultimately it does the same thing. This would be important if the inference of single items were long (> 1s) because in this case, it means every query during inference would have to wait for 1s before even receiving an error. ### Dynamic batching In general, batching is not necessarily an improvement over passing 1 item at a time (see [batching details](./main_classes/pipelines#pipeline-batching) for more information). But it can be very effective when used in the correct setting. In the API, there is no dynamic batching by default (too much opportunity for a slowdown). But for BLOOM inference - which is a very large model - dynamic batching is **essential** to provide a decent experience for everyone.
transformers/docs/source/en/pipeline_webserver.md/0
{ "file_path": "transformers/docs/source/en/pipeline_webserver.md", "repo_id": "transformers", "token_count": 1775 }
21
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Knowledge Distillation for Computer Vision [[open-in-colab]] Knowledge distillation is a technique used to transfer knowledge from a larger, more complex model (teacher) to a smaller, simpler model (student). To distill knowledge from one model to another, we take a pre-trained teacher model trained on a certain task (image classification for this case) and randomly initialize a student model to be trained on image classification. Next, we train the student model to minimize the difference between it's outputs and the teacher's outputs, thus making it mimic the behavior. It was first introduced in [Distilling the Knowledge in a Neural Network by Hinton et al](https://arxiv.org/abs/1503.02531). In this guide, we will do task-specific knowledge distillation. We will use the [beans dataset](https://huggingface.co/datasets/beans) for this. This guide demonstrates how you can distill a [fine-tuned ViT model](https://huggingface.co/merve/vit-mobilenet-beans-224) (teacher model) to a [MobileNet](https://huggingface.co/google/mobilenet_v2_1.4_224) (student model) using the [Trainer API](https://huggingface.co/docs/transformers/en/main_classes/trainer#trainer) of 🤗 Transformers. Let's install the libraries needed for distillation and evaluating the process. ```bash pip install transformers datasets accelerate tensorboard evaluate --upgrade ``` In this example, we are using the `merve/beans-vit-224` model as teacher model. It's an image classification model, based on `google/vit-base-patch16-224-in21k` fine-tuned on beans dataset. We will distill this model to a randomly initialized MobileNetV2. We will now load the dataset. ```python from datasets import load_dataset dataset = load_dataset("beans") ``` We can use an image processor from either of the models, as in this case they return the same output with same resolution. We will use the `map()` method of `dataset` to apply the preprocessing to every split of the dataset. ```python from transformers import AutoImageProcessor teacher_processor = AutoImageProcessor.from_pretrained("merve/beans-vit-224") def process(examples): processed_inputs = teacher_processor(examples["image"]) return processed_inputs processed_datasets = dataset.map(process, batched=True) ``` Essentially, we want the student model (a randomly initialized MobileNet) to mimic the teacher model (fine-tuned vision transformer). To achieve this, we first get the logits output from the teacher and the student. Then, we divide each of them by the parameter `temperature` which controls the importance of each soft target. A parameter called `lambda` weighs the importance of the distillation loss. In this example, we will use `temperature=5` and `lambda=0.5`. We will use the Kullback-Leibler Divergence loss to compute the divergence between the student and teacher. Given two data P and Q, KL Divergence explains how much extra information we need to represent P using Q. If two are identical, their KL divergence is zero, as there's no other information needed to explain P from Q. Thus, in the context of knowledge distillation, KL divergence is useful. ```python from transformers import TrainingArguments, Trainer import torch import torch.nn as nn import torch.nn.functional as F class ImageDistilTrainer(Trainer): def __init__(self, teacher_model=None, student_model=None, temperature=None, lambda_param=None, *args, **kwargs): super().__init__(model=student_model, *args, **kwargs) self.teacher = teacher_model self.student = student_model self.loss_function = nn.KLDivLoss(reduction="batchmean") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.teacher.to(device) self.teacher.eval() self.temperature = temperature self.lambda_param = lambda_param def compute_loss(self, student, inputs, return_outputs=False): student_output = self.student(**inputs) with torch.no_grad(): teacher_output = self.teacher(**inputs) # Compute soft targets for teacher and student soft_teacher = F.softmax(teacher_output.logits / self.temperature, dim=-1) soft_student = F.log_softmax(student_output.logits / self.temperature, dim=-1) # Compute the loss distillation_loss = self.loss_function(soft_student, soft_teacher) * (self.temperature ** 2) # Compute the true label loss student_target_loss = student_output.loss # Calculate final loss loss = (1. - self.lambda_param) * student_target_loss + self.lambda_param * distillation_loss return (loss, student_output) if return_outputs else loss ``` We will now login to Hugging Face Hub so we can push our model to the Hugging Face Hub through the `Trainer`. ```python from huggingface_hub import notebook_login notebook_login() ``` Let's set the `TrainingArguments`, the teacher model and the student model. ```python from transformers import AutoModelForImageClassification, MobileNetV2Config, MobileNetV2ForImageClassification training_args = TrainingArguments( output_dir="my-awesome-model", num_train_epochs=30, fp16=True, logging_dir=f"{repo_name}/logs", logging_strategy="epoch", evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, metric_for_best_model="accuracy", report_to="tensorboard", push_to_hub=True, hub_strategy="every_save", hub_model_id=repo_name, ) num_labels = len(processed_datasets["train"].features["labels"].names) # initialize models teacher_model = AutoModelForImageClassification.from_pretrained( "merve/beans-vit-224", num_labels=num_labels, ignore_mismatched_sizes=True ) # training MobileNetV2 from scratch student_config = MobileNetV2Config() student_config.num_labels = num_labels student_model = MobileNetV2ForImageClassification(student_config) ``` We can use `compute_metrics` function to evaluate our model on the test set. This function will be used during the training process to compute the `accuracy` & `f1` of our model. ```python import evaluate import numpy as np accuracy = evaluate.load("accuracy") def compute_metrics(eval_pred): predictions, labels = eval_pred acc = accuracy.compute(references=labels, predictions=np.argmax(predictions, axis=1)) return {"accuracy": acc["accuracy"]} ``` Let's initialize the `Trainer` with the training arguments we defined. We will also initialize our data collator. ```python from transformers import DefaultDataCollator data_collator = DefaultDataCollator() trainer = ImageDistilTrainer( student_model=student_model, teacher_model=teacher_model, training_args=training_args, train_dataset=processed_datasets["train"], eval_dataset=processed_datasets["validation"], data_collator=data_collator, tokenizer=teacher_processor, compute_metrics=compute_metrics, temperature=5, lambda_param=0.5 ) ``` We can now train our model. ```python trainer.train() ``` We can evaluate the model on the test set. ```python trainer.evaluate(processed_datasets["test"]) ``` On test set, our model reaches 72 percent accuracy. To have a sanity check over efficiency of distillation, we also trained MobileNet on the beans dataset from scratch with the same hyperparameters and observed 63 percent accuracy on the test set. We invite the readers to try different pre-trained teacher models, student architectures, distillation parameters and report their findings. The training logs and checkpoints for distilled model can be found in [this repository](https://huggingface.co/merve/vit-mobilenet-beans-224), and MobileNetV2 trained from scratch can be found in this [repository](https://huggingface.co/merve/resnet-mobilenet-beans-5).
transformers/docs/source/en/tasks/knowledge_distillation_for_image_classification.md/0
{ "file_path": "transformers/docs/source/en/tasks/knowledge_distillation_for_image_classification.md", "repo_id": "transformers", "token_count": 2621 }
22
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Visual Question Answering [[open-in-colab]] Visual Question Answering (VQA) is the task of answering open-ended questions based on an image. The input to models supporting this task is typically a combination of an image and a question, and the output is an answer expressed in natural language. Some noteworthy use case examples for VQA include: * Accessibility applications for visually impaired individuals. * Education: posing questions about visual materials presented in lectures or textbooks. VQA can also be utilized in interactive museum exhibits or historical sites. * Customer service and e-commerce: VQA can enhance user experience by letting users ask questions about products. * Image retrieval: VQA models can be used to retrieve images with specific characteristics. For example, the user can ask "Is there a dog?" to find all images with dogs from a set of images. In this guide you'll learn how to: - Fine-tune a classification VQA model, specifically [ViLT](../model_doc/vilt), on the [`Graphcore/vqa` dataset](https://huggingface.co/datasets/Graphcore/vqa). - Use your fine-tuned ViLT for inference. - Run zero-shot VQA inference with a generative model, like BLIP-2. ## Fine-tuning ViLT ViLT model incorporates text embeddings into a Vision Transformer (ViT), allowing it to have a minimal design for Vision-and-Language Pre-training (VLP). This model can be used for several downstream tasks. For the VQA task, a classifier head is placed on top (a linear layer on top of the final hidden state of the `[CLS]` token) and randomly initialized. Visual Question Answering is thus treated as a **classification problem**. More recent models, such as BLIP, BLIP-2, and InstructBLIP, treat VQA as a generative task. Later in this guide we illustrate how to use them for zero-shot VQA inference. Before you begin, make sure you have all the necessary libraries installed. ```bash pip install -q transformers datasets ``` We encourage you to share your model with the community. Log in to your Hugging Face account to upload it to the 🤗 Hub. When prompted, enter your token to log in: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` Let's define the model checkpoint as a global variable. ```py >>> model_checkpoint = "dandelin/vilt-b32-mlm" ``` ## Load the data For illustration purposes, in this guide we use a very small sample of the annotated visual question answering `Graphcore/vqa` dataset. You can find the full dataset on [🤗 Hub](https://huggingface.co/datasets/Graphcore/vqa). As an alternative to the [`Graphcore/vqa` dataset](https://huggingface.co/datasets/Graphcore/vqa), you can download the same data manually from the official [VQA dataset page](https://visualqa.org/download.html). If you prefer to follow the tutorial with your custom data, check out how to [Create an image dataset](https://huggingface.co/docs/datasets/image_dataset#loading-script) guide in the 🤗 Datasets documentation. Let's load the first 200 examples from the validation split and explore the dataset's features: ```python >>> from datasets import load_dataset >>> dataset = load_dataset("Graphcore/vqa", split="validation[:200]") >>> dataset Dataset({ features: ['question', 'question_type', 'question_id', 'image_id', 'answer_type', 'label'], num_rows: 200 }) ``` Let's take a look at an example to understand the dataset's features: ```py >>> dataset[0] {'question': 'Where is he looking?', 'question_type': 'none of the above', 'question_id': 262148000, 'image_id': '/root/.cache/huggingface/datasets/downloads/extracted/ca733e0e000fb2d7a09fbcc94dbfe7b5a30750681d0e965f8e0a23b1c2f98c75/val2014/COCO_val2014_000000262148.jpg', 'answer_type': 'other', 'label': {'ids': ['at table', 'down', 'skateboard', 'table'], 'weights': [0.30000001192092896, 1.0, 0.30000001192092896, 0.30000001192092896]}} ``` The features relevant to the task include: * `question`: the question to be answered from the image * `image_id`: the path to the image the question refers to * `label`: the annotations We can remove the rest of the features as they won't be necessary: ```py >>> dataset = dataset.remove_columns(['question_type', 'question_id', 'answer_type']) ``` As you can see, the `label` feature contains several answers to the same question (called `ids` here) collected by different human annotators. This is because the answer to a question can be subjective. In this case, the question is "where is he looking?". Some people annotated this with "down", others with "at table", another one with "skateboard", etc. Take a look at the image and consider which answer would you give: ```python >>> from PIL import Image >>> image = Image.open(dataset[0]['image_id']) >>> image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/vqa-example.png" alt="VQA Image Example"/> </div> Due to the questions' and answers' ambiguity, datasets like this are treated as a multi-label classification problem (as multiple answers are possibly valid). Moreover, rather than just creating a one-hot encoded vector, one creates a soft encoding, based on the number of times a certain answer appeared in the annotations. For instance, in the example above, because the answer "down" is selected way more often than other answers, it has a score (called `weight` in the dataset) of 1.0, and the rest of the answers have scores < 1.0. To later instantiate the model with an appropriate classification head, let's create two dictionaries: one that maps the label name to an integer and vice versa: ```py >>> import itertools >>> labels = [item['ids'] for item in dataset['label']] >>> flattened_labels = list(itertools.chain(*labels)) >>> unique_labels = list(set(flattened_labels)) >>> label2id = {label: idx for idx, label in enumerate(unique_labels)} >>> id2label = {idx: label for label, idx in label2id.items()} ``` Now that we have the mappings, we can replace the string answers with their ids, and flatten the dataset for a more convenient further preprocessing. ```python >>> def replace_ids(inputs): ... inputs["label"]["ids"] = [label2id[x] for x in inputs["label"]["ids"]] ... return inputs >>> dataset = dataset.map(replace_ids) >>> flat_dataset = dataset.flatten() >>> flat_dataset.features {'question': Value(dtype='string', id=None), 'image_id': Value(dtype='string', id=None), 'label.ids': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'label.weights': Sequence(feature=Value(dtype='float64', id=None), length=-1, id=None)} ``` ## Preprocessing data The next step is to load a ViLT processor to prepare the image and text data for the model. [`ViltProcessor`] wraps a BERT tokenizer and ViLT image processor into a convenient single processor: ```py >>> from transformers import ViltProcessor >>> processor = ViltProcessor.from_pretrained(model_checkpoint) ``` To preprocess the data we need to encode the images and questions using the [`ViltProcessor`]. The processor will use the [`BertTokenizerFast`] to tokenize the text and create `input_ids`, `attention_mask` and `token_type_ids` for the text data. As for images, the processor will leverage [`ViltImageProcessor`] to resize and normalize the image, and create `pixel_values` and `pixel_mask`. All these preprocessing steps are done under the hood, we only need to call the `processor`. However, we still need to prepare the target labels. In this representation, each element corresponds to a possible answer (label). For correct answers, the element holds their respective score (weight), while the remaining elements are set to zero. The following function applies the `processor` to the images and questions and formats the labels as described above: ```py >>> import torch >>> def preprocess_data(examples): ... image_paths = examples['image_id'] ... images = [Image.open(image_path) for image_path in image_paths] ... texts = examples['question'] ... encoding = processor(images, texts, padding="max_length", truncation=True, return_tensors="pt") ... for k, v in encoding.items(): ... encoding[k] = v.squeeze() ... targets = [] ... for labels, scores in zip(examples['label.ids'], examples['label.weights']): ... target = torch.zeros(len(id2label)) ... for label, score in zip(labels, scores): ... target[label] = score ... targets.append(target) ... encoding["labels"] = targets ... return encoding ``` To apply the preprocessing function over the entire dataset, use 🤗 Datasets [`~datasets.map`] function. You can speed up `map` by setting `batched=True` to process multiple elements of the dataset at once. At this point, feel free to remove the columns you don't need. ```py >>> processed_dataset = flat_dataset.map(preprocess_data, batched=True, remove_columns=['question','question_type', 'question_id', 'image_id', 'answer_type', 'label.ids', 'label.weights']) >>> processed_dataset Dataset({ features: ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values', 'pixel_mask', 'labels'], num_rows: 200 }) ``` As a final step, create a batch of examples using [`DefaultDataCollator`]: ```py >>> from transformers import DefaultDataCollator >>> data_collator = DefaultDataCollator() ``` ## Train the model You’re ready to start training your model now! Load ViLT with [`ViltForQuestionAnswering`]. Specify the number of labels along with the label mappings: ```py >>> from transformers import ViltForQuestionAnswering >>> model = ViltForQuestionAnswering.from_pretrained(model_checkpoint, num_labels=len(id2label), id2label=id2label, label2id=label2id) ``` At this point, only three steps remain: 1. Define your training hyperparameters in [`TrainingArguments`]: ```py >>> from transformers import TrainingArguments >>> repo_id = "MariaK/vilt_finetuned_200" >>> training_args = TrainingArguments( ... output_dir=repo_id, ... per_device_train_batch_size=4, ... num_train_epochs=20, ... save_steps=200, ... logging_steps=50, ... learning_rate=5e-5, ... save_total_limit=2, ... remove_unused_columns=False, ... push_to_hub=True, ... ) ``` 2. Pass the training arguments to [`Trainer`] along with the model, dataset, processor, and data collator. ```py >>> from transformers import Trainer >>> trainer = Trainer( ... model=model, ... args=training_args, ... data_collator=data_collator, ... train_dataset=processed_dataset, ... tokenizer=processor, ... ) ``` 3. Call [`~Trainer.train`] to finetune your model. ```py >>> trainer.train() ``` Once training is completed, share your model to the Hub with the [`~Trainer.push_to_hub`] method to share your final model on the 🤗 Hub: ```py >>> trainer.push_to_hub() ``` ## Inference Now that you have fine-tuned a ViLT model, and uploaded it to the 🤗 Hub, you can use it for inference. The simplest way to try out your fine-tuned model for inference is to use it in a [`Pipeline`]. ```py >>> from transformers import pipeline >>> pipe = pipeline("visual-question-answering", model="MariaK/vilt_finetuned_200") ``` The model in this guide has only been trained on 200 examples, so don't expect a lot from it. Let's see if it at least learned something from the data and take the first example from the dataset to illustrate inference: ```py >>> example = dataset[0] >>> image = Image.open(example['image_id']) >>> question = example['question'] >>> print(question) >>> pipe(image, question, top_k=1) "Where is he looking?" [{'score': 0.5498199462890625, 'answer': 'down'}] ``` Even though not very confident, the model indeed has learned something. With more examples and longer training, you'll get far better results! You can also manually replicate the results of the pipeline if you'd like: 1. Take an image and a question, prepare them for the model using the processor from your model. 2. Forward the result or preprocessing through the model. 3. From the logits, get the most likely answer's id, and find the actual answer in the `id2label`. ```py >>> processor = ViltProcessor.from_pretrained("MariaK/vilt_finetuned_200") >>> image = Image.open(example['image_id']) >>> question = example['question'] >>> # prepare inputs >>> inputs = processor(image, question, return_tensors="pt") >>> model = ViltForQuestionAnswering.from_pretrained("MariaK/vilt_finetuned_200") >>> # forward pass >>> with torch.no_grad(): ... outputs = model(**inputs) >>> logits = outputs.logits >>> idx = logits.argmax(-1).item() >>> print("Predicted answer:", model.config.id2label[idx]) Predicted answer: down ``` ## Zero-shot VQA The previous model treated VQA as a classification task. Some recent models, such as BLIP, BLIP-2, and InstructBLIP approach VQA as a generative task. Let's take [BLIP-2](../model_doc/blip-2) as an example. It introduced a new visual-language pre-training paradigm in which any combination of pre-trained vision encoder and LLM can be used (learn more in the [BLIP-2 blog post](https://huggingface.co/blog/blip-2)). This enables achieving state-of-the-art results on multiple visual-language tasks including visual question answering. Let's illustrate how you can use this model for VQA. First, let's load the model. Here we'll explicitly send the model to a GPU, if available, which we didn't need to do earlier when training, as [`Trainer`] handles this automatically: ```py >>> from transformers import AutoProcessor, Blip2ForConditionalGeneration >>> import torch >>> processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") >>> model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16) >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> model.to(device) ``` The model takes image and text as input, so let's use the exact same image/question pair from the first example in the VQA dataset: ```py >>> example = dataset[0] >>> image = Image.open(example['image_id']) >>> question = example['question'] ``` To use BLIP-2 for visual question answering task, the textual prompt has to follow a specific format: `Question: {} Answer:`. ```py >>> prompt = f"Question: {question} Answer:" ``` Now we need to preprocess the image/prompt with the model's processor, pass the processed input through the model, and decode the output: ```py >>> inputs = processor(image, text=prompt, return_tensors="pt").to(device, torch.float16) >>> generated_ids = model.generate(**inputs, max_new_tokens=10) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() >>> print(generated_text) "He is looking at the crowd" ``` As you can see, the model recognized the crowd, and the direction of the face (looking down), however, it seems to miss the fact the crowd is behind the skater. Still, in cases where acquiring human-annotated datasets is not feasible, this approach can quickly produce useful results.
transformers/docs/source/en/tasks/visual_question_answering.md/0
{ "file_path": "transformers/docs/source/en/tasks/visual_question_answering.md", "repo_id": "transformers", "token_count": 4862 }
23
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # ¿Cómo puedo crear un pipeline personalizado? En esta guía, veremos cómo crear un pipeline personalizado y cómo compartirlo en el [Hub](https://hf.co/models) o añadirlo a la biblioteca 🤗 Transformers. En primer lugar, debes decidir las entradas que tu pipeline podrá recibir. Pueden ser strings, bytes, diccionarios o lo que te parezca que vaya a ser la entrada más apropiada. Intenta mantener estas entradas en un formato que sea tan Python puro como sea posible, puesto que esto facilita la compatibilidad (incluso con otros lenguajes de programación por medio de JSON). Estos serán los `inputs` (entradas) del pipeline (`preprocess`). Ahora debes definir los `outputs` (salidas). Al igual que con los `inputs`, entre más simple el formato, mejor. Estas serán las salidas del método `postprocess` (posprocesamiento). Empieza heredando la clase base `Pipeline` con los 4 métodos que debemos implementar: `preprocess` (preprocesamiento), `_forward` (ejecución), `postprocess` (posprocesamiento) y `_sanitize_parameters` (verificar parámetros). ```python from transformers import Pipeline class MyPipeline(Pipeline): def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} if "maybe_arg" in kwargs: preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"] return preprocess_kwargs, {}, {} def preprocess(self, inputs, maybe_arg=2): model_input = Tensor(inputs["input_ids"]) return {"model_input": model_input} def _forward(self, model_inputs): # model_inputs == {"model_input": model_input} outputs = self.model(**model_inputs) # Quizá {"logits": Tensor(...)} return outputs def postprocess(self, model_outputs): best_class = model_outputs["logits"].softmax(-1) return best_class ``` La estructura de este desglose es así para garantizar una compatibilidad más o menos transparente con el uso de CPU/GPU y el pre/posprocesamiento en CPU en varios hilos. `preprocess` tomará las entradas definidas originalmente y las convertirá en algo que se le pueda pasar al modelo. Podría contener más información y a menudo es un objeto `Dict` (diccionario). `_forward` contiene los detalles de la implementación y no debería ser invocado de forma directa. `forward` es el método preferido a utilizar pues contiene verificaciones para asegurar que todo funcione en el dispositivo correcto. Cualquier cosa que esté relacionada con un modelo real debería ir en el método `_forward`, todo lo demás va en los métodos de preprocesamiento y posprocesamiento. Los métodos `postprocess` reciben la salida `_forward` y la convierten en la salida final que decidimos anteriormente. `_sanitize_parameters` existe para permitir a los usuarios pasar cualesquiera parámetros cuando lo deseen, ya sea al momento de inicializar el pipeline `pipeline(...., maybe_arg=4)` o al momento de invocarlo `pipe = pipeline(...); output = pipe(...., maybe_arg=4)`. El método `_sanitize_parameters` devuelve 3 diccionarios de kwargs que serán pasados directamente a `preprocess`, `_forward` y `postprocess`. No ingreses nada si el caller no se va a invocar con parámetros adicionales. Esto permite mantener los parámetros por defecto de la definición de la función, lo que es más "natural". Un ejemplo clásico sería un argumento `top_k` en el posprocesamiento de una tarea de clasificación. ```python >>> pipe = pipeline("my-new-task") >>> pipe("This is a test") [{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}, {"label": "3-star", "score": 0.05} {"label": "4-star", "score": 0.025}, {"label": "5-star", "score": 0.025}] >>> pipe("This is a test", top_k=2) [{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}] ``` Para lograrlo, actualizaremos nuestro método `postprocess` con un valor por defecto de `5` y modificaremos `_sanitize_parameters` para permitir este nuevo parámetro. ```python def postprocess(self, model_outputs, top_k=5): best_class = model_outputs["logits"].softmax(-1) # Añade la lógica para manejar el top_k return best_class def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} if "maybe_arg" in kwargs: preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"] postprocess_kwargs = {} if "top_k" in kwargs: postprocess_kwargs["top_k"] = kwargs["top_k"] return preprocess_kwargs, {}, postprocess_kwargs ``` Intenta que las entradas y salidas sean muy simples e, idealmente, que puedan serializarse como JSON, pues esto hace el uso del pipeline muy sencillo sin que el usuario tenga que preocuparse por conocer nuevos tipos de objetos. También es relativamente común tener compatibilidad con muchos tipos diferentes de argumentos por facilidad de uso (por ejemplo, los archivos de audio pueden ser nombres de archivo, URLs o bytes). ## Añadirlo a la lista de tareas Para registrar tu `new-task` (nueva tarea) en la lista de tareas, debes añadirla al `PIPELINE_REGISTRY` (registro de pipelines): ```python from transformers.pipelines import PIPELINE_REGISTRY PIPELINE_REGISTRY.register_pipeline( "new-task", pipeline_class=MyPipeline, pt_model=AutoModelForSequenceClassification, ) ``` Puedes especificar un modelo por defecto si lo deseas, en cuyo caso debe venir con una versión específica (que puede ser el nombre de un branch o hash de commit, en este caso usamos `"abcdef"`), así como el tipo: ```python PIPELINE_REGISTRY.register_pipeline( "new-task", pipeline_class=MyPipeline, pt_model=AutoModelForSequenceClassification, default={"pt": ("user/awesome_model", "abcdef")}, type="text", # tipo de datos que maneja: texto, audio, imagen, multi-modalidad ) ``` ## Comparte tu pipeline en el Hub Para compartir tu pipeline personalizado en el Hub, solo tienes que guardar el código personalizado de tu sub-clase `Pipeline` en un archivo de Python. Por ejemplo, digamos que queremos usar un pipeline personalizado para la clasificación de duplas de oraciones de esta forma: ```py import numpy as np from transformers import Pipeline def softmax(outputs): maxes = np.max(outputs, axis=-1, keepdims=True) shifted_exp = np.exp(outputs - maxes) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) class PairClassificationPipeline(Pipeline): def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} if "second_text" in kwargs: preprocess_kwargs["second_text"] = kwargs["second_text"] return preprocess_kwargs, {}, {} def preprocess(self, text, second_text=None): return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework) def _forward(self, model_inputs): return self.model(**model_inputs) def postprocess(self, model_outputs): logits = model_outputs.logits[0].numpy() probabilities = softmax(logits) best_class = np.argmax(probabilities) label = self.model.config.id2label[best_class] score = probabilities[best_class].item() logits = logits.tolist() return {"label": label, "score": score, "logits": logits} ``` La implementación es independiente del framework y funcionará con modelos de PyTorch y TensorFlow. Si guardamos esto en un archivo llamado `pair_classification.py`, podemos importarlo y registrarlo de la siguiente manera: ```py from pair_classification import PairClassificationPipeline from transformers.pipelines import PIPELINE_REGISTRY from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification PIPELINE_REGISTRY.register_pipeline( "pair-classification", pipeline_class=PairClassificationPipeline, pt_model=AutoModelForSequenceClassification, tf_model=TFAutoModelForSequenceClassification, ) ``` Una vez hecho esto, podemos usarlo con un modelo pre-entrenado. Por ejemplo, al modelo `sgugger/finetuned-bert-mrpc` se le hizo fine-tuning con el dataset MRPC, en el cual se clasifican duplas de oraciones como paráfrasis o no. ```py from transformers import pipeline classifier = pipeline("pair-classification", model="sgugger/finetuned-bert-mrpc") ``` Ahora podemos compartirlo en el Hub usando el método `save_pretrained` (guardar pre-entrenado) en un `Repository`: ```py from huggingface_hub import Repository repo = Repository("test-dynamic-pipeline", clone_from="{your_username}/test-dynamic-pipeline") classifier.save_pretrained("test-dynamic-pipeline") repo.push_to_hub() ``` Esto copiará el archivo donde definiste `PairClassificationPipeline` dentro de la carpeta `"test-dynamic-pipeline"`, y además guardará el modelo y el tokenizer del pipeline, antes de enviar todo al repositorio `{your_username}/test-dynamic-pipeline`. Después de esto, cualquier persona puede usarlo siempre que usen la opción `trust_remote_code=True` (confiar en código remoto): ```py from transformers import pipeline classifier = pipeline(model="{your_username}/test-dynamic-pipeline", trust_remote_code=True) ``` ## Añadir el pipeline a 🤗 Transformers Si quieres contribuir tu pipeline a la biblioteca 🤗 Transformers, tendrás que añadirlo a un nuevo módulo en el sub-módulo `pipelines` con el código de tu pipeline. Luego, debes añadirlo a la lista de tareas definidas en `pipelines/__init__.py`. A continuación tienes que añadir las pruebas. Crea un nuevo archivo llamado `tests/test_pipelines_MY_PIPELINE.py` basándote en las pruebas existentes. La función `run_pipeline_test` será muy genérica y se correrá sobre modelos pequeños escogidos al azar sobre todas las arquitecturas posibles definidas en `model_mapping` y `tf_model_mapping`. Esto es muy importante para probar compatibilidades a futuro, lo que significa que si alguien añade un nuevo modelo para `XXXForQuestionAnswering` entonces el pipeline intentará ejecutarse con ese modelo. Ya que los modelos son aleatorios, es imposible verificar los valores como tales, y es por eso que hay un helper `ANY` que simplemente intentará que la salida tenga el mismo tipo que la salida esperada del pipeline. También *debes* implementar 2 (preferiblemente 4) pruebas: - `test_small_model_pt` : Define un (1) modelo pequeño para este pipeline (no importa si los resultados no tienen sentido) y prueba las salidas del pipeline. Los resultados deberían ser los mismos que en `test_small_model_tf`. - `test_small_model_tf` : Define un (1) modelo pequeño para este pipeline (no importa si los resultados no tienen sentido) y prueba las salidas del pipeline. Los resultados deberían ser los mismos que en `test_small_model_pt`. - `test_large_model_pt` (`optional`): Prueba el pipeline en una tarea real en la que los resultados deben tener sentido. Estas pruebas son lentas y deben marcarse como tales. El objetivo de esto es ejemplificar el pipeline y asegurarse de que no haya divergencias en versiones futuras. - `test_large_model_tf` (`optional`): Prueba el pipeline en una tarea real en la que los resultados deben tener sentido. Estas pruebas son lentas y deben marcarse como tales. El objetivo de esto es ejemplificar el pipeline y asegurarse de que no haya divergencias en versiones futuras.
transformers/docs/source/es/add_new_pipeline.md/0
{ "file_path": "transformers/docs/source/es/add_new_pipeline.md", "repo_id": "transformers", "token_count": 4318 }
24
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Perplejidad de los modelos de longitud fija [[open-in-colab]] La perplejidad, perplexity en inglés (PPL), es una de las métricas más comunes para evaluar modelos de lenguaje. Antes de sumergirnos, debemos tener en cuenta que esta métrica se aplica específicamente a modelos de lenguaje clásicos (a veces llamados modelos autorregresivos o causales) y no está bien definida para modelos de lenguaje enmascarados como BERT (ver [resumen del modelo](model_summary)). La perplejidad se define como la media negativa exponenciada del log-likelihood de una secuencia. Si tenemos una secuencia tokenizada \\(X = (x_0, x_1, \dots, x_t)\\), entonces la perplejidad de \\(X\\) es, $$\text{PPL}(X) = \exp \left\{ {-\frac{1}{t}\sum_i^t \log p_\theta (x_i|x_{<i}) } \right\}$$ donde \\(\log p_\theta (x_i|x_{<i})\\) es el log-likelihood del token i-ésimo condicionado a los tokens precedentes \\(x_{<i}\\) según nuestro modelo. De manera intuitiva, se puede pensar en esto como una evaluación de la capacidad del modelo para predecir de manera uniforme entre el conjunto de tokens especificados en un corpus. Es importante destacar que el procedimiento de tokenización tiene un impacto directo en la perplejidad de un modelo, lo cual siempre debe tenerse en cuenta al comparar diferentes modelos. Esto también es equivalente a la exponenciación de la entropía cruzada entre los datos y las predicciones del modelo. Para obtener más intuición sobre la perplejidad y su relación con los Bits Por Carácter (BPC) y la compresión de datos, echa un vistazo a esta [fantástica publicación en el blog de "The Gradient"](https://thegradient.pub/understanding-evaluation-metrics-for-language-models/). ## Cálculo de PPL con modelos de longitud fija Si no estuviéramos limitados por el tamaño del contexto de un modelo, evaluaríamos la perplejidad (PPL) del modelo auto regresivamente factorizando una secuencia y condicionándonos en toda la subsecuencia precedente en cada paso, como se muestra a continuación. <img width="600" alt="Full decomposition of a sequence with unlimited context length" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/ppl_full.gif"/> Sin embargo, al trabajar con modelos aproximados, generalmente tenemos una restricción en la cantidad de tokens que el modelo puede procesar. La versión más grande de [GPT-2](model_doc/gpt2), por ejemplo, tiene una longitud fija de 1024 tokens, por lo que no podemos calcular \\(p_\theta(x_t|x_{<t})\\) directamente cuando \\(t\\) es mayor que 1024. En cambio, la secuencia se divide típicamente en subsecuencias iguales al tamaño máximo de entrada del modelo. Si el tamaño máximo de entrada, de un modelo es \\(k\\), entonces aproximamos la probabilidad de un token \\(x_t\\) condicionándonos solo en los \\(k-1\\) tokens que lo preceden en lugar de todo el contexto. Al evaluar la perplejidad del modelo en una secuencia, un enfoque tentador pero sub óptimo es dividir la secuencia en fragmentos independientes y sumar los log-likelihood descompuestos de cada segmento de manera independiente. <img width="600" alt="Suboptimal PPL not taking advantage of full available context" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/ppl_chunked.gif"/> Esto es rápido de calcular, ya que la perplejidad de cada segmento se puede calcular en un solo pase hacia adelante, pero sirve como una aproximación pobre de la perplejidad completamente factorizada y generalmente dará como resultado una PPL más alta (peor) porque el modelo tendrá menos contexto en la mayoría de los pasos de predicción. En cambio, la PPL de modelos de longitud fija debería evaluarse con una estrategia de ventana deslizante. Esto implica deslizar repetidamente la ventana de contexto para que el modelo tenga más contexto al hacer cada predicción. <img width="600" alt="Sliding window PPL taking advantage of all available context" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/ppl_sliding.gif"/> Esta es una aproximación más cercana a la verdadera descomposición de la probabilidad de la secuencia y generalmente dará como resultado una puntuación más favorable. La desventaja es que requiere un pase hacia adelante separado para cada token en el corpus. Un buen compromiso práctico es emplear una ventana deslizante estratificada, moviendo el contexto con pasos más grandes en lugar de deslizarse de 1 token a la vez. Esto permite que la computación avance mucho más rápido, mientras le da al modelo un contexto amplio para hacer predicciones en cada paso. ## Ejemplo: Cálculo de la perplejidad con GPT-2 en 🤗 Transformers Demostremos este proceso con GPT-2. ```python from transformers import GPT2LMHeadModel, GPT2TokenizerFast device = "cuda" model_id = "openai-community/gpt2-large" model = GPT2LMHeadModel.from_pretrained(model_id).to(device) tokenizer = GPT2TokenizerFast.from_pretrained(model_id) ``` Carguemos el conjunto de datos WikiText-2 y evaluemos la perplejidad utilizando algunas estrategias de ventana deslizante diferentes. Dado que este conjunto de datos es pequeño y solo estamos realizando un pase hacia adelante sobre el conjunto, podemos cargar y codificar todo el conjunto de datos en la memoria. ```python from datasets import load_dataset test = load_dataset("wikitext", "wikitext-2-raw-v1", split="test") encodings = tokenizer("\n\n".join(test["text"]), return_tensors="pt") ``` Con 🤗 Transformers, simplemente podemos pasar los `input_ids` como las `labels` a nuestro modelo, y la media negativa del log-likelihood para cada token se devuelve como la pérdida. Sin embargo, con nuestro enfoque de ventana deslizante, hay superposición en los tokens que pasamos al modelo en cada iteración. No queremos que el log-likelihood de los tokens que estamos tratando solo como contexto se incluya en nuestra pérdida, por lo que podemos establecer estos objetivos en `-100` para que se ignoren. El siguiente es un ejemplo de cómo podríamos hacer esto con un paso de `512`. Esto significa que el modelo tendrá al menos `512` tokens como contexto al calcular el log-likelihood condicional de cualquier token (siempre que haya `512` tokens precedentes disponibles para condicionar). ```python import torch from tqdm import tqdm max_length = model.config.n_positions stride = 512 seq_len = encodings.input_ids.size(1) nlls = [] prev_end_loc = 0 for begin_loc in tqdm(range(0, seq_len, stride)): end_loc = min(begin_loc + max_length, seq_len) trg_len = end_loc - prev_end_loc # puede ser diferente del paso en el último bucle input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device) target_ids = input_ids.clone() target_ids[:, :-trg_len] = -100 with torch.no_grad(): outputs = model(input_ids, labels=target_ids) # la pérdida se calcula utilizando CrossEntropyLoss, que promedia las etiquetas válidas # N.B. el modelo solo calcula la pérdida sobre trg_len - 1 etiquetas, porque desplaza las etiqueta internamente # a la izquierda por 1. neg_log_likelihood = outputs.loss nlls.append(neg_log_likelihood) prev_end_loc = end_loc if end_loc == seq_len: break ppl = torch.exp(torch.stack(nlls).mean()) ``` Ejecuta esto con la longitud de paso igual a la longitud máxima de entrada es equivalente a la estrategia sub óptima, sin ventana deslizante, que discutimos anteriormente. Cuanto menor sea el paso, más contexto tendrá el modelo para realizar cada predicción y, por lo general, mejor será la perplejidad informada. Cuando ejecutamos lo anterior con `stride = 1024`, es decir, sin superposición, la PPL resultante es `19.44`, que es aproximadamente la misma que la `19.93` informada en el artículo de GPT-2. Al utilizar `stride = 512` y, por lo tanto, emplear nuestra estrategia de ventana deslizante, esto disminuye a `16.45`. Esto no solo es una puntuación más favorable, sino que se calcula de una manera más cercana a la verdadera descomposición autorregresiva de la probabilidad de una secuencia.
transformers/docs/source/es/perplexity.md/0
{ "file_path": "transformers/docs/source/es/perplexity.md", "repo_id": "transformers", "token_count": 3119 }
25
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Carica istanze pre-allenate con AutoClass Con così tante architetture Transformer differenti, può essere sfidante crearne una per il tuo checkpoint. Come parte della filosofia centrale di 🤗 Transformers per rendere la libreria facile, semplice e flessibile da utilizzare, una `AutoClass` inferisce e carica automaticamente l'architettura corretta da un dato checkpoint. Il metodo `from_pretrained` ti permette di caricare velocemente un modello pre-allenato per qualsiasi architettura, così non devi utilizzare tempo e risorse per allenare un modello da zero. Produrre questo codice agnostico ai checkpoint significa che se il tuo codice funziona per un checkpoint, funzionerà anche per un altro checkpoint, purché sia stato allenato per un compito simile, anche se l'architettura è differente. <Tip> Ricorda, con architettura ci si riferisce allo scheletro del modello e con checkpoint ai pesi di una determinata architettura. Per esempio, [BERT](https://huggingface.co/google-bert/bert-base-uncased) è un'architettura, mentre `google-bert/bert-base-uncased` è un checkpoint. Modello è un termine generale che può significare sia architettura che checkpoint. </Tip> In questo tutorial, imparerai a: * Caricare un tokenizer pre-allenato. * Caricare un estrattore di caratteristiche (feature extractor, in inglese) pre-allenato. * Caricare un processore pre-allenato. * Caricare un modello pre-allenato. ## AutoTokenizer Quasi tutti i compiti di NLP iniziano con un tokenizer. Un tokenizer converte il tuo input in un formato che possa essere elaborato dal modello. Carica un tokenizer con [`AutoTokenizer.from_pretrained`]: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base") ``` Poi tokenizza il tuo input come mostrato in seguito: ```py >>> sequenza = "In un buco nel terreno viveva uno Hobbit." >>> print(tokenizer(sequenza)) {'input_ids': [0, 360, 51, 373, 587, 1718, 54644, 22597, 330, 3269, 2291, 22155, 18, 5, 2], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` ## AutoFeatureExtractor Per compiti inerenti a audio e video, un feature extractor processa il segnale audio o l'immagine nel formato di input corretto. Carica un feature extractor con [`AutoFeatureExtractor.from_pretrained`]: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained( ... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition" ... ) ``` ## AutoProcessor Compiti multimodali richiedono un processore che combini i due tipi di strumenti di elaborazione. Per esempio, il modello [LayoutLMV2](model_doc/layoutlmv2) richiede un feature extractor per gestire le immagine e un tokenizer per gestire il testo; un processore li combina entrambi. Carica un processore con [`AutoProcessor.from_pretrained`]: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased") ``` ## AutoModel <frameworkcontent> <pt> Infine, le classi `AutoModelFor` ti permettono di caricare un modello pre-allenato per un determinato compito (guarda [qui](model_doc/auto) per una lista completa di compiti presenti). Per esempio, carica un modello per la classificazione di sequenze con [`AutoModelForSequenceClassification.from_pretrained`]: ```py >>> from transformers import AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` Semplicemente utilizza lo stesso checkpoint per caricare un'architettura per un task differente: ```py >>> from transformers import AutoModelForTokenClassification >>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` Generalmente, raccomandiamo di utilizzare la classe `AutoTokenizer` e la classe `AutoModelFor` per caricare istanze pre-allenate dei modelli. Questo ti assicurerà di aver caricato la corretta architettura ogni volta. Nel prossimo [tutorial](preprocessing), imparerai come utilizzare il tokenizer, il feature extractor e il processore per elaborare un dataset per il fine-tuning. </pt> <tf> Infine, le classi `TFAutoModelFor` ti permettono di caricare un modello pre-allenato per un determinato compito (guarda [qui](model_doc/auto) per una lista completa di compiti presenti). Per esempio, carica un modello per la classificazione di sequenze con [`TFAutoModelForSequenceClassification.from_pretrained`]: ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` Semplicemente utilizza lo stesso checkpoint per caricare un'architettura per un task differente: ```py >>> from transformers import TFAutoModelForTokenClassification >>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` Generalmente, raccomandiamo di utilizzare la classe `AutoTokenizer` e la classe `TFAutoModelFor` per caricare istanze pre-allenate dei modelli. Questo ti assicurerà di aver caricato la corretta architettura ogni volta. Nel prossimo [tutorial](preprocessing), imparerai come utilizzare il tokenizer, il feature extractor e il processore per elaborare un dataset per il fine-tuning. </tf> </frameworkcontent>
transformers/docs/source/it/autoclass_tutorial.md/0
{ "file_path": "transformers/docs/source/it/autoclass_tutorial.md", "repo_id": "transformers", "token_count": 1960 }
26
<!-- Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ このファイルはMarkdown形式ですが、ドキュメンテーションビルダー用の特定の構文を含んでおり、Markdownビューアーでは正しく表示されないことに注意してください。 --> # Attention mechanism ほとんどのTransformerモデルは、アテンション行列が正方形であるという意味で完全なアテンションを使用します。 これは、長いテキストを扱う場合に計算のボトルネックとなることがあります。LongformerやReformerは、より効率的でトレーニングを高速化するためにアテンション行列のスパースバージョンを使用しようとするモデルです。 ## LSH attention [Reformer](model_doc/reformer)はLSH(局所的に散在ハッシュ)アテンションを使用します。 ソフトマックス(QK^t)では、行列QK^tの中で(ソフトマックス次元で)最も大きな要素のみが有用な寄与を提供します。 したがって、各クエリqについて、クエリqに近いキーkのみを考慮できます。 qとkが近いかどうかを決定するために、ハッシュ関数が使用されます。 アテンションマスクは変更され、現在のトークンをマスク化します(最初の位置を除く)。 なぜなら、それはクエリとキーが等しい(つまり非常に似ている)クエリとキーを提供するからです。 ハッシュは多少ランダムかもしれないため、実際にはいくつかのハッシュ関数が使用され(n_roundsパラメータで決定されます)、それらが平均化されます。 ## Local attention [Longformer](model_doc/longformer)はローカルアテンションを使用します。 しばしば、ローカルコンテキスト(例:左右の2つのトークンは何ですか?)は、特定のトークンに対して行動を起こすのに十分です。 また、小さなウィンドウを持つアテンションレイヤーを積み重ねることで、最後のレイヤーはウィンドウ内のトークンだけでなく、ウィンドウ内のトークンを超えて受容野を持つようになり、文全体の表現を構築できます。 一部の事前選択された入力トークンにはグローバルアテンションも与えられます。 これらの少数のトークンに対して、アテンション行列はすべてのトークンにアクセスでき、このプロセスは対称的です。 他のすべてのトークンは、これらの特定のトークンにアクセスできます(ローカルウィンドウ内のトークンに加えて)。 これは、論文の図2dに示されており、以下はサンプルのアテンションマスクです: <div class="flex justify-center"> <img scale="50 %" align="center" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/local_attention_mask.png"/> </div> ## Other tricks ### Axial positional encodings [Reformer](model_doc/reformer)は軸方向の位置エンコーディングを使用しています。伝統的なトランスフォーマーモデルでは、位置エンコーディングEはサイズが \\(l\\) × \\(d\\) の行列で、\\(l\\) はシーケンスの長さ、\\(d\\) は隠れ状態の次元です。非常に長いテキストを扱う場合、この行列は非常に大きく、GPU上で大量のスペースを占有します。これを緩和するために、軸方向の位置エンコーディングは、この大きな行列Eを2つの小さな行列E1とE2に分解します。それぞれの行列はサイズ \\(l_{1} \times d_{1}\\) および \\(l_{2} \times d_{2}\\) を持ち、 \\(l_{1} \times l_{2} = l\\) および \\(d_{1} + d_{2} = d\\) という条件を満たします(長さの積を考えると、これがはるかに小さくなります)。行列E内の時刻 \\(j\\) の埋め込みは、E1内の時刻 \\(j \% l1\\) の埋め込みとE2内の時刻 \\(j // l1\\) の埋め込みを連結することによって得られます。
transformers/docs/source/ja/attention.md/0
{ "file_path": "transformers/docs/source/ja/attention.md", "repo_id": "transformers", "token_count": 1963 }
27
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Audio Spectrogram Transformer ## 概要 Audio Spectrogram Transformerモデルは、[AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778)という論文でYuan Gong、Yu-An Chung、James Glassによって提案されました。これは、音声を画像(スペクトログラム)に変換することで、音声に[Vision Transformer](vit)を適用します。このモデルは音声分類において最先端の結果を得ています。 論文の要旨は以下の通りです: *過去10年間で、畳み込みニューラルネットワーク(CNN)は、音声スペクトログラムから対応するラベルへの直接的なマッピングを学習することを目指す、エンドツーエンドの音声分類モデルの主要な構成要素として広く採用されてきました。長距離のグローバルなコンテキストをより良く捉えるため、最近の傾向として、CNNの上にセルフアテンション機構を追加し、CNN-アテンションハイブリッドモデルを形成することがあります。しかし、CNNへの依存が必要かどうか、そして純粋にアテンションに基づくニューラルネットワークだけで音声分類において良いパフォーマンスを得ることができるかどうかは明らかではありません。本論文では、これらの問いに答えるため、音声分類用では最初の畳み込みなしで純粋にアテンションベースのモデルであるAudio Spectrogram Transformer(AST)を紹介します。我々はASTを様々なオーディオ分類ベンチマークで評価し、AudioSetで0.485 mAP、ESC-50で95.6%の正解率、Speech Commands V2で98.1%の正解率という新たな最先端の結果を達成しました。* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/audio_spectogram_transformer_architecture.png" alt="drawing" width="600"/> <small> Audio Spectrogram Transformerのアーキテクチャ。<a href="https://arxiv.org/abs/2104.01778">元論文</a>より抜粋。</small> このモデルは[nielsr](https://huggingface.co/nielsr)より提供されました。 オリジナルのコードは[こちら](https://github.com/YuanGongND/ast)で見ることができます。 ## 使用上のヒント - 独自のデータセットでAudio Spectrogram Transformer(AST)をファインチューニングする場合、入力の正規化(入力の平均を0、標準偏差を0.5にすること)処理することが推奨されます。[`ASTFeatureExtractor`]はこれを処理します。デフォルトではAudioSetの平均と標準偏差を使用していることに注意してください。著者が下流のデータセットの統計をどのように計算しているかは、[`ast/src/get_norm_stats.py`](https://github.com/YuanGongND/ast/blob/master/src/get_norm_stats.py)で確認することができます。 - ASTは低い学習率が必要であり 著者は[PSLA論文](https://arxiv.org/abs/2102.01243)で提案されたCNNモデルに比べて10倍小さい学習率を使用しています)、素早く収束するため、タスクに適した学習率と学習率スケジューラーを探すことをお勧めします。 ## 参考資料 Audio Spectrogram Transformerの使用を開始するのに役立つ公式のHugging Faceおよびコミュニティ(🌎で示されている)の参考資料の一覧です。 <PipelineTag pipeline="audio-classification"/> - ASTを用いた音声分類の推論を説明するノートブックは[こちら](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/AST)で見ることができます。 - [`ASTForAudioClassification`]は、この[例示スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification)と[ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb)によってサポートされています。 - こちらも参照:[音声分類タスク](../tasks/audio_classification)。 ここに参考資料を提出したい場合は、気兼ねなくPull Requestを開いてください。私たちはそれをレビューいたします!参考資料は、既存のものを複製するのではなく、何か新しいことを示すことが理想的です。 ## ASTConfig [[autodoc]] ASTConfig ## ASTFeatureExtractor [[autodoc]] ASTFeatureExtractor - __call__ ## ASTModel [[autodoc]] ASTModel - forward ## ASTForAudioClassification [[autodoc]] ASTForAudioClassification - forward
transformers/docs/source/ja/model_doc/audio-spectrogram-transformer.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/audio-spectrogram-transformer.md", "repo_id": "transformers", "token_count": 2249 }
28
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Blenderbot Small [`BlenderbotSmallModel`] と [`BlenderbotSmallForConditionalGeneration`] はチェックポイントと組み合わせてのみ使用されます [facebook/blenderbot-90M](https://huggingface.co/facebook/blenderbot-90M)。より大規模な Blenderbot チェックポイントは、 代わりに [`BlenderbotModel`] とともに使用してください。 [`BlenderbotForConditionalGeneration`] ## Overview Blender チャットボット モデルは、[Recipes for building an open-domain chatbot](https://arxiv.org/pdf/2004.13637.pdf) Stephen Roller、Emily Dinan、Naman Goyal、Da Ju、Mary Williamson、yinghan Liu、で提案されました。 ジン・シュー、マイル・オット、カート・シャスター、エリック・M・スミス、Y-ラン・ブーロー、ジェイソン・ウェストン、2020年4月30日。 論文の要旨は次のとおりです。 *オープンドメインのチャットボットの構築は、機械学習研究にとって難しい分野です。これまでの研究では次のことが示されていますが、 ニューラル モデルをパラメーターの数とトレーニング対象のデータのサイズでスケーリングすると、結果が向上します。 高性能のチャットボットには他の要素も重要であることを示します。良い会話には多くのことが必要です 会話の専門家がシームレスに融合するスキル: 魅力的な話のポイントを提供し、話を聞く 一貫した態度を維持しながら、知識、共感、個性を適切に表現する ペルソナ。適切なトレーニング データと選択が与えられた場合、大規模モデルがこれらのスキルを学習できることを示します。 世代戦略。 90M、2.7B、9.4B パラメーター モデルを使用してこれらのレシピのバリアントを構築し、モデルを作成します。 コードは公開されています。人間による評価では、当社の最良のモデルが既存のアプローチよりも優れていることがマルチターンで示されています 魅力と人間性の測定という観点からの対話。次に、分析によってこの作業の限界について説明します。 弊社機種の故障事例* チップ: - Blenderbot Small は絶対位置埋め込みを備えたモデルなので、通常は入力を右側にパディングすることをお勧めします。 左。 このモデルは、[patrickvonplaten](https://huggingface.co/patrickvonplaten) によって提供されました。著者のコードは次のとおりです [ここ](https://github.com/facebookresearch/ParlAI) をご覧ください。 ## Documentation resources - [因果言語モデリング タスク ガイド](../tasks/language_modeling) - [翻訳タスクガイド](../tasks/translation) - [要約タスクガイド](../tasks/summarization) ## BlenderbotSmallConfig [[autodoc]] BlenderbotSmallConfig ## BlenderbotSmallTokenizer [[autodoc]] BlenderbotSmallTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## BlenderbotSmallTokenizerFast [[autodoc]] BlenderbotSmallTokenizerFast ## BlenderbotSmallModel [[autodoc]] BlenderbotSmallModel - forward ## BlenderbotSmallForConditionalGeneration [[autodoc]] BlenderbotSmallForConditionalGeneration - forward ## BlenderbotSmallForCausalLM [[autodoc]] BlenderbotSmallForCausalLM - forward ## TFBlenderbotSmallModel [[autodoc]] TFBlenderbotSmallModel - call ## TFBlenderbotSmallForConditionalGeneration [[autodoc]] TFBlenderbotSmallForConditionalGeneration - call ## FlaxBlenderbotSmallModel [[autodoc]] FlaxBlenderbotSmallModel - __call__ - encode - decode ## FlaxBlenderbotForConditionalGeneration [[autodoc]] FlaxBlenderbotSmallForConditionalGeneration - __call__ - encode - decode
transformers/docs/source/ja/model_doc/blenderbot-small.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/blenderbot-small.md", "repo_id": "transformers", "token_count": 1831 }
29
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # CodeLlama ## Overview Code Llama モデルはによって [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) で提案されました。 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve. 論文の要約は次のとおりです。 *私たちは Code Llama をリリースします。これは Llama 2 に基づくコードの大規模言語モデル ファミリであり、オープン モデルの中で最先端のパフォーマンス、埋め込み機能、大規模な入力コンテキストのサポート、プログラミング タスクのゼロショット命令追従機能を提供します。 。幅広いアプリケーションをカバーするための複数のフレーバーを提供しています。基盤モデル (Code Llama)、Python 特化 (Code Llama - Python)、およびそれぞれ 7B、13B、および 34B パラメーターを備えた命令追従モデル (Code Llama - Instruct) です。すべてのモデルは 16,000 トークンのシーケンスでトレーニングされ、最大 100,000 トークンの入力で改善が見られます。 7B および 13B コード ラマとコード ラマ - 命令バリアントは、周囲のコンテンツに基づいた埋め込みをサポートします。 Code Llama は、いくつかのコード ベンチマークでオープン モデルの中で最先端のパフォーマンスに達し、HumanEval と MBPP でそれぞれ最大 53% と 55% のスコアを獲得しました。特に、Code Llama - Python 7B は HumanEval および MBPP 上で Llama 2 70B よりも優れたパフォーマンスを示し、すべてのモデルは MultiPL-E 上で公開されている他のすべてのモデルよりも優れています。私たちは、研究と商業利用の両方を許可する寛容なライセンスに基づいて Code Llama をリリースしています。* すべての Code Llama モデル チェックポイントを [こちら](https://huggingface.co/models?search=code_llama) で確認し、[codellama org](https://huggingface.co/codellama) で正式にリリースされたチェックポイントを確認してください。 このモデルは [ArthurZucker](https://huggingface.co/ArthurZ) によって提供されました。著者のオリジナルのコードは [こちら](https://github.com/facebookresearch/llama) にあります。 ## Usage tips and examples <Tip warning={true}> Code Llama のベースとなる`Llama2`ファミリー モデルは、`bfloat16`を使用してトレーニングされましたが、元の推論では`float16`を使用します。さまざまな精度を見てみましょう。 * `float32`: モデルの初期化に関する PyTorch の規約では、モデルの重みがどの `dtype` で格納されたかに関係なく、モデルを `float32` にロードします。 「transformers」も、PyTorch との一貫性を保つためにこの規則に従っています。これはデフォルトで選択されます。 `AutoModel` API でストレージの重み付けタイプを使用してチェックポイントのロードをキャストする場合は、`torch_dtype="auto"` を指定する必要があります。 `model = AutoModelForCausalLM.from_pretrained("path", torch_dtype = "auto")`。 * `bfloat16`: コード Llama はこの精度でトレーニングされているため、さらなるトレーニングや微調整に使用することをお勧めします。 * `float16`: この精度を使用して推論を実行することをお勧めします。通常は `bfloat16` より高速であり、評価メトリクスには `bfloat16` と比べて明らかな低下が見られないためです。 bfloat16 を使用して推論を実行することもできます。微調整後、float16 と bfloat16 の両方で推論結果を確認することをお勧めします。 上で述べたように、モデルを初期化するときに `torch_dtype="auto"` を使用しない限り、ストレージの重みの `dtype` はほとんど無関係です。その理由は、モデルが最初にダウンロードされ (オンラインのチェックポイントの `dtype` を使用)、次に `torch` のデフォルトの `dtype` にキャストされるためです (`torch.float32` になります)。指定された `torch_dtype` がある場合は、代わりにそれが使用されます。 </Tip> チップ: - 充填タスクはすぐにサポートされます。入力を埋めたい場所には `tokenizer.fill_token` を使用する必要があります。 - モデル変換スクリプトは、`Llama2` ファミリの場合と同じです。 使用例は次のとおりです。 ```bash python src/transformers/models/llama/convert_llama_weights_to_hf.py \ --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path ``` スクリプトを実行するには、(最大のバージョンであっても) float16 精度でモデル全体をホストするのに十分な CPU RAM が必要であることに注意してください。 いくつかのチェックポイントがあり、それぞれにモデルの各重みの一部が含まれているため、すべてを RAM にロードする必要があります)。 変換後、モデルとトークナイザーは次の方法でロードできます。 ```python >>> from transformers import LlamaForCausalLM, CodeLlamaTokenizer >>> tokenizer = CodeLlamaTokenizer.from_pretrained("codellama/CodeLlama-7b-hf") >>> model = LlamaForCausalLM.from_pretrained("codellama/CodeLlama-7b-hf") >>> PROMPT = '''def remove_non_ascii(s: str) -> str: """ <FILL_ME> return result ''' >>> input_ids = tokenizer(PROMPT, return_tensors="pt")["input_ids"] >>> generated_ids = model.generate(input_ids, max_new_tokens=128) >>> filling = tokenizer.batch_decode(generated_ids[:, input_ids.shape[1]:], skip_special_tokens = True)[0] >>> print(PROMPT.replace("<FILL_ME>", filling)) def remove_non_ascii(s: str) -> str: """ Remove non-ASCII characters from a string. Args: s: The string to remove non-ASCII characters from. Returns: The string with non-ASCII characters removed. """ result = "" for c in s: if ord(c) < 128: result += c return result ``` 塗りつぶされた部分だけが必要な場合: ```python >>> from transformers import pipeline >>> import torch >>> generator = pipeline("text-generation",model="codellama/CodeLlama-7b-hf",torch_dtype=torch.float16, device_map="auto") >>> generator('def remove_non_ascii(s: str) -> str:\n """ <FILL_ME>\n return result', max_new_tokens = 128, return_type = 1) ``` 内部では、トークナイザーが [`<FILL_ME>` によって自動的に分割](https://huggingface.co/docs/transformers/main/model_doc/code_llama#transformers.CodeLlamaTokenizer.fill_token) して、[ に続く書式設定された入力文字列を作成します。オリジナルのトレーニング パターン](https://github.com/facebookresearch/codellama/blob/cb51c14ec761370ba2e2bc351374a79265d0465e/llama/generation.py#L402)。これは、パターンを自分で準備するよりも堅牢です。トークンの接着など、デバッグが非常に難しい落とし穴を回避できます。このモデルまたは他のモデルに必要な CPU および GPU メモリの量を確認するには、その値を決定するのに役立つ [この計算ツール](https://huggingface.co/spaces/hf-accelerate/model-memory-usage) を試してください。 LLaMA トークナイザーは、[sentencepiece](https://github.com/google/sentencepiece) に基づく BPE モデルです。センテンスピースの癖の 1 つは、シーケンスをデコードするときに、最初のトークンが単語の先頭 (例: 「Banana」) である場合、トークナイザーは文字列の先頭にプレフィックス スペースを追加しないことです。 <Tip> コード Llama は、`Llama2` モデルと同じアーキテクチャを持っています。API リファレンスについては、[Llama2 のドキュメント ページ](llama2) を参照してください。 以下の Code Llama トークナイザーのリファレンスを見つけてください。 </Tip> ## CodeLlamaTokenizer [[autodoc]] CodeLlamaTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## CodeLlamaTokenizerFast [[autodoc]] CodeLlamaTokenizerFast - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - update_post_processor - save_vocabulary
transformers/docs/source/ja/model_doc/code_llama.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/code_llama.md", "repo_id": "transformers", "token_count": 4010 }
30
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # DePlot ## Overview DePlot は、Fangyu Liu、Julian Martin Aisenschlos、Francesco Piccinno、Syrine Krichene、Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. の論文 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) で提案されました。パン・ 論文の要約には次のように記載されています。 *チャートやプロットなどの視覚言語は人間の世界に遍在しています。プロットやチャートを理解するには、強力な推論スキルが必要です。従来の最先端 (SOTA) モデルには少なくとも数万のトレーニング サンプルが必要であり、その推論能力は、特に人間が作成した複雑なクエリでは依然として大幅に制限されています。この論文では、視覚言語推論に対する最初のワンショット ソリューションを紹介します。私たちは、視覚言語推論の課題を 2 つのステップに分解します。(1) プロットからテキストへの翻訳と、(2) 翻訳されたテキストに対する推論です。この方法の鍵となるのは、プロットまたはチャートの画像を線形化されたテーブルに変換する、DePlot という名前のモダリティ変換モジュールです。その後、DePlot の出力を直接使用して、事前トレーニング済みの大規模言語モデル (LLM) をプロンプトし、LLM の少数ショット推論機能を利用できます。 DePlot を取得するには、統一されたタスク形式とメトリクスを確立することでプロットからテーブルへのタスクを標準化し、このタスクで DePlot をエンドツーエンドでトレーニングします。 DePlot は、プラグアンドプレイ方式で LLM とともに既製で使用できます。 28,000 を超えるデータ ポイントで微調整された SOTA モデルと比較して、ワンショット プロンプトのみを使用する DePlot+LLM は、チャート QA タスクからの人が作成したクエリに関して、微調整された SOTA より 24.0% の改善を達成しました。* DePlot は、`Pix2Struct` アーキテクチャを使用してトレーニングされたモデルです。 `Pix2Struct` の詳細については、[Pix2Struct ドキュメント](https://huggingface.co/docs/transformers/main/en/model_doc/pix2struct) を参照してください。 DePlot は、`Pix2Struct` アーキテクチャの Visual Question Answering サブセットです。入力された質問を画像上にレンダリングし、答えを予測します。 ## Usage example 現在、DePlot で使用できるチェックポイントは 1 つです。 - `google/deplot`: ChartQA データセットで微調整された DePlot ```python from transformers import AutoProcessor, Pix2StructForConditionalGeneration import requests from PIL import Image model = Pix2StructForConditionalGeneration.from_pretrained("google/deplot") processor = AutoProcessor.from_pretrained("google/deplot") url = "https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/5090.png" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(images=image, text="Generate underlying data table of the figure below:", return_tensors="pt") predictions = model.generate(**inputs, max_new_tokens=512) print(processor.decode(predictions[0], skip_special_tokens=True)) ``` ## Fine-tuning DePlot を微調整するには、pix2struct [微調整ノートブック](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_pix2struct.ipynb) を参照してください。 `Pix2Struct` モデルの場合、Adafactor とコサイン学習率スケジューラを使用してモデルを微調整すると、収束が高速化されることがわかりました。 ```python from transformers.optimization import Adafactor, get_cosine_schedule_with_warmup optimizer = Adafactor(self.parameters(), scale_parameter=False, relative_step=False, lr=0.01, weight_decay=1e-05) scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=1000, num_training_steps=40000) ``` <Tip> DePlot は、`Pix2Struct`アーキテクチャを使用してトレーニングされたモデルです。 API リファレンスについては、[`Pix2Struct` ドキュメント](pix2struct) を参照してください。 </Tip>
transformers/docs/source/ja/model_doc/deplot.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/deplot.md", "repo_id": "transformers", "token_count": 2027 }
31
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Train with a script 🤗 Transformersの[notebooks](./notebooks/README)と一緒に、[PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch)、[TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow)、または[JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax)を使用してモデルをトレーニングする方法を示すサンプルスクリプトもあります。 また、私たちの[研究プロジェクト](https://github.com/huggingface/transformers/tree/main/examples/research_projects)や[レガシーの例](https://github.com/huggingface/transformers/tree/main/examples/legacy)で使用したスクリプトも見つかります。これらのスクリプトは現在メンテナンスされておらず、おそらく最新バージョンのライブラリと互換性がない特定の🤗 Transformersのバージョンが必要です。 サンプルスクリプトはすべての問題でそのまま動作することは期待されておらず、解決しようとしている問題にスクリプトを適応させる必要があるかもしれません。この点をサポートするために、ほとんどのスクリプトはデータがどのように前処理されているかを完全に公開し、必要に応じて編集できるようにしています。 サンプルスクリプトで実装したい機能がある場合は、[フォーラム](https://discuss.huggingface.co/)か[イシュートラッカー](https://github.com/huggingface/transformers/issues)で議論してからプルリクエストを提出してください。バグ修正は歓迎しますが、読みやすさのコストで機能を追加するプルリクエストはほとんどマージされない可能性が高いです。 このガイドでは、[PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization)と[TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization)で実行するサマリゼーショントレーニングスクリプトの実行方法を示します。すべての例は、明示的に指定されていない限り、両方のフレームワークともに動作することが期待されています。 ## Setup 最新バージョンのサンプルスクリプトを正常に実行するには、新しい仮想環境に🤗 Transformersをソースからインストールする必要があります: ```bash git clone https://github.com/huggingface/transformers cd transformers pip install . ``` 以前のスクリプトのバージョンについては、以下のトグルをクリックしてください: <details> <summary>以前の🤗 Transformersのバージョンに関する例</summary> <ul> <li><a href="https://github.com/huggingface/transformers/tree/v4.5.1/examples">v4.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.4.2/examples">v4.4.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.3.3/examples">v4.3.3</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.2.2/examples">v4.2.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.1.1/examples">v4.1.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.0.1/examples">v4.0.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.5.1/examples">v3.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.4.0/examples">v3.4.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.3.1/examples">v3.3.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.2.0/examples">v3.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.1.0/examples">v3.1.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.0.2/examples">v3.0.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.11.0/examples">v2.11.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.10.0/examples">v2.10.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.9.1/examples">v2.9.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.8.0/examples">v2.8.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.7.0/examples">v2.7.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.6.0/examples">v2.6.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.5.1/examples">v2.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.4.0/examples">v2.4.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.3.0/examples">v2.3.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.2.0/examples">v2.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.1.0/examples">v2.1.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.0.0/examples">v2.0.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.2.0/examples">v1.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.1.0/examples">v1.1.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.0.0/examples">v1.0.0</a></li> </ul> </details> 次に、現在の🤗 Transformersのクローンを特定のバージョンに切り替えてください。たとえば、v3.5.1などです。 ```bash git checkout tags/v3.5.1 ``` 適切なライブラリバージョンを設定したら、任意の例のフォルダに移動し、例固有の要件をインストールします: ```bash pip install -r requirements.txt ``` ## Run a script <frameworkcontent> <pt> この例のスクリプトは、🤗 [Datasets](https://huggingface.co/docs/datasets/) ライブラリからデータセットをダウンロードし、前処理を行います。次に、[Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) を使用して要約をサポートするアーキテクチャ上でデータセットをファインチューニングします。以下の例では、[CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) データセット上で [T5-small](https://huggingface.co/google-t5/t5-small) をファインチューニングする方法が示されています。T5 モデルは、そのトレーニング方法に起因して追加の `source_prefix` 引数が必要です。このプロンプトにより、T5 はこれが要約タスクであることを知ることができます。 ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` </pt> <tf> この例のスクリプトは、🤗 [Datasets](https://huggingface.co/docs/datasets/) ライブラリからデータセットをダウンロードして前処理します。その後、スクリプトは要約をサポートするアーキテクチャ上で Keras を使用してデータセットをファインチューニングします。以下の例では、[T5-small](https://huggingface.co/google-t5/t5-small) を [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) データセットでファインチューニングする方法を示しています。T5 モデルは、そのトレーニング方法に起因して追加の `source_prefix` 引数が必要です。このプロンプトは、T5 にこれが要約タスクであることを知らせます。 ```bash python examples/tensorflow/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 16 \ --num_train_epochs 3 \ --do_train \ --do_eval ``` </tf> </frameworkcontent> ## Distributed training and mixed precision [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer)は、分散トレーニングと混合精度をサポートしています。つまり、この機能をスクリプトで使用することができます。これらの機能を有効にするには、次の手順を実行します。 - `fp16`引数を追加して混合精度を有効にします。 - `nproc_per_node`引数で使用するGPUの数を設定します。 以下は提供されたBashコードです。このコードの日本語訳をMarkdown形式で記載します。 ```bash torchrun \ --nproc_per_node 8 pytorch/summarization/run_summarization.py \ --fp16 \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` TensorFlowスクリプトは、分散トレーニングに[`MirroredStrategy`](https://www.tensorflow.org/guide/distributed_training#mirroredstrategy)を使用し、トレーニングスクリプトに追加の引数を追加する必要はありません。TensorFlowスクリプトは、デフォルトで複数のGPUが利用可能な場合にそれらを使用します。 ## Run a script on a TPU <frameworkcontent> <pt> Tensor Processing Units (TPUs)は、パフォーマンスを加速させるために特別に設計されています。PyTorchは、[XLA](https://www.tensorflow.org/xla)ディープラーニングコンパイラを使用してTPUsをサポートしており、詳細については[こちら](https://github.com/pytorch/xla/blob/master/README.md)をご覧ください。TPUを使用するには、`xla_spawn.py`スクリプトを起動し、`num_cores`引数を使用して使用するTPUコアの数を設定します。 ```bash python xla_spawn.py --num_cores 8 \ summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` </pt> <tf> もちろん、Tensor Processing Units(TPUs)は性能を高速化するために特別に設計されています。TensorFlowスクリプトは、TPUsでトレーニングするために[`TPUStrategy`](https://www.tensorflow.org/guide/distributed_training#tpustrategy)を利用します。TPUを使用するには、TPUリソースの名前を`tpu`引数に渡します。 ```bash python run_summarization.py \ --tpu name_of_tpu_resource \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 16 \ --num_train_epochs 3 \ --do_train \ --do_eval ``` </tf> </frameworkcontent> ## Run a script with 🤗 Accelerate 🤗 [Accelerate](https://huggingface.co/docs/accelerate)は、PyTorch専用のライブラリで、CPUのみ、複数のGPU、TPUなど、さまざまなセットアップでモデルをトレーニングするための統一された方法を提供します。PyTorchのトレーニングループを完全に可視化しながら実行できます。まだインストールしていない場合は、🤗 Accelerateをインストールしてください: > 注意:Accelerateは急速に開発が進行しているため、スクリプトを実行するにはaccelerateのgitバージョンをインストールする必要があります ```bash pip install git+https://github.com/huggingface/accelerate ``` 代わりに、`run_summarization_no_trainer.py` スクリプトを使用する必要があります。 🤗 Accelerate がサポートするスクリプトには、フォルダ内に `task_no_trainer.py` ファイルが含まれています。まず、次のコマンドを実行して設定ファイルを作成し、保存します: ```bash accelerate config ``` テストを行い、設定が正しく構成されているか確認してください: ```bash accelerate test ``` Now you are ready to launch the training: ```bash accelerate launch run_summarization_no_trainer.py \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir ~/tmp/tst-summarization ``` ## Use a custom dataset 要約スクリプトは、CSVまたはJSON Lineファイルであれば、カスタムデータセットをサポートしています。独自のデータセットを使用する場合、いくつかの追加の引数を指定する必要があります。 - `train_file`および`validation_file`は、トレーニングとバリデーションのファイルへのパスを指定します。 - `text_column`は要約するための入力テキストです。 - `summary_column`は出力する対象テキストです。 カスタムデータセットを使用した要約スクリプトは、以下のようになります: ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --train_file path_to_csv_or_jsonlines_file \ --validation_file path_to_csv_or_jsonlines_file \ --text_column text_column_name \ --summary_column summary_column_name \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --overwrite_output_dir \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --predict_with_generate ``` ## Test a script すべてが予想通りに動作することを確認するために、データセット全体を処理する前に、データセットの一部の例でスクリプトを実行することは良いアイデアです。以下の引数を使用して、データセットを最大サンプル数に切り詰めます: - `max_train_samples` - `max_eval_samples` - `max_predict_samples` ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --max_train_samples 50 \ --max_eval_samples 50 \ --max_predict_samples 50 \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` 一部の例のスクリプトは、`max_predict_samples`引数をサポートしていないことがあります。この引数がサポートされているかどうかがわからない場合は、`-h`引数を追加して確認してください。 ```bash examples/pytorch/summarization/run_summarization.py -h ``` ## Resume training from checkpoint 以前のチェックポイントからトレーニングを再開するための役立つオプションもあります。これにより、トレーニングが中断された場合でも、最初からやり直すことなく、中断したところから再開できます。チェックポイントからトレーニングを再開するための2つの方法があります。 最初の方法は、`output_dir previous_output_dir` 引数を使用して、`output_dir` に保存された最新のチェックポイントからトレーニングを再開する方法です。この場合、`overwrite_output_dir` を削除する必要があります: ```bash python examples/pytorch/summarization/run_summarization.py --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --output_dir previous_output_dir \ --predict_with_generate ``` 2番目の方法では、`resume_from_checkpoint path_to_specific_checkpoint` 引数を使用して、特定のチェックポイントフォルダからトレーニングを再開します。 ```bash python examples/pytorch/summarization/run_summarization.py --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --resume_from_checkpoint path_to_specific_checkpoint \ --predict_with_generate ``` ## Share your model すべてのスクリプトは、最終的なモデルを [Model Hub](https://huggingface.co/models) にアップロードできます。開始する前に Hugging Face にログインしていることを確認してください。 ```bash huggingface-cli login ``` 次に、スクリプトに `push_to_hub` 引数を追加します。この引数は、Hugging Face のユーザー名と `output_dir` で指定したフォルダ名でリポジトリを作成します。 特定の名前をリポジトリに付けるには、`push_to_hub_model_id` 引数を使用して追加します。このリポジトリは自動的にあなたの名前空間の下にリストされます。 以下の例は、特定のリポジトリ名でモデルをアップロードする方法を示しています: ```bash python examples/pytorch/summarization/run_summarization.py --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --push_to_hub \ --push_to_hub_model_id finetuned-t5-cnn_dailymail \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ```
transformers/docs/source/ja/run_scripts.md/0
{ "file_path": "transformers/docs/source/ja/run_scripts.md", "repo_id": "transformers", "token_count": 8250 }
32
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # LLM prompting guide [[open-in-colab]] Falcon、LLaMA などの大規模言語モデルは、事前にトレーニングされたトランスフォーマー モデルであり、最初は予測するようにトレーニングされています。 入力テキストが与えられた場合の次のトークン。通常、数十億のパラメータがあり、何兆ものパラメータでトレーニングされています。 長期間のトークン。その結果、これらのモデルは非常に強力で多用途になり、次のようなことが可能になります。 自然言語プロンプトでモデルに指示することで、すぐに複数の NLP タスクを解決できます。 最適な出力を保証するためにこのようなプロンプトを設計することは、多くの場合「プロンプト エンジニアリング」と呼ばれます。プロンプトエンジニアリングとは、 かなりの量の実験を必要とする反復プロセス。自然言語ははるかに柔軟で表現力豊かです ただし、プログラミング言語よりもあいまいさが生じる可能性があります。同時に、自然言語によるプロンプト 変化にはかなり敏感です。プロンプトにわずかな変更を加えただけでも、出力が大幅に異なる場合があります。 すべてのケースに適合するプロンプトを作成するための正確なレシピはありませんが、研究者はいくつかの最良のレシピを考案しました。 最適な結果をより一貫して達成するのに役立つ実践。 このガイドでは、より優れた LLM プロンプトを作成し、さまざまな NLP タスクを解決するのに役立つプロンプト エンジニアリングのベスト プラクティスについて説明します。 次のことを学びます: - [プロンプトの基本](#basics-of-prompting) - [LLM プロンプトのベスト プラクティス](#best-practices-of-llm-prompting) - [高度なプロンプト テクニック: 数回のプロンプトと思考の連鎖](#advanced-prompting-techniques) - [プロンプトを表示する代わりに微調整する場合](#prompting-vs-fine-tuning) <Tip> 迅速なエンジニアリングは、LLM 出力最適化プロセスの一部にすぎません。もう 1 つの重要な要素は、 最適なテキスト生成戦略。 LLM が生成時に後続の各トークンを選択する方法をカスタマイズできます。 トレーニング可能なパラメータを一切変更せずにテキストを作成します。テキスト生成パラメータを微調整することで、 生成されたテキストに繰り返しが含まれているため、より一貫性があり人間らしい響きになります。 テキスト生成戦略とパラメーターはこのガイドの範囲外ですが、これらのトピックについて詳しくは、次のトピックを参照してください。 次のガイド: * [LLM による生成](../llm_tutorial) * [テキスト生成戦略](../generation_strategies) </Tip> ## Basics of prompting ### Types of models 最新の LLM の大部分は、デコーダ専用のトランスフォーマーです。例としては、[LLaMA](../model_doc/llama)、 [Llama2](../model_doc/llama2)、[Falcon](../model_doc/falcon)、[GPT2](../model_doc/gpt2)。ただし、遭遇する可能性があります エンコーダ デコーダ トランスフォーマ LLM も同様です。たとえば、[Flan-T5](../model_doc/flan-t5) や [BART](../model_doc/bart) です。 エンコーダ デコーダ スタイルのモデルは通常、出力が入力に**大きく**依存する生成タスクで使用されます。 たとえば、翻訳と要約です。デコーダ専用モデルは、他のすべてのタイプの生成タスクに使用されます。 パイプラインを使用して LLM でテキストを生成する場合、使用している LLM のタイプを知ることが重要です。 異なるパイプラインを使用します。 `text-generation`パイプラインを使用してデコーダのみのモデルで推論を実行します。 ```python >>> from transformers import pipeline >>> import torch >>> torch.manual_seed(0) # doctest: +IGNORE_RESULT >>> generator = pipeline('text-generation', model = 'openai-community/gpt2') >>> prompt = "Hello, I'm a language model" >>> generator(prompt, max_length = 30) [{'generated_text': "Hello, I'm a language model expert, so I'm a big believer in the concept that I know very well and then I try to look into"}] ``` エンコーダー/デコーダーを使用して推論を実行するには、`text2text-generation` パイプラインを使用します。 ```python >>> text2text_generator = pipeline("text2text-generation", model = 'google/flan-t5-base') >>> prompt = "Translate from English to French: I'm very happy to see you" >>> text2text_generator(prompt) [{'generated_text': 'Je suis très heureuse de vous rencontrer.'}] ``` ### Base vs instruct/chat models 🤗 Hub で利用できる最近の LLM チェックポイントのほとんどには、base と instruct (または chat) の 2 つのバージョンがあります。例えば、 [`tiiuae/falcon-7b`](https://huggingface.co/tiiuae/falcon-7b) および [`tiiuae/falcon-7b-instruct`](https://huggingface.co/tiiuae/falcon-7b) -指示する)。 基本モデルは、最初のプロンプトが与えられたときにテキストを完成させるのには優れていますが、NLP タスクには理想的ではありません。 指示に従う必要がある場合、または会話で使用する場合に使用します。ここで、指示 (チャット) バージョンが登場します。 これらのチェックポイントは、命令と会話データに基づいて事前トレーニングされたベース バージョンをさらに微調整した結果です。 この追加の微調整により、多くの NLP タスクにとってより適切な選択肢になります。 [`tiiuae/falcon-7b-instruct`](https://huggingface.co/tiiuae/falcon-7b-instruct) で使用できるいくつかの簡単なプロンプトを示してみましょう。 いくつかの一般的な NLP タスクを解決します。 ### NLP tasks まず、環境をセットアップしましょう。 ```bash pip install -q transformers accelerate ``` 次に、適切なパイプライン (`text_generation`) を使用してモデルをロードしましょう。 ```python >>> from transformers import pipeline, AutoTokenizer >>> import torch >>> torch.manual_seed(0) # doctest: +IGNORE_RESULT >>> model = "tiiuae/falcon-7b-instruct" >>> tokenizer = AutoTokenizer.from_pretrained(model) >>> pipe = pipeline( ... "text-generation", ... model=model, ... tokenizer=tokenizer, ... torch_dtype=torch.bfloat16, ... device_map="auto", ... ) ``` <Tip> Falcon モデルは `bfloat16` データ型を使用してトレーニングされたため、同じものを使用することをお勧めします。これには、最近の CUDA のバージョンに準拠しており、最新のカードで最適に動作します。 </Tip> パイプライン経由でモデルをロードしたので、プロンプトを使用して NLP タスクを解決する方法を見てみましょう。 #### Text classification テキスト分類の最も一般的な形式の 1 つはセンチメント分析であり、「ポジティブ」、「ネガティブ」、「ネガティブ」などのラベルを割り当てます。 または、一連のテキストに対して「中立」です。与えられたテキスト (映画レビュー) を分類するようにモデルに指示するプロンプトを作成してみましょう。 まず指示を与え、次に分類するテキストを指定します。そのままにしておくのではなく、 応答の先頭にも追加します - `"Sentiment: "`: ```python >>> torch.manual_seed(0) # doctest: +IGNORE_RESULT >>> prompt = """Classify the text into neutral, negative or positive. ... Text: This movie is definitely one of my favorite movies of its kind. The interaction between respectable and morally strong characters is an ode to chivalry and the honor code amongst thieves and policemen. ... Sentiment: ... """ >>> sequences = pipe( ... prompt, ... max_new_tokens=10, ... ) >>> for seq in sequences: ... print(f"Result: {seq['generated_text']}") Result: Classify the text into neutral, negative or positive. Text: This movie is definitely one of my favorite movies of its kind. The interaction between respectable and morally strong characters is an ode to chivalry and the honor code amongst thieves and policemen. Sentiment: Positive ``` その結果、出力には、手順で提供したリストの分類ラベルが含まれており、それは正しいラベルです。 <Tip> プロンプトに加えて、`max_new_tokens`パラメータを渡していることに気づくかもしれません。トークンの数を制御します。 モデルが生成します。これは、学習できる多くのテキスト生成パラメーターの 1 つです。 [テキスト生成戦略](../generation_strategies) ガイドを参照してください。 </Tip> #### Named Entity Recognition 固有表現認識 (NER) は、テキスト内の人物、場所、組織などの固有表現を検索するタスクです。 プロンプトの指示を変更して、LLM にこのタスクを実行させましょう。ここでは`return_full_text = False`も設定しましょう 出力にプロンプ​​トが含​​まれないようにします。 ```python >>> torch.manual_seed(1) # doctest: +IGNORE_RESULT >>> prompt = """Return a list of named entities in the text. ... Text: The Golden State Warriors are an American professional basketball team based in San Francisco. ... Named entities: ... """ >>> sequences = pipe( ... prompt, ... max_new_tokens=15, ... return_full_text = False, ... ) >>> for seq in sequences: ... print(f"{seq['generated_text']}") - Golden State Warriors - San Francisco ``` ご覧のとおり、モデルは指定されたテキストから 2 つの名前付きエンティティを正しく識別しました。 #### Translation LLM が実行できるもう 1 つのタスクは翻訳です。このタスクにはエンコーダー/デコーダー モデルを使用することを選択できますが、ここでは 例を簡単にするために、きちんとした仕事をする Falcon-7b-instruct を使い続けます。もう一度、方法は次のとおりです テキストの一部を英語からイタリア語に翻訳するようにモデルに指示する基本的なプロンプトを作成できます。 ```python >>> torch.manual_seed(2) # doctest: +IGNORE_RESULT >>> prompt = """Translate the English text to Italian. ... Text: Sometimes, I've believed as many as six impossible things before breakfast. ... Translation: ... """ >>> sequences = pipe( ... prompt, ... max_new_tokens=20, ... do_sample=True, ... top_k=10, ... return_full_text = False, ... ) >>> for seq in sequences: ... print(f"{seq['generated_text']}") A volte, ho creduto a sei impossibili cose prima di colazione. ``` ここでは、出力生成時にモデルがもう少し柔軟になるように `do_sample=True` と `top_k=10` を追加しました。 #### Text summarization 翻訳と同様に、テキストの要約も、出力が入力に**大きく**依存する生成タスクです。 エンコーダ/デコーダ モデルの方が良い選択になる可能性があります。ただし、デコーダ スタイルのモデルもこのタスクに使用できます。 以前は、プロンプトの先頭に指示を配置していました。ただし、プロンプトの最後で、 指示を与えるのに適した場所でもあります。通常、命令はどちらかの端に配置することをお勧めします。 ```python >>> torch.manual_seed(3) # doctest: +IGNORE_RESULT >>> prompt = """Permaculture is a design process mimicking the diversity, functionality and resilience of natural ecosystems. The principles and practices are drawn from traditional ecological knowledge of indigenous cultures combined with modern scientific understanding and technological innovations. Permaculture design provides a framework helping individuals and communities develop innovative, creative and effective strategies for meeting basic needs while preparing for and mitigating the projected impacts of climate change. ... Write a summary of the above text. ... Summary: ... """ >>> sequences = pipe( ... prompt, ... max_new_tokens=30, ... do_sample=True, ... top_k=10, ... return_full_text = False, ... ) >>> for seq in sequences: ... print(f"{seq['generated_text']}") Permaculture is an ecological design mimicking natural ecosystems to meet basic needs and prepare for climate change. It is based on traditional knowledge and scientific understanding. ``` #### Question answering 質問応答タスクの場合、プロンプトを次の論理コンポーネントに構造化できます: 指示、コンテキスト、質問、 先頭の単語またはフレーズ (`"Answer:"`) を使用して、モデルを操作して答えの生成を開始します。 ```python >>> torch.manual_seed(4) # doctest: +IGNORE_RESULT >>> prompt = """Answer the question using the context below. ... Context: Gazpacho is a cold soup and drink made of raw, blended vegetables. Most gazpacho includes stale bread, tomato, cucumbers, onion, bell peppers, garlic, olive oil, wine vinegar, water, and salt. Northern recipes often include cumin and/or pimentón (smoked sweet paprika). Traditionally, gazpacho was made by pounding the vegetables in a mortar with a pestle; this more laborious method is still sometimes used as it helps keep the gazpacho cool and avoids the foam and silky consistency of smoothie versions made in blenders or food processors. ... Question: What modern tool is used to make gazpacho? ... Answer: ... """ >>> sequences = pipe( ... prompt, ... max_new_tokens=10, ... do_sample=True, ... top_k=10, ... return_full_text = False, ... ) >>> for seq in sequences: ... print(f"Result: {seq['generated_text']}") Result: Modern tools are used, such as immersion blenders ``` #### Reasoning LLM にとって推論は最も困難なタスクの 1 つであり、良い結果を達成するには、多くの場合、次のような高度なプロンプト テクニックを適用する必要があります。 [Chain-of-thought](#chain-of-thought)。 基本的なプロンプトを使用して、単純な算術タスクに関するモデル推論を作成できるかどうか試してみましょう。 ```python >>> torch.manual_seed(5) # doctest: +IGNORE_RESULT >>> prompt = """There are 5 groups of students in the class. Each group has 4 students. How many students are there in the class?""" >>> sequences = pipe( ... prompt, ... max_new_tokens=30, ... do_sample=True, ... top_k=10, ... return_full_text = False, ... ) >>> for seq in sequences: ... print(f"Result: {seq['generated_text']}") Result: There are a total of 5 groups, so there are 5 x 4=20 students in the class. ``` 正しい!もう少し複雑さを増やして、基本的なプロンプトで問題を解決できるかどうかを確認してみましょう。 ```python >>> torch.manual_seed(6) # doctest: +IGNORE_RESULT >>> prompt = """I baked 15 muffins. I ate 2 muffins and gave 5 muffins to a neighbor. My partner then bought 6 more muffins and ate 2. How many muffins do we now have?""" >>> sequences = pipe( ... prompt, ... max_new_tokens=10, ... do_sample=True, ... top_k=10, ... return_full_text = False, ... ) >>> for seq in sequences: ... print(f"Result: {seq['generated_text']}") Result: The total number of muffins now is 21 ``` これは間違った答えです。12 である必要があります。この場合、プロンプトが基本的すぎるか、選択内容が原因である可能性があります。 結局のところ、Falcon の最小バージョンを選択しました。あらゆるサイズのモデルでは推論が困難ですが、より大きなモデルでは モデルのパフォーマンスが向上する可能性があります。 ## Best practices of LLM prompting ガイドのこのセクションでは、プロンプトの結果を改善する傾向にあるベスト プラクティスのリストをまとめました。 * 使用するモデルを選択する場合は、最新かつ最も機能的なモデルの方がパフォーマンスが向上する可能性があります。 * シンプルで短いプロンプトから始めて、そこから繰り返します。 * 指示はプロンプトの最初または最後に入力してください。大規模なコンテキストを扱う場合、モデルはさまざまな最適化を適用して、アテンションの複雑さが二次的に拡大するのを防ぎます。これにより、モデルはプロンプトの途中よりも最初または最後に注意を払うようになります。 * 指示と、それが適用されるテキストを明確に区別してください。これについては、次のセクションで詳しく説明します。 * タスクと望ましい結果 (その形式、長さ、スタイル、言語など) について具体的かつ説明的にします。 * 曖昧な説明や指示は避けてください。 *「何をしてはいけないか」という指示ではなく、「何をすべきか」という指示を優先します。 * 最初の単語を書いて (またはモデルの最初の文を始めて)、出力を正しい方向に「導き」ます。 * [Few-shot prompting](#few-shot-prompting) や [Chain-of-thought](#chain-of-thought) などの高度なテクニックを使用します。 * さまざまなモデルでプロンプトをテストして、その堅牢性を評価します。 * プロンプトのバージョンを確認し、パフォーマンスを追跡します。 ## Advanced prompting techniques ### Few-shot prompting 上記のセクションの基本的なプロンプトは、「ゼロショット」プロンプトの例です。つまり、モデルにはすでに与えられています。 指示とコンテキストはありますが、解決策を含む例はありません。通常、命令データセットに基づいて微調整された LLM このような「ゼロショット」タスクでも優れたパフォーマンスを発揮します。ただし、タスクがより複雑であったり微妙な点があったりする場合があります。 出力には、命令だけではモデルが理解できないいくつかの要件があります。この場合、次のことができます。 少数ショット プロンプトと呼ばれるテクニックを試してください。 少数ショット プロンプトでは、モデルにパフォーマンスを向上させるためのより多くのコンテキストを提供するプロンプト内の例が提供されます。 例では、例のパターンに従って出力を生成するようにモデルを条件付けします。 以下に例を示します。 ```python >>> torch.manual_seed(0) # doctest: +IGNORE_RESULT >>> prompt = """Text: The first human went into space and orbited the Earth on April 12, 1961. ... Date: 04/12/1961 ... Text: The first-ever televised presidential debate in the United States took place on September 28, 1960, between presidential candidates John F. Kennedy and Richard Nixon. ... Date:""" >>> sequences = pipe( ... prompt, ... max_new_tokens=8, ... do_sample=True, ... top_k=10, ... ) >>> for seq in sequences: ... print(f"Result: {seq['generated_text']}") Result: Text: The first human went into space and orbited the Earth on April 12, 1961. Date: 04/12/1961 Text: The first-ever televised presidential debate in the United States took place on September 28, 1960, between presidential candidates John F. Kennedy and Richard Nixon. Date: 09/28/1960 ``` 上記のコード スニペットでは、モデルへの目的の出力を示すために 1 つの例を使用しました。したがって、これは、 「ワンショット」プロンプト。ただし、タスクの複雑さに応じて、複数の例を使用する必要がある場合があります。 数回のプロンプト手法の制限: - LLM は例のパターンを理解できますが、これらの手法は複雑な推論タスクではうまく機能しません。 - 少数ショットのプロンプトでは、長いプロンプトを作成する必要があります。大量のトークンを含むプロンプトでは、計算量と待ち時間が増加する可能性があります。プロンプトの長さにも制限があります。 - 多くの例を与えると、モデルが学習するつもりのなかったパターンを学習することがあります。 3番目の映画レビューはいつも否定的だということ。 ### Chain-of-thought 思考連鎖 (CoT) プロンプトは、モデルを微調整して中間推論ステップを生成し、改善する手法です。 複雑な推論タスクの結果。 モデルを操作して推論ステップを生成するには、2 つの方法があります。 - 質問に対する詳細な回答を含む例を示し、問題に対処する方法をモデルに示すことで、数回のプロンプトを表示します。 - 「ステップごとに考えてみましょう」または「深呼吸して、問題をステップごとに解決してください」などのフレーズを追加してモデルに推論を指示します。 [推論セクション](#reasoning) のマフィンの例に CoT テクニックを適用し、より大きなモデルを使用すると、 [HuggingChat](https://huggingface.co/chat/)で遊べる(`tiiuae/falcon-180B-chat`)など、 推論結果は大幅に改善されます。 ```text Let's go through this step-by-step: 1. You start with 15 muffins. 2. You eat 2 muffins, leaving you with 13 muffins. 3. You give 5 muffins to your neighbor, leaving you with 8 muffins. 4. Your partner buys 6 more muffins, bringing the total number of muffins to 14. 5. Your partner eats 2 muffins, leaving you with 12 muffins. Therefore, you now have 12 muffins. ``` ## Prompting vs fine-tuning プロンプトを最適化することで優れた結果を達成できますが、モデルを微調整するかどうかについてはまだ思案するかもしれません。 あなたの場合にはもっとうまくいくでしょう。より小規模なモデルを微調整することが好ましいオプションである場合のいくつかのシナリオを次に示します。 - ドメインが LLM が事前にトレーニングされたものと大きく異なっており、広範なプロンプト最適化では十分な結果が得られませんでした。 - モデルが低リソース言語で適切に動作する必要があります。 - 厳格な規制の下にある機密データでモデルをトレーニングする必要があります。 - コスト、プライバシー、インフラストラクチャ、またはその他の制限により、小規模なモデルを使用する必要があります。 上記のすべての例で、十分な大きさのファイルをすでに持っているか、簡単に入手できるかを確認する必要があります。 ドメイン固有のデータセットを合理的なコストでモデルを微調整できます。十分な時間とリソースも必要になります モデルを微調整します。 上記の例が当てはまらない場合は、プロンプトを最適化する方が有益であることがわかります。
transformers/docs/source/ja/tasks/prompting.md/0
{ "file_path": "transformers/docs/source/ja/tasks/prompting.md", "repo_id": "transformers", "token_count": 9975 }
33
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Summary of the tokenizers [[open-in-colab]] このページでは、トークナイゼーションについて詳しく見ていきます。 <Youtube id="VFp38yj8h3A"/> [前処理のチュートリアル](preprocessing)で見たように、テキストをトークン化することは、それを単語またはサブワードに分割し、それらをルックアップテーブルを介してIDに変換することです。単語またはサブワードをIDに変換することは簡単ですので、この要約ではテキストを単語またはサブワードに分割する(つまり、テキストをトークナイズする)ことに焦点を当てます。具体的には、🤗 Transformersで使用される3つの主要なトークナイザ、[Byte-Pair Encoding(BPE)](#byte-pair-encoding)、[WordPiece](#wordpiece)、および[SentencePiece](#sentencepiece)を見て、どのモデルがどのトークナイザタイプを使用しているかの例を示します。 各モデルページでは、事前トレーニング済みモデルがどのトークナイザタイプを使用しているかを知るために、関連するトークナイザのドキュメントを確認できます。例えば、[`BertTokenizer`]を見ると、モデルが[WordPiece](#wordpiece)を使用していることがわかります。 ## Introduction テキストをより小さなチャンクに分割することは、見かけ以上に難しいタスクであり、複数の方法があります。例えば、次の文を考えてみましょう。「"Don't you love 🤗 Transformers? We sure do."」 <Youtube id="nhJxYji1aho"/> このテキストをトークン化する簡単な方法は、スペースで分割することです。これにより、以下のようになります: ``` ["Don't", "you", "love", "🤗", "Transformers?", "We", "sure", "do."] ``` これは合理的な第一歩ですが、トークン "Transformers?" と "do." を見ると、句読点が単語 "Transformer" と "do" に結合されていることがわかり、これは最適ではありません。句読点を考慮に入れるべきで、モデルが単語とそれに続く可能性のあるすべての句読点記号の異なる表現を学ばなければならないことを避けるべきです。これにより、モデルが学ばなければならない表現の数が爆発的に増加します。句読点を考慮に入れた場合、例文のトークン化は次のようになります: ``` ["Don", "'", "t", "you", "love", "🤗", "Transformers", "?", "We", "sure", "do", "."] ``` ただし、単語「"Don't"」をトークン化する方法に関しては、不利な側面があります。 「"Don't"」は「"do not"」を表しているため、「["Do", "n't"]」としてトークン化する方が適しています。ここから事柄が複雑になり、各モデルが独自のトークナイザータイプを持つ理由の一部でもあります。テキストをトークン化するために適用するルールに応じて、同じテキストに対して異なるトークナイズされた出力が生成されます。事前トレーニング済みモデルは、トレーニングデータをトークナイズするのに使用されたルールと同じルールでトークナイズされた入力を提供する場合にのみ正常に機能します。 [spaCy](https://spacy.io/)と[Moses](http://www.statmt.org/moses/?n=Development.GetStarted)は、2つの人気のあるルールベースのトークナイザーです。これらを私たちの例に適用すると、*spaCy*と*Moses*は次のような出力を生成します: ``` ["Do", "n't", "you", "love", "🤗", "Transformers", "?", "We", "sure", "do", "."] ``` 空白と句読点のトークン化、およびルールベースのトークン化が使用されていることがわかります。空白と句読点のトークン化、およびルールベースのトークン化は、文を単語に分割することをゆるやかに定義される単語トークン化の例です。テキストをより小さなチャンクに分割するための最も直感的な方法である一方、このトークン化方法は大規模なテキストコーパスに対して問題を引き起こすことがあります。この場合、空白と句読点のトークン化は通常、非常に大きな語彙(すべての一意な単語とトークンのセット)を生成します。例えば、[Transformer XL](model_doc/transformerxl)は空白と句読点のトークン化を使用しており、語彙サイズは267,735です! このような大きな語彙サイズは、モデルに非常に大きな埋め込み行列を入力および出力レイヤーとして持たせることを強制し、メモリおよび時間の複雑さの増加を引き起こします。一般的に、トランスフォーマーモデルは、特に単一の言語で事前トレーニングされた場合、50,000を超える語彙サイズを持つことはほとんどありません。 したがって、シンプルな空白と句読点のトークン化が不十分な場合、なぜ単に文字単位でトークン化しないのかという疑問が生じますか? <Youtube id="ssLq_EK2jLE"/> 文字単位のトークン化は非常にシンプルであり、メモリと時間の複雑さを大幅に削減できますが、モデルに意味のある入力表現を学習させることが非常に難しくなります。たとえば、文字「"t"」のための意味のあるコンテキスト独立の表現を学習することは、単語「"today"」のためのコンテキスト独立の表現を学習するよりもはるかに難しいです。そのため、文字単位のトークン化はしばしばパフォーマンスの低下を伴います。したがって、トランスフォーマーモデルは単語レベルと文字レベルのトークン化のハイブリッドである**サブワード**トークン化を使用して、両方の世界の利点を活かします。 ## Subword tokenization <Youtube id="zHvTiHr506c"/> サブワードトークン化アルゴリズムは、頻繁に使用される単語をより小さなサブワードに分割すべきではないが、珍しい単語は意味のあるサブワードに分解されるという原則に依存しています。たとえば、「"annoyingly"」は珍しい単語と見なされ、その単語は「"annoying"」と「"ly"」に分解されるかもしれません。独立した「"annoying"」と「"ly"」はより頻繁に現れますが、「"annoyingly"」の意味は「"annoying"」と「"ly"」の合成的な意味によって保持されます。これは特にトルコ語などの結合言語で役立ちます。ここではサブワードを連結して(ほぼ)任意の長い複雑な単語を形成できます。 サブワードトークン化により、モデルは合理的な語彙サイズを持つことができ、意味のあるコンテキスト独立の表現を学習できます。さらに、サブワードトークン化により、モデルは以前に見たことのない単語を処理し、それらを既知のサブワードに分解することができます。例えば、[`~transformers.BertTokenizer`]は`"I have a new GPU!"`を以下のようにトークン化します: ```py >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> tokenizer.tokenize("I have a new GPU!") ["i", "have", "a", "new", "gp", "##u", "!"] ``` 「uncased」モデルを考慮しているため、まず文を小文字に変換しました。トークナイザの語彙に「["i", "have", "a", "new"]」という単語が存在することがわかりますが、「"gpu"」という単語は存在しません。したがって、トークナイザは「"gpu"」を既知のサブワード「["gp"、"##u"]」に分割します。ここで「"##"」は、トークンのデコードまたはトークナイゼーションの逆転のために、トークンの前の部分にスペースなしで接続する必要があることを意味します。 別の例として、[`~transformers.XLNetTokenizer`]は以下のように以前のサンプルテキストをトークン化します: ```py >>> from transformers import XLNetTokenizer >>> tokenizer = XLNetTokenizer.from_pretrained("xlnet/xlnet-base-cased") >>> tokenizer.tokenize("Don't you love 🤗 Transformers? We sure do.") ["▁Don", "'", "t", "▁you", "▁love", "▁", "🤗", "▁", "Transform", "ers", "?", "▁We", "▁sure", "▁do", "."] ``` これらの「▁」の意味については、[SentencePiece](#sentencepiece)を見るときに詳しく説明します。ご覧の通り、「Transformers」という珍しい単語は、より頻繁に現れるサブワード「Transform」と「ers」に分割されています。 さて、異なるサブワードトークン化アルゴリズムがどのように動作するかを見てみましょう。これらのトークナイゼーションアルゴリズムはすべて、通常は対応するモデルがトレーニングされるコーパスで行われる形式のトレーニングに依存しています。 <a id='byte-pair-encoding'></a> ### Byte-Pair Encoding(BPE) Byte-Pair Encoding(BPE)は、[Neural Machine Translation of Rare Words with Subword Units(Sennrich et al., 2015)](https://arxiv.org/abs/1508.07909)で導入されました。BPEは、トレーニングデータを単語に分割するプリトークナイザに依存しています。プリトークナイゼーションは、空白のトークナイゼーションなど、非常に単純なものであることがあります。例えば、[GPT-2](model_doc/gpt2)、[RoBERTa](model_doc/roberta)です。より高度なプリトークナイゼーションには、ルールベースのトークナイゼーション([XLM](model_doc/xlm)、[FlauBERT](model_doc/flaubert)などが大部分の言語にMosesを使用)や、[GPT](model_doc/gpt)(Spacyとftfyを使用してトレーニングコーパス内の各単語の頻度を数える)などが含まれます。 プリトークナイゼーションの後、一意の単語セットが作成され、各単語がトレーニングデータで出現した頻度が決定されます。次に、BPEはベース語彙を作成し、ベース語彙の二つのシンボルから新しいシンボルを形成するためのマージルールを学習します。このプロセスは、語彙が所望の語彙サイズに達するまで続けられます。なお、所望の語彙サイズはトークナイザをトレーニングする前に定義するハイパーパラメータであることに注意してください。 例として、プリトークナイゼーションの後、次のセットの単語とその出現頻度が決定されたと仮定しましょう: ``` ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5) ``` したがって、ベース語彙は「["b", "g", "h", "n", "p", "s", "u"]」です。すべての単語をベース語彙のシンボルに分割すると、次のようになります: ``` ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) ``` その後、BPEは可能なすべてのシンボルペアの頻度を数え、最も頻繁に発生するシンボルペアを選択します。上記の例では、`"h"`の後に`"u"`が15回(`"hug"`の10回、`"hugs"`の5回)出現します。しかし、最も頻繁なシンボルペアは、合計で20回(`"u"`の10回、`"g"`の5回、`"u"`の5回)出現する`"u"`の後に`"g"`が続くシンボルペアです。したがって、トークナイザが最初に学習するマージルールは、`"u"`の後に`"g"`が続くすべての`"u"`シンボルを一緒にグループ化することです。次に、`"ug"`が語彙に追加されます。単語のセットは次になります: ``` ("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) ``` 次に、BPEは次に最も一般的なシンボルペアを識別します。それは「"u"」に続いて「"n"」で、16回出現します。したがって、「"u"」と「"n"」は「"un"」に結合され、語彙に追加されます。次に最も頻度の高いシンボルペアは、「"h"」に続いて「"ug"」で、15回出現します。再びペアが結合され、「hug」が語彙に追加できます。 この段階では、語彙は`["b", "g", "h", "n", "p", "s", "u", "ug", "un", "hug"]`であり、一意の単語のセットは以下のように表されます: ``` ("hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("hug" "s", 5) ``` 前提として、Byte-Pair Encoding(BPE)のトレーニングがこの段階で停止すると、学習されたマージルールが新しい単語に適用されます(新しい単語にはベースボキャブラリに含まれていないシンボルが含まれていない限り)。 例えば、単語 "bug" は ["b", "ug"] としてトークン化されますが、"mug" はベースボキャブラリに "m" シンボルが含まれていないため、["<unk>", "ug"] としてトークン化されます。 一般的に、"m" のような単一の文字は、トレーニングデータには通常、各文字の少なくとも1つの出現が含まれているため、"<unk>" シンボルに置き換えられることはありませんが、絵文字のような非常に特殊な文字の場合には発生する可能性があります。 前述のように、ボキャブラリサイズ、すなわちベースボキャブラリサイズ + マージの回数は選択するハイパーパラメータです。 例えば、[GPT](model_doc/gpt) はベース文字が478文字で、40,000回のマージ後にトレーニングを停止したため、ボキャブラリサイズは40,478です。 #### Byte-level BPE すべてのUnicode文字をベース文字と考えると、すべての可能なベース文字が含まれるかもしれないベースボキャブラリはかなり大きくなることがあります。 [GPT-2](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) は、ベースボキャブラリを256バイトにする賢いトリックとしてバイトをベースボキャブラリとして使用し、すべてのベース文字がボキャブラリに含まれるようにしています。 パンクチュエーションを扱うためのいくつかの追加ルールを備えたGPT2のトークナイザは、<unk> シンボルを必要とせずにすべてのテキストをトークン化できます。 [GPT-2](model_doc/gpt) は50,257のボキャブラリサイズを持っており、これは256バイトのベーストークン、特別なテキストの終了を示すトークン、および50,000回のマージで学習したシンボルに対応しています。 ### WordPiece WordPieceは、[BERT](model_doc/bert)、[DistilBERT](model_doc/distilbert)、および[Electra](model_doc/electra)で使用されるサブワードトークナイゼーションアルゴリズムです。 このアルゴリズムは、[Japanese and Korean Voice Search (Schuster et al., 2012)](https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37842.pdf) で概説されており、BPEに非常に似ています。 WordPieceは最も頻繁なシンボルペアを選択するのではなく、トレーニングデータに追加した場合にトレーニングデータの尤度を最大化するシンボルペアを選択します。 これは具体的にはどういう意味ですか?前の例を参照すると、トレーニングデータの尤度を最大化することは、そのシンボルペアの確率をその最初のシンボルに続く2番目のシンボルの確率で割ったものが、すべてのシンボルペアの中で最も大きい場合に該当するシンボルペアを見つけることに等しいです。 たとえば、"u" の後に "g" が続く場合、他のどのシンボルペアよりも "ug" の確率を "u"、"g" で割った確率が高ければ、それらのシンボルは結合されます。直感的に言えば、WordPieceは2つのシンボルを結合することによって失われるものを評価し、それがそれに値するかどうかを確認する点でBPEとはわずかに異なります。 ### Unigram Unigramは、[Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates (Kudo, 2018)](https://arxiv.org/pdf/1804.10959.pdf) で導入されたサブワードトークナイゼーションアルゴリズムです。 BPEやWordPieceとは異なり、Unigramはベースボキャブラリを多数のシンボルで初期化し、各シンボルを削減してより小さなボキャブラリを取得します。 ベースボキャブラリは、事前にトークン化されたすべての単語と最も一般的な部分文字列に対応する可能性があります。 Unigramはtransformersのモデルの直接の使用には適していませんが、[SentencePiece](#sentencepiece)と組み合わせて使用されます。 各トレーニングステップで、Unigramアルゴリズムは現在のボキャブラリとユニグラム言語モデルを使用してトレーニングデータ上の損失(通常は対数尤度として定義)を定義します。その後、ボキャブラリ内の各シンボルについて、そのシンボルがボキャブラリから削除された場合に全体の損失がどれだけ増加するかを計算します。 Unigramは、損失の増加が最も低いp(通常は10%または20%)パーセントのシンボルを削除します。つまり、トレーニングデータ全体の損失に最も影響を与えない、最も損失の少ないシンボルを削除します。 このプロセスは、ボキャブラリが望ましいサイズに達するまで繰り返されます。 Unigramアルゴリズムは常にベース文字を保持するため、任意の単語をトークン化できます。 Unigramはマージルールに基づいていないため(BPEとWordPieceとは対照的に)、トレーニング後の新しいテキストのトークン化にはいくつかの方法があります。例として、トレーニングされたUnigramトークナイザが持つボキャブラリが次のような場合: ``` ["b", "g", "h", "n", "p", "s", "u", "ug", "un", "hug"], ``` `"hugs"`は、`["hug", "s"]`、`["h", "ug", "s"]`、または`["h", "u", "g", "s"]`のようにトークン化できます。では、どれを選択すべきでしょうか? Unigramは、トレーニングコーパス内の各トークンの確率を保存し、トレーニング後に各可能なトークン化の確率を計算できるようにします。このアルゴリズムは実際には最も可能性の高いトークン化を選択しますが、確率に従って可能なトークン化をサンプリングするオプションも提供します。 これらの確率は、トークナイザーがトレーニングに使用する損失によって定義されます。トレーニングデータが単語 \\(x_{1}, \dots, x_{N}\\) で構成され、単語 \\(x_{i}\\) のすべての可能なトークン化のセットが \\(S(x_{i})\\) と定義される場合、全体の損失は次のように定義されます。 $$\mathcal{L} = -\sum_{i=1}^{N} \log \left ( \sum_{x \in S(x_{i})} p(x) \right )$$ <a id='sentencepiece'></a> ### SentencePiece これまでに説明したすべてのトークン化アルゴリズムには同じ問題があります。それは、入力テキストが単語を区切るためにスペースを使用していると仮定しているということです。しかし、すべての言語が単語を区切るためにスペースを使用しているわけではありません。この問題を一般的に解決するための1つの方法は、言語固有の前トークナイザーを使用することです(例:[XLM](model_doc/xlm)は特定の中国語、日本語、およびタイ語の前トークナイザーを使用しています)。より一般的にこの問題を解決するために、[SentencePiece:ニューラルテキスト処理のためのシンプルで言語非依存のサブワードトークナイザーおよびデトークナイザー(Kudo et al.、2018)](https://arxiv.org/pdf/1808.06226.pdf) は、入力を生の入力ストリームとして扱い、スペースを使用する文字のセットに含めます。それからBPEまたはunigramアルゴリズムを使用して適切な語彙を構築します。 たとえば、[`XLNetTokenizer`]はSentencePieceを使用しており、そのために前述の例で`"▁"`文字が語彙に含まれていました。SentencePieceを使用したデコードは非常に簡単で、すべてのトークンを単純に連結し、`"▁"`はスペースに置換されます。 ライブラリ内のすべてのtransformersモデルは、SentencePieceをunigramと組み合わせて使用します。SentencePieceを使用するモデルの例には、[ALBERT](model_doc/albert)、[XLNet](model_doc/xlnet)、[Marian](model_doc/marian)、および[T5](model_doc/t5)があります。
transformers/docs/source/ja/tokenizer_summary.md/0
{ "file_path": "transformers/docs/source/ja/tokenizer_summary.md", "repo_id": "transformers", "token_count": 9819 }
34
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # 🤗 Transformers에 기여하기 [[contribute-to-transformers]] 누구나 🤗 Transformers에 기여할 수 있으며, 우리는 모든 사람의 기여를 소중히 생각합니다. 코드 기여는 커뮤니티를 돕는 유일한 방법이 아닙니다. 질문에 답하거나 다른 사람을 도와 문서를 개선하는 것도 매우 가치가 있습니다. 🤗 Transformers를 널리 알리는 것도 큰 도움이 됩니다! 멋진 프로젝트들을 가능하게 한 🤗 Transformers 라이브러리에 대해 블로그 게시글에 언급하거나, 도움이 되었을 때마다 Twitter에 알리거나, 저장소에 ⭐️ 를 표시하여 감사 인사를 전해주세요. 어떤 방식으로 기여하든 [행동 규칙](https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md)을 숙지하고 존중해주세요. **이 안내서는 멋진 [scikit-learn 기여 안내서](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md)에서 큰 영감을 받았습니다.** ## 기여하는 방법 [[ways-to-contribute]] 여러 가지 방법으로 🤗 Transformers에 기여할 수 있습니다: * 기존 코드의 미해결된 문제를 수정합니다. * 버그 또는 새로 추가되길 원하는 기능과 관련된 이슈를 제출합니다. * 새로운 모델을 구현합니다. * 예제나 문서에 기여합니다. 어디서부터 시작할지 모르겠다면, [Good First Issue](https://github.com/huggingface/transformers/contribute) 목록을 확인해보세요. 이 목록은 초보자도 참여하기 쉬운 오픈 이슈 목록을 제공하며, 당신이 오픈소스에 처음으로 기여하는 데 큰 도움이 될 것입니다. 그저 작업하고 싶은 이슈에 댓글만 달아주면 됩니다. 조금 더 도전적인 작업을 원한다면, [Good Second Issue](https://github.com/huggingface/transformers/labels/Good%20Second%20Issue) 목록도 확인해보세요. 이미 당신이 잘 하고 있다고 생각되더라도, 한 번 시도해보세요! 우리도 여러분을 도울 것입니다. 🚀 > 커뮤니티에 이루어지는 모든 기여는 똑같이 소중합니다. 🥰 ## 미해결된 문제 수정하기 [[fixing-outstanding-issues]] 기존 코드에서 발견한 문제점에 대한 해결책이 떠오른 경우, 언제든지 [기여를 시작](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md/#create-a-pull-request)하고 Pull Request를 생성해주세요! ## 버그 관련 이슈를 제기하거나 새로운 기능 요청하기 [[submitting-a-bugrelated-issue-or-feature-request]] 버그 관련 이슈를 제기하거나 새로운 기능을 요청할 때는 다음 가이드라인을 최대한 준수해주세요. 이렇게 하면 좋은 피드백과 함께 빠르게 답변해 드릴 수 있습니다. ### 버그를 발견하셨나요? [[did-you-find-a-bug]] 🤗 Transformers 라이브러리는 사용 중에 겪는 문제를 보고해주는 사용자들 덕분에 더욱 견고해지고 신뢰할 수 있게 되었습니다. 이슈를 보고하기 전에, 버그가 이미 **보고되지 않았는지** 확인해주세요. (GitHub의 이슈 탭 아래의 검색 바를 사용하세요). 이슈는 라이브러리 자체에서 발생한 버그어야 하며, 코드의 다른 부분과 관련된 것이 아니어야 합니다. 버그가 라이브러리의 문제로 발생하였는지 확실하지 않은 경우 먼저 [포럼](https://discuss.huggingface.co/)에서 질문해 주세요. 이렇게 하면 일반적인 질문보다 라이브러리와 관련된 문제를 더 빠르게 해결할 수 있습니다. 버그가 이미 보고되지 않았다는 것을 확인했다면, 다음 정보를 포함하여 이슈를 제출해 주세요. 그러면 우리가 빠르게 해결할 수 있습니다: * 사용 중인 **운영체제 종류와 버전**, 그리고 **Python**, **PyTorch** 또는 **TensorFlow** 버전. * 버그를 30초 이내로 재현할 수 있는 간단하고 독립적인 코드 스니펫. * 예외가 발생한 경우 *전체* 트레이스백. * 스크린샷과 같이 도움이 될 것으로 생각되는 추가 정보를 첨부해 주세요. 운영체제와 소프트웨어 버전을 자동으로 가져오려면 다음 명령을 실행하세요: ```bash transformers-cli env ``` 저장소의 루트 디렉터리에서도 같은 명령을 실행할 수 있습니다: ```bash python src/transformers/commands/transformers_cli.py env ``` ### 새로운 기능을 원하시나요? [[do-you-want-a-new-feature]] 🤗 Transformers에서 사용하고 싶은 새로운 기능이 있다면, 다음 내용을 포함하여 이슈를 제출해 주세요: 1. 이 기능이 필요한 *이유*는 무엇인가요? 라이브러리에 대한 문제나 불만과 관련이 있나요? 프로젝트에 필요한 기능인가요? 커뮤니티에 도움이 될 만한 기능인가요? 어떤 내용이든 여러분의 이야기를 듣고 싶습니다! 2. 요청하는 기능을 최대한 자세히 설명해 주세요. 더 많은 정보를 제공할수록 더 나은 도움을 드릴 수 있습니다. 3. 해당 기능의 사용법을 보여주는 *코드 스니펫*을 제공해 주세요. 4. 기능과 관련된 논문이 있는 경우 링크를 포함해 주세요. 이슈가 잘 작성되었다면 이슈가 생성된 순간, 이미 80% 정도의 작업이 완료된 것입니다. 이슈를 제기하는 데 도움이 될 만한 [템플릿](https://github.com/huggingface/transformers/tree/main/templates)도 준비되어 있습니다. ## 새로운 모델을 구현하고 싶으신가요? [[do-you-want-to-implement-a-new-model]] 새로운 모델은 계속해서 출시됩니다. 만약 여러분이 새로운 모델을 구현하고 싶다면 다음 정보를 제공해 주세요: * 모델에 대한 간단한 설명과 논문 링크. * 구현이 공개되어 있다면 구현 링크. * 모델 가중치가 사용 가능하다면 가중치 링크. 만약 모델을 직접 기여하고 싶으시다면, 알려주세요. 🤗 Transformers에 추가할 수 있도록 도와드리겠습니다! 새로운 모델을 추가하는 방법에 대한 [상세 안내서와 템플릿](https://github.com/huggingface/transformers/tree/main/templates)을 제공하고 있으며, [🤗 Transformers에 새로운 모델을 추가하는 방법](https://huggingface.co/docs/transformers/add_new_model)에 대한 기술적인 안내서도 있습니다. ## 문서를 추가하고 싶으신가요? [[do-you-want-to-add-documentation]] 우리는 언제나 더 명확하고 정확한 문서를 제공하기 위하여 개선점을 찾고 있습니다. 오탈자나 부족한 내용, 분명하지 않거나 부정확한 내용 등을 알려주시면 개선하는 데 도움이 됩니다. 관심이 있으시다면 변경하거나 기여하실 수 있도록 도와드리겠습니다! 문서를 생성, 빌드 및 작성하는 방법에 대한 자세한 내용은 [README](https://github.com/huggingface/transformers/tree/main/docs) 문서를 확인해 주세요. ## 풀 리퀘스트(Pull Request) 생성하기 [[create-a-pull-request]] 코드를 작성하기 전에 기존의 Pull Request나 이슈를 검색하여 누군가 이미 동일한 작업을 하고 있는지 확인하는 것이 좋습니다. 확실하지 않다면 피드백을 받기 위해 이슈를 열어보는 것이 좋습니다. 🤗 Transformers에 기여하기 위해서는 기본적인 `git` 사용 능력이 필요합니다. `git`은 사용하기 쉬운 도구는 아니지만, 매우 훌륭한 매뉴얼을 제공합니다. 쉘(shell)에서 `git --help`을 입력하여 확인해보세요! 만약 책을 선호한다면, [Pro Git](https://git-scm.com/book/en/v2)은 매우 좋은 참고 자료가 될 것입니다. 🤗 Transformers에 기여하려면 **[Python 3.8](https://github.com/huggingface/transformers/blob/main/setup.py#L426)** 이상의 버전이 필요합니다. 기여를 시작하려면 다음 단계를 따르세요: 1. 저장소 페이지에서 **[Fork](https://github.com/huggingface/transformers/fork)** 버튼을 클릭하여 저장소를 포크하세요. 이렇게 하면 코드의 복사본이 여러분의 GitHub 사용자 계정 아래에 생성됩니다. 2. 포크한 저장소를 로컬 디스크로 클론하고, 기본 저장소를 원격(remote)으로 추가하세요: ```bash git clone [email protected]:<your Github handle>/transformers.git cd transformers git remote add upstream https://github.com/huggingface/transformers.git ``` 3. 개발 변경 사항을 저장할 새 브랜치를 생성하세요: ```bash git checkout -b a-descriptive-name-for-my-changes ``` 🚨 절대 `main` 브랜치에서 작업하지 **마세요!** 4. 가상 환경에서 다음 명령을 실행하여 개발 환경을 설정하세요: ```bash pip install -e ".[dev]" ``` 만약 이미 가상 환경에 🤗 Transformers가 설치되어 있다면, `-e` 플래그를 사용하여 설치하기 전에 `pip uninstall transformers`로 제거해주세요. 여러분의 운영체제에 따라서, 그리고 🤗 Transformers의 선택적 의존성의 수가 증가하면서, 이 명령이 실패할 수도 있습니다. 그럴 경우 사용하려는 딥러닝 프레임워크(PyTorch, TensorFlow, 그리고/또는 Flax)를 설치한 후 아래 명령을 실행해주세요: ```bash pip install -e ".[quality]" ``` 대부분의 경우 이것으로 충분할 것입니다. 5. 브랜치에서 기능을 개발하세요. 코드를 작업하는 동안 테스트 스위트(test suite)가 통과하는지 확인하세요. 다음과 같이 변경 사항에 영향을 받는 테스트를 실행하세요: ```bash pytest tests/<TEST_TO_RUN>.py ``` 테스트에 대한 더 많은 정보는 [테스트](https://huggingface.co/docs/transformers/testing) 가이드를 확인하세요. 🤗 Transformers는 `black`과 `ruff`를 사용하여 소스 코드의 형식을 일관되게 유지합니다. 변경 사항을 적용한 후에는 다음 명령으로 자동으로 스타일 교정 및 코드 검증을 수행하세요: ```bash make fixup ``` 이것은 또한 작업 중인 PR에서 수정한 파일에서만 작동하도록 최적화되어 있습니다. 검사를 하나씩 실행하려는 경우, 다음 명령으로 스타일 교정을 적용할 수 있습니다: ```bash make style ``` 🤗 Transformers는 또한 `ruff`와 몇 가지 사용자 정의 스크립트를 사용하여 코딩 실수를 확인합니다. CI를 통해 품질 관리가 수행되지만, 다음 명령으로 동일한 검사를 실행할 수 있습니다: ```bash make quality ``` 마지막으로, 새 모델을 추가할 때 일부 파일을 업데이트하는 것을 잊지 않도록 하기 위한 많은 스크립트가 있습니다. 다음 명령으로 이러한 스크립트를 실행할 수 있습니다: ```bash make repo-consistency ``` 이러한 검사에 대해 자세히 알아보고 관련 문제를 해결하는 방법은 [Pull Request에 대한 검사](https://huggingface.co/docs/transformers/pr_checks) 가이드를 확인하세요. 만약 `docs/source` 디렉터리 아래의 문서를 수정하는 경우, 문서가 빌드될 수 있는지 확인하세요. 이 검사는 Pull Request를 열 때도 CI에서 실행됩니다. 로컬 검사를 실행하려면 문서 빌더를 설치해야 합니다: ```bash pip install ".[docs]" ``` 저장소의 루트 디렉터리에서 다음 명령을 실행하세요: ```bash doc-builder build transformers docs/source/en --build_dir ~/tmp/test-build ``` 이 명령은 `~/tmp/test-build` 폴더에 문서를 빌드하며, 생성된 Markdown 파일을 선호하는 편집기로 확인할 수 있습니다. Pull Request를 열 때 GitHub에서 문서를 미리 볼 수도 있습니다. 변경 사항에 만족하면 `git add`로 변경된 파일을 추가하고, `git commit`으로 변경 사항을 로컬에 기록하세요: ```bash git add modified_file.py git commit ``` [좋은 커밋 메시지](https://chris.beams.io/posts/git-commit/)를 작성하여 변경 사항을 명확하게 전달하세요! 변경 사항을 프로젝트 원본 저장소와 동기화하려면, PR을 *열기 전에* 브랜치를 `upstream/branch`로 리베이스(rebase)하세요. 또는 관리자의 요청에 이 작업이 필요할 수 있습니다: ```bash git fetch upstream git rebase upstream/main ``` 변경 사항을 브랜치에 푸시하세요: ```bash git push -u origin a-descriptive-name-for-my-changes ``` 이미 PR을 열었다면, `--force` 플래그와 함께 강제 푸시해야 합니다. 아직 PR이 열리지 않았다면 정상적으로 변경 사항을 푸시하면 됩니다. 6. 이제 GitHub에서 포크한 저장소로 이동하고 **Pull request(풀 리퀘스트)**를 클릭하여 Pull Request를 열 수 있습니다. 아래의 [체크리스트](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md/#pull-request-checklist)에서 모든 항목에 체크 표시를 하세요. 준비가 완료되면 프로젝트 관리자에게 변경 사항을 보내 검토를 요청할 수 있습니다. 7. 관리자가 변경 사항을 요청해도 괜찮습니다. 핵심 기여자들도 동일한 상황을 겪습니다! 모두가 변경 사항을 Pull Request에서 볼 수 있도록, 로컬 브랜치에서 작업하고 변경 사항을 포크한 저장소로 푸시하세요. 그러면 변경 사항이 자동으로 Pull Request에 나타납니다. ### Pull Request 체크리스트 [[pull-request-checklist]] ☐ Pull Request 제목은 기여 내용을 요약해야 합니다.<br> ☐ Pull Request가 이슈를 해결하는 경우, Pull Request 설명에 이슈 번호를 언급하여 연관되어 있음을 알려주세요. (이슈를 확인하는 사람들이 해당 이슈에 대한 작업이 진행 중임을 알 수 있게 합니다).<br> ☐ 작업이 진행중이라면 제목 앞에 `[WIP]`를 붙여주세요. 중복 작업을 피하고 병합할 준비가 된 PR과 구분하기에 유용합니다.<br> ☐ 기존 테스트를 통과하는지 확인하세요.<br> ☐ 새로운 기능을 추가하는 경우, 해당 기능에 대한 테스트도 추가하세요.<br> - 새 모델을 추가하는 경우, `ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)`을 사용하여 일반적인 테스트를 활성화하세요. - 새 `@slow` 테스트를 추가하는 경우, 다음 명령으로 테스트를 통과하는지 확인하세요: `RUN_SLOW=1 python -m pytest tests/models/my_new_model/test_my_new_model.py`. - 새 토크나이저를 추가하는 경우, 테스트를 작성하고 다음 명령으로 테스트를 통과하는지 확인하세요: `RUN_SLOW=1 python -m pytest tests/models/{your_model_name}/test_tokenization_{your_model_name}.py`. - CircleCI에서는 느린 테스트를 실행하지 않지만, GitHub Actions에서는 매일 밤 실행됩니다!<br> ☐ 모든 공개 메소드는 유용한 기술문서를 가져야 합니다 (예를 들어 [`modeling_bert.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py) 참조).<br> ☐ 저장소가 빠르게 성장하고 있으므로 저장소에 상당한 부담을 주는 이미지, 동영상 및 기타 텍스트가 아닌 파일은 추가하지 마세요. 대신 [`hf-internal-testing`](https://huggingface.co/hf-internal-testing)과 같은 Hub 저장소를 사용하여 이러한 파일을 호스팅하고 URL로 참조하세요. 문서와 관련된 이미지는 다음 저장소에 배치하는 것을 권장합니다: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images). 이 데이터셋 저장소에서 PR을 열어서 Hugging Face 멤버에게 병합을 요청할 수 있습니다. Pull Request에서 실행되는 검사에 대한 자세한 정보는 [Pull Request에 대한 검사](https://huggingface.co/docs/transformers/pr_checks) 가이드를 확인하세요. ### 테스트 [[tests]] 라이브러리 동작과 여러 예제를 테스트할 수 있는 광범위한 테스트 스위트가 포함되어 있습니다. 라이브러리 테스트는 [tests](https://github.com/huggingface/transformers/tree/main/tests) 폴더에, 예제 테스트는 [examples](https://github.com/huggingface/transformers/tree/main/examples) 폴더에 있습니다. 속도가 빠른 `pytest`와 `pytest-xdist`를 선호합니다. 저장소의 루트 디렉터리에서 테스트를 실행할 *하위 폴더 경로 또는 테스트 파일 경로*를 지정하세요: ```bash python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model ``` 마찬가지로 `examples` 디렉터리에서도 *하위 폴더 경로 또는 테스트 파일 경로*를 지정하세요. 예를 들어, 다음 명령은 PyTorch `examples` 디렉터리의 텍스트 분류 하위 폴더를 테스트합니다: ```bash pip install -r examples/xxx/requirements.txt # only needed the first time python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification ``` 이것이 실제로 `make test` 및 `make test-examples` 명령이 구현되는 방식입니다 (`pip install`은 제외합니다)! 또한 특정 기능만 테스트하기 위한 더 작은 테스트를 지정할 수 있습니다. 기본적으로 느린 테스트는 건너뛰지만 `RUN_SLOW` 환경 변수를 `yes`로 설정하여 실행할 수 있습니다. 이렇게 하면 많은 기가바이트 단위의 모델이 다운로드되므로 충분한 디스크 공간, 좋은 인터넷 연결과 많은 인내가 필요합니다! <Tip warning={true}> 테스트를 실행하려면 *하위 폴더 경로 또는 테스트 파일 경로*를 지정하세요. 그렇지 않으면 `tests` 또는 `examples` 폴더의 모든 테스트를 실행하게 되어 매우 긴 시간이 걸립니다! </Tip> ```bash RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification ``` 느린 테스트와 마찬가지로, 다음과 같이 테스트 중에 기본적으로 활성화되지 않는 다른 환경 변수도 있습니다: - `RUN_CUSTOM_TOKENIZERS`: 사용자 정의 토크나이저 테스트를 활성화합니다. - `RUN_PT_FLAX_CROSS_TESTS`: PyTorch + Flax 통합 테스트를 활성화합니다. - `RUN_PT_TF_CROSS_TESTS`: TensorFlow + PyTorch 통합 테스트를 활성화합니다. 더 많은 환경 변수와 추가 정보는 [testing_utils.py](src/transformers/testing_utils.py)에서 찾을 수 있습니다. 🤗 Transformers는 테스트 실행기로 `pytest`를 사용합니다. 그러나 테스트 스위트 자체에서는 `pytest` 관련 기능을 사용하지 않습니다. 이것은 `unittest`가 완전히 지원된다는 것을 의미합니다. 다음은 `unittest`로 테스트를 실행하는 방법입니다: ```bash python -m unittest discover -s tests -t . -v python -m unittest discover -s examples -t examples -v ``` ### 스타일 가이드 [[style-guide]] 문서는 [Google Python 스타일 가이드](https://google.github.io/styleguide/pyguide.html)를 따릅니다. 자세한 정보는 [문서 작성 가이드](https://github.com/huggingface/transformers/tree/main/docs#writing-documentation---specification)를 확인하세요. ### Windows에서 개발 [[develop-on-windows]] Windows에서 개발할 경우([Windows Subsystem for Linux](https://learn.microsoft.com/en-us/windows/wsl/) 또는 WSL에서 작업하지 않는 한) Windows `CRLF` 줄 바꿈을 Linux `LF` 줄 바꿈으로 변환하도록 git을 구성해야 합니다: ```bash git config core.autocrlf input ``` Windows에서 `make` 명령을 실행하는 한 가지 방법은 MSYS2를 사용하는 것입니다: 1. [MSYS2](https://www.msys2.org/)를 다운로드합니다. `C:\msys64`에 설치되었다고 가정합니다. 2. CLI에서 `C:\msys64\msys2.exe`를 엽니다 (시작 메뉴에서 사용 가능해야 함). 3. 쉘에서 다음을 실행하여: `pacman -Syu` 및 `pacman -S make`로 `make`를 설치합니다. 4. 환경 변수 PATH에 `C:\msys64\usr\bin`을 추가하세요. 이제 모든 터미널 (PowerShell, cmd.exe 등)에서 `make`를 사용할 수 있습니다! 🎉 ### 포크한 저장소를 상위 원본 브랜치(main)과 동기화하기 (Hugging Face 저장소) [[sync-a-forked-repository-with-upstream-main-the-hugging-face-repository]] 포크한 저장소의 main 브랜치를 업데이트할 때, 다음 단계를 따라 수행해주세요. 이렇게 하면 각 upstream PR에 참조 노트가 추가되는 것을 피하고 이러한 PR에 관여하는 개발자들에게 불필요한 알림이 전송되는 것을 방지할 수 있습니다. 1. 가능하면 포크된 저장소의 브랜치 및 PR을 사용하여 upstream과 동기화하지 마세요. 대신 포크된 main 저장소에 직접 병합하세요. 2. PR이 반드시 필요한 경우, 브랜치를 확인한 후 다음 단계를 사용하세요: ```bash git checkout -b your-branch-for-syncing git pull --squash --no-commit upstream main git commit -m '<your message without GitHub references>' git push --set-upstream origin your-branch-for-syncing ```
transformers/docs/source/ko/contributing.md/0
{ "file_path": "transformers/docs/source/ko/contributing.md", "repo_id": "transformers", "token_count": 15881 }
35
<!--⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 웹 서버를 위한 파이프라인 사용하기[[using_pipelines_for_a_webserver]] <Tip> 추론 엔진을 만드는 것은 복잡한 주제이며, "최선의" 솔루션은 문제 공간에 따라 달라질 가능성이 높습니다. CPU 또는 GPU를 사용하는지에 따라 다르고 낮은 지연 시간을 원하는지, 높은 처리량을 원하는지, 다양한 모델을 지원할 수 있길 원하는지, 하나의 특정 모델을 고도로 최적화하길 원하는지 등에 따라 달라집니다. 이 주제를 해결하는 방법에는 여러 가지가 있으므로, 이 장에서 제시하는 것은 처음 시도해 보기에 좋은 출발점일 수는 있지만, 이 장을 읽는 여러분이 필요로 하는 최적의 솔루션은 아닐 수 있습니다. </Tip> 핵심적으로 이해해야 할 점은 [dataset](pipeline_tutorial#using-pipelines-on-a-dataset)를 다룰 때와 마찬가지로 반복자를 사용 가능하다는 것입니다. 왜냐하면, 웹 서버는 기본적으로 요청을 기다리고 들어오는 대로 처리하는 시스템이기 때문입니다. 보통 웹 서버는 다양한 요청을 동시에 다루기 위해 매우 다중화된 구조(멀티 스레딩, 비동기 등)를 지니고 있습니다. 반면에, 파이프라인(대부분 파이프라인 안에 있는 모델)은 병렬처리에 그다지 좋지 않습니다. 왜냐하면 파이프라인은 많은 RAM을 차지하기 때문입니다. 따라서, 파이프라인이 실행 중이거나 계산 집약적인 작업 중일 때 모든 사용 가능한 리소스를 제공하는 것이 가장 좋습니다. 이 문제를 우리는 웹 서버가 요청을 받고 보내는 가벼운 부하를 처리하고, 실제 작업을 처리하는 단일 스레드를 갖는 방법으로 해결할 것입니다. 이 예제는 `starlette` 라이브러리를 사용합니다. 실제 프레임워크는 중요하지 않지만, 다른 프레임워크를 사용하는 경우 동일한 효과를 보기 위해선 코드를 조정하거나 변경해야 할 수 있습니다. `server.py`를 생성하세요: ```py from starlette.applications import Starlette from starlette.responses import JSONResponse from starlette.routing import Route from transformers import pipeline import asyncio async def homepage(request): payload = await request.body() string = payload.decode("utf-8") response_q = asyncio.Queue() await request.app.model_queue.put((string, response_q)) output = await response_q.get() return JSONResponse(output) async def server_loop(q): pipe = pipeline(model="google-bert/bert-base-uncased") while True: (string, response_q) = await q.get() out = pipe(string) await response_q.put(out) app = Starlette( routes=[ Route("/", homepage, methods=["POST"]), ], ) @app.on_event("startup") async def startup_event(): q = asyncio.Queue() app.model_queue = q asyncio.create_task(server_loop(q)) ``` 이제 다음 명령어로 실행시킬 수 있습니다: ```bash uvicorn server:app ``` 이제 쿼리를 날려볼 수 있습니다: ```bash curl -X POST -d "test [MASK]" http://localhost:8000/ #[{"score":0.7742936015129089,"token":1012,"token_str":".","sequence":"test."},...] ``` 자, 이제 웹 서버를 만드는 방법에 대한 좋은 개념을 알게 되었습니다! 중요한 점은 모델을 **한 번만** 가져온다는 것입니다. 따라서 웹 서버에는 모델의 사본이 없습니다. 이런 방식은 불필요한 RAM이 사용되지 않습니다. 그런 다음 큐 메커니즘을 사용하면, 다음과 같은 동적 배치를 사용하기 위해 추론 전 단계에 몇 개의 항목을 축적하는 것과 같은 멋진 작업을 할 수 있습니다: <Tip warning={true}> 코드는 의도적으로 가독성을 위해 의사 코드처럼 작성되었습니다! 아래 코드를 작동시키기 전에 시스템 자원이 충분한지 확인하세요! </Tip> ```py (string, rq) = await q.get() strings = [] queues = [] while True: try: (string, rq) = await asyncio.wait_for(q.get(), timeout=0.001) # 1ms except asyncio.exceptions.TimeoutError: break strings.append(string) queues.append(rq) strings outs = pipe(strings, batch_size=len(strings)) for rq, out in zip(queues, outs): await rq.put(out) ``` 다시 말씀 드리자면, 제안된 코드는 가독성을 위해 최적화되었으며, 최상의 코드는 아닙니다. 첫째, 배치 크기 제한이 없으며 이는 일반적으로 좋은 방식이 아닙니다. 둘째, 모든 큐 가져오기에서 타임아웃이 재설정되므로 추론을 실행하기 전에 1ms보다 훨씬 오래 기다릴 수 있습니다(첫 번째 요청을 그만큼 지연시킴). 단일 1ms 길이의 데드라인을 두는 편이 더 좋습니다. 이 방식을 사용하면 큐가 비어 있어도 항상 1ms를 기다리게 될 것입니다. 큐에 아무것도 없을 때 추론을 원하는 경우에는 최선의 방법이 아닐 수 있습니다. 하지만 배치 작업이 사용례에 따라 정말로 중요하다면 의미가 있을 수도 있습니다. 다시 말하지만, 최상의 솔루션은 없습니다. ## 고려해야 할 몇 가지 사항[[few_things_you_might want_to_consider]] ### 에러 확인[[error_checking]] 프로덕션 환경에서는 문제가 발생할 여지가 많습니다. 메모리가 모자라거나, 공간이 부족하거나, 모델을 가져오는 데에 실패하거나, 쿼리가 잘못되었거나, 쿼리는 정확해도 모델 설정이 잘못되어 실행에 실패하는 등등 많은 경우가 존재합니다. 일반적으로 서버가 사용자에게 오류를 출력하는 것이 좋으므로 오류를 표시하기 위해 `try...except` 문을 많이 추가하는 것이 좋습니다. 하지만 보안 상황에 따라 모든 오류를 표시하는 것은 보안상 위험할 수도 있다는 점을 명심해야합니다. ### 서킷 브레이킹[[circuit_breaking]] 웹 서버는 일반적으로 서킷 브레이킹을 수행할 때 더 나은 상황에 직면합니다. 즉, 이는 서버가 쿼리를 무기한 기다리는 대신 과부하 상태일 때 적절한 오류를 반환하는 것을 의미합니다. 서버가 매우 오랜 시간 동안 대기하거나 적당한 시간이 지난 후에 504 에러를 반환하는 대신 503 에러를 빠르게 반환하게 하는 것입니다. 제안된 코드에는 단일 큐가 있으므로 구현하기가 비교적 쉽습니다. 큐 크기를 확인하는 것은 웹 서버가 과부하 상항 하에 있을 때 에러를 반환하기 위한 가장 기초적인 작업입니다. ### 메인 쓰레드 차단[[blocking_the_main_thread]] 현재 PyTorch는 비동기 처리를 지원하지 않으며, 실행 중에는 메인 스레드가 차단됩니다. 따라서 PyTorch를 별도의 스레드/프로세스에서 실행하도록 강제하는 것이 좋습니다. 여기서는 이 작업이 수행되지 않았습니다. 왜냐하면 코드가 훨씬 더 복잡하기 때문입니다(주로 스레드, 비동기 처리, 큐가 서로 잘 맞지 않기 때문입니다). 하지만 궁극적으로는 같은 작업을 수행하는 것입니다. 단일 항목의 추론이 오래 걸린다면 (> 1초), 메인 쓰레드를 차단하는 것은 중요할 수 있습니다. 왜냐하면 이 경우 추론 중 모든 쿼리는 오류를 받기 전에 1초를 기다려야 하기 때문입니다. ### 동적 배치[[dynamic_batching]] 일반적으로, 배치 처리가 1개 항목을 한 번에 전달하는 것에 비해 반드시 성능 향상이 있는 것은 아닙니다(자세한 내용은 [`batching details`](./main_classes/pipelines#pipeline-batching)을 참고하세요). 하지만 올바른 설정에서 사용하면 매우 효과적일 수 있습니다. API에는 기본적으로 속도 저하의 가능성이 매우 높기 때문에 동적 배치 처리가 없습니다. 하지만 매우 큰 모델인 BLOOM 추론의 경우 동적 배치 처리는 모든 사람에게 적절한 경험을 제공하는 데 **필수**입니다.
transformers/docs/source/ko/pipeline_webserver.md/0
{ "file_path": "transformers/docs/source/ko/pipeline_webserver.md", "repo_id": "transformers", "token_count": 6178 }
36
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 토크나이저 요약[[summary-of-the-tokenizers]] [[open-in-colab]] 이 페이지에서는 토큰화에 대해 자세히 살펴보겠습니다. <Youtube id="VFp38yj8h3A"/> [데이터 전처리하기 튜토리얼](preprocessing)에서 살펴본 것처럼, 텍스트를 토큰화하는 것은 텍스트를 단어 또는 서브워드로 분할하고 룩업 테이블을 통해 id로 변환하는 과정입니다. 단어 또는 서브워드를 id로 변환하는 것은 간단하기 때문에 이번 문서에서는 텍스트를 단어 또는 서브워드로 쪼개는 것(즉, 텍스트를 토큰화하는 것)에 중점을 두겠습니다. 구체적으로, 🤗 Transformers에서 사용되는 세 가지 주요 토큰화 유형인 [Byte-Pair Encoding (BPE)](#byte-pair-encoding), [WordPiece](#wordpiece), [SentencePiece](#sentencepiece)를 살펴보고 어떤 모델에서 어떤 토큰화 유형을 사용하는지 예시를 보여드리겠습니다. 각 모델 페이지에 연결된 토크나이저의 문서를 보면 사전 훈련 모델에서 어떤 토크나이저를 사용했는지 알 수 있습니다. 예를 들어, [`BertTokenizer`]를 보면 이 모델이 [WordPiece](#wordpiece)를 사용하는 것을 알 수 있습니다. ## 개요[[introduction]] 텍스트를 작은 묶음(chunk)으로 쪼개는 것은 보기보다 어려운 작업이며, 여러 가지 방법이 있습니다. 예를 들어, `"Don't you love 🤗 Transformers? We sure do."` 라는 문장을 살펴보도록 하겠습니다. <Youtube id="nhJxYji1aho"/> 위 문장을 토큰화하는 간단한 방법은 공백을 기준으로 쪼개는 것입니다. 토큰화된 결과는 다음과 같습니다: ``` ["Don't", "you", "love", "🤗", "Transformers?", "We", "sure", "do."] ``` 이는 첫 번째 결과로는 합리적이지만, `"Transformers?"`와 `"do."`토큰을 보면 각각 `"Transformer"`와 `"do"`에 구두점이 붙어있는 것을 확인할 수 있습니다. 구두점을 고려해야 모델이 단어의 다른 표현과 그 뒤에 올 수 있는 모든 가능한 구두점을 학습할 필요가 없습니다. 그렇지 않으면 모델이 학습해야 하는 표현의 수가 폭발적으로 증가하게 됩니다. 구두점을 고려한 토큰화 결과는 다음과 같습니다: ``` ["Don", "'", "t", "you", "love", "🤗", "Transformers", "?", "We", "sure", "do", "."] ``` 이전보다 나아졌습니다. 하지만, `"Don't"`의 토큰화 결과도 수정이 필요합니다. `"Don't"`는 `"do not"`의 줄임말이기 때문에 `["Do", "n't"]`로 토큰화되는 것이 좋습니다. 여기서부터 복잡해지기 시작합니다. 그리고 이 점이 각 모델마다 고유한 토큰화 유형이 존재하는 이유 중 하나입니다. 텍스트를 토큰화하는 데 적용하는 규칙에 따라 동일한 텍스트에 대해 토큰화된 결과가 달라집니다. 사전 훈련된 모델은 훈련 데이터를 토큰화하는 데 사용된 것과 동일한 규칙으로 토큰화된 입력을 제공해야만 제대로 작동합니다. [spaCy](https://spacy.io/)와 [Moses](http://www.statmt.org/moses/?n=Development.GetStarted)는 유명한 규칙 기반 토크나이저입니다. 예제에 *spaCy*와 *Moses* 를 적용한 결과는 다음과 같습니다: ``` ["Do", "n't", "you", "love", "🤗", "Transformers", "?", "We", "sure", "do", "."] ``` 보시다시피 공백 및 구두점 토큰화와 규칙 기반 토큰화가 사용됩니다. 공백 및 구두점, 규칙 기반 토큰화은 모두 단어 문장을 단어로 쪼개는 단어 토큰화에 해당합니다. 이 토큰화 방법은 텍스트를 더 작은 묶음(chunk)로 분할하는 가장 직관적인 방법이지만, 대규모 텍스트 말뭉치에 대해서는 문제가 발생할 수 있습니다. 이 경우 공백 및 구두점 토큰화는 일반적으로 매우 큰 어휘(사용된 모든 고유 단어와 토큰 집합)을 생성합니다. *예를 들어*, [Transformer XL](model_doc/transformerxl)은 공백 및 구두점 토큰화를 사용해 어휘(vocabulary) 크기가 267,735입니다! 어휘 크기가 크면 모델에 입력 및 출력 레이어로 엄청난 임베딩 행렬이 필요하므로 메모리와 시간 복잡성이 모두 증가합니다. 일반적으로 트랜스포머 모델은 어휘 크기가 50,000개를 넘는 경우가 드물며, 특히 단일 언어에 대해서만 사전 훈련된 경우에는 더욱 그렇습니다. 단순한 공백과 구두점 토큰화가 만족스럽지 않다면 단순히 문자를 토큰화하면 어떨까요? <Youtube id="ssLq_EK2jLE"/> 문자 토큰화는 아주 간단하고 메모리와 시간 복잡도를 크게 줄일 수 있지만, 모델이 의미 있는 입력 표현을 학습하기에는 훨씬 더 어렵습니다. *예를 들어*, 문자 `"t"`에 대한 의미 있는 문맥 독립적 표현을 배우는 것 보다 단어 `"today"`에 대한 의미 있는 문맥 독립적 표현을 배우는 것이 훨씬 더 어렵습니다. 문자 토큰화는 종종 성능 저하를 동반하기 때문에 두 가지 장점을 모두 얻기 위해 트랜스포머 모델은 **서브워드** 토큰화라고 하는 단어 수준과 문자 수준 토큰화의 하이브리드를 사용합니다. ## 서브워드 토큰화[[subword-tokenization]] <Youtube id="zHvTiHr506c"/> 서브워드 토큰화 알고리즘은 자주 사용되는 단어는 더 작은 하위 단어로 쪼개고, 드문 단어는 의미 있는 하위 단어로 분해되어야 한다는 원칙에 따라 작동합니다. 예를 들어 `"annoyingly"`는 드문 단어로 간주되어 `"annoying"`과 `"ly"`로 분해될 수 있습니다. `"annoyingly"`가 `"annoying"`과 `"ly"`의 합성어인 반면, `"annoying"`과 `"ly"` 둘 다 독립적인 서브워드로 자주 등장합니다. 이는 터키어와 같은 응집성 언어에서 특히 유용하며, 서브워드를 묶어 임의로 긴 복합 단어를 만들 수 있습니다. 서브워드 토큰화를 사용하면 모델이 의미 있는 문맥 독립적 표현을 학습하면서 합리적인 어휘 크기를 가질 수 있습니다. 또한, 서브워드 토큰화를 통해 모델은 이전에 본 적이 없는 단어를 알려진 서브워드로 분해하여 처리할 수 있습니다. 예를 들어, [`~transformers.BertTokenizer`]는 `"I have a new GPU!"` 라는 문장을 아래와 같이 토큰화합니다: ```py >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> tokenizer.tokenize("I have a new GPU!") ["i", "have", "a", "new", "gp", "##u", "!"] ``` 대소문자가 없는 모델을 사용해 문장의 시작이 소문자로 표기되었습니다. 단어 `["i", "have", "a", "new"]`는 토크나이저의 어휘에 속하지만, `"gpu"`는 속하지 않는 것을 확인할 수 있습니다. 결과적으로 토크나이저는 `"gpu"`를 알려진 두 개의 서브워드로 쪼갭니다: `["gp" and "##u"]`. `"##"`은 토큰의 나머지 부분이 공백 없이 이전 토큰에 연결되어야(attach) 함을 의미합니다(토큰화 디코딩 또는 역전을 위해). 또 다른 예로, [`~transformers.XLNetTokenizer`]는 이전에 예시 문장을 다음과 같이 토큰화합니다: ```py >>> from transformers import XLNetTokenizer >>> tokenizer = XLNetTokenizer.from_pretrained("xlnet/xlnet-base-cased") >>> tokenizer.tokenize("Don't you love 🤗 Transformers? We sure do.") ["▁Don", "'", "t", "▁you", "▁love", "▁", "🤗", "▁", "Transform", "ers", "?", "▁We", "▁sure", "▁do", "."] ``` `"▁"`가 가지는 의미는 [SentencePiece](#sentencepiece)에서 다시 살펴보도록 하겠습니다. 보다시피 `"Transformers"` 라는 드문 단어는 서브워드 `"Transform"`와 `"ers"`로 쪼개집니다. 이제 다양한 하위 단어 토큰화 알고리즘이 어떻게 작동하는지 살펴보겠습니다. 이러한 토큰화 알고리즘은 일반적으로 해당 모델이 학습되는 말뭉치에 대해 수행되는 어떤 형태의 학습에 의존한다는 점에 유의하세요. <a id='byte-pair-encoding'></a> ### 바이트 페어 인코딩 (Byte-Pair Encoding, BPE)[[bytepair-encoding-bpe]] 바이트 페어 인코딩(BPE)은 [Neural Machine Translation of Rare Words with Subword Units (Sennrich et al., 2015)](https://arxiv.org/abs/1508.07909) 에서 소개되었습니다. BPE는 훈련 데이터를 단어로 분할하는 사전 토크나이저(pre-tokenizer)에 의존합니다. 사전 토큰화(Pretokenization)에는 [GPT-2](model_doc/gpt2), [Roberta](model_doc/roberta)와 같은 간단한 공백 토큰화가 있습니다. 복잡한 사전 토큰화에는 규칙 기반 토큰화가 해당하는데, 훈련 말뭉치에서 각 단어의 빈도를 계산하기 위해 사용합니다. [XLM](model_doc/xlm), 대부분의 언어에서 Moses를 사용하는 [FlauBERT](model_doc/flaubert), Spacy와 ftfy를 사용하는 [GPT](model_doc/gpt)가 해당합니다. 사전 토큰화 이후에, 고유 단어 집합가 생성되고 훈련 데이터에서 각 단어가 등장하는 빈도가 결정됩니다. 다음으로, BPE는 고유 단어 집합에 나타나는 모든 기호로 구성된 기본 어휘를 생성하고 기본 어휘의 두 기호에서 새로운 기호를 형성하는 병합 규칙을 학습합니다. 어휘가 원하는 어휘 크기에 도달할 때까지 위의 과정을 반복합니다. 어휘 크기는 토크나이저를 훈련시키기 전에 정의해야 하는 하이퍼파라미터라는 점을 유의하세요. 예를 들어, 사전 토큰화 후 빈도를 포함한 다음과 같은 어휘 집합이 결정되었다고 가정해 보겠습니다: ``` ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5) ``` 결과적으로 기본 어휘는 `["b", "g", "h", "n", "p", "s", "u"]` 이고, 각 단어를 기본 어휘에 속하는 기호로 쪼개면 아래와 같습니다: ``` ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) ``` 그런 다음 BPE는 가능한 각 기호 쌍의 빈도를 계산하여 가장 자주 발생하는 기호 쌍을 선택합니다. 위의 예시에서 `"h"` 뒤에 오는 `"u"`는 _10 + 5 = 15_ 번 등장합니다. (`"hug"`에서 10번, `"hugs"`에서 5번 등장) 하지만, 가장 등장 빈도가 높은 기호 쌍은 `"u"` 뒤에 오는 `"g"`입니다. _10 + 5 + 5 = 20_ 으로 총 20번 등장합니다. 따라서 토크나이저가 병합하는 가장 첫 번째 쌍은 `"u"` 뒤에 오는 `"g"`입니다. `"ug"`가 어휘에 추가되어 어휘는 다음과 같습니다: ``` ("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) ``` BPE는 다음으로 가장 많이 등장하는 기호 쌍을 식별합니다. `"u"` 뒤에 오는 `"n"`은 16번 등장해 `"un"` 으로 병합되어 어휘에 추가됩니다. 그 다음으로 빈도수가 놓은 기호 쌍은 `"h"` 뒤에 오는 `"ug"`로 15번 등장합니다. 다시 한 번 `"hug"`로 병합되어 어휘에 추가됩니다. 현재 단계에서 어휘는 `["b", "g", "h", "n", "p", "s", "u", "ug", "un", "hug"]` 이고, 고유 단어 집합은 다음과 같습니다: ``` ("hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("hug" "s", 5) ``` 이 시점에서 바이트 페어 인코딩 훈련이 중단된다고 가정하면, 훈련된 병합 규칙은 새로운 단어에 적용됩니다(기본 어휘에 포함된 기호가 새로운 단어에 포함되지 않는 한). 예를 들어, 단어 `"bug"`는 `["b", "ug"]`로 토큰화되지만, `"m"`이 기본 어휘에 없기 때문에 `"mug"`는 `["<unk>", "ug"]`로 토큰화될 것입니다. 훈련 데이터에는 단일 문자가 최소한 한 번 등장하기 때문에 일반적으로 `"m"`과 같은 단일 문자는 `"<unk>"` 기호로 대체되지 않지만, 이모티콘과 같은 특별한 문자인 경우에는 대체될 수 있습니다. 이전에 언급했듯이 어휘 크기(즉 기본 어휘 크기 + 병합 횟수)는 선택해야하는 하이퍼파라미터입니다. 예를 들어 [GPT](model_doc/gpt)의 기본 어휘 크기는 478, 40,000번의 병합 이후에 훈련을 종료하기 때문에 어휘 크기가 40,478입니다. #### 바이트 수준 BPE (Byte-level BPE)[[bytelevel-bpe]] 가능한 모든 기본 문자를 포함하는 기본 어휘의 크기는 굉장히 커질 수 있습니다. (예: 모든 유니코드 문자를 기본 문자로 간주하는 경우) 더 나은 기본 어휘를 갖도록 [GPT-2](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)는 기본 어휘로 바이트(bytes)를 사용합니다. 이 방식은 모든 기본 문자가 어휘에 포함되도록 하면서 기본 어휘의 크기를 256으로 제한합니다. 구두점을 다루는 추가적인 규칙을 사용해 GPT2 토크나이저는 모든 텍스트를 <unk> 기호 없이 토큰화할 수 있습니다. [GPT-2](model_doc/gpt)의 어휘 크기는 50,257로 256 바이트 크기의 기본 토큰, 특별한 end-of-text 토큰과 50,000번의 병합으로 학습한 기호로 구성됩니다. <a id='wordpiece'></a> ### 워드피스 (WordPiece)[[wordpiece]] 워드피스는 [BERT](model_doc/bert), [DistilBERT](model_doc/distilbert), [Electra](model_doc/electra)에 사용된 서브워드 토큰화 알고리즘입니다. 이 알고리즘은 [Japanese and Korean Voice Search (Schuster et al., 2012)](https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37842.pdf)에서 소개되었고, BPE와 굉장히 유사합니다. 워드피스는 훈련 데이터에 등장하는 모든 문자로 기본 어휘를 초기화한 후, 주어진 병합 규칙에 따라 점진적으로 학습합니다. BPE와는 대조적으로 워드피스는 가장 빈도수가 높은 기호 쌍을 선택하지 않고, 어휘에 추가되었을 때 훈련 데이터의 우도가 최대화되는 쌍을 선택합니다. 정확히 무슨 의미일까요? 이전 예시를 참조하면, 훈련 데이터의 우도 값을 최대화하는 것은 모든 기호 쌍 중에서 첫 번째 기호와 두 번째 기호의 확률로 나눈 확률이 가장 큰 기호 쌍을 찾는 것과 동일합니다. 예를 들어 `"ug"`의 확률이 `"u"`와 `"g"` 각각으로 쪼개졌을 때 보다 높아야 `"u"` 뒤에 오는 `"g"`는 병합될 것입니다. 직관적으로 워드피스는 두 기호를 병합하여 _잃는_ 것을 평가하여 그만한 _가치_가 있는지 확인한다는 점에서 BPE와 약간 다릅니다. <a id='unigram'></a> ### 유니그램 (Unigram)[[unigram]] 유니그램은 [Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates (Kudo, 2018)](https://arxiv.org/pdf/1804.10959.pdf)에서 제안된 서브워드 토큰화 알고리즘입니다. BPE나 워드피스와 달리 유니그램은 기본 어휘를 많은 수의 기호로 초기화한 후 각 기호를 점진적으로 줄여 더 작은 어휘를 얻습니다. 예를 들어 기본 어휘는 모든 사전 토큰화된 단어와 가장 일반적인 하위 문자열에 해당할 수 있습니다. 유니그램은 transformers 모델에서 직접적으로 사용되지는 않지만, [SentencePiece](#sentencepiece)와 함께 사용됩니다. 각 훈련 단계에서 유니그램 알고리즘은 현재 어휘와 유니그램 언어 모델이 주어졌을 때 훈련 데이터에 대한 손실(흔히 로그 우도로 정의됨)을 정의합니다. 그런 다음 어휘의 각 기호에 대해 알고리즘은 해당 기호를 어휘에서 제거할 경우 전체 손실이 얼마나 증가할지 계산합니다. 이후에 유니그램은 손실 증가율이 가장 낮은 기호의 p(보통 10% 또는 20%) 퍼센트를 제거합니다. (제거되는 기호는 훈련 데이터에 대한 전체 손실에 가장 작은 영향을 미칩니다.) 어휘가 원하는 크기에 도달할 때까지 이 과정을 반복합니다. 유니그램 알고리즘은 항상 기본 문자를 포함해 어떤 단어라도 토큰화할 수 있습니다. 유니그램이 병합 규칙에 기반하지 않기 떄문에 (BPE나 워드피스와는 대조적으로), 해당 알고리즘은 훈련 이후에 새로운 텍스트를 토큰화하는데 여러 가지 방법이 있습니다. 예를 들어, 훈련된 유니그램 토큰화가 다음과 같은 어휘를 가진다면: ``` ["b", "g", "h", "n", "p", "s", "u", "ug", "un", "hug"], ``` `"hugs"`는 두 가지로 토큰화할 수 있습니다. `["hug", "s"]`와 `["h", "ug", "s"]` 또는 `["h", "u", "g", "s"]`. 그렇다면 어떤 토큰화 방법을 선택해야 할까요? 유니그램은 어휘를 저장하는 것 외에도 훈련 말뭉치에 각 토큰의 확률을 저장하여 훈련 후 가능한 각 토큰화의 확률을 계산할 수 있도록 합니다. 이 알고리즘은 단순히 실제로 가장 가능성이 높은 토큰화를 선택하지만, 확률에 따라 가능한 토큰화를 샘플링할 수 있는 가능성도 제공합니다. 이러한 확률은 토크나이저가 학습한 손실에 의해 정의됩니다. 단어로 구성된 훈련 데이터를 \\(x_{1}, \dots, x_{N}\\)라 하고, 단어 \\(x_{i}\\)에 대한 가능한 모든 토큰화 결과를 \\(S(x_{i})\\)라 한다면, 전체 손실은 다음과 같이 정의됩니다: $$\mathcal{L} = -\sum_{i=1}^{N} \log \left ( \sum_{x \in S(x_{i})} p(x) \right )$$ <a id='sentencepiece'></a> ### 센텐스피스 (SentencePiece)[[sentencepiece]] 지금까지 다룬 토큰화 알고리즘은 동일한 문제를 가집니다: 입력 텍스트는 공백을 사용하여 단어를 구분한다고 가정합니다. 하지만, 모든 언어에서 단어를 구분하기 위해 공백을 사용하지 않습니다. 한가지 가능한 해결방안은 특정 언어에 특화된 사전 토크나이저를 사용하는 것입니다. 예를 들어 [XLM](model_doc/xlm)은 특정 중국어, 일본어, 태국어 사전 토크나이저를 사용합니다. 이 문제를 일반적인 방법으로 해결하기 위해, [SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing (Kudo et al., 2018)](https://arxiv.org/pdf/1808.06226.pdf)는 입력을 스트림으로 처리해 공백를 하나의 문자로 사용합니다. 이후에 BPE 또는 유니그램 알고리즘을 사용해 적절한 어휘를 구성합니다. [`XLNetTokenizer`]는 센텐스피스를 사용하기 때문에, 위에서 다룬 예시에서 어휘에 `"▁"`가 포함되어있습니다. 모든 토큰을 합친 후 `"▁"`을 공백으로 대체하면 되기 때문에 센텐스피스로 토큰화된 결과는 디코딩하기 수월합니다. transformers에서 제공하는 센텐스피스 토크나이저를 사용하는 모든 모델은 유니그램과 함께 사용됩니다. [ALBERT](model_doc/albert), [XLNet](model_doc/xlnet), [Marian](model_doc/marian), [T5](model_doc/t5) 모델이 센텐스피스 토크나이저를 사용합니다.
transformers/docs/source/ko/tokenizer_summary.md/0
{ "file_path": "transformers/docs/source/ko/tokenizer_summary.md", "repo_id": "transformers", "token_count": 15149 }
37
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Modelos multilinguísticos para inferência [[open-in-colab]] Existem vários modelos multilinguísticos no 🤗 Transformers e seus usos para inferência diferem dos modelos monolíngues. No entanto, nem *todos* os usos dos modelos multilíngues são tão diferentes. Alguns modelos, como o [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased), podem ser usados como se fossem monolíngues. Este guia irá te ajudar a usar modelos multilíngues cujo uso difere para o propósito de inferência. ## XLM O XLM tem dez checkpoints diferentes dos quais apenas um é monolíngue. Os nove checkpoints restantes do modelo são subdivididos em duas categorias: checkpoints que usam de language embeddings e os que não. ### XLM com language embeddings Os seguintes modelos de XLM usam language embeddings para especificar a linguagem utilizada para a inferência. - `FacebookAI/xlm-mlm-ende-1024` (Masked language modeling, English-German) - `FacebookAI/xlm-mlm-enfr-1024` (Masked language modeling, English-French) - `FacebookAI/xlm-mlm-enro-1024` (Masked language modeling, English-Romanian) - `FacebookAI/xlm-mlm-xnli15-1024` (Masked language modeling, XNLI languages) - `FacebookAI/xlm-mlm-tlm-xnli15-1024` (Masked language modeling + translation, XNLI languages) - `FacebookAI/xlm-clm-enfr-1024` (Causal language modeling, English-French) - `FacebookAI/xlm-clm-ende-1024` (Causal language modeling, English-German) Os language embeddings são representados por um tensor de mesma dimensão que os `input_ids` passados ao modelo. Os valores destes tensores dependem do idioma utilizado e se identificam pelos atributos `lang2id` e `id2lang` do tokenizador. Neste exemplo, carregamos o checkpoint `FacebookAI/xlm-clm-enfr-1024`(Causal language modeling, English-French): ```py >>> import torch >>> from transformers import XLMTokenizer, XLMWithLMHeadModel >>> tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-clm-enfr-1024") >>> model = XLMWithLMHeadModel.from_pretrained("FacebookAI/xlm-clm-enfr-1024") ``` O atributo `lang2id` do tokenizador mostra os idiomas deste modelo e seus ids: ```py >>> print(tokenizer.lang2id) {'en': 0, 'fr': 1} ``` Em seguida, cria-se um input de exemplo: ```py >>> input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")]) # batch size of 1 ``` Estabelece-se o id do idioma, por exemplo `"en"`, e utiliza-se o mesmo para definir a language embedding. A language embedding é um tensor preenchido com `0`, que é o id de idioma para o inglês. Este tensor deve ser do mesmo tamanho que os `input_ids`. ```py >>> language_id = tokenizer.lang2id["en"] # 0 >>> langs = torch.tensor([language_id] * input_ids.shape[1]) # torch.tensor([0, 0, 0, ..., 0]) >>> # We reshape it to be of size (batch_size, sequence_length) >>> langs = langs.view(1, -1) # is now of shape [1, sequence_length] (we have a batch size of 1) ``` Agora você pode passar os `input_ids` e a language embedding ao modelo: ```py >>> outputs = model(input_ids, langs=langs) ``` O script [run_generation.py](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-generation/run_generation.py) pode gerar um texto com language embeddings utilizando os checkpoints `xlm-clm`. ### XLM sem language embeddings Os seguintes modelos XLM não requerem o uso de language embeddings durante a inferência: - `FacebookAI/xlm-mlm-17-1280` (Modelagem de linguagem com máscara, 17 idiomas) - `FacebookAI/xlm-mlm-100-1280` (Modelagem de linguagem com máscara, 100 idiomas) Estes modelos são utilizados para representações genéricas de frase diferentemente dos checkpoints XLM anteriores. ## BERT Os seguintes modelos do BERT podem ser utilizados para tarefas multilinguísticas: - `google-bert/bert-base-multilingual-uncased` (Modelagem de linguagem com máscara + Previsão de frases, 102 idiomas) - `google-bert/bert-base-multilingual-cased` (Modelagem de linguagem com máscara + Previsão de frases, 104 idiomas) Estes modelos não requerem language embeddings durante a inferência. Devem identificar a linguagem a partir do contexto e realizar a inferência em sequência. ## XLM-RoBERTa Os seguintes modelos do XLM-RoBERTa podem ser utilizados para tarefas multilinguísticas: - `FacebookAI/xlm-roberta-base` (Modelagem de linguagem com máscara, 100 idiomas) - `FacebookAI/xlm-roberta-large` Modelagem de linguagem com máscara, 100 idiomas) O XLM-RoBERTa foi treinado com 2,5 TB de dados do CommonCrawl recém-criados e testados em 100 idiomas. Proporciona fortes vantagens sobre os modelos multilinguísticos publicados anteriormente como o mBERT e o XLM em tarefas subsequentes como a classificação, a rotulagem de sequências e à respostas a perguntas. ## M2M100 Os seguintes modelos de M2M100 podem ser utilizados para traduções multilinguísticas: - `facebook/m2m100_418M` (Tradução) - `facebook/m2m100_1.2B` (Tradução) Neste exemplo, o checkpoint `facebook/m2m100_418M` é carregado para traduzir do mandarim ao inglês. É possível estabelecer o idioma de origem no tokenizador: ```py >>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer >>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger." >>> chinese_text = "不要插手巫師的事務, 因為他們是微妙的, 很快就會發怒." >>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="zh") >>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") ``` Tokenização do texto: ```py >>> encoded_zh = tokenizer(chinese_text, return_tensors="pt") ``` O M2M100 força o id do idioma de destino como o primeiro token gerado para traduzir ao idioma de destino. É definido o `forced_bos_token_id` como `en` no método `generate` para traduzir ao inglês. ```py >>> generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en")) >>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) 'Do not interfere with the matters of the witches, because they are delicate and will soon be angry.' ``` ## MBart Os seguintes modelos do MBart podem ser utilizados para tradução multilinguística: - `facebook/mbart-large-50-one-to-many-mmt` (Tradução automática multilinguística de um a vários, 50 idiomas) - `facebook/mbart-large-50-many-to-many-mmt` (Tradução automática multilinguística de vários a vários, 50 idiomas) - `facebook/mbart-large-50-many-to-one-mmt` (Tradução automática multilinguística vários a um, 50 idiomas) - `facebook/mbart-large-50` (Tradução multilinguística, 50 idiomas) - `facebook/mbart-large-cc25` Neste exemplo, carrega-se o checkpoint `facebook/mbart-large-50-many-to-many-mmt` para traduzir do finlandês ao inglês. Pode-se definir o idioma de origem no tokenizador: ```py >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger." >>> fi_text = "Älä sekaannu velhojen asioihin, sillä ne ovat hienovaraisia ja nopeasti vihaisia." >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="fi_FI") >>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") ``` Tokenizando o texto: ```py >>> encoded_en = tokenizer(en_text, return_tensors="pt") ``` O MBart força o id do idioma de destino como o primeiro token gerado para traduzir ao idioma de destino. É definido o `forced_bos_token_id` como `en` no método `generate` para traduzir ao inglês. ```py >>> generated_tokens = model.generate(**encoded_en, forced_bos_token_id=tokenizer.lang_code_to_id("en_XX")) >>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) "Don't interfere with the wizard's affairs, because they are subtle, will soon get angry." ``` Se estiver usando o checkpoint `facebook/mbart-large-50-many-to-one-mmt` não será necessário forçar o id do idioma de destino como sendo o primeiro token generado, caso contrário a usagem é a mesma.
transformers/docs/source/pt/multilingual.md/0
{ "file_path": "transformers/docs/source/pt/multilingual.md", "repo_id": "transformers", "token_count": 3212 }
38
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 实例化大型模型 当你想使用一个非常大的预训练模型时,一个挑战是尽量减少对内存的使用。通常从PyTorch开始的工作流程如下: 1. 用随机权重创建你的模型。 2. 加载你的预训练权重。 3. 将这些预训练权重放入你的随机模型中。 步骤1和2都需要完整版本的模型在内存中,这在大多数情况下不是问题,但如果你的模型开始达到几个GB的大小,这两个副本可能会让你超出内存的限制。更糟糕的是,如果你使用`torch.distributed`来启动分布式训练,每个进程都会加载预训练模型并将这两个副本存储在内存中。 <Tip> 请注意,随机创建的模型使用“空”张量进行初始化,这些张量占用内存空间但不填充它(因此随机值是给定时间内该内存块中的任何内容)。在第3步之后,对未初始化的权重执行适合模型/参数种类的随机初始化(例如正态分布),以尽可能提高速度! </Tip> 在本指南中,我们将探讨 Transformers 提供的解决方案来处理这个问题。请注意,这是一个积极开发的领域,因此这里解释的API在将来可能会略有变化。 ## 分片checkpoints 自4.18.0版本起,占用空间超过10GB的模型检查点将自动分成较小的片段。在使用`model.save_pretrained(save_dir)`时,您最终会得到几个部分`checkpoints`(每个的大小都小于10GB)以及一个索引,该索引将参数名称映射到存储它们的文件。 您可以使用`max_shard_size`参数来控制分片之前的最大大小。为了示例的目的,我们将使用具有较小分片大小的普通大小的模型:让我们以传统的BERT模型为例。 ```py from transformers import AutoModel model = AutoModel.from_pretrained("google-bert/bert-base-cased") ``` 如果您使用 [`PreTrainedModel.save_pretrained`](模型预训练保存) 进行保存,您将得到一个新的文件夹,其中包含两个文件:模型的配置和权重: ```py >>> import os >>> import tempfile >>> with tempfile.TemporaryDirectory() as tmp_dir: ... model.save_pretrained(tmp_dir) ... print(sorted(os.listdir(tmp_dir))) ['config.json', 'pytorch_model.bin'] ``` 现在让我们使用最大分片大小为200MB: ```py >>> with tempfile.TemporaryDirectory() as tmp_dir: ... model.save_pretrained(tmp_dir, max_shard_size="200MB") ... print(sorted(os.listdir(tmp_dir))) ['config.json', 'pytorch_model-00001-of-00003.bin', 'pytorch_model-00002-of-00003.bin', 'pytorch_model-00003-of-00003.bin', 'pytorch_model.bin.index.json'] ``` 在模型配置文件最上方,我们可以看到三个不同的权重文件,以及一个`index.json`索引文件。这样的`checkpoint`可以使用[`~PreTrainedModel.from_pretrained`]方法完全重新加载: ```py >>> with tempfile.TemporaryDirectory() as tmp_dir: ... model.save_pretrained(tmp_dir, max_shard_size="200MB") ... new_model = AutoModel.from_pretrained(tmp_dir) ``` 对于大型模型来说,这样做的主要优点是在上述工作流程的步骤2中,每个`checkpoint`的分片在前一个分片之后加载,从而将内存中的内存使用限制在模型大小加上最大分片的大小。 在后台,索引文件用于确定`checkpoint`中包含哪些键以及相应的权重存储在哪里。我们可以像加载任何json一样加载该索引,并获得一个字典: ```py >>> import json >>> with tempfile.TemporaryDirectory() as tmp_dir: ... model.save_pretrained(tmp_dir, max_shard_size="200MB") ... with open(os.path.join(tmp_dir, "pytorch_model.bin.index.json"), "r") as f: ... index = json.load(f) >>> print(index.keys()) dict_keys(['metadata', 'weight_map']) ``` 目前元数据仅包括模型的总大小。我们计划在将来添加其他信息: ```py >>> index["metadata"] {'total_size': 433245184} ``` 权重映射是该索引的主要部分,它将每个参数的名称(通常在PyTorch模型的`state_dict`中找到)映射到存储该参数的文件: ```py >>> index["weight_map"] {'embeddings.LayerNorm.bias': 'pytorch_model-00001-of-00003.bin', 'embeddings.LayerNorm.weight': 'pytorch_model-00001-of-00003.bin', ... ``` 如果您想直接在模型内部加载这样的分片`checkpoint`,而不使用 [`PreTrainedModel.from_pretrained`](就像您会为完整`checkpoint`执行 `model.load_state_dict()` 一样),您应该使用 [`modeling_utils.load_sharded_checkpoint`]: ```py >>> from transformers.modeling_utils import load_sharded_checkpoint >>> with tempfile.TemporaryDirectory() as tmp_dir: ... model.save_pretrained(tmp_dir, max_shard_size="200MB") ... load_sharded_checkpoint(model, tmp_dir) ``` ## 低内存加载 分片`checkpoints`在上述工作流的第2步中降低了内存使用,但为了在低内存环境中使用该模型,我们建议使用基于 Accelerate 库的工具。 请阅读以下指南以获取更多信息:[使用 Accelerate 进行大模型加载](./main_classes/model#large-model-loading)
transformers/docs/source/zh/big_models.md/0
{ "file_path": "transformers/docs/source/zh/big_models.md", "repo_id": "transformers", "token_count": 3100 }
39
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Pipelines pipelines是使用模型进行推理的一种简单方法。这些pipelines是抽象了库中大部分复杂代码的对象,提供了一个专用于多个任务的简单API,包括专名识别、掩码语言建模、情感分析、特征提取和问答等。请参阅[任务摘要](../task_summary)以获取使用示例。 有两种pipelines抽象类需要注意: - [`pipeline`],它是封装所有其他pipelines的最强大的对象。 - 针对特定任务pipelines,适用于[音频](#audio)、[计算机视觉](#computer-vision)、[自然语言处理](#natural-language-processing)和[多模态](#multimodal)任务。 ## pipeline抽象类 *pipeline*抽象类是对所有其他可用pipeline的封装。它可以像任何其他pipeline一样实例化,但进一步提供额外的便利性。 简单调用一个项目: ```python >>> pipe = pipeline("text-classification") >>> pipe("This restaurant is awesome") [{'label': 'POSITIVE', 'score': 0.9998743534088135}] ``` 如果您想使用 [hub](https://huggingface.co) 上的特定模型,可以忽略任务,如果hub上的模型已经定义了该任务: ```python >>> pipe = pipeline(model="FacebookAI/roberta-large-mnli") >>> pipe("This restaurant is awesome") [{'label': 'NEUTRAL', 'score': 0.7313136458396912}] ``` 要在多个项目上调用pipeline,可以使用*列表*调用它。 ```python >>> pipe = pipeline("text-classification") >>> pipe(["This restaurant is awesome", "This restaurant is awful"]) [{'label': 'POSITIVE', 'score': 0.9998743534088135}, {'label': 'NEGATIVE', 'score': 0.9996669292449951}] ``` 为了遍历整个数据集,建议直接使用 `dataset`。这意味着您不需要一次性分配整个数据集,也不需要自己进行批处理。这应该与GPU上的自定义循环一样快。如果不是,请随时提出issue。 ```python import datasets from transformers import pipeline from transformers.pipelines.pt_utils import KeyDataset from tqdm.auto import tqdm pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=0) dataset = datasets.load_dataset("superb", name="asr", split="test") # KeyDataset (only *pt*) will simply return the item in the dict returned by the dataset item # as we're not interested in the *target* part of the dataset. For sentence pair use KeyPairDataset for out in tqdm(pipe(KeyDataset(dataset, "file"))): print(out) # {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"} # {"text": ....} # .... ``` 为了方便使用,也可以使用生成器: ```python from transformers import pipeline pipe = pipeline("text-classification") def data(): while True: # This could come from a dataset, a database, a queue or HTTP request # in a server # Caveat: because this is iterative, you cannot use `num_workers > 1` variable # to use multiple threads to preprocess data. You can still have 1 thread that # does the preprocessing while the main runs the big inference yield "This is a test" for out in pipe(data()): print(out) # {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"} # {"text": ....} # .... ``` [[autodoc]] pipeline ## Pipeline batching 所有pipeline都可以使用批处理。这将在pipeline使用其流处理功能时起作用(即传递列表或 `Dataset` 或 `generator` 时)。 ```python from transformers import pipeline from transformers.pipelines.pt_utils import KeyDataset import datasets dataset = datasets.load_dataset("imdb", name="plain_text", split="unsupervised") pipe = pipeline("text-classification", device=0) for out in pipe(KeyDataset(dataset, "text"), batch_size=8, truncation="only_first"): print(out) # [{'label': 'POSITIVE', 'score': 0.9998743534088135}] # Exactly the same output as before, but the content are passed # as batches to the model ``` <Tip warning={true}> 然而,这并不自动意味着性能提升。它可能是一个10倍的加速或5倍的减速,具体取决于硬件、数据和实际使用的模型。 主要是加速的示例: </Tip> ```python from transformers import pipeline from torch.utils.data import Dataset from tqdm.auto import tqdm pipe = pipeline("text-classification", device=0) class MyDataset(Dataset): def __len__(self): return 5000 def __getitem__(self, i): return "This is a test" dataset = MyDataset() for batch_size in [1, 8, 64, 256]: print("-" * 30) print(f"Streaming batch_size={batch_size}") for out in tqdm(pipe(dataset, batch_size=batch_size), total=len(dataset)): pass ``` ``` # On GTX 970 ------------------------------ Streaming no batching 100%|██████████████████████████████████████████████████████████████████████| 5000/5000 [00:26<00:00, 187.52it/s] ------------------------------ Streaming batch_size=8 100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:04<00:00, 1205.95it/s] ------------------------------ Streaming batch_size=64 100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:02<00:00, 2478.24it/s] ------------------------------ Streaming batch_size=256 100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:01<00:00, 2554.43it/s] (diminishing returns, saturated the GPU) ``` 主要是减速的示例: ```python class MyDataset(Dataset): def __len__(self): return 5000 def __getitem__(self, i): if i % 64 == 0: n = 100 else: n = 1 return "This is a test" * n ``` 与其他句子相比,这是一个非常长的句子。在这种情况下,**整个**批次将需要400个tokens的长度,因此整个批次将是 [64, 400] 而不是 [64, 4],从而导致较大的减速。更糟糕的是,在更大的批次上,程序会崩溃。 ``` ------------------------------ Streaming no batching 100%|█████████████████████████████████████████████████████████████████████| 1000/1000 [00:05<00:00, 183.69it/s] ------------------------------ Streaming batch_size=8 100%|█████████████████████████████████████████████████████████████████████| 1000/1000 [00:03<00:00, 265.74it/s] ------------------------------ Streaming batch_size=64 100%|██████████████████████████████████████████████████████████████████████| 1000/1000 [00:26<00:00, 37.80it/s] ------------------------------ Streaming batch_size=256 0%| | 0/1000 [00:00<?, ?it/s] Traceback (most recent call last): File "/home/nicolas/src/transformers/test.py", line 42, in <module> for out in tqdm(pipe(dataset, batch_size=256), total=len(dataset)): .... q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head) RuntimeError: CUDA out of memory. Tried to allocate 376.00 MiB (GPU 0; 3.95 GiB total capacity; 1.72 GiB already allocated; 354.88 MiB free; 2.46 GiB reserved in total by PyTorch) ``` 对于这个问题,没有好的(通用)解决方案,效果可能因您的用例而异。经验法则如下: 对于用户,一个经验法则是: - **使用硬件测量负载性能。测量、测量、再测量。真实的数字是唯一的方法。** - 如果受到延迟的限制(进行推理的实时产品),不要进行批处理。 - 如果使用CPU,不要进行批处理。 - 如果您在GPU上处理的是吞吐量(您希望在大量静态数据上运行模型),则: - 如果对序列长度的大小没有概念("自然"数据),默认情况下不要进行批处理,进行测试并尝试逐渐添加,添加OOM检查以在失败时恢复(如果您不能控制序列长度,它将在某些时候失败)。 - 如果您的序列长度非常规律,那么批处理更有可能非常有趣,进行测试并推动它,直到出现OOM。 - GPU越大,批处理越有可能变得更有趣 - 一旦启用批处理,确保能够很好地处理OOM。 ## Pipeline chunk batching `zero-shot-classification` 和 `question-answering` 在某种意义上稍微特殊,因为单个输入可能会导致模型的多次前向传递。在正常情况下,这将导致 `batch_size` 参数的问题。 为了规避这个问题,这两个pipeline都有点特殊,它们是 `ChunkPipeline` 而不是常规的 `Pipeline`。简而言之: ```python preprocessed = pipe.preprocess(inputs) model_outputs = pipe.forward(preprocessed) outputs = pipe.postprocess(model_outputs) ``` 现在变成: ```python all_model_outputs = [] for preprocessed in pipe.preprocess(inputs): model_outputs = pipe.forward(preprocessed) all_model_outputs.append(model_outputs) outputs = pipe.postprocess(all_model_outputs) ``` 这对您的代码应该是非常直观的,因为pipeline的使用方式是相同的。 这是一个简化的视图,因为Pipeline可以自动处理批次!这意味着您不必担心您的输入实际上会触发多少次前向传递,您可以独立于输入优化 `batch_size`。前面部分的注意事项仍然适用。 ## Pipeline自定义 如果您想要重载特定的pipeline。 请随时为您手头的任务创建一个issue,Pipeline的目标是易于使用并支持大多数情况,因此 `transformers` 可能支持您的用例。 如果您想简单地尝试一下,可以: - 继承您选择的pipeline ```python class MyPipeline(TextClassificationPipeline): def postprocess(): # Your code goes here scores = scores * 100 # And here my_pipeline = MyPipeline(model=model, tokenizer=tokenizer, ...) # or if you use *pipeline* function, then: my_pipeline = pipeline(model="xxxx", pipeline_class=MyPipeline) ``` 这样就可以让您编写所有想要的自定义代码。 ## 实现一个pipeline [实现一个新的pipeline](../add_new_pipeline) ## 音频 可用于音频任务的pipeline包括以下几种。 ### AudioClassificationPipeline [[autodoc]] AudioClassificationPipeline - __call__ - all ### AutomaticSpeechRecognitionPipeline [[autodoc]] AutomaticSpeechRecognitionPipeline - __call__ - all ### TextToAudioPipeline [[autodoc]] TextToAudioPipeline - __call__ - all ### ZeroShotAudioClassificationPipeline [[autodoc]] ZeroShotAudioClassificationPipeline - __call__ - all ## 计算机视觉 可用于计算机视觉任务的pipeline包括以下几种。 ### DepthEstimationPipeline [[autodoc]] DepthEstimationPipeline - __call__ - all ### ImageClassificationPipeline [[autodoc]] ImageClassificationPipeline - __call__ - all ### ImageSegmentationPipeline [[autodoc]] ImageSegmentationPipeline - __call__ - all ### ImageToImagePipeline [[autodoc]] ImageToImagePipeline - __call__ - all ### ObjectDetectionPipeline [[autodoc]] ObjectDetectionPipeline - __call__ - all ### VideoClassificationPipeline [[autodoc]] VideoClassificationPipeline - __call__ - all ### ZeroShotImageClassificationPipeline [[autodoc]] ZeroShotImageClassificationPipeline - __call__ - all ### ZeroShotObjectDetectionPipeline [[autodoc]] ZeroShotObjectDetectionPipeline - __call__ - all ## 自然语言处理 可用于自然语言处理任务的pipeline包括以下几种。 ### ConversationalPipeline [[autodoc]] Conversation [[autodoc]] ConversationalPipeline - __call__ - all ### FillMaskPipeline [[autodoc]] FillMaskPipeline - __call__ - all ### NerPipeline [[autodoc]] NerPipeline See [`TokenClassificationPipeline`] for all details. ### QuestionAnsweringPipeline [[autodoc]] QuestionAnsweringPipeline - __call__ - all ### SummarizationPipeline [[autodoc]] SummarizationPipeline - __call__ - all ### TableQuestionAnsweringPipeline [[autodoc]] TableQuestionAnsweringPipeline - __call__ ### TextClassificationPipeline [[autodoc]] TextClassificationPipeline - __call__ - all ### TextGenerationPipeline [[autodoc]] TextGenerationPipeline - __call__ - all ### Text2TextGenerationPipeline [[autodoc]] Text2TextGenerationPipeline - __call__ - all ### TokenClassificationPipeline [[autodoc]] TokenClassificationPipeline - __call__ - all ### TranslationPipeline [[autodoc]] TranslationPipeline - __call__ - all ### ZeroShotClassificationPipeline [[autodoc]] ZeroShotClassificationPipeline - __call__ - all ## 多模态 可用于多模态任务的pipeline包括以下几种。 ### DocumentQuestionAnsweringPipeline [[autodoc]] DocumentQuestionAnsweringPipeline - __call__ - all ### FeatureExtractionPipeline [[autodoc]] FeatureExtractionPipeline - __call__ - all ### ImageFeatureExtractionPipeline [[autodoc]] ImageFeatureExtractionPipeline - __call__ - all ### ImageToTextPipeline [[autodoc]] ImageToTextPipeline - __call__ - all ### MaskGenerationPipeline [[autodoc]] MaskGenerationPipeline - __call__ - all ### VisualQuestionAnsweringPipeline [[autodoc]] VisualQuestionAnsweringPipeline - __call__ - all ## Parent class: `Pipeline` [[autodoc]] Pipeline
transformers/docs/source/zh/main_classes/pipelines.md/0
{ "file_path": "transformers/docs/source/zh/main_classes/pipelines.md", "repo_id": "transformers", "token_count": 6368 }
40
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 导出为 ONNX 在生产环境中部署 🤗 Transformers 模型通常需要或者能够受益于,将模型导出为可在专门的运行时和硬件上加载和执行的序列化格式。 🤗 Optimum 是 Transformers 的扩展,可以通过其 `exporters` 模块将模型从 PyTorch 或 TensorFlow 导出为 ONNX 及 TFLite 等序列化格式。🤗 Optimum 还提供了一套性能优化工具,可以在目标硬件上以最高效率训练和运行模型。 本指南演示了如何使用 🤗 Optimum 将 🤗 Transformers 模型导出为 ONNX。有关将模型导出为 TFLite 的指南,请参考 [导出为 TFLite 页面](tflite)。 ## 导出为 ONNX [ONNX (Open Neural Network eXchange 开放神经网络交换)](http://onnx.ai) 是一个开放的标准,它定义了一组通用的运算符和一种通用的文件格式,用于表示包括 PyTorch 和 TensorFlow 在内的各种框架中的深度学习模型。当一个模型被导出为 ONNX时,这些运算符被用于构建计算图(通常被称为*中间表示*),该图表示数据在神经网络中的流动。 通过公开具有标准化运算符和数据类型的图,ONNX使得模型能够轻松在不同深度学习框架间切换。例如,在 PyTorch 中训练的模型可以被导出为 ONNX,然后再导入到 TensorFlow(反之亦然)。 导出为 ONNX 后,模型可以: - 通过 [图优化(graph optimization)](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization) 和 [量化(quantization)](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/quantization) 等技术进行推理优化。 - 通过 [`ORTModelForXXX` 类](https://huggingface.co/docs/optimum/onnxruntime/package_reference/modeling_ort) 使用 ONNX Runtime 运行,它同样遵循你熟悉的 Transformers 中的 `AutoModel` API。 - 使用 [优化推理流水线(pipeline)](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines) 运行,其 API 与 🤗 Transformers 中的 [`pipeline`] 函数相同。 🤗 Optimum 通过利用配置对象提供对 ONNX 导出的支持。多种模型架构已经有现成的配置对象,并且配置对象也被设计得易于扩展以适用于其他架构。 现有的配置列表请参考 [🤗 Optimum 文档](https://huggingface.co/docs/optimum/exporters/onnx/overview)。 有两种方式可以将 🤗 Transformers 模型导出为 ONNX,这里我们展示这两种方法: - 使用 🤗 Optimum 的 CLI(命令行)导出。 - 使用 🤗 Optimum 的 `optimum.onnxruntime` 模块导出。 ### 使用 CLI 将 🤗 Transformers 模型导出为 ONNX 要将 🤗 Transformers 模型导出为 ONNX,首先需要安装额外的依赖项: ```bash pip install optimum[exporters] ``` 请参阅 [🤗 Optimum 文档](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli) 以查看所有可用参数,或者在命令行中查看帮助: ```bash optimum-cli export onnx --help ``` 运行以下命令,以从 🤗 Hub 导出模型的检查点(checkpoint),以 `distilbert/distilbert-base-uncased-distilled-squad` 为例: ```bash optimum-cli export onnx --model distilbert/distilbert-base-uncased-distilled-squad distilbert_base_uncased_squad_onnx/ ``` 你应该能在日志中看到导出进度以及生成的 `model.onnx` 文件的保存位置,如下所示: ```bash Validating ONNX model distilbert_base_uncased_squad_onnx/model.onnx... -[✓] ONNX model output names match reference model (start_logits, end_logits) - Validating ONNX Model output "start_logits": -[✓] (2, 16) matches (2, 16) -[✓] all values close (atol: 0.0001) - Validating ONNX Model output "end_logits": -[✓] (2, 16) matches (2, 16) -[✓] all values close (atol: 0.0001) The ONNX export succeeded and the exported model was saved at: distilbert_base_uncased_squad_onnx ``` 上面的示例说明了从 🤗 Hub 导出检查点的过程。导出本地模型时,首先需要确保将模型的权重和分词器文件保存在同一目录(`local_path`)中。在使用 CLI 时,将 `local_path` 传递给 `model` 参数,而不是 🤗 Hub 上的检查点名称,并提供 `--task` 参数。你可以在 [🤗 Optimum 文档](https://huggingface.co/docs/optimum/exporters/task_manager)中查看支持的任务列表。如果未提供 `task` 参数,将默认导出不带特定任务头的模型架构。 ```bash optimum-cli export onnx --model local_path --task question-answering distilbert_base_uncased_squad_onnx/ ``` 生成的 `model.onnx` 文件可以在支持 ONNX 标准的 [许多加速引擎(accelerators)](https://onnx.ai/supported-tools.html#deployModel) 之一上运行。例如,我们可以使用 [ONNX Runtime](https://onnxruntime.ai/) 加载和运行模型,如下所示: ```python >>> from transformers import AutoTokenizer >>> from optimum.onnxruntime import ORTModelForQuestionAnswering >>> tokenizer = AutoTokenizer.from_pretrained("distilbert_base_uncased_squad_onnx") >>> model = ORTModelForQuestionAnswering.from_pretrained("distilbert_base_uncased_squad_onnx") >>> inputs = tokenizer("What am I using?", "Using DistilBERT with ONNX Runtime!", return_tensors="pt") >>> outputs = model(**inputs) ``` 从 Hub 导出 TensorFlow 检查点的过程也一样。例如,以下是从 [Keras 组织](https://huggingface.co/keras-io) 导出纯 TensorFlow 检查点的命令: ```bash optimum-cli export onnx --model keras-io/transformers-qa distilbert_base_cased_squad_onnx/ ``` ### 使用 `optimum.onnxruntime` 将 🤗 Transformers 模型导出为 ONNX 除了 CLI 之外,你还可以使用代码将 🤗 Transformers 模型导出为 ONNX,如下所示: ```python >>> from optimum.onnxruntime import ORTModelForSequenceClassification >>> from transformers import AutoTokenizer >>> model_checkpoint = "distilbert_base_uncased_squad" >>> save_directory = "onnx/" >>> # 从 transformers 加载模型并将其导出为 ONNX >>> ort_model = ORTModelForSequenceClassification.from_pretrained(model_checkpoint, export=True) >>> tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) >>> # 保存 onnx 模型以及分词器 >>> ort_model.save_pretrained(save_directory) >>> tokenizer.save_pretrained(save_directory) ``` ### 导出尚未支持的架构的模型 如果你想要为当前无法导出的模型添加支持,请先检查 [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview) 是否支持该模型,如果不支持,你可以 [直接为 🤗 Optimum 贡献代码](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute)。 ### 使用 `transformers.onnx` 导出模型 <Tip warning={true}> `tranformers.onnx` 不再进行维护,请如上所述,使用 🤗 Optimum 导出模型。这部分内容将在未来版本中删除。 </Tip> 要使用 `tranformers.onnx` 将 🤗 Transformers 模型导出为 ONNX,请安装额外的依赖项: ```bash pip install transformers[onnx] ``` 将 `transformers.onnx` 包作为 Python 模块使用,以使用现成的配置导出检查点: ```bash python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/ ``` 以上代码将导出由 `--model` 参数定义的检查点的 ONNX 图。传入任何 🤗 Hub 上或者存储与本地的检查点。生成的 `model.onnx` 文件可以在支持 ONNX 标准的众多加速引擎上运行。例如,使用 ONNX Runtime 加载并运行模型,如下所示: ```python >>> from transformers import AutoTokenizer >>> from onnxruntime import InferenceSession >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased") >>> session = InferenceSession("onnx/model.onnx") >>> # ONNX Runtime expects NumPy arrays as input >>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np") >>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs)) ``` 可以通过查看每个模型的 ONNX 配置来获取所需的输出名(例如 `["last_hidden_state"]`)。例如,对于 DistilBERT,可以用以下代码获取输出名称: ```python >>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig >>> config = DistilBertConfig() >>> onnx_config = DistilBertOnnxConfig(config) >>> print(list(onnx_config.outputs.keys())) ["last_hidden_state"] ``` 从 Hub 导出 TensorFlow 检查点的过程也一样。导出纯 TensorFlow 检查点的示例代码如下: ```bash python -m transformers.onnx --model=keras-io/transformers-qa onnx/ ``` 要导出本地存储的模型,请将模型的权重和分词器文件保存在同一目录中(例如 `local-pt-checkpoint`),然后通过将 `transformers.onnx` 包的 `--model` 参数指向该目录,将其导出为 ONNX: ```bash python -m transformers.onnx --model=local-pt-checkpoint onnx/ ```
transformers/docs/source/zh/serialization.md/0
{ "file_path": "transformers/docs/source/zh/serialization.md", "repo_id": "transformers", "token_count": 4933 }
41
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pretraining the library models for denoising language modeling on a text file or a dataset. Here is the full list of checkpoints on the hub that can be pretrained by this script: https://huggingface.co/models?filter=bart """ # You can also adapt this script on your own denoising language modeling task. Pointers for this are left as comments. import json import logging import math import os import sys import time import warnings from dataclasses import asdict, dataclass, field from enum import Enum from itertools import chain from pathlib import Path from typing import Dict, List, Optional import flax import jax import jax.numpy as jnp import nltk import numpy as np import optax from datasets import load_dataset from flax import jax_utils, traverse_util from flax.jax_utils import pad_shard_unpad from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard from huggingface_hub import Repository, create_repo from tqdm import tqdm from transformers import ( CONFIG_MAPPING, FLAX_MODEL_FOR_MASKED_LM_MAPPING, AutoTokenizer, BartConfig, BatchEncoding, FlaxBartForConditionalGeneration, HfArgumentParser, PreTrainedTokenizerBase, is_tensorboard_available, set_seed, ) from transformers.models.bart.modeling_flax_bart import shift_tokens_right from transformers.utils import send_example_telemetry MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class TrainingArguments: output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) def __post_init__(self): if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" return d @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch." ) }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "Floating-point format in which the model weights should be initialized and trained. Choose one of" " `[float32, float16, bfloat16]`." ) }, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) train_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input train ref data file for whole word masking in Chinese."}, ) validation_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) max_seq_length: Optional[int] = field( default=None, metadata={ "help": ( "The maximum total input sequence length after tokenization and masking. Sequences longer than this" " will be truncated. Default to the max input length of the model." ) }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) mlm_probability: float = field( default=0.3, metadata={"help": "Ratio of tokens to mask for span masked language modeling loss"} ) permute_sentence_ratio: float = field( default=1.0, metadata={"help": "Ratio of sentences to be permuted in each document"} ) poisson_lambda: float = field( default=3.0, metadata={"help": "Mean of Poisson distribution used to generate span-lengths to be masked"} ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] if extension not in ["csv", "json", "txt"]: raise ValueError("train_file` should be a csv, json or text file.") if self.validation_file is not None: extension = self.validation_file.split(".")[-1] if extension not in ["csv", "json", "txt"]: raise ValueError("`validation_file` should be a csv, json or text file.") @flax.struct.dataclass class FlaxDataCollatorForBartDenoisingLM: """ Data collator used for BART denoising language modeling. The code is largely copied from `<https://github.com/morganmcg1/rotobart/blob/main/data_collator.py#L223>`__. For more information on how BART denoising language modeling works, one can take a look at the `official paper <https://arxiv.org/pdf/1910.13461.pdf>`__ or the `official code for preprocessing <https://github.com/facebookresearch/fairseq/blob/main/fairseq/data/denoising_dataset.py>`__ . Args: tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): The tokenizer used for encoding the data mask_ratio (:obj:`float`): The probability with which to (randomly) mask tokens in the input poisson_lambda (:obj:`float`): Mean parameter of Poisson distribution used to generate span-lengths to be masked permute_sentence_ratio (:obj:`float`): Ratio of sentences to be permuted in each document decoder_start_token_id: (:obj:`int): The decoder start token id of the model """ tokenizer: PreTrainedTokenizerBase decoder_start_token_id: int mask_ratio: float = 0.3 poisson_lambda: float = 3.0 permute_sentence_ratio: float = 1.0 def __post_init__(self): if self.tokenizer.mask_token is None or self.tokenizer.eos_token is None: raise ValueError( "This tokenizer does not have a mask token or eos token token which is necessary for denoising" " language modeling. " ) def __call__(self, examples: List[Dict[str, List[int]]]) -> BatchEncoding: # convert list to dict and tensorize input batch = BatchEncoding( {k: np.array([examples[i][k] for i in range(len(examples))]) for k, v in examples[0].items()} ) batch["labels"] = batch["input_ids"].copy() batch["decoder_input_ids"] = shift_tokens_right( batch["labels"], self.tokenizer.pad_token_id, self.decoder_start_token_id ) # permuting sentences do_permute = False if self.permute_sentence_ratio > 0.0: batch["input_ids"] = self.permute_sentences(batch["input_ids"]) do_permute = True # masking span of tokens (text infilling in the paper) if self.mask_ratio: batch["input_ids"], batch["labels"] = self.span_mask_tokens( batch["input_ids"], batch["labels"], do_permute ) # ignore pad tokens batch["attention_mask"] = (batch["input_ids"] != self.tokenizer.pad_token_id).astype(int) batch["decoder_attention_mask"] = (batch["decoder_input_ids"] != self.tokenizer.pad_token_id).astype(int) return batch def permute_sentences(self, input_ids): """ Shuffle sentences in each document. """ results = input_ids.copy() # find end locations of sentences end_sentence_mask = input_ids == self.tokenizer.pad_token_id sentence_ends = np.argwhere(end_sentence_mask) sentence_ends[:, 1] += 1 example_has_multiple_sentences, num_sentences = np.unique(sentence_ends[:, 0], return_counts=True) num_sentences_map = dict(zip(example_has_multiple_sentences, num_sentences)) num_to_permute = np.ceil(num_sentences * self.permute_sentence_ratio).astype(int) num_to_permute_map = dict(zip(example_has_multiple_sentences, num_to_permute)) sentence_ends = np.split(sentence_ends[:, 1], np.unique(sentence_ends[:, 0], return_index=True)[1][1:]) sentence_ends_map = dict(zip(example_has_multiple_sentences, sentence_ends)) for i in range(input_ids.shape[0]): if i not in example_has_multiple_sentences: continue substitutions = np.random.permutation(num_sentences_map[i])[: num_to_permute_map[i]] ordering = np.arange(0, num_sentences_map[i]) ordering[substitutions] = substitutions[np.random.permutation(num_to_permute_map[i])] # write shuffled sentences into results index = 0 for j in ordering: sentence = input_ids[i, (sentence_ends_map[i][j - 1] if j > 0 else 0) : sentence_ends_map[i][j]] results[i, index : index + sentence.shape[0]] = sentence index += sentence.shape[0] return results def span_mask_tokens(self, input_ids, labels, do_permute): """ Sampling text spans with span lengths drawn from a Poisson distribution and masking them. """ special_tokens_mask_labels = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() ] special_tokens_mask_inputs = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in input_ids.tolist() ] special_tokens_mask_labels = np.array(special_tokens_mask_labels, dtype=bool) special_tokens_mask_inputs = np.array(special_tokens_mask_inputs, dtype=bool) # determine how many tokens we need to mask in total is_token_mask = ~(input_ids == self.tokenizer.pad_token_id) & ~special_tokens_mask_inputs num_tokens_to_mask = int(math.ceil(is_token_mask.astype(float).sum() * self.mask_ratio)) if num_tokens_to_mask == 0: return input_ids, labels # generate a sufficient number of span lengths span_lengths = np.random.poisson(lam=self.poisson_lambda, size=(num_tokens_to_mask,)) while np.cumsum(span_lengths, 0)[-1] < num_tokens_to_mask: span_lengths = np.concatenate( [span_lengths, np.random.poisson(lam=self.poisson_lambda, size=(num_tokens_to_mask,))] ) # remove all spans of length 0 # note that BART inserts additional mask tokens where length == 0, # which we do not implement for now as it adds additional complexity span_lengths = span_lengths[span_lengths > 0] # trim to about num_tokens_to_mask tokens cutoff_idx = np.argmin(np.abs(np.cumsum(span_lengths, 0) - num_tokens_to_mask)) + 1 span_lengths = span_lengths[:cutoff_idx] # randomly choose starting positions for masking token_indices = np.argwhere(is_token_mask == 1) span_starts = np.random.permutation(token_indices.shape[0])[: span_lengths.shape[0]] # prepare mask masked_indices = np.array(token_indices[span_starts]) mask = np.full_like(input_ids, fill_value=False) # mask starting positions for mi in masked_indices: mask[tuple(mi)] = True span_lengths -= 1 # fill up spans max_index = input_ids.shape[1] - 1 remaining = (span_lengths > 0) & (masked_indices[:, 1] < max_index) while np.any(remaining): masked_indices[remaining, 1] += 1 for mi in masked_indices: mask[tuple(mi)] = True span_lengths -= 1 remaining = (span_lengths > 0) & (masked_indices[:, 1] < max_index) # place the mask tokens mask[np.where(special_tokens_mask_inputs)] = False input_ids[np.where(mask)] = self.tokenizer.mask_token_id if not do_permute: labels[np.where(mask == 0)] = -100 else: labels[np.where(special_tokens_mask_labels)] = -100 # remove mask tokens that are not starts of spans to_remove = (mask == 1) & np.roll((mask == 1), 1, 1) new_input_ids = np.full_like(input_ids, fill_value=self.tokenizer.pad_token_id) for i, example in enumerate(input_ids): new_example = example[~to_remove[i]] new_input_ids[i, : new_example.shape[0]] = new_example return new_input_ids, labels def generate_batch_splits(samples_idx: np.ndarray, batch_size: int, drop_last=True) -> np.ndarray: """Generate batches of data for a specified batch size from sample indices. If the dataset size is not divisible by the batch size and `drop_last` is `True`, the last incomplete batch is dropped. Else, it is returned.""" num_samples = len(samples_idx) if drop_last: samples_to_remove = num_samples % batch_size if samples_to_remove != 0: samples_idx = samples_idx[:-samples_to_remove] sections_split = num_samples // batch_size samples_idx = samples_idx.reshape((sections_split, batch_size)) else: sections_split = math.ceil(num_samples / batch_size) samples_idx = np.array_split(samples_idx, sections_split) return samples_idx def write_train_metric(summary_writer, train_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) def write_eval_metric(summary_writer, eval_metrics, step): for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_bart_dlm", model_args, data_args, framework="flax") if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", level=logging.INFO, datefmt="[%X]", ) # Log on each process the small summary: logger = logging.getLogger(__name__) # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Handle the repository creation if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Clone repo locally repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, num_proc=data_args.preprocessing_num_workers, ) if "validation" not in datasets.keys(): datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, token=model_args.token, num_proc=data_args.preprocessing_num_workers, ) datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, token=model_args.token, num_proc=data_args.preprocessing_num_workers, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if extension == "txt": extension = "text" datasets = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, num_proc=data_args.preprocessing_num_workers, ) if "validation" not in datasets.keys(): datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, token=model_args.token, num_proc=data_args.preprocessing_num_workers, ) datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, token=model_args.token, num_proc=data_args.preprocessing_num_workers, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # Load pretrained model and tokenizer if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script. " "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.config_name: config = BartConfig.from_pretrained( model_args.config_name, cache_dir=model_args.cache_dir, vocab_size=len(tokenizer), token=model_args.token, ) elif model_args.model_name_or_path: config = BartConfig.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=model_args.token, ) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = datasets["train"].column_names else: column_names = datasets["validation"].column_names text_column_name = "text" if "text" in column_names else column_names[0] max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) # Use Punkt Sentence Tokenizer to divide a document into a list of sentences nltk.download("punkt") sentence_tokenizer = nltk.data.load("tokenizers/punkt/english.pickle") def sentence_split_function(example): sents = sentence_tokenizer.tokenize(example["text"]) # use pad token as end of sentence indicator new_text = tokenizer.bos_token + f"{tokenizer.pad_token}".join(sents) + tokenizer.eos_token return {"text": new_text} split_datasets = datasets.map( sentence_split_function, batched=False, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) # Tokenize every text, then concatenate them together before splitting them in smaller parts. # Since we make sure that all sequences are of the same length, no attention_mask is needed. def tokenize_function(examples): return tokenizer(examples[text_column_name], add_special_tokens=False, return_attention_mask=False) tokenized_datasets = split_datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=text_column_name, load_from_cache_file=not data_args.overwrite_cache, ) # Main data processing function that will concatenate all texts from our dataset and generate chunks of # max_seq_length. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= max_seq_length: total_length = (total_length // max_seq_length) * max_seq_length # Split by chunks of max_len. result = { k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)] for k, t in concatenated_examples.items() } return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value # might be slower to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/process#map tokenized_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) dropout_rngs = jax.random.split(rng, jax.local_device_count()) if model_args.model_name_or_path: model = FlaxBartForConditionalGeneration.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), token=model_args.token, ) else: config.vocab_size = len(tokenizer) model = FlaxBartForConditionalGeneration( config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), ) # Data collator # This one will take care of randomly masking the tokens and permuting the sentences. data_collator = FlaxDataCollatorForBartDenoisingLM( tokenizer=tokenizer, decoder_start_token_id=model.config.decoder_start_token_id, mask_ratio=data_args.mlm_probability, poisson_lambda=data_args.poisson_lambda, permute_sentence_ratio=data_args.permute_sentence_ratio, ) # Store some constant num_epochs = int(training_args.num_train_epochs) train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) eval_batch_size = per_device_eval_batch_size * jax.device_count() num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs # Create learning rate schedule warmup_fn = optax.linear_schedule( init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps ) decay_fn = optax.linear_schedule( init_value=training_args.learning_rate, end_value=0, transition_steps=num_train_steps - training_args.warmup_steps, ) linear_decay_lr_schedule_fn = optax.join_schedules( schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps] ) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layernorm", "layer_norm", "ln"] layer_norm_named_params = { layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() } flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) # create adam optimizer if training_args.adafactor: # We use the default parameters here to initialize adafactor, # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74 optimizer = optax.adafactor( learning_rate=linear_decay_lr_schedule_fn, ) else: optimizer = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) # Setup train state state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer) # Define gradient update step fn def train_step(state, batch, dropout_rng): dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) def loss_fn(params): labels = batch.pop("labels") logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] # compute loss, ignore padded input tokens and special tokens label_mask = jnp.where(labels > 0, 1.0, 0.0) loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask # take average loss = loss.sum() num_labels = label_mask.sum() return loss, num_labels grad_fn = jax.value_and_grad(loss_fn, has_aux=True) (loss, num_labels), grad = grad_fn(state.params) num_labels = jax.lax.psum(num_labels, "batch") # true loss = total loss / total samples loss = jax.lax.psum(loss, "batch") loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) # true grad = total grad / total samples grad = jax.lax.psum(grad, "batch") grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) new_state = state.apply_gradients(grads=grad) metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} return new_state, metrics, new_dropout_rng # Create parallel version of the train step p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) # Define eval fn def eval_step(params, batch): labels = batch.pop("labels") logits = model(**batch, params=params, train=False)[0] # compute loss, ignore padded input tokens and special tokens label_mask = jnp.where(labels > 0, 1.0, 0.0) loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask # compute accuracy accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask # summarize metrics metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()} metrics = jax.lax.psum(metrics, axis_name="batch") return metrics p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,)) # Replicate the train state on each device state = jax_utils.replicate(state) train_time = 0 epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0) for epoch in epochs: # ======================== Training ================================ train_start = time.time() train_metrics = [] # Create sampling rng rng, input_rng = jax.random.split(rng) # Generate an epoch by shuffling sampling indices from the train dataset num_train_samples = len(tokenized_datasets["train"]) # Avoid using jax.numpy here in case of TPU training train_samples_idx = np.random.permutation(np.arange(num_train_samples)) train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size) # Gather the indexes for creating the batch and do a training step for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)): samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples) # Model forward model_inputs = shard(model_inputs.data) state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs) train_metrics.append(train_metric) cur_step = epoch * (num_train_samples // train_batch_size) + step if cur_step % training_args.logging_steps == 0 and cur_step > 0: # Save metrics train_metric = jax_utils.unreplicate(train_metric) train_time += time.time() - train_start if has_tensorboard and jax.process_index() == 0: write_train_metric(summary_writer, train_metrics, train_time, cur_step) epochs.write( f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate:" f" {train_metric['learning_rate']})" ) train_metrics = [] if cur_step % training_args.eval_steps == 0 and cur_step > 0: # ======================== Evaluating ============================== num_eval_samples = len(tokenized_datasets["validation"]) # Avoid using jax.numpy here in case of TPU training eval_samples_idx = np.arange(num_eval_samples) eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size) eval_metrics = [] for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples) # Model forward metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) # normalize eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(jnp.sum, eval_metrics) eval_normalizer = eval_metrics.pop("normalizer") eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics) # Update progress bar epochs.desc = f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})" # Save metrics if has_tensorboard and jax.process_index() == 0: write_eval_metric(summary_writer, eval_metrics, cur_step) if cur_step % training_args.save_steps == 0 and cur_step > 0: # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) model.save_pretrained(training_args.output_dir, params=params) tokenizer.save_pretrained(training_args.output_dir) if training_args.push_to_hub: repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) # Eval after training if training_args.do_eval: num_eval_samples = len(tokenized_datasets["validation"]) # Avoid using jax.numpy here in case of TPU training eval_samples_idx = np.arange(num_eval_samples) eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size) eval_metrics = [] for _, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples) # Model forward metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) # normalize eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(lambda metric: jnp.sum(metric).item(), eval_metrics) eval_normalizer = eval_metrics.pop("normalizer") eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics) try: perplexity = math.exp(eval_metrics["loss"]) except OverflowError: perplexity = float("inf") eval_metrics["perplexity"] = perplexity if jax.process_index() == 0: eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()} path = os.path.join(training_args.output_dir, "eval_results.json") with open(path, "w") as f: json.dump(eval_metrics, f, indent=4, sort_keys=True) if __name__ == "__main__": main()
transformers/examples/flax/language-modeling/run_bart_dlm_flax.py/0
{ "file_path": "transformers/examples/flax/language-modeling/run_bart_dlm_flax.py", "repo_id": "transformers", "token_count": 18354 }
42
<!--- Copyright 2021 The Google Flax Team Authors and HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Text classification examples ## GLUE tasks Based on the script [`run_flax_glue.py`](https://github.com/huggingface/transformers/blob/main/examples/flax/text-classification/run_flax_glue.py). Fine-tuning the library models for sequence classification on the GLUE benchmark: [General Language Understanding Evaluation](https://gluebenchmark.com/). This script can fine-tune any of the models on the [hub](https://huggingface.co/models) and can also be used for a dataset hosted on our [hub](https://huggingface.co/datasets) or your own data in a csv or a JSON file (the script might need some tweaks in that case, refer to the comments inside for help). GLUE is made up of a total of 9 different tasks. Here is how to run the script on one of them: ```bash export TASK_NAME=mrpc python run_flax_glue.py \ --model_name_or_path google-bert/bert-base-cased \ --task_name ${TASK_NAME} \ --max_seq_length 128 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --per_device_train_batch_size 4 \ --eval_steps 100 \ --output_dir ./$TASK_NAME/ \ --push_to_hub ``` where task name can be one of cola, mnli, mnli_mismatched, mnli_matched, mrpc, qnli, qqp, rte, sst2, stsb, wnli. Using the command above, the script will train for 3 epochs and run eval after each epoch. Metrics and hyperparameters are stored in Tensorflow event files in `--output_dir`. You can see the results by running `tensorboard` in that directory: ```bash $ tensorboard --logdir . ``` or directly on the hub under *Training metrics*. ### Accuracy Evaluation We train five replicas and report mean accuracy and stdev on the dev set below. We use the settings as in the command above (with an exception for MRPC and WNLI which are tiny and where we used 5 epochs instead of 3), and we use a total train batch size of 32 (we train on 8 Cloud v3 TPUs, so a per-device batch size of 4), On the task other than MRPC and WNLI we train for 3 these epochs because this is the standard, but looking at the training curves of some of them (e.g., SST-2, STS-b), it appears the models are undertrained and we could get better results when training longer. In the Tensorboard results linked below, the random seed of each model is equal to the ID of the run. So in order to reproduce run 1, run the command above with `--seed=1`. The best run used random seed 3, which is the default in the script. The results of all runs are in [this Google Sheet](https://docs.google.com/spreadsheets/d/1p3XzReMO75m_XdEJvPue-PIq_PN-96J2IJpJW1yS-10/edit?usp=sharing). | Task | Metric | Acc (best run) | Acc (avg/5runs) | Stdev | Metrics | |-------|------------------------------|----------------|-----------------|-----------|--------------------------------------------------------------------------| | CoLA | Matthews corr | 60.57 | 59.04 | 1.06 | [tfhub.dev](https://tensorboard.dev/experiment/lfr2adVpRtmLDALKrElkzg/) | | SST-2 | Accuracy | 92.66 | 92.23 | 0.57 | [tfhub.dev](https://tensorboard.dev/experiment/jYvfv2trRHKMjoWnXVwrZA/) | | MRPC | F1/Accuracy | 89.90/85.78 | 88.97/84.36 | 0.72/1.09 | [tfhub.dev](https://tensorboard.dev/experiment/bo3W3DEoRw2Q7YXjWrJkfg/) | | STS-B | Pearson/Spearman corr. | 89.04/88.70 | 88.94/88.63 | 0.07/0.07 | [tfhub.dev](https://tensorboard.dev/experiment/fxVwbLD7QpKhbot0r9rn2w/) | | QQP | Accuracy/F1 | 90.81/87.58 | 90.76/87.51 | 0.05/0.06 | [tfhub.dev](https://tensorboard.dev/experiment/di089Rc9TZmsnKRMrYNLsA/) | | MNLI | Matched acc. | 84.10 | 83.80 | 0.16 | [tfhub.dev](https://tensorboard.dev/experiment/JgNCGHDJSRaW6HBx6YQFYQ/) | | QNLI | Accuracy | 91.01 | 90.82 | 0.17 | [tfhub.dev](https://tensorboard.dev/experiment/Bq7cMGJnQMSggYgL8qNGeQ/) | | RTE | Accuracy | 66.06 | 64.76 | 1.04 | [tfhub.dev](https://tensorboard.dev/experiment/66Eq24bhRjqN6CEhgDSGqQ/) | | WNLI | Accuracy | 46.48 | 37.01 | 6.83 | [tfhub.dev](https://tensorboard.dev/experiment/TAqcnddqTkWvVEeGaWwIdQ/) | Some of these results are significantly different from the ones reported on the test set of GLUE benchmark on the website. For QQP and WNLI, please refer to [FAQ #12](https://gluebenchmark.com/faq) on the website. ### Runtime evaluation We also ran each task once on a single V100 GPU, 8 V100 GPUs, and 8 Cloud v3 TPUs and report the overall training time below. For comparison we ran Pytorch's [run_glue.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py) on a single GPU (last column). | Task | TPU v3-8 | 8 GPU | [1 GPU](https://tensorboard.dev/experiment/mkPS4Zh8TnGe1HB6Yzwj4Q) | 1 GPU (Pytorch) | |-------|-----------|------------|------------|-----------------| | CoLA | 1m 42s | 1m 26s | 3m 9s | 4m 6s | | SST-2 | 5m 12s | 6m 28s | 22m 33s | 34m 37s | | MRPC | 1m 29s | 1m 14s | 2m 20s | 2m 56s | | STS-B | 1m 30s | 1m 12s | 2m 16s | 2m 48s | | QQP | 22m 50s | 31m 48s | 1h 59m 41s | 2h 54m | | MNLI | 25m 03s | 33m 55s | 2h 9m 37s | 3h 7m 6s | | QNLI | 7m30s | 9m 40s | 34m 40s | 49m 8s | | RTE | 1m 20s | 55s | 1m 10s | 1m 16s | | WNLI | 1m 11s | 48s | 39s | 36s | |-------| | **TOTAL** | 1h 03m | 1h 28m | 5h 16m | 6h 37m | *All experiments are ran on Google Cloud Platform. GPU experiments are ran without further optimizations besides JAX transformations. GPU experiments are ran with full precision (fp32). "TPU v3-8" are 8 TPU cores on 4 chips (each chips has 2 cores), while "8 GPU" are 8 GPU chips.
transformers/examples/flax/text-classification/README.md/0
{ "file_path": "transformers/examples/flax/text-classification/README.md", "repo_id": "transformers", "token_count": 2760 }
43
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version logger = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") MODEL_MODES = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeq2SeqLM, "translation": AutoModelForSeq2SeqLM, } # update this and the import above to support new schedulers from transformers.optimization arg_to_scheduler = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } arg_to_scheduler_choices = sorted(arg_to_scheduler.keys()) arg_to_scheduler_metavar = "{" + ", ".join(arg_to_scheduler_choices) + "}" class BaseTransformer(pl.LightningModule): def __init__( self, hparams: argparse.Namespace, num_labels=None, mode="base", config=None, tokenizer=None, model=None, **config_kwargs, ): """Initialize a model, tokenizer and config.""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(hparams) self.step_count = 0 self.output_dir = Path(self.hparams.output_dir) cache_dir = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: self.config = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, **({"num_labels": num_labels} if num_labels is not None else {}), cache_dir=cache_dir, **config_kwargs, ) else: self.config: PretrainedConfig = config extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams, p, None): assert hasattr(self.config, p), f"model config doesn't have a `{p}` attribute" setattr(self.config, p, getattr(self.hparams, p)) if tokenizer is None: self.tokenizer = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, cache_dir=cache_dir, ) else: self.tokenizer: PreTrainedTokenizer = tokenizer self.model_type = MODEL_MODES[mode] if model is None: self.model = self.model_type.from_pretrained( self.hparams.model_name_or_path, from_tf=bool(".ckpt" in self.hparams.model_name_or_path), config=self.config, cache_dir=cache_dir, ) else: self.model = model def load_hf_checkpoint(self, *args, **kwargs): self.model = self.model_type.from_pretrained(*args, **kwargs) def get_lr_scheduler(self): get_schedule_func = arg_to_scheduler[self.hparams.lr_scheduler] scheduler = get_schedule_func( self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps() ) scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def configure_optimizers(self): """Prepare optimizer and schedule (linear warmup and decay)""" model = self.model no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] if self.hparams.adafactor: optimizer = Adafactor( optimizer_grouped_parameters, lr=self.hparams.learning_rate, scale_parameter=False, relative_step=False ) else: optimizer = AdamW( optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon ) self.opt = optimizer scheduler = self.get_lr_scheduler() return [optimizer], [scheduler] def test_step(self, batch, batch_nb): return self.validation_step(batch, batch_nb) def test_epoch_end(self, outputs): return self.validation_end(outputs) def total_steps(self) -> int: """The number of total training steps that will be run. Used for lr scheduler purposes.""" num_devices = max(1, self.hparams.gpus) # TODO: consider num_tpu_cores effective_batch_size = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def setup(self, mode): if mode == "test": self.dataset_size = len(self.test_dataloader().dataset) else: self.train_loader = self.get_dataloader("train", self.hparams.train_batch_size, shuffle=True) self.dataset_size = len(self.train_dataloader().dataset) def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False): raise NotImplementedError("You must implement this for your task") def train_dataloader(self): return self.train_loader def val_dataloader(self): return self.get_dataloader("dev", self.hparams.eval_batch_size, shuffle=False) def test_dataloader(self): return self.get_dataloader("test", self.hparams.eval_batch_size, shuffle=False) def _feature_file(self, mode): return os.path.join( self.hparams.data_dir, "cached_{}_{}_{}".format( mode, list(filter(None, self.hparams.model_name_or_path.split("/"))).pop(), str(self.hparams.max_seq_length), ), ) @pl.utilities.rank_zero_only def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: save_path = self.output_dir.joinpath("best_tfmr") self.model.config.save_step = self.step_count self.model.save_pretrained(save_path) self.tokenizer.save_pretrained(save_path) @staticmethod def add_model_specific_args(parser, root_dir): parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default=None, type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--encoder_layerdrop", type=float, help="Encoder layer dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--decoder_layerdrop", type=float, help="Decoder layer dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--dropout", type=float, help="Dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--attention_dropout", type=float, help="Attention dropout probability (Optional). Goes into model.config", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--lr_scheduler", default="linear", choices=arg_to_scheduler_choices, metavar=arg_to_scheduler_metavar, type=str, help="Learning rate scheduler", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--num_workers", default=4, type=int, help="kwarg passed to DataLoader") parser.add_argument("--num_train_epochs", dest="max_epochs", default=3, type=int) parser.add_argument("--train_batch_size", default=32, type=int) parser.add_argument("--eval_batch_size", default=32, type=int) parser.add_argument("--adafactor", action="store_true") class LoggingCallback(pl.Callback): def on_batch_end(self, trainer, pl_module): lr_scheduler = trainer.lr_schedulers[0]["scheduler"] lrs = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(lrs) def on_validation_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): rank_zero_info("***** Validation results *****") metrics = trainer.callback_metrics # Log results for key in sorted(metrics): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(key, str(metrics[key]))) def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): rank_zero_info("***** Test results *****") metrics = trainer.callback_metrics # Log and save results to file output_test_results_file = os.path.join(pl_module.hparams.output_dir, "test_results.txt") with open(output_test_results_file, "w") as writer: for key in sorted(metrics): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(key, str(metrics[key]))) writer.write("{} = {}\n".format(key, str(metrics[key]))) def add_generic_args(parser, root_dir) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O2", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--n_tpu_cores", dest="tpu_cores", type=int) parser.add_argument("--max_grad_norm", dest="gradient_clip_val", default=1.0, type=float, help="Max gradient norm") parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") parser.add_argument( "--gradient_accumulation_steps", dest="accumulate_grad_batches", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.", ) def generic_train( model: BaseTransformer, args: argparse.Namespace, early_stopping_callback=None, logger=True, # can pass WandbLogger() here extra_callbacks=[], checkpoint_callback=None, logging_callback=None, **extra_train_kwargs, ): pl.seed_everything(args.seed) # init model odir = Path(model.hparams.output_dir) odir.mkdir(exist_ok=True) # add custom checkpoints if checkpoint_callback is None: checkpoint_callback = pl.callbacks.ModelCheckpoint( filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(early_stopping_callback) if logging_callback is None: logging_callback = LoggingCallback() train_params = {} # TODO: remove with PyTorch 1.6 since pl uses native amp if args.fp16: train_params["precision"] = 16 train_params["amp_level"] = args.fp16_opt_level if args.gpus > 1: train_params["distributed_backend"] = "ddp" train_params["accumulate_grad_batches"] = args.accumulate_grad_batches train_params["accelerator"] = extra_train_kwargs.get("accelerator", None) train_params["profiler"] = extra_train_kwargs.get("profiler", None) trainer = pl.Trainer.from_argparse_args( args, weights_summary=None, callbacks=[logging_callback] + extra_callbacks, logger=logger, checkpoint_callback=checkpoint_callback, **train_params, ) if args.do_train: trainer.fit(model) return trainer
transformers/examples/legacy/pytorch-lightning/lightning_base.py/0
{ "file_path": "transformers/examples/legacy/pytorch-lightning/lightning_base.py", "repo_id": "transformers", "token_count": 6603 }
44
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Sequence-to-Sequence Training and Evaluation This directory contains examples for finetuning and evaluating transformers on summarization and translation tasks. For deprecated `bertabs` instructions, see [`bertabs/README.md`](https://github.com/huggingface/transformers/blob/main/examples/research_projects/bertabs/README.md). ### Supported Architectures - `BartForConditionalGeneration` - `MarianMTModel` - `PegasusForConditionalGeneration` - `MBartForConditionalGeneration` - `FSMTForConditionalGeneration` - `T5ForConditionalGeneration` ### Download the Datasets #### XSUM ```bash cd examples/legacy/seq2seq wget https://cdn-datasets.huggingface.co/summarization/xsum.tar.gz tar -xzvf xsum.tar.gz export XSUM_DIR=${PWD}/xsum ``` this should make a directory called `xsum/` with files like `test.source`. To use your own data, copy that files format. Each article to be summarized is on its own line. #### CNN/DailyMail ```bash cd examples/legacy/seq2seq wget https://cdn-datasets.huggingface.co/summarization/cnn_dm_v2.tgz tar -xzvf cnn_dm_v2.tgz # empty lines removed mv cnn_cln cnn_dm export CNN_DIR=${PWD}/cnn_dm ``` this should make a directory called `cnn_dm/` with 6 files. #### WMT16 English-Romanian Translation Data download with this command: ```bash wget https://cdn-datasets.huggingface.co/translation/wmt_en_ro.tar.gz tar -xzvf wmt_en_ro.tar.gz export ENRO_DIR=${PWD}/wmt_en_ro ``` this should make a directory called `wmt_en_ro/` with 6 files. #### WMT English-German ```bash wget https://cdn-datasets.huggingface.co/translation/wmt_en_de.tgz tar -xzvf wmt_en_de.tgz export DATA_DIR=${PWD}/wmt_en_de ``` #### FSMT datasets (wmt) Refer to the scripts starting with `eval_` under: https://github.com/huggingface/transformers/tree/main/scripts/fsmt #### Pegasus (multiple datasets) Multiple eval datasets are available for download from: https://github.com/stas00/porting/tree/master/datasets/pegasus #### Your Data If you are using your own data, it must be formatted as one directory with 6 files: ``` train.source train.target val.source val.target test.source test.target ``` The `.source` files are the input, the `.target` files are the desired output. ### Potential issues - native AMP (`--fp16` and no apex) may lead to a huge memory leak and require 10x gpu memory. This has been fixed in pytorch-nightly and the minimal official version to have this fix will be pytorch-1.7.1. Until then if you have to use mixed precision please use AMP only with pytorch-nightly or NVIDIA's apex. Reference: https://github.com/huggingface/transformers/issues/8403 ### Tips and Tricks General Tips: - since you need to run from `examples/legacy/seq2seq`, and likely need to modify code, the easiest workflow is fork transformers, clone your fork, and run `pip install -e .` before you get started. - try `--freeze_encoder` or `--freeze_embeds` for faster training/larger batch size. (3hr per epoch with bs=8, see the "xsum_shared_task" command below) - `fp16_opt_level=O1` (the default works best). - In addition to the pytorch-lightning .ckpt checkpoint, a transformers checkpoint will be saved. Load it with `BartForConditionalGeneration.from_pretrained(f'{output_dir}/best_tfmr)`. - At the moment, `--do_predict` does not work in a multi-gpu setting. You need to use `evaluate_checkpoint` or the `run_eval.py` code. - This warning can be safely ignored: > "Some weights of BartForConditionalGeneration were not initialized from the model checkpoint at facebook/bart-large-xsum and are newly initialized: ['final_logits_bias']" - Both finetuning and eval are 30% faster with `--fp16`. For that you need to [install apex](https://github.com/NVIDIA/apex#quick-start). - Read scripts before you run them! Summarization Tips: - (summ) 1 epoch at batch size 1 for bart-large takes 24 hours and requires 13GB GPU RAM with fp16 on an NVIDIA-V100. - If you want to run experiments on improving the summarization finetuning process, try the XSUM Shared Task (below). It's faster to train than CNNDM because the summaries are shorter. - For CNN/DailyMail, the default `val_max_target_length` and `test_max_target_length` will truncate the ground truth labels, resulting in slightly higher rouge scores. To get accurate rouge scores, you should rerun calculate_rouge on the `{output_dir}/test_generations.txt` file saved by `trainer.test()` - `--max_target_length=60 --val_max_target_length=60 --test_max_target_length=100 ` is a reasonable setting for XSUM. - `wandb` can be used by specifying `--logger_name wandb`. It is useful for reproducibility. Specify the environment variable `WANDB_PROJECT='hf_xsum'` to do the XSUM shared task. - If you are finetuning on your own dataset, start from `distilbart-cnn-12-6` if you want long summaries and `distilbart-xsum-12-6` if you want short summaries. (It rarely makes sense to start from `bart-large` unless you are a researching finetuning methods). **Update 2018-07-18** Datasets: `LegacySeq2SeqDataset` will be used for all tokenizers without a `prepare_seq2seq_batch` method. Otherwise, `Seq2SeqDataset` will be used. Future work/help wanted: A new dataset to support multilingual tasks. ### Fine-tuning using Seq2SeqTrainer To use `Seq2SeqTrainer` for fine-tuning you should use the `finetune_trainer.py` script. It subclasses `Trainer` to extend it for seq2seq training. Except the `Trainer`-related `TrainingArguments`, it shares the same argument names as that of `finetune.py` file. One notable difference is that calculating generative metrics (BLEU, ROUGE) is optional and is controlled using the `--predict_with_generate` argument. With PyTorch 1.6+ it'll automatically use `native AMP` when `--fp16` is set. To see all the possible command line options, run: ```bash python finetune_trainer.py --help ``` For multi-gpu training use `torch.distributed.launch`, e.g. with 2 gpus: ```bash torchrun --nproc_per_node=2 finetune_trainer.py ... ``` **At the moment, `Seq2SeqTrainer` does not support *with teacher* distillation.** All `Seq2SeqTrainer`-based fine-tuning scripts are included in the `builtin_trainer` directory. #### TPU Training `Seq2SeqTrainer` supports TPU training with few caveats 1. As `generate` method does not work on TPU at the moment, `predict_with_generate` cannot be used. You should use `--prediction_loss_only` to only calculate loss, and do not set `--do_predict` and `--predict_with_generate`. 2. All sequences should be padded to be of equal length to avoid extremely slow training. (`finetune_trainer.py` does this automatically when running on TPU.) We provide a very simple launcher script named `xla_spawn.py` that lets you run our example scripts on multiple TPU cores without any boilerplate. Just pass a `--num_cores` flag to this script, then your regular training script with its arguments (this is similar to the `torch.distributed.launch` helper for `torch.distributed`). `builtin_trainer/finetune_tpu.sh` script provides minimal arguments needed for TPU training. The following command fine-tunes `sshleifer/student_marian_en_ro_6_3` on TPU V3-8 and should complete one epoch in ~5-6 mins. ```bash ./builtin_trainer/train_distil_marian_enro_tpu.sh ``` ## Evaluation Commands To create summaries for each article in dataset, we use `run_eval.py`, here are a few commands that run eval for different tasks and models. If 'translation' is in your task name, the computed metric will be BLEU. Otherwise, ROUGE will be used. For t5, you need to specify --task translation_{src}_to_{tgt} as follows: ```bash export DATA_DIR=wmt_en_ro ./run_eval.py google-t5/t5-base \ $DATA_DIR/val.source t5_val_generations.txt \ --reference_path $DATA_DIR/val.target \ --score_path enro_bleu.json \ --task translation_en_to_ro \ --n_obs 100 \ --device cuda \ --fp16 \ --bs 32 ``` This command works for MBART, although the BLEU score is suspiciously low. ```bash export DATA_DIR=wmt_en_ro ./run_eval.py facebook/mbart-large-en-ro $DATA_DIR/val.source mbart_val_generations.txt \ --reference_path $DATA_DIR/val.target \ --score_path enro_bleu.json \ --task translation \ --n_obs 100 \ --device cuda \ --fp16 \ --bs 32 ``` Summarization (xsum will be very similar): ```bash export DATA_DIR=cnn_dm ./run_eval.py sshleifer/distilbart-cnn-12-6 $DATA_DIR/val.source dbart_val_generations.txt \ --reference_path $DATA_DIR/val.target \ --score_path cnn_rouge.json \ --task summarization \ --n_obs 100 \ th 56 \ --fp16 \ --bs 32 ``` ### Multi-GPU Evaluation here is a command to run xsum evaluation on 8 GPUS. It is more than linearly faster than run_eval.py in some cases because it uses SortishSampler to minimize padding. You can also use it on 1 GPU. `data_dir` must have `{type_path}.source` and `{type_path}.target`. Run `./run_distributed_eval.py --help` for all clargs. ```bash torchrun --nproc_per_node=8 run_distributed_eval.py \ --model_name sshleifer/distilbart-large-xsum-12-3 \ --save_dir xsum_generations \ --data_dir xsum \ --fp16 # you can pass generate kwargs like num_beams here, just like run_eval.py ``` Contributions that implement this command for other distributed hardware setups are welcome! #### Single-GPU Eval: Tips and Tricks When using `run_eval.py`, the following features can be useful: * if you running the script multiple times and want to make it easier to track what arguments produced that output, use `--dump-args`. Along with the results it will also dump any custom params that were passed to the script. For example if you used: `--num_beams 8 --early_stopping true`, the output will be: ```json {'bleu': 26.887, 'n_obs': 10, 'runtime': 1, 'seconds_per_sample': 0.1, 'num_beams': 8, 'early_stopping': True} ``` `--info` is an additional argument available for the same purpose of tracking the conditions of the experiment. It's useful to pass things that weren't in the argument list, e.g. a language pair `--info "lang:en-ru"`. But also if you pass `--info` without a value it will fallback to the current date/time string, e.g. `2020-09-13 18:44:43`. If using `--dump-args --info`, the output will be: ```json {'bleu': 26.887, 'n_obs': 10, 'runtime': 1, 'seconds_per_sample': 0.1, 'num_beams': 8, 'early_stopping': True, 'info': '2020-09-13 18:44:43'} ``` If using `--dump-args --info "pair:en-ru chkpt=best`, the output will be: ```json {'bleu': 26.887, 'n_obs': 10, 'runtime': 1, 'seconds_per_sample': 0.1, 'num_beams': 8, 'early_stopping': True, 'info': 'pair=en-ru chkpt=best'} ``` * if you need to perform a parametric search in order to find the best ones that lead to the highest BLEU score, let `run_eval_search.py` to do the searching for you. The script accepts the exact same arguments as `run_eval.py`, plus an additional argument `--search`. The value of `--search` is parsed, reformatted and fed to ``run_eval.py`` as additional args. The format for the `--search` value is a simple string with hparams and colon separated values to try, e.g.: ``` --search "num_beams=5:10 length_penalty=0.8:1.0:1.2 early_stopping=true:false" ``` which will generate `12` `(2*3*2)` searches for a product of each hparam. For example the example that was just used will invoke `run_eval.py` repeatedly with: ``` --num_beams 5 --length_penalty 0.8 --early_stopping true --num_beams 5 --length_penalty 0.8 --early_stopping false [...] --num_beams 10 --length_penalty 1.2 --early_stopping false ``` On completion, this function prints a markdown table of the results sorted by the best BLEU score and the winning arguments. ``` bleu | num_beams | length_penalty | early_stopping ----- | --------- | -------------- | -------------- 26.71 | 5 | 1.1 | 1 26.66 | 5 | 0.9 | 1 26.66 | 5 | 0.9 | 0 26.41 | 5 | 1.1 | 0 21.94 | 1 | 0.9 | 1 21.94 | 1 | 0.9 | 0 21.94 | 1 | 1.1 | 1 21.94 | 1 | 1.1 | 0 Best score args: stas/wmt19-en-ru data/en-ru/val.source data/en-ru/test_translations.txt --reference_path data/en-ru/val.target --score_path data/en-ru/test_bleu.json --bs 8 --task translation --num_beams 5 --length_penalty 1.1 --early_stopping True ``` If you pass `--info "some experiment-specific info"` it will get printed before the results table - this is useful for scripting and multiple runs, so one can tell the different sets of results from each other. ### Contributing - follow the standard contributing guidelines and code of conduct. - add tests to `test_seq2seq_examples.py` - To run only the seq2seq tests, you must be in the root of the repository and run: ```bash pytest examples/seq2seq/ ``` ### Converting pytorch-lightning checkpoints pytorch lightning ``-do_predict`` often fails, after you are done training, the best way to evaluate your model is to convert it. This should be done for you, with a file called `{save_dir}/best_tfmr`. If that file doesn't exist but you have a lightning `.ckpt` file, you can run ```bash python convert_pl_checkpoint_to_hf.py PATH_TO_CKPT randomly_initialized_hf_model_path save_dir/best_tfmr ``` Then either `run_eval` or `run_distributed_eval` with `save_dir/best_tfmr` (see previous sections) # Experimental Features These features are harder to use and not always useful. ### Dynamic Batch Size for MT `finetune.py` has a command line arg `--max_tokens_per_batch` that allows batches to be dynamically sized. This feature can only be used: - with fairseq installed - on 1 GPU - without sortish sampler - after calling `./save_len_file.py $tok $data_dir` For example, ```bash ./save_len_file.py Helsinki-NLP/opus-mt-en-ro wmt_en_ro ./dynamic_bs_example.sh --max_tokens_per_batch=2000 --output_dir benchmark_dynamic_bs ``` splits `wmt_en_ro/train` into 11,197 uneven length batches and can finish 1 epoch in 8 minutes on a v100. For comparison, ```bash ./dynamic_bs_example.sh --sortish_sampler --train_batch_size 48 ``` uses 12,723 batches of length 48 and takes slightly more time 9.5 minutes. The feature is still experimental, because: + we can make it much more robust if we have memory mapped/preprocessed datasets. + The speedup over sortish sampler is not that large at the moment.
transformers/examples/legacy/seq2seq/README.md/0
{ "file_path": "transformers/examples/legacy/seq2seq/README.md", "repo_id": "transformers", "token_count": 5089 }
45
### Motivation Without processing, english-> romanian mbart-large-en-ro gets BLEU score 26.8 on the WMT data. With post processing, it can score 37.. Here is the postprocessing code, stolen from @mjpost in this [issue](https://github.com/pytorch/fairseq/issues/1758) ### Instructions Note: You need to have your test_generations.txt before you start this process. (1) Setup `mosesdecoder` and `wmt16-scripts` ```bash cd $HOME git clone [email protected]:moses-smt/mosesdecoder.git cd mosesdecoder git clone [email protected]:rsennrich/wmt16-scripts.git ``` (2) define a function for post processing. It removes diacritics and does other things I don't understand ```bash ro_post_process () { sys=$1 ref=$2 export MOSES_PATH=$HOME/mosesdecoder REPLACE_UNICODE_PUNCT=$MOSES_PATH/scripts/tokenizer/replace-unicode-punctuation.perl NORM_PUNC=$MOSES_PATH/scripts/tokenizer/normalize-punctuation.perl REM_NON_PRINT_CHAR=$MOSES_PATH/scripts/tokenizer/remove-non-printing-char.perl REMOVE_DIACRITICS=$MOSES_PATH/wmt16-scripts/preprocess/remove-diacritics.py NORMALIZE_ROMANIAN=$MOSES_PATH/wmt16-scripts/preprocess/normalise-romanian.py TOKENIZER=$MOSES_PATH/scripts/tokenizer/tokenizer.perl lang=ro for file in $sys $ref; do cat $file \ | $REPLACE_UNICODE_PUNCT \ | $NORM_PUNC -l $lang \ | $REM_NON_PRINT_CHAR \ | $NORMALIZE_ROMANIAN \ | $REMOVE_DIACRITICS \ | $TOKENIZER -no-escape -l $lang \ > $(basename $file).tok done # compute BLEU cat $(basename $sys).tok | sacrebleu -tok none -s none -b $(basename $ref).tok } ``` (3) Call the function on test_generations.txt and test.target For example, ```bash ro_post_process enro_finetune/test_generations.txt wmt_en_ro/test.target ``` This will split out a new blue score and write a new fine called `test_generations.tok` with post-processed outputs. ```
transformers/examples/legacy/seq2seq/romanian_postprocessing.md/0
{ "file_path": "transformers/examples/legacy/seq2seq/romanian_postprocessing.md", "repo_id": "transformers", "token_count": 723 }
46
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask logger = logging.getLogger(__name__) class NER(TokenClassificationTask): def __init__(self, label_idx=-1): # in NER datasets, the last column is usually reserved for NER label self.label_idx = label_idx def read_examples_from_file(self, data_dir, mode: Union[Split, str]) -> List[InputExample]: if isinstance(mode, Split): mode = mode.value file_path = os.path.join(data_dir, f"{mode}.txt") guid_index = 1 examples = [] with open(file_path, encoding="utf-8") as f: words = [] labels = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels)) guid_index += 1 words = [] labels = [] else: splits = line.split(" ") words.append(splits[0]) if len(splits) > 1: labels.append(splits[self.label_idx].replace("\n", "")) else: # Examples could have no label for mode = "test" labels.append("O") if words: examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels)) return examples def write_predictions_to_file(self, writer: TextIO, test_input_reader: TextIO, preds_list: List): example_id = 0 for line in test_input_reader: if line.startswith("-DOCSTART-") or line == "" or line == "\n": writer.write(line) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n" writer.write(output_line) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0]) def get_labels(self, path: str) -> List[str]: if path: with open(path, "r") as f: labels = f.read().splitlines() if "O" not in labels: labels = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class Chunk(NER): def __init__(self): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2) def get_labels(self, path: str) -> List[str]: if path: with open(path, "r") as f: labels = f.read().splitlines() if "O" not in labels: labels = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class POS(TokenClassificationTask): def read_examples_from_file(self, data_dir, mode: Union[Split, str]) -> List[InputExample]: if isinstance(mode, Split): mode = mode.value file_path = os.path.join(data_dir, f"{mode}.txt") guid_index = 1 examples = [] with open(file_path, encoding="utf-8") as f: for sentence in parse_incr(f): words = [] labels = [] for token in sentence: words.append(token["form"]) labels.append(token["upos"]) assert len(words) == len(labels) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels)) guid_index += 1 return examples def write_predictions_to_file(self, writer: TextIO, test_input_reader: TextIO, preds_list: List): example_id = 0 for sentence in parse_incr(test_input_reader): s_p = preds_list[example_id] out = "" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0)}) ' out += "\n" writer.write(out) example_id += 1 def get_labels(self, path: str) -> List[str]: if path: with open(path, "r") as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
transformers/examples/legacy/token-classification/tasks.py/0
{ "file_path": "transformers/examples/legacy/token-classification/tasks.py", "repo_id": "transformers", "token_count": 3163 }
47
# coding=utf-8 # Copyright 2018 HuggingFace Inc.. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() def get_results(output_dir): results = {} path = os.path.join(output_dir, "all_results.json") if os.path.exists(path): with open(path, "r") as f: results = json.load(f) else: raise ValueError(f"can't find {path}") return results stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class TorchXLAExamplesTests(TestCasePlus): def test_run_glue(self): import xla_spawn tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert/distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(sys, "argv", testargs): start = time() xla_spawn.main() end = time() result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_accuracy"], 0.75) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start, 500) def test_trainer_tpu(self): import xla_spawn testargs = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(sys, "argv", testargs): xla_spawn.main()
transformers/examples/pytorch/old_test_xla_examples.py/0
{ "file_path": "transformers/examples/pytorch/old_test_xla_examples.py", "repo_id": "transformers", "token_count": 1249 }
48
#!/usr/bin/env python # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for sequence classification on GLUE.""" # You can also adapt this script on your own text classification task. Pointers for this are left as comments. import logging import os import random import sys import warnings from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, PretrainedConfig, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.39.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), } logger = logging.getLogger(__name__) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ task_name: Optional[str] = field( default=None, metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())}, ) dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) pad_to_max_length: bool = field( default=True, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) train_file: Optional[str] = field( default=None, metadata={"help": "A csv or a json file containing the training data."} ) validation_file: Optional[str] = field( default=None, metadata={"help": "A csv or a json file containing the validation data."} ) test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."}) def __post_init__(self): if self.task_name is not None: self.task_name = self.task_name.lower() if self.task_name not in task_to_keys.keys(): raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys())) elif self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.") else: train_extension = self.train_file.split(".")[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." validation_extension = self.validation_file.split(".")[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) ignore_mismatched_sizes: bool = field( default=False, metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_glue", model_args, data_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named # label if at least two columns are provided. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.task_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( "glue", data_args.task_name, cache_dir=model_args.cache_dir, token=model_args.token, ) elif data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. data_files = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: train_extension = data_args.train_file.split(".")[-1] test_extension = data_args.test_file.split(".")[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." data_files["test"] = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`.") for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}") if data_args.train_file.endswith(".csv"): # Loading a dataset from local csv files raw_datasets = load_dataset( "csv", data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) else: # Loading a dataset from local json files raw_datasets = load_dataset( "json", data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets. # Labels if data_args.task_name is not None: is_regression = data_args.task_name == "stsb" if not is_regression: label_list = raw_datasets["train"].features["label"].names num_labels = len(label_list) else: num_labels = 1 else: # Trying to have good defaults here, don't hesitate to tweak to your needs. is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"] if is_regression: num_labels = 1 else: # A useful fast method: # https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.unique label_list = raw_datasets["train"].unique("label") label_list.sort() # Let's sort it for determinism num_labels = len(label_list) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) model = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # Preprocessing the raw_datasets if data_args.task_name is not None: sentence1_key, sentence2_key = task_to_keys[data_args.task_name] else: # Again, we try to have some nice defaults but don't hesitate to tweak to your use case. non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"] if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", "sentence2" else: if len(non_label_column_names) >= 2: sentence1_key, sentence2_key = non_label_column_names[:2] else: sentence1_key, sentence2_key = non_label_column_names[0], None # Padding strategy if data_args.pad_to_max_length: padding = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch padding = False # Some models have set the order of the labels to use, so let's make sure we do use it. label_to_id = None if ( model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id and data_args.task_name is not None and not is_regression ): # Some have all caps in their config, some don't. label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()} if sorted(label_name_to_id.keys()) == sorted(label_list): label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)} else: logger.warning( "Your model seems to have been trained with labels, but they don't match the dataset: ", f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}." "\nIgnoring the model labels as a result.", ) elif data_args.task_name is None and not is_regression: label_to_id = {v: i for i, v in enumerate(label_list)} if label_to_id is not None: model.config.label2id = label_to_id model.config.id2label = {id: label for label, id in config.label2id.items()} elif data_args.task_name is not None and not is_regression: model.config.label2id = {l: i for i, l in enumerate(label_list)} model.config.id2label = {id: label for label, id in config.label2id.items()} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the " f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) def preprocess_function(examples): # Tokenize the texts args = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True) # Map labels to IDs (not necessary for GLUE tasks) if label_to_id is not None and "label" in examples: result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]] return result with training_args.main_process_first(desc="dataset map pre-processing"): raw_datasets = raw_datasets.map( preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on dataset", ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = raw_datasets["train"] if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = raw_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset") predict_dataset = raw_datasets["test_matched" if data_args.task_name == "mnli" else "test"] if data_args.max_predict_samples is not None: max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) predict_dataset = predict_dataset.select(range(max_predict_samples)) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # Get the metric function if data_args.task_name is not None: metric = evaluate.load("glue", data_args.task_name, cache_dir=model_args.cache_dir) elif is_regression: metric = evaluate.load("mse", cache_dir=model_args.cache_dir) else: metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(p: EvalPrediction): preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) result = metric.compute(predictions=preds, references=p.label_ids) if len(result) > 1: result["combined_score"] = np.mean(list(result.values())).item() return result # Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if # we already did the padding. if data_args.pad_to_max_length: data_collator = default_data_collator elif training_args.fp16: data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) else: data_collator = None # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=compute_metrics, tokenizer=tokenizer, data_collator=data_collator, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [data_args.task_name] eval_datasets = [eval_dataset] if data_args.task_name == "mnli": tasks.append("mnli-mm") valid_mm_dataset = raw_datasets["validation_mismatched"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(valid_mm_dataset), data_args.max_eval_samples) valid_mm_dataset = valid_mm_dataset.select(range(max_eval_samples)) eval_datasets.append(valid_mm_dataset) combined = {} for eval_dataset, task in zip(eval_datasets, tasks): metrics = trainer.evaluate(eval_dataset=eval_dataset) max_eval_samples = ( data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) ) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) if task == "mnli-mm": metrics = {k + "_mm": v for k, v in metrics.items()} if task is not None and "mnli" in task: combined.update(metrics) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", combined if task is not None and "mnli" in task else metrics) if training_args.do_predict: logger.info("*** Predict ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [data_args.task_name] predict_datasets = [predict_dataset] if data_args.task_name == "mnli": tasks.append("mnli-mm") predict_datasets.append(raw_datasets["test_mismatched"]) for predict_dataset, task in zip(predict_datasets, tasks): # Removing the `label` columns because it contains -1 and Trainer won't like that. predict_dataset = predict_dataset.remove_columns("label") predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1) output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt") if trainer.is_world_process_zero(): with open(output_predict_file, "w") as writer: logger.info(f"***** Predict results {task} *****") writer.write("index\tprediction\n") for index, item in enumerate(predictions): if is_regression: writer.write(f"{index}\t{item:3.3f}\n") else: item = label_list[item] writer.write(f"{index}\t{item}\n") kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if data_args.task_name is not None: kwargs["language"] = "en" kwargs["dataset_tags"] = "glue" kwargs["dataset_args"] = data_args.task_name kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}" if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/examples/pytorch/text-classification/run_glue.py/0
{ "file_path": "transformers/examples/pytorch/text-classification/run_glue.py", "repo_id": "transformers", "token_count": 11733 }
49
#!/usr/bin/env python # coding=utf-8 # Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning a 🤗 Transformers model on text translation. """ # You can also adapt this script on your own text translation task. Pointers for this are left as comments. import argparse import json import logging import math import os import random from pathlib import Path import datasets import evaluate import numpy as np import torch from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from datasets import load_dataset from huggingface_hub import Repository, create_repo from torch.utils.data import DataLoader from tqdm.auto import tqdm import transformers from transformers import ( CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, DataCollatorForSeq2Seq, MBartTokenizer, MBartTokenizerFast, SchedulerType, default_data_collator, get_scheduler, ) from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.39.0.dev0") logger = get_logger(__name__) require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt") # You should update this to your particular problem to have better documentation of `model_type` MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) # Parsing input arguments def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task") parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--predict_with_generate", type=bool, default=True, help="", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--num_beams", type=int, default=None, help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ), ) parser.add_argument( "--max_source_length", type=int, default=1024, help=( "The maximum total input sequence length after " "tokenization.Sequences longer than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--max_target_length", type=int, default=128, help=( "The maximum total sequence length for target text after " "tokenization. Sequences longer than this will be truncated, sequences shorter will be padded " "during ``evaluate`` and ``predict``." ), ) parser.add_argument( "--val_max_target_length", type=int, default=None, help=( "The maximum total sequence length for validation " "target text after tokenization.Sequences longer than this will be truncated, sequences shorter will be " "padded. Will default to `max_target_length`.This argument is also used to override the ``max_length`` " "param of ``model.generate``, which is used during ``evaluate`` and ``predict``." ), ) parser.add_argument( "--pad_to_max_length", type=bool, default=False, help=( "Whether to pad all samples to model maximum sentence " "length. If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ), ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--ignore_pad_token_for_loss", type=bool, default=True, help="Whether to ignore the tokens corresponding to padded labels in the loss computation or not.", ) parser.add_argument("--source_lang", type=str, default=None, help="Source language id for translation.") parser.add_argument("--target_lang", type=str, default=None, help="Target language id for translation.") parser.add_argument( "--source_prefix", type=str, default=None, help="A prefix to add before every source text (useful for T5 models).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=None, help="The number of processes to use for the preprocessing.", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--max_length", type=int, default=128, help=( "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_length` is passed." ), ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=False, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--model_type", type=str, default=None, help="Model type to use if training from scratch.", choices=MODEL_TYPES, ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--trust_remote_code", type=bool, default=False, help=( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ), ) parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--report_to", type=str, default="all", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' ' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. ' "Only applicable when `--with_tracking` is passed." ), ) args = parser.parse_args() # Sanity checks if args.dataset_name is None and args.train_file is None and args.validation_file is None: raise ValueError("Need either a task name or a training/validation file.") if args.train_file is not None: extension = args.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if args.validation_file is not None: extension = args.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args def main(): # Parse the arguments args = parse_args() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_translation_no_trainer", args) # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers # in the environment accelerator = ( Accelerator(log_with=args.report_to, project_dir=args.output_dir) if args.with_tracking else Accelerator() ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: # Retrieve of infer repo_name repo_name = args.hub_model_id if repo_name is None: repo_name = Path(args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id # Clone repo locally repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token) with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) else: data_files = {} if args.train_file is not None: data_files["train"] = args.train_file extension = args.train_file.split(".")[-1] if args.validation_file is not None: data_files["validation"] = args.validation_file extension = args.validation_file.split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if args.config_name: config = AutoConfig.from_pretrained(args.config_name, trust_remote_code=args.trust_remote_code) elif args.model_name_or_path: config = AutoConfig.from_pretrained(args.model_name_or_path, trust_remote_code=args.trust_remote_code) else: config = CONFIG_MAPPING[args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name, use_fast=not args.use_slow_tokenizer, trust_remote_code=args.trust_remote_code ) elif args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( args.model_name_or_path, use_fast=not args.use_slow_tokenizer, trust_remote_code=args.trust_remote_code ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script. " "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if args.model_name_or_path: model = AutoModelForSeq2SeqLM.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, trust_remote_code=args.trust_remote_code, ) else: logger.info("Training new model from scratch") model = AutoModelForSeq2SeqLM.from_config(config, trust_remote_code=args.trust_remote_code) # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch # on a small vocab and want a smaller embedding size, remove this test. embedding_size = model.get_input_embeddings().weight.shape[0] if len(tokenizer) > embedding_size: model.resize_token_embeddings(len(tokenizer)) # Set decoder_start_token_id if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): assert ( args.target_lang is not None and args.source_lang is not None ), "mBart requires --target_lang and --source_lang" if isinstance(tokenizer, MBartTokenizer): model.config.decoder_start_token_id = tokenizer.lang_code_to_id[args.target_lang] else: model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(args.target_lang) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") prefix = args.source_prefix if args.source_prefix is not None else "" # Preprocessing the datasets. # First we tokenize all the texts. column_names = raw_datasets["train"].column_names # For translation we set the codes of our source and target languages (only useful for mBART, the others will # ignore those attributes). if isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): if args.source_lang is not None: tokenizer.src_lang = args.source_lang if args.target_lang is not None: tokenizer.tgt_lang = args.target_lang # Get the language codes for input/target. source_lang = args.source_lang.split("_")[0] target_lang = args.target_lang.split("_")[0] padding = "max_length" if args.pad_to_max_length else False # Temporarily set max_target_length for training. max_target_length = args.max_target_length padding = "max_length" if args.pad_to_max_length else False def preprocess_function(examples): inputs = [ex[source_lang] for ex in examples["translation"]] targets = [ex[target_lang] for ex in examples["translation"]] inputs = [prefix + inp for inp in inputs] model_inputs = tokenizer(inputs, max_length=args.max_source_length, padding=padding, truncation=True) # Tokenize targets with the `text_target` keyword argument labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True) # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore # padding in the loss. if padding == "max_length" and args.ignore_pad_token_for_loss: labels["input_ids"] = [ [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] ] model_inputs["labels"] = labels["input_ids"] return model_inputs with accelerator.main_process_first(): processed_datasets = raw_datasets.map( preprocess_function, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: label_pad_token_id = -100 if args.ignore_pad_token_for_loss else tokenizer.pad_token_id if args.pad_to_max_length: # If padding was already done ot max length, we use the default data collator that will just convert everything # to tensors. data_collator = default_data_collator else: # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, label_pad_token_id=label_pad_token_id, pad_to_multiple_of=8 if accelerator.use_fp16 else None, ) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Figure out how many steps we should save the Accelerator states checkpointing_steps = args.checkpointing_steps if checkpointing_steps is not None and checkpointing_steps.isdigit(): checkpointing_steps = int(checkpointing_steps) # We need to initialize the trackers we use, and also store our configuration. # We initialize the trackers only on main process because `accelerator.log` # only logs on main process and we don't want empty logs/runs on other processes. if args.with_tracking: if accelerator.is_main_process: experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers("translation_no_trainer", experiment_config) metric = evaluate.load("sacrebleu") def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [[label.strip()] for label in labels] return preds, labels # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": checkpoint_path = args.resume_from_checkpoint path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last checkpoint_path = path path = os.path.basename(checkpoint_path) accelerator.print(f"Resumed from checkpoint: {checkpoint_path}") accelerator.load_state(checkpoint_path) # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None completed_steps = starting_epoch * num_update_steps_per_epoch else: # need to multiply `gradient_accumulation_steps` to reflect real steps resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps starting_epoch = resume_step // len(train_dataloader) completed_steps = resume_step // args.gradient_accumulation_steps resume_step -= starting_epoch * len(train_dataloader) # update the progress_bar if load from checkpoint progress_bar.update(completed_steps) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We skip the first `n` batches in the dataloader when resuming from a checkpoint active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) else: active_dataloader = train_dataloader for step, batch in enumerate(active_dataloader): outputs = model(**batch) loss = outputs.loss # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0: output_dir = f"step_{completed_steps}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break model.eval() if args.val_max_target_length is None: args.val_max_target_length = args.max_target_length gen_kwargs = { "max_length": args.val_max_target_length if args is not None else config.max_length, "num_beams": args.num_beams, } samples_seen = 0 for step, batch in enumerate(eval_dataloader): with torch.no_grad(): generated_tokens = accelerator.unwrap_model(model).generate( batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs, ) generated_tokens = accelerator.pad_across_processes( generated_tokens, dim=1, pad_index=tokenizer.pad_token_id ) labels = batch["labels"] if not args.pad_to_max_length: # If we did not pad to max length, we need to pad the labels too labels = accelerator.pad_across_processes(batch["labels"], dim=1, pad_index=tokenizer.pad_token_id) generated_tokens = accelerator.gather(generated_tokens).cpu().numpy() labels = accelerator.gather(labels).cpu().numpy() if args.ignore_pad_token_for_loss: # Replace -100 in the labels as we can't decode them. labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.num_processes > 1: if step == len(eval_dataloader) - 1: decoded_preds = decoded_preds[: len(eval_dataloader.dataset) - samples_seen] decoded_labels = decoded_labels[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += len(decoded_labels) metric.add_batch(predictions=decoded_preds, references=decoded_labels) eval_metric = metric.compute() logger.info({"bleu": eval_metric["score"]}) if args.with_tracking: accelerator.log( { "bleu": eval_metric["score"], "train_loss": total_loss.item() / len(train_dataloader), "epoch": epoch, "step": completed_steps, }, step=completed_steps, ) if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) repo.push_to_hub( commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True ) if args.checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if args.with_tracking: accelerator.end_training() if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True) with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: json.dump({"eval_bleu": eval_metric["score"]}, f) if __name__ == "__main__": main()
transformers/examples/pytorch/translation/run_translation_no_trainer.py/0
{ "file_path": "transformers/examples/pytorch/translation/run_translation_no_trainer.py", "repo_id": "transformers", "token_count": 13559 }
50
# coding=utf-8 # Copyright 2019 The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BertAbs configuration """ import logging from transformers import PretrainedConfig logger = logging.getLogger(__name__) BERTABS_FINETUNED_CONFIG_MAP = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class BertAbsConfig(PretrainedConfig): r"""Class to store the configuration of the BertAbs model. Arguments: vocab_size: int Number of tokens in the vocabulary. max_pos: int The maximum sequence length that this model will be used with. enc_layer: int The numner of hidden layers in the Transformer encoder. enc_hidden_size: int The size of the encoder's layers. enc_heads: int The number of attention heads for each attention layer in the encoder. enc_ff_size: int The size of the encoder's feed-forward layers. enc_dropout: int The dropout probability for all fully connected layers in the embeddings, layers, pooler and also the attention probabilities in the encoder. dec_layer: int The numner of hidden layers in the decoder. dec_hidden_size: int The size of the decoder's layers. dec_heads: int The number of attention heads for each attention layer in the decoder. dec_ff_size: int The size of the decoder's feed-forward layers. dec_dropout: int The dropout probability for all fully connected layers in the embeddings, layers, pooler and also the attention probabilities in the decoder. """ model_type = "bertabs" def __init__( self, vocab_size=30522, max_pos=512, enc_layers=6, enc_hidden_size=512, enc_heads=8, enc_ff_size=512, enc_dropout=0.2, dec_layers=6, dec_hidden_size=768, dec_heads=8, dec_ff_size=2048, dec_dropout=0.2, **kwargs, ): super().__init__(**kwargs) self.vocab_size = vocab_size self.max_pos = max_pos self.enc_layers = enc_layers self.enc_hidden_size = enc_hidden_size self.enc_heads = enc_heads self.enc_ff_size = enc_ff_size self.enc_dropout = enc_dropout self.dec_layers = dec_layers self.dec_hidden_size = dec_hidden_size self.dec_heads = dec_heads self.dec_ff_size = dec_ff_size self.dec_dropout = dec_dropout
transformers/examples/research_projects/bertabs/configuration_bertabs.py/0
{ "file_path": "transformers/examples/research_projects/bertabs/configuration_bertabs.py", "repo_id": "transformers", "token_count": 1345 }
51
from arguments import TokenizerTrainingArguments from datasets import load_dataset from tqdm import tqdm from transformers import AutoTokenizer, HfArgumentParser from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode # Iterator for Training def batch_iterator(batch_size=10): for _ in tqdm(range(0, args.n_examples, batch_size)): yield [next(iter_dataset)[args.text_column] for _ in range(batch_size)] # Configuration parser = HfArgumentParser(TokenizerTrainingArguments) args = parser.parse_args() # Base tokenizer tokenizer = AutoTokenizer.from_pretrained(args.base_tokenizer) base_vocab = list(bytes_to_unicode().values()) # Load dataset dataset = load_dataset(args.dataset_name, split="train", streaming=True) iter_dataset = iter(dataset) # Training and saving new_tokenizer = tokenizer.train_new_from_iterator( batch_iterator(), vocab_size=args.vocab_size, initial_alphabet=base_vocab ) new_tokenizer.save_pretrained(args.tokenizer_name, push_to_hub=args.push_to_hub)
transformers/examples/research_projects/codeparrot/scripts/bpe_training.py/0
{ "file_path": "transformers/examples/research_projects/codeparrot/scripts/bpe_training.py", "repo_id": "transformers", "token_count": 347 }
52
from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import random import time import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange import transformers from src.modeling_highway_bert import DeeBertForSequenceClassification from src.modeling_highway_roberta import DeeRobertaForSequenceClassification from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertTokenizer, RobertaConfig, RobertaTokenizer, get_linear_schedule_with_warmup, ) from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes as output_modes from transformers import glue_processors as processors from transformers.trainer_utils import is_main_process try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) MODEL_CLASSES = { "bert": (BertConfig, DeeBertForSequenceClassification, BertTokenizer), "roberta": (RobertaConfig, DeeRobertaForSequenceClassification, RobertaTokenizer), } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def get_wanted_result(result): if "spearmanr" in result: print_result = result["spearmanr"] elif "f1" in result: print_result = result["f1"] elif "mcc" in result: print_result = result["mcc"] elif "acc" in result: print_result = result["acc"] else: raise ValueError("Primary metric unclear in the results") return print_result def train(args, train_dataset, model, tokenizer, train_highway=False): """Train the model""" if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] if train_highway: optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if ("highway" in n) and (not any(nd in n for nd in no_decay)) ], "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if ("highway" in n) and (any(nd in n for nd in no_decay)) ], "weight_decay": 0.0, }, ] else: optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if ("highway" not in n) and (not any(nd in n for nd in no_decay)) ], "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if ("highway" not in n) and (any(nd in n for nd in no_decay)) ], "weight_decay": 0.0, }, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Added here for reproducibility (even between python 2 and 3) for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet"] else None ) # XLM, DistilBERT and RoBERTa don't use segment_ids inputs["train_highway"] = train_highway outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix="", output_layer=-1, eval_highway=False): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu eval if args.n_gpu > 1: model = nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None exit_layer_counter = {(i + 1): 0 for i in range(model.num_layers)} st = time.time() for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet"] else None ) # XLM, DistilBERT and RoBERTa don't use segment_ids if output_layer >= 0: inputs["output_layer"] = output_layer outputs = model(**inputs) if eval_highway: exit_layer_counter[outputs[-1]] += 1 tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_time = time.time() - st logger.info("Eval time: {}".format(eval_time)) eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds = np.argmax(preds, axis=1) elif args.output_mode == "regression": preds = np.squeeze(preds) result = compute_metrics(eval_task, preds, out_label_ids) results.update(result) if eval_highway: logger.info("Exit layer counter: {}".format(exit_layer_counter)) actual_cost = sum([l * c for l, c in exit_layer_counter.items()]) full_cost = len(eval_dataloader) * model.num_layers logger.info("Expected saving: {}".format(actual_cost / full_cost)) if args.early_exit_entropy >= 0: save_fname = ( args.plot_data_dir + "/" + args.model_name_or_path[2:] + "/entropy_{}.npy".format(args.early_exit_entropy) ) if not os.path.exists(os.path.dirname(save_fname)): os.makedirs(os.path.dirname(save_fname)) print_result = get_wanted_result(result) np.save(save_fname, np.array([exit_layer_counter, eval_time, actual_cost / full_cost, print_result])) logger.info("Entropy={}\tResult={:.2f}".format(args.early_exit_entropy, 100 * print_result)) output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) return results def load_and_cache_examples(args, task, tokenizer, evaluate=False): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = processors[task]() output_mode = output_modes[task] # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), str(task), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta"]: # HACK(label indices are swapped in RoBERTa pretrained model) label_list[1], label_list[2] = label_list[2], label_list[1] examples = ( processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) ) features = convert_examples_to_features( examples, tokenizer, label_list=label_list, max_length=args.max_seq_length, output_mode=output_mode, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) if features[0].token_type_ids is None: # For RoBERTa (a potential bug!) all_token_type_ids = torch.tensor([[0] * args.max_seq_length for f in features], dtype=torch.long) else: all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) if output_mode == "classification": all_labels = torch.tensor([f.label for f in features], dtype=torch.long) elif output_mode == "regression": all_labels = torch.tensor([f.label for f in features], dtype=torch.float) dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name.", ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--plot_data_dir", default="./plotting/", type=str, required=False, help="The directory to store data for plotting figures.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--max_seq_length", default=128, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument("--eval_each_highway", action="store_true", help="Set this flag to evaluate each highway.") parser.add_argument( "--eval_after_first_stage", action="store_true", help="Set this flag to evaluate after training only bert (not highway).", ) parser.add_argument("--eval_highway", action="store_true", help="Set this flag if it's evaluating highway models") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--early_exit_entropy", default=-1, type=float, help="Entropy threshold for early exit.") parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") args = parser.parse_args() if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set seed set_seed(args) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.model_type == "bert": model.bert.encoder.set_early_exit_entropy(args.early_exit_entropy) model.bert.init_highway_pooler() elif args.model_type == "roberta": model.roberta.encoder.set_early_exit_entropy(args.early_exit_entropy) model.roberta.init_highway_pooler() else: raise NotImplementedError() if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) if args.eval_after_first_stage: result = evaluate(args, model, tokenizer, prefix="") print_result = get_wanted_result(result) train(args, train_dataset, model, tokenizer, train_highway=True) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir) model.to(args.device) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = [ os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" model = model_class.from_pretrained(checkpoint) if args.model_type == "bert": model.bert.encoder.set_early_exit_entropy(args.early_exit_entropy) elif args.model_type == "roberta": model.roberta.encoder.set_early_exit_entropy(args.early_exit_entropy) else: raise NotImplementedError() model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix, eval_highway=args.eval_highway) print_result = get_wanted_result(result) logger.info("Result: {}".format(print_result)) if args.eval_each_highway: last_layer_results = print_result each_layer_results = [] for i in range(model.num_layers): logger.info("\n") _result = evaluate( args, model, tokenizer, prefix=prefix, output_layer=i, eval_highway=args.eval_highway ) if i + 1 < model.num_layers: each_layer_results.append(get_wanted_result(_result)) each_layer_results.append(last_layer_results) save_fname = args.plot_data_dir + "/" + args.model_name_or_path[2:] + "/each_layer.npy" if not os.path.exists(os.path.dirname(save_fname)): os.makedirs(os.path.dirname(save_fname)) np.save(save_fname, np.array(each_layer_results)) info_str = "Score of each layer:" for i in range(model.num_layers): info_str += " {:.2f}".format(100 * each_layer_results[i]) logger.info(info_str) result = {k + "_{}".format(global_step): v for k, v in result.items()} results.update(result) return results if __name__ == "__main__": main()
transformers/examples/research_projects/deebert/run_glue_deebert.py/0
{ "file_path": "transformers/examples/research_projects/deebert/run_glue_deebert.py", "repo_id": "transformers", "token_count": 13897 }
53
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Training the distilled model. Supported architectures include: BERT -> DistilBERT, RoBERTa -> DistilRoBERTa, GPT2 -> DistilGPT2. """ import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPT2Config, GPT2LMHeadModel, GPT2Tokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed MODEL_CLASSES = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer), } def sanity_checks(args): """ A bunch of args sanity checks to perform even starting... """ assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def freeze_pos_embeddings(student, args): if args.student_type == "roberta": student.roberta.embeddings.position_embeddings.weight.requires_grad = False elif args.student_type == "gpt2": student.transformer.wpe.weight.requires_grad = False def freeze_token_type_embeddings(student, args): if args.student_type == "roberta": student.roberta.embeddings.token_type_embeddings.weight.requires_grad = False def main(): parser = argparse.ArgumentParser(description="Training") parser.add_argument("--force", action="store_true", help="Overwrite dump_path if it already exists.") parser.add_argument( "--dump_path", type=str, required=True, help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file", type=str, required=True, help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence.", ) parser.add_argument( "--student_type", type=str, choices=["distilbert", "roberta", "gpt2"], required=True, help="The student type (DistilBERT, RoBERTa).", ) parser.add_argument("--student_config", type=str, required=True, help="Path to the student configuration.") parser.add_argument( "--student_pretrained_weights", default=None, type=str, help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type", choices=["bert", "roberta", "gpt2"], required=True, help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name", type=str, required=True, help="The teacher model.") parser.add_argument("--temperature", default=2.0, type=float, help="Temperature for the softmax temperature.") parser.add_argument( "--alpha_ce", default=0.5, type=float, help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm", default=0.0, type=float, help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.", ) parser.add_argument("--alpha_clm", default=0.5, type=float, help="Linear weight for the CLM loss. Must be >=0.") parser.add_argument("--alpha_mse", default=0.0, type=float, help="Linear weight of the MSE loss. Must be >=0.") parser.add_argument( "--alpha_cos", default=0.0, type=float, help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm", action="store_true", help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop", default=0.15, type=float, help="Proportion of tokens for which we need to make a prediction.", ) parser.add_argument("--word_mask", default=0.8, type=float, help="Proportion of tokens to mask out.") parser.add_argument("--word_keep", default=0.1, type=float, help="Proportion of tokens to keep.") parser.add_argument("--word_rand", default=0.1, type=float, help="Proportion of tokens to randomly replace.") parser.add_argument( "--mlm_smoothing", default=0.7, type=float, help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).", ) parser.add_argument("--token_counts", type=str, help="The token counts in the data_file for MLM.") parser.add_argument( "--restrict_ce_to_mask", action="store_true", help="If true, compute the distillation loss only the [MLM] prediction distribution.", ) parser.add_argument( "--freeze_pos_embs", action="store_true", help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.", ) parser.add_argument( "--freeze_token_type_embds", action="store_true", help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.", ) parser.add_argument("--n_epoch", type=int, default=3, help="Number of pass on the whole dataset.") parser.add_argument("--batch_size", type=int, default=5, help="Batch size (for each process).") parser.add_argument( "--group_by_size", action="store_false", help="If true, group sequences that have similar length into the same batch. Default is true.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=50, help="Gradient accumulation for larger training batches.", ) parser.add_argument("--warmup_prop", default=0.05, type=float, help="Linear warmup proportion.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--learning_rate", default=5e-4, type=float, help="The initial learning rate for Adam.") parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=5.0, type=float, help="Max gradient norm.") parser.add_argument("--initializer_range", default=0.02, type=float, help="Random initialization range.") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--n_gpu", type=int, default=1, help="Number of GPUs in the node.") parser.add_argument("--local_rank", type=int, default=-1, help="Distributed training - Local rank") parser.add_argument("--seed", type=int, default=56, help="Random seed") parser.add_argument("--log_interval", type=int, default=500, help="Tensorboard logging interval.") parser.add_argument("--checkpoint_interval", type=int, default=4000, help="Checkpoint interval.") args = parser.parse_args() sanity_checks(args) # ARGS # init_gpu_params(args) set_seed(args) if args.is_master: if os.path.exists(args.dump_path): if not args.force: raise ValueError( f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path) if not os.path.exists(args.dump_path): os.makedirs(args.dump_path) logger.info(f"Experiment will be dumped and logged in {args.dump_path}") # SAVE PARAMS # logger.info(f"Param: {args}") with open(os.path.join(args.dump_path, "parameters.json"), "w") as f: json.dump(vars(args), f, indent=4) git_log(args.dump_path) student_config_class, student_model_class, _ = MODEL_CLASSES[args.student_type] teacher_config_class, teacher_model_class, teacher_tokenizer_class = MODEL_CLASSES[args.teacher_type] # TOKENIZER # tokenizer = teacher_tokenizer_class.from_pretrained(args.teacher_name) special_tok_ids = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): idx = tokenizer.all_special_tokens.index(tok_symbol) special_tok_ids[tok_name] = tokenizer.all_special_ids[idx] logger.info(f"Special tokens {special_tok_ids}") args.special_tok_ids = special_tok_ids args.max_model_input_size = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"Loading data from {args.data_file}") with open(args.data_file, "rb") as fp: data = pickle.load(fp) if args.mlm: logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)") with open(args.token_counts, "rb") as fp: counts = pickle.load(fp) token_probs = np.maximum(counts, 1) ** -args.mlm_smoothing for idx in special_tok_ids.values(): token_probs[idx] = 0.0 # do not predict special tokens token_probs = torch.from_numpy(token_probs) else: token_probs = None train_lm_seq_dataset = LmSeqsDataset(params=args, data=data) logger.info("Data loader created.") # STUDENT # logger.info(f"Loading student config from {args.student_config}") stu_architecture_config = student_config_class.from_pretrained(args.student_config) stu_architecture_config.output_hidden_states = True if args.student_pretrained_weights is not None: logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}") student = student_model_class.from_pretrained(args.student_pretrained_weights, config=stu_architecture_config) else: student = student_model_class(stu_architecture_config) if args.n_gpu > 0: student.to(f"cuda:{args.local_rank}") logger.info("Student loaded.") # TEACHER # teacher = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=True) if args.n_gpu > 0: teacher.to(f"cuda:{args.local_rank}") logger.info(f"Teacher loaded from {args.teacher_name}.") # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(student, args) if args.freeze_token_type_embds: freeze_token_type_embeddings(student, args) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() distiller = Distiller( params=args, dataset=train_lm_seq_dataset, token_probs=token_probs, student=student, teacher=teacher ) distiller.train() logger.info("Let's go get some drinks.") if __name__ == "__main__": main()
transformers/examples/research_projects/distillation/train.py/0
{ "file_path": "transformers/examples/research_projects/distillation/train.py", "repo_id": "transformers", "token_count": 5147 }
54
# Copyright 2022 - Intel Corp. All rights reserved. # Authors: Mayank Kumar Raunak, Javier Turek, Nicole Backage import copy import logging import random import joblib import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AdamW, GPT2LMHeadModel, get_linear_schedule_with_warmup logger = logging.getLogger(__name__) def set_seed(seed): """ For reproducible training Args: seed: A seed for reproducible training """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def compute_perplexity(model, test_data, context_len): """ Computes perplexity of the transformer model on data in test_data Args: model: Pre-trained GPT2 model test_data: Data on which perplexity calculation is required context_len: The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded Returns: Perplexity on input test data """ model.eval() device = next(model.parameters()).device eval_batch_size = 1 context = torch.zeros((eval_batch_size, context_len), dtype=torch.long, device=device) eval_dataloader = DataLoader(test_data, shuffle=False, batch_size=eval_batch_size) eval_loss = torch.zeros(1, device=device) nb_eval_examples = 0 for batch in eval_dataloader: batch.to(device) # pad context.zero_() for i in range(eval_batch_size): context[i, :] = batch[i] outputs = model(context, labels=context) eval_loss += outputs[0].sum().item() nb_eval_examples += batch.size(0) eval_loss = eval_loss / nb_eval_examples perplexity = torch.exp(eval_loss) model.train() return perplexity def load_gpt2(model_name="openai-community/gpt2"): """ load original openai-community/gpt2 and save off for quicker loading Args: model_name: GPT-2 Returns: GPT-2 model """ model = GPT2LMHeadModel.from_pretrained(model_name, output_hidden_states=True) torch.save(model.state_dict(), model_name + "local.pt") return model def recopy_gpt2(orig_model, device, max_steps): """ Reset the model to the original pretrained GPT-2 weights after each iteration Args: orig_model: Original pretrained GPT-2 model imported from Transformers library device: CPU/GPU max_steps: number of training steps Returns: Original PreTrained GPT-2 model, lm_optimizer: Adam optimizer with Decoupled weight decay lm_scheduler: linear scheduler with the appropriate schedule """ model = copy.deepcopy(orig_model) model.to(device) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] lm_optimizer = AdamW(optimizer_grouped_parameters, lr=5e-5, eps=1e-8) lm_scheduler = get_linear_schedule_with_warmup(lm_optimizer, 0, max_steps) torch.cuda.empty_cache() return model, lm_optimizer, lm_scheduler def intermittent_save(contexts, real_perps, past_perps, filename): """ save the perplexity differences to filename Args: contexts: Example on which the perplexity is calculated real_perps: Perplexity after back-propagating on the selected context past_perps: Perplexity of model before training on the context filename: File to store perplexity differences Returns: file with perplexity differences """ # save the perplexity differences to filename avg = np.array(real_perps).mean() std = np.array(real_perps).std() perp_diff = (real_perps - avg) / std data_final = list(zip(contexts, perp_diff, past_perps)) joblib.dump(data_final, filename) def collect_objective_set( model, orig_perp, context_len, train_data, objective_set, max_steps, device, filename="dev.jbl", recopy_model=recopy_gpt2, ): """ Collect individual IGF values from pre-trained transformer model max_steps samples of training data to train secondary model Args: model: Pre-trained GPT2 model orig_perp: Perplexity of original pretrained GPT-2 model context_len: The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded train_data: Data to train model objective_set: Contexts used to create (X,IG(X)) pairs which is the training data for secondary learner max_steps: To calculate training epochs of model device: GPU/CPU filename: To store intermediate perplexity differences recopy_model: Reset the model to the original pretrained GPT-2 weights after each iteration Returns: file stored intermediate perplexity differences in intermediate stages """ # initialize variables to record relevant information contexts = [] real_perps = [] past_perps = [] # Initialize the transformer model orig_model = copy.deepcopy(model) orig_model.to(device="cpu") torch.cuda.empty_cache() # Compute perplexity of initial transformer model for comparison model.train() model, lm_optimizer, lm_scheduler = recopy_model(orig_model, device, max_steps) for step in tqdm(range(max_steps)): context = torch.zeros((1, context_len), dtype=torch.long, device=device) story = random.choice(train_data) start = random.randint(0, len(story[0]) - context_len - 1) context[0, :] = story[0][start : start + context_len] lm_optimizer.zero_grad() outputs = model(context, labels=context) lm_loss = outputs[0] past_perp = compute_perplexity(model, context, context_len) model.train() lm_loss.backward() # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule # Compute perplexity after back-propagating on the selected context real_perp = compute_perplexity(model, objective_set, context_len) # Periodically save the stored (X, IG(X)) pairs if step % 1000 == 0 and step > 1: intermittent_save(contexts, real_perps, past_perps, filename) # Reset the pretrained model to the original pretrained GPT-2 weights after each iteration model, lm_optimizer, lm_scheduler = recopy_model(orig_model, device, max_steps) past_perps.append(past_perp.item()) real_perps.append(orig_perp - real_perp.item()) contexts.append(np.array(context.cpu())) intermittent_save(contexts, real_perps, past_perps, filename) def generate_datasets( context_len, file="data/tokenized_stories_train_wikitext103.jbl", number=100, min_len=1026, trim=True ): """ Generate objective set and training set Args: context_len: The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded file: Tokenized data split into training set and objective set number: size of objective dataset min_len: minimum length of a context in objective set trim: If True truncate the context if it exceeds context length Returns: Generated objective set and training data """ # Generate objective set and training set # Designate the first number (100) articles that are long enough to be used # as our objective set, rest (that are long enough) are training data for # secondary learner data = joblib.load(file) print("data loaded") objective_set = [] if trim: for i, example in enumerate(data): if len(example[0]) > min_len: start = random.randint(0, len(example[0]) - context_len - 1) objective_set.append(example[0, start : start + context_len]) if len(objective_set) >= number: break train_data = [] for j in range(i + 1, len(data)): if len(data[j][0]) > min_len: train_data.append(data[j]) else: objective_set = data[0:number] train_data = data[number:] joblib.dump(objective_set, "objective_set.jbl") print("objective set saved") return train_data, objective_set def train_secondary_learner( secondary_learner, train_dataset, max_epochs, batch_size, eval_freq=50, igf_model_path="secondary_learner.pt" ): """ Train the secondary learner (igf_model) Args: secondary_learner: secondary learner train_dataset: data to train secondary learner max_epochs: number of epochs to train secondary learner batch_size: batch size of training data of secondary learner eval_freq: secondary model evaluation can be triggered at eval_freq igf_model_path: path to store trained secondary learner Returns: Trained secondary learner """ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # We will use the first 512 pairs from our dataset as a test set for # our secondary learner and the rest to train test_dataset = train_dataset[:512] train_dataset = train_dataset[512:] train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size) test_dataloader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size) # secondary learner model set up loss = nn.MSELoss() test_loss = nn.MSELoss(reduction="sum") secondary_learner.to(device) q_optimizer = torch.optim.Adam(secondary_learner.parameters(), lr=0.00001) secondary_learner.train() # TODO in original code this is written as number of actual batches seen # not number of items seen but other places it is number of items instead. # improve consistency! changed this to epochs for clarity best_test_loss = float("inf") # Iterate through batches until we've used max_steps batches for epoch in range(int(max_epochs)): tr_q_loss = 0.0 secondary_learner.train() for step, batch in enumerate(train_dataloader): context = batch[0].to(device) real_q = batch[1].to(device) predicted_q = secondary_learner(context) q_optimizer.zero_grad() q_loss = loss(predicted_q, real_q.float()) q_loss.backward() q_optimizer.step() tr_q_loss += q_loss.item() # model trains fairly quickly so we won't wait for a full epoch # eval is triggered at eval_freq and end of epochs if (step % eval_freq == 0 and step > 0) or ((step + 1) == len(train_dataloader)): tr_loss = tr_q_loss / (step + 1) secondary_learner.eval() q_loss2 = 0.0 sum_q2 = 0.0 predicted = [] actual = [] # Compute performance of the secondary learner after this batch for step2, batch2 in enumerate(test_dataloader): features2 = batch2[0].to(device) real_q2 = batch2[1].to(device) predicted_q2 = secondary_learner(features2) q_loss2 += test_loss(predicted_q2, real_q2).item() sum_q2 += torch.sum(predicted_q2).item() for ei, i in enumerate(predicted_q2.cpu().detach().numpy()): predicted.append(i.item()) for ei, i in enumerate(real_q2.cpu().detach().numpy()): actual.append(i.item()) q_loss2 /= len(test_dataset) print( "Epoch: ", epoch, "step: ", step, "Avg. q:", sum_q2 / len(test_dataset), "Train Loss: ", tr_loss, "Test Loss: ", q_loss2, ) if q_loss2 < best_test_loss: joblib.dump((predicted, actual), "pred_vs_actual.jbl") torch.save(secondary_learner.state_dict(), igf_model_path) best_test_loss = q_loss2 secondary_learner.train() return secondary_learner class SecondaryLearner(nn.Module): """ Our secondary learner """ def __init__(self, model): """ We use a simple convolutional network as our secondary learner Args: model: Pre-trained GPT2 model """ # embeddings are from the pretrained model super(SecondaryLearner, self).__init__() self.embeddings = model.transformer.wte self.embeddings.weight = copy.deepcopy(model.transformer.wte.weight) self.conv = nn.Conv1d(self.embeddings.weight.size(1), 256, 3, padding=1) self.fc = nn.Sequential(nn.Linear(256, 32), nn.Dropout(p=0.1), nn.Linear(32, 32), nn.Linear(32, 1)) def forward(self, context): """ Forward pass through the secondary learner Args: context: Context input to the secondary learner Returns: tensor after squeeze operation """ pooled = torch.max(self.conv(self.embeddings(context).squeeze(1).transpose(1, 2)), 2)[0] qs = self.fc(pooled) return qs.squeeze(1) @classmethod def from_pretrained(cls, state_path, model): """ Load the secondary learner Args: state_path: Path to save secondary learner model: Pretrained GPT-2 Returns: secondary learner """ secondary_learner = cls(model) # this calls __init__ state_dict = torch.load(state_path) secondary_learner.load_state_dict(state_dict) secondary_learner.embeddings = model.transformer.wte secondary_learner.embeddings.weight = copy.deepcopy(model.transformer.wte.weight) return secondary_learner
transformers/examples/research_projects/information-gain-filtration/igf/igf.py/0
{ "file_path": "transformers/examples/research_projects/information-gain-filtration/igf/igf.py", "repo_id": "transformers", "token_count": 6117 }
55
import copy from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class HybridCLIPConfig(PretrainedConfig): r""" :class:`HybridCLIPConfig` is the configuration class to store the configuration of a :class:`~HybridCLIPModel`. It is used to instantiate HybridCLIPModel model according to the specified arguments, defining the text model and vision model configs. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: text_config_dict (:obj:`dict`): Dictionary of configuration options that defines text model config. vision_config_dict (:obj:`dict`): Dictionary of configuration options that defines vison model config. projection_dim (:obj:`int`, `optional`, defaults to 512): Dimentionality of text and vision projection layers. kwargs (`optional`): Dictionary of keyword arguments. Examples:: >>> from transformers import BertConfig, CLIPConfig, HybridCLIPConfig, FlaxHybridCLIP >>> # Initializing a BERT and CLIP configuration >>> config_text = BertConfig() >>> config_vision = CLIPConfig() >>> config = HybridCLIPConfig.from_text_vision_configs(config_text, config_vision, projection_dim=512) >>> # Initializing a BERT and CLIPVision model >>> model = EncoderDecoderModel(config=config) >>> # Accessing the model configuration >>> config_text = model.config.text_config >>> config_vision = model.config.vision_config >>> # Saving the model, including its configuration >>> model.save_pretrained('my-model') >>> # loading model and config from pretrained folder >>> encoder_decoder_config = HybridCLIPConfig.from_pretrained('my-model') >>> model = FlaxHybridCLIP.from_pretrained('my-model', config=encoder_decoder_config) """ model_type = "hybrid-clip" is_composition = True def __init__(self, projection_dim=512, **kwargs): super().__init__(**kwargs) if "text_config" not in kwargs: raise ValueError("`text_config` can not be `None`.") if "vision_config" not in kwargs: raise ValueError("`vision_config` can not be `None`.") text_config = kwargs.pop("text_config") vision_config = kwargs.pop("vision_config") text_model_type = text_config.pop("model_type") vision_model_type = vision_config.pop("model_type") from transformers import AutoConfig self.text_config = AutoConfig.for_model(text_model_type, **text_config) if vision_model_type == "clip": self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config).vision_config elif vision_model_type == "clip_vision_model": from transformers import CLIPVisionConfig self.vision_config = CLIPVisionConfig(**vision_config) else: self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config) self.projection_dim = projection_dim self.initializer_factor = 1.0 @classmethod def from_text_vision_configs(cls, text_config: PretrainedConfig, vision_config: PretrainedConfig, **kwargs): r""" Instantiate a :class:`HybridCLIPConfig` (or a derived class) from text model configuration and vision model configuration. Returns: :class:`HybridCLIPConfig`: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default :meth:`~transformers.PretrainedConfig.to_dict`. Returns: :obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["text_config"] = self.text_config.to_dict() output["vision_config"] = self.vision_config.to_dict() output["model_type"] = self.__class__.model_type return output
transformers/examples/research_projects/jax-projects/hybrid_clip/configuration_hybrid_clip.py/0
{ "file_path": "transformers/examples/research_projects/jax-projects/hybrid_clip/configuration_hybrid_clip.py", "repo_id": "transformers", "token_count": 1634 }
56
# Token classification ## PyTorch version, no Trainer Fine-tuning (m)LUKE for token classification task such as Named Entity Recognition (NER), Parts-of-speech tagging (POS) or phrase extraction (CHUNKS). You can easily customize it to your needs if you need extra processing on your datasets. It will either run on a datasets hosted on our [hub](https://huggingface.co/datasets) or with your own text files for training and validation, you might just need to add some tweaks in the data preprocessing. The script can be run in a distributed setup, on TPU and supports mixed precision by the mean of the [🤗 `Accelerate`](https://github.com/huggingface/accelerate) library. You can use the script normally after installing it: ```bash pip install git+https://github.com/huggingface/accelerate ``` then to train English LUKE on CoNLL2003: ```bash export TASK_NAME=ner python run_luke_ner_no_trainer.py \ --model_name_or_path studio-ousia/luke-base \ --dataset_name conll2003 \ --task_name $TASK_NAME \ --max_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ ``` You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run ```bash accelerate config ``` and reply to the questions asked. Then ```bash accelerate test ``` that will check everything is ready for training. Finally, you can launch training with ```bash export TASK_NAME=ner accelerate launch run_ner_no_trainer.py \ --model_name_or_path studio-ousia/luke-base \ --dataset_name conll2003 \ --task_name $TASK_NAME \ --max_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ ``` This command is the same and will work for: - a CPU-only setup - a setup with one GPU - a distributed training with several GPUs (single or multi node) - a training on TPUs Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it.
transformers/examples/research_projects/luke/README.md/0
{ "file_path": "transformers/examples/research_projects/luke/README.md", "repo_id": "transformers", "token_count": 667 }
57
# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. # Copyright (c) HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for multimodal multiclass prediction on MM-IMDB dataset.""" import argparse import glob import json import logging import os import random import numpy as np import torch from sklearn.metrics import f1_score from torch import nn from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from utils_mmimdb import ImageEncoder, JsonlDataset, collate_fn, get_image_transforms, get_mmimdb_labels import transformers from transformers import ( WEIGHTS_NAME, AdamW, AutoConfig, AutoModel, AutoTokenizer, MMBTConfig, MMBTForClassification, get_linear_schedule_with_warmup, ) from transformers.trainer_utils import is_main_process try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer, criterion): """Train the model""" if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate_fn, num_workers=args.num_workers, ) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 tr_loss, logging_loss = 0.0, 0.0 best_f1, n_no_improve = 0, 0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Added here for reproducibility for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): model.train() batch = tuple(t.to(args.device) for t in batch) labels = batch[5] inputs = { "input_ids": batch[0], "input_modal": batch[2], "attention_mask": batch[1], "modal_start_tokens": batch[3], "modal_end_tokens": batch[4], } outputs = model(**inputs) logits = outputs[0] # model outputs are always tuple in transformers (see doc) loss = criterion(logits, labels) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logs = {} if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer, criterion) for key, value in results.items(): eval_key = "eval_{}".format(key) logs[eval_key] = value loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs["learning_rate"] = learning_rate_scalar logs["loss"] = loss_scalar logging_loss = tr_loss for key, value in logs.items(): tb_writer.add_scalar(key, value, global_step) print(json.dumps({**logs, **{"step": global_step}})) if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training torch.save(model_to_save.state_dict(), os.path.join(output_dir, WEIGHTS_NAME)) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank == -1: results = evaluate(args, model, tokenizer, criterion) if results["micro_f1"] > best_f1: best_f1 = results["micro_f1"] n_no_improve = 0 else: n_no_improve += 1 if n_no_improve > args.patience: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, criterion, prefix=""): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_output_dir = args.output_dir eval_dataset = load_examples(args, tokenizer, evaluate=True) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader( eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate_fn ) # multi-gpu eval if args.n_gpu > 1 and not isinstance(model, nn.DataParallel): model = nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): batch = tuple(t.to(args.device) for t in batch) labels = batch[5] inputs = { "input_ids": batch[0], "input_modal": batch[2], "attention_mask": batch[1], "modal_start_tokens": batch[3], "modal_end_tokens": batch[4], } outputs = model(**inputs) logits = outputs[0] # model outputs are always tuple in transformers (see doc) tmp_eval_loss = criterion(logits, labels) eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = torch.sigmoid(logits).detach().cpu().numpy() > 0.5 out_label_ids = labels.detach().cpu().numpy() else: preds = np.append(preds, torch.sigmoid(logits).detach().cpu().numpy() > 0.5, axis=0) out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps result = { "loss": eval_loss, "macro_f1": f1_score(out_label_ids, preds, average="macro"), "micro_f1": f1_score(out_label_ids, preds, average="micro"), } output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) return result def load_examples(args, tokenizer, evaluate=False): path = os.path.join(args.data_dir, "dev.jsonl" if evaluate else "train.jsonl") transforms = get_image_transforms() labels = get_mmimdb_labels() dataset = JsonlDataset(path, tokenizer, transforms, labels, args.max_seq_length - args.num_image_embeds - 2) return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .jsonl files for MMIMDB.", ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default=None, type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--max_seq_length", default=128, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--num_image_embeds", default=1, type=int, help="Number of Image Embeddings from the Image Encoder" ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument("--patience", default=5, type=int, help="Patience for Early Stopping.") parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument("--num_workers", type=int, default=8, help="number of worker threads for dataloading") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") args = parser.parse_args() if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set seed set_seed(args) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab # Setup model labels = get_mmimdb_labels() num_labels = len(labels) transformer_config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path) tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir, ) transformer = AutoModel.from_pretrained( args.model_name_or_path, config=transformer_config, cache_dir=args.cache_dir ) img_encoder = ImageEncoder(args) config = MMBTConfig(transformer_config, num_labels=num_labels) model = MMBTForClassification(config, transformer, img_encoder) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_examples(args, tokenizer, evaluate=False) label_frequences = train_dataset.get_label_frequencies() label_frequences = [label_frequences[l] for l in labels] label_weights = ( torch.tensor(label_frequences, device=args.device, dtype=torch.float) / len(train_dataset) ) ** -1 criterion = nn.BCEWithLogitsLoss(pos_weight=label_weights) global_step, tr_loss = train(args, train_dataset, model, tokenizer, criterion) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training torch.save(model_to_save.state_dict(), os.path.join(args.output_dir, WEIGHTS_NAME)) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = MMBTForClassification(config, transformer, img_encoder) model.load_state_dict(torch.load(os.path.join(args.output_dir, WEIGHTS_NAME))) tokenizer = AutoTokenizer.from_pretrained(args.output_dir) model.to(args.device) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = [ os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" model = MMBTForClassification(config, transformer, img_encoder) model.load_state_dict(torch.load(checkpoint)) model.to(args.device) result = evaluate(args, model, tokenizer, criterion, prefix=prefix) result = {k + "_{}".format(global_step): v for k, v in result.items()} results.update(result) return results if __name__ == "__main__": main()
transformers/examples/research_projects/mm-imdb/run_mmimdb.py/0
{ "file_path": "transformers/examples/research_projects/mm-imdb/run_mmimdb.py", "repo_id": "transformers", "token_count": 10119 }
58
import copy import itertools from typing import List, Optional, Tuple import torch import torch.nn.functional as F from transformers import BartConfig from transformers.generation import GenerationMixin def _convert_past_list_to_tuple(past_key_values): """ In Bart model, the type of past_key_values is tuple(tuple(torch.FloatTensor)) which is not TorchScript-compatible. To support this, we have to convert it during the export process. This function will convert past values from a list to tuple(tuple(torch.FloatTensor)) for the inner decoder. According to the definition of past_key_values, each inner tuple(torch.FloatTensor) has 4 tensors, so we convert every 4 elements in the list as a tuple(torch.FloatTensor). """ count_of_each_inner_tuple = 4 results = () temp_result = () count_n = len(past_key_values) // count_of_each_inner_tuple for idx in range(count_n): real_idx = idx * count_of_each_inner_tuple temp_result = tuple(past_key_values[real_idx : real_idx + count_of_each_inner_tuple]) results += ((temp_result),) return results class EncoderForONNX(torch.nn.Module): def __init__(self, encoder): super().__init__() self.encoder = encoder def forward(self, input_ids, attention_mask): return self.encoder( input_ids=input_ids, attention_mask=attention_mask, return_dict=False, ) class DecoderForONNX(torch.nn.Module): def __init__(self, decoder): super().__init__() self.decoder = decoder def forward(self, input_ids, encoder_state, attention_mask, past=None): all_results = None if past is not None: all_results = _convert_past_list_to_tuple(past) input_ids = input_ids[:, -1:] last_hidden_state, past_key_values = self.decoder( input_ids=input_ids, encoder_hidden_states=encoder_state, encoder_attention_mask=attention_mask, past_key_values=all_results, return_dict=False, ) past_values = [] for past in past_key_values: past_values = past_values + list(past) return last_hidden_state, past_values def _create_traced_encoder(encoder, input_ids, attention_mask): encoder_c = copy.deepcopy(encoder) encoder_for_onnx = EncoderForONNX(encoder_c) return torch.jit.trace(encoder_for_onnx, (input_ids, attention_mask)) def _create_traced_decoder(decoder, input_ids, encoder_state, attention_mask, past=None): decoder_c = copy.deepcopy(decoder) decoder_for_onnx = DecoderForONNX(decoder_c) past_values = list(itertools.chain.from_iterable(past or ())) # Do this twice so we got 2 different decoders for further work. if past_values: return torch.jit.trace(decoder_for_onnx, (input_ids, encoder_state, attention_mask, past_values)) else: return torch.jit.trace(decoder_for_onnx, (input_ids, encoder_state, attention_mask)) class BartConfigTS(BartConfig, torch.nn.Module): """ BartConfigTS is a TorchScript-compatible transformers.models.bart.configuration_bart.BartConfig. TorchScript only supports sub-classes of torch.nn.Module. """ def __init__(self, config): BartConfig.__init__(self, config) torch.nn.Module.__init__(self) class MinLengthLogitsProcessorTS(torch.nn.Module): r""" :class:`transformers.LogitsProcessor` enforcing a min-length by setting EOS probability to 0. Args: min_length (:obj:`int`): The minimum length below which the score of :obj:`eos_token_id` is set to :obj:`-float("Inf")`. eos_token_id (:obj:`int`): The id of the `end-of-sequence` token. """ def __init__(self, min_length: int, eos_token_id: int): super().__init__() if not isinstance(min_length, int) or min_length < 0: raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}") if not isinstance(eos_token_id, int) or eos_token_id < 0: raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}") self.min_length = min_length self.eos_token_id = eos_token_id def forward(self, input_ids, scores) -> torch.Tensor: cur_len = input_ids.shape[-1] if cur_len < self.min_length: scores[:, self.eos_token_id] = -float("inf") return scores class BARTGenerator(torch.nn.Module, GenerationMixin): def __init__(self, model): super().__init__() self.config = BartConfigTS(model.config) self.config.force_bos_token_to_be_generated = False self._trace_modules(model) self.logits_processor = MinLengthLogitsProcessorTS(self.config.min_length, self.config.eos_token_id) self.final_logits_weight = model.model.shared.weight self.final_logits_bias = model.final_logits_bias self.decoder_layers = model.config.decoder_layers def _trace_modules(self, model): input_ids = torch.tensor( [ [ 19, 669, 18, 420, 8, 664, 57, 42, 8, 664, 21, 3028, 195, 4445, 331, 1293, 34, 21, 10, 6174, 1100, 6, 69, 104, 42, 32, 2621, 1638, 144, 4, 6174, 558, 108, 4419, 1091, 28, 4, 1668, 9, 1509, 1621, 279, 35, 867, 2734, 85, 11, 2216, 2734, 85, 203, 2244, 7, 6, 15, 8102, 7, 57, 8629, 5, model.config.eos_token_id, ] ], device=model.device, dtype=torch.long, ) attention_mask = torch.tensor( [[True] * input_ids.shape[-1]], device=model.device, dtype=torch.bool, ) self.encoder = _create_traced_encoder(model.get_encoder(), input_ids, attention_mask) encoder_outputs = model.get_encoder()(input_ids, attention_mask=attention_mask, return_dict=True) decoder = model.model.decoder decoder_outputs = decoder(input_ids, attention_mask, encoder_outputs["last_hidden_state"], None, None, None) self.decoder_no_past = _create_traced_decoder( model.model.decoder, input_ids, encoder_outputs["last_hidden_state"], attention_mask ) self.decoder_with_past = _create_traced_decoder( model.model.decoder, input_ids, encoder_outputs["last_hidden_state"], attention_mask, decoder_outputs[1] ) def _encoder_forward(self, input_ids, attention_mask): return self.encoder(input_ids, attention_mask)[0] @staticmethod def _init_sequence_length_for_generation( input_ids: torch.LongTensor, max_length: int ) -> Tuple[torch.Tensor, torch.Tensor, int]: unfinished_sequences = torch.zeros(input_ids.shape[0], dtype=torch.long, device=input_ids.device) + 1 sequence_lengths = torch.zeros(input_ids.shape[0], dtype=torch.long, device=input_ids.device) + max_length cur_len = input_ids.shape[-1] return sequence_lengths, unfinished_sequences, cur_len def _decoder_forward(self, input_ids, encoder_output, attention_mask, past: List[torch.Tensor]): # Update here to use different decoder for different values of past. if past is None or len(past) == 0: decoder_output, past = self.decoder_no_past( input_ids=input_ids, encoder_state=encoder_output, attention_mask=attention_mask ) else: decoder_output, past = self.decoder_with_past( input_ids=input_ids, encoder_state=encoder_output, attention_mask=attention_mask, past=past ) lm_logits = F.linear(decoder_output, self.final_logits_weight, bias=self.final_logits_bias) return lm_logits, past def greedy_search( self, input_ids, encoder_output, attention_mask, max_length, pad_token_id: int, eos_token_id: int ): # init sequence length tensors sequence_lengths, unfinished_sequences, cur_len = self._init_sequence_length_for_generation( input_ids, max_length ) past: List[torch.Tensor] = [] while cur_len < max_length: logits, past = self._decoder_forward(input_ids, encoder_output, attention_mask, past) next_token_logits = logits[:, -1, :] # pre-process distribution scores = self.logits_processor(input_ids, next_token_logits) # argmax next_tokens = torch.argmax(scores, dim=-1) # add code that transfomers next_tokens to tokens_to_add if eos_token_id is not None: assert pad_token_id is not None, "If eos_token_id is defined, make sure that pad_token_id is defined." next_tokens = next_tokens * unfinished_sequences + (pad_token_id) * (1 - unfinished_sequences) # add token and increase length by one input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) # update sequence length if eos_token_id is not None: sequence_lengths, unfinished_sequences = self._update_seq_length_for_generation( sequence_lengths, unfinished_sequences, cur_len, next_tokens == eos_token_id ) # stop when there is a </s> in each sentence, or if we exceed the maximul length if unfinished_sequences.max() == 0: break # increase cur_len cur_len = cur_len + 1 return input_ids def _prepare_decoder_input_ids_for_generation( self, input_ids: torch.LongTensor, decoder_start_token_id, bos_token_id: Optional[int] = None, ) -> torch.LongTensor: decoder_input_ids = ( torch.ones((input_ids.shape[0], 1), dtype=input_ids.dtype, device=input_ids.device) * decoder_start_token_id ) return decoder_input_ids def forward(self, input_ids, attention_mask, max_length, decoder_start_token_id): pad_token_id = self.config.pad_token_id bos_token_id = self.config.bos_token_id eos_token_id = self.config.eos_token_id # special case if pad_token_id is not defined if pad_token_id is None and eos_token_id is not None: # Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation. pad_token_id = eos_token_id encoder_output = self._encoder_forward(input_ids, attention_mask) input_ids = self._prepare_decoder_input_ids_for_generation( input_ids, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, ) return self.greedy_search( input_ids, encoder_output, attention_mask, max_length=max_length, pad_token_id=pad_token_id, eos_token_id=eos_token_id, ) # TorchScript compatible BeamSearchScorer class BeamSearchScorerTS(torch.nn.Module): def __init__(self): super().__init__() self.max_length: int = 200 self.num_beams: int = 3 self.batch_size: int = 1 self.length_penalty: float = 1.0 self.do_early_stopping: bool = True self.num_beam_hyps_to_keep: int = 1 self.num_beam_groups: int = 1 self.group_size: int = self.num_beams // self.num_beam_groups self._done = torch.zeros(self.batch_size, dtype=torch.bool) self._beam_hyps_count = torch.zeros(self.batch_size, dtype=torch.long) self._beam_hyps_worst_scores = torch.zeros(self.batch_size) + 1e9 self._beam_hyps_max_length: int = self.max_length - 1 self._beam_hyps: List[torch.Tensor] = [torch.zeros(2)] # placeholder for TorchScript compatibility self._beam_scores: List[torch.Tensor] = [torch.zeros(2)] # placeholder for TorchScript compatibility def is_done(self) -> torch.Tensor: return self._done.all() def init( self, batch_size: int, max_length: int, num_beams: int, device: torch.device, length_penalty: float = 1.0, do_early_stopping: bool = False, num_beam_hyps_to_keep: int = 1, num_beam_groups: int = 1, ): self.max_length = max_length self.num_beams = num_beams self.batch_size = batch_size self.length_penalty = length_penalty self.do_early_stopping = do_early_stopping self.num_beam_hyps_to_keep = num_beam_hyps_to_keep self.num_beam_groups = num_beam_groups self.group_size = self.num_beams // self.num_beam_groups # NOTE: TorchScript does not support List of Modules # Rewritten BeamHypotheses with tensors and list of tensors. self._done = torch.zeros(batch_size, dtype=torch.bool, device=device) self._beam_hyps_count = torch.zeros(batch_size, dtype=torch.long, device=device) self._beam_hyps_worst_scores = torch.zeros(batch_size, device=device) + 1e9 self._beam_hyps = [] self._beam_scores = [] self._beam_hyps_max_length = max_length - 1 # ignoring bos_token if not isinstance(num_beams, int) or num_beams <= 1: raise ValueError( f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1," " one should make use of `greedy_search` instead." ) if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0): raise ValueError( "`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be" f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}." ) def hypo_len(self, hypo_idx: int): """ Number of hypotheses in the list. """ return self._beam_hyps_count[hypo_idx] def hypo_add(self, hyp: torch.Tensor, sum_logprobs: float, hypo_idx: int): """ Add a new hypothesis to the list. """ score = sum_logprobs / (hyp.shape[-1] ** self.length_penalty) hyps_count = self.hypo_len(hypo_idx) if hyps_count < self.num_beams or score > self._beam_hyps_worst_scores[hypo_idx]: # NOTE: work around difference of torch.sum(empty_tensor) == 0, while error in onnx. # Bug: https://msdata.visualstudio.com/Vienna/_workitems/edit/1486599 beam_idx = ( torch.sum(self._beam_hyps_count[:hypo_idx]) if hypo_idx != 0 else torch.tensor(0, dtype=torch.long) ) self._beam_scores.insert(beam_idx, torch.tensor([score])) self._beam_hyps.insert(beam_idx, hyp) if hyps_count + 1 > self.num_beams: sorted_next_scores, sorted_indices = torch.topk( torch.cat(self._beam_scores)[beam_idx : beam_idx + hyps_count + 1], hyps_count + 1, largest=False ) del self._beam_hyps[int((sorted_indices[0] + beam_idx))] del self._beam_scores[int((sorted_indices[0] + beam_idx))] self._beam_hyps_worst_scores[hypo_idx] = sorted_next_scores[1] else: self._beam_hyps_worst_scores[hypo_idx] = min(score, self._beam_hyps_worst_scores[hypo_idx]) self._beam_hyps_count[hypo_idx] = hyps_count + 1 def hypo_is_done(self, hypo_idx: int, best_sum_logprobs: float, cur_len: int) -> bool: """ If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence. """ if self.hypo_len(hypo_idx) < self.num_beams: return False elif self.do_early_stopping: return True else: cur_score = best_sum_logprobs / cur_len**self.length_penalty ret = self._beam_hyps_worst_scores[hypo_idx].item() >= cur_score return ret def process( self, input_ids: torch.Tensor, next_scores: torch.Tensor, next_tokens: torch.Tensor, next_indices: torch.Tensor, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: cur_len = input_ids.shape[-1] batch_size = len(self._beam_hyps_count) assert batch_size == (input_ids.shape[0] // self.group_size) device = input_ids.device next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device) next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device) next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device) for batch_idx in range(batch_size): if self._done[batch_idx]: assert ( self.hypo_len(batch_idx) >= self.num_beams ), "Batch can only be done if at least {} beams have been generated".format(self.num_beams) assert ( eos_token_id is not None and pad_token_id is not None ), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined" # pad the batch next_beam_scores[batch_idx, :] = 0 next_beam_tokens[batch_idx, :] = pad_token_id next_beam_indices[batch_idx, :] = 0 continue # next tokens for this sentence beam_idx = 0 for beam_token_rank, (next_token, next_score, next_index) in enumerate( zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx]) ): batch_beam_idx = batch_idx * self.group_size + next_index # add to generated hypotheses if end of sentence if (eos_token_id is not None) and (next_token == eos_token_id): # if beam_token does not belong to top num_beams tokens, it should not be added is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size if is_beam_token_worse_than_top_num_beams: continue self.hypo_add( input_ids[batch_beam_idx].clone(), next_score.item(), batch_idx, ) else: # add next predicted token since it is not eos_token next_beam_scores[batch_idx, beam_idx] = next_score next_beam_tokens[batch_idx, beam_idx] = next_token next_beam_indices[batch_idx, beam_idx] = batch_beam_idx beam_idx += 1 # once the beam for next step is full, don't add more tokens to it. if beam_idx == self.group_size: break if beam_idx < self.group_size: raise ValueError( f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:" f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected." ) # Check if we are done so that we can save a pad step if all(done) self._done[batch_idx] = self._done[batch_idx] or self.hypo_is_done( batch_idx, next_scores[batch_idx].max().item(), cur_len, ) return next_beam_scores.view(-1), next_beam_tokens.view(-1), next_beam_indices.view(-1) def finalize( self, input_ids: torch.Tensor, final_beam_scores: torch.Tensor, final_beam_tokens: torch.Tensor, final_beam_indices: torch.Tensor, pad_token_id: int, eos_token_id: int, ) -> Tuple[torch.Tensor, torch.Tensor]: batch_size = len(self._beam_hyps_count) # finalize all open beam hypotheses and add to generated hypotheses for batch_idx in range(batch_size): if self._done[batch_idx]: continue # all open beam hypotheses are added to the beam hypothesis # beam hypothesis class automatically keeps the best beams for beam_id in range(self.num_beams): batch_beam_idx = batch_idx * self.num_beams + beam_id final_score = final_beam_scores[batch_beam_idx].item() final_tokens = input_ids[batch_beam_idx] self.hypo_add(final_tokens, final_score, batch_idx) # select the best hypotheses # NOTE: torch.Tensor.new_zeros() is not scriptable sent_lengths = torch.zeros(batch_size * self.num_beam_hyps_to_keep, dtype=torch.long) best = [] best_scores = torch.zeros( batch_size * self.num_beam_hyps_to_keep, device=input_ids.device, dtype=torch.float32 ) # retrieve best hypotheses for i in range(batch_size): # NOTE: lambda is not scriptable batch_hypo_start = torch.sum(self._beam_hyps_count[:i]) if i > 0 else torch.tensor(0, dtype=torch.long) batch_hypo_end = torch.sum(self._beam_hyps_count[: i + 1]) beam_scores = torch.cat(self._beam_scores)[batch_hypo_start:batch_hypo_end] sorted_next_scores, sorted_indices = torch.topk(beam_scores, len(beam_scores), largest=True) for j in range(self.num_beam_hyps_to_keep): best_score = beam_scores[sorted_indices[j]] best_hyp = self._beam_hyps[batch_hypo_start + sorted_indices[j]] sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp) # append to lists best.append(best_hyp) best_scores[i * self.num_beam_hyps_to_keep + j] = best_score # prepare for adding eos sent_max_len = min(sent_lengths.max() + 1, self.max_length) decoded = torch.zeros(batch_size * self.num_beam_hyps_to_keep, sent_max_len, dtype=torch.long) # shorter batches are padded if needed if sent_lengths.min() != sent_lengths.max(): assert pad_token_id is not None, "`pad_token_id` has to be defined" decoded.fill_(pad_token_id) # fill with hypotheses and eos_token_id if the latter fits in for i, hypo in enumerate(best): decoded[i, : sent_lengths[i]] = hypo if sent_lengths[i] < self.max_length: decoded[i, sent_lengths[i]] = eos_token_id return decoded, best_scores class BARTBeamSearchGenerator(BARTGenerator): def __init__(self, model): super().__init__(model) self.beam_scorer = BeamSearchScorerTS() self.device = model.device @staticmethod def _expand_inputs_for_generation( input_ids: torch.Tensor, attention_mask: torch.Tensor, last_hidden_state: torch.Tensor, expand_size: int = 1, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: expanded_return_idx = ( torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device) ) input_ids = input_ids.index_select(0, expanded_return_idx) attention_mask = attention_mask.index_select(0, expanded_return_idx) last_hidden_state = last_hidden_state.index_select(0, expanded_return_idx.to(last_hidden_state.device)) return input_ids, attention_mask, last_hidden_state def adjust_logits_during_generation(self, logits, cur_len: int, max_length: int): if cur_len == 1 and self.config.force_bos_token_to_be_generated: logits = self._force_token_id_to_be_generated(logits, self.config.bos_token_id) elif cur_len == max_length - 1 and self.config.eos_token_id is not None: logits = self._force_token_id_to_be_generated(logits, self.config.eos_token_id) return logits @staticmethod def _force_token_id_to_be_generated(scores, token_id: int): """force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))""" mask = torch.full_like(scores, 1, dtype=torch.bool) mask[:, token_id] = False return scores.masked_fill(mask, -float("inf")) def _reorder_cache(self, past: List[torch.Tensor], beam_idx): # if decoder past is not included in output # speedy decoding is disabled and no need to reorder reordered_decoder_past = [] for state in past: reordered_decoder_past.append(state.index_select(0, beam_idx)) return reordered_decoder_past def beam_search( self, input_ids, encoder_output, attention_mask, num_beams, max_length, pad_token_id: int, eos_token_id: int ): batch_size = self.beam_scorer.batch_size num_beams = self.beam_scorer.num_beams batch_beam_size, cur_len = input_ids.shape assert ( num_beams * batch_size == batch_beam_size ), f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}." beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device) beam_scores[:, 1:] = -1e9 beam_scores = beam_scores.view((batch_size * num_beams,)) next_tokens = torch.zeros((batch_size, num_beams), dtype=torch.long, device=input_ids.device) next_indices = torch.zeros((batch_size, num_beams), dtype=torch.long, device=input_ids.device) past: List[torch.Tensor] = [] while cur_len < max_length: logits, past = self._decoder_forward(input_ids, encoder_output, attention_mask, past) next_token_logits = logits[:, -1, :] # adjust tokens for Bart, *e.g.* next_token_logits = self.adjust_logits_during_generation( next_token_logits, cur_len=cur_len, max_length=max_length ) next_token_scores = F.log_softmax(next_token_logits, dim=-1) # (batch_size * num_beams, vocab_size) # pre-process distribution next_token_scores = self.logits_processor(input_ids, next_token_scores) next_token_scores = next_token_scores + beam_scores[:, None].expand_as(next_token_scores) # reshape for beam search vocab_size = next_token_scores.shape[-1] next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size) next_token_scores, next_tokens = torch.topk( next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True ) next_indices = next_tokens // vocab_size next_tokens = next_tokens % vocab_size beam_scores, beam_next_tokens, beam_idx = self.beam_scorer.process( input_ids, next_token_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, ) input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1) cur_len = cur_len + 1 if len(past) > 0: past = self._reorder_cache(past, beam_idx) if self.beam_scorer.is_done(): break sequences, sequence_scores = self.beam_scorer.finalize( input_ids, beam_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, ) return sequences def forward(self, input_ids, attention_mask, num_beams, max_length, decoder_start_token_id): pad_token_id = self.config.pad_token_id bos_token_id = self.config.bos_token_id eos_token_id = self.config.eos_token_id # special case if pad_token_id is not defined if pad_token_id is None and eos_token_id is not None: # logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") pad_token_id = eos_token_id encoder_output = self._encoder_forward(input_ids, attention_mask) input_ids = self._prepare_decoder_input_ids_for_generation( input_ids, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, ) batch_size = input_ids.shape[0] length_penalty = self.config.length_penalty num_return_sequences = self.config.num_return_sequences early_stopping = True self.beam_scorer.init( batch_size=batch_size, max_length=max_length, num_beams=num_beams, device=self.device, length_penalty=length_penalty, do_early_stopping=early_stopping, num_beam_hyps_to_keep=num_return_sequences, ) input_ids, attention_mask, encoder_output = self._expand_inputs_for_generation( input_ids, attention_mask, encoder_output, expand_size=num_beams, ) return self.beam_search( input_ids=input_ids, encoder_output=encoder_output, attention_mask=attention_mask, num_beams=num_beams, max_length=max_length, pad_token_id=pad_token_id, eos_token_id=eos_token_id, )
transformers/examples/research_projects/onnx/summarization/bart_onnx/generation_onnx.py/0
{ "file_path": "transformers/examples/research_projects/onnx/summarization/bart_onnx/generation_onnx.py", "repo_id": "transformers", "token_count": 15163 }
59
#! /usr/bin/env python3 # coding=utf-8 # Copyright (c) 2019 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import csv import json import math import time import numpy as np import torch import torch.optim as optim import torch.utils.data as data from nltk.tokenize.treebank import TreebankWordDetokenizer from pplm_classification_head import ClassificationHead from torch import nn from torchtext import data as torchtext_data from torchtext import datasets from tqdm import tqdm, trange from transformers import GPT2LMHeadModel, GPT2Tokenizer torch.manual_seed(0) np.random.seed(0) EPSILON = 1e-10 example_sentence = "This is incredible! I love it, this is the best chicken I have ever had." max_length_seq = 100 class Discriminator(nn.Module): """Transformer encoder followed by a Classification Head""" def __init__(self, class_size, pretrained_model="openai-community/gpt2-medium", cached_mode=False, device="cpu"): super().__init__() self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model) self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model) self.embed_size = self.encoder.transformer.config.hidden_size self.classifier_head = ClassificationHead(class_size=class_size, embed_size=self.embed_size) self.cached_mode = cached_mode self.device = device def get_classifier(self): return self.classifier_head def train_custom(self): for param in self.encoder.parameters(): param.requires_grad = False self.classifier_head.train() def avg_representation(self, x): mask = x.ne(0).unsqueeze(2).repeat(1, 1, self.embed_size).float().to(self.device).detach() hidden = self.encoder.transformer(x)["last_hidden_state"] masked_hidden = hidden * mask avg_hidden = torch.sum(masked_hidden, dim=1) / (torch.sum(mask, dim=1).detach() + EPSILON) return avg_hidden def forward(self, x): if self.cached_mode: avg_hidden = x.to(self.device) else: avg_hidden = self.avg_representation(x.to(self.device)) logits = self.classifier_head(avg_hidden) probs = nn.functional.log_softmax(logits, dim=-1) return probs class Dataset(data.Dataset): def __init__(self, X, y): """Reads source and target sequences from txt files.""" self.X = X self.y = y def __len__(self): return len(self.X) def __getitem__(self, index): """Returns one data pair (source and target).""" data = {} data["X"] = self.X[index] data["y"] = self.y[index] return data def collate_fn(data): def pad_sequences(sequences): lengths = [len(seq) for seq in sequences] padded_sequences = torch.zeros(len(sequences), max(lengths)).long() # padding value = 0 for i, seq in enumerate(sequences): end = lengths[i] padded_sequences[i, :end] = seq[:end] return padded_sequences, lengths item_info = {} for key in data[0].keys(): item_info[key] = [d[key] for d in data] x_batch, _ = pad_sequences(item_info["X"]) y_batch = torch.tensor(item_info["y"], dtype=torch.long) return x_batch, y_batch def cached_collate_fn(data): item_info = {} for key in data[0].keys(): item_info[key] = [d[key] for d in data] x_batch = torch.cat(item_info["X"], 0) y_batch = torch.tensor(item_info["y"], dtype=torch.long) return x_batch, y_batch def train_epoch(data_loader, discriminator, optimizer, epoch=0, log_interval=10, device="cpu"): samples_so_far = 0 discriminator.train_custom() for batch_idx, (input_t, target_t) in enumerate(data_loader): input_t, target_t = input_t.to(device), target_t.to(device) optimizer.zero_grad() output_t = discriminator(input_t) loss = nn.functional.nll_loss(output_t, target_t) loss.backward(retain_graph=True) optimizer.step() samples_so_far += len(input_t) if batch_idx % log_interval == 0: print( "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( epoch + 1, samples_so_far, len(data_loader.dataset), 100 * samples_so_far / len(data_loader.dataset), loss.item(), ) ) def evaluate_performance(data_loader, discriminator, device="cpu"): discriminator.eval() test_loss = 0 correct = 0 with torch.no_grad(): for input_t, target_t in data_loader: input_t, target_t = input_t.to(device), target_t.to(device) output_t = discriminator(input_t) # sum up batch loss test_loss += nn.functional.nll_loss(output_t, target_t, reduction="sum").item() # get the index of the max log-probability pred_t = output_t.argmax(dim=1, keepdim=True) correct += pred_t.eq(target_t.view_as(pred_t)).sum().item() test_loss /= len(data_loader.dataset) print( "Performance on test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format( test_loss, correct, len(data_loader.dataset), 100.0 * correct / len(data_loader.dataset) ) ) def predict(input_sentence, model, classes, cached=False, device="cpu"): input_t = model.tokenizer.encode(input_sentence) input_t = torch.tensor([input_t], dtype=torch.long, device=device) if cached: input_t = model.avg_representation(input_t) log_probs = model(input_t).data.cpu().numpy().flatten().tolist() print("Input sentence:", input_sentence) print( "Predictions:", ", ".join("{}: {:.4f}".format(c, math.exp(log_prob)) for c, log_prob in zip(classes, log_probs)), ) def get_cached_data_loader(dataset, batch_size, discriminator, shuffle=False, device="cpu"): data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, collate_fn=collate_fn) xs = [] ys = [] for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)): with torch.no_grad(): x = x.to(device) avg_rep = discriminator.avg_representation(x).cpu().detach() avg_rep_list = torch.unbind(avg_rep.unsqueeze(1)) xs += avg_rep_list ys += y.cpu().numpy().tolist() data_loader = torch.utils.data.DataLoader( dataset=Dataset(xs, ys), batch_size=batch_size, shuffle=shuffle, collate_fn=cached_collate_fn ) return data_loader def train_discriminator( dataset, dataset_fp=None, pretrained_model="openai-community/gpt2-medium", epochs=10, batch_size=64, log_interval=10, save_model=False, cached=False, no_cuda=False, ): device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu" print("Preprocessing {} dataset...".format(dataset)) start = time.time() if dataset == "SST": idx2class = ["positive", "negative", "very positive", "very negative", "neutral"] class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) text = torchtext_data.Field() label = torchtext_data.Field(sequential=False) train_data, val_data, test_data = datasets.SST.splits( text, label, fine_grained=True, train_subtrees=True, ) x = [] y = [] for i in trange(len(train_data), ascii=True): seq = TreebankWordDetokenizer().detokenize(vars(train_data[i])["text"]) seq = discriminator.tokenizer.encode(seq) seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) x.append(seq) y.append(class2idx[vars(train_data[i])["label"]]) train_dataset = Dataset(x, y) test_x = [] test_y = [] for i in trange(len(test_data), ascii=True): seq = TreebankWordDetokenizer().detokenize(vars(test_data[i])["text"]) seq = discriminator.tokenizer.encode(seq) seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) test_x.append(seq) test_y.append(class2idx[vars(test_data[i])["label"]]) test_dataset = Dataset(test_x, test_y) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 2, } elif dataset == "clickbait": idx2class = ["non_clickbait", "clickbait"] class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) with open("datasets/clickbait/clickbait_train_prefix.txt") as f: data = [] for i, line in enumerate(f): try: data.append(eval(line)) except Exception: print("Error evaluating line {}: {}".format(i, line)) continue x = [] y = [] with open("datasets/clickbait/clickbait_train_prefix.txt") as f: for i, line in enumerate(tqdm(f, ascii=True)): try: d = eval(line) seq = discriminator.tokenizer.encode(d["text"]) if len(seq) < max_length_seq: seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) else: print("Line {} is longer than maximum length {}".format(i, max_length_seq)) continue x.append(seq) y.append(d["label"]) except Exception: print("Error evaluating / tokenizing line {}, skipping it".format(i)) pass full_dataset = Dataset(x, y) train_size = int(0.9 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 1, } elif dataset == "toxic": idx2class = ["non_toxic", "toxic"] class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) x = [] y = [] with open("datasets/toxic/toxic_train.txt") as f: for i, line in enumerate(tqdm(f, ascii=True)): try: d = eval(line) seq = discriminator.tokenizer.encode(d["text"]) if len(seq) < max_length_seq: seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) else: print("Line {} is longer than maximum length {}".format(i, max_length_seq)) continue x.append(seq) y.append(int(np.sum(d["label"]) > 0)) except Exception: print("Error evaluating / tokenizing line {}, skipping it".format(i)) pass full_dataset = Dataset(x, y) train_size = int(0.9 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 0, } else: # if dataset == "generic": # This assumes the input dataset is a TSV with the following structure: # class \t text if dataset_fp is None: raise ValueError("When generic dataset is selected, dataset_fp needs to be specified aswell.") classes = set() with open(dataset_fp) as f: csv_reader = csv.reader(f, delimiter="\t") for row in tqdm(csv_reader, ascii=True): if row: classes.add(row[0]) idx2class = sorted(classes) class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) x = [] y = [] with open(dataset_fp) as f: csv_reader = csv.reader(f, delimiter="\t") for i, row in enumerate(tqdm(csv_reader, ascii=True)): if row: label = row[0] text = row[1] try: seq = discriminator.tokenizer.encode(text) if len(seq) < max_length_seq: seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) else: print("Line {} is longer than maximum length {}".format(i, max_length_seq)) continue x.append(seq) y.append(class2idx[label]) except Exception: print("Error tokenizing line {}, skipping it".format(i)) pass full_dataset = Dataset(x, y) train_size = int(0.9 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 0, } end = time.time() print("Preprocessed {} data points".format(len(train_dataset) + len(test_dataset))) print("Data preprocessing took: {:.3f}s".format(end - start)) if cached: print("Building representation cache...") start = time.time() train_loader = get_cached_data_loader(train_dataset, batch_size, discriminator, shuffle=True, device=device) test_loader = get_cached_data_loader(test_dataset, batch_size, discriminator, device=device) end = time.time() print("Building representation cache took: {:.3f}s".format(end - start)) else: train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn ) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, collate_fn=collate_fn) if save_model: with open("{}_classifier_head_meta.json".format(dataset), "w") as meta_file: json.dump(discriminator_meta, meta_file) optimizer = optim.Adam(discriminator.parameters(), lr=0.0001) for epoch in range(epochs): start = time.time() print("\nEpoch", epoch + 1) train_epoch( discriminator=discriminator, data_loader=train_loader, optimizer=optimizer, epoch=epoch, log_interval=log_interval, device=device, ) evaluate_performance(data_loader=test_loader, discriminator=discriminator, device=device) end = time.time() print("Epoch took: {:.3f}s".format(end - start)) print("\nExample prediction") predict(example_sentence, discriminator, idx2class, cached=cached, device=device) if save_model: # torch.save(discriminator.state_dict(), # "{}_discriminator_{}.pt".format( # args.dataset, epoch + 1 # )) torch.save( discriminator.get_classifier().state_dict(), "{}_classifier_head_epoch_{}.pt".format(dataset, epoch + 1), ) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Train a discriminator on top of GPT-2 representations") parser.add_argument( "--dataset", type=str, default="SST", choices=("SST", "clickbait", "toxic", "generic"), help=( "dataset to train the discriminator on. " "In case of generic, the dataset is expected " "to be a TSBV file with structure: class \\t text" ), ) parser.add_argument( "--dataset_fp", type=str, default="", help="File path of the dataset to use. Needed only in case of generic datadset", ) parser.add_argument( "--pretrained_model", type=str, default="openai-community/gpt2-medium", help="Pretrained model to use as encoder", ) parser.add_argument("--epochs", type=int, default=10, metavar="N", help="Number of training epochs") parser.add_argument( "--batch_size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)" ) parser.add_argument( "--log_interval", type=int, default=10, metavar="N", help="how many batches to wait before logging training status", ) parser.add_argument("--save_model", action="store_true", help="whether to save the model") parser.add_argument("--cached", action="store_true", help="whether to cache the input representations") parser.add_argument("--no_cuda", action="store_true", help="use to turn off cuda") args = parser.parse_args() train_discriminator(**(vars(args)))
transformers/examples/research_projects/pplm/run_pplm_discrim_train.py/0
{ "file_path": "transformers/examples/research_projects/pplm/run_pplm_discrim_train.py", "repo_id": "transformers", "token_count": 8849 }
60
#!/usr/bin/env python3 import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def log_results(result: Dataset, args: Dict[str, str]): """DO NOT CHANGE. This function computes and logs the result metrics.""" log_outputs = args.log_outputs dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) # load metric wer = load_metric("wer") cer = load_metric("cer") # compute metrics wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) # print & log results result_str = f"WER: {wer_result}\nCER: {cer_result}" print(result_str) with open(f"{dataset_id}_eval_results.txt", "w") as f: f.write(result_str) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: pred_file = f"log_{dataset_id}_predictions.txt" target_file = f"log_{dataset_id}_targets.txt" with open(pred_file, "w") as p, open(target_file, "w") as t: # mapping function to write output def write_to_file(batch, i): p.write(f"{i}" + "\n") p.write(batch["prediction"] + "\n") t.write(f"{i}" + "\n") t.write(batch["target"] + "\n") result.map(write_to_file, with_indices=True) def normalize_text(text: str) -> str: """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text.""" chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training text = re.sub(chars_to_ignore_regex, "", text.lower()) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! token_sequences_to_ignore = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: text = " ".join(text.split(t)) return text def main(args): # load dataset dataset = load_dataset(args.dataset, args.config, split=args.split, token=True) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id) sampling_rate = feature_extractor.sampling_rate # resample audio dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) # load eval pipeline if args.device is None: args.device = 0 if torch.cuda.is_available() else -1 asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device) # map function to decode audio def map_to_pred(batch): prediction = asr( batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s ) batch["prediction"] = prediction["text"] batch["target"] = normalize_text(batch["sentence"]) return batch # run inference on all examples result = dataset.map(map_to_pred, remove_columns=dataset.column_names) # compute and log_results # do not change function below log_results(result, args) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) args = parser.parse_args() main(args)
transformers/examples/research_projects/robust-speech-event/eval.py/0
{ "file_path": "transformers/examples/research_projects/robust-speech-event/eval.py", "repo_id": "transformers", "token_count": 1852 }
61
#!/usr/bin/env bash export PYTHONPATH="../":"${PYTHONPATH}" export WANDB_PROJECT=dmar export MAX_LEN=128 python finetune.py \ --learning_rate=3e-4 \ --do_train \ --do_predict \ --fp16 \ --val_check_interval 0.25 \ --data_dir $ENRO_DIR \ --max_source_length $MAX_LEN --max_target_length $MAX_LEN --val_max_target_length $MAX_LEN --test_max_target_length $MAX_LEN \ --freeze_encoder --freeze_embeds \ --train_batch_size=$BS --eval_batch_size=$BS \ --tokenizer_name $m --model_name_or_path $m \ --warmup_steps 500 --sortish_sampler --logger_name wandb \ --gpus 1 --fp16_opt_level=O1 --task translation --num_sanity_val_steps=0 \ "$@"
transformers/examples/research_projects/seq2seq-distillation/distil_marian_no_teacher.sh/0
{ "file_path": "transformers/examples/research_projects/seq2seq-distillation/distil_marian_no_teacher.sh", "repo_id": "transformers", "token_count": 274 }
62
#!/usr/bin/env bash export PYTHONPATH="../":"${PYTHONPATH}" python finetune.py \ --learning_rate=3e-5 \ --fp16 \ --do_train \ --val_check_interval=0.25 \ --adam_eps 1e-06 \ --num_train_epochs 6 --src_lang en_XX --tgt_lang ro_RO \ --data_dir $ENRO_DIR \ --max_source_length $MAX_LEN --max_target_length $MAX_LEN --val_max_target_length $MAX_LEN --test_max_target_length $MAX_LEN \ --train_batch_size=$BS --eval_batch_size=$BS \ --task translation \ --warmup_steps 500 \ --freeze_embeds \ --model_name_or_path=facebook/mbart-large-cc25 \ "$@"
transformers/examples/research_projects/seq2seq-distillation/train_mbart_cc25_enro.sh/0
{ "file_path": "transformers/examples/research_projects/seq2seq-distillation/train_mbart_cc25_enro.sh", "repo_id": "transformers", "token_count": 273 }
63
# Simple VQGAN CLIP Author: @ErwannMillon This is a very simple VQGAN-CLIP implementation that was built as a part of the <a href= "https://github.com/ErwannMillon/face-editor"> Face Editor project </a> . This simplified version allows you to generate or edit images using text with just three lines of code. For a more full featured implementation with masking, more advanced losses, and a full GUI, check out the Face Editor project. By default this uses a CelebA checkpoint (for generating/editing faces), but also has an imagenet checkpoint that can be loaded by specifying vqgan_config and vqgan_checkpoint when instantiating VQGAN_CLIP. Learning rate and iterations can be set by modifying vqgan_clip.lr and vqgan_clip.iterations . You can edit images by passing `image_path` to the generate function. See the generate function's docstring to learn more about how to format prompts. ## Usage The easiest way to test this out is by <a href="https://colab.research.google.com/drive/1Ez4D1J6-hVkmlXeR5jBPWYyu6CLA9Yor?usp=sharing ">using the Colab demo</a> To install locally: - Clone this repo - Install git-lfs (ubuntu: sudo apt-get install git-lfs , MacOS: brew install git-lfs) In the root of the repo run: ```bash conda create -n vqganclip python=3.8 conda activate vqganclip git-lfs install git clone https://huggingface.co/datasets/erwann/face_editor_model_ckpt model_checkpoints pip install -r requirements.txt ``` ### Generate new images ```python from VQGAN_CLIP import VQGAN_CLIP vqgan_clip = VQGAN_CLIP() vqgan_clip.generate("a picture of a smiling woman") ``` ### Edit an image To get a test image, run `git clone https://huggingface.co/datasets/erwann/vqgan-clip-pic test_images` To edit: ```python from VQGAN_CLIP import VQGAN_CLIP vqgan_clip = VQGAN_CLIP() vqgan_clip.lr = .07 vqgan_clip.iterations = 15 vqgan_clip.generate( pos_prompts= ["a picture of a beautiful asian woman", "a picture of a woman from Japan"], neg_prompts=["a picture of an Indian person", "a picture of a white person"], image_path="./test_images/face.jpeg", show_intermediate=True, save_intermediate=True, ) ``` ### Make an animation from the most recent generation `vqgan_clip.make_animation()` ## Features: - Positive and negative prompts - Multiple prompts - Prompt Weights - Creating GIF animations of the transformations - Wandb logging
transformers/examples/research_projects/vqgan-clip/README.md/0
{ "file_path": "transformers/examples/research_projects/vqgan-clip/README.md", "repo_id": "transformers", "token_count": 777 }
64
#!/usr/bin/env bash python run_common_voice.py \ --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \ --dataset_config_name="tr" \ --output_dir=./wav2vec2-large-xlsr-turkish-demo \ --overwrite_output_dir \ --num_train_epochs="5" \ --per_device_train_batch_size="16" \ --evaluation_strategy="steps" \ --learning_rate="3e-4" \ --warmup_steps="500" \ --fp16 \ --freeze_feature_extractor \ --save_steps="400" \ --eval_steps="400" \ --save_total_limit="3" \ --logging_steps="400" \ --group_by_length \ --feat_proj_dropout="0.0" \ --layerdrop="0.1" \ --gradient_checkpointing \ --do_train --do_eval
transformers/examples/research_projects/wav2vec2/finetune_wav2vec2_xlsr_turkish.sh/0
{ "file_path": "transformers/examples/research_projects/wav2vec2/finetune_wav2vec2_xlsr_turkish.sh", "repo_id": "transformers", "token_count": 316 }
65
#!/usr/bin/env python # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for sequence classification on GLUE.""" # You can also adapt this script on your own text classification task. Pointers for this are left as comments. import json import logging import os import sys import warnings from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import tensorflow as tf from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoTokenizer, DataCollatorWithPadding, DefaultDataCollator, HfArgumentParser, PretrainedConfig, PushToHubCallback, TFAutoModelForSequenceClassification, TFTrainingArguments, create_optimizer, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.39.0.dev0") task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), } logger = logging.getLogger(__name__) # region Command-line arguments @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ task_name: str = field( metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())}, ) predict_file: str = field( metadata={"help": "A file containing user-supplied examples to make predictions for"}, default=None, ) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) def __post_init__(self): self.task_name = self.task_name.lower() if self.task_name not in task_to_keys.keys(): raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys())) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) # endregion def main(): # region Argument parsing # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_glue", model_args, data_args, framework="tensorflow") if not (training_args.do_train or training_args.do_eval or training_args.do_predict): exit("Must specify at least one of --do_train, --do_eval or --do_predict!") # endregion # region Checkpoints checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: checkpoint = get_last_checkpoint(training_args.output_dir) if checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # endregion # region Logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info(f"Training/evaluation parameters {training_args}") # endregion # region Dataset and labels # Set seed before initializing model. set_seed(training_args.seed) # Downloading and loading a dataset from the hub. In distributed training, the load_dataset function guarantee # that only one local process can concurrently download the dataset. datasets = load_dataset( "glue", data_args.task_name, cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets. is_regression = data_args.task_name == "stsb" if not is_regression: label_list = datasets["train"].features["label"].names num_labels = len(label_list) else: num_labels = 1 if data_args.predict_file is not None: logger.info("Preparing user-supplied file for predictions...") data_files = {"data": data_args.predict_file} for key in data_files.keys(): logger.info(f"Loading a local file for {key}: {data_files[key]}") if data_args.predict_file.endswith(".csv"): # Loading a dataset from local csv files user_dataset = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir) else: # Loading a dataset from local json files user_dataset = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) needed_keys = task_to_keys[data_args.task_name] for key in needed_keys: assert key in user_dataset["data"].features, f"Your supplied predict_file is missing the {key} key!" datasets["user_data"] = user_dataset["data"] # endregion # region Load model config and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # endregion # region Dataset preprocessing sentence1_key, sentence2_key = task_to_keys[data_args.task_name] # Padding strategy if data_args.pad_to_max_length: padding = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch padding = False # Some models have set the order of the labels to use, so let's make sure we do use it. label_to_id = None if config.label2id != PretrainedConfig(num_labels=num_labels).label2id and not is_regression: # Some have all caps in their config, some don't. label_name_to_id = {k.lower(): v for k, v in config.label2id.items()} if sorted(label_name_to_id.keys()) == sorted(label_list): label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)} else: logger.warning( "Your model seems to have been trained with labels, but they don't match the dataset: ", f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}." "\nIgnoring the model labels as a result.", ) label_to_id = {label: i for i, label in enumerate(label_list)} if label_to_id is not None: config.label2id = label_to_id config.id2label = {id: label for label, id in config.label2id.items()} elif data_args.task_name is not None and not is_regression: config.label2id = {l: i for i, l in enumerate(label_list)} config.id2label = {id: label for label, id in config.label2id.items()} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the " f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) def preprocess_function(examples): # Tokenize the texts args = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True) return result datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache) if data_args.pad_to_max_length: data_collator = DefaultDataCollator(return_tensors="np") else: data_collator = DataCollatorWithPadding(tokenizer, return_tensors="np") # endregion # region Metric function metric = evaluate.load("glue", data_args.task_name, cache_dir=model_args.cache_dir) def compute_metrics(preds, label_ids): preds = preds["logits"] preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) result = metric.compute(predictions=preds, references=label_ids) if len(result) > 1: result["combined_score"] = np.mean(list(result.values())).item() return result # endregion with training_args.strategy.scope(): # region Load pretrained model if checkpoint is None: model_path = model_args.model_name_or_path else: model_path = checkpoint model = TFAutoModelForSequenceClassification.from_pretrained( model_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # endregion # region Convert data to a tf.data.Dataset dataset_options = tf.data.Options() dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF num_replicas = training_args.strategy.num_replicas_in_sync tf_data = {} max_samples = { "train": data_args.max_train_samples, "validation": data_args.max_eval_samples, "validation_matched": data_args.max_eval_samples, "validation_mismatched": data_args.max_eval_samples, "test": data_args.max_predict_samples, "test_matched": data_args.max_predict_samples, "test_mismatched": data_args.max_predict_samples, "user_data": None, } for key in datasets.keys(): if key == "train" or key.startswith("validation"): assert "label" in datasets[key].features, f"Missing labels from {key} data!" if key == "train": shuffle = True batch_size = training_args.per_device_train_batch_size * num_replicas else: shuffle = False batch_size = training_args.per_device_eval_batch_size * num_replicas samples_limit = max_samples[key] dataset = datasets[key] if samples_limit is not None: dataset = dataset.select(range(samples_limit)) # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names # yourself if you use this method, whereas they are automatically inferred from the model input names when # using model.prepare_tf_dataset() # For more info see the docs: # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset data = model.prepare_tf_dataset( dataset, shuffle=shuffle, batch_size=batch_size, collate_fn=data_collator, tokenizer=tokenizer, ) data = data.with_options(dataset_options) tf_data[key] = data # endregion # region Optimizer, loss and compilation if training_args.do_train: num_train_steps = len(tf_data["train"]) * training_args.num_train_epochs if training_args.warmup_steps > 0: num_warmup_steps = training_args.warmup_steps elif training_args.warmup_ratio > 0: num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) else: num_warmup_steps = 0 optimizer, schedule = create_optimizer( init_lr=training_args.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, adam_beta1=training_args.adam_beta1, adam_beta2=training_args.adam_beta2, adam_epsilon=training_args.adam_epsilon, weight_decay_rate=training_args.weight_decay, adam_global_clipnorm=training_args.max_grad_norm, ) else: optimizer = "adam" # Just write anything because we won't be using it if is_regression: metrics = [] else: metrics = ["accuracy"] # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=optimizer, metrics=metrics, jit_compile=training_args.xla) # endregion # region Preparing push_to_hub and model card push_to_hub_model_id = training_args.push_to_hub_model_id model_name = model_args.model_name_or_path.split("/")[-1] if not push_to_hub_model_id: push_to_hub_model_id = f"{model_name}-finetuned-glue" model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} model_card_kwargs["task_name"] = data_args.task_name if training_args.push_to_hub: callbacks = [ PushToHubCallback( output_dir=training_args.output_dir, hub_model_id=push_to_hub_model_id, hub_token=training_args.push_to_hub_token, tokenizer=tokenizer, **model_card_kwargs, ) ] else: callbacks = [] # endregion # region Training and validation if training_args.do_train: if training_args.do_eval and not data_args.task_name == "mnli": # Do both evaluation and training in the Keras fit loop, unless the task is MNLI # because MNLI has two validation sets validation_data = tf_data["validation"] else: validation_data = None model.fit( tf_data["train"], validation_data=validation_data, epochs=int(training_args.num_train_epochs), callbacks=callbacks, ) # endregion # region Evaluation if training_args.do_eval: # We normally do validation as part of the Keras fit loop, but we run it independently # if there was no fit() step (because we didn't train the model) or if the task is MNLI, # because MNLI has a separate validation-mismatched validation set # In this example, we compute advanced metrics only at the end of training, and only compute # loss and accuracy on the validation set each epoch, but # if you'd like to compute metrics every epoch that are too complex to be written as # standard Keras metrics, you can use our KerasMetricCallback. See # https://huggingface.co/docs/transformers/main/en/main_classes/keras_callbacks logger.info("*** Evaluate ***") # Loop to handle MNLI double evaluation (matched, mis-matched) if data_args.task_name == "mnli": tasks = ["mnli", "mnli-mm"] tf_datasets = [tf_data["validation_matched"], tf_data["validation_mismatched"]] raw_datasets = [datasets["validation_matched"], datasets["validation_mismatched"]] else: tasks = [data_args.task_name] tf_datasets = [tf_data["validation"]] raw_datasets = [datasets["validation"]] for raw_dataset, tf_dataset, task in zip(raw_datasets, tf_datasets, tasks): eval_predictions = model.predict(tf_dataset) eval_metrics = compute_metrics(eval_predictions, raw_dataset["label"]) print(f"Evaluation metrics ({task}):") print(eval_metrics) if training_args.output_dir is not None: output_eval_file = os.path.join(training_args.output_dir, "all_results.json") with open(output_eval_file, "w") as writer: writer.write(json.dumps(eval_metrics)) # endregion # region Prediction if training_args.do_predict or data_args.predict_file: logger.info("*** Predict ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [] tf_datasets = [] raw_datasets = [] if training_args.do_predict: if data_args.task_name == "mnli": tasks.extend(["mnli", "mnli-mm"]) tf_datasets.extend([tf_data["test_matched"], tf_data["test_mismatched"]]) raw_datasets.extend([datasets["test_matched"], datasets["test_mismatched"]]) else: tasks.append(data_args.task_name) tf_datasets.append(tf_data["test"]) raw_datasets.append(datasets["test"]) if data_args.predict_file: tasks.append("user_data") tf_datasets.append(tf_data["user_data"]) raw_datasets.append(datasets["user_data"]) for raw_dataset, tf_dataset, task in zip(raw_datasets, tf_datasets, tasks): test_predictions = model.predict(tf_dataset) if "label" in raw_dataset: test_metrics = compute_metrics(test_predictions, raw_dataset["label"]) print(f"Test metrics ({task}):") print(test_metrics) if is_regression: predictions_to_write = np.squeeze(test_predictions["logits"]) else: predictions_to_write = np.argmax(test_predictions["logits"], axis=1) output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt") with open(output_predict_file, "w") as writer: logger.info(f"***** Writing prediction results for {task} *****") writer.write("index\tprediction\n") for index, item in enumerate(predictions_to_write): if is_regression: writer.write(f"{index}\t{item:3.3f}\n") else: item = model.config.id2label[item] writer.write(f"{index}\t{item}\n") # endregion if training_args.output_dir is not None and not training_args.push_to_hub: # If we're not pushing to hub, at least save a local copy when we're done model.save_pretrained(training_args.output_dir) if __name__ == "__main__": main()
transformers/examples/tensorflow/text-classification/run_glue.py/0
{ "file_path": "transformers/examples/tensorflow/text-classification/run_glue.py", "repo_id": "transformers", "token_count": 11371 }
66
#!/usr/bin/env bash # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script acquires data and converts it to fsmt model # it covers: # - allenai/wmt19-de-en-6-6-base # - allenai/wmt19-de-en-6-6-big # this script needs to be run from the top level of the transformers repo if [ ! -d "src/transformers" ]; then echo "Error: This script needs to be run from the top of the transformers repo" exit 1 fi mkdir data # get data (run once) cd data gdown 'https://drive.google.com/uc?id=1j6z9fYdlUyOYsh7KJoumRlr1yHczxR5T' gdown 'https://drive.google.com/uc?id=1yT7ZjqfvUYOBXvMjeY8uGRHQFWoSo8Q5' gdown 'https://drive.google.com/uc?id=15gAzHeRUCs-QV8vHeTReMPEh1j8excNE' tar -xvzf wmt19.de-en.tar.gz tar -xvzf wmt19_deen_base_dr0.1_1.tar.gz tar -xvzf wmt19_deen_big_dr0.1_2.tar.gz cp wmt19.de-en/data-bin/dict.*.txt wmt19_deen_base_dr0.1_1 cp wmt19.de-en/data-bin/dict.*.txt wmt19_deen_big_dr0.1_2 cd - # run conversions and uploads PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19_deen_base_dr0.1_1/checkpoint_last3_avg.pt --pytorch_dump_folder_path data/wmt19-de-en-6-6-base PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19_deen_big_dr0.1_2/checkpoint_last3_avg.pt --pytorch_dump_folder_path data/wmt19-de-en-6-6-big # upload cd data transformers-cli upload -y wmt19-de-en-6-6-base transformers-cli upload -y wmt19-de-en-6-6-big cd - # if updating just small files and not the large models, here is a script to generate the right commands: perl -le 'for $f (@ARGV) { print qq[transformers-cli upload -y $_/$f --filename $_/$f] for ("wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big")}' vocab-src.json vocab-tgt.json tokenizer_config.json config.json # add/remove files as needed
transformers/scripts/fsmt/convert-allenai-wmt19.sh/0
{ "file_path": "transformers/scripts/fsmt/convert-allenai-wmt19.sh", "repo_id": "transformers", "token_count": 950 }
67
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/main/setup.py To create the package for pypi. 1. Create the release branch named: v<RELEASE>-release, for example v4.19-release. For a patch release checkout the current release branch. If releasing on a special branch, copy the updated README.md on the main branch for your the commit you will make for the post-release and run `make fix-copies` on the main branch as well. 2. Run `make pre-release` (or `make pre-patch` for a patch release) and commit these changes with the message: "Release: <VERSION>" and push. 3. Go back to the main branch and run `make post-release` then `make fix-copies`. Commit these changes with the message "v<NEXT_VERSION>.dev.0" and push to main. # If you were just cutting the branch in preparation for a release, you can stop here for now. 4. Wait for the tests on the release branch to be completed and be green (otherwise revert and fix bugs) 5. On the release branch, add a tag in git to mark the release: "git tag v<VERSION> -m 'Adds tag v<VERSION> for pypi' " Push the tag to git: git push --tags origin v<RELEASE>-release 6. Build both the sources and the wheel. Do not change anything in setup.py between creating the wheel and the source distribution (obviously). Run `make build-release`. This will build the release and do some sanity checks for you. If this ends with an error message, you need to fix things before going further. You should now have a /dist directory with both .whl and .tar.gz source versions. 7. Check that everything looks correct by uploading the package to the pypi test server: twine upload dist/* -r testpypi (pypi suggest using twine as other methods upload files via plaintext.) You may have to specify the repository url, use the following command then: twine upload dist/* -r testpypi --repository-url=https://test.pypi.org/legacy/ Check that you can install it in a virtualenv by running: pip install -i https://testpypi.python.org/pypi transformers Check you can run the following commands: python -c "from transformers import pipeline; classifier = pipeline('text-classification'); print(classifier('What a nice release'))" python -c "from transformers import *" python utils/check_build.py --check_lib If making a patch release, double check the bug you are patching is indeed resolved. 8. Upload the final version to actual pypi: twine upload dist/* -r pypi 9. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory. """ import os import re import shutil from pathlib import Path from setuptools import Command, find_packages, setup # Remove stale transformers.egg-info directory to avoid https://github.com/pypa/pip/issues/5466 stale_egg_info = Path(__file__).parent / "transformers.egg-info" if stale_egg_info.exists(): print( ( "Warning: {} exists.\n\n" "If you recently updated transformers to 3.0 or later, this is expected,\n" "but it may prevent transformers from installing in editable mode.\n\n" "This directory is automatically generated by Python's packaging tools.\n" "I will remove it now.\n\n" "See https://github.com/pypa/pip/issues/5466 for details.\n" ).format(stale_egg_info) ) shutil.rmtree(stale_egg_info) # IMPORTANT: # 1. all dependencies should be listed here with their version requirements if any # 2. once modified, run: `make deps_table_update` to update src/transformers/dependency_versions_table.py _deps = [ "Pillow>=10.0.1,<=15.0", "accelerate>=0.21.0", "av==9.2.0", # Latest version of PyAV (10.0.0) has issues with audio stream. "beautifulsoup4", "codecarbon==1.2.0", "cookiecutter==1.7.3", "dataclasses", "datasets!=2.5.0", "decord==0.6.0", "deepspeed>=0.9.3", "diffusers", "dill<0.3.5", "evaluate>=0.2.0", "faiss-cpu", "fastapi", "filelock", "flax>=0.4.1,<=0.7.0", "fsspec<2023.10.0", "ftfy", "fugashi>=1.0", "GitPython<3.1.19", "hf-doc-builder>=0.3.0", "huggingface-hub>=0.19.3,<1.0", "importlib_metadata", "ipadic>=1.0.0,<2.0", "isort>=5.5.4", "jax>=0.4.1,<=0.4.13", "jaxlib>=0.4.1,<=0.4.13", "jieba", "kenlm", # Keras pin - this is to make sure Keras 3 doesn't destroy us. Remove or change when we have proper support. "keras<2.16", "keras-nlp>=0.3.1", "librosa", "nltk", "natten>=0.14.6,<0.15.0", "numpy>=1.17", "onnxconverter-common", "onnxruntime-tools>=1.4.2", "onnxruntime>=1.4.0", "opencv-python", "optuna", "optax>=0.0.8,<=0.1.4", "packaging>=20.0", "parameterized", "phonemizer", "protobuf", "psutil", "pyyaml>=5.1", "pydantic", "pytest>=7.2.0,<8.0.0", "pytest-timeout", "pytest-xdist", "python>=3.8.0", "ray[tune]>=2.7.0", "regex!=2019.12.17", "requests", "rhoknp>=1.1.0,<1.3.1", "rjieba", "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff==0.1.5", "sacrebleu>=1.4.12,<2.0.0", "sacremoses", "safetensors>=0.4.1", "sagemaker>=2.31.0", "scikit-learn", "sentencepiece>=0.1.91,!=0.1.92", "sigopt", "starlette", "sudachipy>=0.6.6", "sudachidict_core>=20220729", "tensorboard", # TensorFlow pin. When changing this value, update examples/tensorflow/_tests_requirements.txt accordingly "tensorflow-cpu>=2.6,<2.16", "tensorflow>=2.6,<2.16", "tensorflow-text<2.16", "tf2onnx", "timeout-decorator", "timm", "tokenizers>=0.14,<0.19", "torch", "torchaudio", "torchvision", "pyctcdecode>=0.4.0", "tqdm>=4.27", "unidic>=1.0.2", "unidic_lite>=1.0.7", "urllib3<2.0.0", "uvicorn", ] # this is a lookup table with items like: # # tokenizers: "tokenizers==0.9.4" # packaging: "packaging" # # some of the values are versioned whereas others aren't. deps = {b: a for a, b in (re.findall(r"^(([^!=<>~ ]+)(?:[!=<>~ ].*)?$)", x)[0] for x in _deps)} # since we save this data in src/transformers/dependency_versions_table.py it can be easily accessed from # anywhere. If you need to quickly access the data from this table in a shell, you can do so easily with: # # python -c 'import sys; from transformers.dependency_versions_table import deps; \ # print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets # # Just pass the desired package names to that script as it's shown with 2 packages above. # # If transformers is not yet installed and the work is done from the cloned repo remember to add `PYTHONPATH=src` to the script above # # You can then feed this for example to `pip`: # # pip install -U $(python -c 'import sys; from transformers.dependency_versions_table import deps; \ # print(" ".join([deps[x] for x in sys.argv[1:]]))' tokenizers datasets) # def deps_list(*pkgs): return [deps[pkg] for pkg in pkgs] class DepsTableUpdateCommand(Command): """ A custom distutils command that updates the dependency table. usage: python setup.py deps_table_update """ description = "build runtime dependency table" user_options = [ # format: (long option, short option, description). ("dep-table-update", None, "updates src/transformers/dependency_versions_table.py"), ] def initialize_options(self): pass def finalize_options(self): pass def run(self): entries = "\n".join([f' "{k}": "{v}",' for k, v in deps.items()]) content = [ "# THIS FILE HAS BEEN AUTOGENERATED. To update:", "# 1. modify the `_deps` dict in setup.py", "# 2. run `make deps_table_update``", "deps = {", entries, "}", "", ] target = "src/transformers/dependency_versions_table.py" print(f"updating {target}") with open(target, "w", encoding="utf-8", newline="\n") as f: f.write("\n".join(content)) extras = {} extras["ja"] = deps_list("fugashi", "ipadic", "unidic_lite", "unidic", "sudachipy", "sudachidict_core", "rhoknp") extras["sklearn"] = deps_list("scikit-learn") extras["tf"] = deps_list("tensorflow", "onnxconverter-common", "tf2onnx", "tensorflow-text", "keras-nlp") extras["tf-cpu"] = deps_list("tensorflow-cpu", "onnxconverter-common", "tf2onnx", "tensorflow-text", "keras-nlp") extras["torch"] = deps_list("torch", "accelerate") extras["accelerate"] = deps_list("accelerate") if os.name == "nt": # windows extras["retrieval"] = deps_list("datasets") # faiss is not supported on windows extras["flax"] = [] # jax is not supported on windows else: extras["retrieval"] = deps_list("faiss-cpu", "datasets") extras["flax"] = deps_list("jax", "jaxlib", "flax", "optax") extras["tokenizers"] = deps_list("tokenizers") extras["ftfy"] = deps_list("ftfy") extras["onnxruntime"] = deps_list("onnxruntime", "onnxruntime-tools") extras["onnx"] = deps_list("onnxconverter-common", "tf2onnx") + extras["onnxruntime"] extras["modelcreation"] = deps_list("cookiecutter") extras["sagemaker"] = deps_list("sagemaker") extras["deepspeed"] = deps_list("deepspeed") + extras["accelerate"] extras["optuna"] = deps_list("optuna") extras["ray"] = deps_list("ray[tune]") extras["sigopt"] = deps_list("sigopt") extras["integrations"] = extras["optuna"] + extras["ray"] + extras["sigopt"] extras["serving"] = deps_list("pydantic", "uvicorn", "fastapi", "starlette") extras["audio"] = deps_list("librosa", "pyctcdecode", "phonemizer", "kenlm") # `pip install ".[speech]"` is deprecated and `pip install ".[torch-speech]"` should be used instead extras["speech"] = deps_list("torchaudio") + extras["audio"] extras["torch-speech"] = deps_list("torchaudio") + extras["audio"] extras["tf-speech"] = extras["audio"] extras["flax-speech"] = extras["audio"] extras["vision"] = deps_list("Pillow") extras["timm"] = deps_list("timm") extras["torch-vision"] = deps_list("torchvision") + extras["vision"] extras["natten"] = deps_list("natten") extras["codecarbon"] = deps_list("codecarbon") extras["video"] = deps_list("decord", "av") extras["sentencepiece"] = deps_list("sentencepiece", "protobuf") extras["testing"] = ( deps_list( "pytest", "pytest-xdist", "timeout-decorator", "parameterized", "psutil", "datasets", "dill", "evaluate", "pytest-timeout", "ruff", "sacrebleu", "rouge-score", "nltk", "GitPython", "hf-doc-builder", "protobuf", # Can be removed once we can unpin protobuf "sacremoses", "rjieba", "beautifulsoup4", "tensorboard", "pydantic", ) + extras["retrieval"] + extras["modelcreation"] ) extras["deepspeed-testing"] = extras["deepspeed"] + extras["testing"] + extras["optuna"] + extras["sentencepiece"] extras["quality"] = deps_list("datasets", "isort", "ruff", "GitPython", "hf-doc-builder", "urllib3") extras["all"] = ( extras["tf"] + extras["torch"] + extras["flax"] + extras["sentencepiece"] + extras["tokenizers"] + extras["torch-speech"] + extras["vision"] + extras["integrations"] + extras["timm"] + extras["torch-vision"] + extras["codecarbon"] + extras["accelerate"] + extras["video"] ) # Might need to add doc-builder and some specific deps in the future extras["docs_specific"] = ["hf-doc-builder"] # "docs" needs "all" to resolve all the references extras["docs"] = extras["all"] + extras["docs_specific"] extras["dev-torch"] = ( extras["testing"] + extras["torch"] + extras["sentencepiece"] + extras["tokenizers"] + extras["torch-speech"] + extras["vision"] + extras["integrations"] + extras["timm"] + extras["torch-vision"] + extras["codecarbon"] + extras["quality"] + extras["ja"] + extras["docs_specific"] + extras["sklearn"] + extras["modelcreation"] + extras["onnxruntime"] ) extras["dev-tensorflow"] = ( extras["testing"] + extras["tf"] + extras["sentencepiece"] + extras["tokenizers"] + extras["vision"] + extras["quality"] + extras["docs_specific"] + extras["sklearn"] + extras["modelcreation"] + extras["onnx"] + extras["tf-speech"] ) extras["dev"] = ( extras["all"] + extras["testing"] + extras["quality"] + extras["ja"] + extras["docs_specific"] + extras["sklearn"] + extras["modelcreation"] ) extras["torchhub"] = deps_list( "filelock", "huggingface-hub", "importlib_metadata", "numpy", "packaging", "protobuf", "regex", "requests", "sentencepiece", "torch", "tokenizers", "tqdm", ) extras["agents"] = deps_list( "diffusers", "accelerate", "datasets", "torch", "sentencepiece", "opencv-python", "Pillow" ) # when modifying the following list, make sure to update src/transformers/dependency_versions_check.py install_requires = [ deps["filelock"], # filesystem locks, e.g., to prevent parallel downloads deps["huggingface-hub"], deps["numpy"], deps["packaging"], # utilities from PyPA to e.g., compare versions deps["pyyaml"], # used for the model cards metadata deps["regex"], # for OpenAI GPT deps["requests"], # for downloading models over HTTPS deps["tokenizers"], deps["safetensors"], deps["tqdm"], # progress bars in model download and training scripts ] setup( name="transformers", version="4.39.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots) author="The Hugging Face team (past and future) with the help of all our contributors (https://github.com/huggingface/transformers/graphs/contributors)", author_email="[email protected]", description="State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow", long_description=open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", keywords="NLP vision speech deep learning transformer pytorch tensorflow jax BERT GPT-2 Wav2Vec2 ViT", license="Apache 2.0 License", url="https://github.com/huggingface/transformers", package_dir={"": "src"}, packages=find_packages("src"), include_package_data=True, package_data={"": ["**/*.cu", "**/*.cpp", "**/*.cuh", "**/*.h", "**/*.pyx"]}, zip_safe=False, extras_require=extras, entry_points={"console_scripts": ["transformers-cli=transformers.commands.transformers_cli:main"]}, python_requires=">=3.8.0", install_requires=list(install_requires), classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], cmdclass={"deps_table_update": DepsTableUpdateCommand}, )
transformers/setup.py/0
{ "file_path": "transformers/setup.py", "repo_id": "transformers", "token_count": 6407 }
68
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def convert_command_factory(args: Namespace): """ Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint. Returns: ServeCommand """ return ConvertCommand( args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name ) IMPORT_ERROR_MESSAGE = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class ConvertCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the transformer-cli Args: parser: Root parser to register command-specific arguments """ train_parser = parser.add_parser( "convert", help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.", ) train_parser.add_argument("--model_type", type=str, required=True, help="Model's type.") train_parser.add_argument( "--tf_checkpoint", type=str, required=True, help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output", type=str, required=True, help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config", type=str, default="", help="Configuration file path or folder.") train_parser.add_argument( "--finetuning_task_name", type=str, default=None, help="Optional fine-tuning task name if the TF model was a finetuned model.", ) train_parser.set_defaults(func=convert_command_factory) def __init__( self, model_type: str, tf_checkpoint: str, pytorch_dump_output: str, config: str, finetuning_task_name: str, *args, ): self._logger = logging.get_logger("transformers-cli/converting") self._logger.info(f"Loading model {model_type}") self._model_type = model_type self._tf_checkpoint = tf_checkpoint self._pytorch_dump_output = pytorch_dump_output self._config = config self._finetuning_task_name = finetuning_task_name def run(self): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(IMPORT_ERROR_MESSAGE) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(IMPORT_ERROR_MESSAGE) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(IMPORT_ERROR_MESSAGE) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.t5.convert_t5_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(IMPORT_ERROR_MESSAGE) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "gpt2": try: from ..models.gpt2.convert_gpt2_original_tf_checkpoint_to_pytorch import ( convert_gpt2_checkpoint_to_pytorch, ) except ImportError: raise ImportError(IMPORT_ERROR_MESSAGE) convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(IMPORT_ERROR_MESSAGE) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) else: raise ValueError("--model_type should be selected in the list [bert, gpt, gpt2, t5, xlnet, xlm, lxmert]")
transformers/src/transformers/commands/convert.py/0
{ "file_path": "transformers/src/transformers/commands/convert.py", "repo_id": "transformers", "token_count": 3159 }
69
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.21.0", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "fsspec": "fsspec<2023.10.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.19.3,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras": "keras<2.16", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6,<0.15.0", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0,<8.0.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.1.5", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.16", "tensorflow": "tensorflow>=2.6,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.14,<0.19", "torch": "torch", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
transformers/src/transformers/dependency_versions_table.py/0
{ "file_path": "transformers/src/transformers/dependency_versions_table.py", "repo_id": "transformers", "token_count": 1755 }
70
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import inspect import warnings from dataclasses import dataclass from typing import Any, Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from tensorflow.compiler.tf2xla.python.xla import dynamic_update_slice from ..modeling_tf_outputs import TFCausalLMOutputWithPast, TFSeq2SeqLMOutput from ..models.auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, ) from ..tf_utils import shape_list, stable_softmax from ..utils import ModelOutput, logging from .configuration_utils import GenerationConfig from .tf_logits_process import ( TFForcedBOSTokenLogitsProcessor, TFForcedEOSTokenLogitsProcessor, TFForceTokensLogitsProcessor, TFLogitsProcessorList, TFMinLengthLogitsProcessor, TFNoBadWordsLogitsProcessor, TFNoRepeatNGramLogitsProcessor, TFRepetitionPenaltyLogitsProcessor, TFSuppressTokensAtBeginLogitsProcessor, TFSuppressTokensLogitsProcessor, TFTemperatureLogitsWarper, TFTopKLogitsWarper, TFTopPLogitsWarper, ) logger = logging.get_logger(__name__) @dataclass class TFGreedySearchDecoderOnlyOutput(ModelOutput): """ Base class for outputs of decoder-only generation models using greedy search. Args: sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`. """ sequences: tf.Tensor = None scores: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFGreedySearchEncoderDecoderOutput(ModelOutput): """ Base class for outputs of encoder-decoder generation models using greedy search. Hidden states and attention weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes) Args: sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`. """ sequences: tf.Tensor = None scores: Optional[Tuple[tf.Tensor]] = None encoder_attentions: Optional[Tuple[tf.Tensor]] = None encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFSampleDecoderOnlyOutput(ModelOutput): """ Base class for outputs of decoder-only generation models using sampling. Args: sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`. attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(num_return_sequences*batch_size, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(num_return_sequences*batch_size, generated_length, hidden_size)`. """ sequences: tf.Tensor = None scores: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFSampleEncoderDecoderOutput(ModelOutput): """ Base class for outputs of encoder-decoder generation models using sampling. Hidden states and attention weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes) Args: sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`. encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size*num_return_sequences, num_heads, sequence_length, sequence_length)`. encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size*num_return_sequences, sequence_length, hidden_size)`. decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_return_sequences, num_heads, generated_length, sequence_length)`. cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_return_sequences, generated_length, hidden_size)`. """ sequences: tf.Tensor = None scores: Optional[Tuple[tf.Tensor]] = None encoder_attentions: Optional[Tuple[tf.Tensor]] = None encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFBeamSearchDecoderOnlyOutput(ModelOutput): """ Base class for outputs of decoder-only generation models using beam search. Args: sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. sequences_scores (`tf.Tensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Final beam scores of the generated `sequences`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`. beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Beam indices of generated token id at each generation step. `tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`. attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`. """ sequences: tf.Tensor = None sequences_scores: Optional[tf.Tensor] = None scores: Optional[Tuple[tf.Tensor]] = None beam_indices: Optional[tf.Tensor] = None attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFBeamSearchEncoderDecoderOutput(ModelOutput): """ Base class for outputs of encoder-decoder generation models using beam search. Hidden states and attention weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes) Args: sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. sequences_scores (`tf.Tensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Final beam scores of the generated `sequences`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam. `Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Beam indices of generated token id at each generation step. `tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`. encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`. decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length, sequence_length)`. cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`. """ sequences: tf.Tensor = None sequences_scores: Optional[tf.Tensor] = None scores: Optional[Tuple[tf.Tensor]] = None beam_indices: Optional[tf.Tensor] = None encoder_attentions: Optional[Tuple[tf.Tensor]] = None encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFBeamSampleDecoderOnlyOutput(ModelOutput): """ Base class for outputs of decoder-only generation models using beam sample. Args: sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. sequences_scores (`tf.Tensor` of shape `(batch_size * num_return_sequence)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Final beam scores of the generated `sequences`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`. beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Beam indices of generated token id at each generation step. `tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`. attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams, generated_length, hidden_size)`. """ sequences: tf.Tensor = None sequences_scores: Optional[tf.Tensor] = None scores: Optional[Tuple[tf.Tensor]] = None beam_indices: Optional[tf.Tensor] = None attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFBeamSampleEncoderDecoderOutput(ModelOutput): """ Base class for outputs of encoder-decoder generation models using beam sampling. Hidden states and attention weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes) Args: sequences (`tf.Tensor` of shape `(batch_size*num_beams, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. sequences_scores (`tf.Tensor` of shape `(batch_size * num_return_sequence)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Final beam scores of the generated `sequences`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Beam indices of generated token id at each generation step. `tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`. encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size*num_beams, sequence_length, hidden_size)`. decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`. cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size*num_beams, generated_length, hidden_size)`. """ sequences: tf.Tensor = None sequences_scores: Optional[tf.Tensor] = None scores: Optional[Tuple[tf.Tensor]] = None beam_indices: Optional[tf.Tensor] = None encoder_attentions: Optional[Tuple[tf.Tensor]] = None encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFContrastiveSearchDecoderOnlyOutput(ModelOutput): """ Base class for outputs of decoder-only generation models using contrastive search. Args: sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`. """ sequences: tf.Tensor = None scores: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None @dataclass class TFContrastiveSearchEncoderDecoderOutput(ModelOutput): """ Base class for outputs of encoder-decoder generation models using contrastive search. Hidden states and attention weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes) Args: sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`. """ sequences: tf.Tensor = None scores: Optional[Tuple[tf.Tensor]] = None encoder_attentions: Optional[Tuple[tf.Tensor]] = None encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None TFGreedySearchOutput = Union[TFGreedySearchEncoderDecoderOutput, TFGreedySearchDecoderOnlyOutput] TFSampleOutput = Union[TFSampleEncoderDecoderOutput, TFSampleDecoderOnlyOutput] TFBeamSearchOutput = Union[TFBeamSearchEncoderDecoderOutput, TFBeamSearchDecoderOnlyOutput] TFBeamSampleOutput = Union[TFBeamSampleEncoderDecoderOutput, TFBeamSampleDecoderOnlyOutput] TFContrastiveSearchOutput = Union[TFContrastiveSearchEncoderDecoderOutput, TFContrastiveSearchDecoderOnlyOutput] TFGenerateOutput = Union[ TFGreedySearchOutput, TFSampleOutput, TFBeamSearchOutput, TFBeamSampleOutput, TFContrastiveSearchOutput ] class TFGenerationMixin: """ A class containing all of the functions supporting generation, to be used as a mixin in [`TFPreTrainedModel`]. The class exposes [`~generation.TFGenerationMixin.generate`], which can be used for: - *greedy decoding* by calling [`~generation.TFGenerationMixin.greedy_search`] if `num_beams=1` and `do_sample=False` - *contrastive search* by calling [`~generation.TFGenerationMixin.contrastive_search`] if `penalty_alpha>0` and `top_k>1` - *multinomial sampling* by calling [`~generation.TFGenerationMixin.sample`] if `num_beams=1` and `do_sample=True` - *beam-search decoding* by calling [`~generation.TFGenerationMixin.beam_search`] if `num_beams>1` You do not need to call any of the above methods directly. Pass custom parameter values to 'generate' instead. To learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies). """ _seed_generator = None @property def seed_generator(self): warnings.warn("`seed_generator` is deprecated and will be removed in a future version.", UserWarning) if self._seed_generator is None: self._seed_generator = tf.random.Generator.from_non_deterministic_state() return self._seed_generator supports_xla_generation = True def prepare_inputs_for_generation(self, *args, **kwargs): raise NotImplementedError( "A model class needs to define a `prepare_inputs_for_generation` method in order to use `generate`." ) def compute_transition_scores( self, sequences: tf.Tensor, scores: Tuple[tf.Tensor], beam_indices: Optional[tf.Tensor] = None, normalize_logits: bool = False, ) -> tf.Tensor: """ Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time. Parameters: sequences (`tf.Tensor`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(tf.Tensor)`): Transition scores for each vocabulary token at each generation step. Beam transition scores consisting of log probabilities of tokens conditioned on log softmax of previously generated tokens Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. beam_indices (`tf.Tensor`, *optional*): Beam indices of generated token id at each generation step. `tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at generate-time. normalize_logits (`bool`, *optional*, defaults to `False`): Whether to normalize the logits (which, for legacy reasons, may be unnormalized). Return: `tf.Tensor`: A `tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)` containing the transition scores (logits) Examples: ```python >>> from transformers import GPT2Tokenizer, TFAutoModelForCausalLM >>> import numpy as np >>> tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") >>> model = TFAutoModelForCausalLM.from_pretrained("openai-community/gpt2") >>> tokenizer.pad_token_id = tokenizer.eos_token_id >>> inputs = tokenizer(["Today is"], return_tensors="tf") >>> # Example 1: Print the scores for each token generated with Greedy Search >>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True) >>> transition_scores = model.compute_transition_scores( ... outputs.sequences, outputs.scores, normalize_logits=True ... ) >>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for >>> # encoder-decoder models, like BART or T5. >>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1] >>> generated_tokens = outputs.sequences[:, input_length:] >>> for tok, score in zip(generated_tokens[0], transition_scores[0]): ... # | token | token string | logits | probability ... print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}") | 262 | the | -1.413 | 24.33% | 1110 | day | -2.609 | 7.36% | 618 | when | -2.009 | 13.41% | 356 | we | -1.859 | 15.58% | 460 | can | -2.508 | 8.14% >>> # Example 2: Reconstruct the sequence scores from Beam Search >>> outputs = model.generate( ... **inputs, ... max_new_tokens=5, ... num_beams=4, ... num_return_sequences=4, ... return_dict_in_generate=True, ... output_scores=True, ... ) >>> transition_scores = model.compute_transition_scores( ... outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False ... ) >>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores. >>> # Tip: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the >>> # use case, you might want to recompute it with `normalize_logits=True`. >>> output_length = input_length + np.sum(transition_scores.numpy() < 0, axis=1) >>> length_penalty = model.generation_config.length_penalty >>> reconstructed_scores = np.sum(transition_scores, axis=1) / (output_length**length_penalty) >>> print(np.allclose(outputs.sequences_scores, reconstructed_scores)) True ```""" # 1. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent # to a beam search approach were the first (and only) beam is always selected if beam_indices is None: beam_indices = tf.tile(tf.expand_dims(tf.range(scores[0].shape[0]), axis=1), [1, len(scores)]) # 2. reshape scores as [batch_size, vocab_size, # generation steps] with # generation steps being # seq_len - input_length scores = tf.transpose(tf.reshape(tf.stack(scores), (len(scores), -1)), (1, 0)) scores = tf.reshape(scores, (-1, self.config.vocab_size, scores.shape[-1])) # 3. Optionally normalize the logits (across the vocab dimension) if normalize_logits: scores = tf.nn.log_softmax(scores, axis=1) # 4. cut beam_indices to longest beam length beam_indices_mask = beam_indices < 0 max_beam_length = tf.math.reduce_max( tf.math.reduce_sum((1 - tf.cast(beam_indices_mask, dtype=tf.int32)), axis=-1) ) beam_indices = beam_indices[:, -max_beam_length:] beam_indices_mask = beam_indices_mask[:, -max_beam_length:] # 5. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards beam_indices = tf.where(beam_indices_mask, 0, beam_indices) # 6. Define which indices contributed to scores cut_idx = sequences.shape[-1] - max_beam_length token_indices = sequences[:, cut_idx:] gen_step_idx = tf.broadcast_to(tf.range(scores.shape[-1]), token_indices.shape) indices = tf.stack([beam_indices, token_indices, gen_step_idx], axis=-1) # 7. Compute scores transition_scores = tf.gather_nd(scores, indices) # 8. Mask out transition_scores of beams that stopped early transition_scores = tf.where(beam_indices_mask, 0, transition_scores) return transition_scores def _validate_model_class(self): """ Confirms that the model class is compatible with generation. If not, raises an exception that points to the right class to use. """ if not self.can_generate(): generate_compatible_mappings = [ TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, ] generate_compatible_classes = set() for model_mapping in generate_compatible_mappings: supported_models = model_mapping.get(type(self.config), default=None) if supported_models is not None: generate_compatible_classes.add(supported_models.__name__) exception_message = ( f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as " "it doesn't have a language model head." ) if generate_compatible_classes: exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}" raise TypeError(exception_message) def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): """Validates model kwargs for generation. Generate argument typos will also be caught here.""" # Excludes arguments that are handled before calling any model function if self.config.is_encoder_decoder: for key in ["decoder_input_ids"]: model_kwargs.pop(key, None) unused_model_args = [] model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters) # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;) if "kwargs" in model_args or "model_kwargs" in model_args: model_args |= set(inspect.signature(self.call).parameters) for key, value in model_kwargs.items(): if value is not None and key not in model_args: unused_model_args.append(key) if unused_model_args: raise ValueError( f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the" " generate arguments will also show up in this list)" ) def generate( self, inputs: Optional[tf.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[TFLogitsProcessorList] = None, seed=None, **kwargs, ) -> Union[TFGenerateOutput, tf.Tensor]: r""" Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate, e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](../generation_strategies). </Tip> Parameters: inputs (`tf.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. seed (`List[int]`, *optional*): Random seed to control sampling, containing two integers, used when `do_sample` is `True`. See the `seed` argument from stateless functions in `tf.random`. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `tf.Tensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `tf.Tensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.TFGreedySearchDecoderOnlyOutput`], - [`~generation.TFSampleDecoderOnlyOutput`], - [`~generation.TFBeamSearchDecoderOnlyOutput`], - [`~generation.TFBeamSampleDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.TFGreedySearchEncoderDecoderOutput`], - [`~generation.TFSampleEncoderDecoderOutput`], - [`~generation.TFBeamSearchEncoderDecoderOutput`], - [`~generation.TFBeamSampleEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call self._validate_model_class() # priority: `generation_config` argument > `model.generation_config` (the default generation config) if generation_config is None: # legacy: users may modify the model configuration to control generation. To trigger this legacy behavior, # two conditions must be met # 1) the generation config must have been created from the model config (`_from_model_config` field); # 2) the generation config must have seen no modification since its creation (the hash is the same). if self.generation_config._from_model_config and self.generation_config._original_object_hash == hash( self.generation_config ): new_generation_config = GenerationConfig.from_model_config(self.config) if new_generation_config != self.generation_config: warnings.warn( "You have modified the pretrained model configuration to control generation. This is a" " deprecated strategy to control generation and will be removed soon, in a future version." " Please use and modify the model generation configuration (see" " https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )" ) self.generation_config = new_generation_config generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs self._validate_model_kwargs(model_kwargs.copy()) # 2. Cast input dtypes to tf.int32 unless they're floats (which happens for some image models) if inputs is not None: if isinstance(inputs, tf.Tensor) and inputs.dtype.is_floating: pass elif isinstance(inputs, np.ndarray) and np.issubdtype(inputs.dtype, np.floating): pass else: inputs = tf.cast(inputs, tf.int32) if model_kwargs.get("attention_mask") is not None: model_kwargs["attention_mask"] = tf.cast(model_kwargs["attention_mask"], tf.int32) if "decoder_input_ids" in model_kwargs: if ( isinstance(model_kwargs["decoder_input_ids"], tf.Tensor) and model_kwargs["decoder_input_ids"].dtype.is_floating ): pass elif isinstance(model_kwargs["decoder_input_ids"], np.ndarray) and np.issubdtype( model_kwargs["decoder_input_ids"].dtype, np.floating ): pass else: model_kwargs["decoder_input_ids"] = tf.cast(model_kwargs["decoder_input_ids"], tf.int32) # 3. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList() if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: if model_kwargs.get("attention_mask") is None: logger.warning( "The attention mask and the pad token id were not set. As a consequence, you may observe " "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." ) eos_token_id = generation_config.eos_token_id if isinstance(eos_token_id, list): eos_token_id = eos_token_id[0] logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") generation_config.pad_token_id = eos_token_id use_xla = not tf.executing_eagerly() if use_xla and not self.supports_xla_generation: raise ValueError( "The selected model does not support Graph mode nor XLA generation (e.g. from tf.function())" ) # 4. Define model inputs inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) # inputs_ids now has to be defined and cannot be None anymore batch_size = shape_list(inputs_tensor)[0] # 5. Prepare other model kwargs model_kwargs["output_attentions"] = generation_config.output_attentions model_kwargs["output_hidden_states"] = generation_config.output_hidden_states model_kwargs["use_cache"] = generation_config.use_cache accepts_attention_mask = "attention_mask" in set(inspect.signature(self.call).parameters.keys()) requires_attention_mask = "encoder_outputs" not in model_kwargs if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id ) # decoder-only models should use left-padding for generation if not self.config.is_encoder_decoder: if generation_config.pad_token_id is not None and tf.math.reduce_any( inputs_tensor[:, -1] == generation_config.pad_token_id ): logger.warning( "A decoder-only architecture is being used, but right-padding was detected! For correct " "generation results, please set `padding_side='left'` when initializing the tokenizer." ) if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs: # if model is encoder decoder encoder_outputs are created and added to `model_kwargs` model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation( inputs_tensor, model_kwargs, model_input_name ) # 6. Prepare model inputs which will be used for auto-regressive generation if self.config.is_encoder_decoder: input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( batch_size=batch_size, model_input_name=model_input_name, model_kwargs=model_kwargs, decoder_start_token_id=generation_config.decoder_start_token_id, bos_token_id=generation_config.bos_token_id, ) else: input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids") # 7. Prepare `max_length` depending on other stopping criteria. input_ids_seq_length = shape_list(input_ids)[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20: # 20 is the default max_length of the generation config warnings.warn( f"Using the model-agnostic default `max_length` (={generation_config.max_length}) " "to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation.", UserWarning, ) elif generation_config.max_new_tokens is not None: if not has_default_max_length and generation_config.max_length is not None: logger.warning( f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length # If the input length is a tensor (i.e. dynamic length), skip length checks if not isinstance(input_ids_seq_length, tf.Tensor): if ( generation_config.min_length is not None and generation_config.min_length > generation_config.max_length ): raise ValueError( f"Unfeasable length constraints: the minimum length ({generation_config.min_length}) is larger" f" than the maximum length ({generation_config.max_length})" ) if input_ids_seq_length >= generation_config.max_length: input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" logger.warning( f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" " increasing`max_new_tokens`." ) # 8. determine generation mode is_contrastive_search_gen_mode = ( generation_config.top_k is not None and generation_config.top_k > 1 and generation_config.do_sample is False and generation_config.penalty_alpha is not None and generation_config.penalty_alpha > 0 ) is_greedy_gen_mode = ( not is_contrastive_search_gen_mode and (generation_config.num_beams == 1) and generation_config.do_sample is False ) is_beam_gen_mode = ( not is_contrastive_search_gen_mode and (generation_config.num_beams > 1) and generation_config.do_sample is False ) is_sample_gen_mode = (generation_config.num_beams == 1) and generation_config.do_sample is True is_beam_sample_gen_mode = (generation_config.num_beams > 1) and generation_config.do_sample is True # 9. prepare distribution pre_processing samplers logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, logits_processor=logits_processor, ) # 10. go into different generation modes if is_greedy_gen_mode: if generation_config.num_return_sequences > 1: raise ValueError( f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing" " greedy search." ) # 11. run greedy search return self.greedy_search( input_ids, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, logits_processor=logits_processor, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, **model_kwargs, ) elif is_contrastive_search_gen_mode: if generation_config.num_return_sequences > 1: raise ValueError( f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing" " contrastive search." ) # 11. run contrastive search return self.contrastive_search( input_ids, top_k=generation_config.top_k, penalty_alpha=generation_config.penalty_alpha, logits_processor=logits_processor, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, **model_kwargs, ) elif is_sample_gen_mode: # 11. prepare logits warper logits_warper = self._get_logits_warper(generation_config=generation_config) # 12. expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, ) # 13. run sample return self.sample( input_ids, logits_processor=logits_processor, logits_warper=logits_warper, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, seed=seed, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, **model_kwargs, ) elif is_beam_gen_mode: if generation_config.num_beams < generation_config.num_return_sequences: raise ValueError( "Beam search decoding cannot return more sequences than it has beams. Please set num_beams >=" f" num_return_sequences, got {generation_config.num_beams} and" f" {generation_config.num_return_sequences} (respectivelly)" ) # 11. broadcast inputs to the desired number of beams input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_beams, is_encoder_decoder=self.config.is_encoder_decoder, expand_in_new_axis=True, **model_kwargs, ) # 12. run beam search return self.beam_search( input_ids, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, length_penalty=generation_config.length_penalty, early_stopping=generation_config.early_stopping, logits_processor=logits_processor, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, num_return_sequences=generation_config.num_return_sequences, **model_kwargs, ) elif is_beam_sample_gen_mode: if generation_config.num_beams < generation_config.num_return_sequences: raise ValueError( "Beam search decoding cannot return more sequences than it has beams. Please set num_beams >=" f" num_return_sequences, got {generation_config.num_beams} and" f" {generation_config.num_return_sequences} (respectivelly)" ) # 11. prepare logits warper logits_warper = self._get_logits_warper(generation_config=generation_config) # 12. broadcast inputs to the desired number of beams input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_beams, is_encoder_decoder=self.config.is_encoder_decoder, expand_in_new_axis=True, **model_kwargs, ) # 13. run beam sample (beam search with sampling) return self.beam_search( input_ids, do_sample=True, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, length_penalty=generation_config.length_penalty, early_stopping=generation_config.early_stopping, logits_processor=logits_processor, logits_warper=logits_warper, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, num_return_sequences=generation_config.num_return_sequences, **model_kwargs, ) def _prepare_attention_mask_for_generation( self, inputs: tf.Tensor, pad_token_id: Optional[int], eos_token_id: Optional[int], ) -> tf.Tensor: is_input_ids = len(inputs.shape) == 2 and inputs.dtype in (tf.int32, tf.int64) is_pad_token_in_inputs = (pad_token_id is not None) and tf.math.reduce_any(inputs == pad_token_id) is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or (pad_token_id != eos_token_id) # Check if input is input_ids and padded -> only then is attention_mask defined if is_input_ids and is_pad_token_in_inputs and is_pad_token_not_equal_to_eos_token_id: return tf.cast(tf.math.not_equal(inputs, pad_token_id), dtype=tf.int32) else: return tf.ones(inputs.shape[:2], dtype=tf.int32) def _prepare_encoder_decoder_kwargs_for_generation( self, inputs_tensor: tf.Tensor, model_kwargs, model_input_name: Optional[str] = None ) -> Dict[str, Any]: # 1. get encoder and store encoder outputs encoder = self.get_encoder() # 2. prepare encoder args and encoder kwargs from model kwargs irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } encoder_signature = set(inspect.signature(encoder.call).parameters) encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature if not encoder_accepts_wildcard: encoder_kwargs = { argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature } # 3. vision models don't use `attention_mask`. encoder_kwargs["return_dict"] = True encoder_kwargs[model_input_name] = inputs_tensor if model_input_name != self.main_input_name: # in Keras, the first input must always be passed encoder_kwargs[self.main_input_name] = None encoder_outputs = encoder(**encoder_kwargs) model_kwargs["encoder_outputs"] = encoder_outputs return model_kwargs def _prepare_decoder_input_ids_for_generation( self, batch_size: int, model_input_name: str, model_kwargs: Dict[str, tf.Tensor], decoder_start_token_id: int = None, bos_token_id: int = None, ) -> Tuple[tf.Tensor, Dict[str, tf.Tensor]]: """Prepares `decoder_input_ids` for generation with encoder-decoder models""" # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming, # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input. if model_kwargs is not None and "decoder_input_ids" in model_kwargs: decoder_input_ids = model_kwargs.pop("decoder_input_ids") elif "input_ids" in model_kwargs and model_input_name != "input_ids": decoder_input_ids = model_kwargs.pop("input_ids") else: decoder_input_ids = None # 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that. decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id) decoder_input_ids_start = tf.ones((batch_size, 1), dtype=tf.int32) * decoder_start_token_id # no user input -> use decoder_start_token_id as decoder_input_ids if decoder_input_ids is None: decoder_input_ids = decoder_input_ids_start # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust # decoder_attention_mask if provided) elif tf.reduce_all(decoder_input_ids[:, 0] != decoder_start_token_id): decoder_input_ids = tf.concat([decoder_input_ids_start, decoder_input_ids], axis=-1) if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] decoder_attention_mask = tf.concat( (tf.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask), axis=-1, ) model_kwargs["decoder_attention_mask"] = decoder_attention_mask return decoder_input_ids, model_kwargs def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int: # retrieve decoder_start_token_id for encoder-decoder models # fall back to bos_token_id if necessary decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id is not None else self.generation_config.decoder_start_token_id ) bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id if decoder_start_token_id is not None: return decoder_start_token_id elif bos_token_id is not None: return bos_token_id raise ValueError( "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation." ) @staticmethod def _expand_inputs_for_generation( expand_size: int = 1, is_encoder_decoder: bool = False, input_ids: Optional[tf.Tensor] = None, expand_in_new_axis: bool = False, **model_kwargs, ) -> Tuple[tf.Tensor, Dict[str, Any]]: """ Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...] or [batch_size, expand_size, ...], depending on `expand_in_new_axis`. Beam-based approaches expect this function to be used with `expand_in_new_axis=True` """ def _expand_tensor(tensor: tf.Tensor): if expand_in_new_axis: shape = shape_list(tensor) return tf.broadcast_to(tensor[:, None], (shape[0], expand_size) + tuple(shape[1:])) else: return tf.repeat(tensor, expand_size, axis=0) def _expand_dict_for_generation(dict_to_expand): for key in dict_to_expand: if dict_to_expand[key] is not None and isinstance(dict_to_expand[key], tf.Tensor): dict_to_expand[key] = _expand_tensor(dict_to_expand[key]) return dict_to_expand if input_ids is not None: input_ids = _expand_tensor(input_ids) model_kwargs = _expand_dict_for_generation(model_kwargs) if is_encoder_decoder: if model_kwargs.get("encoder_outputs") is None: raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.") model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) return input_ids, model_kwargs def _prepare_model_inputs( self, inputs: Optional[tf.Tensor] = None, bos_token_id: Optional[int] = None, model_kwargs: Optional[Dict[str, tf.Tensor]] = None, ) -> Tuple[tf.Tensor, Optional[str], Dict[str, tf.Tensor]]: """ This function extracts the model-specific `inputs` for generation. """ # 1. retrieve all kwargs that are non-None or non-model input related. # some encoder-decoder models have different names for model and encoder if ( self.config.is_encoder_decoder and hasattr(self, "encoder") and hasattr(self.encoder, "main_input_name") and self.encoder.main_input_name != self.main_input_name ): input_name = self.encoder.main_input_name else: input_name = self.main_input_name model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name} # 2. check whether model_input_name is passed as kwarg # if yes and `inputs` is None use kwarg inputs inputs_kwarg = model_kwargs.pop(input_name, None) if inputs_kwarg is not None and inputs is not None: raise ValueError( f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed. " f"Make sure to either pass {inputs} or {input_name}=..." ) elif inputs_kwarg is not None: inputs = inputs_kwarg # 3. In the presence of `inputs_embeds` for text models: # - decoder-only models should complain if the user attempts to pass `inputs_embeds`, but the model # doesn't have its forwarding implemented. `inputs_embeds` is kept in `model_kwargs` and can coexist with # input_ids (`inputs_embeds` will be used in the 1st generation step, as opposed to `input_ids`) # - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and # pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states. if input_name == "input_ids" and "inputs_embeds" in model_kwargs: if not self.config.is_encoder_decoder: has_inputs_embeds_forwarding = "inputs_embeds" in set( inspect.signature(self.prepare_inputs_for_generation).parameters.keys() ) if not has_inputs_embeds_forwarding: raise ValueError( f"You passed `inputs_embeds` to `.generate()`, but the model class {self.__class__.__name__} " "doesn't have its forwarding implemented. See the GPT2 implementation for an example " "(https://github.com/huggingface/transformers/pull/21405), and feel free to open a PR with it!" ) # In this case, `input_ids` is moved to the `model_kwargs`, so a few automations (like the creation of # the attention mask) can rely on the actual model input. model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation( inputs, bos_token_id, model_kwargs=model_kwargs ) else: if inputs is not None: raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.") inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds" # 4. if `inputs` is still None, try to create `input_ids` from BOS token inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs) return inputs, input_name, model_kwargs def _maybe_initialize_input_ids_for_generation( self, inputs: Optional[tf.Tensor] = None, bos_token_id: Optional[int] = None, model_kwargs: Optional[Dict[str, tf.Tensor]] = None, ) -> tf.Tensor: """Initializes input ids for generation, if necessary.""" if inputs is not None: return inputs encoder_outputs = model_kwargs.get("encoder_outputs") if self.config.is_encoder_decoder and encoder_outputs is not None: # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding shape = encoder_outputs.last_hidden_state.shape[:-1] return tf.ones(shape, dtype=tf.int32) * -100 if bos_token_id is None: raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.") # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with # soft-prompting or in multimodal implementations built on top of decoder-only language models. batch_size = 1 for value in model_kwargs.values(): if isinstance(value, tf.Tensor): batch_size = value.shape[0] break return tf.ones((batch_size, 1), dtype=tf.int32) * bos_token_id @staticmethod def _extract_past_from_model_output(outputs: ModelOutput): past_key_values = None if "past_key_values" in outputs: past_key_values = outputs.past_key_values elif "mems" in outputs: past_key_values = outputs.mems elif "past_buckets_states" in outputs: past_key_values = outputs.past_buckets_states return past_key_values def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False ) -> Dict[str, Any]: # update past_key_values model_kwargs["past_key_values"] = self._extract_past_from_model_output(outputs) # update attention mask if not is_encoder_decoder: if "attention_mask" in model_kwargs: attention_mask = model_kwargs["attention_mask"] model_kwargs["attention_mask"] = tf.concat( [attention_mask, tf.ones((shape_list(attention_mask)[0], 1), dtype=tf.int32)], axis=-1 ) return model_kwargs def _update_model_kwargs_for_xla_generation( self, model_outputs: ModelOutput, model_kwargs: Dict[str, Any], cur_len: int, max_length: int, batch_size: int, is_encoder_decoder: bool = False, batch_axis: int = 0, ): def _initialize_attention(model_kwargs, num_padding_values, is_encoder_decoder): """initializes the appropriate attention mask -- encoder-decoder models use `decoder_attention_mask`""" if is_encoder_decoder: # One 1 for decoder_start_token_id, 0s for the currently-unfilled locations in the past_key_values tensor, # 1s for the actual input_ids decoder_attention_mask = tf.concat( [ tf.ones((batch_size, 1), dtype=tf.int32), tf.zeros((batch_size, num_padding_values), dtype=tf.int32), tf.ones((batch_size, 1), dtype=tf.int32), ], axis=1, ) mask = {"decoder_attention_mask": decoder_attention_mask} else: attention_mask = model_kwargs.pop("attention_mask") # 0s for the currently-unfilled locations in the past_key_values tensor, 1s for the actual input_ids attention_mask = tf.concat( [ attention_mask, tf.zeros((batch_size, num_padding_values), dtype=attention_mask.dtype), tf.ones((batch_size, 1), dtype=attention_mask.dtype), ], axis=1, ) mask = {"attention_mask": attention_mask} return mask def _update_attention(model_kwargs, new_past_index, is_encoder_decoder): """updates the appropriate attention mask -- encoder-decoder models use `decoder_attention_mask`""" update_start = tf.constant([0, 1], dtype=tf.int32) * new_past_index if is_encoder_decoder: decoder_attention_mask = model_kwargs.pop("decoder_attention_mask") decoder_attention_mask_update_slice = tf.ones((batch_size, 1), dtype=decoder_attention_mask.dtype) decoder_attention_mask = dynamic_update_slice( decoder_attention_mask, decoder_attention_mask_update_slice, update_start ) mask = {"decoder_attention_mask": decoder_attention_mask} else: attention_mask = model_kwargs.pop("attention_mask") attention_mask_update_slice = tf.ones((batch_size, 1), dtype=attention_mask.dtype) attention_mask = dynamic_update_slice(attention_mask, attention_mask_update_slice, update_start) mask = {"attention_mask": attention_mask} return mask def _initialize_past(past_key_values, num_padding_values, batch_axis): """initialize past_key_values with zeros -- the structure depends on `batch_axis`""" if batch_axis == 0: padding_values = tf.constant([[0, 0], [0, 0], [0, num_padding_values], [0, 0]], dtype=tf.int32) new_past = () for past_layer in past_key_values: new_past_layer = list(past_layer) for i in range(len(new_past_layer[:2])): new_past_layer[i] = tf.pad(past_layer[i], padding_values) new_past += (tuple(new_past_layer),) else: padding_values = tf.scatter_nd(indices=[[3, 1]], updates=[num_padding_values], shape=(5, 2)) new_past = list(past_key_values) for i in range(len(past_key_values)): new_past[i] = tf.pad(past_key_values[i], padding_values) return new_past def _update_past(past_key_values, new_past_index, batch_axis): if batch_axis == 0: slice_start_base = tf.constant([0, 0, 1, 0]) new_past = () for past_layer in past_key_values: new_past_layer = list(past_layer) for i in range(len(new_past_layer[:2])): update_slice = past_layer[i][:, :, -1:] # Write the last slice to the first open location in the padded past_key_values array # and then truncate the last slice off the array new_past_layer[i] = dynamic_update_slice( past_layer[i][:, :, :-1], update_slice, slice_start_base * new_past_index ) new_past += (tuple(new_past_layer),) else: slice_start_base = tf.constant([0, 0, 0, 1, 0]) new_past = [None for _ in range(len(past_key_values))] for i in range(len(past_key_values)): update_slice = past_key_values[i][:, :, :, -1:] # Write the last slice to the first open location in the padded past_key_values array # and then truncate the last slice off the array new_past[i] = dynamic_update_slice( past_key_values[i][:, :, :, :-1], update_slice, slice_start_base * new_past_index ) return new_past past_key_values = self._extract_past_from_model_output(model_outputs) if past_key_values is None: raise ValueError( "No known `past_key_values variable` found in model outputs (model outputs keys:" f" {list(model_outputs.keys())})" ) is_past_initialized = model_kwargs.pop("past_key_values", None) is not None if not is_past_initialized: # The padded version of `past_key_values` has a length of `max_length - 1`, as `past_key_values` holds information relative to # previous autoregressive generation steps (step 0 has no past_key_values, step 1 has 1 past_key_values value, ..., the last step # has `max_length - 1` past_key_values values). num_padding_values = max_length - cur_len - 1 mask = _initialize_attention(model_kwargs, num_padding_values, is_encoder_decoder) new_past = _initialize_past(past_key_values, num_padding_values, batch_axis) else: # The new index of past_key_values to be filled corresponds to the current length of the sequence, with two # subtractions: -1 because past_key_values holds information regarding previous generation steps (read comment above) # and -1 again because in an array the index is the length of the array minus 1. new_past_index = cur_len - 2 mask = _update_attention(model_kwargs, new_past_index, is_encoder_decoder) new_past = _update_past(past_key_values, new_past_index, batch_axis) # sets the updated variables (mask and past_key_values) model_kwargs.update(mask) model_kwargs["past_key_values"] = tuple(new_past) return model_kwargs def _get_logits_warper( self, generation_config: GenerationConfig, ) -> TFLogitsProcessorList: """ This class returns a [`TFLogitsProcessorList`] list object that contains all relevant [`TFLogitsWarper`] instances used for multinomial sampling. """ # instantiate warpers list warpers = TFLogitsProcessorList() # In beam methods, we need to keep at least one non-eos token to explore continuations that might have a # better score (i.e. keep len(generation_config.eos_token_id) + 1) if generation_config.num_beams > 1: if isinstance(generation_config.eos_token_id, list): min_tokens_to_keep = len(generation_config.eos_token_id) + 1 else: min_tokens_to_keep = 2 else: min_tokens_to_keep = 1 if generation_config.temperature is not None and generation_config.temperature != 1.0: warpers.append(TFTemperatureLogitsWarper(generation_config.temperature)) if generation_config.top_k is not None and generation_config.top_k != 0: warpers.append(TFTopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=min_tokens_to_keep)) if generation_config.top_p is not None and generation_config.top_p < 1.0: warpers.append(TFTopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=min_tokens_to_keep)) return warpers def _get_logits_processor( self, generation_config: GenerationConfig, input_ids_seq_length: int, logits_processor: Optional[TFLogitsProcessorList], ) -> TFLogitsProcessorList: """ This class returns a [`TFLogitsProcessorList`] list object that contains all relevant [`TFLogitsProcessor`] instances used to modify the scores of the language model head. """ processors = TFLogitsProcessorList() # instantiate processors list if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0: processors.append(TFRepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty)) if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0: processors.append(TFNoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size)) if generation_config.bad_words_ids is not None: processors.append( TFNoBadWordsLogitsProcessor(generation_config.bad_words_ids, generation_config.eos_token_id) ) if ( generation_config.min_length is not None and generation_config.eos_token_id is not None and generation_config.min_length > 0 ): processors.append(TFMinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id)) if generation_config.forced_bos_token_id is not None: processors.append(TFForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id)) if generation_config.forced_eos_token_id is not None: processors.append( TFForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id) ) if generation_config.suppress_tokens is not None: processors.append(TFSuppressTokensLogitsProcessor(generation_config.suppress_tokens)) if generation_config.begin_suppress_tokens is not None: begin_index = input_ids_seq_length begin_index = ( begin_index if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None) else begin_index + 1 ) if generation_config.forced_decoder_ids is not None: begin_index += generation_config.forced_decoder_ids[-1][ 0 ] # generation starts after the last token that is forced processors.append( TFSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index) ) if generation_config.forced_decoder_ids is not None: processors.append(TFForceTokensLogitsProcessor(generation_config.forced_decoder_ids)) processors = self._merge_criteria_processor_list(processors, logits_processor) return processors def _merge_criteria_processor_list( self, default_list: TFLogitsProcessorList, custom_list: TFLogitsProcessorList, ) -> TFLogitsProcessorList: if len(custom_list) == 0: return default_list for default in default_list: for custom in custom_list: if type(custom) is type(default): object_type = "logits processor" raise ValueError( f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to" f" `generate`, but it has already been created with the values {default}. {default} has been" " created by passing the corresponding arguments to generate or by the model's config default" f" values. If you just want to change the default values of {object_type} consider passing" f" them as arguments to `generate` instead of using a custom {object_type}." ) default_list.extend(custom_list) return default_list def greedy_search( self, input_ids: tf.Tensor, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, logits_processor: Optional[TFLogitsProcessorList] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_scores: Optional[bool] = None, return_dict_in_generate: Optional[bool] = None, **model_kwargs, ) -> Union[TFGreedySearchOutput, tf.Tensor]: r""" Generates sequences for models with a language modeling head using greedy decoding. Parameters: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. logits_processor (`TFLogitsProcessorList`, *optional*): An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. max_length (`int`, *optional*, defaults to 20): The maximum length of the sequence to be generated. pad_token_id (`int`, *optional*): The id of the *padding* token. eos_token_id (`Union[int, List[int]]`, *optional*): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more details. output_hidden_states (`bool`, *optional*, defaults to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more details. output_scores (`bool`, *optional*, defaults to `False`): Whether or not to return the prediction scores. See `scores` under returned tensors for more details. return_dict_in_generate (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. model_kwargs: Additional model specific keyword arguments will be forwarded to the `call` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.TFGreedySearchDecoderOnlyOutput`], [`~generation.TFGreedySearchEncoderDecoderOutput`] or `tf.Tensor`: A `tf.Tensor` containing the generated tokens (default behaviour) or a [`~generation.TFGreedySearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.TFGreedySearchEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. Examples: ```python >>> from transformers import ( ... AutoTokenizer, ... TFAutoModelForCausalLM, ... TFLogitsProcessorList, ... TFMinLengthLogitsProcessor, ... ) >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") >>> model = TFAutoModelForCausalLM.from_pretrained("openai-community/gpt2") >>> # set pad_token_id to eos_token_id because GPT2 does not have a PAD token >>> model.generation_config.pad_token_id = model.generation_config.eos_token_id >>> input_prompt = "Today is a beautiful day, and" >>> input_ids = tokenizer(input_prompt, return_tensors="tf").input_ids >>> # instantiate logits processors >>> logits_processor = TFLogitsProcessorList( ... [ ... TFMinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id), ... ] ... ) >>> outputs = model.greedy_search(input_ids, logits_processor=logits_processor) >>> tokenizer.batch_decode(outputs, skip_special_tokens=True) ["Today is a beautiful day, and I'm so happy to be here. I'm so happy to"] ```""" # 1. init greedy_search values logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList() max_length = max_length if max_length is not None else self.generation_config.max_length pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] output_scores = output_scores if output_scores is not None else self.generation_config.output_scores output_attentions = ( output_attentions if output_attentions is not None else self.generation_config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states ) return_dict_in_generate = ( return_dict_in_generate if return_dict_in_generate is not None else self.generation_config.return_dict_in_generate ) use_cache = model_kwargs.pop("use_cache", self.generation_config.use_cache) use_xla = not tf.executing_eagerly() # TODO (Joao): fix cache format or find programatic way to detect cache index # GPT2 and other models has a slightly different cache structure, with a different batch axis model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self) cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0 # some models, like XLNet, need more than the last token in the presence of past_key_values needs_full_input = "use_mems" in set(inspect.signature(self.prepare_inputs_for_generation).parameters.keys()) # 2. init `attentions`, `hidden_states`, and `scores` tuples scores = [] if (return_dict_in_generate and output_scores) else None decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None cross_attentions = [] if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None # 3. init tensors to use for "xla-compileable" generate function batch_size, cur_len = shape_list(input_ids) # initialize `generated` (`input_ids` padded with `pad_token_id`), `finished_sequences` input_ids_padding = tf.ones((batch_size, max_length - cur_len), dtype=tf.int32) * (pad_token_id or 0) generated = tf.concat([input_ids, input_ids_padding], axis=-1) finished_sequences = tf.zeros((batch_size,), dtype=tf.bool) # 4. define "xla-compile-able" stop-condition and auto-regressive function # define condition fn def greedy_search_cond_fn(generated, finished_sequences, cur_len, model_kwargs): """state termination condition fn.""" return ~tf.reduce_all(finished_sequences) # define condition fn def greedy_search_body_fn(generated, finished_sequences, cur_len, model_kwargs): """state update fn.""" if model_kwargs.get("past_key_values") is None or needs_full_input: input_ids = generated[:, :cur_len] else: input_ids = tf.expand_dims(generated[:, cur_len - 1], -1) model_inputs = self.prepare_inputs_for_generation(input_ids, use_cache=use_cache, **model_kwargs) # forward pass to get next token logits model_outputs = self( **model_inputs, return_dict=True, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) next_token_logits = model_outputs.logits[:, -1] # pre-process distribution next_tokens_scores = logits_processor(generated, next_token_logits, cur_len) # Store scores, attentions and hidden_states when required if not use_xla and return_dict_in_generate: if output_scores: scores.append(next_tokens_scores) if output_attentions and self.config.is_encoder_decoder: decoder_attentions.append(model_outputs.decoder_attentions) elif output_attentions and not self.config.is_encoder_decoder: decoder_attentions.append(model_outputs.attentions) if self.config.is_encoder_decoder: cross_attentions.append(model_outputs.cross_attentions) if output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(model_outputs.decoder_hidden_states) elif output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(model_outputs.hidden_states) # argmax next_tokens = tf.argmax(next_tokens_scores, axis=-1, output_type=tf.int32) if eos_token_id is not None: if pad_token_id is None: raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.") unfinished_seq = 1 - tf.cast(finished_sequences, tf.int32) next_tokens = next_tokens * unfinished_seq + pad_token_id * (1 - unfinished_seq) next_token_is_eos = tf.math.reduce_any( tf.equal( tf.broadcast_to(next_tokens, (len(eos_token_id), batch_size)), tf.expand_dims(eos_token_id, -1) ), axis=0, ) finished_sequences = finished_sequences | next_token_is_eos # update `generated` and `cur_len` update_indices = tf.stack([tf.range(batch_size), tf.broadcast_to(cur_len, [batch_size])], axis=-1) generated = tf.tensor_scatter_nd_update(tensor=generated, indices=update_indices, updates=next_tokens) cur_len += 1 # update model_kwargs if use_xla: model_kwargs = self._update_model_kwargs_for_xla_generation( model_outputs=model_outputs, model_kwargs=model_kwargs, cur_len=cur_len, max_length=max_length, batch_size=batch_size, is_encoder_decoder=self.config.is_encoder_decoder, batch_axis=cache_batch_axis, ) else: model_kwargs = self._update_model_kwargs_for_generation( model_outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder ) # if we don't cache past_key_values key values we need the whole input if model_kwargs.get("past_key_values", None) is None: # let's throw out `past_key_values` since we don't want `None` tensors model_kwargs.pop("past_key_values", None) return generated, finished_sequences, cur_len, model_kwargs # 5. run generation # 1st generation step has to be run before to initialize `past_key_values` generated, finished_sequences, cur_len, model_kwargs = greedy_search_body_fn( generated, finished_sequences, cur_len, model_kwargs ) # 2-to-n generation steps can then be run in autoregressive fashion # only in case 1st generation step does NOT yield EOS token though maximum_iterations = max_length - cur_len generated, _, cur_len, _ = tf.while_loop( greedy_search_cond_fn, greedy_search_body_fn, (generated, finished_sequences, cur_len, model_kwargs), maximum_iterations=maximum_iterations, ) # 6. prepare outputs if not use_xla: # cut for backward compatibility generated = generated[:, :cur_len] if return_dict_in_generate: if self.config.is_encoder_decoder: # if model is an encoder-decoder, retrieve encoder attention weights # and hidden states encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) scores = tuple(scores) if scores is not None else None decoder_attentions = tuple(decoder_attentions) if decoder_attentions is not None else None cross_attentions = tuple(cross_attentions) if cross_attentions is not None else None decoder_hidden_states = tuple(decoder_hidden_states) if decoder_hidden_states is not None else None return TFGreedySearchEncoderDecoderOutput( sequences=generated, scores=scores, encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, ) else: return TFGreedySearchDecoderOnlyOutput( sequences=generated, scores=scores, attentions=decoder_attentions, hidden_states=decoder_hidden_states, ) else: return generated def sample( self, input_ids: tf.Tensor, logits_processor: Optional[TFLogitsProcessorList] = None, logits_warper: Optional[TFLogitsProcessorList] = None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, seed: Optional[Tuple[int, int]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_scores: Optional[bool] = None, return_dict_in_generate: Optional[bool] = None, **model_kwargs, ) -> Union[TFSampleOutput, tf.Tensor]: r""" Generates sequences for models with a language modeling head using multinomial sampling. Parameters: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. logits_processor (`TFLogitsProcessorList`, *optional*): An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. logits_warper (`TFLogitsProcessorList`, *optional*): An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsWarper`] used to warp the prediction score distribution of the language modeling head applied before multinomial sampling at each generation step. max_length (`int`, *optional*, defaults to 20): The maximum length of the sequence to be generated. pad_token_id (`int`, *optional*): The id of the *padding* token. eos_token_id (`Union[int, List[int]]`, *optional*): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. seed (`List[int]`, *optional*): Random seed to control sampling, containing two integers, used when `do_sample` is `True`. See the `seed` argument from stateless functions in `tf.random`. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more details. output_hidden_states (`bool`, *optional*, defaults to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more details. output_scores (`bool`, *optional*, defaults to `False`): Whether or not to return the prediction scores. See `scores` under returned tensors for more details. return_dict_in_generate (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. model_kwargs: Additional model specific kwargs will be forwarded to the `call` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.TFSampleDecoderOnlyOutput`], [`~generation.TFSampleEncoderDecoderOutput`] or `tf.Tensor`: A `tf.Tensor` containing the generated tokens (default behaviour) or a [`~generation.TFSampleDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.TFSampleEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. Examples: ```python >>> import tensorflow as tf >>> from transformers import ( ... AutoTokenizer, ... TFAutoModelForCausalLM, ... TFLogitsProcessorList, ... TFMinLengthLogitsProcessor, ... TFTopKLogitsWarper, ... TFTemperatureLogitsWarper, ... ) >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") >>> model = TFAutoModelForCausalLM.from_pretrained("openai-community/gpt2") >>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token >>> model.generation_config.pad_token_id = model.generation_config.eos_token_id >>> input_prompt = "Today is a beautiful day, and" >>> input_ids = tokenizer(input_prompt, return_tensors="tf").input_ids >>> # instantiate logits processors >>> logits_processor = TFLogitsProcessorList( ... [ ... TFMinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id), ... ] ... ) >>> # instantiate logits processors >>> logits_warper = TFLogitsProcessorList( ... [ ... TFTopKLogitsWarper(50), ... TFTemperatureLogitsWarper(0.7), ... ] ... ) >>> tf.random.set_seed(0) >>> outputs = model.sample(input_ids, logits_processor=logits_processor, logits_warper=logits_warper) >>> tokenizer.batch_decode(outputs, skip_special_tokens=True) ['Today is a beautiful day, and I love my country. But when I look at Donald Trump,'] ```""" # 1. init greedy_search values logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList() logits_warper = logits_warper if logits_warper is not None else TFLogitsProcessorList() max_length = max_length if max_length is not None else self.generation_config.max_length pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] output_scores = output_scores if output_scores is not None else self.generation_config.output_scores output_attentions = ( output_attentions if output_attentions is not None else self.generation_config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states ) return_dict_in_generate = ( return_dict_in_generate if return_dict_in_generate is not None else self.generation_config.return_dict_in_generate ) use_cache = model_kwargs.pop("use_cache", self.generation_config.use_cache) use_xla = not tf.executing_eagerly() # TODO (Joao): fix cache format or find programatic way to detect cache index # GPT2 and other models has a slightly different cache structure, with a different batch axis model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self) cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0 # some models, like XLNet, need more than the last token in the presence of past_key_values needs_full_input = "use_mems" in set(inspect.signature(self.prepare_inputs_for_generation).parameters.keys()) # 2. init `attentions`, `hidden_states`, and `scores` tuples scores = [] if (return_dict_in_generate and output_scores) else None decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None cross_attentions = [] if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None # 3. init tensors to use for "xla-compileable" generate function batch_size, cur_len = shape_list(input_ids) # initialize `generated` (pre-populated with `pad_token_id`), `finished_sequences` input_ids_padding = tf.ones((batch_size, max_length - cur_len), dtype=tf.int32) * (pad_token_id or 0) generated = tf.concat([input_ids, input_ids_padding], axis=-1) finished_sequences = tf.zeros((batch_size,), dtype=tf.bool) # 4. define "xla-compile-able" stop-condition and auto-regressive function def sample_cond_fn(generated, finished_sequences, cur_len, model_kwargs): return ~tf.reduce_all(finished_sequences) def sample_body_fn(generated, finished_sequences, cur_len, model_kwargs): if model_kwargs.get("past_key_values") is None or needs_full_input: input_ids = generated[:, :cur_len] else: input_ids = tf.expand_dims(generated[:, cur_len - 1], -1) model_inputs = self.prepare_inputs_for_generation(input_ids, use_cache=use_cache, **model_kwargs) # forward pass to get next token logits model_outputs = self( **model_inputs, return_dict=True, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) next_token_logits = model_outputs.logits[:, -1] # pre-process distribution next_tokens_scores = logits_processor(generated, next_token_logits, cur_len) next_tokens_scores = logits_warper(generated, next_tokens_scores, cur_len) # Store scores, attentions and hidden_states when required if not use_xla and return_dict_in_generate: if output_scores: scores.append(next_tokens_scores) if output_attentions and self.config.is_encoder_decoder: decoder_attentions.append(model_outputs.decoder_attentions) elif output_attentions and not self.config.is_encoder_decoder: decoder_attentions.append(model_outputs.attentions) if self.config.is_encoder_decoder: cross_attentions.append(model_outputs.cross_attentions) if output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(model_outputs.decoder_hidden_states) elif output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(model_outputs.hidden_states) # sample if seed is not None: sample_seed = seed else: sample_seed = tf.experimental.numpy.random.randint(tf.int32.min, tf.int32.max, (2,), dtype=tf.int32) next_tokens = tf.squeeze( tf.random.stateless_categorical( logits=next_tokens_scores, num_samples=1, seed=sample_seed, dtype=tf.int32 ), axis=1, ) if eos_token_id is not None: if pad_token_id is None: raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.") unfinished_seq = 1 - tf.cast(finished_sequences, tf.int32) next_tokens = next_tokens * unfinished_seq + pad_token_id * (1 - unfinished_seq) next_token_is_eos = tf.math.reduce_any( tf.equal( tf.broadcast_to(next_tokens, (len(eos_token_id), batch_size)), tf.expand_dims(eos_token_id, -1) ), axis=0, ) finished_sequences = finished_sequences | next_token_is_eos # update `generated` and `cur_len` update_indices = tf.stack([tf.range(batch_size), tf.broadcast_to(cur_len, [batch_size])], axis=-1) generated = tf.tensor_scatter_nd_update(tensor=generated, indices=update_indices, updates=next_tokens) cur_len += 1 # update model_kwargs if use_xla: model_kwargs = self._update_model_kwargs_for_xla_generation( model_outputs=model_outputs, model_kwargs=model_kwargs, cur_len=cur_len, max_length=max_length, batch_size=batch_size, is_encoder_decoder=self.config.is_encoder_decoder, batch_axis=cache_batch_axis, ) else: model_kwargs = self._update_model_kwargs_for_generation( model_outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder ) # if we don't cache past_key_values key values we need the whole input if model_kwargs.get("past_key_values", None) is None: # let's throw out `past_key_values` since we don't want `None` tensors model_kwargs.pop("past_key_values", None) return generated, finished_sequences, cur_len, model_kwargs # 5. run generation # 1st generation step has to be run before to initialize `past_key_values` generated, finished_sequences, cur_len, model_kwargs = sample_body_fn( generated, finished_sequences, cur_len, model_kwargs ) # 2-to-n generation steps can then be run in autoregressive fashion # only in case 1st generation step does NOT yield EOS token though maximum_iterations = max_length - cur_len generated, _, cur_len, _ = tf.while_loop( sample_cond_fn, sample_body_fn, (generated, finished_sequences, cur_len, model_kwargs), maximum_iterations=maximum_iterations, ) # 6. prepare outputs if not use_xla: # cut for backward compatibility generated = generated[:, :cur_len] if return_dict_in_generate: if self.config.is_encoder_decoder: # if model is an encoder-decoder, retrieve encoder attention weights # and hidden states encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) scores = tuple(scores) if scores is not None else None decoder_attentions = tuple(decoder_attentions) if decoder_attentions is not None else None cross_attentions = tuple(cross_attentions) if cross_attentions is not None else None decoder_hidden_states = tuple(decoder_hidden_states) if decoder_hidden_states is not None else None return TFSampleEncoderDecoderOutput( sequences=generated, scores=scores, encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, ) else: return TFSampleDecoderOnlyOutput( sequences=generated, scores=scores, attentions=decoder_attentions, hidden_states=decoder_hidden_states, ) else: return generated @staticmethod def _gather_beams(nested, beam_indices, batch_axis=0): """Gathers the beam slices indexed by beam_indices into new beam array.""" def gather_fn(tensor): if batch_axis > 0: # pushes all dimentions before the batch to the end, so we get (batch, beam_id, ...) perm = tf.concat((tf.range(tf.rank(tensor))[batch_axis:], tf.range(batch_axis)), axis=0) tensor = tf.transpose(tensor, perm=perm) gathered_tensor = tf.gather(params=tensor, indices=beam_indices, axis=1, batch_dims=1) if batch_axis > 0: # transposes back to the original dimensions perm = tf.concat((tf.range(tf.rank(tensor))[batch_axis:], tf.range(batch_axis)), axis=0) perm = tf.math.invert_permutation(perm) gathered_tensor = tf.transpose(gathered_tensor, perm=perm) return gathered_tensor return tf.nest.map_structure(gather_fn, nested) def beam_search( self, input_ids: tf.Tensor, do_sample: bool = False, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, length_penalty: Optional[float] = None, early_stopping: Optional[Union[bool, str]] = None, logits_processor: Optional[TFLogitsProcessorList] = None, logits_warper: Optional[TFLogitsProcessorList] = None, num_return_sequences: Optional[int] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_scores: Optional[bool] = None, return_dict_in_generate: Optional[bool] = None, **model_kwargs, ) -> Union[TFBeamSearchOutput, TFBeamSampleOutput, tf.Tensor]: r""" Generates sequences for models with a language modeling head using beam search. If `do_sample` is `False`, uses a greedy approach, otherwise does multinomial sampling without replacement. Parameters: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. do_sample (`bool`, *optional*, defaults to `False`): Whether or not to use sampling ; use greedy decoding otherwise. max_length (`int`, *optional*, defaults to 20): The maximum length of the sequence to be generated. pad_token_id (`int`, *optional*): The id of the *padding* token. eos_token_id (`Union[int, List[int]]`, *optional*): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. length_penalty (`float`, *optional*, defaults to 1.0): Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while `length_penalty` < 0.0 encourages shorter sequences. early_stopping (`bool` or `str`, *optional*, defaults to `False`): Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values: `True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an heuristic is applied and the generation stops when is it very unlikely to find better candidates; `"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical beam search algorithm). logits_processor (`[TFLogitsProcessorList]`, *optional*): An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. logits_warper (`TFLogitsProcessorList`, *optional*): An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsWarper`] used to warp the prediction score distribution of the language modeling head applied before multinomial sampling at each generation step. num_return_sequences(`int`, *optional*, defaults to 1): The number of independently computed returned sequences for each element in the batch. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more details. output_hidden_states (`bool`, *optional*, defaults to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more details. return_dict_in_generate (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. model_kwargs: Additional model specific kwargs will be forwarded to the `call` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.TFBeamSearchDecoderOnlyOutput`], [`~generation.TFBeamSearchEncoderDecoderOutput`] or `tf.Tensor`: A `tf.Tensor` containing the generated tokens (default behaviour) or a [`~generation.TFBeamSearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.TFBeamSearchEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. Examples: ```python >>> from transformers import ( ... AutoTokenizer, ... TFAutoModelForSeq2SeqLM, ... TFLogitsProcessorList, ... TFMinLengthLogitsProcessor, ... ) >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") >>> model = TFAutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base") >>> encoder_input_str = "translate English to German: How old are you?" >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="tf").input_ids >>> # lets run beam search using 3 beams >>> num_beams = 3 >>> # define decoder start token ids >>> input_ids = tf.ones((1, num_beams, 1), dtype=tf.int32) >>> input_ids = input_ids * model.generation_config.decoder_start_token_id >>> # add encoder_outputs to model keyword arguments >>> encoder_outputs = model.get_encoder()(encoder_input_ids, return_dict=True) >>> encoder_outputs.last_hidden_state = tf.repeat( ... tf.expand_dims(encoder_outputs.last_hidden_state, axis=0), num_beams, axis=1 ... ) >>> model_kwargs = {"encoder_outputs": encoder_outputs} >>> # instantiate logits processors >>> logits_processor = TFLogitsProcessorList( ... [TFMinLengthLogitsProcessor(5, eos_token_id=model.generation_config.eos_token_id)] ... ) >>> outputs = model.beam_search(input_ids, logits_processor=logits_processor, **model_kwargs) >>> tokenizer.batch_decode(outputs, skip_special_tokens=True) ['Wie alt bist du?'] ```""" def flatten_beam_dim(tensor, batch_axis=0): """Flattens the first two dimensions of a non-scalar array.""" shape = shape_list(tensor) return tf.reshape( tensor, shape[:batch_axis] + [shape[batch_axis] * shape[batch_axis + 1]] + shape[batch_axis + 2 :], ) def unflatten_beam_dim(tensor, num_beams, batch_axis=0): """Unflattens the first, flat batch*beam dimension of a non-scalar array.""" shape = shape_list(tensor) return tf.reshape(tensor, shape[:batch_axis] + [-1, num_beams] + shape[batch_axis + 1 :]) # 1. init beam_search values logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList() logits_warper = logits_warper if logits_warper is not None else TFLogitsProcessorList() max_length = max_length if max_length is not None else self.generation_config.max_length pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] num_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.generation_config.num_return_sequences ) output_attentions = ( output_attentions if output_attentions is not None else self.generation_config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states ) output_scores = output_scores if output_scores is not None else self.generation_config.output_scores return_dict_in_generate = ( return_dict_in_generate if return_dict_in_generate is not None else self.generation_config.return_dict_in_generate ) length_penalty = length_penalty if length_penalty is not None else self.generation_config.length_penalty early_stopping = early_stopping if early_stopping is not None else self.generation_config.early_stopping use_cache = model_kwargs.pop("use_cache", self.generation_config.use_cache) use_xla = not tf.executing_eagerly() # TODO (Joao): fix cache format or find programatic way to detect cache index # GPT2 and other models has a slightly different cache structure, with a different batch axis model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self) cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0 # some models, like XLNet, need more than the last token in the presence of past_key_values needs_full_input = "use_mems" in set(inspect.signature(self.prepare_inputs_for_generation).parameters.keys()) # 2. init `attentions`, `hidden_states`, and `scores` tuples all_scores = [] if (return_dict_in_generate and output_scores) else None decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None cross_attentions = [] if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None # 3. init tensors to use for "xla-compileable" generate function batch_size, num_beams, cur_len = shape_list(input_ids) # store the prompt length of decoder decoder_prompt_len = cur_len # per batch, beam-item holding current token in loop, pre-populated with `pad_token_id` input_ids_padding = tf.ones((batch_size, num_beams, max_length - cur_len), dtype=tf.int32) * ( pad_token_id or 0 ) running_sequences = tf.concat([input_ids, input_ids_padding], axis=-1) sequences = tf.ones((batch_size, num_beams, max_length), dtype=tf.int32) * (pad_token_id or 0) # per batch,beam-item state bit indicating if sentence has finished. is_sent_finished = tf.zeros((batch_size, num_beams), dtype=tf.bool) # per batch, beam-item score, logprobs running_scores = tf.tile( tf.expand_dims(tf.convert_to_tensor([0.0] + [-1.0e9] * (num_beams - 1)), axis=0), [batch_size, 1] ) scores = tf.ones((batch_size, num_beams)) * -1.0e9 # per batch beam indices running_beam_indices = tf.ones((batch_size, num_beams, max_length - decoder_prompt_len), dtype=tf.int32) * -1 beam_indices = tf.ones((batch_size, num_beams, max_length - decoder_prompt_len), dtype=tf.int32) * -1 # flatten beam dim if "encoder_outputs" in model_kwargs: model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim( model_kwargs["encoder_outputs"]["last_hidden_state"] ) if "attention_mask" in model_kwargs: model_kwargs["attention_mask"] = flatten_beam_dim(model_kwargs["attention_mask"]) # 4. define "xla-compile-able" stop-condition and auto-regressive function # define stop-condition and auto-regressive function def beam_search_cond_fn( cur_len, running_sequences, running_scores, running_beam_indices, sequences, scores, beam_indices, is_sent_finished, decoder_prompt_len, model_kwargs, ): """ Beam Search termination condition function -- halts the generation loop if any of these conditions becomes False """ # 1. is less than max length? not_max_length_yet = cur_len < max_length # 2. can the new beams still improve? # early_stopping == False -> apply heuristic = always get the best score from `cur_len - decoder_prompt_len`. See the discussion # below for more details. # https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565 # early_stopping == "never" -> compute the best score from max_length or cur_len, depending on the sign of # length_penalty. Positive length_penalty favors longer sequences, thus we use max_length there. if early_stopping == "never" and length_penalty > 0.0: best_running_score = running_scores[:, :1] / ((max_length - decoder_prompt_len) ** length_penalty) else: best_running_score = running_scores[:, :1] / ( tf.cast(cur_len - decoder_prompt_len, dtype=tf.float32) ** length_penalty ) worst_finished_score = tf.where( is_sent_finished, tf.math.reduce_min(scores, axis=1, keepdims=True), -1.0e9 ) improvement_still_possible = tf.math.reduce_any(best_running_score > worst_finished_score) # 3. is there still a beam that has not finished? still_open_beam = ~(tf.math.reduce_all(is_sent_finished) & (early_stopping is True)) return not_max_length_yet & still_open_beam & improvement_still_possible def beam_search_body_fn( cur_len, running_sequences, running_scores, running_beam_indices, sequences, scores, beam_indices, is_sent_finished, decoder_prompt_len, model_kwargs, ): """ Beam Search iterative update function -- each iteration adds a new token and updates the best sequences seen so far """ # 1. Forward current tokens if model_kwargs.get("past_key_values") is None or needs_full_input: input_ids = running_sequences[:, :, :cur_len] else: input_ids = tf.expand_dims(running_sequences[:, :, cur_len - 1], -1) model_inputs = self.prepare_inputs_for_generation( flatten_beam_dim(input_ids), use_cache=use_cache, **model_kwargs ) model_outputs = self( **model_inputs, return_dict=True, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) logits = unflatten_beam_dim(model_outputs.logits[:, -1], num_beams) # 2. Compute log probs # get log probabilities from logits, process logits with processors (*e.g.* min_length, ...), and # add new logprobs to existing running logprobs scores. log_probs = tf.nn.log_softmax(logits) log_probs = logits_processor(flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), cur_len) log_probs = unflatten_beam_dim(log_probs, num_beams) if do_sample: log_probs = logits_warper(flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), cur_len) log_probs = unflatten_beam_dim(log_probs, num_beams) log_probs_processed = log_probs log_probs = log_probs + tf.expand_dims(running_scores, axis=2) vocab_size = log_probs.shape[2] log_probs = tf.reshape(log_probs, (batch_size, num_beams * vocab_size)) # Store scores, attentions and hidden_states when required if not use_xla and return_dict_in_generate: if output_scores: all_scores.append( logits_warper( flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs_processed), cur_len, ) ) if output_attentions and self.config.is_encoder_decoder: decoder_attentions.append(model_outputs.decoder_attentions) elif output_attentions and not self.config.is_encoder_decoder: decoder_attentions.append(model_outputs.attentions) if self.config.is_encoder_decoder: cross_attentions.append(model_outputs.cross_attentions) if output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(model_outputs.decoder_hidden_states) elif output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(model_outputs.hidden_states) # 3. Retrieve top-K # Each item in batch has num_beams * vocab_size candidate sequences. For each item, get the top 2*k # candidates with the highest log-probabilities. We gather the top 2*K beams here so that even if the # best K sequences reach EOS simultaneously, we have another K sequences remaining to continue the live # beam search. # Gather the top 2*K scores from _all_ beams. # Gather 2*k top beams. # Recover the beam index by floor division. # Recover token id by modulo division and expand Id array for broadcasting. # Update sequences for the 2*K top-k new sequences. beams_to_keep = 2 * num_beams if do_sample: topk_indices = sample_without_replacement(log_probs, beams_to_keep) topk_log_probs = tf.gather(log_probs, topk_indices, axis=1, batch_dims=1) else: topk_log_probs, topk_indices = tf.math.top_k(log_probs, k=beams_to_keep) topk_current_beam_indices = topk_indices // vocab_size topk_running_beam_indices = self._gather_beams(running_beam_indices, topk_current_beam_indices) topk_running_sequences = self._gather_beams(running_sequences, topk_current_beam_indices) topk_ids = topk_indices % vocab_size # writes the new token indices_batch = tf.repeat(tf.range(batch_size), [beams_to_keep]) indices_beam = tf.tile(tf.range(beams_to_keep), [batch_size]) update_indices = tf.stack( [indices_batch, indices_beam, tf.broadcast_to(cur_len, [batch_size * beams_to_keep])], axis=-1 ) topk_sequences = tf.tensor_scatter_nd_update( tensor=topk_running_sequences, indices=update_indices, updates=tf.reshape(topk_ids, [batch_size * beams_to_keep]), ) # we want to store the beam indices with batch information -> real beam index = beam index % num beams batch_modified_indices = topk_current_beam_indices + tf.broadcast_to( tf.expand_dims(tf.range(batch_size) * num_beams, axis=1), topk_current_beam_indices.shape ) update_indices = tf.stack( [ indices_batch, indices_beam, tf.broadcast_to(cur_len - decoder_prompt_len, [batch_size * beams_to_keep]), ], axis=-1, ) topk_beam_indices = tf.tensor_scatter_nd_update( tensor=topk_running_beam_indices, indices=update_indices, updates=tf.reshape(batch_modified_indices, [batch_size * beams_to_keep]), ) # 4. Check which sequences have ended # Update current sequences: Did the top `num_beams` sequences reach an end marker? # To prevent these just finished sequences from being added to the current sequences # set of active beam search sequences, set their log probs to a very large negative value. if eos_token_id is None: eos_in_next_token = tf.zeros(topk_sequences[:, :, cur_len].shape, dtype=tf.bool) else: eos_in_next_token = tf.math.reduce_any( tf.equal( tf.broadcast_to( topk_sequences[:, :, cur_len], [len(eos_token_id)] + topk_sequences[:, :, cur_len].shape, ), tf.expand_dims(tf.expand_dims(eos_token_id, -1), -1), ), axis=0, ) did_topk_just_finished = eos_in_next_token & tf.broadcast_to( tf.concat((tf.ones((num_beams), dtype=tf.bool), tf.zeros((num_beams), dtype=tf.bool)), axis=0), shape_list(eos_in_next_token), ) # non-top `num_beams` eos tokens can't be used to finish a beam, but the others can't be used in the next # running sentences either running_topk_log_probs = topk_log_probs + tf.cast(eos_in_next_token, tf.float32) * -1.0e9 # 5. Get running sequences scores for next # Determine the top k beam indices (from top 2*k beams) from log probs and gather top k beams # (from top 2*k beams). next_topk_indices = tf.math.top_k(running_topk_log_probs, k=num_beams)[1] next_running_sequences, next_running_scores, next_running_beam_indices = self._gather_beams( [topk_sequences, running_topk_log_probs, topk_beam_indices], next_topk_indices ) # 6. Process topk logits # Further process log probs: # - add length penalty # - make sure no scores can be added anymore if beam is full # - make sure still running sequences cannot be chosen as finalized beam topk_log_probs = topk_log_probs / ( tf.cast(cur_len + 1 - decoder_prompt_len, dtype=tf.float32) ** length_penalty ) beams_in_batch_are_full = tf.broadcast_to( tf.math.reduce_all(is_sent_finished, axis=-1, keepdims=True), shape_list(did_topk_just_finished) ) & (early_stopping is True) add_penalty = ~did_topk_just_finished | beams_in_batch_are_full topk_log_probs += tf.cast(add_penalty, tf.float32) * -1.0e9 # 7. Get scores, sequences, is sentence finished for next. # Combine sequences, scores, and flags along the beam dimension and compare new finished sequence scores # to existing finished scores and select the best from the new set of beams merged_sequences = tf.concat([sequences, topk_sequences], axis=1) merged_scores = tf.concat([scores, topk_log_probs], axis=1) merged_beams = tf.concat([beam_indices, topk_beam_indices], axis=1) merged_is_sent_finished = tf.concat([is_sent_finished, did_topk_just_finished], axis=1) topk_merged_indices = tf.math.top_k(merged_scores, k=num_beams)[1] next_sequences, next_scores, next_beam_indices, next_is_sent_finished = self._gather_beams( [merged_sequences, merged_scores, merged_beams, merged_is_sent_finished], topk_merged_indices ) # 8. Prepare data for the next iteration # Determine the top k beam indices from the original set of all beams. With these, gather the top k # beam-associated caches. cur_len = cur_len + 1 if "past_key_values" in model_outputs: cache = tf.nest.map_structure( lambda tensor: unflatten_beam_dim(tensor, num_beams, batch_axis=cache_batch_axis), model_outputs.past_key_values, ) next_running_indices = self._gather_beams(topk_current_beam_indices, next_topk_indices) next_cache = self._gather_beams(cache, next_running_indices, batch_axis=cache_batch_axis) model_outputs["past_key_values"] = tf.nest.map_structure( lambda tensor: flatten_beam_dim(tensor, batch_axis=cache_batch_axis), next_cache ) if use_xla: next_model_kwargs = self._update_model_kwargs_for_xla_generation( model_outputs=model_outputs, model_kwargs=model_kwargs, cur_len=cur_len, max_length=max_length, batch_size=(batch_size * num_beams), is_encoder_decoder=self.config.is_encoder_decoder, batch_axis=cache_batch_axis, ) else: next_model_kwargs = self._update_model_kwargs_for_generation( model_outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder ) # if we don't cache past_key_values key values we need the whole input if model_kwargs.get("past_key_values", None) is None: # let's throw out `past_key_values` since we don't want `None` tensors model_kwargs.pop("past_key_values", None) return ( cur_len, next_running_sequences, next_running_scores, next_running_beam_indices, next_sequences, next_scores, next_beam_indices, next_is_sent_finished, decoder_prompt_len, next_model_kwargs, ) # 5. run generation # 1st generation step has to be run before to initialize `past_key_values` (if active) ( cur_len, running_sequences, running_scores, running_beam_indices, sequences, scores, beam_indices, is_sent_finished, decoder_prompt_len, model_kwargs, ) = beam_search_body_fn( cur_len, running_sequences, running_scores, running_beam_indices, sequences, scores, beam_indices, is_sent_finished, decoder_prompt_len, model_kwargs, ) # 2-to-n generation steps can then be run in autoregressive fashion (only in case 1st generation step does # NOT yield EOS token though) maximum_iterations = max_length - cur_len ( cur_len, running_sequences, running_scores, running_beam_indices, sequences, scores, beam_indices, is_sent_finished, decoder_prompt_len, _, ) = tf.while_loop( beam_search_cond_fn, beam_search_body_fn, ( cur_len, running_sequences, running_scores, running_beam_indices, sequences, scores, beam_indices, is_sent_finished, decoder_prompt_len, model_kwargs, ), maximum_iterations=maximum_iterations, ) # 6. prepare outputs # Account for the edge-case where there are no finished sequences for a particular batch item. If so, return # running sequences for that batch item. none_finished = tf.math.reduce_any(is_sent_finished, axis=1) sequences = tf.where(none_finished[:, None, None], sequences, running_sequences) beam_indices = tf.where(none_finished[:, None, None], beam_indices, running_beam_indices) # Apply the length penalty so that running scores match the finalized scores if they are used running_scores = running_scores / (tf.cast(cur_len - decoder_prompt_len, dtype=tf.float32) ** length_penalty) scores = tf.where(none_finished[:, None], scores, running_scores) # Take best beams for each batch (the score is sorted in descending order) sequences = flatten_beam_dim(sequences[:, :num_return_sequences, :]) scores = flatten_beam_dim(scores[:, :num_return_sequences]) beam_indices = flatten_beam_dim(beam_indices[:, :num_return_sequences, :]) if not use_xla: # Cut for backward compatibility sequences = sequences[:, :cur_len] beam_indices = beam_indices[:, : cur_len - decoder_prompt_len] if return_dict_in_generate: if self.config.is_encoder_decoder: # if model is an encoder-decoder, retrieve encoder attention weights and hidden states encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) output_cls = TFBeamSampleEncoderDecoderOutput if do_sample else TFBeamSearchEncoderDecoderOutput return output_cls( sequences=sequences, sequences_scores=scores, scores=all_scores, beam_indices=beam_indices, encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, ) else: output_cls = TFBeamSampleDecoderOnlyOutput if do_sample else TFBeamSearchDecoderOnlyOutput return output_cls( sequences=sequences, sequences_scores=scores, scores=all_scores, beam_indices=beam_indices, attentions=decoder_attentions, hidden_states=decoder_hidden_states, ) else: return sequences def contrastive_search( self, input_ids: tf.Tensor, top_k: Optional[int] = 1, penalty_alpha: Optional[float] = 0, logits_processor: Optional[TFLogitsProcessorList] = None, logits_warper: Optional[TFLogitsProcessorList] = None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_scores: Optional[bool] = None, return_dict_in_generate: Optional[bool] = None, **model_kwargs, ) -> Union[TFContrastiveSearchOutput, tf.Tensor]: r""" Generates sequences of token ids for models with a language modeling head using **contrastive search** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. Parameters: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. top_k (`int`, *optional*, defaults to 1): The size of the candidate set that is used to re-rank for contrastive search penalty_alpha (`float`, *optional*, defaults to 0): The degeneration penalty for contrastive search; activate when it is larger than 0 logits_processor (`TFLogitsProcessorList`, *optional*): An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. logits_warper (`TFLogitsProcessorList`, *optional*): An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsWarper`] used to warp the prediction score distribution of the language modeling head applied before multinomial sampling at each generation step. max_length (`int`, *optional*, defaults to 20): The maximum length of the sequence to be generated. pad_token_id (`int`, *optional*): The id of the *padding* token. eos_token_id (`Union[int, List[int]]`, *optional*): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more details. output_hidden_states (`bool`, *optional*, defaults to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more details. output_scores (`bool`, *optional*, defaults to `False`): Whether or not to return the prediction scores. See `scores` under returned tensors for more details. return_dict_in_generate (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. model_kwargs: Additional model specific keyword arguments will be forwarded to the `call` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.TFContrastiveSearchDecoderOnlyOutput`], [`~generation.TFContrastiveSearchEncoderDecoderOutput`] or `tf.Tensor`: A `tf.Tensor` containing the generated tokens (default behaviour) or a [`~generation.TFContrastiveySearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.TFContrastiveSearchEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. Examples: ```python >>> from transformers import AutoTokenizer, TFAutoModelForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m") >>> model = TFAutoModelForCausalLM.from_pretrained("facebook/opt-125m") >>> # set pad_token_id to eos_token_id because OPT does not have a PAD token >>> model.config.pad_token_id = model.config.eos_token_id >>> input_prompt = "DeepMind Company is" >>> input_ids = tokenizer(input_prompt, return_tensors="tf") >>> outputs = model.contrastive_search(**input_ids, penalty_alpha=0.6, top_k=4, max_length=64) >>> tokenizer.batch_decode(outputs, skip_special_tokens=True) ['DeepMind Company is a company that focuses on the development and commercialization of artificial intelligence (AI). DeepMind’s mission is to help people understand and solve problems that are difficult to solve in the world today.\n\nIn this post, we talk about the benefits of deep learning in business and how it'] ```""" def gather_best_candidate(nested, selected_idx_stacked, batch_axis=0): """Gathers the slices indexed by selected_idx_stacked from a potentially nested structure of tensors.""" def gather_fn(tensor): gathered_tensor = tf.gather(params=tensor, indices=selected_idx_stacked, axis=batch_axis) return gathered_tensor return tf.nest.map_structure(gather_fn, nested) # 1. init greedy_search values logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList() logits_warper = logits_warper if logits_warper is not None else TFLogitsProcessorList() max_length = max_length if max_length is not None else self.generation_config.max_length pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] output_scores = output_scores if output_scores is not None else self.generation_config.output_scores output_attentions = ( output_attentions if output_attentions is not None else self.generation_config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states ) return_dict_in_generate = ( return_dict_in_generate if return_dict_in_generate is not None else self.generation_config.return_dict_in_generate ) use_cache = True # In contrastive search, we always use cache model_kwargs.pop("use_cache", None) use_xla = not tf.executing_eagerly() # TODO (Joao): fix cache format or find programatic way to detect cache index # GPT2 and other models has a slightly different cache structure, with a different batch axis model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self) cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0 # 2. init `attentions`, `hidden_states`, and `scores` tuples scores = [] if (return_dict_in_generate and output_scores) else None decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None cross_attentions = [] if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None # 3. init tensors to use for "xla-compileable" generate function batch_size, cur_len = shape_list(input_ids) # initialize `generated` (`input_ids` padded with `pad_token_id`), `finished_sequences` input_ids_padding = tf.ones((batch_size, max_length - cur_len), dtype=tf.int32) * (pad_token_id or 0) generated = tf.concat([input_ids, input_ids_padding], axis=-1) finished_sequences = tf.zeros((batch_size,), dtype=tf.bool) # 4. define "xla-compile-able" stop-condition and auto-regressive function # define condition fn def contrastive_search_cond_fn( generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables ): """state termination condition fn.""" return ~tf.reduce_all(finished_sequences) # define condition fn def contrastive_search_body_fn( generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables ): """state update fn.""" # if the first step in the loop, encode all the prefix and obtain: (1) past_key_values; # (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step if model_kwargs.get("past_key_values") is None: # prepare inputs model_inputs = self.prepare_inputs_for_generation( generated[:, :cur_len], use_cache=use_cache, **model_kwargs ) # encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save # the `encoder_outputs` outputs = self( **model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions ) # last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with # previous tokens) if self.config.is_encoder_decoder: last_hidden_states = outputs.decoder_hidden_states[-1] else: last_hidden_states = outputs.hidden_states[-1] # XLA: last_hidden_states normally grows at each step, but in XLA it is padded so as to be used across # iterations (with fixed shapes) if use_xla: last_hidden_states = tf.pad(last_hidden_states, [[0, 0], [0, max_length - cur_len], [0, 0]]) # next logit for contrastive search to select top-k candidate tokens logit_for_next_step = outputs.logits[:, -1, :] if use_xla: model_kwargs = self._update_model_kwargs_for_xla_generation( model_outputs=outputs, model_kwargs=model_kwargs, cur_len=cur_len, max_length=max_length, batch_size=batch_size, is_encoder_decoder=self.config.is_encoder_decoder, batch_axis=cache_batch_axis, ) else: model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder ) # Expands model inputs top_k times, for batched forward passes (akin to beam search). _, model_kwargs = self._expand_inputs_for_generation( expand_size=top_k, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs ) past_key_values = model_kwargs.get("past_key_values") if past_key_values is None: raise ValueError( f"{self.__class__.__name__} does not support caching and therefore **can't** be used " "for contrastive search." ) elif ( not isinstance(past_key_values[0], (tuple, tf.Tensor)) or past_key_values[0][0].shape[0] != batch_size ): raise ValueError( f"{self.__class__.__name__} does not have a standard cache format and therefore **can't** be " "used for contrastive search without further modifications." ) else: logit_for_next_step = next_step_cached_variables["logit_for_next_step"] last_hidden_states = next_step_cached_variables["last_hidden_states"] outputs = next_step_cached_variables["outputs"] # contrastive_search main logic start: # contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by # degeneration penalty logit_for_next_step = logits_processor(generated, logit_for_next_step, cur_len) logit_for_next_step = logits_warper(generated, logit_for_next_step, cur_len) next_probs = stable_softmax(logit_for_next_step, axis=-1) top_k_probs, top_k_ids = tf.math.top_k(next_probs, k=top_k) # Store scores, attentions and hidden_states when required if not use_xla and return_dict_in_generate: if output_scores: scores.append(logit_for_next_step) if output_attentions and self.config.is_encoder_decoder: decoder_attentions.append(outputs.decoder_attentions) elif output_attentions and not self.config.is_encoder_decoder: decoder_attentions.append(outputs.attentions) if self.config.is_encoder_decoder: cross_attentions.append(outputs.cross_attentions) if output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(outputs.decoder_hidden_states) elif output_hidden_states and self.config.is_encoder_decoder: decoder_hidden_states.append(outputs.hidden_states) # Replicates the new past_key_values to match the `top_k` candidates model_kwargs["past_key_values"] = tf.nest.map_structure( lambda tensor: tf.repeat(tensor, top_k, axis=cache_batch_axis), model_kwargs["past_key_values"] ) # compute the candidate tokens by the language model and collects their hidden_states next_model_inputs = self.prepare_inputs_for_generation( tf.reshape(top_k_ids, [-1, 1]), use_cache=use_cache, **model_kwargs ) outputs = self( **next_model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions ) next_past_key_values = self._extract_past_from_model_output(outputs) logits = outputs.logits[:, -1, :] # name is different for encoder-decoder and decoder-only models if self.config.is_encoder_decoder: next_hidden = outputs.decoder_hidden_states[-1] full_hidden_states = outputs.decoder_hidden_states else: next_hidden = outputs.hidden_states[-1] full_hidden_states = outputs.hidden_states context_hidden = tf.repeat(last_hidden_states[:, :cur_len, :], top_k, axis=0) # compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the # model confidence selected_idx = _ranking_fast(context_hidden, next_hidden, top_k_probs, penalty_alpha, top_k) # converts indices to a dimension of top_k to the stacked top_k * batch_size dimension, for indexing # without a need to reshape on tensors that have these two dimensions stacked selected_idx_stacked = selected_idx + tf.range(selected_idx.shape[0], dtype=tf.int64) * top_k # prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing # the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores # (model confidence minus degeneration penalty); (6) decoder hidden_states next_tokens = tf.gather(top_k_ids, selected_idx, axis=1, batch_dims=1) next_hidden = gather_best_candidate(next_hidden, selected_idx_stacked) # XLA: last_hidden_states normally grows at each step, but in XLA it is padded so as to be used across # iterations (with fixed shapes) if use_xla: last_hidden_states = dynamic_update_slice(last_hidden_states, next_hidden, [0, cur_len, 0]) else: last_hidden_states = tf.concat([last_hidden_states, next_hidden], axis=1) next_decoder_hidden_states = gather_best_candidate(full_hidden_states, selected_idx_stacked) next_past_key_values = gather_best_candidate( next_past_key_values, selected_idx_stacked, batch_axis=cache_batch_axis ) logit_for_next_step = gather_best_candidate(logits, selected_idx_stacked) # Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration if self.config.is_encoder_decoder: next_step_cross_attentions = () next_step_decoder_attentions = () if output_attentions: next_step_cross_attentions = gather_best_candidate(outputs.cross_attentions, selected_idx_stacked) next_step_decoder_attentions = gather_best_candidate( outputs.decoder_attentions, selected_idx_stacked ) outputs = TFSeq2SeqLMOutput( past_key_values=next_past_key_values, decoder_hidden_states=next_decoder_hidden_states, decoder_attentions=next_step_decoder_attentions or None, cross_attentions=next_step_cross_attentions or None, ) else: next_step_attentions = () if output_attentions: next_step_attentions = gather_best_candidate(outputs.attentions, selected_idx_stacked) outputs = TFCausalLMOutputWithPast( past_key_values=next_past_key_values, hidden_states=next_decoder_hidden_states, attentions=next_step_attentions or None, ) # contrastive_search main logic end if eos_token_id is not None: if pad_token_id is None: raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.") unfinished_seq = 1 - tf.cast(finished_sequences, tf.int32) next_tokens = next_tokens * unfinished_seq + pad_token_id * (1 - unfinished_seq) next_token_is_eos = tf.math.reduce_any( tf.equal( tf.broadcast_to(next_tokens, (len(eos_token_id), batch_size)), tf.expand_dims(eos_token_id, -1) ), axis=0, ) finished_sequences = finished_sequences | next_token_is_eos # update `generated` and `cur_len` update_indices = tf.stack([tf.range(batch_size), tf.broadcast_to(cur_len, [batch_size])], axis=-1) generated = tf.tensor_scatter_nd_update(tensor=generated, indices=update_indices, updates=next_tokens) cur_len += 1 if use_xla: # NOTE: 1) relative to other generation strategies, contrastive search is always running forward # passes one step ahead -- hence the `cur_len=cur_len + 1`; 2) the attention mask here is expanded from # [batch_size, ...] to [batch_size*top_k, ...] -- hence the `batch_size=batch_size * top_k` model_kwargs = self._update_model_kwargs_for_xla_generation( model_outputs=outputs, model_kwargs=model_kwargs, cur_len=cur_len + 1, max_length=max_length, batch_size=batch_size * top_k, is_encoder_decoder=self.config.is_encoder_decoder, batch_axis=cache_batch_axis, ) else: model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder ) next_step_cached_variables = { "logit_for_next_step": logit_for_next_step, "last_hidden_states": last_hidden_states, "outputs": outputs, } return generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables # 5. run generation # 1st generation step has to be run before to initialize `past_key_values` generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables = contrastive_search_body_fn( generated, finished_sequences, cur_len, model_kwargs, None ) # 2-to-n generation steps can then be run in autoregressive fashion # only in case 1st generation step does NOT yield EOS token though maximum_iterations = max_length - cur_len generated, _, cur_len, _, _ = tf.while_loop( contrastive_search_cond_fn, contrastive_search_body_fn, (generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables), maximum_iterations=maximum_iterations, ) # 6. prepare outputs if not use_xla: # cut for backward compatibility generated = generated[:, :cur_len] if return_dict_in_generate: if self.config.is_encoder_decoder: # if model is an encoder-decoder, retrieve encoder attention weights # and hidden states encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) scores = tuple(scores) if scores is not None else None decoder_attentions = tuple(decoder_attentions) if decoder_attentions is not None else None cross_attentions = tuple(cross_attentions) if cross_attentions is not None else None decoder_hidden_states = tuple(decoder_hidden_states) if decoder_hidden_states is not None else None return TFContrastiveSearchEncoderDecoderOutput( sequences=generated, scores=scores, encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, ) else: return TFContrastiveSearchDecoderOnlyOutput( sequences=generated, scores=scores, attentions=decoder_attentions, hidden_states=decoder_hidden_states, ) else: return generated def tf_top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1): """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) top_k (`int`, *optional*, defaults to 0): If > 0, only keep the top k tokens with highest probability (top-k filtering) top_p (`float`, *optional*, defaults to 1.0): If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimumber of tokens we keep per batch example in the output. From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ warnings.warn( "`tf_top_k_top_p_filtering` is scheduled for deletion in v4.39. Use `TFTopKLogitsWarper` and " "`TFTopPLogitsWarper` instead.", DeprecationWarning, ) logits_shape = shape_list(logits) if top_k > 0: top_k = min(max(top_k, min_tokens_to_keep), logits_shape[-1]) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < tf.math.top_k(logits, k=top_k)[0][..., -1, None] logits = tf.where(indices_to_remove, filter_value, logits) if top_p < 1.0: sorted_indices = tf.argsort(logits, direction="DESCENDING") sorted_logits = tf.gather( logits, sorted_indices, axis=-1, batch_dims=1 ) # expects logits to be of dim (batch_size, vocab_size) cumulative_probs = tf.math.cumsum(stable_softmax(sorted_logits, axis=-1), axis=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) sorted_indices_to_remove = tf.concat( [ tf.zeros_like(sorted_indices_to_remove[:, :min_tokens_to_keep]), sorted_indices_to_remove[:, min_tokens_to_keep:], ], -1, ) # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove = tf.concat( [tf.zeros_like(sorted_indices_to_remove[:, :1]), sorted_indices_to_remove[:, :-1]], -1, ) # scatter sorted tensors to original indexing indices_to_remove = scatter_values_on_batch_indices(sorted_indices_to_remove, sorted_indices) logits = tf.where(indices_to_remove, filter_value, logits) return logits def scatter_values_on_batch_indices(values, batch_indices): shape = shape_list(batch_indices) # broadcast batch dim to shape broad_casted_batch_dims = tf.reshape(tf.broadcast_to(tf.expand_dims(tf.range(shape[0]), axis=-1), shape), [1, -1]) # transform batch_indices to pair_indices pair_indices = tf.transpose(tf.concat([broad_casted_batch_dims, tf.reshape(batch_indices, [1, -1])], 0)) # scatter values to pair indices return tf.scatter_nd(pair_indices, tf.reshape(values, [-1]), shape) def sample_without_replacement(logits, num_samples): """ categorical sampling without replacement is currently not implemented the gumbel-max trick will do for now see https://github.com/tensorflow/tensorflow/issues/9260 for more info """ z = -tf.math.log(-tf.math.log(tf.random.uniform(shape_list(logits), 0, 1))) _, indices = tf.nn.top_k(logits + z, num_samples) return indices def _ranking_fast( context_hidden: tf.Tensor, next_hidden: tf.Tensor, next_top_k_probs: tf.Tensor, alpha: float, beam_width: int, ) -> tf.Tensor: """ Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each row in the batch. """ norm_context_hidden = context_hidden / tf.norm(context_hidden, axis=2, keepdims=True) norm_next_hidden = next_hidden / tf.norm(next_hidden, axis=2, keepdims=True) cosine_matrix = tf.squeeze(tf.linalg.matmul(norm_context_hidden, norm_next_hidden, transpose_b=True), axis=-1) degeneration_penalty = tf.reduce_max(cosine_matrix, axis=-1) next_top_k_probs = tf.reshape(next_top_k_probs, shape=[-1]) contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty contrastive_score = tf.reshape(contrastive_score, shape=[-1, beam_width]) selected_idx = tf.argmax(contrastive_score, axis=1) return selected_idx
transformers/src/transformers/generation/tf_utils.py/0
{ "file_path": "transformers/src/transformers/generation/tf_utils.py", "repo_id": "transformers", "token_count": 77796 }
71
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import warnings from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union from ..utils import ( check_peft_version, find_adapter_config_file, is_accelerate_available, is_peft_available, is_torch_available, logging, ) if is_accelerate_available(): from accelerate import dispatch_model from accelerate.utils import get_balanced_memory, infer_auto_device_map # Minimum PEFT version supported for the integration MIN_PEFT_VERSION = "0.5.0" if TYPE_CHECKING: if is_torch_available(): import torch logger = logging.get_logger(__name__) class PeftAdapterMixin: """ A class containing all functions for loading and using adapters weights that are supported in PEFT library. For more details about adapters and injecting them on a transformer-based model, check out the documentation of PEFT library: https://huggingface.co/docs/peft/index Currently supported PEFT methods are all non-prefix tuning methods. Below is the list of supported PEFT methods that anyone can load, train and run with this mixin class: - Low Rank Adapters (LoRA): https://huggingface.co/docs/peft/conceptual_guides/lora - IA3: https://huggingface.co/docs/peft/conceptual_guides/ia3 - AdaLora: https://arxiv.org/abs/2303.10512 Other PEFT models such as prompt tuning, prompt learning are out of scope as these adapters are not "injectable" into a torch module. For using these methods, please refer to the usage guide of PEFT library. With this mixin, if the correct PEFT version is installed, it is possible to: - Load an adapter stored on a local path or in a remote Hub repository, and inject it in the model - Attach new adapters in the model and train them with Trainer or by your own. - Attach multiple adapters and iteratively activate / deactivate them - Activate / deactivate all adapters from the model. - Get the `state_dict` of the active adapter. """ _hf_peft_config_loaded = False def load_adapter( self, peft_model_id: Optional[str] = None, adapter_name: Optional[str] = None, revision: Optional[str] = None, token: Optional[str] = None, device_map: Optional[str] = "auto", max_memory: Optional[str] = None, offload_folder: Optional[str] = None, offload_index: Optional[int] = None, peft_config: Dict[str, Any] = None, adapter_state_dict: Optional[Dict[str, "torch.Tensor"]] = None, adapter_kwargs: Optional[Dict[str, Any]] = None, ) -> None: """ Load adapter weights from file or remote Hub folder. If you are not familiar with adapters and PEFT methods, we invite you to read more about them on PEFT official documentation: https://huggingface.co/docs/peft Requires peft as a backend to load the adapter weights. Args: peft_model_id (`str`, *optional*): The identifier of the model to look for on the Hub, or a local path to the saved adapter config file and adapter weights. adapter_name (`str`, *optional*): The adapter name to use. If not set, will use the default adapter. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. <Tip> To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>". </Tip> token (`str`, `optional`): Whether to use authentication token to load the remote folder. Userful to load private repositories that are on HuggingFace Hub. You might need to call `huggingface-cli login` and paste your tokens to cache it. device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*): A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank like `1`) on which the model will be allocated, the device map will map the entire model to this device. Passing `device_map = 0` means put the whole model on GPU 0. To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For more information about each option see [designing a device map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). max_memory (`Dict`, *optional*): A dictionary device identifier to maximum memory. Will default to the maximum memory available for each GPU and the available CPU RAM if unset. offload_folder (`str` or `os.PathLike`, `optional`): If the `device_map` contains any value `"disk"`, the folder where we will offload weights. offload_index (`int`, `optional`): `offload_index` argument to be passed to `accelerate.dispatch_model` method. peft_config (`Dict[str, Any]`, *optional*): The configuration of the adapter to add, supported adapters are non-prefix tuning and adaption prompts methods. This argument is used in case users directly pass PEFT state dicts adapter_state_dict (`Dict[str, torch.Tensor]`, *optional*): The state dict of the adapter to load. This argument is used in case users directly pass PEFT state dicts adapter_kwargs (`Dict[str, Any]`, *optional*): Additional keyword arguments passed along to the `from_pretrained` method of the adapter config and `find_adapter_config_file` method. """ check_peft_version(min_version=MIN_PEFT_VERSION) adapter_name = adapter_name if adapter_name is not None else "default" if adapter_kwargs is None: adapter_kwargs = {} from peft import PeftConfig, inject_adapter_in_model, load_peft_weights from peft.utils import set_peft_model_state_dict if self._hf_peft_config_loaded and adapter_name in self.peft_config: raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.") if peft_model_id is None and (adapter_state_dict is None and peft_config is None): raise ValueError( "You should either pass a `peft_model_id` or a `peft_config` and `adapter_state_dict` to load an adapter." ) # We keep `revision` in the signature for backward compatibility if revision is not None and "revision" not in adapter_kwargs: adapter_kwargs["revision"] = revision elif revision is not None and "revision" in adapter_kwargs and revision != adapter_kwargs["revision"]: logger.error( "You passed a `revision` argument both in `adapter_kwargs` and as a standalone argument. " "The one in `adapter_kwargs` will be used." ) # Override token with adapter_kwargs' token if "token" in adapter_kwargs: token = adapter_kwargs.pop("token") if peft_config is None: adapter_config_file = find_adapter_config_file( peft_model_id, token=token, **adapter_kwargs, ) if adapter_config_file is None: raise ValueError( f"adapter model file not found in {peft_model_id}. Make sure you are passing the correct path to the " "adapter model." ) peft_config = PeftConfig.from_pretrained( peft_model_id, token=token, **adapter_kwargs, ) # Create and add fresh new adapters into the model. inject_adapter_in_model(peft_config, self, adapter_name) if not self._hf_peft_config_loaded: self._hf_peft_config_loaded = True if peft_model_id is not None: adapter_state_dict = load_peft_weights(peft_model_id, token=token, **adapter_kwargs) # We need to pre-process the state dict to remove unneeded prefixes - for backward compatibility processed_adapter_state_dict = {} prefix = "base_model.model." for key, value in adapter_state_dict.items(): if key.startswith(prefix): new_key = key[len(prefix) :] else: new_key = key processed_adapter_state_dict[new_key] = value # Load state dict incompatible_keys = set_peft_model_state_dict(self, processed_adapter_state_dict, adapter_name) if incompatible_keys is not None: # check only for unexpected keys if hasattr(incompatible_keys, "unexpected_keys") and len(incompatible_keys.unexpected_keys) > 0: logger.warning( f"Loading adapter weights from {peft_model_id} led to unexpected keys not found in the model: " f" {incompatible_keys.unexpected_keys}. " ) # Re-dispatch model and hooks in case the model is offloaded to CPU / Disk. if ( (getattr(self, "hf_device_map", None) is not None) and (len(set(self.hf_device_map.values()).intersection({"cpu", "disk"})) > 0) and len(self.peft_config) == 1 ): self._dispatch_accelerate_model( device_map=device_map, max_memory=max_memory, offload_folder=offload_folder, offload_index=offload_index, ) def add_adapter(self, adapter_config, adapter_name: Optional[str] = None) -> None: r""" If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft Adds a fresh new adapter to the current model for training purpose. If no adapter name is passed, a default name is assigned to the adapter to follow the convention of PEFT library (in PEFT we use "default" as the default adapter name). Args: adapter_config (`~peft.PeftConfig`): The configuration of the adapter to add, supported adapters are non-prefix tuning and adaption prompts methods adapter_name (`str`, *optional*, defaults to `"default"`): The name of the adapter to add. If no name is passed, a default name is assigned to the adapter. """ check_peft_version(min_version=MIN_PEFT_VERSION) from peft import PeftConfig, inject_adapter_in_model adapter_name = adapter_name or "default" if not self._hf_peft_config_loaded: self._hf_peft_config_loaded = True elif adapter_name in self.peft_config: raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.") if not isinstance(adapter_config, PeftConfig): raise ValueError( f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead." ) # Retrieve the name or path of the model, one could also use self.config._name_or_path # but to be consistent with what we do in PEFT: https://github.com/huggingface/peft/blob/6e783780ca9df3a623992cc4d1d665001232eae0/src/peft/mapping.py#L100 adapter_config.base_model_name_or_path = self.__dict__.get("name_or_path", None) inject_adapter_in_model(adapter_config, self, adapter_name) self.set_adapter(adapter_name) def set_adapter(self, adapter_name: Union[List[str], str]) -> None: """ If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft Sets a specific adapter by forcing the model to use a that adapter and disable the other adapters. Args: adapter_name (`Union[List[str], str]`): The name of the adapter to set. Can be also a list of strings to set multiple adapters. """ check_peft_version(min_version=MIN_PEFT_VERSION) if not self._hf_peft_config_loaded: raise ValueError("No adapter loaded. Please load an adapter first.") elif isinstance(adapter_name, list): missing = set(adapter_name) - set(self.peft_config) if len(missing) > 0: raise ValueError( f"Following adapter(s) could not be found: {', '.join(missing)}. Make sure you are passing the correct adapter name(s)." f" current loaded adapters are: {list(self.peft_config.keys())}" ) elif adapter_name not in self.peft_config: raise ValueError( f"Adapter with name {adapter_name} not found. Please pass the correct adapter name among {list(self.peft_config.keys())}" ) from peft.tuners.tuners_utils import BaseTunerLayer from peft.utils import ModulesToSaveWrapper _adapters_has_been_set = False for _, module in self.named_modules(): if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): # For backward compatbility with previous PEFT versions if hasattr(module, "set_adapter"): module.set_adapter(adapter_name) else: module.active_adapter = adapter_name _adapters_has_been_set = True if not _adapters_has_been_set: raise ValueError( "Did not succeeded in setting the adapter. Please make sure you are using a model that supports adapters." ) def disable_adapters(self) -> None: r""" If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft Disable all adapters that are attached to the model. This leads to inferring with the base model only. """ check_peft_version(min_version=MIN_PEFT_VERSION) if not self._hf_peft_config_loaded: raise ValueError("No adapter loaded. Please load an adapter first.") from peft.tuners.tuners_utils import BaseTunerLayer from peft.utils import ModulesToSaveWrapper for _, module in self.named_modules(): if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): # The recent version of PEFT need to call `enable_adapters` instead if hasattr(module, "enable_adapters"): module.enable_adapters(enabled=False) else: module.disable_adapters = True def enable_adapters(self) -> None: """ If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft Enable adapters that are attached to the model. The model will use `self.active_adapter()` """ check_peft_version(min_version=MIN_PEFT_VERSION) if not self._hf_peft_config_loaded: raise ValueError("No adapter loaded. Please load an adapter first.") from peft.tuners.tuners_utils import BaseTunerLayer for _, module in self.named_modules(): if isinstance(module, BaseTunerLayer): # The recent version of PEFT need to call `enable_adapters` instead if hasattr(module, "enable_adapters"): module.enable_adapters(enabled=True) else: module.disable_adapters = False def active_adapters(self) -> List[str]: """ If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft Gets the current active adapters of the model. In case of multi-adapter inference (combining multiple adapters for inference) returns the list of all active adapters so that users can deal with them accordingly. For previous PEFT versions (that does not support multi-adapter inference), `module.active_adapter` will return a single string. """ check_peft_version(min_version=MIN_PEFT_VERSION) if not is_peft_available(): raise ImportError("PEFT is not available. Please install PEFT to use this function: `pip install peft`.") if not self._hf_peft_config_loaded: raise ValueError("No adapter loaded. Please load an adapter first.") from peft.tuners.tuners_utils import BaseTunerLayer for _, module in self.named_modules(): if isinstance(module, BaseTunerLayer): active_adapters = module.active_adapter break # For previous PEFT versions if isinstance(active_adapters, str): active_adapters = [active_adapters] return active_adapters def active_adapter(self) -> str: warnings.warn( "The `active_adapter` method is deprecated and will be removed in a future version.", FutureWarning ) return self.active_adapters()[0] def get_adapter_state_dict(self, adapter_name: Optional[str] = None) -> dict: """ If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft Gets the adapter state dict that should only contain the weights tensors of the specified adapter_name adapter. If no adapter_name is passed, the active adapter is used. Args: adapter_name (`str`, *optional*): The name of the adapter to get the state dict from. If no name is passed, the active adapter is used. """ check_peft_version(min_version=MIN_PEFT_VERSION) if not self._hf_peft_config_loaded: raise ValueError("No adapter loaded. Please load an adapter first.") from peft import get_peft_model_state_dict if adapter_name is None: adapter_name = self.active_adapter() adapter_state_dict = get_peft_model_state_dict(self, adapter_name=adapter_name) return adapter_state_dict def _dispatch_accelerate_model( self, device_map: str, max_memory: Optional[int] = None, offload_folder: Optional[str] = None, offload_index: Optional[int] = None, ) -> None: """ Optional re-dispatch the model and attach new hooks to the model in case the model has been loaded with accelerate (i.e. with `device_map=xxx`) Args: device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*): A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank like `1`) on which the model will be allocated, the device map will map the entire model to this device. Passing `device_map = 0` means put the whole model on GPU 0. To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For more information about each option see [designing a device map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). max_memory (`Dict`, *optional*): A dictionary device identifier to maximum memory. Will default to the maximum memory available for each GPU and the available CPU RAM if unset. offload_folder (`str` or `os.PathLike`, *optional*): If the `device_map` contains any value `"disk"`, the folder where we will offload weights. offload_index (`int`, *optional*): The offload_index argument to be passed to `accelerate.dispatch_model` method. """ dispatch_model_kwargs = {} # Safety checker for previous `accelerate` versions # `offload_index` was introduced in https://github.com/huggingface/accelerate/pull/873/ if "offload_index" in inspect.signature(dispatch_model).parameters: dispatch_model_kwargs["offload_index"] = offload_index no_split_module_classes = self._no_split_modules if device_map != "sequential": max_memory = get_balanced_memory( self, max_memory=max_memory, no_split_module_classes=no_split_module_classes, low_zero=(device_map == "balanced_low_0"), ) if isinstance(device_map, str): device_map = infer_auto_device_map( self, max_memory=max_memory, no_split_module_classes=no_split_module_classes ) dispatch_model( self, device_map=device_map, offload_dir=offload_folder, **dispatch_model_kwargs, )
transformers/src/transformers/integrations/peft.py/0
{ "file_path": "transformers/src/transformers/integrations/peft.py", "repo_id": "transformers", "token_count": 9185 }
72
/*! ************************************************************************** * Deformable DETR * Copyright (c) 2020 SenseTime. All Rights Reserved. * Licensed under the Apache License, Version 2.0 [see LICENSE for details] ************************************************************************** * Modified from DCN (https://github.com/msracver/Deformable-ConvNets) * Copyright (c) 2018 Microsoft ************************************************************************** */ #include <cstdio> #include <algorithm> #include <cstring> #include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> #include <THC/THCAtomics.cuh> #define CUDA_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; \ i < (n); \ i += blockDim.x * gridDim.x) const int CUDA_NUM_THREADS = 1024; inline int GET_BLOCKS(const int N, const int num_threads) { return (N + num_threads - 1) / num_threads; } template <typename scalar_t> __device__ scalar_t ms_deform_attn_im2col_bilinear(const scalar_t* &bottom_data, const int &height, const int &width, const int &nheads, const int &channels, const scalar_t &h, const scalar_t &w, const int &m, const int &c) { const int h_low = floor(h); const int w_low = floor(w); const int h_high = h_low + 1; const int w_high = w_low + 1; const scalar_t lh = h - h_low; const scalar_t lw = w - w_low; const scalar_t hh = 1 - lh, hw = 1 - lw; const int w_stride = nheads * channels; const int h_stride = width * w_stride; const int h_low_ptr_offset = h_low * h_stride; const int h_high_ptr_offset = h_low_ptr_offset + h_stride; const int w_low_ptr_offset = w_low * w_stride; const int w_high_ptr_offset = w_low_ptr_offset + w_stride; const int base_ptr = m * channels + c; scalar_t v1 = 0; if (h_low >= 0 && w_low >= 0) { const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; v1 = bottom_data[ptr1]; } scalar_t v2 = 0; if (h_low >= 0 && w_high <= width - 1) { const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; v2 = bottom_data[ptr2]; } scalar_t v3 = 0; if (h_high <= height - 1 && w_low >= 0) { const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; v3 = bottom_data[ptr3]; } scalar_t v4 = 0; if (h_high <= height - 1 && w_high <= width - 1) { const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; v4 = bottom_data[ptr4]; } const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); return val; } template <typename scalar_t> __device__ void ms_deform_attn_col2im_bilinear(const scalar_t* &bottom_data, const int &height, const int &width, const int &nheads, const int &channels, const scalar_t &h, const scalar_t &w, const int &m, const int &c, const scalar_t &top_grad, const scalar_t &attn_weight, scalar_t* &grad_value, scalar_t* grad_sampling_loc, scalar_t* grad_attn_weight) { const int h_low = floor(h); const int w_low = floor(w); const int h_high = h_low + 1; const int w_high = w_low + 1; const scalar_t lh = h - h_low; const scalar_t lw = w - w_low; const scalar_t hh = 1 - lh, hw = 1 - lw; const int w_stride = nheads * channels; const int h_stride = width * w_stride; const int h_low_ptr_offset = h_low * h_stride; const int h_high_ptr_offset = h_low_ptr_offset + h_stride; const int w_low_ptr_offset = w_low * w_stride; const int w_high_ptr_offset = w_low_ptr_offset + w_stride; const int base_ptr = m * channels + c; const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; const scalar_t top_grad_value = top_grad * attn_weight; scalar_t grad_h_weight = 0, grad_w_weight = 0; scalar_t v1 = 0; if (h_low >= 0 && w_low >= 0) { const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; v1 = bottom_data[ptr1]; grad_h_weight -= hw * v1; grad_w_weight -= hh * v1; atomicAdd(grad_value+ptr1, w1*top_grad_value); } scalar_t v2 = 0; if (h_low >= 0 && w_high <= width - 1) { const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; v2 = bottom_data[ptr2]; grad_h_weight -= lw * v2; grad_w_weight += hh * v2; atomicAdd(grad_value+ptr2, w2*top_grad_value); } scalar_t v3 = 0; if (h_high <= height - 1 && w_low >= 0) { const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; v3 = bottom_data[ptr3]; grad_h_weight += hw * v3; grad_w_weight -= lh * v3; atomicAdd(grad_value+ptr3, w3*top_grad_value); } scalar_t v4 = 0; if (h_high <= height - 1 && w_high <= width - 1) { const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; v4 = bottom_data[ptr4]; grad_h_weight += lw * v4; grad_w_weight += lh * v4; atomicAdd(grad_value+ptr4, w4*top_grad_value); } const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); *grad_attn_weight = top_grad * val; *grad_sampling_loc = width * grad_w_weight * top_grad_value; *(grad_sampling_loc + 1) = height * grad_h_weight * top_grad_value; } template <typename scalar_t> __device__ void ms_deform_attn_col2im_bilinear_gm(const scalar_t* &bottom_data, const int &height, const int &width, const int &nheads, const int &channels, const scalar_t &h, const scalar_t &w, const int &m, const int &c, const scalar_t &top_grad, const scalar_t &attn_weight, scalar_t* &grad_value, scalar_t* grad_sampling_loc, scalar_t* grad_attn_weight) { const int h_low = floor(h); const int w_low = floor(w); const int h_high = h_low + 1; const int w_high = w_low + 1; const scalar_t lh = h - h_low; const scalar_t lw = w - w_low; const scalar_t hh = 1 - lh, hw = 1 - lw; const int w_stride = nheads * channels; const int h_stride = width * w_stride; const int h_low_ptr_offset = h_low * h_stride; const int h_high_ptr_offset = h_low_ptr_offset + h_stride; const int w_low_ptr_offset = w_low * w_stride; const int w_high_ptr_offset = w_low_ptr_offset + w_stride; const int base_ptr = m * channels + c; const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; const scalar_t top_grad_value = top_grad * attn_weight; scalar_t grad_h_weight = 0, grad_w_weight = 0; scalar_t v1 = 0; if (h_low >= 0 && w_low >= 0) { const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; v1 = bottom_data[ptr1]; grad_h_weight -= hw * v1; grad_w_weight -= hh * v1; atomicAdd(grad_value+ptr1, w1*top_grad_value); } scalar_t v2 = 0; if (h_low >= 0 && w_high <= width - 1) { const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; v2 = bottom_data[ptr2]; grad_h_weight -= lw * v2; grad_w_weight += hh * v2; atomicAdd(grad_value+ptr2, w2*top_grad_value); } scalar_t v3 = 0; if (h_high <= height - 1 && w_low >= 0) { const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; v3 = bottom_data[ptr3]; grad_h_weight += hw * v3; grad_w_weight -= lh * v3; atomicAdd(grad_value+ptr3, w3*top_grad_value); } scalar_t v4 = 0; if (h_high <= height - 1 && w_high <= width - 1) { const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; v4 = bottom_data[ptr4]; grad_h_weight += lw * v4; grad_w_weight += lh * v4; atomicAdd(grad_value+ptr4, w4*top_grad_value); } const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); atomicAdd(grad_attn_weight, top_grad * val); atomicAdd(grad_sampling_loc, width * grad_w_weight * top_grad_value); atomicAdd(grad_sampling_loc + 1, height * grad_h_weight * top_grad_value); } template <typename scalar_t> __global__ void ms_deformable_im2col_gpu_kernel(const int n, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *data_col) { CUDA_KERNEL_LOOP(index, n) { int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; scalar_t *data_col_ptr = data_col + index; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; scalar_t col = 0; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const scalar_t *data_value_ptr = data_value + (data_value_ptr_init_offset + level_start_id * qid_stride); for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { col += ms_deform_attn_im2col_bilinear(data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col) * weight; } data_weight_ptr += 1; data_loc_w_ptr += 2; } } *data_col_ptr = col; } } template <typename scalar_t, unsigned int blockSize> __global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { __shared__ scalar_t cache_grad_sampling_loc[blockSize * 2]; __shared__ scalar_t cache_grad_attn_weight[blockSize]; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); if (tid == 0) { scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0]; int sid=2; for (unsigned int tid = 1; tid < blockSize; ++tid) { _grad_w += cache_grad_sampling_loc[sid]; _grad_h += cache_grad_sampling_loc[sid + 1]; _grad_a += cache_grad_attn_weight[tid]; sid += 2; } *grad_sampling_loc = _grad_w; *(grad_sampling_loc + 1) = _grad_h; *grad_attn_weight = _grad_a; } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t, unsigned int blockSize> __global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { __shared__ scalar_t cache_grad_sampling_loc[blockSize * 2]; __shared__ scalar_t cache_grad_attn_weight[blockSize]; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); for (unsigned int s=blockSize/2; s>0; s>>=1) { if (tid < s) { const unsigned int xid1 = tid << 1; const unsigned int xid2 = (tid + s) << 1; cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; } __syncthreads(); } if (tid == 0) { *grad_sampling_loc = cache_grad_sampling_loc[0]; *(grad_sampling_loc + 1) = cache_grad_sampling_loc[1]; *grad_attn_weight = cache_grad_attn_weight[0]; } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> __global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v1(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { extern __shared__ int _s[]; scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); if (tid == 0) { scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0]; int sid=2; for (unsigned int tid = 1; tid < blockDim.x; ++tid) { _grad_w += cache_grad_sampling_loc[sid]; _grad_h += cache_grad_sampling_loc[sid + 1]; _grad_a += cache_grad_attn_weight[tid]; sid += 2; } *grad_sampling_loc = _grad_w; *(grad_sampling_loc + 1) = _grad_h; *grad_attn_weight = _grad_a; } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> __global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { extern __shared__ int _s[]; scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1) { if (tid < s) { const unsigned int xid1 = tid << 1; const unsigned int xid2 = (tid + s) << 1; cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; if (tid + (s << 1) < spre) { cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)]; } } __syncthreads(); } if (tid == 0) { *grad_sampling_loc = cache_grad_sampling_loc[0]; *(grad_sampling_loc + 1) = cache_grad_sampling_loc[1]; *grad_attn_weight = cache_grad_attn_weight[0]; } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> __global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { extern __shared__ int _s[]; scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1) { if (tid < s) { const unsigned int xid1 = tid << 1; const unsigned int xid2 = (tid + s) << 1; cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; if (tid + (s << 1) < spre) { cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)]; } } __syncthreads(); } if (tid == 0) { atomicAdd(grad_sampling_loc, cache_grad_sampling_loc[0]); atomicAdd(grad_sampling_loc + 1, cache_grad_sampling_loc[1]); atomicAdd(grad_attn_weight, cache_grad_attn_weight[0]); } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> __global__ void ms_deformable_col2im_gpu_kernel_gm(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear_gm( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, grad_sampling_loc, grad_attn_weight); } data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> void ms_deformable_im2col_cuda(cudaStream_t stream, const scalar_t* data_value, const int64_t* data_spatial_shapes, const int64_t* data_level_start_index, const scalar_t* data_sampling_loc, const scalar_t* data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t* data_col) { const int num_kernels = batch_size * num_query * num_heads * channels; const int num_actual_kernels = batch_size * num_query * num_heads * channels; const int num_threads = CUDA_NUM_THREADS; ms_deformable_im2col_gpu_kernel<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, data_col); cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("error in ms_deformable_im2col_cuda: %s\n", cudaGetErrorString(err)); } } template <typename scalar_t> void ms_deformable_col2im_cuda(cudaStream_t stream, const scalar_t* grad_col, const scalar_t* data_value, const int64_t * data_spatial_shapes, const int64_t * data_level_start_index, const scalar_t * data_sampling_loc, const scalar_t * data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t* grad_value, scalar_t* grad_sampling_loc, scalar_t* grad_attn_weight) { const int num_threads = (channels > CUDA_NUM_THREADS)?CUDA_NUM_THREADS:channels; const int num_kernels = batch_size * num_query * num_heads * channels; const int num_actual_kernels = batch_size * num_query * num_heads * channels; if (channels > 1024) { if ((channels & 1023) == 0) { ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, num_threads*3*sizeof(scalar_t), stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); } else { ms_deformable_col2im_gpu_kernel_gm<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); } } else{ switch(channels) { case 1: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 1> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 2: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 2> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 4: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 4> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 8: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 8> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 16: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 16> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 32: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 32> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 64: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 64> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 128: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 128> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 256: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 256> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 512: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 512> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 1024: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 1024> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; default: if (channels < 64) { ms_deformable_col2im_gpu_kernel_shm_reduce_v1<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, num_threads*3*sizeof(scalar_t), stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); } else { ms_deformable_col2im_gpu_kernel_shm_reduce_v2<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, num_threads*3*sizeof(scalar_t), stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); } } } cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("error in ms_deformable_col2im_cuda: %s\n", cudaGetErrorString(err)); } }
transformers/src/transformers/kernels/deta/cuda/ms_deform_im2col_cuda.cuh/0
{ "file_path": "transformers/src/transformers/kernels/deta/cuda/ms_deform_im2col_cuda.cuh", "repo_id": "transformers", "token_count": 31688 }
73
// File from https://github.com/mlpen/YOSO/blob/main/encoders/backbones/efficient_attentions/yoso/yoso_v1/cuda/fast_lsh_cumulation_cuda.cu #include "fast_lsh_cumulation_cuda.h" #include "common_cuda_device.h" #include "common_cuda.h" #include "common.h" #include <stdio.h> ////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ void fast_hadamard_transform(float *vector_buffer, int vector_dim, int dim_idx) { int stride = vector_dim / 2; while (stride > (WARP_SIZE / 2)) { __syncthreads(); int sign = 1 - ((dim_idx / stride) % 2) * 2; float val1 = vector_buffer[dim_idx]; float val2 = vector_buffer[dim_idx + sign * stride]; __syncthreads(); vector_buffer[dim_idx] = float(sign) * val1 + val2; stride = stride / 2; } float val = vector_buffer[dim_idx]; #pragma unroll for (stride = (WARP_SIZE / 2); stride > 0; stride = stride / 2) { int sign = 1 - ((dim_idx / stride) % 2) * 2; val = float(sign) * val + __shfl_xor_sync(FULL_MASK, val, stride); } vector_buffer[dim_idx] = val; } __global__ void fast_hash_ver1_cuda_kernel( int *mask, // [batch_size, num_vector] float *vector, // [batch_size, num_vector, vector_dim] int *Dmat, // [batch_size, 3, num_part, vector_dim] int *hash_code, // [batch_size, num_vector, num_hash_f] int batch_size, int num_vector, int vector_dim, int num_part, int num_hash_f, int hash_code_len ) { int batch_idx = blockIdx.z; int vector_idx = blockIdx.y; int part_idx = blockIdx.x; int dim_idx = threadIdx.x; int batch_idx__vector_idx = batch_idx * num_vector + vector_idx; if (mask[batch_idx__vector_idx] == 0) { return; } extern __shared__ float buffer[]; float *vector_buffer = buffer; vector_buffer[dim_idx] = vector[batch_idx__vector_idx * vector_dim + dim_idx]; vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 0) * num_part + part_idx) * vector_dim + dim_idx]; fast_hadamard_transform(vector_buffer, vector_dim, dim_idx); vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 1) * num_part + part_idx) * vector_dim + dim_idx]; fast_hadamard_transform(vector_buffer, vector_dim, dim_idx); vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 2) * num_part + part_idx) * vector_dim + dim_idx]; fast_hadamard_transform(vector_buffer, vector_dim, dim_idx); int num_hash_per_part = vector_dim / hash_code_len; if (hash_code_len == 8 || hash_code_len == 16) { int code = select(vector_buffer[dim_idx] > 0, 1 << (dim_idx % hash_code_len), 0); for (int offset = 1; offset < hash_code_len; offset = offset * 2) { code += __shfl_xor_sync(FULL_MASK, code, offset); } if (dim_idx % hash_code_len == 0) { int hash_f_idx = part_idx * num_hash_per_part + dim_idx / hash_code_len; if (hash_f_idx < num_hash_f) { hash_code[batch_idx__vector_idx * num_hash_f + hash_f_idx] = code; } } } else { vector_buffer[dim_idx] = select(vector_buffer[dim_idx] > 0, 1 << (dim_idx % hash_code_len), 0); __syncthreads(); if (dim_idx < num_hash_per_part) { int code = 0; for (int i = 0; i < hash_code_len; i++) { code += vector_buffer[dim_idx * hash_code_len + i]; } int hash_f_idx = part_idx * num_hash_per_part + dim_idx; if (hash_f_idx < num_hash_f) { hash_code[batch_idx__vector_idx * num_hash_f + hash_f_idx] = code; } } } } __global__ void lsh_cumulation_ver1_step1_cuda_kernel( int *key_mask, // [batch_size, num_key] int *key_hash_code, // [batch_size, num_key, num_hash_f] float *value, // [batch_size, num_key, value_dim] float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE] int batch_size, int num_hash_f, int hashtable_capacity, int num_key, int value_dim, int offset_warp ) { int warp_thread_idx = threadIdx.x; int batch_idx = blockIdx.y; int key_idx = blockIdx.x * blockDim.y + threadIdx.y; int batch_idx__key_idx = batch_idx * num_key + key_idx; if (key_mask[batch_idx__key_idx] == 0) { return; } if (num_hash_f > WARP_SIZE) { float warp_value = value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx]; for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) { int warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_start + warp_thread_idx]; #pragma unroll for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) { int current_hashcode = warp_hashcode; current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset); int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode; atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value); } } } else { float warp_value = value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx]; int warp_hashcode = 0; if (warp_thread_idx < num_hash_f) { warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + warp_thread_idx]; } for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) { int current_hashcode = warp_hashcode; current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx); int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode; atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value); } } } __global__ void lsh_cumulation_ver1_step2_cuda_kernel( int *query_mask, // [batch_size, num_query] int *query_hash_code, // [batch_size, num_query, num_hash_f] float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE] float *cumulation_value, // [batch_size, num_query, value_dim] int batch_size, int num_hash_f, int hashtable_capacity, int num_query, int value_dim, int offset_warp ) { int warp_thread_idx = threadIdx.x; int batch_idx = blockIdx.y; int query_idx = blockIdx.x * blockDim.y + threadIdx.y; int batch_idx__query_idx = batch_idx * num_query + query_idx; if (query_mask[batch_idx__query_idx] == 0) { return; } if (num_hash_f > WARP_SIZE) { float warp_value = 0; for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) { int warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_start + warp_thread_idx]; #pragma unroll for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) { int current_hashcode = warp_hashcode; current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset); int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode; warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx]; } } cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] = warp_value / float(num_hash_f); } else { float warp_value = 0; int warp_hashcode = 0; if (warp_thread_idx < num_hash_f) { warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + warp_thread_idx]; } for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) { int current_hashcode = warp_hashcode; current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx); int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode; warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx]; } cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] = warp_value / float(num_hash_f); } } __global__ void lsh_weighted_cumulation_ver1_step1_cuda_kernel( int *key_mask, // [batch_size, num_key] int *key_hash_code, // [batch_size, num_key, num_hash_f] float *key_weight, // [batch_size, num_key, weight_dim] float *value, // [batch_size, num_key, value_dim] float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE] int batch_size, int num_hash_f, int hashtable_capacity, int num_key, int value_dim, int weight_dim, int offset_warp, int weight_idx ) { int warp_thread_idx = threadIdx.x; int batch_idx = blockIdx.y; int key_idx = blockIdx.x * blockDim.y + threadIdx.y; int batch_idx__key_idx = batch_idx * num_key + key_idx; if (key_mask[batch_idx__key_idx] == 0) { return; } if (num_hash_f > WARP_SIZE) { float warp_value = key_weight[batch_idx__key_idx * weight_dim + weight_idx] * value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx]; for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) { int warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_start + warp_thread_idx]; #pragma unroll for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) { int current_hashcode = warp_hashcode; current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset); int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode; atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value); } } } else { float warp_value = key_weight[batch_idx__key_idx * weight_dim + weight_idx] * value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx]; int warp_hashcode = 0; if (warp_thread_idx < num_hash_f) { warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + warp_thread_idx]; } for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) { int current_hashcode = warp_hashcode; current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx); int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode; atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value); } } } __global__ void lsh_weighted_cumulation_ver1_step2_cuda_kernel( int *query_mask, // [batch_size, num_query] int *query_hash_code, // [batch_size, num_query, num_hash_f] float *query_weight, // [batch_size, num_query, weight_dim] float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE] float *cumulation_value, // [batch_size, num_query, value_dim] int batch_size, int num_hash_f, int hashtable_capacity, int num_query, int value_dim, int weight_dim, int offset_warp, int weight_idx ) { int warp_thread_idx = threadIdx.x; int batch_idx = blockIdx.y; int query_idx = blockIdx.x * blockDim.y + threadIdx.y; int batch_idx__query_idx = batch_idx * num_query + query_idx; if (query_mask[batch_idx__query_idx] == 0) { return; } if (num_hash_f > WARP_SIZE) { float warp_value = 0; for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) { int warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_start + warp_thread_idx]; #pragma unroll for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) { int current_hashcode = warp_hashcode; current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset); int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode; warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx]; } } float warp_weight = query_weight[batch_idx__query_idx * weight_dim + weight_idx]; cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] += warp_weight * warp_value / float(num_hash_f); } else { float warp_value = 0; int warp_hashcode = 0; if (warp_thread_idx < num_hash_f) { warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + warp_thread_idx]; } for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) { int current_hashcode = warp_hashcode; current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx); int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode; warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx]; } float warp_weight = query_weight[batch_idx__query_idx * weight_dim + weight_idx]; cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] += warp_weight * warp_value / float(num_hash_f); } } __global__ void count_sort_step1_cuda_kernel( int *key_mask, // [batch_size, num_key] int *key_hash_code, // [batch_size, num_key, num_hash_f] int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] int batch_size, int num_hash_f, int hashtable_capacity, int num_key ) { int batch_idx = blockIdx.y; int key_idx = blockIdx.x * blockDim.y + threadIdx.y; int hash_f_idx = threadIdx.x; int batch_idx__key_idx = batch_idx * num_key + key_idx; if (key_mask[batch_idx__key_idx] == 0) { return; } int hash_code = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_idx]; atomicAdd(&count_sort_table[(batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + hash_code], 1); } __global__ void count_sort_step2_cuda_kernel( int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] int batch_size, int num_hash_f, int hashtable_capacity ) { int batch_idx = blockIdx.y; int hash_f_idx = blockIdx.x; int num_threads = blockDim.x; int thread_id = threadIdx.x; int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx; extern __shared__ float buffer[]; int *table_buffer = (int*)buffer; if (thread_id == 0) { table_buffer[0] = 0; } copy_data<int>(&count_sort_table[batch_idx__hash_f_idx * hashtable_capacity], &table_buffer[1], hashtable_capacity - 1, num_threads, thread_id); for (int table_idx_start = 0; table_idx_start < hashtable_capacity; table_idx_start = table_idx_start + num_threads) { int thread_value = table_buffer[table_idx_start + thread_id]; int next_thread_value = 0; for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) { next_thread_value = __shfl_up_sync(FULL_MASK, thread_value, offset); if (thread_id % WARP_SIZE >= offset) { thread_value = thread_value + next_thread_value; } } table_buffer[table_idx_start + thread_id] = thread_value; } __syncthreads(); if (hashtable_capacity > WARP_SIZE) { if (thread_id < WARP_SIZE) { for (int table_idx_start = WARP_SIZE; table_idx_start < hashtable_capacity; table_idx_start = table_idx_start + WARP_SIZE) { table_buffer[table_idx_start + thread_id] += table_buffer[table_idx_start - 1]; } } } copy_data<int>(table_buffer, &count_sort_table[batch_idx__hash_f_idx * hashtable_capacity], hashtable_capacity, num_threads, thread_id); } __global__ void count_sort_step3_cuda_kernel( int *key_mask, // [batch_size, num_key] int *key_hash_code, // [batch_size, num_key, num_hash_f] int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] int *key_sorted_idxes, // [batch_size, num_hash_f, num_key] int batch_size, int num_hash_f, int hashtable_capacity, int num_key ) { int batch_idx = blockIdx.y; int key_idx = blockIdx.x * blockDim.y + threadIdx.y; int hash_f_idx = threadIdx.x; int batch_idx__key_idx = batch_idx * num_key + key_idx; if (key_mask[batch_idx__key_idx] == 0) { return; } int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx; int hash_code = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_idx]; int sort_idx = atomicAdd(&count_sort_table[batch_idx__hash_f_idx * hashtable_capacity + hash_code], 1); key_sorted_idxes[batch_idx__hash_f_idx * num_key + sort_idx] = key_idx; } __global__ void extract_query_info_cuda_kernel( int *query_mask, // [batch_size, num_query] int *query_hash_code, // [batch_size, num_query, num_hash_f] int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity] int *query_info, // [batch_size, num_query, 2, num_hash_f] int batch_size, int num_hash_f, int hashtable_capacity, int num_query ) { int batch_idx = blockIdx.y; int query_idx = blockIdx.x * blockDim.y + threadIdx.y; int hash_f_idx = threadIdx.x; int batch_idx__query_idx = batch_idx * num_query + query_idx; if (query_mask[batch_idx__query_idx] == 0) { return; } int hash_code = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_idx]; int batch_idx__hash_f_idx__hash_code = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + hash_code; int key_offset = select(hash_code == 0, 0, count_sort_table[batch_idx__hash_f_idx__hash_code - 1]); int key_count = count_sort_table[batch_idx__hash_f_idx__hash_code] - key_offset; query_info[batch_idx__query_idx * 2 * num_hash_f + hash_f_idx] = key_offset; query_info[(batch_idx__query_idx * 2 + 1) * num_hash_f + hash_f_idx] = key_count; } __global__ void lsh_weighted_cumulation_ver2_step2_cuda_kernel( int *query_mask, // [batch_size, num_query] int *query_info, // [batch_size, num_query, 2, num_hash_f] int *key_sorted_idxes, // [batch_size, num_hash_f, num_key] float *query_weight, // [batch_size, num_query, weight_dim] float *key_weight, // [batch_size, num_key, weight_dim] float *value, // [batch_size, num_key, value_dim] float *cumulation_value, // [batch_size, num_query, value_dim] int batch_size, int num_hash_f, int num_query, int num_key, int value_dim, int weight_dim ) { int batch_idx = blockIdx.z; int hash_f_idx = blockIdx.y; int query_idx = blockIdx.x; int num_threads = blockDim.y * blockDim.x; int thread_id = threadIdx.y * blockDim.x + threadIdx.x; int num_warps = blockDim.y; int warp_idx = threadIdx.y; int warp_thread_idx = threadIdx.x; int batch_idx__query_idx = batch_idx * num_query + query_idx; if (query_mask[batch_idx__query_idx] == 0) { return; } int key_offset = query_info[batch_idx__query_idx * 2 * num_hash_f + hash_f_idx]; int key_count = query_info[(batch_idx__query_idx * 2 + 1) * num_hash_f + hash_f_idx]; if (key_count == 0) { return; } extern __shared__ float buffer[]; if (key_count == 1) { if (warp_idx == 0) { int key_idx = key_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_key + key_offset]; int batch_idx__key_idx = batch_idx * num_key + key_idx; float weight = 0; for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) { int weight_dim_idx = weight_offset + warp_thread_idx; float val = query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx] * key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx]; #pragma unroll for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) { val += __shfl_xor_sync(FULL_MASK, val, offset); } weight = weight + val; } weight = weight / float(num_hash_f); for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) { int value_dim_idx = value_offset + warp_thread_idx; float val = value[batch_idx__key_idx * value_dim + value_dim_idx]; atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val); } } } else { float *weight_buffer = buffer; int *key_idxes_buffer = (int*)&buffer[weight_dim]; copy_data_nonblocking<float>(&query_weight[batch_idx__query_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id); while (key_count > 0) { int work_size = min(WARP_SIZE, key_count); copy_data_nonblocking<int>(&key_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_key + key_offset], key_idxes_buffer, work_size, num_threads, thread_id); __syncthreads(); for (int work_offset = 0; work_offset < WARP_SIZE; work_offset = work_offset + num_warps) { int work_idx = work_offset + warp_idx; if (work_idx < key_count) { int key_idx = key_idxes_buffer[work_idx]; int batch_idx__key_idx = batch_idx * num_key + key_idx; float weight = 0; for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) { int weight_dim_idx = weight_offset + warp_thread_idx; float val = weight_buffer[weight_dim_idx] * key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx]; #pragma unroll for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) { val += __shfl_xor_sync(FULL_MASK, val, offset); } weight = weight + val; } weight = weight / float(num_hash_f); for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) { int value_dim_idx = value_offset + warp_thread_idx; float val = value[batch_idx__key_idx * value_dim + value_dim_idx]; atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val); } } } key_count = key_count - work_size; key_offset = key_offset + work_size; } } } __global__ void lsh_weighted_cumulation_ver3_step2_cuda_kernel( int *query_sorted_idxes, // [batch_size, num_hash_f, num_query] int *key_mask, // [batch_size, num_key] int *key_info, // [batch_size, num_key, 2, num_hash_f] float *query_weight, // [batch_size, num_query, weight_dim] float *key_weight, // [batch_size, num_key, weight_dim] float *value, // [batch_size, num_key, value_dim] float *cumulation_value, // [batch_size, num_query, value_dim] int batch_size, int num_hash_f, int num_query, int num_key, int value_dim, int weight_dim ) { int batch_idx = blockIdx.z; int hash_f_idx = blockIdx.y; int key_idx = blockIdx.x; int num_threads = blockDim.y * blockDim.x; int thread_id = threadIdx.y * blockDim.x + threadIdx.x; int num_warps = blockDim.y; int warp_idx = threadIdx.y; int warp_thread_idx = threadIdx.x; int batch_idx__key_idx = batch_idx * num_key + key_idx; if (key_mask[batch_idx__key_idx] == 0) { return; } int query_offset = key_info[batch_idx__key_idx * 2 * num_hash_f + hash_f_idx]; int query_count = key_info[(batch_idx__key_idx * 2 + 1) * num_hash_f + hash_f_idx]; if (query_count == 0) { return; } extern __shared__ float buffer[]; if (query_count == 1) { if (warp_idx == 0) { int query_idx = query_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_query + query_offset]; int batch_idx__query_idx = batch_idx * num_query + query_idx; float weight = 0; for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) { int weight_dim_idx = weight_offset + warp_thread_idx; float val = key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx]; #pragma unroll for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) { val += __shfl_xor_sync(FULL_MASK, val, offset); } weight = weight + val; } weight = weight / float(num_hash_f); for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) { int value_dim_idx = value_offset + warp_thread_idx; float val = value[batch_idx__key_idx * value_dim + value_dim_idx]; atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val); } } } else { float *weight_buffer = buffer; float *value_buffer = &buffer[weight_dim]; int *query_idxes_buffer = (int*)&buffer[weight_dim + value_dim]; copy_data_nonblocking<float>(&key_weight[batch_idx__key_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id); copy_data_nonblocking<float>(&value[batch_idx__key_idx * value_dim], value_buffer, value_dim, num_threads, thread_id); while (query_count > 0) { int work_size = min(WARP_SIZE, query_count); copy_data_nonblocking<int>(&query_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_query + query_offset], query_idxes_buffer, work_size, num_threads, thread_id); __syncthreads(); for (int work_offset = 0; work_offset < WARP_SIZE; work_offset = work_offset + num_warps) { int work_idx = work_offset + warp_idx; if (work_idx < query_count) { int query_idx = query_idxes_buffer[work_idx]; int batch_idx__query_idx = batch_idx * num_query + query_idx; float weight = 0; for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) { int weight_dim_idx = weight_offset + warp_thread_idx; float val = weight_buffer[weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx]; #pragma unroll for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) { val += __shfl_xor_sync(FULL_MASK, val, offset); } weight = weight + val; } weight = weight / float(num_hash_f); for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) { int value_dim_idx = value_offset + warp_thread_idx; float val = value_buffer[value_dim_idx]; atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val); } } } query_count = query_count - work_size; query_offset = query_offset + work_size; } } } __global__ void lsh_weighted_cumulation_ver4_step2_cuda_kernel( int *query_sorted_idxes, // [batch_size, num_hash_f, num_query] int *key_mask, // [batch_size, num_key] int *key_info, // [batch_size, num_key, 2, num_hash_f] float *query_weight, // [batch_size, num_query, weight_dim] float *key_weight, // [batch_size, num_key, weight_dim] float *value, // [batch_size, num_key, value_dim] float *cumulation_value, // [batch_size, num_query, value_dim] int batch_size, int num_hash_f, int num_query, int num_key, int value_dim, int weight_dim ) { int batch_idx = blockIdx.y; int key_idx = blockIdx.x; int num_threads = blockDim.y * blockDim.x; int thread_id = threadIdx.y * blockDim.x + threadIdx.x; int num_warps = blockDim.y; int warp_idx = threadIdx.y; int warp_thread_idx = threadIdx.x; int batch_idx__key_idx = batch_idx * num_key + key_idx; if (key_mask[batch_idx__key_idx] == 0) { return; } extern __shared__ float buffer[]; float *weight_buffer = buffer; float *value_buffer = &buffer[weight_dim]; int *key_info_buffer = (int*)&buffer[weight_dim + value_dim]; copy_data_nonblocking<float>(&key_weight[batch_idx__key_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id); copy_data_nonblocking<float>(&value[batch_idx__key_idx * value_dim], value_buffer, value_dim, num_threads, thread_id); copy_data_nonblocking<int>(&key_info[batch_idx__key_idx * 2 * num_hash_f], key_info_buffer, 2 * num_hash_f, num_threads, thread_id); int *query_offset_buffer = key_info_buffer; int *query_count_buffer = &key_info_buffer[num_hash_f]; const int hashtable_size = 1024 + OPTIMAL_THREADS_PER_BLOCK; __shared__ int hashtable_query[hashtable_size]; __shared__ int hashtable_count[hashtable_size]; __shared__ int inserted_query[hashtable_size]; __shared__ int query_counter[1]; int hash_f_idx_base = 0; while (true) { init_buffer_nonblocking<int>(EMPTY_VALUE, hashtable_query, hashtable_size, num_threads, thread_id); init_buffer_nonblocking<int>(0, hashtable_count, hashtable_size, num_threads, thread_id); init_buffer_nonblocking<int>(EMPTY_VALUE, inserted_query, hashtable_size, num_threads, thread_id); init_buffer_nonblocking<int>(0, query_counter, 1, num_threads, thread_id); __syncthreads(); while (hash_f_idx_base < num_hash_f) { int hash_f_idx = hash_f_idx_base + warp_idx; int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx; int stop_flag = 0; int query_offset = query_offset_buffer[hash_f_idx]; int query_count = query_count_buffer[hash_f_idx]; while (query_count > 0) { int work_size = min(query_count, WARP_SIZE); // try inserting query to set and check whether the query is new int found_new_query = 0; int query_idx = -1; if (warp_thread_idx < work_size) { query_idx = query_sorted_idxes[batch_idx__hash_f_idx * num_query + query_offset + warp_thread_idx]; int slot = set_insert<int>(hashtable_query, hashtable_size, query_idx); if (slot >= 0) { found_new_query = atomicAdd(&hashtable_count[slot], 1) == 0; } } // compute cumulative offset int position_offset = found_new_query; int next_position_offset = 0; #pragma unroll for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) { next_position_offset = __shfl_up_sync(FULL_MASK, position_offset, offset); if (thread_id % WARP_SIZE >= offset) { position_offset = position_offset + next_position_offset; } } // get the inserted query list end index int inserted_query_base = 0; if (thread_id % WARP_SIZE == WARP_SIZE - 1) { inserted_query_base = atomicAdd(query_counter, position_offset); } inserted_query_base = __shfl_sync(FULL_MASK, inserted_query_base, WARP_SIZE - 1); // insert new queries to list int insert_idx = inserted_query_base + position_offset - 1; if (found_new_query) { inserted_query[insert_idx] = query_idx; } // remove inserted queries from list query_offset_buffer[hash_f_idx] += work_size; query_count_buffer[hash_f_idx] -= work_size; query_offset += work_size; query_count -= work_size; // if list is almost full, stop inserting if (inserted_query_base + OPTIMAL_THREADS_PER_BLOCK > hashtable_size) { stop_flag = 1; break; } } if (stop_flag) { break; } hash_f_idx_base = hash_f_idx_base + num_warps; } __syncthreads(); int num_distint_query = query_counter[0]; if (num_distint_query > 0) { for (int idx_base = 0; idx_base < num_distint_query; idx_base = idx_base + num_warps) { int idx = idx_base + warp_idx; if (idx < num_distint_query) { int query_idx = inserted_query[idx]; int batch_idx__query_idx = batch_idx * num_query + query_idx; int slot = set_lookup<int>(hashtable_query, hashtable_size, query_idx); int duplicate_count = hashtable_count[slot]; float weight = 0; for (int weight_idx_base = 0; weight_idx_base < weight_dim; weight_idx_base = weight_idx_base + WARP_SIZE) { int weight_dim_idx = weight_idx_base + warp_thread_idx; float val = weight_buffer[weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx]; #pragma unroll for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) { val += __shfl_xor_sync(FULL_MASK, val, offset); } weight = weight + val; } weight = (float)duplicate_count * weight / float(num_hash_f); for (int value_idx_base = 0; value_idx_base < value_dim; value_idx_base = value_idx_base + WARP_SIZE) { int value_dim_idx = value_idx_base + warp_thread_idx; float val = value_buffer[value_dim_idx]; atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val); } } } } else { // all computation is completed if num_distint_query == 0 break; } __syncthreads(); } }
transformers/src/transformers/kernels/yoso/fast_lsh_cumulation_cuda.cu/0
{ "file_path": "transformers/src/transformers/kernels/yoso/fast_lsh_cumulation_cuda.cu", "repo_id": "transformers", "token_count": 14407 }
74
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ALBERT checkpoint.""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, albert_config_file, pytorch_dump_path): # Initialise PyTorch model config = AlbertConfig.from_json_file(albert_config_file) print(f"Building PyTorch model from configuration: {config}") model = AlbertForPreTraining(config) # Load weights from tf checkpoint load_tf_weights_in_albert(model, config, tf_checkpoint_path) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
transformers/src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 755 }
75
# coding=utf-8 # Copyright 2022 Google AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Audio Spectogram Transformer (AST) model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class ASTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ASTModel`]. It is used to instantiate an AST model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the AST [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. frequency_stride (`int`, *optional*, defaults to 10): Frequency stride to use when patchifying the spectrograms. time_stride (`int`, *optional*, defaults to 10): Temporal stride to use when patchifying the spectrograms. max_length (`int`, *optional*, defaults to 1024): Temporal dimension of the spectrograms. num_mel_bins (`int`, *optional*, defaults to 128): Frequency dimension of the spectrograms (number of Mel-frequency bins). Example: ```python >>> from transformers import ASTConfig, ASTModel >>> # Initializing a AST MIT/ast-finetuned-audioset-10-10-0.4593 style configuration >>> configuration = ASTConfig() >>> # Initializing a model (with random weights) from the MIT/ast-finetuned-audioset-10-10-0.4593 style configuration >>> model = ASTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "audio-spectrogram-transformer" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, patch_size=16, qkv_bias=True, frequency_stride=10, time_stride=10, max_length=1024, num_mel_bins=128, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.patch_size = patch_size self.qkv_bias = qkv_bias self.frequency_stride = frequency_stride self.time_stride = time_stride self.max_length = max_length self.num_mel_bins = num_mel_bins
transformers/src/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py/0
{ "file_path": "transformers/src/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py", "repo_id": "transformers", "token_count": 2129 }
76
# coding=utf-8 # Copyright (c) 2021 THUML @ Tsinghua University # Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Autoformer model.""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_attn_mask_utils import _prepare_4d_attention_mask from ...modeling_outputs import ( BaseModelOutput, ModelOutput, SampleTSPredictionOutput, Seq2SeqTSPredictionOutput, ) from ...modeling_utils import PreTrainedModel from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_autoformer import AutoformerConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "AutoformerConfig" @dataclass class AutoFormerDecoderOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. trend (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Trend tensor for each time series. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ last_hidden_state: torch.FloatTensor = None trend: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class AutoformerModelOutput(ModelOutput): """ Autoformer model output that contains the additional trend output. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the decoder of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. trend (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Trend tensor for each time series. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. loc (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*): Shift values of each time series' context window which is used to give the model inputs of the same magnitude and then used to shift back to the original magnitude. scale (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*): Scaling values of each time series' context window which is used to give the model inputs of the same magnitude and then used to rescale back to the original magnitude. static_features: (`torch.FloatTensor` of shape `(batch_size, feature size)`, *optional*): Static features of each time series' in a batch which are copied to the covariates at inference time. """ last_hidden_state: torch.FloatTensor = None trend: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None loc: Optional[torch.FloatTensor] = None scale: Optional[torch.FloatTensor] = None static_features: Optional[torch.FloatTensor] = None AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "huggingface/autoformer-tourism-monthly", # See all Autoformer models at https://huggingface.co/models?filter=autoformer ] # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesFeatureEmbedder with TimeSeries->Autoformer class AutoformerFeatureEmbedder(nn.Module): """ Embed a sequence of categorical features. Args: cardinalities (`list[int]`): List of cardinalities of the categorical features. embedding_dims (`list[int]`): List of embedding dimensions of the categorical features. """ def __init__(self, cardinalities: List[int], embedding_dims: List[int]) -> None: super().__init__() self.num_features = len(cardinalities) self.embedders = nn.ModuleList([nn.Embedding(c, d) for c, d in zip(cardinalities, embedding_dims)]) def forward(self, features: torch.Tensor) -> torch.Tensor: if self.num_features > 1: # we slice the last dimension, giving an array of length # self.num_features with shape (N,T) or (N) cat_feature_slices = torch.chunk(features, self.num_features, dim=-1) else: cat_feature_slices = [features] return torch.cat( [ embed(cat_feature_slice.squeeze(-1)) for embed, cat_feature_slice in zip(self.embedders, cat_feature_slices) ], dim=-1, ) # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesStdScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer class AutoformerStdScaler(nn.Module): """ Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by subtracting from the mean and dividing by the standard deviation. """ def __init__(self, config: AutoformerConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5 def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Calculating the scale on the observed indicator. Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim) denominator = denominator.clamp_min(1.0) loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator scale = torch.sqrt(variance + self.minimum_scale) return (data - loc) / scale, loc, scale # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesMeanScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer class AutoformerMeanScaler(nn.Module): """ Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data accordingly. """ def __init__(self, config: AutoformerConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10 self.default_scale = config.default_scale if hasattr(config, "default_scale") else None def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Calculating the scale on the observed indicator. Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True) num_observed = observed_indicator.sum(self.dim, keepdim=True) scale = ts_sum / torch.clamp(num_observed, min=1) # If `default_scale` is provided, we use it, otherwise we use the scale # of the batch. if self.default_scale is None: batch_sum = ts_sum.sum(dim=0) batch_observations = torch.clamp(num_observed.sum(0), min=1) default_scale = torch.squeeze(batch_sum / batch_observations) else: default_scale = self.default_scale * torch.ones_like(scale) # apply default scale where there are no observations scale = torch.where(num_observed > 0, scale, default_scale) # ensure the scale is at least `self.minimum_scale` scale = torch.clamp(scale, min=self.minimum_scale) scaled_data = data / scale if not self.keepdim: scale = scale.squeeze(dim=self.dim) return scaled_data, torch.zeros_like(scale), scale # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesNOPScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer class AutoformerNOPScaler(nn.Module): """ Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data. """ def __init__(self, config: AutoformerConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor = None ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) return data, loc, scale # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor: """ Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero, meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`. Args: input_tensor (`torch.FloatTensor`): Input tensor, of which the average must be computed. weights (`torch.FloatTensor`, *optional*): Weights tensor, of the same shape as `input_tensor`. dim (`int`, *optional*): The dim along which to average `input_tensor`. Returns: `torch.FloatTensor`: The tensor with values averaged along the specified `dim`. """ if weights is not None: weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor)) sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0) return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights else: return input_tensor.mean(dim=dim) # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor: """ Computes the negative log likelihood loss from input distribution with respect to target. """ return -input.log_prob(target) # Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->Autoformer class AutoformerSinusoidalPositionalEmbedding(nn.Embedding): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None: super().__init__(num_positions, embedding_dim) self.weight = self._init_weight(self.weight) @staticmethod def _init_weight(out: nn.Parameter) -> nn.Parameter: """ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in the 2nd half of the vector. [dim // 2:] """ n_pos, dim = out.shape position_enc = np.array( [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] ) out.requires_grad = False # set early to avoid an error in pytorch-1.8+ sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1 out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) out.detach_() return out @torch.no_grad() def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor: """`input_ids_shape` is expected to be [bsz x seqlen].""" bsz, seq_len = input_ids_shape[:2] positions = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device ) return super().forward(positions) # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesValueEmbedding with TimeSeries->Autoformer class AutoformerValueEmbedding(nn.Module): def __init__(self, feature_size, d_model): super().__init__() self.value_projection = nn.Linear(in_features=feature_size, out_features=d_model, bias=False) def forward(self, x): return self.value_projection(x) # Class based on # https://github.com/thuml/Autoformer/blob/c6a0694ff484753f2d986cc0bb1f99ee850fc1a8/layers/Autoformer_EncDec.py#L39 # where AutoformerSeriesDecompositionLayer is series_decomp + moving_average class AutoformerSeriesDecompositionLayer(nn.Module): """ Returns the trend and the seasonal parts of the time series. Calculated as: x_trend = AvgPool(Padding(X)) and x_seasonal = X - x_trend """ def __init__(self, config: AutoformerConfig): super().__init__() self.kernel_size = config.moving_average self.avg = nn.AvgPool1d(kernel_size=self.kernel_size, stride=1, padding=0) def forward(self, x): """Input shape: Batch x Time x EMBED_DIM""" # padding on the both ends of time series num_of_pads = (self.kernel_size - 1) // 2 front = x[:, 0:1, :].repeat(1, num_of_pads, 1) end = x[:, -1:, :].repeat(1, num_of_pads, 1) x_padded = torch.cat([front, x, end], dim=1) # calculate the trend and seasonal part of the series x_trend = self.avg(x_padded.permute(0, 2, 1)).permute(0, 2, 1) x_seasonal = x - x_trend return x_seasonal, x_trend # Class based on # https://github.com/thuml/Autoformer/blob/c6a0694ff484753f2d986cc0bb1f99ee850fc1a8/layers/Autoformer_EncDec.py#L6 # where AutoformerLayernorm is my_Layernorm class AutoformerLayernorm(nn.Module): """ Special designed layer normalization for the seasonal part, calculated as: AutoformerLayernorm(x) = nn.LayerNorm(x) - torch.mean(nn.LayerNorm(x)) """ def __init__(self, config: AutoformerConfig): super().__init__() self.layernorm = nn.LayerNorm(config.d_model) def forward(self, x): x_hat = self.layernorm(x) bias = torch.mean(x_hat, dim=1).unsqueeze(1).repeat(1, x.shape[1], 1) return x_hat - bias class AutoformerAttention(nn.Module): """ AutoCorrelation Mechanism with the following two phases: (1) period-based dependencies discovery (2) time delay aggregation This block replace the canonical self-attention mechanism. """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, autocorrelation_factor: int = 3, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.autocorrelation_factor = autocorrelation_factor def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) # (1) period-based dependencies discovery # Resize (truncation or zero filling) queries_time_length = query_states.size(1) values_time_length = value_states.size(1) if queries_time_length > values_time_length: query_states = query_states[:, : (queries_time_length - values_time_length), :] zeros = torch.zeros_like(query_states).float() value_states = torch.cat([value_states, zeros], dim=1) key_states = torch.cat([key_states, zeros], dim=1) else: value_states = value_states[:, :queries_time_length, :] key_states = key_states[:, :queries_time_length, :] query_states_fft = torch.fft.rfft(query_states, n=tgt_len, dim=1) key_states_fft = torch.fft.rfft(key_states, n=tgt_len, dim=1) attn_weights = query_states_fft * torch.conj(key_states_fft) attn_weights = torch.fft.irfft(attn_weights, n=tgt_len, dim=1) # Autocorrelation(Q,K) src_len = key_states.size(1) channel = key_states.size(2) if attn_weights.size() != (bsz * self.num_heads, tgt_len, channel): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, channel)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, channel) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, channel) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, channel) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, channel) else: attn_weights_reshaped = None # time delay aggregation time_length = value_states.size(1) autocorrelations = attn_weights.view(bsz, self.num_heads, tgt_len, channel) # find top k autocorrelations delays top_k = int(self.autocorrelation_factor * math.log(time_length)) autocorrelations_mean_on_head_channel = torch.mean(autocorrelations, dim=(1, -1)) # bsz x tgt_len if self.training: autocorrelations_mean_on_bsz = torch.mean(autocorrelations_mean_on_head_channel, dim=0) _, top_k_delays_index = torch.topk(autocorrelations_mean_on_bsz, top_k) top_k_autocorrelations = torch.stack( [autocorrelations_mean_on_head_channel[:, top_k_delays_index[i]] for i in range(top_k)], dim=-1 ) else: top_k_autocorrelations, top_k_delays_index = torch.topk( autocorrelations_mean_on_head_channel, top_k, dim=1 ) top_k_autocorrelations = torch.softmax(top_k_autocorrelations, dim=-1) # bsz x top_k # compute aggregation: value_states.roll(delay) * top_k_autocorrelations(delay) if not self.training: # used for compute values_states.roll(delay) in inference tmp_values = value_states.repeat(1, 2, 1) init_index = ( torch.arange(time_length) .view(1, -1, 1) .repeat(bsz * self.num_heads, 1, channel) .to(value_states.device) ) delays_agg = torch.zeros_like(value_states).float() # bsz x time_length x channel for i in range(top_k): # compute value_states roll delay if not self.training: tmp_delay = init_index + top_k_delays_index[:, i].view(-1, 1, 1).repeat( self.num_heads, tgt_len, channel ) value_states_roll_delay = torch.gather(tmp_values, dim=1, index=tmp_delay) else: value_states_roll_delay = value_states.roll(shifts=-int(top_k_delays_index[i]), dims=1) # aggregation top_k_autocorrelations_at_delay = ( top_k_autocorrelations[:, i].view(-1, 1, 1).repeat(self.num_heads, tgt_len, channel) ) delays_agg += value_states_roll_delay * top_k_autocorrelations_at_delay attn_output = delays_agg.contiguous() if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class AutoformerEncoderLayer(nn.Module): def __init__(self, config: AutoformerConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = AutoformerAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, autocorrelation_factor=config.autocorrelation_factor, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = AutoformerLayernorm(config) self.decomp1 = AutoformerSeriesDecompositionLayer(config) self.decomp2 = AutoformerSeriesDecompositionLayer(config) def forward( self, hidden_states: torch.FloatTensor, attention_mask: torch.FloatTensor, layer_head_mask: torch.FloatTensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # added layer norm here as an improvement hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, _ = self.decomp1(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states, _ = self.decomp2(hidden_states) hidden_states = self.final_layer_norm(hidden_states) if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class AutoformerDecoderLayer(nn.Module): def __init__(self, config: AutoformerConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = AutoformerAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, autocorrelation_factor=config.autocorrelation_factor, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = AutoformerAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, autocorrelation_factor=config.autocorrelation_factor, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = AutoformerLayernorm(config) self.decomp1 = AutoformerSeriesDecompositionLayer(config) self.decomp2 = AutoformerSeriesDecompositionLayer(config) self.decomp3 = AutoformerSeriesDecompositionLayer(config) # source: https://github.com/thuml/Autoformer/blob/e6371e24f2ae2dd53e472edefdd5814c5176f864/layers/Autoformer_EncDec.py#L128 self.trend_projection = nn.Conv1d( in_channels=self.embed_dim, out_channels=config.feature_size, kernel_size=3, stride=1, padding=1, padding_mode="circular", bias=False, ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache: (`bool`, *optional*, defaults to `True`): Whether or not the model should return the `present_key_value` state to be used for subsequent decoding. """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states, trend1 = self.decomp1(hidden_states) # added layer norm here as an improvement hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states, trend2 = self.decomp2(hidden_states) # added layer norm here as an improvement hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states, trend3 = self.decomp3(hidden_states) hidden_states = self.final_layer_norm(hidden_states) if encoder_hidden_states is not None: residual_trend = trend1 + trend2 + trend3 else: residual_trend = trend1 + trend3 residual_trend = self.trend_projection(residual_trend.permute(0, 2, 1)).transpose(1, 2) outputs = ((hidden_states, residual_trend),) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class AutoformerPreTrainedModel(PreTrainedModel): config_class = AutoformerConfig base_model_prefix = "model" main_input_name = "past_values" supports_gradient_checkpointing = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, AutoformerSinusoidalPositionalEmbedding): pass elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() AUTOFORMER_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`AutoformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ AUTOFORMER_INPUTS_DOCSTRING = r""" Args: past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Past values of the time series, that serve as context in order to predict the future. These values may contain lags, i.e. additional values from the past which are added in order to serve as "extra context". The `past_values` is what the Transformer encoder gets as input (with optional additional features, such as `static_categorical_features`, `static_real_features`, `past_time_features`). The sequence length here is equal to `context_length` + `max(config.lags_sequence)`. Missing values need to be replaced with zeros. past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`, *optional*): Optional time features, which the model internally will add to `past_values`. These could be things like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These could also be so-called "age" features, which basically help the model know "at which point in life" a time-series is. Age features have small values for distant past time steps and increase monotonically the more we approach the current time step. These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where the position encodings are learned from scratch internally as parameters of the model, the Time Series Transformer requires to provide additional time features. The Autoformer only learns additional embeddings for `static_categorical_features`. past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*): Optional static categorical features for which the model will learn an embedding, which it will add to the values of the time series. Static categorical features are features which have the same value for all time steps (static over time). A typical example of a static categorical feature is a time series ID. static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*): Optional static real features which the model will add to the values of the time series. Static real features are features which have the same value for all time steps (static over time). A typical example of a static real feature is promotion information. future_values (`torch.FloatTensor` of shape `(batch_size, prediction_length)`): Future values of the time series, that serve as labels for the model. The `future_values` is what the Transformer needs to learn to output, given the `past_values`. See the demo notebook and code snippets for details. Missing values need to be replaced with zeros. future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`, *optional*): Optional time features, which the model internally will add to `future_values`. These could be things like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These could also be so-called "age" features, which basically help the model know "at which point in life" a time-series is. Age features have small values for distant past time steps and increase monotonically the more we approach the current time step. These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where the position encodings are learned from scratch internally as parameters of the model, the Time Series Transformer requires to provide additional features. The Autoformer only learns additional embeddings for `static_categorical_features`. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on certain token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Mask to avoid performing attention on certain token indices. By default, a causal mask will be used, to make sure the model can only look at previous inputs in order to predict the future. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of `last_hidden_state`, `hidden_states` (*optional*) and `attentions` (*optional*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` (*optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesTransformerEncoder with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer class AutoformerEncoder(AutoformerPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`AutoformerEncoderLayer`]. Args: config: AutoformerConfig """ def __init__(self, config: AutoformerConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop if config.prediction_length is None: raise ValueError("The `prediction_length` config needs to be specified.") self.value_embedding = AutoformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model) self.embed_positions = AutoformerSinusoidalPositionalEmbedding( config.context_length + config.prediction_length, config.d_model ) self.layers = nn.ModuleList([AutoformerEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layernorm_embedding = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.value_embedding(inputs_embeds) embed_pos = self.embed_positions(inputs_embeds.size()) hidden_states = self.layernorm_embedding(hidden_states + embed_pos) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != (len(self.layers)): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class AutoformerDecoder(AutoformerPreTrainedModel): """ Transformer decoder consisting of `config.decoder_layers` layers. Each layer is a [`AutoformerDecoderLayer`] Args: config: AutoformerConfig """ def __init__(self, config: AutoformerConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop if config.prediction_length is None: raise ValueError("The `prediction_length` config needs to be specified.") self.value_embedding = AutoformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model) self.embed_positions = AutoformerSinusoidalPositionalEmbedding( config.context_length + config.prediction_length, config.d_model ) self.layers = nn.ModuleList([AutoformerDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layernorm_embedding = nn.LayerNorm(config.d_model) # https://github.com/thuml/Autoformer/blob/e6371e24f2ae2dd53e472edefdd5814c5176f864/models/Autoformer.py#L74 self.seasonality_projection = nn.Linear(config.d_model, config.feature_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, trend: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, AutoFormerDecoderOutput]: r""" Args: trend (`torch.FloatTensor` of shape `(batch_size, prediction_length, feature_size)`, *optional*): The trend sequence to be fed to the decoder. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If `use_cache` is True, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_shape = inputs_embeds.size()[:-1] # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) hidden_states = self.value_embedding(inputs_embeds) embed_pos = self.embed_positions( inputs_embeds.size(), past_key_values_length=self.config.context_length - self.config.label_length ) hidden_states = self.layernorm_embedding(hidden_states + embed_pos) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != (len(self.layers)): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) (hidden_states, residual_trend) = layer_outputs[0] trend = trend + residual_trend if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # project seasonality representation hidden_states = self.seasonality_projection(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, trend, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return AutoFormerDecoderOutput( last_hidden_state=hidden_states, trend=trend, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare Autoformer Model outputting raw hidden-states without any specific head on top.", AUTOFORMER_START_DOCSTRING, ) class AutoformerModel(AutoformerPreTrainedModel): def __init__(self, config: AutoformerConfig): super().__init__(config) if config.scaling == "mean" or config.scaling is True: self.scaler = AutoformerMeanScaler(config) elif config.scaling == "std": self.scaler = AutoformerStdScaler(config) else: self.scaler = AutoformerNOPScaler(config) if config.num_static_categorical_features > 0: self.embedder = AutoformerFeatureEmbedder( cardinalities=config.cardinality, embedding_dims=config.embedding_dimension ) # transformer encoder-decoder and mask initializer self.encoder = AutoformerEncoder(config) self.decoder = AutoformerDecoder(config) # used for decoder seasonal and trend initialization self.decomposition_layer = AutoformerSeriesDecompositionLayer(config) # Initialize weights and apply final processing self.post_init() @property def _past_length(self) -> int: return self.config.context_length + max(self.config.lags_sequence) def get_lagged_subsequences( self, sequence: torch.Tensor, subsequences_length: int, shift: int = 0 ) -> torch.Tensor: """ Returns lagged subsequences of a given sequence. Returns a tensor of shape (batch_size, subsequences_length, feature_size, indices_length), containing lagged subsequences. Specifically, lagged[i, j, :, k] = sequence[i, -indices[k]-subsequences_length+j, :]. Args: sequence (`torch.Tensor` or shape `(batch_size, context_length, feature_size)`): The sequence from which lagged subsequences should be extracted. subsequences_length (`int`): Length of the subsequences to be extracted. shift (`int`, *optional* defaults to 0): Shift the lags by this amount back in the time index. """ # calculates the indices of the lags by subtracting the shift value from the given lags_sequence indices = [lag - shift for lag in self.config.lags_sequence] # checks if the maximum lag plus the length of the subsequences exceeds the length of the input sequence sequence_length = sequence.shape[1] if max(indices) + subsequences_length > sequence_length: raise ValueError( f"lags cannot go further than history length, found lag {max(indices)} " f"while history length is only {sequence_length}" ) # extracts the lagged subsequences from the input sequence using the calculated indices lagged_values = [] for lag_index in indices: begin_index = -lag_index - subsequences_length end_index = -lag_index if lag_index > 0 else None lagged_values.append(sequence[:, begin_index:end_index, ...]) # return as stacked tensor in the feature dimension return torch.stack(lagged_values, dim=-1) def create_network_inputs( self, past_values: torch.Tensor, past_time_features: torch.Tensor, static_categorical_features: Optional[torch.Tensor] = None, static_real_features: Optional[torch.Tensor] = None, past_observed_mask: Optional[torch.Tensor] = None, future_values: Optional[torch.Tensor] = None, future_time_features: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ Creates the inputs for the network given the past and future values, time features, and static features. Args: past_values (`torch.Tensor`): A tensor of shape `(batch_size, past_length, input_size)` containing the past values. past_time_features (`torch.Tensor`): A tensor of shape `(batch_size, past_length, num_features)` containing the past time features. static_categorical_features (`Optional[torch.Tensor]`): An optional tensor of shape `(batch_size, num_categorical_features)` containing the static categorical features. static_real_features (`Optional[torch.Tensor]`): An optional tensor of shape `(batch_size, num_real_features)` containing the static real features. past_observed_mask (`Optional[torch.Tensor]`): An optional tensor of shape `(batch_size, past_length, input_size)` containing the mask of observed values in the past. future_values (`Optional[torch.Tensor]`): An optional tensor of shape `(batch_size, future_length, input_size)` containing the future values. Returns: A tuple containing the following tensors: - reshaped_lagged_sequence (`torch.Tensor`): A tensor of shape `(batch_size, sequence_length, num_lags * input_size)` containing the lagged subsequences of the inputs. - features (`torch.Tensor`): A tensor of shape `(batch_size, sequence_length, num_features)` containing the concatenated static and time features. - loc (`torch.Tensor`): A tensor of shape `(batch_size, input_size)` containing the mean of the input values. - scale (`torch.Tensor`): A tensor of shape `(batch_size, input_size)` containing the std of the input values. - static_feat (`torch.Tensor`): A tensor of shape `(batch_size, num_static_features)` containing the concatenated static features. """ # time feature time_feat = ( torch.cat( ( past_time_features[:, self._past_length - self.config.context_length :, ...], future_time_features, ), dim=1, ) if future_values is not None else past_time_features[:, self._past_length - self.config.context_length :, ...] ) # target if past_observed_mask is None: past_observed_mask = torch.ones_like(past_values) context = past_values[:, -self.config.context_length :] observed_context = past_observed_mask[:, -self.config.context_length :] _, loc, scale = self.scaler(context, observed_context) inputs = ( (torch.cat((past_values, future_values), dim=1) - loc) / scale if future_values is not None else (past_values - loc) / scale ) # static features log_abs_loc = loc.abs().log1p() if self.config.input_size == 1 else loc.squeeze(1).abs().log1p() log_scale = scale.log() if self.config.input_size == 1 else scale.squeeze(1).log() static_feat = torch.cat((log_abs_loc, log_scale), dim=1) if static_real_features is not None: static_feat = torch.cat((static_real_features, static_feat), dim=1) if static_categorical_features is not None: embedded_cat = self.embedder(static_categorical_features) static_feat = torch.cat((embedded_cat, static_feat), dim=1) expanded_static_feat = static_feat.unsqueeze(1).expand(-1, time_feat.shape[1], -1) # all features features = torch.cat((expanded_static_feat, time_feat), dim=-1) # lagged features subsequences_length = ( self.config.context_length + self.config.prediction_length if future_values is not None else self.config.context_length ) lagged_sequence = self.get_lagged_subsequences(sequence=inputs, subsequences_length=subsequences_length) lags_shape = lagged_sequence.shape reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1) if reshaped_lagged_sequence.shape[1] != time_feat.shape[1]: raise ValueError( f"input length {reshaped_lagged_sequence.shape[1]} and time feature lengths {time_feat.shape[1]} does not match" ) return reshaped_lagged_sequence, features, loc, scale, static_feat def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(AUTOFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=AutoformerModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, past_values: torch.Tensor, past_time_features: torch.Tensor, past_observed_mask: torch.Tensor, static_categorical_features: Optional[torch.Tensor] = None, static_real_features: Optional[torch.Tensor] = None, future_values: Optional[torch.Tensor] = None, future_time_features: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, use_cache: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[AutoformerModelOutput, Tuple]: r""" Returns: Examples: ```python >>> from huggingface_hub import hf_hub_download >>> import torch >>> from transformers import AutoformerModel >>> file = hf_hub_download( ... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset" ... ) >>> batch = torch.load(file) >>> model = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly") >>> # during training, one provides both past and future values >>> # as well as possible additional features >>> outputs = model( ... past_values=batch["past_values"], ... past_time_features=batch["past_time_features"], ... past_observed_mask=batch["past_observed_mask"], ... static_categorical_features=batch["static_categorical_features"], ... future_values=batch["future_values"], ... future_time_features=batch["future_time_features"], ... ) >>> last_hidden_state = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_inputs, temporal_features, loc, scale, static_feat = self.create_network_inputs( past_values=past_values, past_time_features=past_time_features, past_observed_mask=past_observed_mask, static_categorical_features=static_categorical_features, static_real_features=static_real_features, future_values=future_values, future_time_features=future_time_features, ) if encoder_outputs is None: enc_input = torch.cat( ( transformer_inputs[:, : self.config.context_length, ...], temporal_features[:, : self.config.context_length, ...], ), dim=-1, ) encoder_outputs = self.encoder( inputs_embeds=enc_input, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) if future_values is not None: # Decoder inputs # seasonality and trend from context length seasonal_input, trend_input = self.decomposition_layer( transformer_inputs[:, : self.config.context_length, ...] ) mean = ( torch.mean(transformer_inputs[:, : self.config.context_length, ...], dim=1) .unsqueeze(1) .repeat(1, self.config.prediction_length, 1) ) zeros = torch.zeros( [transformer_inputs.shape[0], self.config.prediction_length, transformer_inputs.shape[2]], device=enc_input.device, ) decoder_input = torch.cat( ( torch.cat((seasonal_input[:, -self.config.label_length :, ...], zeros), dim=1), temporal_features[:, self.config.context_length - self.config.label_length :, ...], ), dim=-1, ) trend_init = torch.cat( ( torch.cat((trend_input[:, -self.config.label_length :, ...], mean), dim=1), temporal_features[:, self.config.context_length - self.config.label_length :, ...], ), dim=-1, ) decoder_outputs = self.decoder( trend=trend_init, inputs_embeds=decoder_input, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) else: decoder_outputs = AutoFormerDecoderOutput() if not return_dict: return decoder_outputs + encoder_outputs + (loc, scale, static_feat) return AutoformerModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, trend=decoder_outputs.trend, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, loc=loc, scale=scale, static_features=static_feat, ) @add_start_docstrings( "The Autoformer Model with a distribution head on top for time-series forecasting.", AUTOFORMER_START_DOCSTRING, ) class AutoformerForPrediction(AutoformerPreTrainedModel): def __init__(self, config: AutoformerConfig): super().__init__(config) self.model = AutoformerModel(config) if config.distribution_output == "student_t": self.distribution_output = StudentTOutput(dim=config.input_size) elif config.distribution_output == "normal": self.distribution_output = NormalOutput(dim=config.input_size) elif config.distribution_output == "negative_binomial": self.distribution_output = NegativeBinomialOutput(dim=config.input_size) else: raise ValueError(f"Unknown distribution output {config.distribution_output}") self.parameter_projection = self.distribution_output.get_parameter_projection(self.model.config.feature_size) self.target_shape = self.distribution_output.event_shape if config.loss == "nll": self.loss = nll else: raise ValueError(f"Unknown loss function {config.loss}") # Initialize weights of distribution_output and apply final processing self.post_init() def output_params(self, decoder_output): return self.parameter_projection(decoder_output[:, -self.config.prediction_length :, :]) def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() @torch.jit.ignore def output_distribution(self, params, loc=None, scale=None, trailing_n=None) -> torch.distributions.Distribution: sliced_params = params if trailing_n is not None: sliced_params = [p[:, -trailing_n:] for p in params] return self.distribution_output.distribution(sliced_params, loc=loc, scale=scale) @add_start_docstrings_to_model_forward(AUTOFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqTSPredictionOutput, config_class=_CONFIG_FOR_DOC) def forward( self, past_values: torch.Tensor, past_time_features: torch.Tensor, past_observed_mask: torch.Tensor, static_categorical_features: Optional[torch.Tensor] = None, static_real_features: Optional[torch.Tensor] = None, future_values: Optional[torch.Tensor] = None, future_time_features: Optional[torch.Tensor] = None, future_observed_mask: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, use_cache: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Seq2SeqTSPredictionOutput, Tuple]: r""" Returns: Examples: ```python >>> from huggingface_hub import hf_hub_download >>> import torch >>> from transformers import AutoformerForPrediction >>> file = hf_hub_download( ... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset" ... ) >>> batch = torch.load(file) >>> model = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly") >>> # during training, one provides both past and future values >>> # as well as possible additional features >>> outputs = model( ... past_values=batch["past_values"], ... past_time_features=batch["past_time_features"], ... past_observed_mask=batch["past_observed_mask"], ... static_categorical_features=batch["static_categorical_features"], ... static_real_features=batch["static_real_features"], ... future_values=batch["future_values"], ... future_time_features=batch["future_time_features"], ... ) >>> loss = outputs.loss >>> loss.backward() >>> # during inference, one only provides past values >>> # as well as possible additional features >>> # the model autoregressively generates future values >>> outputs = model.generate( ... past_values=batch["past_values"], ... past_time_features=batch["past_time_features"], ... past_observed_mask=batch["past_observed_mask"], ... static_categorical_features=batch["static_categorical_features"], ... static_real_features=batch["static_real_features"], ... future_time_features=batch["future_time_features"], ... ) >>> mean_prediction = outputs.sequences.mean(dim=1) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if future_values is not None: use_cache = False outputs = self.model( past_values=past_values, past_time_features=past_time_features, past_observed_mask=past_observed_mask, static_categorical_features=static_categorical_features, static_real_features=static_real_features, future_values=future_values, future_time_features=future_time_features, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions, use_cache=use_cache, return_dict=return_dict, ) prediction_loss = None params = None if future_values is not None: # outputs.last_hidden_state and trend # loc is 4rd last and scale is 3rd last output params = self.output_params(outputs[0] + outputs[1]) distribution = self.output_distribution(params, loc=outputs[-3], scale=outputs[-2]) loss = self.loss(distribution, future_values) if future_observed_mask is None: future_observed_mask = torch.ones_like(future_values) if len(self.target_shape) == 0: loss_weights = future_observed_mask else: loss_weights, _ = future_observed_mask.min(dim=-1, keepdim=False) prediction_loss = weighted_average(loss, weights=loss_weights) if not return_dict: outputs = ((params,) + outputs[2:]) if params is not None else outputs[2:] return ((prediction_loss,) + outputs) if prediction_loss is not None else outputs return Seq2SeqTSPredictionOutput( loss=prediction_loss, params=params, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, loc=outputs.loc, scale=outputs.scale, static_features=outputs.static_features, ) @torch.no_grad() def generate( self, past_values: torch.Tensor, past_time_features: torch.Tensor, future_time_features: torch.Tensor, past_observed_mask: Optional[torch.Tensor] = None, static_categorical_features: Optional[torch.Tensor] = None, static_real_features: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> SampleTSPredictionOutput: r""" Greedily generate sequences of sample predictions from a model with a probability distribution head. Parameters: past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`): Past values of the time series, that serve as context in order to predict the future. The sequence size of this tensor must be larger than the `context_length` of the model, since the model will use the larger size to construct lag features, i.e. additional values from the past which are added in order to serve as "extra context". The `sequence_length` here is equal to `config.context_length` + `max(config.lags_sequence)`, which if no `lags_sequence` is configured, is equal to `config.context_length` + 7 (as by default, the largest look-back index in `config.lags_sequence` is 7). The property `_past_length` returns the actual length of the past. The `past_values` is what the Transformer encoder gets as input (with optional additional features, such as `static_categorical_features`, `static_real_features`, `past_time_features` and lags). Optionally, missing values need to be replaced with zeros and indicated via the `past_observed_mask`. For multivariate time series, the `input_size` > 1 dimension is required and corresponds to the number of variates in the time series per time step. past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`): Required time features, which the model internally will add to `past_values`. These could be things like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These could also be so-called "age" features, which basically help the model know "at which point in life" a time-series is. Age features have small values for distant past time steps and increase monotonically the more we approach the current time step. Holiday features are also a good example of time features. These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where the position encodings are learned from scratch internally as parameters of the model, the Time Series Transformer requires to provide additional time features. The Time Series Transformer only learns additional embeddings for `static_categorical_features`. Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these features must but known at prediction time. The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`. future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`): Required time features for the prediction window, which the model internally will add to sampled predictions. These could be things like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These could also be so-called "age" features, which basically help the model know "at which point in life" a time-series is. Age features have small values for distant past time steps and increase monotonically the more we approach the current time step. Holiday features are also a good example of time features. These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where the position encodings are learned from scratch internally as parameters of the model, the Time Series Transformer requires to provide additional time features. The Time Series Transformer only learns additional embeddings for `static_categorical_features`. Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these features must but known at prediction time. The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`. past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*): Optional static categorical features for which the model will learn an embedding, which it will add to the values of the time series. Static categorical features are features which have the same value for all time steps (static over time). A typical example of a static categorical feature is a time series ID. static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*): Optional static real features which the model will add to the values of the time series. Static real features are features which have the same value for all time steps (static over time). A typical example of a static real feature is promotion information. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. Return: [`SampleTSPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of samples, prediction_length)` or `(batch_size, number of samples, prediction_length, input_size)` for multivariate predictions. """ outputs = self( static_categorical_features=static_categorical_features, static_real_features=static_real_features, past_time_features=past_time_features, past_values=past_values, past_observed_mask=past_observed_mask, future_time_features=None, future_values=None, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, use_cache=False, ) decoder = self.model.get_decoder() enc_last_hidden = outputs.encoder_last_hidden_state loc = outputs.loc scale = outputs.scale static_feat = outputs.static_features num_parallel_samples = self.config.num_parallel_samples repeated_loc = loc.repeat_interleave(repeats=num_parallel_samples, dim=0) repeated_scale = scale.repeat_interleave(repeats=num_parallel_samples, dim=0) repeated_past_values = ( past_values.repeat_interleave(repeats=num_parallel_samples, dim=0) - repeated_loc ) / repeated_scale time_features = torch.cat((past_time_features, future_time_features), dim=1) expanded_static_feat = static_feat.unsqueeze(1).expand(-1, time_features.shape[1], -1) features = torch.cat((expanded_static_feat, time_features), dim=-1) repeated_features = features.repeat_interleave(repeats=num_parallel_samples, dim=0) repeated_enc_last_hidden = enc_last_hidden.repeat_interleave(repeats=num_parallel_samples, dim=0) lagged_sequence = self.model.get_lagged_subsequences( sequence=repeated_past_values, subsequences_length=self.config.context_length ) lags_shape = lagged_sequence.shape reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1) seasonal_input, trend_input = self.model.decomposition_layer(reshaped_lagged_sequence) mean = torch.mean(reshaped_lagged_sequence, dim=1).unsqueeze(1).repeat(1, self.config.prediction_length, 1) zeros = torch.zeros( [reshaped_lagged_sequence.shape[0], self.config.prediction_length, reshaped_lagged_sequence.shape[2]], device=reshaped_lagged_sequence.device, ) decoder_input = torch.cat( ( torch.cat((seasonal_input[:, -self.config.label_length :, ...], zeros), dim=1), repeated_features[:, -self.config.prediction_length - self.config.label_length :, ...], ), dim=-1, ) trend_init = torch.cat( ( torch.cat((trend_input[:, -self.config.label_length :, ...], mean), dim=1), repeated_features[:, -self.config.prediction_length - self.config.label_length :, ...], ), dim=-1, ) decoder_outputs = decoder( trend=trend_init, inputs_embeds=decoder_input, encoder_hidden_states=repeated_enc_last_hidden ) decoder_last_hidden = decoder_outputs.last_hidden_state trend = decoder_outputs.trend params = self.output_params(decoder_last_hidden + trend) distr = self.output_distribution(params, loc=repeated_loc, scale=repeated_scale) future_samples = distr.sample() return SampleTSPredictionOutput( sequences=future_samples.reshape( (-1, num_parallel_samples, self.config.prediction_length) + self.target_shape, ) )
transformers/src/transformers/models/autoformer/modeling_autoformer.py/0
{ "file_path": "transformers/src/transformers/models/autoformer/modeling_autoformer.py", "repo_id": "transformers", "token_count": 44796 }
77
# coding=utf-8 # Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Tokenization classes for the BARThez model.""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } SPIECE_UNDERLINE = "▁" # TODO this class is useless. This is the most standard sentencpiece model. Let's find which one is closest and nuke this. class BarthezTokenizer(PreTrainedTokenizer): """ Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a BARThez tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it. Will have normalized=False by default this way mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BARThez sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.sp_model) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
transformers/src/transformers/models/barthez/tokenization_barthez.py/0
{ "file_path": "transformers/src/transformers/models/barthez/tokenization_barthez.py", "repo_id": "transformers", "token_count": 5451 }
78
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script converts a lm-head checkpoint from the "Token Dropping" implementation into a PyTorch-compatible BERT model. The official implementation of "Token Dropping" can be found in the TensorFlow Models repository: https://github.com/tensorflow/models/tree/master/official/projects/token_dropping """ import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def convert_checkpoint_to_pytorch(tf_checkpoint_path: str, config_path: str, pytorch_dump_path: str): def get_masked_lm_array(name: str): full_name = f"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" array = tf.train.load_variable(tf_checkpoint_path, full_name) if "kernel" in name: array = array.transpose() return torch.from_numpy(array) def get_encoder_array(name: str): full_name = f"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" array = tf.train.load_variable(tf_checkpoint_path, full_name) if "kernel" in name: array = array.transpose() return torch.from_numpy(array) def get_encoder_layer_array(layer_index: int, name: str): full_name = f"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" array = tf.train.load_variable(tf_checkpoint_path, full_name) if "kernel" in name: array = array.transpose() return torch.from_numpy(array) def get_encoder_attention_layer_array(layer_index: int, name: str, orginal_shape): full_name = f"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" array = tf.train.load_variable(tf_checkpoint_path, full_name) array = array.reshape(orginal_shape) if "kernel" in name: array = array.transpose() return torch.from_numpy(array) print(f"Loading model based on config from {config_path}...") config = BertConfig.from_json_file(config_path) model = BertForMaskedLM(config) # Layers for layer_index in range(0, config.num_hidden_layers): layer: BertLayer = model.bert.encoder.layer[layer_index] # Self-attention self_attn: BertSelfAttention = layer.attention.self self_attn.query.weight.data = get_encoder_attention_layer_array( layer_index, "_query_dense/kernel", self_attn.query.weight.data.shape ) self_attn.query.bias.data = get_encoder_attention_layer_array( layer_index, "_query_dense/bias", self_attn.query.bias.data.shape ) self_attn.key.weight.data = get_encoder_attention_layer_array( layer_index, "_key_dense/kernel", self_attn.key.weight.data.shape ) self_attn.key.bias.data = get_encoder_attention_layer_array( layer_index, "_key_dense/bias", self_attn.key.bias.data.shape ) self_attn.value.weight.data = get_encoder_attention_layer_array( layer_index, "_value_dense/kernel", self_attn.value.weight.data.shape ) self_attn.value.bias.data = get_encoder_attention_layer_array( layer_index, "_value_dense/bias", self_attn.value.bias.data.shape ) # Self-attention Output self_output: BertSelfOutput = layer.attention.output self_output.dense.weight.data = get_encoder_attention_layer_array( layer_index, "_output_dense/kernel", self_output.dense.weight.data.shape ) self_output.dense.bias.data = get_encoder_attention_layer_array( layer_index, "_output_dense/bias", self_output.dense.bias.data.shape ) self_output.LayerNorm.weight.data = get_encoder_layer_array(layer_index, "_attention_layer_norm/gamma") self_output.LayerNorm.bias.data = get_encoder_layer_array(layer_index, "_attention_layer_norm/beta") # Intermediate intermediate: BertIntermediate = layer.intermediate intermediate.dense.weight.data = get_encoder_layer_array(layer_index, "_intermediate_dense/kernel") intermediate.dense.bias.data = get_encoder_layer_array(layer_index, "_intermediate_dense/bias") # Output bert_output: BertOutput = layer.output bert_output.dense.weight.data = get_encoder_layer_array(layer_index, "_output_dense/kernel") bert_output.dense.bias.data = get_encoder_layer_array(layer_index, "_output_dense/bias") bert_output.LayerNorm.weight.data = get_encoder_layer_array(layer_index, "_output_layer_norm/gamma") bert_output.LayerNorm.bias.data = get_encoder_layer_array(layer_index, "_output_layer_norm/beta") # Embeddings model.bert.embeddings.position_embeddings.weight.data = get_encoder_array("_position_embedding_layer/embeddings") model.bert.embeddings.token_type_embeddings.weight.data = get_encoder_array("_type_embedding_layer/embeddings") model.bert.embeddings.LayerNorm.weight.data = get_encoder_array("_embedding_norm_layer/gamma") model.bert.embeddings.LayerNorm.bias.data = get_encoder_array("_embedding_norm_layer/beta") # LM Head lm_head = model.cls.predictions.transform lm_head.dense.weight.data = get_masked_lm_array("dense/kernel") lm_head.dense.bias.data = get_masked_lm_array("dense/bias") lm_head.LayerNorm.weight.data = get_masked_lm_array("layer_norm/gamma") lm_head.LayerNorm.bias.data = get_masked_lm_array("layer_norm/beta") model.bert.embeddings.word_embeddings.weight.data = get_masked_lm_array("embedding_table") # Pooling model.bert.pooler = BertPooler(config=config) model.bert.pooler.dense.weight.data: BertPooler = get_encoder_array("_pooler_layer/kernel") model.bert.pooler.dense.bias.data: BertPooler = get_encoder_array("_pooler_layer/bias") # Export final model model.save_pretrained(pytorch_dump_path) # Integration test - should load without any errors ;) new_model = BertForMaskedLM.from_pretrained(pytorch_dump_path) print(new_model.eval()) print("Model conversion was done sucessfully!") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) args = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
transformers/src/transformers/models/bert/convert_bert_token_dropping_original_tf2_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/bert/convert_bert_token_dropping_original_tf2_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 3032 }
79
# coding=utf-8 # Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BigBird model configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class BigBirdConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BigBirdModel`]. It is used to instantiate an BigBird model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BigBird [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50358): Vocabulary size of the BigBird model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BigBirdModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 1024 or 2048 or 4096). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`BigBirdModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. attention_type (`str`, *optional*, defaults to `"block_sparse"`) Whether to use block sparse attention (with n complexity) as introduced in paper or original attention layer (with n^2 complexity). Possible values are `"original_full"` and `"block_sparse"`. use_bias (`bool`, *optional*, defaults to `True`) Whether to use bias in query, key, value. rescale_embeddings (`bool`, *optional*, defaults to `False`) Whether to rescale embeddings with (hidden_size ** 0.5). block_size (`int`, *optional*, defaults to 64) Size of each block. Useful only when `attention_type == "block_sparse"`. num_random_blocks (`int`, *optional*, defaults to 3) Each query is going to attend these many number of random blocks. Useful only when `attention_type == "block_sparse"`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Example: ```python >>> from transformers import BigBirdConfig, BigBirdModel >>> # Initializing a BigBird google/bigbird-roberta-base style configuration >>> configuration = BigBirdConfig() >>> # Initializing a model (with random weights) from the google/bigbird-roberta-base style configuration >>> model = BigBirdModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "big_bird" def __init__( self, vocab_size=50358, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu_new", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=4096, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, sep_token_id=66, attention_type="block_sparse", use_bias=True, rescale_embeddings=False, block_size=64, num_random_blocks=3, classifier_dropout=None, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, sep_token_id=sep_token_id, **kwargs, ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.rescale_embeddings = rescale_embeddings self.attention_type = attention_type self.use_bias = use_bias self.block_size = block_size self.num_random_blocks = num_random_blocks self.classifier_dropout = classifier_dropout class BigBirdOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
transformers/src/transformers/models/big_bird/configuration_big_bird.py/0
{ "file_path": "transformers/src/transformers/models/big_bird/configuration_big_bird.py", "repo_id": "transformers", "token_count": 3227 }
80
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BiT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) BIT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class BitConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BitModel`]. It is used to instantiate an BiT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BiT [google/bit-50](https://huggingface.co/google/bit-50) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. embedding_size (`int`, *optional*, defaults to 64): Dimensionality (hidden size) for the embedding layer. hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`): Dimensionality (hidden size) at each stage. depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`): Depth (number of layers) for each stage. layer_type (`str`, *optional*, defaults to `"preactivation"`): The layer to use, it can be either `"preactivation"` or `"bottleneck"`. hidden_act (`str`, *optional*, defaults to `"relu"`): The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. global_padding (`str`, *optional*): Padding strategy to use for the convolutional layers. Can be either `"valid"`, `"same"`, or `None`. num_groups (`int`, *optional*, defaults to 32): Number of groups used for the `BitGroupNormActivation` layers. drop_path_rate (`float`, *optional*, defaults to 0.0): The drop path rate for the stochastic depth. embedding_dynamic_padding (`bool`, *optional*, defaults to `False`): Whether or not to make use of dynamic padding for the embedding layer. output_stride (`int`, *optional*, defaults to 32): The output stride of the model. width_factor (`int`, *optional*, defaults to 1): The width factor for the model. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import BitConfig, BitModel >>> # Initializing a BiT bit-50 style configuration >>> configuration = BitConfig() >>> # Initializing a model (with random weights) from the bit-50 style configuration >>> model = BitModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "bit" layer_types = ["preactivation", "bottleneck"] supported_padding = ["SAME", "VALID"] def __init__( self, num_channels=3, embedding_size=64, hidden_sizes=[256, 512, 1024, 2048], depths=[3, 4, 6, 3], layer_type="preactivation", hidden_act="relu", global_padding=None, num_groups=32, drop_path_rate=0.0, embedding_dynamic_padding=False, output_stride=32, width_factor=1, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}") if global_padding is not None: if global_padding.upper() in self.supported_padding: global_padding = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported") self.num_channels = num_channels self.embedding_size = embedding_size self.hidden_sizes = hidden_sizes self.depths = depths self.layer_type = layer_type self.hidden_act = hidden_act self.global_padding = global_padding self.num_groups = num_groups self.drop_path_rate = drop_path_rate self.embedding_dynamic_padding = embedding_dynamic_padding self.output_stride = output_stride self.width_factor = width_factor self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names )
transformers/src/transformers/models/bit/configuration_bit.py/0
{ "file_path": "transformers/src/transformers/models/bit/configuration_bit.py", "repo_id": "transformers", "token_count": 2409 }
81
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for BLIP-2. """ from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class Blip2Processor(ProcessorMixin): r""" Constructs a BLIP-2 processor which wraps a BLIP image processor and an OPT/T5 tokenizer into a single processor. [`BlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`AutoTokenizer`]. See the docstring of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information. Args: image_processor (`BlipImageProcessor`): An instance of [`BlipImageProcessor`]. The image processor is a required input. tokenizer (`AutoTokenizer`): An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "BlipImageProcessor" tokenizer_class = "AutoTokenizer" # Copied from transformers.models.blip.processing_blip.BlipProcessor.__init__ def __init__(self, image_processor, tokenizer): tokenizer.return_token_type_ids = False super().__init__(image_processor, tokenizer) self.current_processor = self.image_processor # Copied from transformers.models.blip.processing_blip.BlipProcessor.__call__ def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_token_type_ids: bool = False, return_length: bool = False, verbose: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchEncoding: """ This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and [`BertTokenizerFast.__call__`] to prepare text for the model. Please refer to the docstring of the above two methods for more information. """ if images is None and text is None: raise ValueError("You have to specify either images or text.") # Get only text if images is None: self.current_processor = self.tokenizer text_encoding = self.tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_token_type_ids=return_token_type_ids, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) return text_encoding # add pixel_values encoding_image_processor = self.image_processor(images, return_tensors=return_tensors) if text is not None: text_encoding = self.tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_token_type_ids=return_token_type_ids, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) else: text_encoding = None if text_encoding is not None: encoding_image_processor.update(text_encoding) return encoding_image_processor # Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer def decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
transformers/src/transformers/models/blip_2/processing_blip_2.py/0
{ "file_path": "transformers/src/transformers/models/blip_2/processing_blip_2.py", "repo_id": "transformers", "token_count": 2783 }
82
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Bros. """ from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class BrosProcessor(ProcessorMixin): r""" Constructs a Bros processor which wraps a BERT tokenizer. [`BrosProcessor`] offers all the functionalities of [`BertTokenizerFast`]. See the docstring of [`~BrosProcessor.__call__`] and [`~BrosProcessor.decode`] for more information. Args: tokenizer (`BertTokenizerFast`, *optional*): An instance of ['BertTokenizerFast`]. The tokenizer is a required input. """ attributes = ["tokenizer"] tokenizer_class = ("BertTokenizer", "BertTokenizerFast") def __init__(self, tokenizer=None, **kwargs): if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(tokenizer) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchEncoding: """ This method uses [`BertTokenizerFast.__call__`] to prepare text for the model. Please refer to the docstring of the above two methods for more information. """ encoding = self.tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) return encoding def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names return list(dict.fromkeys(tokenizer_input_names))
transformers/src/transformers/models/bros/processing_bros.py/0
{ "file_path": "transformers/src/transformers/models/bros/processing_bros.py", "repo_id": "transformers", "token_count": 1650 }
83
# coding=utf-8 # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Chinese-CLIP model configuration""" import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { "OFA-Sys/chinese-clip-vit-base-patch16": ( "https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/resolve/main/config.json" ), } class ChineseCLIPTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate a Chinese CLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Chinese CLIP [OFA-Sys/chinese-clip-vit-base-patch16](https: //huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the CHINESE_CLIP model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ChineseCLIPModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`ChineseCLIPModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Example: ```python >>> from transformers import ChineseCLIPTextConfig, ChineseCLIPTextModel >>> # Initializing a ChineseCLIPTextConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration >>> configuration = ChineseCLIPTextConfig() >>> # Initializing a ChineseCLIPTextModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration >>> model = ChineseCLIPTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "chinese_clip_text_model" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, initializer_factor=1.0, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from ChineseCLIPConfig if config_dict.get("model_type") == "chinese_clip": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class ChineseCLIPVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate an ChineseCLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ChineseCLIP [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. projection_dim (`int`, *optional*, defaults to 512): Dimentionality of text and vision projection layers. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): The number of input channels. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). Example: ```python >>> from transformers import ChineseCLIPVisionConfig, ChineseCLIPVisionModel >>> # Initializing a ChineseCLIPVisionConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration >>> configuration = ChineseCLIPVisionConfig() >>> # Initializing a ChineseCLIPVisionModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration >>> model = ChineseCLIPVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "chinese_clip_vision_model" def __init__( self, hidden_size=768, intermediate_size=3072, projection_dim=512, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=224, patch_size=32, hidden_act="quick_gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from ChineseCLIPConfig if config_dict.get("model_type") == "chinese_clip": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class ChineseCLIPConfig(PretrainedConfig): r""" [`ChineseCLIPConfig`] is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate Chinese-CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Chinese-CLIP [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`ChineseCLIPTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`ChineseCLIPVisionConfig`]. projection_dim (`int`, *optional*, defaults to 512): Dimentionality of text and vision projection layers. logit_scale_init_value (`float`, *optional*, defaults to 2.6592): The inital value of the *logit_scale* paramter. Default is used as per the original ChineseCLIP implementation. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import ChineseCLIPConfig, ChineseCLIPModel >>> # Initializing a ChineseCLIPConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration >>> configuration = ChineseCLIPConfig() >>> # Initializing a ChineseCLIPModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration >>> model = ChineseCLIPModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a ChineseCLIPConfig from a ChineseCLIPTextConfig and a ChineseCLIPVisionConfig >>> # Initializing a ChineseCLIPTextConfig and ChineseCLIPVisionConfig configuration >>> config_text = ChineseCLIPTextConfig() >>> config_vision = ChineseCLIPVisionConfig() >>> config = ChineseCLIPConfig.from_text_vision_configs(config_text, config_vision) ```""" model_type = "chinese_clip" def __init__( self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). text_config_dict = kwargs.pop("text_config_dict", None) vision_config_dict = kwargs.pop("vision_config_dict", None) super().__init__(**kwargs) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: text_config = {} # This is the complete result when using `text_config_dict`. _text_config_dict = ChineseCLIPTextConfig(**text_config_dict).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: message = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`text_config_dict` is provided which will be used to initialize `ChineseCLIPTextConfig`. " f'The value `text_config["{key}"]` will be overriden.' ) logger.info(message) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict) if vision_config_dict is not None: if vision_config is None: vision_config = {} # This is the complete result when using `vision_config_dict`. _vision_config_dict = ChineseCLIPVisionConfig(**vision_config_dict).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _vision_config_dict["id2label"] = { str(key): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: message = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`vision_config_dict` is provided which will be used to initialize " f'`ChineseCLIPVisionConfig`. The value `vision_config["{key}"]` will be overriden.' ) logger.info(message) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict) if text_config is None: text_config = {} logger.info("`text_config` is `None`. Initializing the `ChineseCLIPTextConfig` with default values.") if vision_config is None: vision_config = {} logger.info("`vision_config` is `None`. initializing the `ChineseCLIPVisionConfig` with default values.") self.text_config = ChineseCLIPTextConfig(**text_config) self.vision_config = ChineseCLIPVisionConfig(**vision_config) self.projection_dim = projection_dim self.logit_scale_init_value = logit_scale_init_value self.initializer_factor = 1.0 self.initializer_range = 0.02 @classmethod def from_text_vision_configs( cls, text_config: ChineseCLIPTextConfig, vision_config: ChineseCLIPVisionConfig, **kwargs ): r""" Instantiate a [`ChineseCLIPConfig`] (or a derived class) from Chinese-CLIP text model configuration and Chinese-CLIP vision model configuration. Returns: [`ChineseCLIPConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) class ChineseCLIPOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4 def generate_dummy_inputs( self, processor: "ProcessorMixin", batch_size: int = -1, seq_length: int = -1, framework: Optional["TensorType"] = None, ) -> Mapping[str, Any]: text_input_dict = super().generate_dummy_inputs( processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework ) image_input_dict = super().generate_dummy_inputs( processor.image_processor, batch_size=batch_size, framework=framework ) return {**text_input_dict, **image_input_dict} @property def default_onnx_opset(self) -> int: return 14
transformers/src/transformers/models/chinese_clip/configuration_chinese_clip.py/0
{ "file_path": "transformers/src/transformers/models/chinese_clip/configuration_chinese_clip.py", "repo_id": "transformers", "token_count": 8876 }
84
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for CLIP.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( convert_to_rgb, get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_kwargs, validate_preprocess_arguments, ) from ...utils import TensorType, is_vision_available, logging logger = logging.get_logger(__name__) if is_vision_available(): import PIL class CLIPImageProcessor(BaseImageProcessor): r""" Constructs a CLIP image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the `preprocess` method. crop_size (`Dict[str, int]` *optional*, defaults to 224): Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.do_convert_rgb = do_convert_rgb self._valid_processor_keys = [ "images", "do_resize", "size", "resample", "do_center_crop", "crop_size", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "do_convert_rgb", "return_tensors", "data_format", "input_data_format", ] # for backwards compatibility of KOSMOS-2 if "use_square_size" in kwargs: self.size = {"height": size["shortest_edge"], "width": size["shortest_edge"]} def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ default_to_square = True if "shortest_edge" in size: size = size["shortest_edge"] default_to_square = False elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.") output_size = get_resize_output_image_size( image, size=size, default_to_square=default_to_square, input_data_format=input_data_format, ) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: int = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, param_name="size", default_to_square=False) resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True) do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_center_crop: images = [ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
transformers/src/transformers/models/clip/image_processing_clip.py/0
{ "file_path": "transformers/src/transformers/models/clip/image_processing_clip.py", "repo_id": "transformers", "token_count": 7123 }
85
# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch CLVP model.""" import copy import math from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation import GenerationConfig from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPooling, CausalLMOutputWithCrossAttentions, ) from ...modeling_utils import PreTrainedModel, SequenceSummary from ...pytorch_utils import Conv1D from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_clvp import ( ClvpConfig, ClvpDecoderConfig, ClvpEncoderConfig, ) logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "susnato/clvp_dev" CLVP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "susnato/clvp_dev", # See all Clvp models at https://huggingface.co/models?filter=clvp ] # Copied from transformers.models.clip.modeling_clip.contrastive_loss def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->clvp, image_loss->speech_loss def clvp_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) speech_loss = contrastive_loss(similarity.t()) return (caption_loss + speech_loss) / 2.0 # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, v, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) v_embed = (v * cos) + (rotate_half(v) * sin) return q_embed, k_embed, v_embed def _pad_extra_bos_eos_tokens( input_ids, attention_mask=None, pad_token_id=0, bos_token_id=255, eos_token_id=0, add_bos_token=True, add_eos_token=True, ): """ This method adds extra bos and eos tokens to input_ids and accordingly modifies the attention_mask which is used in `ClvpConditioningEncoder` and the generation loop of the `ClvpModelForConditionalGeneration`. """ # add the bos token at the beginning if add_bos_token: input_ids = torch.nn.functional.pad(input_ids, (1, 0), value=bos_token_id) attention_mask = ( torch.nn.functional.pad(attention_mask, (1, 0), value=1) if attention_mask is not None else attention_mask ) modified_input_ids = input_ids if add_eos_token: modified_input_ids = torch.zeros( (input_ids.shape[0], input_ids.shape[1] + 1), dtype=input_ids.dtype, device=input_ids.device ) for i, each_input_id in enumerate(input_ids): # locate where the valid tokens end and then add the eos token if torch.isin(each_input_id, pad_token_id).sum(): pos = torch.where(each_input_id == pad_token_id)[0].min() modified_input_ids[i] = torch.concatenate( [each_input_id[:pos], torch.tensor([eos_token_id], device=input_ids.device), each_input_id[pos:]] ) else: # if there are no pad tokens present, then add eos to the end modified_input_ids[i] = torch.nn.functional.pad(each_input_id, (0, 1), value=eos_token_id) attention_mask = ( torch.nn.functional.pad(attention_mask, (1, 0), value=1) if attention_mask is not None else attention_mask ) return modified_input_ids, attention_mask @dataclass class ClvpEncoderOutput(ModelOutput): """ Base class for CLVP encoder's outputs that contains a pooling of the last hidden states as well as a projection output (a linear layer on top of the pooled output). Args: embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when model is initialized with `with_projection=True`): The embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): The hidden state of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Pooled output of the `last_hidden_state`. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None pooler_output: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class ClvpOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for speech-text similarity. speech_ids (`torch.LongTensor`, *optional*): speech_ids (or speech candidates) generated by the `ClvpForCausalLM` model. logits_per_speech (`torch.FloatTensor` of shape `(speech_batch_size, text_batch_size)`): The scaled dot product scores between `speech_embeds` and `text_embeds`. This represents the speech-text similarity scores. logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, speech_batch_size)`): The scaled dot product scores between `text_embeds` and `speech_embeds`. This represents the text-speech similarity scores. text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of the text encoder model. speech_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The speech embeddings obtained by applying the projection layer to the pooled output of the speech encoder model. text_model_output (`BaseModelOutputWithPooling`): The pooled output of the `last_hidden_state` of the text encoder Model. speech_model_output (`BaseModelOutputWithPooling`): The pooled output of the `last_hidden_state` of the speech encoder Model. decoder_hidden_states (`torch.FloatTensor`, *optional*): The hidden states of the decoder model. text_encoder_hidden_states (`torch.FloatTensor`, *optional*): The hidden states of the text encoder model. speech_encoder_hidden_states (`torch.FloatTensor`, *optional*): The hidden states of the speech encoder model. """ loss: Optional[torch.FloatTensor] = None speech_ids: Optional[torch.LongTensor] = None logits_per_speech: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None speech_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None speech_model_output: BaseModelOutputWithPooling = None decoder_hidden_states: torch.FloatTensor = None text_encoder_hidden_states: torch.FloatTensor = None speech_encoder_hidden_states: torch.FloatTensor = None # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Clvp class ClvpRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ ClvpRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class ClvpRotaryPositionalEmbedding(nn.Module): """ Rotary Position Embedding Class for CLVP. It was proposed in the paper 'ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING', Please see https://arxiv.org/pdf/2104.09864v1.pdf . """ def __init__(self, config): super().__init__() dim = max(config.projection_dim // (config.num_attention_heads * 2), 32) inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)) self.register_buffer("inv_freq", inv_freq) self.cached_sequence_length = None self.cached_rotary_positional_embedding = None def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: sequence_length = hidden_states.shape[1] if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None: return self.cached_rotary_positional_embedding self.cached_sequence_length = sequence_length time_stamps = torch.arange(sequence_length, device=hidden_states.device).type_as(self.inv_freq) freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq) embeddings = torch.cat((freqs, freqs), dim=-1) self.cached_rotary_positional_embedding = embeddings.unsqueeze(0) return self.cached_rotary_positional_embedding class ClvpSelfAttention(nn.Module): """ Multi-headed attention to combine Absolute and Rotary Positional Embeddings into a single Attention module. """ def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout if hasattr(config, "max_position_embeddings"): max_positions = config.max_position_embeddings bias = torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)) bias = bias.view(1, 1, max_positions, max_positions) self.register_buffer("bias", bias, persistent=False) self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) # Copied from transformers.models.clip.modeling_clip.CLIPAttention._shape def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.FloatTensor, rotary_pos_emb: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, use_cache: Optional[bool] = False, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]: # Raise error when position_ids is None but rotary_pos_emb is provided, because we need that when applying # rotary_pos_emb to query and key states. if rotary_pos_emb is not None and position_ids is None: raise ValueError("`position_ids` must be provided when `rotary_pos_emb` is not None.") bsz, _, embed_dim = hidden_states.size() # get query proj query_states = self._shape(self.q_proj(hidden_states), -1, bsz) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if past_key_value is not None: past_key, past_value = past_key_value key_states = torch.cat((past_key, key_states), dim=-2) value_states = torch.cat((past_value, value_states), dim=-2) if use_cache is True: present = (key_states, value_states) else: present = None if rotary_pos_emb is not None: rotary_emb_dim = rotary_pos_emb.shape[-1] # Partial rotary embedding query_rot, query_pass = ( query_states[..., :rotary_emb_dim], query_states[..., rotary_emb_dim:], ) key_rot, key_pass = ( key_states[..., :rotary_emb_dim], key_states[..., rotary_emb_dim:], ) value_rot, value_pass = ( value_states[..., :rotary_emb_dim], value_states[..., rotary_emb_dim:], ) cos, sin = rotary_pos_emb.cos().squeeze(0), rotary_pos_emb.sin().squeeze(0) query_rot, key_rot, value_rot = apply_rotary_pos_emb(query_rot, key_rot, value_rot, cos, sin, position_ids) # [batch_size, num_heads, seq_length, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) value_states = torch.cat((value_rot, value_pass), dim=-1) tgt_len = query_states.shape[2] src_len = key_states.shape[2] attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.matmul(attn_probs, value_states) if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, present, attn_weights class ClvpGatedLinearUnit(nn.Module): """ `ClvpGatedLinearUnit` uses the second half of the `hidden_states` to act as a gate for the first half of the `hidden_states` which controls the flow of data from the first of the tensor. """ def __init__(self, config): super().__init__() self.activation_fn = ACT2FN[config.hidden_act] self.proj = nn.Linear(config.hidden_size, config.intermediate_size * 2) def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) return hidden_states * self.activation_fn(gate) class ClvpEncoderMLP(nn.Module): """ This MLP is used in CLVP speech or text encoder models. """ def __init__(self, config): super().__init__() self.config = config self.fc1 = ClvpGatedLinearUnit(config) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout_layer = nn.Dropout(config.dropout) def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: hidden_states = self.fc1(hidden_states) hidden_states = self.dropout_layer(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class ClvpEncoderLayer(nn.Module): def __init__(self, config: ClvpConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.self_attn = ClvpSelfAttention(config) self.mlp = ClvpEncoderMLP(config) self.input_rmsnorm = ClvpRMSNorm(self.embed_dim, eps=config.layer_norm_eps) self.post_attention_rmsnorm = ClvpRMSNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.FloatTensor, rotary_pos_emb: torch.FloatTensor, attention_mask: torch.LongTensor, position_ids: torch.LongTensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, embed_dim)`): input to the layer. rotary_pos_emb (`torch.FloatTensor`): rotary position embeddings generated by `ClvpRotaryPositionalEmbedding` module. attention_mask (`torch.FloatTensor` of shape `(batch, 1, tgt_len, src_len)`): attention mask where padding elements are indicated by very large negative values. position_ids (`torch.LongTensor`): Denotes position ids of the input tokens. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.input_rmsnorm(hidden_states) attention_outputs = self.self_attn( hidden_states=hidden_states, rotary_pos_emb=rotary_pos_emb, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, ) hidden_states = attention_outputs[0] hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.post_attention_rmsnorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attention_outputs[-1],) return outputs # Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP with GPT2->ClvpDecoderMLP class ClvpDecoderMLP(nn.Module): def __init__(self, intermediate_size, config): super().__init__() embed_dim = config.hidden_size self.c_fc = Conv1D(intermediate_size, embed_dim) self.c_proj = Conv1D(embed_dim, intermediate_size) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class ClvpDecoderLayer(nn.Module): def __init__(self, config): super().__init__() hidden_size = config.hidden_size inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size self.input_layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = ClvpSelfAttention(config) self.post_attention_layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = ClvpDecoderMLP(inner_dim, config) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) attn_outputs = self.attn( hidden_states, past_key_value=past_key_value, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] outputs = attn_outputs[1:] # residual connection hidden_states = attn_output + residual residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + feed_forward_hidden_states if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs class ClvpConditioningEncoder(nn.Module): """ This class processes the log-mel spectrograms(extracted by the Feature Extractor) and text tokens(produced by the tokenizer) as inputs for the decoder model. First each log-mel spectrogram is processed into a single vector which captures valuable characteristics from each of them, then the text tokens are converted into token embeddings and position embeddings are added afterwards. Both of these vectors are concatenated and then passed to the decoder model. The text tokens helps to incorporate the "text information" and the log-mel spectrogram is used to specify the "voice characteristics" into the generated mel tokens. """ def __init__(self, config: ClvpConfig): super().__init__() self.text_config = config.text_config self.decoder_config = config.decoder_config self.text_token_embedding = nn.Embedding(self.text_config.vocab_size, self.decoder_config.hidden_size) self.text_position_embedding = nn.Embedding( self.decoder_config.max_text_tokens, self.decoder_config.hidden_size ) self.mel_conv = nn.Conv1d(self.decoder_config.feature_size, self.decoder_config.hidden_size, kernel_size=1) # define group norms to be used before each attention layer num_groups = self.compute_groupnorm_groups(self.decoder_config.hidden_size) self.group_norms = nn.ModuleList( [ nn.GroupNorm(num_groups, self.decoder_config.hidden_size, eps=1e-5, affine=True) for _ in range(self.decoder_config.num_mel_attn_blocks) ] ) # define the attention layers self.mel_attn_blocks = nn.ModuleList( [ClvpSelfAttention(self.decoder_config) for _ in range(self.decoder_config.num_mel_attn_blocks)] ) self.gradient_checkpointing = False def compute_groupnorm_groups(self, channels: int, groups: int = 32): """ Calculates the value of `num_groups` for nn.GroupNorm. This logic is taken from the official tortoise repository. link : https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/models/arch_util.py#L26 """ if channels <= 16: groups = 8 elif channels <= 64: groups = 16 while channels % groups != 0: groups = int(groups / 2) if groups <= 2: raise ValueError( f"Number of groups for the GroupNorm must be greater than 2, but it is {groups}." f"Please consider using a different `hidden_size`" ) return groups def forward( self, input_features: torch.FloatTensor, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): # process text if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.size() elif inputs_embeds is not None: batch_size, seq_length = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") # construct attention mask if not given if attention_mask is None: attention_mask = torch.ones([batch_size, seq_length], dtype=torch.long, device=input_ids.device) # We add bos and eos input_ids in the modeling file instead of the tokenizer file to keep the logic simple # This logic is specific to ClvpConditioningEncoder and not used by other modules. input_ids, attention_mask = _pad_extra_bos_eos_tokens( input_ids, attention_mask, bos_token_id=self.text_config.bos_token_id, eos_token_id=self.text_config.eos_token_id, ) inputs_embeds = self.text_token_embedding(input_ids) position_ids = attention_mask.cumsum(-1) - 1 position_embeds = self.text_position_embedding(position_ids) text_embeds = inputs_embeds + position_embeds if self.gradient_checkpointing and self.training: # process each log-mel spectrogram into a single vector mel_spec = torch.utils.checkpoint.checkpoint(self.mel_conv, input_features) for i, mel_attn_block in enumerate(self.mel_attn_blocks): residual_mel_spec = mel_spec.transpose(1, 2) mel_spec = torch.utils.checkpoint.checkpoint(self.group_norms[i], mel_spec).transpose(1, 2) mel_spec = torch.utils.checkpoint.checkpoint(mel_attn_block, mel_spec)[0] + residual_mel_spec mel_spec = mel_spec.transpose(1, 2) else: # process each log-mel spectrogram into a single vector mel_spec = self.mel_conv(input_features) for i, mel_attn_block in enumerate(self.mel_attn_blocks): residual_mel_spec = mel_spec.transpose(1, 2) mel_spec = self.group_norms[i](mel_spec).transpose(1, 2) mel_spec = mel_attn_block(mel_spec)[0] + residual_mel_spec mel_spec = mel_spec.transpose(1, 2) mel_spec = mel_spec[:, :, 0] mel_spec = mel_spec.unsqueeze(1) # repeat if there is either (1 text vs N audios) or (N texts vs 1 audio) if text_embeds.shape[0] == 1 and mel_spec.shape[0] != 1: text_embeds = text_embeds.repeat(mel_spec.shape[0], 1, 1) elif text_embeds.shape[0] != 1 and mel_spec.shape[0] == 1: mel_spec = mel_spec.repeat(text_embeds.shape[0], 1, 1) # If there is N texts and M audios we will raise error since the number of text and audio must be same. elif text_embeds.shape[0] != mel_spec.shape[0]: raise ValueError( f"The number of texts and number of audios must be same. " f"Found {text_embeds.shape[0]} texts vs {mel_spec.shape[0]} audios" ) return torch.concat([mel_spec, text_embeds], dim=1) class ClvpPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ClvpConfig base_model_prefix = "clvp" supports_gradient_checkpointing = True _skip_keys_device_placement = "past_key_values" def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor if isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, (nn.Linear, Conv1D, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=factor * 0.02) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, ClvpEncoderMLP): factor = self.config.initializer_factor in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor fc_std = (2 * module.config.hidden_size) ** -0.5 * factor nn.init.normal_(module.fc1.proj.weight if getattr(module.fc1, "proj") else module.fc1.weight, std=fc_std) nn.init.normal_(module.fc2.weight, std=in_proj_std) elif isinstance(module, ClvpEncoder): config = self.config.text_config if hasattr(self.config, "text_config") else self.config factor = config.initializer_factor module.projection.weight.data.normal_(mean=0.0, std=factor * (config.hidden_size**-0.5)) elif isinstance(module, ClvpConditioningEncoder): module.mel_conv.weight.data.normal_(mean=0.0, std=factor) module.mel_conv.bias.data.zero_() elif isinstance(module, ClvpForCausalLM): for name, p in module.named_parameters(): if name == "c_proj.weight": p.data.normal_( mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.num_hidden_layers)) ) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) CLVP_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ClvpConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CLVP_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`): Indicates log mel-spectrogram representations for audio returned by [`ClvpFeatureExtractor`]. conditioning_encoder_inputs_embeds (`torch.FloatTensor`, *optional*): inputs_embeds for `ClvpConditioningEncoder`. Can be used in place of `input_ids`. text_encoder_inputs_embeds (`torch.FloatTensor`, *optional*): inputs_embeds for the text encoder model passed in place of `input_ids`. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding text token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLVP_DECODER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have their past given to this model should not be passed as `input_ids` as they have already been computed. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for `past_key_values`. In other words, the `attention_mask` always has to have the length: `len(past_key_values) + len(input_ids)` [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see `past_key_values`). use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class ClvpEncoder(ClvpPreTrainedModel): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`ClvpEncoderLayer`]. Args: config: ClvpConfig """ def __init__(self, config: ClvpConfig): super().__init__(config) self.config = config self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size) self.rotary_pos_emb = ClvpRotaryPositionalEmbedding(config) if config.use_rotary_embedding else None self.layers = nn.ModuleList([ClvpEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.sequence_summary = SequenceSummary(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False) self.gradient_checkpointing = False self.post_init() def get_input_embeddings(self): return self.token_embedding def set_input_embeddings(self, value): self.token_embedding = value def forward( self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): input embeddings for the model. This bypasses the model's internal embedding lookup matrix. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor`, *optional*): Denotes the position ids of `input_ids`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) inputs_embeds = self.token_embedding(input_ids) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") # expand attention_mask and create position_ids if needed if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange(input_shape[1], dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None rotary_pos_emb = self.rotary_pos_emb(inputs_embeds) if self.rotary_pos_emb is not None else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = torch.utils.checkpoint.checkpoint( encoder_layer.__call__, hidden_states, rotary_pos_emb, attention_mask, position_ids, ) else: layer_outputs = encoder_layer( hidden_states, rotary_pos_emb, attention_mask, position_ids, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) last_hidden_state = hidden_states last_hidden_state = self.final_layer_norm(last_hidden_state) # take the mean over axis 1 and get pooled output pooled_output = self.sequence_summary(last_hidden_state) # apply the projection layer embeds = self.projection(pooled_output) if not return_dict: return tuple( v for v in [embeds, last_hidden_state, pooled_output, encoder_states, all_attentions] if v is not None ) return ClvpEncoderOutput( embeds=embeds, last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_states, attentions=all_attentions, ) class ClvpDecoder(ClvpPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ClvpDecoderLayer`] """ def __init__(self, config): super().__init__(config) self.config = config self.input_embeds_layer = nn.Embedding(self.config.vocab_size, self.config.hidden_size) self.position_embeds_layer = nn.Embedding(self.config.max_position_embeddings, self.config.hidden_size) self.drop = nn.Dropout(self.config.embd_pdrop) self.layers = nn.ModuleList([ClvpDecoderLayer(self.config) for _ in range(self.config.num_hidden_layers)]) self.layer_norm = nn.LayerNorm(self.config.hidden_size, eps=self.config.layer_norm_epsilon) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.input_embeds_layer def set_input_embeddings(self, new_embeddings): self.input_embeds_layer = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.layers[layer].attn.prune_heads(heads) @add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if past_key_values is None: past_key_values_length = 0 past_key_values = tuple([None] * len(self.layers)) else: past_key_values_length = past_key_values[0][0].size(-2) if position_ids is None: position_ids = torch.arange( past_key_values_length, input_shape[-1] + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) if inputs_embeds is None: inputs_embeds = self.input_embeds_layer(input_ids) position_embeds = self.position_embeds_layer(position_ids) inputs_embeds = inputs_embeds + position_embeds attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x num_attention_heads x N x N # head_mask has shape num_hidden_layers x batch x num_attention_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) hidden_states = inputs_embeds if token_type_ids is not None: token_type_embeds = self.input_embeds_layer(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None all_hidden_states = () if output_hidden_states else None for i, (block, past_key_value) in enumerate(zip(self.layers, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: outputs = torch.utils.checkpoint.checkpoint( block.__call__, hidden_states, None, attention_mask, position_ids, head_mask[i], ) else: outputs = block( hidden_states, past_key_value=past_key_value, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare Clvp decoder model outputting raw hidden-states without any specific head on top.", CLVP_START_DOCSTRING, ) class ClvpModel(ClvpPreTrainedModel): def __init__(self, config: ClvpDecoderConfig): super().__init__(config) self.config = config self.decoder = ClvpDecoder(self.config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.input_embeds_layer def set_input_embeddings(self, value): self.decoder.input_embeds_layer = value def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) @add_start_docstrings( "The CLVP decoder model with a language modelling head on top.", CLVP_START_DOCSTRING, ) class ClvpForCausalLM(ClvpPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.model = ClvpModel(self.config) self.final_norm = nn.LayerNorm(self.config.hidden_size) self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=True) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.input_embeds_layer def set_input_embeddings(self, new_embeddings): self.model.decoder.input_embeds_layer = new_embeddings def _prepare_model_inputs( self, inputs: Optional[torch.Tensor] = None, bos_token_id: Optional[int] = None, model_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]: """ This function extracts the model-specific `inputs` for generation. """ input_name = self.main_input_name model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None} inputs_kwarg = model_kwargs.pop(input_name, None) if inputs_kwarg is not None and inputs is not None: raise ValueError( f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed." f"Make sure to either pass {inputs} or {input_name}=..." ) elif inputs_kwarg is not None: inputs = inputs_kwarg if input_name == "input_ids" and "inputs_embeds" in model_kwargs: model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation( inputs, bos_token_id, model_kwargs=model_kwargs ) inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds" # Check if conditioning_embeds are provided or not, if yes then concatenate the bos_token_id at the end of the conditioning_embeds. # Then we must subtract the positional_ids because during the forward pass it will be added anyways, so we must cancel them out here. conditioning_embeds = model_kwargs.get("conditioning_embeds", None) if conditioning_embeds is not None: mel_start_token_embedding = self.model.decoder.input_embeds_layer( torch.full( (conditioning_embeds.shape[0], 1), fill_value=self.config.bos_token_id, device=conditioning_embeds.device, ) ) mel_start_token_embedding += self.model.decoder.position_embeds_layer( torch.full((conditioning_embeds.shape[0], 1), fill_value=0, device=conditioning_embeds.device) ) conditioning_embeds = torch.concat([conditioning_embeds, mel_start_token_embedding], dim=1) # subtract the positional_ids here if hasattr(model_kwargs, "attention_mask"): position_ids = model_kwargs["attention_mask"].long().cumsum(-1) - 1 else: position_ids = torch.range( 0, conditioning_embeds.shape[1] - 1, dtype=torch.long, device=conditioning_embeds.device ) position_ids = position_ids.unsqueeze(0).repeat(conditioning_embeds.shape[0], 1) model_kwargs["inputs_embeds"] = conditioning_embeds - self.model.decoder.position_embeds_layer( position_ids ) model_kwargs["input_ids"] = ( torch.ones((model_kwargs["inputs_embeds"].shape[0], 1), dtype=torch.long, device=self.device) * self.config.bos_token_id ) return model_kwargs["inputs_embeds"], "inputs_embeds", model_kwargs inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs) return inputs, input_name, model_kwargs def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, conditioning_embeds=None, **kwargs ): input_ids_length = input_ids.shape[-1] token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past_key_values: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] if token_type_ids is not None: token_type_ids = token_type_ids[:, -input_ids.shape[1] :] attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) else: position_ids = None if conditioning_embeds is not None and past_key_values is not None: position_ids = torch.tensor([input_ids_length], dtype=torch.long, device=input_ids.device) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "token_type_ids": token_type_ids, } ) return model_inputs @add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits = self.final_norm(hidden_states) lm_logits = self.lm_head(lm_logits) loss = None if labels is not None: labels = labels.to(lm_logits.device) # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @staticmethod # Copied from transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel._reorder_cache def _reorder_cache( past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor ) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past_key_values ) @add_start_docstrings( "The composite CLVP model with a text encoder, speech encoder and speech decoder model." "The speech decoder model generates the speech_ids from the text and the text encoder and speech encoder works" "together to filter out the best speech_ids.", CLVP_START_DOCSTRING, ) class ClvpModelForConditionalGeneration(ClvpPreTrainedModel): config_class = ClvpConfig def __init__(self, config: ClvpConfig): super().__init__(config) if not isinstance(config.text_config, ClvpEncoderConfig): raise ValueError( "config.text_config is expected to be of type `ClvpEncoderConfig` but is of type" f" {type(config.text_config)}." ) if not isinstance(config.speech_config, ClvpEncoderConfig): raise ValueError( "config.speech_config is expected to be of type `ClvpEncoderConfig` but is of type" f" {type(config.speech_config)}." ) if not isinstance(config.decoder_config, ClvpDecoderConfig): raise ValueError( "config.decoder_config is expected to be of type `ClvpDecoderConfig` but is of type" f" {type(config.decoder_config)}." ) self.conditioning_encoder = ClvpConditioningEncoder(config) self.speech_decoder_model = ClvpForCausalLM(config.decoder_config) self.text_encoder_model = ClvpEncoder(config.text_config) self.speech_encoder_model = ClvpEncoder(config.speech_config) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) # Initialize weights and apply final processing self.post_init() # taken from the original repo, # link : https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/api.py#L117 def fix_speech_decoder_output(self, speech_ids: torch.LongTensor) -> torch.LongTensor: """ This method modifies the output of the decoder model, such as replacing the `eos_token_id` and changing the last few tokens of each sequence. Args: speech_ids (`torch.LongTensor`): This refers to the output of the decoder model. """ decoder_fixing_codes = self.config.decoder_config.decoder_fixing_codes speech_ids = speech_ids[:, 1:] stop_token_indices = torch.where(speech_ids == self.speech_decoder_model.config.eos_token_id, 1, 0) speech_ids = torch.masked_fill(speech_ids, mask=stop_token_indices.bool(), value=decoder_fixing_codes[0]) for i, each_seq_stop_token_index in enumerate(stop_token_indices): # This means that no stop tokens were found so the sentence was still being generated, in that case we don't need # to apply any padding so just skip to the next sequence of tokens. if each_seq_stop_token_index.sum() == 0: continue stm = each_seq_stop_token_index.argmax() speech_ids[i, stm:] = decoder_fixing_codes[0] if stm - 3 < speech_ids.shape[1]: speech_ids[i, -3:] = torch.tensor( [decoder_fixing_codes[1:]], device=speech_ids.device, dtype=torch.long ) return speech_ids def get_text_features( self, input_ids: Optional[torch.LongTensor] = None, text_encoder_inputs_embeds: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ) -> torch.FloatTensor: r""" This method can be used to extract text_embeds from a text. The text embeddings obtained by applying the projection layer to the pooled output of the CLVP text encoder model. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. [What are input IDs?](../glossary#input-ids) text_encoder_inputs_embeds (`torch.FloatTensor`, *optional*): inputs_embeds for the text encoder model passed in place of `input_ids`. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Returns: `torch.FloatTensor` of shape `(batch_size, output_dim)`: The text embeddings obtained by applying the projection layer to the pooled output of the CLVP Text Model. Examples: ```python >>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration >>> # Define the Text >>> text = "This is an example text." >>> # Define processor and model >>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev") >>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev") >>> # Generate processor output and text embeds >>> processor_output = processor(text=text, return_tensors="pt") >>> text_embeds = model.get_text_features(input_ids=processor_output["input_ids"]) ``` """ outputs = self.text_encoder_model( input_ids=input_ids, inputs_embeds=text_encoder_inputs_embeds, attention_mask=attention_mask, ) return outputs[0] def get_speech_features( self, speech_ids: Optional[torch.LongTensor] = None, input_ids: Optional[torch.LongTensor] = None, input_features: Optional[torch.FloatTensor] = None, conditioning_encoder_inputs_embeds: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, **kwargs, ) -> torch.FloatTensor: r""" This method can be used to extract speech_embeds. The speech embeddings are obtained by applying the speech model on speech_ids. If speech_ids is not present but both input_ids and input_features are given then the decoder model will be used to first generate the speech_ids and then applying the speech model. Args: speech_ids (`torch.LongTensor` of shape `(batch_size, num_speech_ids)`, *optional*): Speech Tokens. Padding will be ignored by default should you provide it. If speech_ids are provided then input_ids and input_features will be automatically ignored. input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Input text Tokens. Processed from the [`ClvpTokenizer`]. If speech_ids is not provided, then input_ids and input_features will be used. input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`, *optional*): Indicates log-melspectrogram representations for audio returned by [`ClvpFeatureExtractor`]. If speech_ids is not provided, then input_ids and input_features will be used. conditioning_encoder_inputs_embeds (`torch.FloatTensor`, *optional*): inputs_embeds for `ClvpConditioningEncoder`. Can be used in place of `input_ids`. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding speech token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) generation_config (`GenerationConfig`, *optional*): generation config to control the generation of speech_ids if they are not provided. Returns: `torch.FloatTensor` of shape `(batch_size, output_dim)`: The speech embeddings obtained by applying the projection layer to the pooled output of the CLVP Speech Model. Examples: ```python >>> import datasets >>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration >>> # Define the Text and Load the Audio (We are taking an audio example from HuggingFace Hub using `datasets` library) >>> text = "This is an example text." >>> ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050)) >>> _, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values() >>> # Define processor and model >>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev") >>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev") >>> # Generate processor output and model output >>> processor_output = processor(raw_speech=audio, sampling_rate=sr, text=text, return_tensors="pt") >>> speech_embeds = model.get_speech_features( ... input_ids=processor_output["input_ids"], input_features=processor_output["input_features"] ... ) ``` """ if speech_ids is None: if (input_ids is None and conditioning_encoder_inputs_embeds is None) or input_features is None: raise ValueError( "Either speech_ids or input_ids/conditioning_encoder_inputs_embeds and input_features must be provided." ) if generation_config is None: generation_config = self.generation_config generation_config.update(**kwargs) conditioning_embeds = self.conditioning_encoder( input_features=input_features, input_ids=input_ids, inputs_embeds=conditioning_encoder_inputs_embeds, attention_mask=attention_mask, ) speech_ids = self.speech_decoder_model.generate( conditioning_embeds=conditioning_embeds, generation_config=generation_config, ) speech_ids = self.fix_speech_decoder_output(speech_ids[0]) outputs = self.speech_encoder_model( input_ids=speech_ids, attention_mask=attention_mask, ) return outputs[0] @add_start_docstrings_to_model_forward(CLVP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ClvpOutput, config_class=ClvpConfig) def forward( self, input_ids: torch.LongTensor = None, input_features: torch.FloatTensor = None, conditioning_encoder_inputs_embeds: Optional[torch.FloatTensor] = None, text_encoder_inputs_embeds: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = False, return_dict: Optional[bool] = None, ) -> Union[Tuple, ClvpOutput]: r""" Returns: Examples: ```python >>> import datasets >>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration >>> # Define the Text and Load the Audio (We are taking an audio example from HuggingFace Hub using `datasets` library) >>> text = "This is an example text." >>> ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050)) >>> _, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values() >>> # Define processor and model >>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev") >>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev") >>> # processor outputs and model outputs >>> processor_output = processor(raw_speech=audio, sampling_rate=sr, text=text, return_tensors="pt") >>> outputs = model( ... input_ids=processor_output["input_ids"], ... input_features=processor_output["input_features"], ... return_dict=True, ... ) ``` """ # Use CLVP model's config for some fields (if specified) instead of those of speech & text components. output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict conditioning_embeds = self.conditioning_encoder( input_features=input_features, input_ids=input_ids, inputs_embeds=conditioning_encoder_inputs_embeds, attention_mask=attention_mask, ) decoder_outputs = self.speech_decoder_model( inputs_embeds=conditioning_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) speech_ids = decoder_outputs[0] # since we will get the embeds of shape `(batch_size, seq_len, embedding_dim)` during the forward pass # we must convert it to tokens, to make it compaitable with speech_transformer if speech_ids.ndim == 3: speech_ids = speech_ids.argmax(2) speech_ids = self.fix_speech_decoder_output(speech_ids) speech_outputs = self.speech_encoder_model( input_ids=speech_ids, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_encoder_model( input_ids=input_ids, inputs_embeds=text_encoder_inputs_embeds, attention_mask=attention_mask, output_hidden_states=output_hidden_states, return_dict=return_dict, ) speech_embeds = speech_outputs[0] text_embeds = text_outputs[0] # normalized features speech_embeds = speech_embeds / speech_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, speech_embeds.t()) * logit_scale logits_per_speech = logits_per_text.t() loss = None if return_loss: loss = clvp_loss(logits_per_text) if not return_dict: output = ( logits_per_speech, logits_per_text, text_embeds, speech_embeds, text_outputs[2], speech_outputs[2], ) if output_hidden_states: output += ( decoder_outputs[-1], text_outputs[-1], speech_outputs[-1], ) return ((loss,) + output) if loss is not None else output return ClvpOutput( loss=loss, logits_per_speech=logits_per_speech, logits_per_text=logits_per_text, text_embeds=text_embeds, speech_embeds=speech_embeds, text_model_output=text_outputs[2], speech_model_output=speech_outputs[2], decoder_hidden_states=decoder_outputs.hidden_states, text_encoder_hidden_states=text_outputs.hidden_states, speech_encoder_hidden_states=speech_outputs.hidden_states, ) @torch.no_grad() def generate( self, input_ids: torch.LongTensor = None, input_features: torch.FloatTensor = None, attention_mask: Optional[torch.LongTensor] = None, generation_config: Optional[GenerationConfig] = None, pad_to_max_mel_tokens: Optional[int] = None, output_hidden_states: Optional[bool] = None, **kwargs, ): """ Generate method for `ClvpModelForConditionalGeneration`, this method calls the `generate` method of `ClvpForCausalLM` and then uses those generated `speech_ids` to process `text_embeds` and `speech_embeds` using `ClvpEncoder`. Args: input_ids (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Input text Tokens. Processed from the [`ClvpTokenizer`]. input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`, *optional*): Indicates log-melspectrogram representations for audio returned by [`ClvpFeatureExtractor`]. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding text token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. pad_to_max_mel_tokens (`int`, *optional*): Pads generated speech_ids to the specified value. This is to implement the same logic from the official repo, link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L430 and to make sure the logits are same. This does not affect generation quality so please don't consider using it since it is less efficient. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of decoder model, text encoder and speech encoder models. Returns: `ClvpOutput` or tuple: A `ClvpOutput` (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a tuple. """ # If the input sequences are larger than (self.config.decoder_config.max_text_tokens - 3) then raise error, # because we need to add 3 tokens ( 1 bos tokens and 2 eos tokens) to the input_ids in ClvpConditioningEncoder to # properly sample sequence_length = input_ids.shape[-1] if sequence_length > (self.config.decoder_config.max_text_tokens - 3): raise ValueError( f"Maximum sequence length reached! Found input_ids of length {sequence_length}." f"Please make sure that the maximum length of input_ids is {self.config.decoder_config.max_text_tokens - 3}" ) if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs generation_config.validate() self._validate_model_kwargs(model_kwargs.copy()) # pad input_ids as specified in the original repo # link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L380 input_ids, attention_mask = _pad_extra_bos_eos_tokens( input_ids, attention_mask, add_bos_token=False, bos_token_id=self.config.text_config.bos_token_id, eos_token_id=self.config.text_config.eos_token_id, ) conditioning_embeds = self.conditioning_encoder( input_features=input_features, input_ids=input_ids, attention_mask=attention_mask, ) decoder_outputs = self.speech_decoder_model.generate( conditioning_embeds=conditioning_embeds, generation_config=generation_config, output_hidden_states=output_hidden_states, return_dict=generation_config.return_dict_in_generate, ) if isinstance(decoder_outputs, ModelOutput): speech_ids = decoder_outputs.sequences # pad to pad_to_max_mel_tokens if given, to replicate the original repo logic # link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L430 if pad_to_max_mel_tokens is not None: padding_needed = pad_to_max_mel_tokens - speech_ids.shape[-1] speech_ids = torch.nn.functional.pad( speech_ids, (0, padding_needed), value=self.generation_config.eos_token_id ) speech_ids = self.fix_speech_decoder_output(speech_ids) speech_outputs = self.speech_encoder_model( input_ids=speech_ids, output_hidden_states=output_hidden_states, return_dict=generation_config.return_dict_in_generate, ) text_outputs = self.text_encoder_model( input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=output_hidden_states, return_dict=generation_config.return_dict_in_generate, ) speech_embeds = speech_outputs[0] text_embeds = text_outputs[0] # normalized features speech_embeds = speech_embeds / speech_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, speech_embeds.t()) * logit_scale logits_per_speech = logits_per_text.t() if not generation_config.return_dict_in_generate: output = ( speech_ids, logits_per_speech, logits_per_text, text_embeds, speech_embeds, text_outputs[2], speech_outputs[2], ) if output_hidden_states: output += ( decoder_outputs[-1], text_outputs[-1], speech_outputs[-1], ) return output return ClvpOutput( speech_ids=speech_ids, logits_per_speech=logits_per_speech, logits_per_text=logits_per_text, text_embeds=text_embeds, speech_embeds=speech_embeds, text_model_output=text_outputs[2], speech_model_output=speech_outputs[2], decoder_hidden_states=decoder_outputs.hidden_states, text_encoder_hidden_states=text_outputs.hidden_states, speech_encoder_hidden_states=speech_outputs.hidden_states, )
transformers/src/transformers/models/clvp/modeling_clvp.py/0
{ "file_path": "transformers/src/transformers/models/clvp/modeling_clvp.py", "repo_id": "transformers", "token_count": 39370 }
86
# coding=utf-8 # Copyright 2018 Salesforce and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Salesforce CTRL.""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"Salesforce/ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"Salesforce/ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "Salesforce/ctrl": 256, } CONTROL_CODES = { "Pregnancy": 168629, "Christianity": 7675, "Explain": 106423, "Fitness": 63440, "Saving": 63163, "Ask": 27171, "Ass": 95985, "Joke": 163509, "Questions": 45622, "Thoughts": 49605, "Retail": 52342, "Feminism": 164338, "Writing": 11992, "Atheism": 192263, "Netflix": 48616, "Computing": 39639, "Opinion": 43213, "Alone": 44967, "Funny": 58917, "Gaming": 40358, "Human": 4088, "India": 1331, "Joker": 77138, "Diet": 36206, "Legal": 11859, "Norman": 4939, "Tip": 72689, "Weight": 52343, "Movies": 46273, "Running": 23425, "Science": 2090, "Horror": 37793, "Confession": 60572, "Finance": 12250, "Politics": 16360, "Scary": 191985, "Support": 12654, "Technologies": 32516, "Teenage": 66160, "Event": 32769, "Learned": 67460, "Notion": 182770, "Wikipedia": 37583, "Books": 6665, "Extract": 76050, "Confessions": 102701, "Conspiracy": 75932, "Links": 63674, "Narcissus": 150425, "Relationship": 54766, "Relationships": 134796, "Reviews": 41671, "News": 4256, "Translation": 26820, "multilingual": 128406, } def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char pairs = set(pairs) return pairs class CTRLTokenizer(PreTrainedTokenizer): """ Construct a CTRL tokenizer. Based on Byte-Pair-Encoding. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES control_codes = CONTROL_CODES def __init__(self, vocab_file, merges_file, unk_token="<unk>", **kwargs): with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[1:-1] merges = [tuple(merge.split()) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__(unk_token=unk_token, **kwargs) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = "@@ ".join(word) word = word[:-4] self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" split_tokens = [] words = re.findall(r"\S+\n?", text) for token in words: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace("@@ ", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
transformers/src/transformers/models/ctrl/tokenization_ctrl.py/0
{ "file_path": "transformers/src/transformers/models/ctrl/tokenization_ctrl.py", "repo_id": "transformers", "token_count": 3919 }
87
# coding=utf-8 # Copyright 2022 Meta Platforms and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Data2Vec Vision model.""" from __future__ import annotations import collections.abc import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSemanticSegmenterOutput, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_data2vec_vision import Data2VecVisionConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "Data2VecVisionConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/data2vec-vision-base" _EXPECTED_OUTPUT_SHAPE = [1, 197, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/data2vec-vision-base-ft1k" _IMAGE_CLASS_EXPECTED_OUTPUT = "remote control, remote" TF_DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/data2vec-vision-base-ft1k", # See all Data2VecVision models at https://huggingface.co/models?filter=data2vec-vision ] @dataclass class TFData2VecVisionModelOutputWithPooling(TFBaseModelOutputWithPooling): """ Class for outputs of [`TFData2VecVisionModel`]. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`): Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token will be returned. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None pooler_output: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None class TFData2VecVisionDropPath(keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x class TFData2VecVisionEmbeddings(keras.layers.Layer): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.patch_embeddings = TFData2VecVisionPatchEmbeddings(config, name="patch_embeddings") self.num_patches = self.patch_embeddings.num_patches self.config = config self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) def build(self, input_shape=None): self.cls_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="cls_token", ) if self.config.use_mask_token: self.mask_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="mask_token", ) else: self.mask_token = None if self.config.use_absolute_position_embeddings: self.position_embeddings = self.add_weight( shape=(1, self.num_patches + 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="position_embeddings", ) else: self.position_embeddings = None if self.built: return self.built = True if getattr(self, "patch_embeddings", None) is not None: with tf.name_scope(self.patch_embeddings.name): self.patch_embeddings.build(None) def call(self, pixel_values: tf.Tensor, bool_masked_pos: tf.Tensor | None = None) -> tf.Tensor: embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, projection_dim = shape_list(embeddings) cls_tokens = tf.tile(self.cls_token, (batch_size, 1, 1)) if bool_masked_pos is not None: mask_tokens = tf.broadcast_to(self.mask_token, (batch_size, seq_len, projection_dim)) # replace the masked visual tokens by mask_tokens w = bool_masked_pos[..., None] w = tf.cast(w, mask_tokens.dtype) # since TF doesn't support eager tensor assignment embeddings = embeddings * (1 - w) + mask_tokens * w embeddings = tf.concat([cls_tokens, embeddings], axis=1) if self.position_embeddings is not None: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings class TFData2VecVisionPatchEmbeddings(keras.layers.Layer): """ Image to Patch Embedding. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.patch_shape = patch_shape self.num_channels = num_channels self.projection = keras.layers.Conv2D( filters=hidden_size, kernel_size=patch_size, strides=patch_size, padding="valid", data_format="channels_last", kernel_initializer="glorot_uniform", # following torch.nn.Linear bias_initializer="zeros", name="projection", ) def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor: batch_size, num_channels, height, width = shape_list(pixel_values) if tf.executing_eagerly(): if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the" " configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) projection = self.projection(pixel_values) # Change the 2D spatial dimensions to a single temporal dimension. # shape = (batch_size, num_patches, out_channels=embed_dim) num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0]) return tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1)) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "projection", None) is not None: with tf.name_scope(self.projection.name): self.projection.build([None, None, None, self.num_channels]) class TFData2VecVisionSelfAttention(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key", use_bias=False, ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) if window_size: self.relative_position_bias = TFData2VecVisionRelativePositionBias( config, window_size=window_size, name="relative_position_bias" ) else: self.relative_position_bias = None self.config = config def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) mixed_key_layer = self.key(inputs=hidden_states) mixed_value_layer = self.value(inputs=hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) attention_scores = attention_scores / self.sqrt_att_head_size # Add relative position bias if present. if self.relative_position_bias is not None: # Passing `0.0` to the `relative_position_bias()` layer because otherwise Keras # might complain about `Layer.call()` not being invoked properly. In this case this input # i.e., 0.0 is not going to be used in any calculations so we're safe. attention_scores = attention_scores + self.relative_position_bias(0.0)[None, ...] # Add shared relative position bias if provided. if relative_position_bias is not None: attention_scores = attention_scores + relative_position_bias # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) if getattr(self, "relative_position_bias", None) is not None: with tf.name_scope(self.relative_position_bias.name): self.relative_position_bias.build(None) class TFData2VecVisionSelfOutput(keras.layers.Layer): """ The residual connection is defined in TFData2VecVisionLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, gamma=None, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFData2VecVisionAttention(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) self.attention = TFData2VecVisionSelfAttention(config, window_size=window_size, name="attention") self.dense_output = TFData2VecVisionSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.attention( hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) # Copied from transformers.models.vit.modeling_tf_vit.TFViTIntermediate with ViT->Data2VecVision class TFData2VecVisionIntermediate(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFData2VecVisionOutput(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) class TFData2VecVisionLayer(keras.layers.Layer): """This corresponds to the Block class in the timm implementation.""" def __init__( self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0, **kwargs ): super().__init__(**kwargs) self.config = config self.attention = TFData2VecVisionAttention(config, window_size=window_size, name="attention") self.intermediate = TFData2VecVisionIntermediate(config, name="intermediate") self.data2vec_output = TFData2VecVisionOutput(config, name="output") self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before") self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after") # Using `layers.Activation` instead of `tf.identity` to better control `training` # behaviour. self.drop_path = ( TFData2VecVisionDropPath(drop_path_rate, name="drop_path") if drop_path_rate > 0.0 else keras.layers.Activation("linear", name="drop_path") ) self.init_values = config.layer_scale_init_value def build(self, input_shape: tf.TensorShape = None): if self.init_values > 0: self.lambda_1 = self.add_weight( shape=(self.config.hidden_size), initializer="ones", trainable=True, name="lambda_1", ) self.lambda_2 = self.add_weight( shape=(self.config.hidden_size), initializer="ones", trainable=True, name="lambda_2", ) self.lambda_1.assign(self.init_values * tf.ones((self.config.hidden_size))) self.lambda_2.assign(self.init_values * tf.ones((self.config.hidden_size))) else: self.lambda_1, self.lambda_2 = None, None if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "data2vec_output", None) is not None: with tf.name_scope(self.data2vec_output.name): self.data2vec_output.build(None) if getattr(self, "layernorm_before", None) is not None: with tf.name_scope(self.layernorm_before.name): self.layernorm_before.build([None, None, self.config.hidden_size]) if getattr(self, "layernorm_after", None) is not None: with tf.name_scope(self.layernorm_after.name): self.layernorm_after.build([None, None, self.config.hidden_size]) if getattr(self, "drop_path", None) is not None: with tf.name_scope(self.drop_path.name): self.drop_path.build(None) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: self_attention_outputs = self.attention( # in Data2VecVision, layernorm is applied before self-attention input_tensor=self.layernorm_before(inputs=hidden_states), head_mask=head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # apply lambda_1 if present if self.lambda_1 is not None: attention_output = self.lambda_1 * attention_output # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states # in Data2VecVision, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.data2vec_output(layer_output) if self.lambda_2 is not None: layer_output = self.lambda_2 * layer_output # second residual connection layer_output = self.drop_path(layer_output) + hidden_states outputs = (layer_output,) + outputs return outputs # Taken and modified from here: # https://github.com/leondgarse/keras_cv_attention_models/blob/main/keras_cv_attention_models/beit/beit.py#L28 class TFData2VecVisionRelativePositionBias(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: tuple, **kwargs) -> None: super().__init__(**kwargs) self.config = config self.window_size = window_size # +3 for cls_token_pos_len # window_size can be something like (14, 14) self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_index = self.get_position_index() def build(self, input_shape): self.relative_position_bias_table = self.add_weight( shape=(self.num_relative_distance, self.config.num_attention_heads), initializer="zeros", trainable=True, name="relative_position_bias_table", ) # [2*Wh-1 * 2*Ww-1, nH] # cls to token & token 2 cls & cls to cls super().build(input_shape) def get_position_index(self): # get pair-wise relative position index for each token inside the window xx, yy = tf.meshgrid(range(self.window_size[0]), range(self.window_size[1])) coords = tf.stack([yy, xx], axis=0) # [2, Wh, Ww] coords_flatten = tf.reshape(coords, [2, -1]) # [2, Wh*Ww] relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # [2, Wh*Ww, Wh*Ww] relative_coords = tf.transpose(relative_coords, perm=[1, 2, 0]) # [Wh*Ww, Wh*Ww, 2] xx = (relative_coords[:, :, 0] + self.window_size[0] - 1) * (2 * self.window_size[1] - 1) yy = relative_coords[:, :, 1] + self.window_size[1] - 1 relative_coords = tf.stack([xx, yy], axis=-1) relative_position_index = tf.reduce_sum(relative_coords, axis=-1) # [Wh*Ww, Wh*Ww] top = tf.ones((1, relative_position_index.shape[1]), dtype=relative_position_index.dtype) * ( self.num_relative_distance - 3 ) left = tf.ones((relative_position_index.shape[0], 1), dtype=relative_position_index.dtype) * ( self.num_relative_distance - 2 ) corner = tf.ones((1, 1), dtype=relative_position_index.dtype) * (self.num_relative_distance - 1) left_corner = tf.concat([corner, left], axis=0) relative_position_index = tf.concat([top, relative_position_index], axis=0) relative_position_index = tf.concat([left_corner, relative_position_index], axis=1) # [Wh*Ww + 1, Wh*Ww + 1] return relative_position_index def call(self, inputs=None) -> tf.Tensor: relative_position_bias = tf.gather(self.relative_position_bias_table, self.relative_position_index, axis=0) return tf.transpose(relative_position_bias, [2, 0, 1]) class TFData2VecVisionEncoder(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) self.config = config if config.use_shared_relative_position_bias: self.relative_position_bias = TFData2VecVisionRelativePositionBias( config, window_size=window_size, name="relative_position_bias" ) else: self.relative_position_bias = None # stochastic depth decay rule dpr = list(tf.linspace(0.0, config.drop_path_rate, config.num_hidden_layers)) self.layer = [ TFData2VecVisionLayer( config, window_size=window_size if config.use_relative_position_bias else None, drop_path_rate=dpr[i], name=f"layer_._{i}", ) for i in range(config.num_hidden_layers) ] def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor | None = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, TFBaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None # Passing `0.0` to the `relative_position_bias()` layer because otherwise Keras # might complain about `Layer.call()` not being invoked properly. In this case this input # i.e., 0.0 is not going to be used in any calculations so we're safe. relative_position_bias = ( self.relative_position_bias(0.0) if self.relative_position_bias is not None else None ) layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "relative_position_bias", None) is not None: with tf.name_scope(self.relative_position_bias.name): self.relative_position_bias.build(None) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFData2VecVisionMainLayer(keras.layers.Layer): config_class = Data2VecVisionConfig def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.add_pooling_layer = add_pooling_layer self.embeddings = TFData2VecVisionEmbeddings(config, name="embeddings") self.encoder = TFData2VecVisionEncoder( config, window_size=self.embeddings.patch_embeddings.patch_shape, name="encoder" ) self.layernorm = ( tf.identity if config.use_mean_pooling else keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") ) # We are setting the `data_format` like so because from here on we will revert to the # NCHW output format self.pooler = TFData2VecVisionPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, pixel_values: tf.Tensor | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFData2VecVisionModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings(pixel_values, bool_masked_pos, training=training) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return TFData2VecVisionModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "layernorm", None) is not None: if hasattr(self.layernorm, "name"): with tf.name_scope(self.layernorm.name): self.layernorm.build((None, self.config.hidden_size)) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) class TFData2VecVisionPooler(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.layernorm = ( keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") if config.use_mean_pooling else None ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: if self.layernorm is not None: # Mean pool the final hidden states of the patch tokens patch_tokens = hidden_states[:, 1:, :] pooled_output = self.layernorm(tf.reduce_mean(patch_tokens, axis=1)) else: # Pool by simply taking the final hidden state of the [CLS] token pooled_output = hidden_states[:, 0] return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layernorm", None) is not None: if hasattr(self.layernorm, "name"): with tf.name_scope(self.layernorm.name): self.layernorm.build((None, self.config.hidden_size)) class TFData2VecVisionPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Data2VecVisionConfig base_model_prefix = "data2vec_vision" main_input_name = "pixel_values" _keys_to_ignore_on_load_unexpected = [r"relative_position_index"] DATA2VEC_VISION_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.). This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`Data2VecVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ DATA2VEC_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BeitImageProcessor.__call__`] for details. head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Data2VecVision Model transformer outputting raw hidden-states without any specific head on top.", DATA2VEC_VISION_START_DOCSTRING, ) class TFData2VecVisionModel(TFData2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = False, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config self.data2vec_vision = TFData2VecVisionMainLayer( config, add_pooling_layer=add_pooling_layer, name="data2vec_vision" ) def get_input_embeddings(self): return self.data2vec_vision.get_input_embeddings() @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFData2VecVisionModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: TFModelInputType | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFData2VecVisionModelOutputWithPooling]: r""" bool_masked_pos (`tf.Tensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ outputs = self.data2vec_vision( pixel_values=pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "data2vec_vision", None) is not None: with tf.name_scope(self.data2vec_vision.name): self.data2vec_vision.build(None) @add_start_docstrings( """ Data2VecVision Model transformer with an image classification head on top (a linear layer on top of the average of the final hidden states of the patch tokens) e.g. for ImageNet. """, DATA2VEC_VISION_START_DOCSTRING, ) class TFData2VecVisionForImageClassification(TFData2VecVisionPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: Data2VecVisionConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.data2vec_vision = TFData2VecVisionMainLayer(config, add_pooling_layer=True, name="data2vec_vision") # Classifier head self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: TFModelInputType | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, tuple]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_vision( pixel_values=pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "data2vec_vision", None) is not None: with tf.name_scope(self.data2vec_vision.name): self.data2vec_vision.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) class TFData2VecVisionConvModule(keras.layers.Layer): """ A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], padding: str = "valid", bias: bool = False, dilation: Union[int, Tuple[int, int]] = 1, **kwargs, ) -> None: super().__init__(**kwargs) self.conv = keras.layers.Conv2D( filters=out_channels, kernel_size=kernel_size, padding=padding, use_bias=bias, dilation_rate=dilation, name="conv", ) self.bn = keras.layers.BatchNormalization(name="bn", momentum=0.9, epsilon=1e-5) self.activation = tf.nn.relu self.in_channels = in_channels self.out_channels = out_channels def call(self, input: tf.Tensor) -> tf.Tensor: output = self.conv(input) output = self.bn(output) output = self.activation(output) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv", None) is not None: with tf.name_scope(self.conv.name): self.conv.build([None, None, None, self.in_channels]) if getattr(self, "bn", None) is not None: with tf.name_scope(self.bn.name): self.bn.build((None, None, None, self.out_channels)) class TFAdaptiveAvgPool2D(keras.layers.Layer): def __init__(self, output_dims: Tuple[int, int], input_ordering: str = "NHWC", **kwargs): super().__init__(**kwargs) self.output_dims = output_dims self.input_ordering = input_ordering if input_ordering not in ("NCHW", "NHWC"): raise ValueError("Unrecognized input_ordering, should be 'NCHW' or 'NHWC'!") self.h_axis = input_ordering.index("H") self.w_axis = input_ordering.index("W") def pseudo_1d_pool(self, inputs: tf.Tensor, h_pooling: bool): # Figure out which axis we're pooling on if h_pooling: axis = self.h_axis output_dim = self.output_dims[0] else: axis = self.w_axis output_dim = self.output_dims[1] input_dim = inputs.shape[axis] # Figure out the potential pooling windows # This is the key idea - the torch op always uses only two # consecutive pooling window sizes, like 3 and 4. Therefore, # if we pool with both possible sizes, we simply need to gather # the 'correct' pool at each position to reimplement the torch op. small_window = math.ceil(input_dim / output_dim) big_window = small_window + 1 if h_pooling: output_dim = self.output_dims[0] small_window_shape = (small_window, 1) big_window_shape = (big_window, 1) else: output_dim = self.output_dims[1] small_window_shape = (1, small_window) big_window_shape = (1, big_window) # For resizes to 1, or integer resizes, we can take quick shortcuts if output_dim == input_dim: return inputs elif output_dim == 1: return tf.reduce_mean(inputs, axis=axis, keepdims=True) elif input_dim % output_dim == 0: return tf.nn.avg_pool2d( inputs, ksize=small_window_shape, strides=small_window_shape, padding="VALID", data_format=self.input_ordering, ) # When upscaling by an integer factor we can also take a quick shortcut elif output_dim > input_dim and output_dim % input_dim == 0: return tf.repeat(inputs, repeats=output_dim // input_dim, axis=axis) # For non-integer resizes, we pool with both possible window sizes and concatenate them if output_dim < input_dim: small_pool = tf.nn.avg_pool2d( inputs, ksize=small_window_shape, strides=1, padding="VALID", data_format=self.input_ordering ) big_pool = tf.nn.avg_pool2d( inputs, ksize=big_window_shape, strides=1, padding="VALID", data_format=self.input_ordering ) both_pool = tf.concat([small_pool, big_pool], axis=axis) else: # When we're actually upscaling instead, then we build the pools a bit differently small_pool = inputs big_pool = tf.nn.avg_pool2d( inputs, ksize=big_window_shape, strides=1, padding="VALID", data_format=self.input_ordering ) both_pool = tf.concat([small_pool, big_pool], axis=axis) # We compute vectors of the start and end positions for each pooling window # Each (start, end) pair here corresponds to a single output position window_starts = tf.math.floor((tf.range(output_dim, dtype=tf.float32) * input_dim) / output_dim) window_starts = tf.cast(window_starts, tf.int64) window_ends = tf.math.ceil((tf.range(1, output_dim + 1, dtype=tf.float32) * input_dim) / output_dim) window_ends = tf.cast(window_ends, tf.int64) # pool_selector is a boolean array of shape (output_dim,) where 1 indicates that output position # has a big receptive field and 0 indicates that that output position has a small receptive field pool_selector = tf.cast(window_ends - window_starts - small_window, tf.bool) # Since we concatenated the small and big pools, we need to do a bit of # pointer arithmetic to get the indices of the big pools small_indices = window_starts big_indices = window_starts + small_pool.shape[axis] # Finally, we use the pool_selector to generate a list of indices, one per output position gather_indices = tf.where(pool_selector, big_indices, small_indices) # Gathering from those indices yields the final, correct pooling return tf.gather(both_pool, gather_indices, axis=axis) def call(self, inputs: tf.Tensor): if self.input_ordering == "NHWC": input_shape = inputs.shape[1:3] else: input_shape = inputs.shape[2:] # We break the task down into each possible case # Firstly, if we're resizing down to 1, it's just tf.reduce_mean if self.output_dims[0] == self.output_dims[1] == 1: if self.input_ordering == "NHWC": reduce_dims = [1, 2] else: reduce_dims = [2, 3] return tf.reduce_mean(inputs, axis=reduce_dims, keepdims=True) # Secondly, if we're resizing by an integer factor on both dimensions, we can take a quick shortcut elif input_shape[0] % self.output_dims[0] == 0 and input_shape[1] % self.output_dims[1] == 0: h_resize = int(input_shape[0] // self.output_dims[0]) w_resize = int(input_shape[1] // self.output_dims[1]) return tf.nn.avg_pool2d( inputs, ksize=(h_resize, w_resize), strides=(h_resize, w_resize), padding="VALID", data_format=self.input_ordering, ) else: # Finally, if we can't take the shortcut, we do a 1D pool on each axis. pseudo_1d_pool will take a shortcut # for dimensions where an integer resize is possible. It can also handle upscaling. h_pooled = self.pseudo_1d_pool(inputs, h_pooling=True) return self.pseudo_1d_pool(h_pooled, h_pooling=False) class TFData2VecVisionPyramidPoolingModule(keras.layers.Layer): """ Pyramid Pooling Module (PPM) used in PSPNet. Args: pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid Module. channels (int): Channels after modules, before conv_seg. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, out_channels: int, **kwargs) -> None: super().__init__(**kwargs) self.pool_scales = pool_scales self.in_channels = in_channels self.out_channels = out_channels self.layer_list = [] for idx, pool_scale in enumerate(pool_scales): pool_scale = pool_scale if isinstance(pool_scale, collections.abc.Iterable) else (pool_scale, pool_scale) self.layer_list.append( [ TFAdaptiveAvgPool2D(output_dims=pool_scale), TFData2VecVisionConvModule( in_channels=in_channels, out_channels=self.out_channels, kernel_size=1, name=f"{idx}.1" ), ] ) def call(self, x: tf.Tensor) -> List[tf.Tensor]: ppm_outs = [] inputs = x for ppm in self.layer_list: for layer_module in ppm: ppm_out = layer_module(x) x = ppm_out upsampled_ppm_out = tf.image.resize(ppm_out, size=shape_list(inputs)[1:-1], method="bilinear") ppm_outs.append(upsampled_ppm_out) return ppm_outs def build(self, input_shape=None): for layer in self.layer_list: for layer_module in layer: with tf.name_scope(layer_module.name): layer_module.build(None) class TFData2VecVisionUperHead(keras.layers.Layer): """ Unified Perceptual Parsing for Scene Understanding. This head is the implementation of [UPerNet](https://arxiv.org/abs/1807.10221). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, config: Data2VecVisionConfig, **kwargs) -> None: super().__init__(**kwargs) self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768] self.channels = config.hidden_size self.classifier = keras.layers.Conv2D(config.num_labels, kernel_size=1, name="classifier") # PSP Module self.psp_modules = TFData2VecVisionPyramidPoolingModule( self.pool_scales, self.in_channels[-1], self.channels, name="psp_modules" ) self.bottleneck = TFData2VecVisionConvModule( self.in_channels[-1] + len(self.pool_scales) * self.channels, self.channels, kernel_size=3, padding="same", name="bottleneck", ) # FPN Module self.lateral_convs = [] self.fpn_convs = [] for idx, in_channels in enumerate(self.in_channels[:-1]): # skip the top layer l_conv = TFData2VecVisionConvModule( in_channels, out_channels=self.channels, kernel_size=1, name=f"lateral_convs.{idx}" ) fpn_conv = TFData2VecVisionConvModule( in_channels=self.channels, out_channels=self.channels, kernel_size=3, padding="same", name=f"fpn_convs.{idx}", ) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) self.fpn_bottleneck = TFData2VecVisionConvModule( in_channels=len(self.in_channels) * self.channels, out_channels=self.channels, kernel_size=3, padding="same", name="fpn_bottleneck", ) def psp_forward(self, inputs): x = inputs[-1] psp_outs = [x] psp_outs.extend(self.psp_modules(x)) psp_outs = tf.concat(psp_outs, axis=-1) output = self.bottleneck(psp_outs) return output def call(self, encoder_hidden_states: tf.Tensor) -> tf.Tensor: # build laterals laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(encoder_hidden_states)) # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): prev_shape = shape_list(laterals[i - 1])[1:-1] laterals[i - 1] = laterals[i - 1] + tf.image.resize(laterals[i], size=prev_shape, method="bilinear") # build outputs fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1, 0, -1): fpn_outs[i] = tf.image.resize(fpn_outs[i], size=shape_list(fpn_outs[0])[1:-1], method="bilinear") fpn_outs = tf.concat(fpn_outs, axis=-1) output = self.fpn_bottleneck(fpn_outs) output = self.classifier(output) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, None, self.channels]) if getattr(self, "psp_modules", None) is not None: with tf.name_scope(self.psp_modules.name): self.psp_modules.build(None) if getattr(self, "bottleneck", None) is not None: with tf.name_scope(self.bottleneck.name): self.bottleneck.build(None) if getattr(self, "fpn_bottleneck", None) is not None: with tf.name_scope(self.fpn_bottleneck.name): self.fpn_bottleneck.build(None) for layer in self.lateral_convs: with tf.name_scope(layer.name): layer.build(None) for layer in self.fpn_convs: with tf.name_scope(layer.name): layer.build(None) class TFData2VecVisionFCNHead(keras.layers.Layer): """ Fully Convolution Networks for Semantic Segmentation. This head is implemented from [FCNNet](https://arxiv.org/abs/1411.4038). Args: config (Data2VecVisionConfig): Configuration. kernel_size (int): The kernel size for convs in the head. Default: 3. dilation (int): The dilation rate for convs in the head. Default: 1. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, config: Data2VecVisionConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1, **kwargs, ) -> None: super().__init__(**kwargs) self.in_channels = config.hidden_size self.channels = config.auxiliary_channels self.num_convs = config.auxiliary_num_convs self.concat_input = config.auxiliary_concat_input self.in_index = in_index convs = [] convs.append( TFData2VecVisionConvModule( in_channels=self.in_channels, out_channels=self.channels, kernel_size=kernel_size, padding="same", dilation=dilation, name="convs.0", ) ) for i in range(self.num_convs - 1): convs.append( TFData2VecVisionConvModule( in_channels=self.channels, out_channels=self.channels, kernel_size=kernel_size, padding="same", dilation=dilation, name=f"conv_module_{i+2}", ) ) if self.num_convs == 0: self.convs = [tf.identity] else: self.convs = convs if self.concat_input: self.conv_cat = TFData2VecVisionConvModule( self.in_channels + self.channels, out_channels=self.channels, kernel_size=kernel_size, padding="same", name="conv_cat", ) self.classifier = keras.layers.Conv2D(config.num_labels, kernel_size=1, name="classifier") def call(self, encoder_hidden_states: tf.Tensor) -> tf.Tensor: # just take the relevant feature maps hidden_states = encoder_hidden_states[self.in_index] output = hidden_states for layer_module in self.convs: output = layer_module(output) if self.concat_input: output = self.conv_cat(tf.concat([hidden_states, output], axis=-1)) output = self.classifier(output) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, None, self.channels]) if getattr(self, "conv_cat", None) is not None: with tf.name_scope(self.conv_cat.name): self.conv_cat.build(None) @add_start_docstrings( """ Data2VecVision Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes. """, DATA2VEC_VISION_START_DOCSTRING, ) class TFData2VecVisionForSemanticSegmentation(TFData2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.data2vec_vision = TFData2VecVisionMainLayer(config, add_pooling_layer=False, name="data2vec_vision") # FPNs self.fpn1 = [ keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn1.0"), keras.layers.BatchNormalization(name="fpn1.1", momentum=0.9, epsilon=1e-5), keras.layers.Activation("gelu"), keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn1.3"), ] self.fpn2 = [keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn2.0")] self.fpn3 = tf.identity self.fpn4 = keras.layers.MaxPool2D(pool_size=2, strides=2) # Semantic segmentation head(s) self.decode_head = TFData2VecVisionUperHead(config, name="decode_head") self.auxiliary_head = ( TFData2VecVisionFCNHead(config, name="auxiliary_head") if config.use_auxiliary_head else None ) def compute_loss(self, logits, auxiliary_logits, labels): # upsample logits to the images' original size if len(shape_list(labels)) > 3: label_interp_shape = shape_list(labels)[1:-1] else: label_interp_shape = shape_list(labels)[-2:] upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear") if auxiliary_logits is not None: upsampled_auxiliary_logits = tf.image.resize(auxiliary_logits, size=label_interp_shape, method="bilinear") # compute weighted loss loss_fct = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none") # Copied from https://www.tensorflow.org/text/tutorials/transformer#loss_and_metrics. # Utility to mask the index to ignore during computing the loss. def masked_loss(real, pred): mask = tf.math.logical_not(tf.math.equal(real, self.config.semantic_loss_ignore_index)) loss_ = loss_fct(real, pred) mask = tf.cast(mask, dtype=loss_.dtype) loss_ *= mask reduced_masked_loss = tf.reduce_sum(loss_) / tf.reduce_sum(mask) return tf.reshape(reduced_masked_loss, (1,)) main_loss = masked_loss(labels, upsampled_logits) auxiliary_loss = masked_loss(labels, upsampled_auxiliary_logits) loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss return loss @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, TFSemanticSegmenterOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFData2VecVisionForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/data2vec-vision-base") >>> model = TFData2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.data2vec_vision( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features, and reshape # note that we do +1 as the encoder_hidden_states also includes the initial embeddings features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] patch_resolution = self.config.image_size // self.config.patch_size def reshape_features(x): # We do it this way so TF can always infer the non-batch dims at compile time x = tf.reshape(x, (-1, patch_resolution, patch_resolution, self.config.hidden_size)) return x features = [reshape_features(x[:, 1:, :]) for x in features] # apply FPNs ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for module in ops[0]: features[0] = module(features[0]) features[1] = ops[1][0](features[1]) for i in range(len(features[2:])): features[i + 2] = ops[i + 2](features[i + 2]) logits = self.decode_head(features) # Tranpose the logits to maintain consistency in the output formats. transposed_logits = tf.transpose(logits, perm=[0, 3, 1, 2]) auxiliary_logits = None if self.auxiliary_head is not None: auxiliary_logits = self.auxiliary_head(features) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: loss = self.compute_loss(logits, auxiliary_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSemanticSegmenterOutput( loss=loss, logits=transposed_logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "data2vec_vision", None) is not None: with tf.name_scope(self.data2vec_vision.name): self.data2vec_vision.build(None) if getattr(self, "decode_head", None) is not None: with tf.name_scope(self.decode_head.name): self.decode_head.build(None) if getattr(self, "auxiliary_head", None) is not None: with tf.name_scope(self.auxiliary_head.name): self.auxiliary_head.build(None) if getattr(self, "fpn1", None) is not None: with tf.name_scope(self.fpn1[0].name): self.fpn1[0].build([None, None, None, self.config.hidden_size]) with tf.name_scope(self.fpn1[1].name): self.fpn1[1].build((None, None, None, self.config.hidden_size)) with tf.name_scope(self.fpn1[3].name): self.fpn1[3].build([None, None, None, self.config.hidden_size]) if getattr(self, "fpn2", None) is not None: with tf.name_scope(self.fpn2[0].name): self.fpn2[0].build([None, None, None, self.config.hidden_size])
transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py/0
{ "file_path": "transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py", "repo_id": "transformers", "token_count": 32320 }
88
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_deformable_detr": ["DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeformableDetrConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_deformable_detr"] = ["DeformableDetrFeatureExtractor"] _import_structure["image_processing_deformable_detr"] = ["DeformableDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_deformable_detr"] = [ "DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "DeformableDetrForObjectDetection", "DeformableDetrModel", "DeformableDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deformable_detr import DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DeformableDetrConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deformable_detr import DeformableDetrFeatureExtractor from .image_processing_deformable_detr import DeformableDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deformable_detr import ( DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, DeformableDetrForObjectDetection, DeformableDetrModel, DeformableDetrPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/deformable_detr/__init__.py/0
{ "file_path": "transformers/src/transformers/models/deformable_detr/__init__.py", "repo_id": "transformers", "token_count": 963 }
89
# coding=utf-8 # Copyright 2020, The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Bort checkpoint.""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() logger = logging.get_logger(__name__) SAMPLE_TEXT = "The Nymphenburg Palace is a beautiful palace in Munich!" def convert_bort_checkpoint_to_pytorch(bort_checkpoint_path: str, pytorch_dump_folder_path: str): """ Convert the original Bort checkpoint (based on MXNET and Gluonnlp) to our BERT structure- """ # Original Bort configuration bort_4_8_768_1024_hparams = { "attention_cell": "multi_head", "num_layers": 4, "units": 1024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1e-5, "token_type_vocab_size": 2, } predefined_args = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py encoder = BERTEncoder( attention_cell=predefined_args["attention_cell"], num_layers=predefined_args["num_layers"], units=predefined_args["units"], hidden_size=predefined_args["hidden_size"], max_length=predefined_args["max_length"], num_heads=predefined_args["num_heads"], scaled=predefined_args["scaled"], dropout=predefined_args["dropout"], output_attention=False, output_all_encodings=False, use_residual=predefined_args["use_residual"], activation=predefined_args.get("activation", "gelu"), layer_norm_eps=predefined_args.get("layer_norm_eps", None), ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later vocab_name = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab gluon_cache_dir = os.path.join(get_home_dir(), "models") bort_vocab = _load_vocab(vocab_name, None, gluon_cache_dir, cls=Vocab) original_bort = nlp.model.BERTModel( encoder, len(bort_vocab), units=predefined_args["units"], embed_size=predefined_args["embed_size"], embed_dropout=predefined_args["embed_dropout"], word_embed=predefined_args["word_embed"], use_pooler=False, use_token_type_embed=False, token_type_vocab_size=predefined_args["token_type_vocab_size"], use_classifier=False, use_decoder=False, ) original_bort.load_parameters(bort_checkpoint_path, cast_dtype=True, ignore_extra=True) params = original_bort._collect_params_with_prefix() # Build our config 🤗 hf_bort_config_json = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(bort_vocab), } hf_bort_config = BertConfig.from_dict(hf_bort_config_json) hf_bort_model = BertForMaskedLM(hf_bort_config) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(mx_array) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy())) # Check param shapes and map new HF param back def check_and_map_params(hf_param, gluon_param): shape_hf = hf_param.shape gluon_param = to_torch(params[gluon_param]) shape_gluon = gluon_param.shape assert ( shape_hf == shape_gluon ), f"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param hf_bort_model.bert.embeddings.word_embeddings.weight = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight, "word_embed.0.weight" ) hf_bort_model.bert.embeddings.position_embeddings.weight = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight, "encoder.position_weight" ) hf_bort_model.bert.embeddings.LayerNorm.bias = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias, "encoder.layer_norm.beta" ) hf_bort_model.bert.embeddings.LayerNorm.weight = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight, "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) hf_bort_model.bert.embeddings.token_type_embeddings.weight.data = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers): layer: BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention self_attn: BertSelfAttention = layer.attention.self self_attn.key.bias.data = check_and_map_params( self_attn.key.bias.data, f"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) self_attn.key.weight.data = check_and_map_params( self_attn.key.weight.data, f"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) self_attn.query.bias.data = check_and_map_params( self_attn.query.bias.data, f"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) self_attn.query.weight.data = check_and_map_params( self_attn.query.weight.data, f"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) self_attn.value.bias.data = check_and_map_params( self_attn.value.bias.data, f"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) self_attn.value.weight.data = check_and_map_params( self_attn.value.weight.data, f"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output self_output: BertSelfOutput = layer.attention.output self_output.dense.bias = check_and_map_params( self_output.dense.bias, f"encoder.transformer_cells.{i}.proj.bias" ) self_output.dense.weight = check_and_map_params( self_output.dense.weight, f"encoder.transformer_cells.{i}.proj.weight" ) self_output.LayerNorm.bias = check_and_map_params( self_output.LayerNorm.bias, f"encoder.transformer_cells.{i}.layer_norm.beta" ) self_output.LayerNorm.weight = check_and_map_params( self_output.LayerNorm.weight, f"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate intermediate: BertIntermediate = layer.intermediate intermediate.dense.bias = check_and_map_params( intermediate.dense.bias, f"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) intermediate.dense.weight = check_and_map_params( intermediate.dense.weight, f"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output bert_output: BertOutput = layer.output bert_output.dense.bias = check_and_map_params( bert_output.dense.bias, f"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) bert_output.dense.weight = check_and_map_params( bert_output.dense.weight, f"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) bert_output.LayerNorm.bias = check_and_map_params( bert_output.LayerNorm.bias, f"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) bert_output.LayerNorm.weight = check_and_map_params( bert_output.LayerNorm.weight, f"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models tokenizer = RobertaTokenizer.from_pretrained("FacebookAI/roberta-base") input_ids = tokenizer.encode_plus(SAMPLE_TEXT)["input_ids"] # Get gluon output gluon_input_ids = mx.nd.array([input_ids]) output_gluon = original_bort(inputs=gluon_input_ids, token_types=[]) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(pytorch_dump_folder_path) hf_bort_model = BertModel.from_pretrained(pytorch_dump_folder_path) hf_bort_model.eval() input_ids = tokenizer.encode_plus(SAMPLE_TEXT, return_tensors="pt") output_hf = hf_bort_model(**input_ids)[0] gluon_layer = output_gluon[0].asnumpy() hf_layer = output_hf[0].detach().numpy() max_absolute_diff = np.max(np.abs(hf_layer - gluon_layer)).item() success = np.allclose(gluon_layer, hf_layer, atol=1e-3) if success: print("✔️ Both model do output the same tensors") else: print("❌ Both model do **NOT** output the same tensors") print("Absolute difference is:", max_absolute_diff) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
transformers/src/transformers/models/deprecated/bort/convert_bort_original_gluonnlp_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/bort/convert_bort_original_gluonnlp_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 6181 }
90
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ VAN model configuration""" from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) VAN_PRETRAINED_CONFIG_ARCHIVE_MAP = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class VanConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`VanModel`]. It is used to instantiate a VAN model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VAN [Visual-Attention-Network/van-base](https://huggingface.co/Visual-Attention-Network/van-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. num_channels (`int`, *optional*, defaults to 3): The number of input channels. patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`): Patch size to use in each stage's embedding layer. strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`): Stride size to use in each stage's embedding layer to downsample the input. hidden_sizes (`List[int]`, *optional*, defaults to `[64, 128, 320, 512]`): Dimensionality (hidden size) at each stage. depths (`List[int]`, *optional*, defaults to `[3, 3, 12, 3]`): Depth (number of layers) for each stage. mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`): The expansion ratio for mlp layer at each stage. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in each layer. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. layer_scale_init_value (`float`, *optional*, defaults to 0.01): The initial value for layer scaling. drop_path_rate (`float`, *optional*, defaults to 0.0): The dropout probability for stochastic depth. dropout_rate (`float`, *optional*, defaults to 0.0): The dropout probability for dropout. Example: ```python >>> from transformers import VanModel, VanConfig >>> # Initializing a VAN van-base style configuration >>> configuration = VanConfig() >>> # Initializing a model from the van-base style configuration >>> model = VanModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "van" def __init__( self, image_size=224, num_channels=3, patch_sizes=[7, 3, 3, 3], strides=[4, 2, 2, 2], hidden_sizes=[64, 128, 320, 512], depths=[3, 3, 12, 3], mlp_ratios=[8, 8, 4, 4], hidden_act="gelu", initializer_range=0.02, layer_norm_eps=1e-6, layer_scale_init_value=1e-2, drop_path_rate=0.0, dropout_rate=0.0, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.num_channels = num_channels self.patch_sizes = patch_sizes self.strides = strides self.hidden_sizes = hidden_sizes self.depths = depths self.mlp_ratios = mlp_ratios self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.layer_scale_init_value = layer_scale_init_value self.drop_path_rate = drop_path_rate self.dropout_rate = dropout_rate
transformers/src/transformers/models/deprecated/van/configuration_van.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/van/configuration_van.py", "repo_id": "transformers", "token_count": 1853 }
91
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DETR checkpoints with native (Transformers) backbone.""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_detr_config(model_name): # initialize config if "resnet-50" in model_name: backbone_config = ResNetConfig.from_pretrained("microsoft/resnet-50") elif "resnet-101" in model_name: backbone_config = ResNetConfig.from_pretrained("microsoft/resnet-101") else: raise ValueError("Model name should include either resnet50 or resnet101") config = DetrConfig(use_timm_backbone=False, backbone_config=backbone_config) # set label attributes is_panoptic = "panoptic" in model_name if is_panoptic: config.num_labels = 250 else: config.num_labels = 91 repo_id = "huggingface/label-files" filename = "coco-detection-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config, is_panoptic def create_rename_keys(config): # here we list all keys to be renamed (original name on the left, our name on the right) rename_keys = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight")) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight")) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias")) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean")) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var")) # stages for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): # shortcut if layer_idx == 0: rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3): rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # fmt: on for i in range(config.encoder_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def rename_key(state_dict, old, new): val = state_dict.pop(old) state_dict[new] = val def read_in_q_k_v(state_dict, is_panoptic=False): prefix = "" if is_panoptic: prefix = "detr." # first: transformer encoder for i in range(6): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :] state_dict[f"encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256] state_dict[f"encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] state_dict[f"encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512] state_dict[f"encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] state_dict[f"encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6): # read in weights + bias of input projection layer of self-attention in_proj_weight = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :] state_dict[f"decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256] state_dict[f"decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] state_dict[f"decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512] state_dict[f"decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] state_dict[f"decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention in_proj_weight_cross_attn = state_dict.pop( f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) in_proj_bias_cross_attn = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias") # next, add query, keys and values (in that order) of cross-attention to the state dict state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :] state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256] state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[256:512, :] state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512] state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :] state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:] # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_detr_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False): """ Copy/paste/tweak model's weights to our DETR structure. """ # load default config config, is_panoptic = get_detr_config(model_name) # load original model from torch hub model_name_to_original_name = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(f"Converting model {model_name}...") detr = torch.hub.load("facebookresearch/detr", model_name_to_original_name[model_name], pretrained=True).eval() state_dict = detr.state_dict() # rename keys for src, dest in create_rename_keys(config): if is_panoptic: src = "detr." + src rename_key(state_dict, src, dest) # query, key and value matrices need special treatment read_in_q_k_v(state_dict, is_panoptic=is_panoptic) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them prefix = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr") and not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor") ): val = state_dict.pop(key) state_dict["detr.model" + key[4:]] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: val = state_dict.pop(key) state_dict["detr." + key] = val elif key.startswith("bbox_attention") or key.startswith("mask_head"): continue else: val = state_dict.pop(key) state_dict[prefix + key] = val else: if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"): val = state_dict.pop(key) state_dict[prefix + key] = val # finally, create HuggingFace model and load state dict model = DetrForSegmentation(config) if is_panoptic else DetrForObjectDetection(config) model.load_state_dict(state_dict) model.eval() # verify our conversion on an image format = "coco_panoptic" if is_panoptic else "coco_detection" processor = DetrImageProcessor(format=format) encoding = processor(images=prepare_img(), return_tensors="pt") pixel_values = encoding["pixel_values"] original_outputs = detr(pixel_values) outputs = model(pixel_values) assert torch.allclose(outputs.logits, original_outputs["pred_logits"], atol=1e-3) assert torch.allclose(outputs.pred_boxes, original_outputs["pred_boxes"], atol=1e-3) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs["pred_masks"], atol=1e-4) print("Looks ok!") if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub...") model.push_to_hub(f"nielsr/{model_name}") processor.push_to_hub(f"nielsr/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") args = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/detr/convert_detr_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/detr/convert_detr_to_pytorch.py", "repo_id": "transformers", "token_count": 9079 }
92
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Callable, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxMaskedLMOutput, FlaxMultipleChoiceModelOutput, FlaxQuestionAnsweringModelOutput, FlaxSequenceClassifierOutput, FlaxTokenClassifierOutput, ) from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, overwrite_call_docstring from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_distilbert import DistilBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "distilbert-base-uncased" _CONFIG_FOR_DOC = "DistilBertConfig" FLAX_DISTILBERT_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DISTILBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def get_angles(pos, i, d_model): angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model)) return pos * angle_rates def positional_encoding(position, d_model): # create the sinusoidal pattern for the positional encoding angle_rads = get_angles(np.arange(position)[:, np.newaxis], np.arange(d_model)[np.newaxis, :], d_model) # apply sin to even indices in the array; 2i angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) # apply cos to odd indices in the array; 2i+1 angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) pos_encoding = angle_rads[np.newaxis, ...] return jnp.array(pos_encoding) class FlaxEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.word_embeddings = nn.Embed( self.config.vocab_size, self.config.dim, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) if not self.config.sinusoidal_pos_embds: self.position_embeddings = nn.Embed( self.config.max_position_embeddings, self.config.dim, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) else: self.pos_encoding = positional_encoding(self.config.max_position_embeddings, self.config.dim) self.LayerNorm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.dropout) def __call__(self, input_ids, deterministic: bool = True): # Embed batch_size, seq_length = input_ids.shape inputs_embeds = self.word_embeddings(input_ids.astype("i4")) if not self.config.sinusoidal_pos_embds: position_ids = jnp.arange(seq_length).astype("i4") position_ids = jnp.broadcast_to(position_ids, shape=(batch_size, seq_length)) position_embeds = self.position_embeddings(position_ids.astype("i4")) else: position_embeds = self.pos_encoding[:, :seq_length, :] # explicitly cast the positions here, since self.embed_positions are not registered as parameters position_embeds = position_embeds.astype(inputs_embeds.dtype) # Sum all embeddings hidden_states = inputs_embeds + position_embeds # Layer Norm hidden_states = self.LayerNorm(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxMultiHeadSelfAttention(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.n_heads = self.config.n_heads self.dim = self.config.dim self.dropout = nn.Dropout(rate=self.config.attention_dropout) if not (self.dim % self.n_heads == 0): raise ValueError(f"Hidden size {self.dim} not dividable by number of heads {self.n_heads}") self.q_lin = nn.Dense( self.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.k_lin = nn.Dense( self.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.v_lin = nn.Dense( self.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.out_lin = nn.Dense( self.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) def __call__( self, query, key, value, mask, deterministic: bool = True, output_attentions: bool = False, ): bs, q_len, dim = query.shape k_len = key.shape[1] # assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured' # assert key.size() == value.size() dim_per_head = self.dim // self.n_heads mask_reshp = (bs, 1, 1, k_len) def shape(x): """separate heads""" return x.reshape(bs, -1, self.n_heads, dim_per_head).transpose(0, 2, 1, 3) def unshape(x): """group heads""" return x.transpose(0, 2, 1, 3).reshape(bs, -1, self.n_heads * dim_per_head) q = shape(self.q_lin(query)) # (bs, n_heads, q_len, dim_per_head) k = shape(self.k_lin(key)) # (bs, n_heads, k_len, dim_per_head) v = shape(self.v_lin(value)) # (bs, n_heads, k_len, dim_per_head) q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_len, dim_per_head) scores = jnp.matmul(q, k.transpose(0, 1, 3, 2)) # (bs, n_heads, q_len, k_len) mask = jnp.reshape(mask, mask_reshp) mask = mask.astype(scores.dtype) scores = scores - 1e30 * (1.0 - mask) weights = nn.softmax(scores, axis=-1) # (bs, n_heads, q_len, k_len) weights = self.dropout(weights, deterministic=deterministic) context = jnp.matmul(weights, v) # (bs, n_heads, q_len, dim_per_head) context = unshape(context) # (bs, q_len, dim) context = self.out_lin(context) # (bs, q_len, dim) if output_attentions: return (context, weights) else: return (context,) class FlaxFFN(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout = nn.Dropout(rate=self.config.dropout) self.chunk_size_feed_forward = self.config.chunk_size_feed_forward self.seq_len_dim = 1 self.lin1 = nn.Dense( self.config.hidden_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.lin2 = nn.Dense( self.config.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.activation = ACT2FN[self.config.activation] def __call__(self, hidden_states, deterministic: bool = True): hidden_states = self.lin1(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.lin2(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxTransformerBlock(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): assert ( self.config.dim % self.config.n_heads == 0 ), f"Hidden size {self.config.dim} not dividable by number of heads {self.config.n_heads}" self.attention = FlaxMultiHeadSelfAttention(self.config, dtype=self.dtype) self.sa_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype) self.ffn = FlaxFFN(self.config, dtype=self.dtype) self.output_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype) def __call__( self, hidden_states, attn_mask, output_attentions: bool = False, deterministic: bool = True, ): # Self-Attention sa_output = self.attention( query=hidden_states, key=hidden_states, value=hidden_states, mask=attn_mask, output_attentions=output_attentions, deterministic=deterministic, ) if output_attentions: sa_output, sa_weights = sa_output else: assert type(sa_output) == tuple sa_output = sa_output[0] sa_output = self.sa_layer_norm(sa_output + hidden_states) # Feed Forward Network ffn_output = self.ffn(sa_output, deterministic=deterministic) ffn_output = self.output_layer_norm(ffn_output + sa_output) output = (ffn_output,) if output_attentions: output = (sa_weights,) + output return output class FlaxTransformer(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxTransformerBlock(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.n_layers) ] def __call__( self, hidden_states, attention_mask, output_attentions: bool = False, output_hidden_states: bool = False, deterministic: bool = True, return_dict: bool = False, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for layer_module in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states=hidden_states, attn_mask=attention_mask, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[-1] if output_attentions: assert len(layer_outputs) == 2 attentions = layer_outputs[0] all_attentions = all_attentions + (attentions,) else: assert len(layer_outputs) == 1 # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_attentions, all_hidden_states] if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class FlaxTransformerEncoder(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layer = FlaxTransformer(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, output_attentions: bool = False, output_hidden_states: bool = False, deterministic: bool = True, return_dict: bool = False, ): return self.layer( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, deterministic=deterministic, return_dict=return_dict, ) class FlaxDistilBertLMDecoder(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros def setup(self): self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) def __call__(self, inputs, kernel): inputs = jnp.asarray(inputs, self.dtype) kernel = jnp.asarray(kernel, self.dtype) y = lax.dot_general(inputs, kernel, (((inputs.ndim - 1,), (0,)), ((), ()))) bias = jnp.asarray(self.bias, self.dtype) y = y + bias return y class FlaxDistilBertPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DistilBertConfig base_model_prefix = "distilbert" module_class: nn.Module = None def __init__( self, config: DistilBertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, input_ids, attention_mask, return_dict=False)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, input_ids, attention_mask=None, head_mask=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) class FlaxDistilBertModule(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.embeddings = FlaxEmbeddings(self.config, dtype=self.dtype) self.transformer = FlaxTransformerEncoder(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict input_embeds = self.embeddings(input_ids, deterministic=deterministic) return self.transformer( hidden_states=input_embeds, attention_mask=attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @add_start_docstrings( "The bare DistilBert Model transformer outputting raw hidden-states without any specific head on top.", FLAX_DISTILBERT_START_DOCSTRING, ) class FlaxDistilBertModel(FlaxDistilBertPreTrainedModel): module_class = FlaxDistilBertModule append_call_sample_docstring(FlaxDistilBertModel, _CHECKPOINT_FOR_DOC, None, _CONFIG_FOR_DOC) class FlaxDistilBertForMaskedLMModule(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.distilbert = FlaxDistilBertModule(self.config, dtype=self.dtype) self.vocab_transform = nn.Dense( self.config.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.vocab_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype) if self.config.tie_word_embeddings: self.vocab_projector = FlaxDistilBertLMDecoder( self.config, dtype=self.dtype, ) else: self.vocab_projector = nn.Dense( self.config.vocab_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) def __call__( self, input_ids, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict dlbrt_output = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, deterministic=deterministic, return_dict=return_dict, ) hidden_states = dlbrt_output[0] prediction_logits = self.vocab_transform(hidden_states) prediction_logits = ACT2FN[self.config.activation](prediction_logits) prediction_logits = self.vocab_layer_norm(prediction_logits) if self.config.tie_word_embeddings: shared_embedding = self.distilbert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] prediction_logits = self.vocab_projector(prediction_logits, shared_embedding.T) else: prediction_logits = self.vocab_projector(prediction_logits) if not return_dict: output = (prediction_logits,) + dlbrt_output[1:] return output return FlaxMaskedLMOutput( logits=prediction_logits, hidden_states=dlbrt_output.hidden_states, attentions=dlbrt_output.attentions, ) @add_start_docstrings("""DistilBert Model with a `language modeling` head on top.""", FLAX_DISTILBERT_START_DOCSTRING) class FlaxDistilBertForMaskedLM(FlaxDistilBertPreTrainedModel): module_class = FlaxDistilBertForMaskedLMModule append_call_sample_docstring(FlaxDistilBertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC) class FlaxDistilBertForSequenceClassificationModule(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype) self.pre_classifier = nn.Dense( self.config.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.dropout = nn.Dropout(rate=self.config.seq_classif_dropout) self.classifier = nn.Dense( self.config.num_labels, dtype=self.dtype, ) def __call__( self, input_ids, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Model distilbert_output = self.distilbert( input_ids, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_state = distilbert_output[0] # (bs, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs, dim) pooled_output = self.pre_classifier(pooled_output) # (bs, dim) pooled_output = ACT2FN["relu"](pooled_output) pooled_output = self.dropout(pooled_output, deterministic=deterministic) logits = self.classifier(pooled_output) # (bs, dim) if not return_dict: return (logits,) + distilbert_output[1:] return FlaxSequenceClassifierOutput( logits=logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, ) @add_start_docstrings( """ DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, FLAX_DISTILBERT_START_DOCSTRING, ) class FlaxDistilBertForSequenceClassification(FlaxDistilBertPreTrainedModel): module_class = FlaxDistilBertForSequenceClassificationModule append_call_sample_docstring( FlaxDistilBertForSequenceClassification, _CHECKPOINT_FOR_DOC, FlaxSequenceClassifierOutput, _CONFIG_FOR_DOC, ) class FlaxDistilBertForMultipleChoiceModule(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype) self.pre_classifier = nn.Dense( self.config.dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.dropout = nn.Dropout(rate=self.config.seq_classif_dropout) self.classifier = nn.Dense( 1, dtype=self.dtype, ) def __call__( self, input_ids, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None # Model outputs = self.distilbert( input_ids, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_state = outputs[0] pooled_output = hidden_state[:, 0] pooled_output = self.pre_classifier(pooled_output) pooled_output = ACT2FN["relu"](pooled_output) pooled_output = self.dropout(pooled_output, deterministic=deterministic) logits = self.classifier(pooled_output) reshaped_logits = logits.reshape(-1, num_choices) if not return_dict: return (reshaped_logits,) + outputs[2:] return FlaxMultipleChoiceModelOutput( logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, FLAX_DISTILBERT_START_DOCSTRING, ) class FlaxDistilBertForMultipleChoice(FlaxDistilBertPreTrainedModel): module_class = FlaxDistilBertForMultipleChoiceModule overwrite_call_docstring( FlaxDistilBertForMultipleChoice, DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) append_call_sample_docstring( FlaxDistilBertForMultipleChoice, _CHECKPOINT_FOR_DOC, FlaxMultipleChoiceModelOutput, _CONFIG_FOR_DOC, ) class FlaxDistilBertForTokenClassificationModule(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.dropout) self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Model outputs = self.distilbert( input_ids, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.classifier(hidden_states) if not return_dict: return (logits,) + outputs[1:] return FlaxTokenClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, FLAX_DISTILBERT_START_DOCSTRING, ) class FlaxDistilBertForTokenClassification(FlaxDistilBertPreTrainedModel): module_class = FlaxDistilBertForTokenClassificationModule append_call_sample_docstring( FlaxDistilBertForTokenClassification, _CHECKPOINT_FOR_DOC, FlaxTokenClassifierOutput, _CONFIG_FOR_DOC, ) class FlaxDistilBertForQuestionAnsweringModule(nn.Module): config: DistilBertConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype) self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) assert self.config.num_labels == 2 self.dropout = nn.Dropout(rate=self.config.qa_dropout) def __call__( self, input_ids, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Model distilbert_output = self.distilbert( input_ids, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = distilbert_output[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.qa_outputs(hidden_states) start_logits, end_logits = logits.split(self.config.num_labels, axis=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if not return_dict: return (start_logits, end_logits) + distilbert_output[1:] return FlaxQuestionAnsweringModelOutput( start_logits=start_logits, end_logits=end_logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, ) @add_start_docstrings( """ DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FLAX_DISTILBERT_START_DOCSTRING, ) class FlaxDistilBertForQuestionAnswering(FlaxDistilBertPreTrainedModel): module_class = FlaxDistilBertForQuestionAnsweringModule append_call_sample_docstring( FlaxDistilBertForQuestionAnswering, _CHECKPOINT_FOR_DOC, FlaxQuestionAnsweringModelOutput, _CONFIG_FOR_DOC, )
transformers/src/transformers/models/distilbert/modeling_flax_distilbert.py/0
{ "file_path": "transformers/src/transformers/models/distilbert/modeling_flax_distilbert.py", "repo_id": "transformers", "token_count": 14393 }
93
# coding=utf-8 # Copyright 2018 DPR Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch DPR model for Open Domain Question Answering.""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import Tensor, nn from ...modeling_outputs import BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..bert.modeling_bert import BertModel from .configuration_dpr import DPRConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "DPRConfig" _CHECKPOINT_FOR_DOC = "facebook/dpr-ctx_encoder-single-nq-base" DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/dpr-ctx_encoder-single-nq-base", "facebook/dpr-ctx_encoder-multiset-base", ] DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/dpr-question_encoder-single-nq-base", "facebook/dpr-question_encoder-multiset-base", ] DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/dpr-reader-single-nq-base", "facebook/dpr-reader-multiset-base", ] ########## # Outputs ########## @dataclass class DPRContextEncoderOutput(ModelOutput): """ Class for outputs of [`DPRQuestionEncoder`]. Args: pooler_output (`torch.FloatTensor` of shape `(batch_size, embeddings_size)`): The DPR encoder outputs the *pooler_output* that corresponds to the context representation. Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer. This output is to be used to embed contexts for nearest neighbors queries with questions embeddings. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ pooler_output: torch.FloatTensor hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class DPRQuestionEncoderOutput(ModelOutput): """ Class for outputs of [`DPRQuestionEncoder`]. Args: pooler_output (`torch.FloatTensor` of shape `(batch_size, embeddings_size)`): The DPR encoder outputs the *pooler_output* that corresponds to the question representation. Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer. This output is to be used to embed questions for nearest neighbors queries with context embeddings. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ pooler_output: torch.FloatTensor hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class DPRReaderOutput(ModelOutput): """ Class for outputs of [`DPRQuestionEncoder`]. Args: start_logits (`torch.FloatTensor` of shape `(n_passages, sequence_length)`): Logits of the start index of the span for each passage. end_logits (`torch.FloatTensor` of shape `(n_passages, sequence_length)`): Logits of the end index of the span for each passage. relevance_logits (`torch.FloatTensor` of shape `(n_passages, )`): Outputs of the QA classifier of the DPRReader that corresponds to the scores of each passage to answer the question, compared to all the other passages. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ start_logits: torch.FloatTensor end_logits: torch.FloatTensor = None relevance_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None class DPRPreTrainedModel(PreTrainedModel): def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class DPREncoder(DPRPreTrainedModel): base_model_prefix = "bert_model" def __init__(self, config: DPRConfig): super().__init__(config) self.bert_model = BertModel(config, add_pooling_layer=False) if self.bert_model.config.hidden_size <= 0: raise ValueError("Encoder hidden_size can't be zero") self.projection_dim = config.projection_dim if self.projection_dim > 0: self.encode_proj = nn.Linear(self.bert_model.config.hidden_size, config.projection_dim) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Tensor, attention_mask: Optional[Tensor] = None, token_type_ids: Optional[Tensor] = None, inputs_embeds: Optional[Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = False, ) -> Union[BaseModelOutputWithPooling, Tuple[Tensor, ...]]: outputs = self.bert_model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] pooled_output = sequence_output[:, 0, :] if self.projection_dim > 0: pooled_output = self.encode_proj(pooled_output) if not return_dict: return (sequence_output, pooled_output) + outputs[2:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @property def embeddings_size(self) -> int: if self.projection_dim > 0: return self.encode_proj.out_features return self.bert_model.config.hidden_size class DPRSpanPredictor(DPRPreTrainedModel): base_model_prefix = "encoder" def __init__(self, config: DPRConfig): super().__init__(config) self.encoder = DPREncoder(config) self.qa_outputs = nn.Linear(self.encoder.embeddings_size, 2) self.qa_classifier = nn.Linear(self.encoder.embeddings_size, 1) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Tensor, attention_mask: Tensor, inputs_embeds: Optional[Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = False, ) -> Union[DPRReaderOutput, Tuple[Tensor, ...]]: # notations: N - number of questions in a batch, M - number of passages per questions, L - sequence length n_passages, sequence_length = input_ids.size() if input_ids is not None else inputs_embeds.size()[:2] # feed encoder outputs = self.encoder( input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # compute logits logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() relevance_logits = self.qa_classifier(sequence_output[:, 0, :]) # resize start_logits = start_logits.view(n_passages, sequence_length) end_logits = end_logits.view(n_passages, sequence_length) relevance_logits = relevance_logits.view(n_passages) if not return_dict: return (start_logits, end_logits, relevance_logits) + outputs[2:] return DPRReaderOutput( start_logits=start_logits, end_logits=end_logits, relevance_logits=relevance_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) ################## # PreTrainedModel ################## class DPRPretrainedContextEncoder(DPRPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPRConfig load_tf_weights = None base_model_prefix = "ctx_encoder" class DPRPretrainedQuestionEncoder(DPRPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPRConfig load_tf_weights = None base_model_prefix = "question_encoder" class DPRPretrainedReader(DPRPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPRConfig load_tf_weights = None base_model_prefix = "span_predictor" ############### # Actual Models ############### DPR_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DPRConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DPR_ENCODERS_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. To match pretraining, DPR input sequence should be formatted with [CLS] and [SEP] tokens as follows: (a) For sequence pairs (for a pair title+text for example): ``` tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 ``` (b) For single sequences (for a question for example): ``` tokens: [CLS] the dog is hairy . [SEP] token_type_ids: 0 0 0 0 0 0 0 ``` DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ DPR_READER_INPUTS_DOCSTRING = r""" Args: input_ids (`Tuple[torch.LongTensor]` of shapes `(n_passages, sequence_length)`): Indices of input sequence tokens in the vocabulary. It has to be a sequence triplet with 1) the question and 2) the passages titles and 3) the passages texts To match pretraining, DPR `input_ids` sequence should be formatted with [CLS] and [SEP] with the format: `[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>` DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. Indices can be obtained using [`DPRReaderTokenizer`]. See this class documentation for more details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `(n_passages, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) inputs_embeds (`torch.FloatTensor` of shape `(n_passages, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare DPRContextEncoder transformer outputting pooler outputs as context representations.", DPR_START_DOCSTRING, ) class DPRContextEncoder(DPRPretrainedContextEncoder): def __init__(self, config: DPRConfig): super().__init__(config) self.config = config self.ctx_encoder = DPREncoder(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DPR_ENCODERS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DPRContextEncoderOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, token_type_ids: Optional[Tensor] = None, inputs_embeds: Optional[Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[DPRContextEncoderOutput, Tuple[Tensor, ...]]: r""" Return: Examples: ```python >>> from transformers import DPRContextEncoder, DPRContextEncoderTokenizer >>> tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base") >>> model = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base") >>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="pt")["input_ids"] >>> embeddings = model(input_ids).pooler_output ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = ( torch.ones(input_shape, device=device) if input_ids is None else (input_ids != self.config.pad_token_id) ) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) outputs = self.ctx_encoder( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs[1:] return DPRContextEncoderOutput( pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( "The bare DPRQuestionEncoder transformer outputting pooler outputs as question representations.", DPR_START_DOCSTRING, ) class DPRQuestionEncoder(DPRPretrainedQuestionEncoder): def __init__(self, config: DPRConfig): super().__init__(config) self.config = config self.question_encoder = DPREncoder(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DPR_ENCODERS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DPRQuestionEncoderOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, token_type_ids: Optional[Tensor] = None, inputs_embeds: Optional[Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[DPRQuestionEncoderOutput, Tuple[Tensor, ...]]: r""" Return: Examples: ```python >>> from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer >>> tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base") >>> model = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base") >>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="pt")["input_ids"] >>> embeddings = model(input_ids).pooler_output ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = ( torch.ones(input_shape, device=device) if input_ids is None else (input_ids != self.config.pad_token_id) ) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) outputs = self.question_encoder( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs[1:] return DPRQuestionEncoderOutput( pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( "The bare DPRReader transformer outputting span predictions.", DPR_START_DOCSTRING, ) class DPRReader(DPRPretrainedReader): def __init__(self, config: DPRConfig): super().__init__(config) self.config = config self.span_predictor = DPRSpanPredictor(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DPR_READER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DPRReaderOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, inputs_embeds: Optional[Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[DPRReaderOutput, Tuple[Tensor, ...]]: r""" Return: Examples: ```python >>> from transformers import DPRReader, DPRReaderTokenizer >>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base") >>> model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base") >>> encoded_inputs = tokenizer( ... questions=["What is love ?"], ... titles=["Haddaway"], ... texts=["'What Is Love' is a song recorded by the artist Haddaway"], ... return_tensors="pt", ... ) >>> outputs = model(**encoded_inputs) >>> start_logits = outputs.start_logits >>> end_logits = outputs.end_logits >>> relevance_logits = outputs.relevance_logits ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) return self.span_predictor( input_ids, attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, )
transformers/src/transformers/models/dpr/modeling_dpr.py/0
{ "file_path": "transformers/src/transformers/models/dpr/modeling_dpr.py", "repo_id": "transformers", "token_count": 11490 }
94
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert EfficientFormer checkpoints from the original repository. URL: https://github.com/snap-research/EfficientFormer """ import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def rename_key(old_name, num_meta4D_last_stage): new_name = old_name if "patch_embed" in old_name: _, layer, param = old_name.split(".") if layer == "0": new_name = old_name.replace("0", "convolution1") elif layer == "1": new_name = old_name.replace("1", "batchnorm_before") elif layer == "3": new_name = old_name.replace("3", "convolution2") else: new_name = old_name.replace("4", "batchnorm_after") if "network" in old_name and re.search(r"\d\.\d", old_name): two_digit_num = r"\b\d{2}\b" if bool(re.search(two_digit_num, old_name)): match = re.search(r"\d\.\d\d.", old_name).group() else: match = re.search(r"\d\.\d.", old_name).group() if int(match[0]) < 6: trimmed_name = old_name.replace(match, "") trimmed_name = trimmed_name.replace("network", match[0] + ".meta4D_layers.blocks." + match[2:-1]) new_name = "intermediate_stages." + trimmed_name else: trimmed_name = old_name.replace(match, "") if int(match[2]) < num_meta4D_last_stage: trimmed_name = trimmed_name.replace("network", "meta4D_layers.blocks." + match[2]) else: layer_index = str(int(match[2]) - num_meta4D_last_stage) trimmed_name = trimmed_name.replace("network", "meta3D_layers.blocks." + layer_index) if "norm1" in old_name: trimmed_name = trimmed_name.replace("norm1", "layernorm1") elif "norm2" in old_name: trimmed_name = trimmed_name.replace("norm2", "layernorm2") elif "fc1" in old_name: trimmed_name = trimmed_name.replace("fc1", "linear_in") elif "fc2" in old_name: trimmed_name = trimmed_name.replace("fc2", "linear_out") new_name = "last_stage." + trimmed_name elif "network" in old_name and re.search(r".\d.", old_name): new_name = old_name.replace("network", "intermediate_stages") if "fc" in new_name: new_name = new_name.replace("fc", "convolution") elif ("norm1" in new_name) and ("layernorm1" not in new_name): new_name = new_name.replace("norm1", "batchnorm_before") elif ("norm2" in new_name) and ("layernorm2" not in new_name): new_name = new_name.replace("norm2", "batchnorm_after") if "proj" in new_name: new_name = new_name.replace("proj", "projection") if "dist_head" in new_name: new_name = new_name.replace("dist_head", "distillation_classifier") elif "head" in new_name: new_name = new_name.replace("head", "classifier") elif "patch_embed" in new_name: new_name = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": new_name = new_name.replace("norm", "layernorm") new_name = "efficientformer." + new_name else: new_name = "efficientformer.encoder." + new_name return new_name def convert_torch_checkpoint(checkpoint, num_meta4D_last_stage): for key in checkpoint.copy().keys(): val = checkpoint.pop(key) checkpoint[rename_key(key, num_meta4D_last_stage)] = val return checkpoint # We will verify our results on a COCO image def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) return image def convert_efficientformer_checkpoint( checkpoint_path: Path, efficientformer_config_file: Path, pytorch_dump_path: Path, push_to_hub: bool ): orig_state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] config = EfficientFormerConfig.from_json_file(efficientformer_config_file) model = EfficientFormerForImageClassificationWithTeacher(config) model_name = "_".join(checkpoint_path.split("/")[-1].split(".")[0].split("_")[:-1]) num_meta4D_last_stage = config.depths[-1] - config.num_meta3d_blocks + 1 new_state_dict = convert_torch_checkpoint(orig_state_dict, num_meta4D_last_stage) model.load_state_dict(new_state_dict) model.eval() pillow_resamplings = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image image = prepare_img() image_size = 256 crop_size = 224 processor = EfficientFormerImageProcessor( size={"shortest_edge": image_size}, crop_size={"height": crop_size, "width": crop_size}, resample=pillow_resamplings["bicubic"], ) pixel_values = processor(images=image, return_tensors="pt").pixel_values # original processing pipeline image_transforms = Compose( [ Resize(image_size, interpolation=pillow_resamplings["bicubic"]), CenterCrop(crop_size), ToTensor(), Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD), ] ) original_pixel_values = image_transforms(image).unsqueeze(0) assert torch.allclose(original_pixel_values, pixel_values) outputs = model(pixel_values) logits = outputs.logits expected_shape = (1, 1000) if "l1" in model_name: expected_logits = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10], expected_logits, atol=1e-3) assert logits.shape == expected_shape elif "l3" in model_name: expected_logits = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10], expected_logits, atol=1e-3) assert logits.shape == expected_shape elif "l7" in model_name: expected_logits = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(pytorch_dump_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_path) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}") processor.save_pretrained(pytorch_dump_path) print(f"Processor successfuly saved at {pytorch_dump_path}") if push_to_hub: print("Pushing model to the hub...") model.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}", commit_message="Add model", use_temp_dir=True, ) processor.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}", commit_message="Add image processor", use_temp_dir=True, ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) args = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
transformers/src/transformers/models/efficientformer/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/efficientformer/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 4066 }
95
# coding=utf-8 # Copyright 2023 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ErnieM model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn, tensor from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_ernie_m import ErnieMConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "susnato/ernie-m-base_pytorch" _CONFIG_FOR_DOC = "ErnieMConfig" _TOKENIZER_FOR_DOC = "ErnieMTokenizer" ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST = [ "susnato/ernie-m-base_pytorch", "susnato/ernie-m-large_pytorch", # See all ErnieM models at https://huggingface.co/models?filter=ernie_m ] # Adapted from paddlenlp.transformers.ernie_m.modeling.ErnieEmbeddings class ErnieMEmbeddings(nn.Module): """Construct the embeddings from word and position embeddings.""" def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=config.pad_token_id ) self.layer_norm = nn.LayerNorm(normalized_shape=config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(p=config.hidden_dropout_prob) self.padding_idx = config.pad_token_id def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if position_ids is None: input_shape = inputs_embeds.size()[:-1] ones = torch.ones(input_shape, dtype=torch.int64, device=inputs_embeds.device) seq_length = torch.cumsum(ones, dim=1) position_ids = seq_length - ones if past_key_values_length > 0: position_ids = position_ids + past_key_values_length # to mimic paddlenlp implementation position_ids += 2 position_embeddings = self.position_embeddings(position_ids) embeddings = inputs_embeds + position_embeddings embeddings = self.layer_norm(embeddings) embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ErnieM,self.value->self.v_proj,self.key->self.k_proj,self.query->self.q_proj class ErnieMSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.q_proj = nn.Linear(config.hidden_size, self.all_head_size) self.k_proj = nn.Linear(config.hidden_size, self.all_head_size) self.v_proj = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.q_proj(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.k_proj(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.v_proj(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.k_proj(hidden_states)) value_layer = self.transpose_for_scores(self.v_proj(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.k_proj(hidden_states)) value_layer = self.transpose_for_scores(self.v_proj(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in ErnieMModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class ErnieMAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self_attn = ErnieMSelfAttention(config, position_embedding_type=position_embedding_type) self.out_proj = nn.Linear(config.hidden_size, config.hidden_size) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self_attn.num_attention_heads, self.self_attn.attention_head_size, self.pruned_heads ) # Prune linear layers self.self_attn.q_proj = prune_linear_layer(self.self_attn.q_proj, index) self.self_attn.k_proj = prune_linear_layer(self.self_attn.k_proj, index) self.self_attn.v_proj = prune_linear_layer(self.self_attn.v_proj, index) self.out_proj = prune_linear_layer(self.out_proj, index, dim=1) # Update hyper params and store pruned heads self.self_attn.num_attention_heads = self.self_attn.num_attention_heads - len(heads) self.self_attn.all_head_size = self.self_attn.attention_head_size * self.self_attn.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self_attn( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.out_proj(self_outputs[0]) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class ErnieMEncoderLayer(nn.Module): def __init__(self, config): super().__init__() # to mimic paddlenlp implementation dropout = 0.1 if config.hidden_dropout_prob is None else config.hidden_dropout_prob act_dropout = config.hidden_dropout_prob if config.act_dropout is None else config.act_dropout self.self_attn = ErnieMAttention(config) self.linear1 = nn.Linear(config.hidden_size, config.intermediate_size) self.dropout = nn.Dropout(act_dropout) self.linear2 = nn.Linear(config.intermediate_size, config.hidden_size) self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) if isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = True, ): residual = hidden_states if output_attentions: hidden_states, attention_opt_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask, past_key_value=past_key_value, output_attentions=output_attentions, ) else: hidden_states = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask, past_key_value=past_key_value, output_attentions=output_attentions, ) hidden_states = residual + self.dropout1(hidden_states) hidden_states = self.norm1(hidden_states) residual = hidden_states hidden_states = self.linear1(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.linear2(hidden_states) hidden_states = residual + self.dropout2(hidden_states) hidden_states = self.norm2(hidden_states) if output_attentions: return hidden_states, attention_opt_weights else: return hidden_states class ErnieMEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layers = nn.ModuleList([ErnieMEncoderLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, input_embeds: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: hidden_states = () if output_hidden_states else None attentions = () if output_attentions else None output = input_embeds if output_hidden_states: hidden_states = hidden_states + (output,) for i, layer in enumerate(self.layers): layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None output, opt_attn_weights = layer( hidden_states=output, attention_mask=attention_mask, head_mask=layer_head_mask, past_key_value=past_key_value, ) if output_hidden_states: hidden_states = hidden_states + (output,) if output_attentions: attentions = attentions + (opt_attn_weights,) last_hidden_state = output if not return_dict: return tuple(v for v in [last_hidden_state, hidden_states, attentions] if v is not None) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=attentions ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->ErnieM class ErnieMPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class ErnieMPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ErnieMConfig base_model_prefix = "ernie_m" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) ERNIE_M_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ErnieMConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ERNIE_M_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`ErnieMTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ErnieM Model transformer outputting raw hidden-states without any specific head on top.", ERNIE_M_START_DOCSTRING, ) class ErnieMModel(ErnieMPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super(ErnieMModel, self).__init__(config) self.initializer_range = config.initializer_range self.embeddings = ErnieMEmbeddings(config) self.encoder = ErnieMEncoder(config) self.pooler = ErnieMPooler(config) if add_pooling_layer else None self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layers[layer].self_attn.prune_heads(heads) @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[tensor] = None, position_ids: Optional[tensor] = None, attention_mask: Optional[tensor] = None, head_mask: Optional[tensor] = None, inputs_embeds: Optional[tensor] = None, past_key_values: Optional[Tuple[Tuple[tensor]]] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPoolingAndCrossAttentions]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time.") # init the default bool value output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] # Adapted from paddlenlp.transformers.ernie_m.ErnieMModel if attention_mask is None: attention_mask = (input_ids == self.config.pad_token_id).to(torch.float32) attention_mask *= torch.finfo(attention_mask.dtype).min if past_key_values is not None: batch_size = past_key_values[0][0].shape[0] past_mask = torch.zeros([batch_size, 1, 1, past_key_values_length], dtype=attention_mask.dtype) attention_mask = torch.concat([past_mask, attention_mask], dim=-1) # For 2D attention_mask from tokenizer elif attention_mask.ndim == 2: attention_mask = attention_mask.to(torch.float32) attention_mask = 1.0 - attention_mask attention_mask *= torch.finfo(attention_mask.dtype).min extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, past_key_values=past_key_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: sequence_output = encoder_outputs[0] pooler_output = self.pooler(sequence_output) if self.pooler is not None else None return (sequence_output, pooler_output) + encoder_outputs[1:] sequence_output = encoder_outputs["last_hidden_state"] pooler_output = self.pooler(sequence_output) if self.pooler is not None else None hidden_states = None if not output_hidden_states else encoder_outputs["hidden_states"] attentions = None if not output_attentions else encoder_outputs["attentions"] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooler_output, hidden_states=hidden_states, attentions=attentions, ) @add_start_docstrings( """ErnieM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.""", ERNIE_M_START_DOCSTRING, ) class ErnieMForSequenceClassification(ErnieMPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with Bert->ErnieM,bert->ernie_m def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.ernie_m = ErnieMModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = True, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple[torch.FloatTensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie_m( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, past_key_values=past_key_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ErnieM Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""", ERNIE_M_START_DOCSTRING, ) class ErnieMForMultipleChoice(ErnieMPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice.__init__ with Bert->ErnieM,bert->ernie_m def __init__(self, config): super().__init__(config) self.ernie_m = ErnieMModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.FloatTensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.ernie_m( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ErnieM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""", ERNIE_M_START_DOCSTRING, ) class ErnieMForTokenClassification(ErnieMPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with Bert->ErnieM,bert->ernie_m def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.ernie_m = ErnieMModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = True, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple[torch.FloatTensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie_m( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, past_key_values=past_key_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ErnieM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""", ERNIE_M_START_DOCSTRING, ) class ErnieMForQuestionAnswering(ErnieMPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with Bert->ErnieM,bert->ernie_m def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.ernie_m = ErnieMModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.FloatTensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie_m( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ErnieMForInformationExtraction is a Ernie-M Model with two linear layer on top of the hidden-states output to compute `start_prob` and `end_prob`, designed for Universal Information Extraction.""", ERNIE_M_START_DOCSTRING, ) # Copied from paddlenlp.transformers.ernie_m.modeling.UIEM class ErnieMForInformationExtraction(ErnieMPreTrainedModel): def __init__(self, config): super(ErnieMForInformationExtraction, self).__init__(config) self.ernie_m = ErnieMModel(config) self.linear_start = nn.Linear(config.hidden_size, 1) self.linear_end = nn.Linear(config.hidden_size, 1) self.sigmoid = nn.Sigmoid() self.post_init() @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.FloatTensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for position (index) for computing the start_positions loss. Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) for computing the end_positions loss. Position outside of the sequence are not taken into account for computing the loss. """ result = self.ernie_m( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if return_dict: sequence_output = result.last_hidden_state elif not return_dict: sequence_output = result[0] start_logits = self.linear_start(sequence_output) start_logits = start_logits.squeeze(-1) end_logits = self.linear_end(sequence_output) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = BCEWithLogitsLoss() start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: return tuple( i for i in [total_loss, start_logits, end_logits, result.hidden_states, result.attentions] if i is not None ) return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=result.hidden_states, attentions=result.attentions, )
transformers/src/transformers/models/ernie_m/modeling_ernie_m.py/0
{ "file_path": "transformers/src/transformers/models/ernie_m/modeling_ernie_m.py", "repo_id": "transformers", "token_count": 20540 }
96