text
stringlengths
29
320k
id
stringlengths
22
166
metadata
dict
__index_level_0__
int64
0
195
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Donut checkpoints using the original `donut-python` library. URL: https://github.com/clovaai/donut""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def get_configs(model): original_config = model.config encoder_config = DonutSwinConfig( image_size=original_config.input_size, patch_size=4, depths=original_config.encoder_layer, num_heads=[4, 8, 16, 32], window_size=original_config.window_size, embed_dim=128, ) decoder_config = MBartConfig( is_decoder=True, is_encoder_decoder=False, add_cross_attention=True, decoder_layers=original_config.decoder_layer, max_position_embeddings=original_config.max_position_embeddings, vocab_size=len( model.decoder.tokenizer ), # several special tokens are added to the vocab of XLMRobertaTokenizer, see repo on the hub (added_tokens.json) scale_embedding=True, add_final_layer_norm=True, ) return encoder_config, decoder_config def rename_key(name): if "encoder.model" in name: name = name.replace("encoder.model", "encoder") if "decoder.model" in name: name = name.replace("decoder.model", "decoder") if "patch_embed.proj" in name: name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection") if "patch_embed.norm" in name: name = name.replace("patch_embed.norm", "embeddings.norm") if name.startswith("encoder"): if "layers" in name: name = "encoder." + name if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "attn" in name and "mask" not in name: name = name.replace("attn", "attention.self") if "norm1" in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if name == "encoder.norm.weight": name = "encoder.layernorm.weight" if name == "encoder.norm.bias": name = "encoder.layernorm.bias" return name def convert_state_dict(orig_state_dict, model): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if "qkv" in key: key_split = key.split(".") layer_num = int(key_split[3]) block_num = int(key_split[5]) dim = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: orig_state_dict[ f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.weight" ] = val[:dim, :] orig_state_dict[ f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.weight" ] = val[dim : dim * 2, :] orig_state_dict[ f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.weight" ] = val[-dim:, :] else: orig_state_dict[ f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.bias" ] = val[:dim] orig_state_dict[ f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.bias" ] = val[dim : dim * 2] orig_state_dict[ f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.bias" ] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: orig_state_dict[rename_key(key)] = val return orig_state_dict def convert_donut_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False): # load original model original_model = DonutModel.from_pretrained(model_name).eval() # load HuggingFace model encoder_config, decoder_config = get_configs(original_model) encoder = DonutSwinModel(encoder_config) decoder = MBartForCausalLM(decoder_config) model = VisionEncoderDecoderModel(encoder=encoder, decoder=decoder) model.eval() state_dict = original_model.state_dict() new_state_dict = convert_state_dict(state_dict, model) model.load_state_dict(new_state_dict) # verify results on scanned document dataset = load_dataset("hf-internal-testing/example-documents") image = dataset["test"][0]["image"].convert("RGB") tokenizer = XLMRobertaTokenizerFast.from_pretrained(model_name, from_slow=True) image_processor = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis, size=original_model.config.input_size[::-1] ) processor = DonutProcessor(image_processor, tokenizer) pixel_values = processor(image, return_tensors="pt").pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" question = "When is the coffee break?" task_prompt = task_prompt.replace("{user_input}", question) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": task_prompt = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: task_prompt = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": task_prompt = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": task_prompt = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt task_prompt = "hello world" else: raise ValueError("Model name not supported") prompt_tensors = original_model.decoder.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt")[ "input_ids" ] original_patch_embed = original_model.encoder.model.patch_embed(pixel_values) patch_embeddings, _ = model.encoder.embeddings(pixel_values) assert torch.allclose(original_patch_embed, patch_embeddings, atol=1e-3) # verify encoder hidden states original_last_hidden_state = original_model.encoder(pixel_values) last_hidden_state = model.encoder(pixel_values).last_hidden_state assert torch.allclose(original_last_hidden_state, last_hidden_state, atol=1e-2) # verify decoder hidden states original_logits = original_model(pixel_values, prompt_tensors, None).logits logits = model(pixel_values, decoder_input_ids=prompt_tensors).logits assert torch.allclose(original_logits, logits, atol=1e-3) print("Looks ok!") if pytorch_dump_folder_path is not None: print(f"Saving model and processor to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/")[-1], commit_message="Update model") processor.push_to_hub("nielsr/" + model_name.split("/")[-1], commit_message="Update model") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) args = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/donut/convert_donut_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/donut/convert_donut_to_pytorch.py", "repo_id": "transformers", "token_count": 4042 }
81
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DPT checkpoints from the original repository. URL: https://github.com/isl-org/DPT""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_dpt_config(checkpoint_url): config = DPTConfig(embedding_type="hybrid") if "large" in checkpoint_url: config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 config.backbone_out_indices = [5, 11, 17, 23] config.neck_hidden_sizes = [256, 512, 1024, 1024] expected_shape = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: config.hidden_size = 768 config.reassemble_factors = [1, 1, 1, 0.5] config.neck_hidden_sizes = [256, 512, 768, 768] config.num_labels = 150 config.patch_size = 16 expected_shape = (1, 384, 384) config.use_batch_norm_in_fusion_residual = False config.readout_type = "project" if "ade" in checkpoint_url: config.use_batch_norm_in_fusion_residual = True config.hidden_size = 768 config.reassemble_stage = [1, 1, 1, 0.5] config.num_labels = 150 config.patch_size = 16 repo_id = "huggingface/label-files" filename = "ade20k-id2label.json" id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} expected_shape = [1, 150, 480, 480] return config, expected_shape def remove_ignore_keys_(state_dict): ignore_keys = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(k, None) def rename_key(name): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): name = name.replace("pretrained.model", "dpt.encoder") if "pretrained.model" in name: name = name.replace("pretrained.model", "dpt.embeddings") if "patch_embed" in name: name = name.replace("patch_embed", "") if "pos_embed" in name: name = name.replace("pos_embed", "position_embeddings") if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "proj" in name and "project" not in name: name = name.replace("proj", "projection") if "blocks" in name: name = name.replace("blocks", "layer") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if "norm1" in name and "backbone" not in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name and "backbone" not in name: name = name.replace("norm2", "layernorm_after") if "scratch.output_conv" in name: name = name.replace("scratch.output_conv", "head") if "scratch" in name: name = name.replace("scratch", "neck") if "layer1_rn" in name: name = name.replace("layer1_rn", "convs.0") if "layer2_rn" in name: name = name.replace("layer2_rn", "convs.1") if "layer3_rn" in name: name = name.replace("layer3_rn", "convs.2") if "layer4_rn" in name: name = name.replace("layer4_rn", "convs.3") if "refinenet" in name: layer_idx = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 name = name.replace(f"refinenet{layer_idx}", f"fusion_stage.layers.{abs(layer_idx-4)}") if "out_conv" in name: name = name.replace("out_conv", "projection") if "resConfUnit1" in name: name = name.replace("resConfUnit1", "residual_layer1") if "resConfUnit2" in name: name = name.replace("resConfUnit2", "residual_layer2") if "conv1" in name: name = name.replace("conv1", "convolution1") if "conv2" in name: name = name.replace("conv2", "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: name = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: name = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: name = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: name = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: name = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: name = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: name = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: name = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: name = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: name = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: name = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: name = name.replace("pretrained", "dpt") if "bn" in name: name = name.replace("bn", "batch_norm") if "head" in name: name = name.replace("head", "head.head") if "encoder.norm" in name: name = name.replace("encoder.norm", "layernorm") if "auxlayer" in name: name = name.replace("auxlayer", "auxiliary_head.head") if "backbone" in name: name = name.replace("backbone", "backbone.bit.encoder") if ".." in name: name = name.replace("..", ".") if "stem.conv" in name: name = name.replace("stem.conv", "bit.embedder.convolution") if "blocks" in name: name = name.replace("blocks", "layers") if "convolution" in name and "backbone" in name: name = name.replace("convolution", "conv") if "layer" in name and "backbone" in name: name = name.replace("layer", "layers") if "backbone.bit.encoder.bit" in name: name = name.replace("backbone.bit.encoder.bit", "backbone.bit") if "embedder.conv" in name: name = name.replace("embedder.conv", "embedder.convolution") if "backbone.bit.encoder.stem.norm" in name: name = name.replace("backbone.bit.encoder.stem.norm", "backbone.bit.embedder.norm") return name # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"dpt.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :] state_dict[f"dpt.encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"dpt.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"dpt.encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"dpt.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"dpt.encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_dpt_checkpoint(checkpoint_url, pytorch_dump_folder_path, push_to_hub, model_name, show_prediction): """ Copy/paste/tweak model's weights to our DPT structure. """ # define DPT configuration based on URL config, expected_shape = get_dpt_config(checkpoint_url) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") state_dict = torch.load(checkpoint_url, map_location="cpu") # remove certain keys remove_ignore_keys_(state_dict) # rename keys for key in state_dict.copy().keys(): val = state_dict.pop(key) state_dict[rename_key(key)] = val # read in qkv matrices read_in_q_k_v(state_dict, config) # load HuggingFace model model = DPTForSemanticSegmentation(config) if "ade" in checkpoint_url else DPTForDepthEstimation(config) model.load_state_dict(state_dict) model.eval() # Check outputs on an image size = 480 if "ade" in checkpoint_url else 384 image_processor = DPTImageProcessor(size=size) image = prepare_img() encoding = image_processor(image, return_tensors="pt") # forward pass outputs = model(**encoding).logits if "ade" in checkpoint_url else model(**encoding).predicted_depth if show_prediction: prediction = ( torch.nn.functional.interpolate( outputs.unsqueeze(1), size=(image.size[1], image.size[0]), mode="bicubic", align_corners=False, ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255).show() if pytorch_dump_folder_path is not None: Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas") image_processor.push_to_hub("ybelkada/dpt-hybrid-midas") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) args = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
transformers/src/transformers/models/dpt/convert_dpt_hybrid_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/dpt/convert_dpt_hybrid_to_pytorch.py", "repo_id": "transformers", "token_count": 5467 }
82
# coding=utf-8 # Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch EfficientNet model.""" import math from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_efficientnet import EfficientNetConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "EfficientNetConfig" # Base docstring _CHECKPOINT_FOR_DOC = "google/efficientnet-b7" _EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "google/efficientnet-b7" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/efficientnet-b7", # See all EfficientNet models at https://huggingface.co/models?filter=efficientnet ] EFFICIENTNET_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`EfficientNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ EFFICIENTNET_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`AutoImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def round_filters(config: EfficientNetConfig, num_channels: int): r""" Round number of filters based on depth multiplier. """ divisor = config.depth_divisor num_channels *= config.width_coefficient new_dim = max(divisor, int(num_channels + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_dim < 0.9 * num_channels: new_dim += divisor return int(new_dim) def correct_pad(kernel_size: Union[int, Tuple], adjust: bool = True): r""" Utility function to get the tuple padding value for the depthwise convolution. Args: kernel_size (`int` or `tuple`): Kernel size of the convolution layers. adjust (`bool`, *optional*, defaults to `True`): Adjusts padding value to apply to right and bottom sides of the input. """ if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size) correct = (kernel_size[0] // 2, kernel_size[1] // 2) if adjust: return (correct[1] - 1, correct[1], correct[0] - 1, correct[0]) else: return (correct[1], correct[1], correct[0], correct[0]) class EfficientNetEmbeddings(nn.Module): r""" A module that corresponds to the stem module of the original work. """ def __init__(self, config: EfficientNetConfig): super().__init__() self.out_dim = round_filters(config, 32) self.padding = nn.ZeroPad2d(padding=(0, 1, 0, 1)) self.convolution = nn.Conv2d( config.num_channels, self.out_dim, kernel_size=3, stride=2, padding="valid", bias=False ) self.batchnorm = nn.BatchNorm2d(self.out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum) self.activation = ACT2FN[config.hidden_act] def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: features = self.padding(pixel_values) features = self.convolution(features) features = self.batchnorm(features) features = self.activation(features) return features class EfficientNetDepthwiseConv2d(nn.Conv2d): def __init__( self, in_channels, depth_multiplier=1, kernel_size=3, stride=1, padding=0, dilation=1, bias=True, padding_mode="zeros", ): out_channels = in_channels * depth_multiplier super().__init__( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=in_channels, bias=bias, padding_mode=padding_mode, ) class EfficientNetExpansionLayer(nn.Module): r""" This corresponds to the expansion phase of each block in the original implementation. """ def __init__(self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int): super().__init__() self.expand_conv = nn.Conv2d( in_channels=in_dim, out_channels=out_dim, kernel_size=1, padding="same", bias=False, ) self.expand_bn = nn.BatchNorm2d(num_features=out_dim, eps=config.batch_norm_eps) self.expand_act = ACT2FN[config.hidden_act] def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: # Expand phase hidden_states = self.expand_conv(hidden_states) hidden_states = self.expand_bn(hidden_states) hidden_states = self.expand_act(hidden_states) return hidden_states class EfficientNetDepthwiseLayer(nn.Module): r""" This corresponds to the depthwise convolution phase of each block in the original implementation. """ def __init__( self, config: EfficientNetConfig, in_dim: int, stride: int, kernel_size: int, adjust_padding: bool, ): super().__init__() self.stride = stride conv_pad = "valid" if self.stride == 2 else "same" padding = correct_pad(kernel_size, adjust=adjust_padding) self.depthwise_conv_pad = nn.ZeroPad2d(padding=padding) self.depthwise_conv = EfficientNetDepthwiseConv2d( in_dim, kernel_size=kernel_size, stride=stride, padding=conv_pad, bias=False ) self.depthwise_norm = nn.BatchNorm2d( num_features=in_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum ) self.depthwise_act = ACT2FN[config.hidden_act] def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: # Depthwise convolution if self.stride == 2: hidden_states = self.depthwise_conv_pad(hidden_states) hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.depthwise_norm(hidden_states) hidden_states = self.depthwise_act(hidden_states) return hidden_states class EfficientNetSqueezeExciteLayer(nn.Module): r""" This corresponds to the Squeeze and Excitement phase of each block in the original implementation. """ def __init__(self, config: EfficientNetConfig, in_dim: int, expand_dim: int, expand: bool = False): super().__init__() self.dim = expand_dim if expand else in_dim self.dim_se = max(1, int(in_dim * config.squeeze_expansion_ratio)) self.squeeze = nn.AdaptiveAvgPool2d(output_size=1) self.reduce = nn.Conv2d( in_channels=self.dim, out_channels=self.dim_se, kernel_size=1, padding="same", ) self.expand = nn.Conv2d( in_channels=self.dim_se, out_channels=self.dim, kernel_size=1, padding="same", ) self.act_reduce = ACT2FN[config.hidden_act] self.act_expand = nn.Sigmoid() def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: inputs = hidden_states hidden_states = self.squeeze(hidden_states) hidden_states = self.reduce(hidden_states) hidden_states = self.act_reduce(hidden_states) hidden_states = self.expand(hidden_states) hidden_states = self.act_expand(hidden_states) hidden_states = torch.mul(inputs, hidden_states) return hidden_states class EfficientNetFinalBlockLayer(nn.Module): r""" This corresponds to the final phase of each block in the original implementation. """ def __init__( self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int, drop_rate: float, id_skip: bool ): super().__init__() self.apply_dropout = stride == 1 and not id_skip self.project_conv = nn.Conv2d( in_channels=in_dim, out_channels=out_dim, kernel_size=1, padding="same", bias=False, ) self.project_bn = nn.BatchNorm2d( num_features=out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum ) self.dropout = nn.Dropout(p=drop_rate) def forward(self, embeddings: torch.FloatTensor, hidden_states: torch.FloatTensor) -> torch.Tensor: hidden_states = self.project_conv(hidden_states) hidden_states = self.project_bn(hidden_states) if self.apply_dropout: hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + embeddings return hidden_states class EfficientNetBlock(nn.Module): r""" This corresponds to the expansion and depthwise convolution phase of each block in the original implementation. Args: config ([`EfficientNetConfig`]): Model configuration class. in_dim (`int`): Number of input channels. out_dim (`int`): Number of output channels. stride (`int`): Stride size to be used in convolution layers. expand_ratio (`int`): Expand ratio to set the output dimensions for the expansion and squeeze-excite layers. kernel_size (`int`): Kernel size for the depthwise convolution layer. drop_rate (`float`): Dropout rate to be used in the final phase of each block. id_skip (`bool`): Whether to apply dropout and sum the final hidden states with the input embeddings during the final phase of each block. Set to `True` for the first block of each stage. adjust_padding (`bool`): Whether to apply padding to only right and bottom side of the input kernel before the depthwise convolution operation, set to `True` for inputs with odd input sizes. """ def __init__( self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int, expand_ratio: int, kernel_size: int, drop_rate: float, id_skip: bool, adjust_padding: bool, ): super().__init__() self.expand_ratio = expand_ratio self.expand = True if self.expand_ratio != 1 else False expand_in_dim = in_dim * expand_ratio if self.expand: self.expansion = EfficientNetExpansionLayer( config=config, in_dim=in_dim, out_dim=expand_in_dim, stride=stride ) self.depthwise_conv = EfficientNetDepthwiseLayer( config=config, in_dim=expand_in_dim if self.expand else in_dim, stride=stride, kernel_size=kernel_size, adjust_padding=adjust_padding, ) self.squeeze_excite = EfficientNetSqueezeExciteLayer( config=config, in_dim=in_dim, expand_dim=expand_in_dim, expand=self.expand ) self.projection = EfficientNetFinalBlockLayer( config=config, in_dim=expand_in_dim if self.expand else in_dim, out_dim=out_dim, stride=stride, drop_rate=drop_rate, id_skip=id_skip, ) def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: embeddings = hidden_states # Expansion and depthwise convolution phase if self.expand_ratio != 1: hidden_states = self.expansion(hidden_states) hidden_states = self.depthwise_conv(hidden_states) # Squeeze and excite phase hidden_states = self.squeeze_excite(hidden_states) hidden_states = self.projection(embeddings, hidden_states) return hidden_states class EfficientNetEncoder(nn.Module): r""" Forward propogates the embeddings through each EfficientNet block. Args: config ([`EfficientNetConfig`]): Model configuration class. """ def __init__(self, config: EfficientNetConfig): super().__init__() self.config = config self.depth_coefficient = config.depth_coefficient def round_repeats(repeats): # Round number of block repeats based on depth multiplier. return int(math.ceil(self.depth_coefficient * repeats)) num_base_blocks = len(config.in_channels) num_blocks = sum(round_repeats(n) for n in config.num_block_repeats) curr_block_num = 0 blocks = [] for i in range(num_base_blocks): in_dim = round_filters(config, config.in_channels[i]) out_dim = round_filters(config, config.out_channels[i]) stride = config.strides[i] kernel_size = config.kernel_sizes[i] expand_ratio = config.expand_ratios[i] for j in range(round_repeats(config.num_block_repeats[i])): id_skip = True if j == 0 else False stride = 1 if j > 0 else stride in_dim = out_dim if j > 0 else in_dim adjust_padding = False if curr_block_num in config.depthwise_padding else True drop_rate = config.drop_connect_rate * curr_block_num / num_blocks block = EfficientNetBlock( config=config, in_dim=in_dim, out_dim=out_dim, stride=stride, kernel_size=kernel_size, expand_ratio=expand_ratio, drop_rate=drop_rate, id_skip=id_skip, adjust_padding=adjust_padding, ) blocks.append(block) curr_block_num += 1 self.blocks = nn.ModuleList(blocks) self.top_conv = nn.Conv2d( in_channels=out_dim, out_channels=round_filters(config, 1280), kernel_size=1, padding="same", bias=False, ) self.top_bn = nn.BatchNorm2d( num_features=config.hidden_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum ) self.top_activation = ACT2FN[config.hidden_act] def forward( self, hidden_states: torch.FloatTensor, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> BaseModelOutputWithNoAttention: all_hidden_states = (hidden_states,) if output_hidden_states else None for block in self.blocks: hidden_states = block(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) hidden_states = self.top_conv(hidden_states) hidden_states = self.top_bn(hidden_states) hidden_states = self.top_activation(hidden_states) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) class EfficientNetPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = EfficientNetConfig base_model_prefix = "efficientnet" main_input_name = "pixel_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @add_start_docstrings( "The bare EfficientNet model outputting raw features without any specific head on top.", EFFICIENTNET_START_DOCSTRING, ) class EfficientNetModel(EfficientNetPreTrainedModel): def __init__(self, config: EfficientNetConfig): super().__init__(config) self.config = config self.embeddings = EfficientNetEmbeddings(config) self.encoder = EfficientNetEncoder(config) # Final pooling layer if config.pooling_type == "mean": self.pooler = nn.AvgPool2d(config.hidden_dim, ceil_mode=True) elif config.pooling_type == "max": self.pooler = nn.MaxPool2d(config.hidden_dim, ceil_mode=True) else: raise ValueError(f"config.pooling must be one of ['mean', 'max'] got {config.pooling}") # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # Apply pooling last_hidden_state = encoder_outputs[0] pooled_output = self.pooler(last_hidden_state) # Reshape (batch_size, 1280, 1 , 1) -> (batch_size, 1280) pooled_output = pooled_output.reshape(pooled_output.shape[:2]) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ EfficientNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, EFFICIENTNET_START_DOCSTRING, ) class EfficientNetForImageClassification(EfficientNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.efficientnet = EfficientNetModel(config) # Classifier head self.dropout = nn.Dropout(p=config.dropout_rate) self.classifier = nn.Linear(config.hidden_dim, self.num_labels) if self.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: torch.FloatTensor = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.efficientnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, )
transformers/src/transformers/models/efficientnet/modeling_efficientnet.py/0
{ "file_path": "transformers/src/transformers/models/efficientnet/modeling_efficientnet.py", "repo_id": "transformers", "token_count": 10404 }
83
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes to support Encoder-Decoder architectures""" import gc import inspect import os import tempfile import warnings from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ...configuration_utils import PretrainedConfig from ...modeling_outputs import BaseModelOutput, Seq2SeqLMOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from ..auto.configuration_auto import AutoConfig from ..auto.modeling_auto import AutoModel, AutoModelForCausalLM from .configuration_encoder_decoder import EncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "EncoderDecoderConfig" DEPRECATION_WARNING = ( "Version v4.12.0 introduces a better way to train encoder-decoder models by computing the loss inside the" " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if" " fine-tuning a model trained with versions anterior to 4.12.0. The decoder_input_ids are now created based on the" " labels, no need to pass them yourself anymore." ) ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via [`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like summarization. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`. decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(torch.FloatTensor)`, *optional*): This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. - With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function. """ def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids @add_start_docstrings(ENCODER_DECODER_START_DOCSTRING) class EncoderDecoderModel(PreTrainedModel): r""" [`EncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one of the base model classes of the library as encoder and another one as decoder when created with the :meth*~transformers.AutoModel.from_pretrained* class method for the encoder and :meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder. """ config_class = EncoderDecoderConfig base_model_prefix = "encoder_decoder" main_input_name = "input_ids" supports_gradient_checkpointing = True def __init__( self, config: Optional[PretrainedConfig] = None, encoder: Optional[PreTrainedModel] = None, decoder: Optional[PreTrainedModel] = None, ): if config is None and (encoder is None or decoder is None): raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") if config is None: config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"Config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # initialize with config super().__init__(config) if encoder is None: from ..auto.modeling_auto import AutoModel encoder = AutoModel.from_config(config.encoder) if decoder is None: from ..auto.modeling_auto import AutoModelForCausalLM decoder = AutoModelForCausalLM.from_config(config.decoder) self.encoder = encoder self.decoder = decoder if self.encoder.config.to_dict() != self.config.encoder.to_dict(): logger.warning( f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" f" {self.config.encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.encoder.config = self.config.encoder self.decoder.config = self.config.decoder # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size) if self.encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" ) decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys()) if "encoder_hidden_states" not in decoder_signature: raise ValueError( "The selected decoder is not prepared for the encoder hidden states to be passed. Please see the " "following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350" ) # tie encoder, decoder weights if config set accordingly self.tie_weights() def tie_weights(self): # tie encoder & decoder if needed if self.config.tie_encoder_decoder: # tie encoder and decoder base model decoder_base_model_prefix = self.decoder.base_model_prefix self._tie_encoder_decoder_weights( self.encoder, self.decoder._modules[decoder_base_model_prefix], self.decoder.base_model_prefix ) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Example: ```python >>> from transformers import EncoderDecoderModel >>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16") ```""" from_tf = kwargs.pop("from_tf", False) if from_tf: from transformers import TFEncoderDecoderModel # a workaround to load from tensorflow checkpoint # Using `_tf_model` won't work, because the weight names in the encoder/decoder of `_tf_model` get # extended before saving those components. For example, The name of `_tf_model.encoder.vit` is # `[top model name]/encoder/vit`, but the name of `tf_model.encoder.vit` is `[top model name]/vit`. The # [top model name] is handled (stripped) by the conversion method, and the former case gets extra `encoder`, # which should not occur when we want to save the components alone. # There was a (very) ugly potential fix, which wasn't integrated to `transformers`: see # https://github.com/huggingface/transformers/pull/13222/commits/dbb3c9de76eee235791d2064094654637c99f36d#r697304245 # (the change in `src/transformers/modeling_tf_utils.py`) _tf_model = TFEncoderDecoderModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) config = _tf_model.config # Using `tf_model` instead encoder = _tf_model.encoder.__class__(_tf_model.config.encoder) decoder = _tf_model.decoder.__class__(_tf_model.config.decoder) # Make sure models are built encoder(encoder.dummy_inputs) decoder(decoder.dummy_inputs) # Get the variable correspondence between `_tf_model` and `encoder` and `decoder` encoder_variables = {} for v in encoder.trainable_variables + encoder.non_trainable_variables: encoder_variables["/".join(v.name.split("/")[1:])] = v decoder_variables = {} for v in decoder.trainable_variables + decoder.non_trainable_variables: decoder_variables["/".join(v.name.split("/")[1:])] = v _encoder_variables = {} for v in _tf_model.encoder.trainable_variables + _tf_model.encoder.non_trainable_variables: _encoder_variables["/".join(v.name.split("/")[2:])] = v _decoder_variables = {} for v in _tf_model.decoder.trainable_variables + _tf_model.decoder.non_trainable_variables: _decoder_variables["/".join(v.name.split("/")[2:])] = v # assign weight values to `encoder` and `decoder` from `_tf_model` for name, v in encoder_variables.items(): v.assign(_encoder_variables[name]) for name, v in decoder_variables.items(): v.assign(_decoder_variables[name]) tf_model = TFEncoderDecoderModel(encoder=encoder, decoder=decoder) # Deal with `enc_to_dec_proj` if hasattr(_tf_model, "enc_to_dec_proj"): tf_model(tf_model.dummy_inputs) tf_model.enc_to_dec_proj.kernel.assign(_tf_model.enc_to_dec_proj.kernel) tf_model.enc_to_dec_proj.bias.assign(_tf_model.enc_to_dec_proj.bias) with tempfile.TemporaryDirectory() as tmpdirname: encoder_dir = os.path.join(tmpdirname, "encoder") decoder_dir = os.path.join(tmpdirname, "decoder") tf_model.encoder.save_pretrained(encoder_dir) tf_model.decoder.save_pretrained(decoder_dir) if hasattr(tf_model, "enc_to_dec_proj"): enc_to_dec_proj_weight = torch.transpose( torch.from_numpy(tf_model.enc_to_dec_proj.kernel.numpy()), 1, 0 ) enc_to_dec_proj_bias = torch.from_numpy(tf_model.enc_to_dec_proj.bias.numpy()) del _tf_model del tf_model gc.collect() model = EncoderDecoderModel.from_encoder_decoder_pretrained( encoder_dir, decoder_dir, encoder_from_tf=True, decoder_from_tf=True ) # This is only for copying some specific attributes of this particular model. model.config = config if hasattr(model, "enc_to_dec_proj"): model.enc_to_dec_proj.weight.data = enc_to_dec_proj_weight.contiguous() model.enc_to_dec_proj.bias.data = enc_to_dec_proj_bias.contiguous() return model # At the moment fast initialization is not supported for composite models if kwargs.get("_fast_init", False): logger.warning( "Fast initialization is currently not supported for EncoderDecoderModel. " "Falling back to slow initialization..." ) kwargs["_fast_init"] = False return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> PreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with `model.train()`. Params: encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args (remaining positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import EncoderDecoderModel >>> # initialize a bert2bert from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased") >>> # saving model after fine-tuning >>> model.save_pretrained("./bert2bert") >>> # load fine-tuned model >>> model = EncoderDecoderModel.from_pretrained("./bert2bert") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config, kwargs_encoder = AutoConfig.from_pretrained( encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config, kwargs_decoder = AutoConfig.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True ) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) return cls(encoder=encoder, decoder=decoder, config=config) @add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, Seq2SeqLMOutput]: r""" Returns: Examples: ```python >>> from transformers import EncoderDecoderModel, BertTokenizer >>> import torch >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained( ... "google-bert/bert-base-uncased", "google-bert/bert-base-uncased" ... ) # initialize Bert2Bert from pre-trained checkpoints >>> # training >>> model.config.decoder_start_token_id = tokenizer.cls_token_id >>> model.config.pad_token_id = tokenizer.pad_token_id >>> model.config.vocab_size = model.config.decoder.vocab_size >>> input_ids = tokenizer("This is a really long text", return_tensors="pt").input_ids >>> labels = tokenizer("This is the corresponding summary", return_tensors="pt").input_ids >>> outputs = model(input_ids=input_ids, labels=labels) >>> loss, logits = outputs.loss, outputs.logits >>> # save and load from pretrained >>> model.save_pretrained("bert2bert") >>> model = EncoderDecoderModel.from_pretrained("bert2bert") >>> # generation >>> generated = model.generate(input_ids) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs_encoder, ) elif isinstance(encoder_outputs, tuple): encoder_outputs = BaseModelOutput(*encoder_outputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.new_tensor(decoder_input_ids != self.config.pad_token_id) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, past_key_values=past_key_values, return_dict=return_dict, **kwargs_decoder, ) # Compute loss independent from decoder (as some shift the logits inside them) loss = None if labels is not None: warnings.warn(DEPRECATION_WARNING, FutureWarning) logits = decoder_outputs.logits if return_dict else decoder_outputs[0] loss_fct = CrossEntropyLoss() loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.view(-1)) if not return_dict: if loss is not None: return (loss,) + decoder_outputs + encoder_outputs else: return decoder_outputs + encoder_outputs return Seq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None input_dict = { "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_input_ids": decoder_inputs["input_ids"], "encoder_outputs": encoder_outputs, "past_key_values": decoder_inputs["past_key_values"], "use_cache": use_cache, } return input_dict def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the" " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" " model.decoder.resize_token_embeddings(...))" ) def _reorder_cache(self, past_key_values, beam_idx): # apply decoder cache reordering here return self.decoder._reorder_cache(past_key_values, beam_idx)
transformers/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py/0
{ "file_path": "transformers/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py", "repo_id": "transformers", "token_count": 14654 }
84
from .chunk_utils import chunk_layer from .data_transforms import make_atom14_masks from .feats import atom14_to_atom37, frames_and_literature_positions_to_atom14_pos, torsion_angles_to_frames from .loss import compute_predicted_aligned_error, compute_tm from .protein import Protein as OFProtein from .protein import to_pdb from .rigid_utils import Rigid, Rotation from .tensor_utils import dict_multimap, flatten_final_dims, permute_final_dims
transformers/src/transformers/models/esm/openfold_utils/__init__.py/0
{ "file_path": "transformers/src/transformers/models/esm/openfold_utils/__init__.py", "repo_id": "transformers", "token_count": 144 }
85
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert FastSpeech2Conformer checkpoint.""" import argparse import json import re from pathlib import Path from tempfile import TemporaryDirectory import torch import yaml from transformers import ( FastSpeech2ConformerConfig, FastSpeech2ConformerModel, FastSpeech2ConformerTokenizer, logging, ) logging.set_verbosity_info() logger = logging.get_logger("transformers.models.FastSpeech2Conformer") CONFIG_MAPPING = { "adim": "hidden_size", "aheads": "num_attention_heads", "conformer_dec_kernel_size": "decoder_kernel_size", "conformer_enc_kernel_size": "encoder_kernel_size", "decoder_normalize_before": "decoder_normalize_before", "dlayers": "decoder_layers", "dunits": "decoder_linear_units", "duration_predictor_chans": "duration_predictor_channels", "duration_predictor_kernel_size": "duration_predictor_kernel_size", "duration_predictor_layers": "duration_predictor_layers", "elayers": "encoder_layers", "encoder_normalize_before": "encoder_normalize_before", "energy_embed_dropout": "energy_embed_dropout", "energy_embed_kernel_size": "energy_embed_kernel_size", "energy_predictor_chans": "energy_predictor_channels", "energy_predictor_dropout": "energy_predictor_dropout", "energy_predictor_kernel_size": "energy_predictor_kernel_size", "energy_predictor_layers": "energy_predictor_layers", "eunits": "encoder_linear_units", "pitch_embed_dropout": "pitch_embed_dropout", "pitch_embed_kernel_size": "pitch_embed_kernel_size", "pitch_predictor_chans": "pitch_predictor_channels", "pitch_predictor_dropout": "pitch_predictor_dropout", "pitch_predictor_kernel_size": "pitch_predictor_kernel_size", "pitch_predictor_layers": "pitch_predictor_layers", "positionwise_conv_kernel_size": "positionwise_conv_kernel_size", "postnet_chans": "speech_decoder_postnet_units", "postnet_filts": "speech_decoder_postnet_kernel", "postnet_layers": "speech_decoder_postnet_layers", "reduction_factor": "reduction_factor", "stop_gradient_from_energy_predictor": "stop_gradient_from_energy_predictor", "stop_gradient_from_pitch_predictor": "stop_gradient_from_pitch_predictor", "transformer_dec_attn_dropout_rate": "decoder_attention_dropout_rate", "transformer_dec_dropout_rate": "decoder_dropout_rate", "transformer_dec_positional_dropout_rate": "decoder_positional_dropout_rate", "transformer_enc_attn_dropout_rate": "encoder_attention_dropout_rate", "transformer_enc_dropout_rate": "encoder_dropout_rate", "transformer_enc_positional_dropout_rate": "encoder_positional_dropout_rate", "use_cnn_in_conformer": "use_cnn_in_conformer", "use_macaron_style_in_conformer": "use_macaron_style_in_conformer", "use_masking": "use_masking", "use_weighted_masking": "use_weighted_masking", "idim": "input_dim", "odim": "num_mel_bins", "spk_embed_dim": "speaker_embed_dim", "langs": "num_languages", "spks": "num_speakers", } def remap_model_yaml_config(yaml_config_path): with Path(yaml_config_path).open("r", encoding="utf-8") as f: args = yaml.safe_load(f) args = argparse.Namespace(**args) remapped_config = {} model_params = args.tts_conf["text2mel_params"] # espnet_config_key -> hf_config_key, any keys not included are ignored for espnet_config_key, hf_config_key in CONFIG_MAPPING.items(): if espnet_config_key in model_params: remapped_config[hf_config_key] = model_params[espnet_config_key] return remapped_config, args.g2p, args.token_list def convert_espnet_state_dict_to_hf(state_dict): new_state_dict = {} for key in state_dict: if "tts.generator.text2mel." in key: new_key = key.replace("tts.generator.text2mel.", "") if "postnet" in key: new_key = new_key.replace("postnet.postnet", "speech_decoder_postnet.layers") new_key = new_key.replace(".0.weight", ".conv.weight") new_key = new_key.replace(".1.weight", ".batch_norm.weight") new_key = new_key.replace(".1.bias", ".batch_norm.bias") new_key = new_key.replace(".1.running_mean", ".batch_norm.running_mean") new_key = new_key.replace(".1.running_var", ".batch_norm.running_var") new_key = new_key.replace(".1.num_batches_tracked", ".batch_norm.num_batches_tracked") if "feat_out" in key: if "weight" in key: new_key = "speech_decoder_postnet.feat_out.weight" if "bias" in key: new_key = "speech_decoder_postnet.feat_out.bias" if "encoder.embed.0.weight" in key: new_key = new_key.replace("0.", "") if "w_1" in key: new_key = new_key.replace("w_1", "conv1") if "w_2" in key: new_key = new_key.replace("w_2", "conv2") if "predictor.conv" in key: new_key = new_key.replace(".conv", ".conv_layers") pattern = r"(\d)\.(\d)" replacement = ( r"\1.conv" if ("2.weight" not in new_key) and ("2.bias" not in new_key) else r"\1.layer_norm" ) new_key = re.sub(pattern, replacement, new_key) if "pitch_embed" in key or "energy_embed" in key: new_key = new_key.replace("0", "conv") if "encoders" in key: new_key = new_key.replace("encoders", "conformer_layers") new_key = new_key.replace("norm_final", "final_layer_norm") new_key = new_key.replace("norm_mha", "self_attn_layer_norm") new_key = new_key.replace("norm_ff_macaron", "ff_macaron_layer_norm") new_key = new_key.replace("norm_ff", "ff_layer_norm") new_key = new_key.replace("norm_conv", "conv_layer_norm") if "lid_emb" in key: new_key = new_key.replace("lid_emb", "language_id_embedding") if "sid_emb" in key: new_key = new_key.replace("sid_emb", "speaker_id_embedding") new_state_dict[new_key] = state_dict[key] return new_state_dict @torch.no_grad() def convert_FastSpeech2ConformerModel_checkpoint( checkpoint_path, yaml_config_path, pytorch_dump_folder_path, repo_id=None, ): model_params, tokenizer_name, vocab = remap_model_yaml_config(yaml_config_path) config = FastSpeech2ConformerConfig(**model_params) # Prepare the model model = FastSpeech2ConformerModel(config) espnet_checkpoint = torch.load(checkpoint_path) hf_compatible_state_dict = convert_espnet_state_dict_to_hf(espnet_checkpoint) model.load_state_dict(hf_compatible_state_dict) model.save_pretrained(pytorch_dump_folder_path) # Prepare the tokenizer with TemporaryDirectory() as tempdir: vocab = {token: id for id, token in enumerate(vocab)} vocab_file = Path(tempdir) / "vocab.json" with open(vocab_file, "w") as f: json.dump(vocab, f) should_strip_spaces = "no_space" in tokenizer_name tokenizer = FastSpeech2ConformerTokenizer(str(vocab_file), should_strip_spaces=should_strip_spaces) tokenizer.save_pretrained(pytorch_dump_folder_path) if repo_id: print("Pushing to the hub...") model.push_to_hub(repo_id) tokenizer.push_to_hub(repo_id) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument( "--yaml_config_path", required=True, default=None, type=str, help="Path to config.yaml of model to convert" ) parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) args = parser.parse_args() convert_FastSpeech2ConformerModel_checkpoint( args.checkpoint_path, args.yaml_config_path, args.pytorch_dump_folder_path, args.push_to_hub, )
transformers/src/transformers/models/fastspeech2_conformer/convert_fastspeech2_conformer_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/fastspeech2_conformer/convert_fastspeech2_conformer_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 3863 }
86
# coding=utf-8 # Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch FLAVA model.""" import collections import math from collections import OrderedDict from dataclasses import dataclass from typing import Any, Dict, List, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_flava import ( FlavaConfig, FlavaImageCodebookConfig, FlavaImageConfig, FlavaMultimodalConfig, FlavaTextConfig, ) logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/flava-full" # Codebook docstring _CHECKPOINT_FOR_CODEBOOK_DOC = "facebook/flava-image-codebook" _CONFIG_CLASS_FOR_IMAGE_MODEL_DOC = "FlavaImageConfig" _CONFIG_CLASS_FOR_TEXT_MODEL_DOC = "FlavaTextConfig" _CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC = "FlavaMultimodalConfig" _EXPECTED_IMAGE_OUTPUT_SHAPE = [1, 197, 768] FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/flava-full", # See all flava models at https://huggingface.co/models?filter=flava ] FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST = ["facebook/flava-image-codebook"] LOGIT_SCALE_CLAMP_MIN = 0 LOGIT_SCALE_CLAMP_MAX = 4.6052 FlavaPossibleConfigs = Union[FlavaTextConfig, FlavaImageConfig, FlavaMultimodalConfig] @dataclass class FlavaModelOutput(ModelOutput): """ Output from FlavaModel containing embeddings and outputs from individual encoders. Note that `image_embeddings` and `text_embeddigns` returned are similar to pooled output returned from a transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and `text_projection` layers on `image_embeddings` and `text_embeddings` respectively. Args: image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present): The image embeddings which are basically the pooled output of [`FlavaImageModel`]. image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present): The output of the [`FlavaImageModel`]. text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present): The text embeddings which are basically the pooled output of [`FlavaTextModel`]. text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present): The output of the [`FlavaTextModel`]. multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`): The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`]. multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`): The output of the [`FlavaMultimodalModel`]. """ image_embeddings: Optional[torch.FloatTensor] = None image_output: Optional[BaseModelOutputWithPooling] = None text_embeddings: Optional[torch.FloatTensor] = None text_output: Optional[BaseModelOutputWithPooling] = None multimodal_embeddings: Optional[torch.FloatTensor] = None multimodal_output: Optional[BaseModelOutputWithPooling] = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_output", "image_output", "multimodal_output"] else getattr(self, k).to_tuple() for k in self.keys() ) @dataclass class FlavaLosses(ModelOutput): """Class representing pretraining losses from FLAVA model Args: mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.: Masked Image Modeling loss as used in BeIT calculated only for unimodal image data. mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.: Masked Language Modeling loss as used in BERT calculated only for unimodal text data. itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.: Image Text Matching (ITM) loss calculated for paired image-text data. Note that ITM loss is calculated on masked pairs in FLAVA. global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.: Contrastive loss for image-text similarity similar to CLIP but calculated globally for paired image-text data. This is calculated on unmasked images and texts. mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.: Masked Multimodal Modeling loss's image component calculated on paired image-text data. mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.: Masked Multimodal Modeling loss's text component calculated on paired image-text data. """ mim: Optional[torch.FloatTensor] = None mlm: Optional[torch.FloatTensor] = None itm: Optional[torch.FloatTensor] = None global_contrastive: Optional[torch.FloatTensor] = None mmm_image: Optional[torch.FloatTensor] = None mmm_text: Optional[torch.FloatTensor] = None def all_none(self) -> bool: all_none = True for v in self.values(): if v is not None: all_none = False break return all_none @dataclass class FlavaForPreTrainingOutput(ModelOutput): """ Output from FlavaForPreTraining containing embeddings, and outputs from individual encoders. Note that `image_embeddings` and `text_embeddings` returned are similar to pooled output returned from a transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and `text_projection` layers on `image_embeddings` and `text_embeddings` respectively. Args: loss (`torch.FloatTensor`, *optional*, returned when `return_loss` is True): Total loss calculated for this model. loss_info (`FlavaLosses`): Detailed info for FLAVA Pretraining losses. Check `FlavaLosses` class description for the information on the keys. image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present): The image embeddings which are basically the pooled output of [`FlavaImageModel`]. image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present): The output of the [`FlavaImageModel`]. text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present): The text embeddings which are basically the pooled output of [`FlavaTextModel`]. text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present): The output of the [`FlavaTextModel`]. multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`): The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`]. multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`): The output of the [`FlavaMultimodalModel`]. image_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present): The image embeddings which are basically the pooled output of [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images. image_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present): The output of the [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images. text_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids_masked` are present): The text embeddings which are basically the pooled output of [`FlavaTextModel`]. text_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` are present): The output of the [`FlavaTextModel`]. multimodal_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present): The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`]. multimodal_masked_output (`BaseModelOutputWithPooling`, returned when `input_ids_masked` and `pixel_values` are present): The output of the [`FlavaMultimodalModel`]. mim_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape `(total_masked_patches, image_vocab_size)` , *optional*, returned when `pixel_values` are present and `input_ids_masked` are not): The logits for MIM unimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is returned when `bool_masked_pos` has some of the patches masked. mlm_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(total_masked_seq_length, text_vocab_size)`, *optional*, returned when `input_ids_masked` are present and `pixel_values` are not): The logits for MLM unimodal loss. The flattened output is returned when `input_ids_masked` has some of the tokens masked. itm_logits (`torch.FloatTensor` of shape `(batch_size, 2)`, *optional*, returned when `input_ids_masked` and `pixel_values` are present): The logits for ITM loss. Note that ITM loss is calculated on masked pairs in FLAVA. mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present): The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is returned when `bool_masked_pos` has some of the patches masked. mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present): The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has some of the tokens masked. contrastive_logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeddings` and `text_embeddings` but passed through FLAVA's `image_projection` and `text_projection` layers respectively. This represents the image-text similarity scores. This is calculated on unmasked images and texts. contrastive_logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeddings` and `image_embeddings` but passed through FLAVA's `text_projection` and `image_projection` layers respectively. This is calculated on unmasked images and texts. """ loss: Optional[torch.FloatTensor] = None loss_info: FlavaLosses = None image_embeddings: Optional[torch.FloatTensor] = None image_output: Optional[BaseModelOutputWithPooling] = None text_embeddings: Optional[torch.FloatTensor] = None text_output: Optional[BaseModelOutputWithPooling] = None multimodal_embeddings: Optional[torch.FloatTensor] = None multimodal_output: Optional[BaseModelOutputWithPooling] = None image_masked_embeddings: Optional[torch.FloatTensor] = None image_masked_output: Optional[BaseModelOutputWithPooling] = None text_masked_embeddings: Optional[torch.FloatTensor] = None text_masked_output: Optional[BaseModelOutputWithPooling] = None multimodal_masked_embeddings: Optional[torch.FloatTensor] = None multimodal_masked_output: Optional[BaseModelOutputWithPooling] = None mim_logits: Optional[torch.FloatTensor] = None mlm_logits: Optional[torch.FloatTensor] = None itm_logits: Optional[torch.FloatTensor] = None contrastive_logits_per_image: Optional[torch.FloatTensor] = None contrastive_logits_per_text: Optional[torch.FloatTensor] = None mmm_image_logits: Optional[torch.FloatTensor] = None mmm_text_logits: Optional[torch.FloatTensor] = None def to_tuple(self) -> Tuple[Any]: transformer_outputs = [ "text_output", "image_output", "multimodal_output", "text_masked_output", "image_masked_output", "multimodal_masked_output", ] return tuple(self[k] if k not in transformer_outputs else getattr(self, k).to_tuple() for k in self.keys()) # Based on timm implementation, which can be found here: # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py class FlavaImageEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: FlavaImageConfig, use_mask_token: bool = False) -> None: super().__init__() use_mask_token = use_mask_token or config.mask_token self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None self.patch_embeddings = PatchEmbeddings( image_size=config.image_size, patch_size=config.patch_size, num_channels=config.num_channels, embed_dim=config.hidden_size, ) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/image_transformer.py#L174 """ npatch = embeddings.shape[1] - 1 num_pos = self.position_embeddings.shape[1] - 1 if npatch == num_pos and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, 0] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] num_h_patches = height // self.config.patch_size num_w_patches = width // self.config.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 num_h_patches, num_w_patches = num_h_patches + 0.1, num_w_patches + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(num_pos)), int(math.sqrt(num_pos)), dim).permute(0, 3, 1, 2), scale_factor=(num_h_patches / math.sqrt(num_pos), num_w_patches / math.sqrt(num_pos)), mode="bicubic", align_corners=False, ) if int(num_h_patches) != patch_pos_embed.shape[-2] or int(num_w_patches) != patch_pos_embed.shape[-1]: raise ValueError( f"Number of patches for images ({int(num_h_patches), int(num_w_patches)}) don't match the " f"shape of position embedding ({patch_pos_embed.shape[-2], patch_pos_embed.shape[-1]})" ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) def forward( self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: bool = False, ) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) batch_size, seq_len, _ = embeddings.size() if bool_masked_pos is not None: mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) # B X H X W = B X HW if bool_masked_pos.dim() == 3: bool_masked_pos = bool_masked_pos.view(bool_masked_pos.size(0), -1) # replace the masked visual tokens by mask_tokens mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask # add the [CLS] token to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings # Based on timm implementation, which can be found here: # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py class PatchEmbeddings(nn.Module): """ Image to Patch Embedding. """ def __init__( self, image_size: int = 224, patch_size: Union[int, Tuple[int, int]] = 16, num_channels: int = 3, embed_dim: int = 768, ): super().__init__() if not isinstance(image_size, collections.abc.Iterable): image_size = (image_size, image_size) if not isinstance(patch_size, collections.abc.Iterable): patch_size = (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) x = self.projection(pixel_values).flatten(2).transpose(1, 2) return x class FlavaTextEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, ): input_shape = input_ids.size() seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class FlavaSelfAttention(nn.Module): def __init__(self, config: FlavaPossibleConfigs) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class FlavaSelfOutput(nn.Module): """ The residual connection is defined in FlavaLayer (same as ViTLayer) instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: FlavaPossibleConfigs) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class FlavaAttention(nn.Module): def __init__(self, config: FlavaPossibleConfigs) -> None: super().__init__() self.attention = FlavaSelfAttention(config) self.output = FlavaSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention( hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class FlavaIntermediate(nn.Module): def __init__(self, config: FlavaPossibleConfigs) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act # Copied from transformers.models.vit.modeling_vit.ViTIntermediate.forward def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class FlavaOutput(nn.Module): def __init__(self, config: FlavaPossibleConfigs) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) # Copied from transformers.models.vit.modeling_vit.ViTOutput.forward def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class FlavaLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: FlavaPossibleConfigs) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = FlavaAttention(config) self.intermediate = FlavaIntermediate(config) self.output = FlavaOutput(config) # TODO: Check fp32 layer norm possiblity self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in ViT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs class FlavaEncoder(nn.Module): def __init__(self, config: FlavaConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([FlavaLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions ) class FlavaPooler(nn.Module): def __init__(self, config: FlavaPossibleConfigs): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output FLAVA_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`{config}`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FLAVA_INPUTS_DOCSTRING_COMMON = r""" attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ FLAVA_IMAGE_INPUTS_DOCSTRING_BASE = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`FlavaImageProcessor.__call__`] for details. bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). interpolate_pos_encoding (`bool`, *optional*): Whether to interpolate the pre-trained position encodings. """ FLAVA_IMAGE_INPUTS_DOCSTRING = FLAVA_IMAGE_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON FLAVA_TEXT_INPUTS_DOCSTRING_BASE = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) """ FLAVA_TEXT_INPUTS_DOCSTRING = FLAVA_TEXT_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON FLAVA_MULTIMODAL_INPUTS_DOCSTRING = ( r""" Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, image_num_patches + text_seq_len, hidden_size)`): The concatenated hidden states of unimodal encoders. """ + FLAVA_INPUTS_DOCSTRING_COMMON ) FLAVA_MODEL_INPUTS_DOCSTRING_BASE = r""" Args: skip_multimodal_encoder (*bool*, *optional*): Skip any calculations for multimodal encoder. Useful if multimodal encoding is not going to be used. """ FLAVA_MODEL_INPUTS_DOCSTRING = ( FLAVA_IMAGE_INPUTS_DOCSTRING_BASE + FLAVA_TEXT_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON + FLAVA_MODEL_INPUTS_DOCSTRING_BASE ) FLAVA_PRETRAINING_INPUTS_DOCSTRING = ( r""" Args: input_ids_masked (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. These ones are the masked version of the original task to be used with MLM. Indices can be obtained using [`AutoTokenizer`] along with [`DataCollatorForMaskedLanguageModeling`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) """ + FLAVA_TEXT_INPUTS_DOCSTRING_BASE + FLAVA_IMAGE_INPUTS_DOCSTRING_BASE + r""" image_attention_mask (`torch.FloatTensor` of shape `({1})`, *optional*): Mask to avoid performing attention on padding token indices specifically for images. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) skip_unmasked_multimodal_encoder (*bool*, *optional*): Skip any calculations for multimodal encoder for unmasked inputs. FLAVA pretraining doesn't need unmasked multimodal embeddings or outputs as of now. mlm_labels (`torch.LongTensor` of shape `(batch_size, text_seq_len)`, *optional*): Labels for computing the left-to-right language and multimodal masked modeling loss (next word prediction). Indices should be in `[-100, 0, ..., text_config.vocab_size - 1]` (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., text_config.vocab_size - 1]`. mim_labels (`torch.LongTensor` of shape `(batch_size, image_num_patches)`, *optional*): Labels for computing the image and multimodal masked modeling loss. Indices should be in `[-100, 0, ..., image_config.vocab_size - 1]`. Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., image_config.vocab_size - 1]`. If not passed, they are generated automatically using the image codebook assigned to the model. By default, it uses [`FlavaImageCodebook`]. See [`FlavaImageCodebook`] to understand how to generate mim_labels. itm_labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*): Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match. The pairs with 0 will be skipped for calculation of MMM and global contrastive losses as well. return_loss (`bool`, *optional*, default to None): Whether to return calculated loss or not. """ + FLAVA_INPUTS_DOCSTRING_COMMON ) FLAVA_PRETRAINING_START_DOCSTRING_EXTRA = r""" Parameters: image_codebook ([`nn.Module`]): If passed, the image codebook will be set to this. Otherwise. it will be initialized using the image_codebook_config defined in the config first as the first parameter. """ class FlavaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FlavaConfig base_model_prefix = "flava" supports_gradient_checkpointing = True def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @add_start_docstrings( "The bare FLAVA Image Model transformer outputting raw hidden-states without any specific head on top.", FLAVA_START_DOCSTRING.format(config="FlavaImageConfig"), ) class FlavaImageModel(FlavaPreTrainedModel): config_class = FlavaImageConfig # This override allows us to load FlavaImageModel from FlavaModel/FlavaForPreTraining checkpoints. base_model_prefix = "flava.image_model" main_input_name = "pixel_values" def __init__(self, config: FlavaImageConfig, add_pooling_layer: bool = True): super().__init__(config) self.config = config self.embeddings = FlavaImageEmbeddings(config) self.encoder = FlavaEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = FlavaPooler(config) if add_pooling_layer else None self.post_init() def get_input_embeddings(self) -> nn.Module: return self.embeddings.patch_embeddings def set_input_embeddings(self, value: nn.Module): self.embeddings.patch_embeddings = value def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC, modality="vision", expected_output=_EXPECTED_IMAGE_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: Optional[bool] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding ) encoder_outputs = self.encoder( embedding_output, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The bare FLAVA Text Model transformer outputting raw hidden-states without any specific head on top.", FLAVA_START_DOCSTRING.format(config="FlavaTextConfig"), ) class FlavaTextModel(FlavaPreTrainedModel): config_class = FlavaTextConfig # This override allows us to load FlavaTextModel from FlavaModel/FlavaForPreTraining checkpoints. base_model_prefix = "flava.text_model" def __init__(self, config: FlavaTextConfig, add_pooling_layer: bool = True): super().__init__(config) self.config = config self.embeddings = FlavaTextEmbeddings(config) self.encoder = FlavaEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = FlavaPooler(config) if add_pooling_layer else None self.post_init() def get_input_embeddings(self) -> PatchEmbeddings: return self.embeddings.word_embeddings def set_input_embeddings(self, value: nn.Module): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_CLASS_FOR_TEXT_MODEL_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = input_ids.size() if attention_mask is None: attention_mask = torch.ones(input_shape, device=input_ids.device) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, input_shape, input_ids.device ) embedding_output = self.embeddings( input_ids=input_ids, token_type_ids=token_type_ids, position_ids=position_ids, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The bare FLAVA Multimodal Model transformer outputting raw hidden-states without any specific head on top.", FLAVA_START_DOCSTRING.format(config="FlavaMultimodalConfig"), ) class FlavaMultimodalModel(FlavaPreTrainedModel): config_class = FlavaMultimodalConfig # This override allows us to load FlavaMultimodalModel from FlavaModel/FlavaForPreTraining checkpoints. base_model_prefix = "flava.multimodal_model" main_input_name = "hidden_states" def __init__(self, config: FlavaMultimodalConfig, add_pooling_layer=True): super().__init__(config) self.config = config self.use_cls_token = self.config.use_cls_token if self.use_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.encoder = FlavaEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = FlavaPooler(config) if add_pooling_layer else None self.post_init() def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward( FLAVA_MULTIMODAL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC, ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, seq_length, _ = hidden_states.size() if self.use_cls_token: cls_tokens = self.cls_token.expand(batch_size, -1, -1) hidden_states = torch.cat((cls_tokens, hidden_states), dim=1) seq_length += 1 if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length), device=hidden_states.device) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, (batch_size, seq_length), hidden_states.device ) encoder_outputs = self.encoder( hidden_states, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The bare FLAVA Model transformer outputting raw hidden-states without any specific head on top.", FLAVA_START_DOCSTRING.format(config="FlavaConfig"), ) class FlavaModel(FlavaPreTrainedModel): config_class = FlavaConfig def __init__(self, config: FlavaConfig): super().__init__(config) if not isinstance(config.text_config, FlavaTextConfig): raise ValueError( "config.text_config is expected to be of type FlavaTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.image_config, FlavaImageConfig): raise ValueError( "config.image_config is expected to be of type FlavaImageConfig but is of type" f" {type(config.image_config)}." ) if not isinstance(config.multimodal_config, FlavaMultimodalConfig): raise ValueError( "config.multimodal_config is expected to be of type FlavaMultimodalConfig but " + f"is of type {type(config.multimodal_config)}." ) text_config = config.text_config image_config = config.image_config multimodal_config = config.multimodal_config self.projection_dim = config.projection_dim self.text_hidden_size = text_config.hidden_size self.image_hidden_size = image_config.hidden_size self.mm_hidden_size = multimodal_config.hidden_size self.text_model = FlavaTextModel(text_config) self.image_model = FlavaImageModel(image_config) self.multimodal_model = FlavaMultimodalModel(multimodal_config) self.image_projection = nn.Linear(self.image_hidden_size, self.projection_dim) self.text_projection = nn.Linear(self.text_hidden_size, self.projection_dim) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) self.image_to_mm_projection = nn.Linear(self.image_hidden_size, self.mm_hidden_size) self.text_to_mm_projection = nn.Linear(self.text_hidden_size, self.mm_hidden_size) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length")) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`FlavaTextModel`]. Examples: ```python >>> from transformers import AutoProcessor, FlavaModel >>> model = FlavaModel.from_pretrained("{0}") >>> processor = AutoProcessor.from_pretrained("{0}") >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], max_length=77, padding="max_length", return_tensors="pt" ... ) >>> text_features = model.get_text_features(**inputs) ```""".format(_CHECKPOINT_FOR_DOC) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[0] # last_hidden_state text_features = self.text_projection(pooled_output) return text_features @add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches")) def get_image_features( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: Optional[bool] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`FlavaImageModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, FlavaModel >>> model = FlavaModel.from_pretrained("{0}") >>> processor = AutoProcessor.from_pretrained("{0}") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) ```""".format(_CHECKPOINT_FOR_DOC) image_outputs = self.image_model( pixel_values=pixel_values, bool_masked_pos=bool_masked_pos, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) pooled_output = image_outputs[0] # last_hidden_state image_features = self.image_projection(pooled_output) return image_features @add_start_docstrings_to_model_forward( FLAVA_MODEL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len") ) @replace_return_docstrings(output_type=FlavaModelOutput, config_class=FlavaConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, image_attention_mask: Optional[torch.Tensor] = None, skip_multimodal_encoder: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: bool = True, return_dict: Optional[bool] = None, ) -> Union[Tuple, FlavaOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, FlavaModel >>> model = FlavaModel.from_pretrained("facebook/flava-full") >>> processor = AutoProcessor.from_pretrained("facebook/flava-full") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=["a photo of a cat"], images=image, return_tensors="pt", padding=True) >>> outputs = model(**inputs) >>> image_embeddings = outputs.image_embeddings >>> text_embeddings = outputs.text_embeddings >>> multimodal_embeddings = outputs.multimodal_embeddings >>> outputs.image_embeddings.shape torch.Size([1, 197, 768]) >>> text_embeddings.shape torch.Size([1, 7, 768]) >>> multimodal_embeddings.shape torch.Size([1, 205, 768]) ``` """ return_dict = return_dict if return_dict is not None else self.config.return_dict if not output_hidden_states: raise ValueError("FLAVA model requires hidden states to work. Please set `output_hidden_states=True`") image_embeddings = None image_states = None image_mm_projection = None image_output = None if pixel_values is not None: image_output = self.image_model( pixel_values=pixel_values, bool_masked_pos=bool_masked_pos, attention_mask=image_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeddings, image_states = image_output[0], image_output[2] # Note that these states don't use final layernorm in the transformer model image_mm_projection = self.image_to_mm_projection(image_states[-1]) text_embeddings = None text_states = None text_mm_projection = None text_output = None if input_ids is not None: text_output = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_embeddings, text_states = text_output[0], text_output[2] # Note that these states don't use final layernorm in the transformer model text_mm_projection = self.text_to_mm_projection(text_states[-1]) multimodal_embeddings = None multimodal_output = None if image_mm_projection is not None and text_mm_projection is not None and not skip_multimodal_encoder: multimodal_input = torch.cat([image_mm_projection, text_mm_projection], dim=1) multimodal_output = self.multimodal_model(multimodal_input, return_dict=return_dict) multimodal_embeddings = multimodal_output[0] if not return_dict: return ( image_embeddings, image_output, text_embeddings, text_output, multimodal_embeddings, multimodal_output, ) return FlavaModelOutput( image_embeddings=image_embeddings, image_output=image_output, text_embeddings=text_embeddings, text_output=text_output, multimodal_embeddings=multimodal_embeddings, multimodal_output=multimodal_output, ) class FlavaImageCodebookResPath(nn.Module): def __init__(self, in_size: int, out_size: int, **kwargs): super().__init__() hid_size = out_size // 4 path = OrderedDict() path["relu_1"] = nn.ReLU() path["conv_1"] = nn.Conv2d(in_size, hid_size, kernel_size=3, padding=1) path["relu_2"] = nn.ReLU() path["conv_2"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1) path["relu_3"] = nn.ReLU() path["conv_3"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1) path["relu_4"] = nn.ReLU() path["conv_4"] = nn.Conv2d(hid_size, out_size, kernel_size=1, padding=0) self.path = nn.Sequential(path) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.path(x) class FlavaImageCodebookBlock(nn.Module): def __init__(self, in_size: int, out_size: int, num_layers: int, **kwargs): super().__init__() self.post_gain = 1 / (num_layers**2) if in_size != out_size: self.id_path = nn.Conv2d(in_size, out_size, kernel_size=1, padding=0) else: self.id_path = nn.Identity() self.res_path = FlavaImageCodebookResPath(in_size, out_size) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.id_path(x) + self.post_gain * self.res_path(x) class FlavaImageCodebookLayerGroup(nn.Module): def __init__(self, num_blocks: int, num_layers: int, in_size: int, out_size: int, use_pool: bool = True): super().__init__() blocks = OrderedDict() for i in range(num_blocks): if i == 0: blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(in_size, out_size, num_layers) else: blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(out_size, out_size, num_layers) if use_pool: blocks["pool"] = nn.MaxPool2d(kernel_size=2) self.group = nn.Sequential(blocks) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.group(x) # Inspired by DALLE Encoder in https://github.com/openai/DALL-E/blob/5be4b236bc3ade6943662354117a0e83752cc322/dall_e/encoder.py#L42 @add_start_docstrings( """ The FLAVA's image codebook model inspired from DALL-E's original encoder. Outputs raw hidden states and can be used to generate image tokens for an image based on DALL-E's vocab. Used to generate labels for MIM. Use `get_codebook_indices` to get image tokens for an image. """, FLAVA_START_DOCSTRING.format(config="FlavaImageCodebookConfig"), ) class FlavaImageCodebook(FlavaPreTrainedModel): base_model_prefix = "" config_class = FlavaImageCodebookConfig main_input_name = "pixel_values" supports_gradient_checkpointing = False def __init__( self, config: FlavaImageCodebookConfig, **kwargs: Any, ): super().__init__(config) self.config = config self.num_groups = config.num_groups self.input_channels = config.input_channels self.num_blocks_per_group = config.num_blocks_per_group self.hidden_size = config.hidden_size self.vocab_size = config.vocab_size num_layers = self.num_groups * self.num_blocks_per_group output_blocks = OrderedDict() output_blocks["relu"] = nn.ReLU() output_blocks["conv"] = nn.Conv2d(8 * self.hidden_size, self.vocab_size, kernel_size=1, padding=0) blocks = OrderedDict() blocks["input"] = nn.Conv2d(self.input_channels, 1 * self.hidden_size, kernel_size=7, padding=3) blocks["group_1"] = FlavaImageCodebookLayerGroup( self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 1 * self.hidden_size ) blocks["group_2"] = FlavaImageCodebookLayerGroup( self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 2 * self.hidden_size ) blocks["group_3"] = FlavaImageCodebookLayerGroup( self.num_blocks_per_group, num_layers, 2 * self.hidden_size, 4 * self.hidden_size ) blocks["group_4"] = FlavaImageCodebookLayerGroup( self.num_blocks_per_group, num_layers, 4 * self.hidden_size, 8 * self.hidden_size, use_pool=False ) blocks["output"] = nn.Sequential(output_blocks) self.blocks = nn.Sequential(blocks) self.post_init() if self.config.freeze: for param in self.parameters(): param.requires_grad = False def get_codebook_indices(self, pixel_values: torch.Tensor) -> torch.Tensor: """ Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing `return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoImageProcessor, FlavaImageCodebook >>> model = FlavaImageCodebook.from_pretrained("{0}") >>> image_processor = AutoImageProcessor.from_pretrained("{0}") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt") >>> inputs = dict(pixel_values=inputs.codebook_pixel_values) >>> outputs = model.get_codebook_indices(**inputs) ``` """.format(_CHECKPOINT_FOR_CODEBOOK_DOC) z_logits = self.blocks(pixel_values) return torch.argmax(z_logits, axis=1) def get_codebook_probs(self, pixel_values: torch.Tensor) -> torch.Tensor: z_logits = self.blocks(pixel_values) return nn.Softmax(dim=1)(z_logits) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: """ Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing `return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoImageProcessor, FlavaImageCodebook >>> model = FlavaImageCodebook.from_pretrained("{0}") >>> image_processor = AutoImageProcessor.from_pretrained("{0}") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt") >>> inputs = dict(pixel_values=inputs.codebook_pixel_values) >>> outputs = model(**inputs) >>> print(outputs.shape) (1, 196) ``` """.format(_CHECKPOINT_FOR_CODEBOOK_DOC) if len(pixel_values.shape) != 4: raise ValueError(f"input shape {pixel_values.shape} is not 4d") if pixel_values.shape[1] != self.input_channels: raise ValueError(f"input has {pixel_values.shape[1]} channels but model built for {self.input_channels}") return self.blocks(pixel_values) class FlavaPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class FlavaMaskedPredictionHead(nn.Module): def __init__(self, config, weight=None): super().__init__() self.config = config self.transform = FlavaPredictionHeadTransform(config) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) if weight is not None: self.decoder.weight = weight # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, x): x = self.transform(x) x = self.decoder(x) return x class FlavaITMHead(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pooler = FlavaPooler(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, x): x = self.pooler(x) x = self.seq_relationship(x) return x class FlavaGlobalContrastiveHead(nn.Module): def __init__(self, config): super().__init__() self.config = config self.global_backprop_contrastive = config.global_backprop_contrastive def forward(self, image_embeddings, text_embeddings, logit_scale): temperature = torch.exp(logit_scale) if not torch.distributed.is_available() or not torch.distributed.is_initialized(): labels = torch.arange(image_embeddings.size(0), device=image_embeddings.device) image_embeddings_all = [image_embeddings] text_embeddings_all = [text_embeddings] else: local_batch_size = image_embeddings.size(0) world_size = torch.distributed.get_world_size() if self.global_backprop_contrastive: # `torch.distributed.nn.functional.all_gather` does backprop on all active workers # whereas `torch.distributed.all_gather` does only backpropagates on the current worker. image_embeddings_all = torch.distributed.nn.functional.all_gather(image_embeddings) text_embeddings_all = torch.distributed.nn.functional.all_gather(text_embeddings) else: image_embeddings_all = [torch.zeros_like(text_embeddings) for _ in range(world_size)] text_embeddings_all = [torch.zeros_like(image_embeddings) for _ in range(world_size)] torch.distributed.all_gather(image_embeddings_all, image_embeddings) torch.distributed.all_gather(text_embeddings_all, text_embeddings) labels = local_batch_size * torch.distributed.get_rank() + torch.arange( local_batch_size, device=image_embeddings.device ) image_embeddings_all = torch.cat(image_embeddings_all) text_embeddings_all = torch.cat(text_embeddings_all) logits_per_image = torch.matmul(image_embeddings, text_embeddings_all.transpose(0, 1)) * temperature logits_per_text = torch.matmul(text_embeddings, image_embeddings_all.transpose(0, 1)) * temperature return logits_per_image, logits_per_text, labels @add_start_docstrings( """ The FLAVA model for pretraining which outputs losses, embeddings, logits and transformer outputs. """, FLAVA_START_DOCSTRING.format(config="FlavaConfig") + FLAVA_PRETRAINING_START_DOCSTRING_EXTRA, ) class FlavaForPreTraining(FlavaPreTrainedModel): # Those are linked to xxx.bias _tied_weights_keys = [ "mmm_text_head.decoder.bias", "mmm_image_head.decoder.bias", "mlm_head.decoder.bias", "mim_head.decoder.bias", ] def __init__(self, config: FlavaConfig, image_codebook: Optional[nn.Module] = None): super().__init__(config) self.flava = FlavaModel(config) self.image_codebook = image_codebook if self.image_codebook is None and config.init_codebook: self.image_codebook = FlavaImageCodebook(config.image_codebook_config) # Levarage text and image encoder configs to create the masked # head since it has the right vocab self.mim_head = FlavaMaskedPredictionHead(config.image_config) self.mlm_head = FlavaMaskedPredictionHead(config.text_config) self.itm_head = FlavaITMHead(config) self.mmm_image_head = FlavaMaskedPredictionHead(config.image_config) self.mmm_text_head = FlavaMaskedPredictionHead(config.text_config) self.global_contrastive_head = FlavaGlobalContrastiveHead(config) self.image_vocab_size = config.image_config.vocab_size self.text_vocab_size = config.text_config.vocab_size self.mlm_weight = config.mlm_weight self.mim_weight = config.mim_weight self.global_contrastive_weight = config.global_contrastive_weight self.ce_ignore_index = config.ce_ignore_index self.itm_weight = config.itm_weight self.mmm_image_weight = config.mmm_image_weight self.mmm_text_weight = config.mmm_text_weight self.skip_unmasked_multimodal_encoder = config.skip_unmasked_multimodal_encoder self.post_init() def _resize_to_2d(self, x: torch.Tensor): if x.dim() > 2: x = x.view(x.size(0), -1) return x @add_start_docstrings_to_model_forward( FLAVA_PRETRAINING_INPUTS_DOCSTRING.format("batch_size, text_seq_len", "batch_size, image_num_patches") ) @replace_return_docstrings(output_type=FlavaForPreTrainingOutput, config_class=FlavaConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, input_ids_masked: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, codebook_pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, image_attention_mask: Optional[torch.Tensor] = None, skip_unmasked_multimodal_encoder: bool = None, mlm_labels: Optional[torch.Tensor] = None, mim_labels: Optional[torch.Tensor] = None, itm_labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: bool = True, return_dict: Optional[bool] = None, return_loss: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], FlavaForPreTrainingOutput]: """ Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import FlavaForPreTraining, AutoProcessor >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> model = FlavaForPreTraining.from_pretrained("facebook/flava-full") >>> processor = AutoProcessor.from_pretrained("facebook/flava-full") >>> text = ["a photo of a cat"] >>> inputs = processor( ... images=[image], ... text=text, ... return_masks=True, ... return_codebook_pixels=True, ... padding=True, ... max_length=77, ... return_tensors="pt", ... ) >>> output = model(**inputs) ``` Return: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_loss = return_loss if return_loss is not None else self.config.return_loss skip_unmasked_multimodal_encoder = ( skip_unmasked_multimodal_encoder if skip_unmasked_multimodal_encoder is not None else self.skip_unmasked_multimodal_encoder ) if input_ids_masked is None and input_ids is not None: logger.warning( "`input_ids_masked` isn't passed which means MLM loss won't be calculated correctlySetting it to" " `input_ids` so that model can work. Please pass it if this is unintentional. This is usually OKAY if" " you are doing inference on unmasked text..." ) input_ids_masked = input_ids flava_output = self.flava( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, image_attention_mask=image_attention_mask, # Don't need unmasked multimodal embedding for anything so skip it # NOTE: ITM uses masked version skip_multimodal_encoder=skip_unmasked_multimodal_encoder, output_attentions=output_attentions, output_hidden_states=output_hidden_states, # Pass true to have deterministic outputs return_dict=True, ) flava_masked_output = self.flava( input_ids=input_ids_masked, pixel_values=pixel_values, attention_mask=attention_mask, token_type_ids=token_type_ids, image_attention_mask=image_attention_mask, bool_masked_pos=bool_masked_pos, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) pos_mask = None image_embeddings = flava_output.image_embeddings text_embeddings = flava_output.text_embeddings image_masked_embeddings = flava_masked_output.image_embeddings text_masked_embeddings = flava_masked_output.text_embeddings multimodal_masked_embeddings = flava_masked_output.multimodal_embeddings total_loss = mim_loss = mlm_loss = mmm_text_loss = mmm_image_loss = gc_loss = itm_loss = None mim_logits = mlm_logits = mmm_text_logits = mmm_image_logits = None itm_logits = logits_per_image = logits_per_text = None # Calculate mim_labels if necessary from the image_codebook if image_masked_embeddings is not None or multimodal_masked_embeddings is not None: if mim_labels is None and return_loss: if self.image_codebook is None: raise RuntimeError( "`return_loss` is set to True but the image codebook is not initialized and no `mim_labels` " " have been passed. Reinstantiate the model with `init_codebook` set to True or " "pass in your custom `mim_labels`" ) if codebook_pixel_values is None: raise ValueError( "`codebook_pixel_value` are required to generate `mim_labels` if loss is expected. " "Call `AutoProcessor` with `return_codebook_pixels` set to True" ) mim_labels = self.image_codebook.get_codebook_indices(codebook_pixel_values) # Unimodal MIM Loss # If multimodal embeddings are present, we will calculate MMM loss if self.mim_weight > 0 and image_masked_embeddings is not None and multimodal_masked_embeddings is None: sequence_for_image = image_masked_embeddings if mim_labels is not None: mim_labels = self._resize_to_2d(mim_labels) bool_masked_pos = self._resize_to_2d(bool_masked_pos) mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index sequence_for_image = sequence_for_image[:, -mim_labels.size(1) :, :] masked_tokens = mim_labels.ne(self.ce_ignore_index) mim_labels_filtered = mim_labels[masked_tokens] sequence_for_image = sequence_for_image[masked_tokens, :] mim_logits = self.mim_head(sequence_for_image) if return_loss: mim_loss = nn.functional.cross_entropy( mim_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1) ) mim_loss *= self.mim_weight else: mim_logits = self.mim_head(sequence_for_image) # Unimodal MLM Loss if self.mlm_weight > 0 and text_masked_embeddings is not None and multimodal_masked_embeddings is None: sequence_for_text = text_masked_embeddings if mlm_labels is not None: mlm_labels = self._resize_to_2d(mlm_labels) sequence_for_text = sequence_for_text[:, -mlm_labels.size(1) :, :] masked_tokens = mlm_labels.ne(self.ce_ignore_index) mlm_labels_filtered = mlm_labels[masked_tokens] sequence_for_text = sequence_for_text[masked_tokens, :] mlm_logits = self.mlm_head(sequence_for_text) if return_loss: mlm_loss = nn.functional.cross_entropy( mlm_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1) ) mlm_loss *= self.mlm_weight else: mlm_logits = self.mlm_head(sequence_for_text) # ITM Loss if self.itm_weight > 0 and multimodal_masked_embeddings is not None: itm_logits = self.itm_head(multimodal_masked_embeddings) if itm_labels is not None: pos_pairs = itm_labels.ne(0) pos_mask = torch.where(pos_pairs.any(), pos_pairs, pos_pairs.new([True])) if return_loss: itm_loss = nn.functional.cross_entropy(itm_logits, itm_labels) itm_loss *= self.itm_weight if multimodal_masked_embeddings is not None: multimodal_masked_embeddings = multimodal_masked_embeddings[pos_mask] if mlm_labels is not None: mlm_labels = mlm_labels[pos_mask] if mim_labels is not None: mim_labels = mim_labels[pos_mask] bool_masked_pos = bool_masked_pos[pos_mask] # MMM Image Loss if multimodal_masked_embeddings is not None and self.mmm_image_weight > 0: sequence_for_image = multimodal_masked_embeddings end_index = image_masked_embeddings.size(1) - 1 sequence_for_image = sequence_for_image[:, 2 : 2 + end_index, :] if mim_labels is not None: mim_labels = self._resize_to_2d(mim_labels) bool_masked_pos = self._resize_to_2d(bool_masked_pos) mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index masked_tokens = mim_labels.ne(self.ce_ignore_index) mim_labels_filtered = mim_labels[masked_tokens] sequence_for_image = sequence_for_image[masked_tokens, :] mmm_image_logits = self.mmm_image_head(sequence_for_image) if return_loss: mmm_image_loss = nn.functional.cross_entropy( mmm_image_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1) ) mmm_image_loss *= self.mmm_image_weight else: mmm_image_logits = self.mmm_image_head(sequence_for_image) # MMM Text Loss if multimodal_masked_embeddings is not None and self.mmm_text_weight > 0: sequence_for_text = multimodal_masked_embeddings sequence_for_text = sequence_for_text[:, -text_masked_embeddings.size(1) :, :] if mlm_labels is not None: mlm_labels = self._resize_to_2d(mlm_labels) masked_tokens = mlm_labels.ne(self.ce_ignore_index) mlm_labels_filtered = mlm_labels[masked_tokens] sequence_for_text = sequence_for_text[masked_tokens, :] mmm_text_logits = self.mmm_text_head(sequence_for_text) if return_loss: mmm_text_loss = nn.functional.cross_entropy( mmm_text_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1) ) mmm_text_loss *= self.mmm_text_weight else: mmm_text_logits = self.mmm_text_head(sequence_for_text) # Global Contrastive Loss if image_embeddings is not None and text_embeddings is not None and self.global_contrastive_weight > 0: text_embedding = self.flava.text_projection(text_embeddings[:, 0, :]) text_embedding = nn.functional.normalize(text_embedding, dim=-1) image_embedding = self.flava.image_projection(image_embeddings[:, 0, :]) image_embedding = nn.functional.normalize(image_embedding, dim=-1) self.flava.logit_scale.data.clamp_(LOGIT_SCALE_CLAMP_MIN, LOGIT_SCALE_CLAMP_MAX) logits_per_image, logits_per_text, gc_labels = self.global_contrastive_head( image_embedding, text_embedding, self.flava.logit_scale ) # Apply ITM negative mask if any if pos_mask is not None: logits_per_image = logits_per_image[pos_mask] logits_per_text = logits_per_text[pos_mask] gc_labels = gc_labels[pos_mask] if return_loss: gc_loss_image = nn.functional.cross_entropy(logits_per_image, gc_labels) gc_loss_text = nn.functional.cross_entropy(logits_per_text, gc_labels) gc_loss = (gc_loss_image + gc_loss_text) / 2 gc_loss *= self.global_contrastive_weight flava_losses = FlavaLosses( mim=mim_loss, mlm=mlm_loss, itm=itm_loss, global_contrastive=gc_loss, mmm_image=mmm_image_loss, mmm_text=mmm_text_loss, ) if return_loss and not flava_losses.all_none(): total_loss = sum(loss if loss is not None else 0 for loss in flava_losses.values()) if not return_dict: output = ( image_embeddings, flava_output.image_output.to_tuple() if flava_output.image_output is not None else None, text_embeddings, flava_output.text_output.to_tuple() if flava_output.text_output is not None else None, flava_output.multimodal_embeddings, flava_output.multimodal_output.to_tuple() if flava_output.multimodal_output is not None else None, image_masked_embeddings, flava_masked_output.image_output.to_tuple() if flava_masked_output.image_output is not None else None, text_masked_embeddings, flava_masked_output.text_output.to_tuple() if flava_masked_output.text_output is not None else None, multimodal_masked_embeddings, flava_masked_output.multimodal_output.to_tuple() if flava_masked_output.multimodal_output is not None else None, mim_logits, mlm_logits, itm_logits, logits_per_image, logits_per_image, mmm_image_logits, mmm_text_logits, ) if return_loss and not flava_losses.all_none(): output = ( total_loss, flava_losses, ) + output # Filter None as transformer by default won't handle it return tuple(x for x in output if x is None) return FlavaForPreTrainingOutput( loss=total_loss, loss_info=flava_losses, image_embeddings=image_embeddings, image_output=flava_output.image_output, text_embeddings=text_embeddings, text_output=flava_output.text_output, multimodal_embeddings=flava_output.multimodal_embeddings, multimodal_output=flava_output.multimodal_output, image_masked_embeddings=image_masked_embeddings, image_masked_output=flava_masked_output.image_output, text_masked_embeddings=text_masked_embeddings, text_masked_output=flava_masked_output.text_output, multimodal_masked_embeddings=multimodal_masked_embeddings, multimodal_masked_output=flava_masked_output.multimodal_output, mim_logits=mim_logits, mlm_logits=mlm_logits, itm_logits=itm_logits, contrastive_logits_per_image=logits_per_image, contrastive_logits_per_text=logits_per_text, mmm_image_logits=mmm_image_logits, mmm_text_logits=mmm_text_logits, )
transformers/src/transformers/models/flava/modeling_flava.py/0
{ "file_path": "transformers/src/transformers/models/flava/modeling_flava.py", "repo_id": "transformers", "token_count": 41498 }
87
# coding=utf-8 # Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for FSMT.""" import json import os import re import unicodedata from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "src_vocab_file": "vocab-src.json", "tgt_vocab_file": "vocab-tgt.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "src_vocab_file": { "stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/vocab-src.json" }, "tgt_vocab_file": { "stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/vocab-tgt.json" }, "merges_file": {"stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/merges.txt"}, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"stas/tiny-wmt19-en-de": 1024} PRETRAINED_INIT_CONFIGURATION = { "stas/tiny-wmt19-en-de": { "langs": ["en", "de"], "model_max_length": 1024, "special_tokens_map_file": None, "full_tokenizer_file": None, } } def get_pairs(word): """ Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length strings) """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def replace_unicode_punct(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl """ text = text.replace(",", ",") text = re.sub(r"。\s*", ". ", text) text = text.replace("、", ",") text = text.replace("”", '"') text = text.replace("“", '"') text = text.replace("∶", ":") text = text.replace(":", ":") text = text.replace("?", "?") text = text.replace("《", '"') text = text.replace("》", '"') text = text.replace(")", ")") text = text.replace("!", "!") text = text.replace("(", "(") text = text.replace(";", ";") text = text.replace("1", "1") text = text.replace("」", '"') text = text.replace("「", '"') text = text.replace("0", "0") text = text.replace("3", "3") text = text.replace("2", "2") text = text.replace("5", "5") text = text.replace("6", "6") text = text.replace("9", "9") text = text.replace("7", "7") text = text.replace("8", "8") text = text.replace("4", "4") text = re.sub(r".\s*", ". ", text) text = text.replace("~", "~") text = text.replace("’", "'") text = text.replace("…", "...") text = text.replace("━", "-") text = text.replace("〈", "<") text = text.replace("〉", ">") text = text.replace("【", "[") text = text.replace("】", "]") text = text.replace("%", "%") return text def remove_non_printing_char(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl """ output = [] for char in text: cat = unicodedata.category(char) if cat.startswith("C"): continue output.append(char) return "".join(output) # Porting notes: # this one is modeled after XLMTokenizer # # added: # - src_vocab_file, # - tgt_vocab_file, # - langs, class FSMTTokenizer(PreTrainedTokenizer): """ Construct an FAIRSEQ Transformer tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following: - Moses preprocessing and tokenization. - Normalizing all inputs text. - The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like "__classify__") to a vocabulary. - The argument `langs` defines a pair of languages. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: langs (`List[str]`, *optional*): A list of two languages to translate from and to, for instance `["en", "ru"]`. src_vocab_file (`str`, *optional*): File containing the vocabulary for the source language. tgt_vocab_file (`st`, *optional*): File containing the vocabulary for the target language. merges_file (`str`, *optional*): File containing the merges. do_lower_case (`bool`, *optional*, defaults to `False`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, langs=None, src_vocab_file=None, tgt_vocab_file=None, merges_file=None, do_lower_case=False, unk_token="<unk>", bos_token="<s>", sep_token="</s>", pad_token="<pad>", **kwargs, ): try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use XLMTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses self.src_vocab_file = src_vocab_file self.tgt_vocab_file = tgt_vocab_file self.merges_file = merges_file self.do_lower_case = do_lower_case # cache of sm.MosesPunctNormalizer instance self.cache_moses_punct_normalizer = {} # cache of sm.MosesTokenizer instance self.cache_moses_tokenizer = {} self.cache_moses_detokenizer = {} if langs and len(langs) == 2: self.src_lang, self.tgt_lang = langs else: raise ValueError( f"arg `langs` needs to be a list of 2 langs, e.g. ['en', 'ru'], but got {langs}. " "Usually that means that tokenizer can't find a mapping for the given model path " "in PRETRAINED_VOCAB_FILES_MAP, and other maps of this tokenizer." ) with open(src_vocab_file, encoding="utf-8") as src_vocab_handle: self.encoder = json.load(src_vocab_handle) with open(tgt_vocab_file, encoding="utf-8") as tgt_vocab_handle: tgt_vocab = json.load(tgt_vocab_handle) self.decoder = {v: k for k, v in tgt_vocab.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:2]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__( langs=langs, src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, do_lower_case=do_lower_case, unk_token=unk_token, bos_token=bos_token, sep_token=sep_token, pad_token=pad_token, **kwargs, ) # hack override def get_vocab(self) -> Dict[str, int]: return self.get_src_vocab() # hack override @property def vocab_size(self) -> int: return self.src_vocab_size def moses_punct_norm(self, text, lang): if lang not in self.cache_moses_punct_normalizer: punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang) self.cache_moses_punct_normalizer[lang] = punct_normalizer return self.cache_moses_punct_normalizer[lang].normalize(text) def moses_tokenize(self, text, lang): if lang not in self.cache_moses_tokenizer: moses_tokenizer = self.sm.MosesTokenizer(lang=lang) self.cache_moses_tokenizer[lang] = moses_tokenizer return self.cache_moses_tokenizer[lang].tokenize( text, aggressive_dash_splits=True, return_str=False, escape=True ) def moses_detokenize(self, tokens, lang): if lang not in self.cache_moses_detokenizer: moses_detokenizer = self.sm.MosesDetokenizer(lang=lang) self.cache_moses_detokenizer[lang] = moses_detokenizer return self.cache_moses_detokenizer[lang].detokenize(tokens) def moses_pipeline(self, text, lang): text = replace_unicode_punct(text) text = self.moses_punct_norm(text, lang) text = remove_non_printing_char(text) return text @property def src_vocab_size(self): return len(self.encoder) @property def tgt_vocab_size(self): return len(self.decoder) def get_src_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def get_tgt_vocab(self): return dict(self.decoder, **self.added_tokens_decoder) def bpe(self, token): word = tuple(token[:-1]) + (token[-1] + "</w>",) if token in self.cache: return self.cache[token] pairs = get_pairs(word) if not pairs: return token + "</w>" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) if word == "\n </w>": word = "\n</w>" self.cache[token] = word return word def _tokenize(self, text, lang="en", bypass_tokenizer=False): """ Tokenize a string given language code using Moses. Details of tokenization: - [sacremoses](https://github.com/alvations/sacremoses): port of Moses - Install with `pip install sacremoses` Args: - lang: ISO language code (default = 'en') (string). Languages should belong of the model supported languages. However, we don't enforce it. - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) (bool). If True, we only apply BPE. Returns: List of tokens. """ # ignore `lang` which is currently isn't explicitly passed in tokenization_utils.py and always results in lang=en # if lang != self.src_lang: # raise ValueError(f"Expected lang={self.src_lang}, but got {lang}") lang = self.src_lang if self.do_lower_case: text = text.lower() if bypass_tokenizer: text = text.split() else: text = self.moses_pipeline(text, lang=lang) text = self.moses_tokenize(text, lang=lang) split_tokens = [] for token in text: if token: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" # remove BPE tokens = [t.replace(" ", "").replace("</w>", " ") for t in tokens] tokens = "".join(tokens).split() # detokenize text = self.moses_detokenize(tokens, self.tgt_lang) return text def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A FAIRSEQ Transformer sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] # no bos used in fairseq if token_ids_1 is None: return token_ids_0 + sep return token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) # no bos used in fairseq if token_ids_1 is not None: return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ Transformer sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An FAIRSEQ_TRANSFORMER sequence pair mask has the following format: """ sep = [self.sep_token_id] # no bos used in fairseq if token_ids_1 is None: return len(token_ids_0 + sep) * [0] return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return src_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["src_vocab_file"] ) tgt_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["tgt_vocab_file"] ) merges_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(src_vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") with open(tgt_vocab_file, "w", encoding="utf-8") as f: tgt_vocab = {v: k for k, v in self.decoder.items()} f.write(json.dumps(tgt_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merges_file, "w", encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return src_vocab_file, tgt_vocab_file, merges_file def __getstate__(self): state = self.__dict__.copy() state["sm"] = None return state def __setstate__(self, d): self.__dict__ = d try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use XLMTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses
transformers/src/transformers/models/fsmt/tokenization_fsmt.py/0
{ "file_path": "transformers/src/transformers/models/fsmt/tokenization_fsmt.py", "repo_id": "transformers", "token_count": 9142 }
88
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import warnings import torch from accelerate import init_empty_weights from transformers import GemmaConfig, GemmaForCausalLM, GemmaTokenizer try: from transformers import GemmaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) GemmaTokenizerFast = None """ Sample usage: ``` python src/transformers/models/gemma/convert_gemma_weights_to_hf.py \ --input_dir /path/to/downloaded/gemma/weights --model_size 7B --output_dir /output/path ``` Thereafter, models can be loaded via: ```py from transformers import GemmaForCausalLM, GemmaTokenizerFast model = GemmaForCausalLM.from_pretrained("/output/path") tokenizer = GemmaTokenizerFast.from_pretrained("/output/path") ``` Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). """ gemma_2b_config = GemmaConfig( num_hidden_layers=18, num_attention_heads=8, num_key_value_heads=1, hidden_size=2048, intermediate_size=16384, ) gemma_7b_config = GemmaConfig() CONFIG_MAPPING = {"2B": gemma_2b_config, "7B": gemma_7b_config} LAYER_NAME_MAPPING = {"embedder.weight": "model.embed_tokens.weight"} def write_model(save_path, input_base_path, config, safe_serialization=True, push_to_hub=False): num_attn_heads = config.num_attention_heads hidden_size = config.hidden_size num_kv_heads = config.num_key_value_heads head_dim = config.head_dim print(f"Fetching all parameters from the checkpoint at '{input_base_path}'") model_state_dict = torch.load(input_base_path, map_location="cpu")["model_state_dict"] model_state_dict.pop("freqs_cis") state_dict = {} for k, v in model_state_dict.items(): if "qkv_proj" in k: if num_kv_heads == 1: v = v.reshape(num_attn_heads + num_kv_heads * 2, head_dim, hidden_size) q_proj = v[:num_attn_heads, ...] k_proj = v[num_attn_heads : num_attn_heads + num_kv_heads, ...].repeat(num_kv_heads, 1, 1) v_proj = v[-num_kv_heads:, ...].repeat(num_kv_heads, 1, 1) state_dict[k.replace("qkv_proj", "q_proj")] = q_proj.reshape( num_attn_heads * head_dim, hidden_size ).clone() state_dict[k.replace("qkv_proj", "k_proj")] = k_proj.reshape( num_kv_heads * head_dim, hidden_size ).clone() state_dict[k.replace("qkv_proj", "v_proj")] = v_proj[0].clone() else: q_proj, k_proj, v_proj = torch.split(v, v.shape[0] // 3, 0) state_dict[k.replace("qkv_proj", "q_proj")] = q_proj.reshape( num_attn_heads * head_dim, hidden_size ).clone() state_dict[k.replace("qkv_proj", "k_proj")] = k_proj.reshape( num_kv_heads * head_dim, hidden_size ).clone() state_dict[k.replace("qkv_proj", "v_proj")] = v_proj.clone() elif k == "embedder.weight": state_dict[LAYER_NAME_MAPPING[k]] = v state_dict["lm_head.weight"] = v else: state_dict[k] = v print("Loading the checkpoint in a Gemma model.") with init_empty_weights(): model = GemmaForCausalLM(config) model.load_state_dict(state_dict, assign=True, strict=False) model.config.torch_dtype = torch.float32 del model.config._name_or_path print("Saving in the Transformers format.") if push_to_hub: print(f"pushing the model to {save_path}") model.push_to_hub(save_path, safe_serialization=safe_serialization, private=True) else: model.save_pretrained(save_path, safe_serialization=safe_serialization) def write_tokenizer(input_tokenizer_path, save_path, push_to_hub=False): # Initialize the tokenizer based on the `spm` model tokenizer_class = GemmaTokenizer if GemmaTokenizerFast is None else GemmaTokenizerFast print(f"Saving a {tokenizer_class.__name__} to {save_path}.") tokenizer = tokenizer_class(input_tokenizer_path) if push_to_hub: tokenizer.push_to_hub(save_path) else: tokenizer.save_pretrained(save_path) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--input_checkpoint", help="Absolute path to the target Gemma weights.", required=True, ) parser.add_argument( "--tokenizer_checkpoint", help="Location of Gemma tokenizer model", ) parser.add_argument( "--model_size", default="7B", choices=["2B", "7B", "tokenizer_only"], help="'f' models correspond to the finetuned versions, and are specific to the Gemma2 official release. For more details on Gemma2, checkout the original repo: https://huggingface.co/google/gemma-7b", ) parser.add_argument( "--output_dir", default="google/gemma-7b", help="Location to write HF model and tokenizer", ) parser.add_argument( "--pickle_serialization", help="Whether or not to save using `safetensors`.", action="store_true", default=False, ) parser.add_argument( "--convert_tokenizer", help="Whether or not to convert the tokenizer as well.", action="store_true", default=False, ) parser.add_argument( "--push_to_hub", help="Whether or not to push the model to the hub at `output_dir` instead of saving it locally.", action="store_true", default=False, ) args = parser.parse_args() if args.convert_tokenizer: if args.tokenizer_checkpoint is None: raise ValueError("Path to the tokenizer is required when passing --convert_tokenizer") spm_path = os.path.join(args.tokenizer_checkpoint) write_tokenizer(spm_path, args.output_dir, args.push_to_hub) config = CONFIG_MAPPING[args.model_size] write_model( config=config, input_base_path=args.input_checkpoint, save_path=args.output_dir, safe_serialization=not args.pickle_serialization, push_to_hub=args.push_to_hub, ) if __name__ == "__main__": main()
transformers/src/transformers/models/gemma/convert_gemma_weights_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/gemma/convert_gemma_weights_to_hf.py", "repo_id": "transformers", "token_count": 2997 }
89
Here is how to convert a GPT2 model generated outside of `transformers` * [Megatron-LM](https://github.com/NVIDIA/Megatron-LM)-generated model: Use [convert_megatron_gpt2_checkpoint.py](../megatron_gpt2/convert_megatron_gpt2_checkpoint.py) * [big-science fork of Megatron-Deepspeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed/)-generated model: Use the instructions [here](https://github.com/bigscience-workshop/bigscience/tree/aa872e754106f6678e8a9dac8c6962404ba39a6d/train/tr1-13B-base#checkpoint-conversion-and-upload). This approach uses a set of scripts that require the use of this particular fork of Megatron-Deepspeed.
transformers/src/transformers/models/gpt2/CONVERSION.md/0
{ "file_path": "transformers/src/transformers/models/gpt2/CONVERSION.md", "repo_id": "transformers", "token_count": 216 }
90
# coding=utf-8 # Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch GPT-J model.""" import warnings from typing import Optional, Tuple, Union import torch import torch.fx import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_torch_fx_proxy, logging, ) from ...utils.model_parallel_utils import assert_device_map, get_device_map from .configuration_gptj import GPTJConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "hf-internal-testing/tiny-random-gptj" _REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B" _CONFIG_FOR_DOC = "GPTJConfig" GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = [ "EleutherAI/gpt-j-6B", # See all GPT-J models at https://huggingface.co/models?filter=gptj ] def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim)) sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.int64).float(), inv_freq).float() return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) @torch.fx.wrap def get_embed_positions(embed_positions, position_ids): return embed_positions.to(position_ids.device).repeat(position_ids.shape[0], 1, 1) def rotate_every_two(x: torch.Tensor) -> torch.Tensor: x1 = x[:, :, :, ::2] x2 = x[:, :, :, 1::2] x = torch.stack((-x2, x1), dim=-1) return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)') def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor: sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3) cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3) return (tensor * cos) + (rotate_every_two(tensor) * sin) class GPTJAttention(nn.Module): def __init__(self, config): super().__init__() max_positions = config.max_position_embeddings self.register_buffer( "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( 1, 1, max_positions, max_positions ), persistent=False, ) self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.embed_dim = config.hidden_size self.num_attention_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_attention_heads if self.head_dim * self.num_attention_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and" f" `num_attention_heads`: {self.num_attention_heads})." ) self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()) self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.rotary_dim = config.rotary_dim pos_embd_dim = self.rotary_dim or self.embed_dim self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim) def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary): """ Splits hidden dim into attn_head_size and num_attention_heads """ new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size) tensor = tensor.view(new_shape) if rotary: return tensor if len(tensor.shape) == 5: return tensor.permute(0, 1, 3, 2, 4) # (batch, blocks, head, block_length, head_features) elif len(tensor.shape) == 4: return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) else: raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") def _merge_heads(self, tensor, num_attention_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into hidden dim """ if len(tensor.shape) == 5: tensor = tensor.permute(0, 1, 3, 2, 4).contiguous() elif len(tensor.shape) == 4: tensor = tensor.permute(0, 2, 1, 3).contiguous() else: raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,) return tensor.view(new_shape) def _attn( self, query, key, value, attention_mask=None, head_mask=None, ): # compute causal mask from causal mask buffer query_length, key_length = query.size(-2), key.size(-2) causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] # Keep the attention weights computation in fp32 to avoid overflow issues query = query.to(torch.float32) key = key.to(torch.float32) attn_weights = torch.matmul(query, key.transpose(-1, -2)) mask_value = torch.finfo(attn_weights.dtype).min # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) attn_weights = torch.where(causal_mask, attn_weights, mask_value) attn_weights = attn_weights / self.scale_attn if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) attn_weights = attn_weights.to(value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def _get_embed_positions(self, position_ids): embed_positions = self.embed_positions if embed_positions.device != position_ids.device: embed_positions = embed_positions.to(position_ids.device) self.embed_positions = embed_positions return embed_positions.repeat(position_ids.shape[0], 1, 1) def forward( self, hidden_states: torch.FloatTensor, layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[ Tuple[torch.Tensor, Tuple[torch.Tensor]], Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], ]: query = self.q_proj(hidden_states) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = self._split_heads(query, self.num_attention_heads, self.head_dim, True) key = self._split_heads(key, self.num_attention_heads, self.head_dim, True) value = self._split_heads(value, self.num_attention_heads, self.head_dim, False) if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing(): # The logic to conditionally copy to GPU could not be traced, so we do this # every time in the torch.fx case embed_positions = get_embed_positions(self.embed_positions, position_ids) else: embed_positions = self._get_embed_positions(position_ids) repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1]) sincos = torch.gather(embed_positions, 1, repeated_position_ids) sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1) if self.rotary_dim is not None: k_rot = key[:, :, :, : self.rotary_dim] k_pass = key[:, :, :, self.rotary_dim :] q_rot = query[:, :, :, : self.rotary_dim] q_pass = query[:, :, :, self.rotary_dim :] k_rot = apply_rotary_pos_emb(k_rot, sin, cos) q_rot = apply_rotary_pos_emb(q_rot, sin, cos) key = torch.cat([k_rot, k_pass], dim=-1) query = torch.cat([q_rot, q_pass], dim=-1) else: key = apply_rotary_pos_emb(key, sin, cos) query = apply_rotary_pos_emb(query, sin, cos) key = key.permute(0, 2, 1, 3) query = query.permute(0, 2, 1, 3) if layer_past is not None: past_key = layer_past[0] past_value = layer_past[1] key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) if use_cache is True: # Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation. # Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128 present = (key.to(hidden_states.dtype), value) else: present = None # compute self-attention: V x Softmax(QK^T) attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs # a, present, (attentions) class GPTJMLP(nn.Module): def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim super().__init__() embed_dim = config.n_embd self.fc_in = nn.Linear(embed_dim, intermediate_size) self.fc_out = nn.Linear(intermediate_size, embed_dim) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor: hidden_states = self.fc_in(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.fc_out(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class GPTJBlock(nn.Module): def __init__(self, config): super().__init__() inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) self.attn = GPTJAttention(config) self.mlp = GPTJMLP(inner_dim, config) def forward( self, hidden_states: Optional[torch.FloatTensor], layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states=hidden_states, layer_past=layer_past, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] # output_attn: a, present, (attentions) outputs = attn_outputs[1:] feed_forward_hidden_states = self.mlp(hidden_states) hidden_states = attn_output + feed_forward_hidden_states + residual if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs # hidden_states, present, (attentions) class GPTJPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPTJConfig base_model_prefix = "transformer" is_parallelizable = True supports_gradient_checkpointing = True _no_split_modules = ["GPTJBlock"] _skip_keys_device_placement = "past_key_values" def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear,)): # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) GPTJ_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`GPTJConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ GPTJ_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ PARALLELIZE_DOCSTRING = r""" This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices. Args: device_map (`Dict[int, list]`, optional, defaults to None): A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the GPT-J models have the following number of attention modules: - gpt-j-6B: 28 Example: ```python # Here is an example of a device map on a machine with 4 GPUs using gpt-j-6B, which has a total of 28 attention modules: model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") device_map = { 0: [0, 1, 2, 3, 4, 5, 6], 1: [7, 8, 9, 10, 11, 12, 13], 2: [14, 15, 16, 17, 18, 19, 20], 3: [21, 22, 23, 24, 25, 26, 27], } model.parallelize(device_map) ``` """ DEPARALLELIZE_DOCSTRING = r""" Moves the model to CPU from a model parallel state. Example: ```python # On a 4 GPU machine with gpt-j-6B: model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") device_map = { 0: [0, 1, 2, 3, 4, 5, 6], 1: [7, 8, 9, 10, 11, 12, 13], 2: [14, 15, 16, 17, 18, 19, 20], 3: [21, 22, 23, 24, 25, 26, 27], } model.parallelize(device_map) # Splits the model across several devices model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() ``` """ @add_start_docstrings( "The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.", GPTJ_START_DOCSTRING, ) class GPTJModel(GPTJPreTrainedModel): def __init__(self, config): super().__init__(config) self.embed_dim = config.n_embd self.vocab_size = config.vocab_size self.wte = nn.Embedding(config.vocab_size, self.embed_dim) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) # Model parallel self.model_parallel = False self.device_map = None self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`GPTJModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your" " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1," " ...}", FutureWarning, ) # Check validity of device_map self.device_map = ( get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.h)) self.model_parallel = True self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) self.last_device = "cuda:" + str(max(self.device_map.keys())) self.wte = self.wte.to(self.first_device) # Load onto devices for k, v in self.device_map.items(): for block in v: cuda_device = "cuda:" + str(k) self.h[block] = self.h[block].to(cuda_device) # ln_f to last self.ln_f = self.ln_f.to(self.last_device) @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.model_parallel = False self.device_map = None self.first_device = "cpu" self.last_device = "cpu" self.wte = self.wte.to("cpu") for index in range(len(self.h)): self.h[index] = self.h[index].to("cpu") self.ln_f = self.ln_f.to("cpu") torch.cuda.empty_cache() def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC, real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0) # Attention mask. if attention_mask is not None: if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x num_attention_heads x N x N # head_mask has shape n_layer x batch x num_attention_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) hidden_states = inputs_embeds if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): # Model parallel if self.model_parallel: torch.cuda.set_device(hidden_states.device) # Ensure layer_past is on same device as hidden_states (might not be correct) if layer_past is not None: layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) # Ensure that attention_mask is always on the same device as hidden_states if attention_mask is not None: attention_mask = attention_mask.to(hidden_states.device) if isinstance(head_mask, torch.Tensor): head_mask = head_mask.to(hidden_states.device) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: outputs = self._gradient_checkpointing_func( block.__call__, hidden_states, None, attention_mask, position_ids, head_mask[i], use_cache, output_attentions, ) else: outputs = block( hidden_states=hidden_states, layer_past=layer_past, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) # Model Parallel: If it's the last layer for that device, put things on the next device if self.model_parallel: for k, v in self.device_map.items(): if i == v[-1] and "cuda:" + str(k) != self.last_device: hidden_states = hidden_states.to("cuda:" + str(k + 1)) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @add_start_docstrings( """ The GPT-J Model transformer with a language modeling head on top. """, GPTJ_START_DOCSTRING, ) class GPTJForCausalLM(GPTJPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.transformer = GPTJModel(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`GPTJForCausalLM.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':" " 0, 'transformer.h.1': 1, ...}", FutureWarning, ) self.device_map = ( get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.transformer.h)) self.transformer.parallelize(self.device_map) self.lm_head = self.lm_head.to(self.transformer.first_device) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.transformer.deparallelize() self.transformer = self.transformer.to("cpu") self.lm_head = self.lm_head.to("cpu") self.model_parallel = False torch.cuda.empty_cache() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # Omit tokens covered by past_key_values if past_key_values: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] if token_type_ids is not None: token_type_ids = token_type_ids[:, -input_ids.shape[1] :] attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } ) return model_inputs @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC, real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.transformer.first_device) hidden_states = hidden_states.to(self.lm_head.weight.device) # make sure sampling in fp16 works correctly and # compute loss in fp32 to match with mesh-tf version # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179 lm_logits = self.lm_head(hidden_states).to(torch.float32) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) loss = loss.to(hidden_states.dtype) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @staticmethod def _reorder_cache( past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor ) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past_key_values ) @add_start_docstrings( """ The GPT-J Model transformer with a sequence classification head on top (linear layer). [`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT, GPT-2, GPT-Neo) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, GPTJ_START_DOCSTRING, ) class GPTJForSequenceClassification(GPTJPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPTJModel(config) self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="ydshieh/tiny-random-gptj-for-sequence-classification", output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(pooled_logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, GPTJ_START_DOCSTRING, ) class GPTJForQuestionAnswering(GPTJPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPTJModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1).to(start_logits.device) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1).to(end_logits.device) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/gptj/modeling_gptj.py/0
{ "file_path": "transformers/src/transformers/models/gptj/modeling_gptj.py", "repo_id": "transformers", "token_count": 22144 }
91
# coding=utf-8 # Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 GroupViT model.""" from __future__ import annotations import collections.abc import math from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, is_tensorflow_probability_available, logging, replace_return_docstrings, ) from .configuration_groupvit import GroupViTConfig, GroupViTTextConfig, GroupViTVisionConfig logger = logging.get_logger(__name__) # soft dependency if is_tensorflow_probability_available(): try: import tensorflow_probability as tfp # On the first call, check whether a compatible version of TensorFlow is installed # TensorFlow Probability depends on a recent stable release of TensorFlow _ = tfp.distributions.Normal(loc=0.0, scale=1.0) except ImportError: logger.error( "GroupViT models are not usable since `tensorflow_probability` can't be loaded. " "It seems you have `tensorflow_probability` installed with the wrong tensorflow version." "Please try to reinstall it following the instructions here: https://github.com/tensorflow/probability." ) _CHECKPOINT_FOR_DOC = "nvidia/groupvit-gcc-yfcc" TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "nvidia/groupvit-gcc-yfcc", # See all GroupViT models at https://huggingface.co/models?filter=groupvit ] LARGE_NEGATIVE = -1e8 # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE # contrastive loss function, adapted from # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html def contrastive_loss(logits: tf.Tensor) -> tf.Tensor: return tf.math.reduce_mean( keras.metrics.sparse_categorical_crossentropy( y_true=tf.range(shape_list(logits)[0]), y_pred=logits, from_logits=True ) ) # Copied from transformers.models.clip.modeling_tf_clip.clip_loss with clip->groupvit def groupvit_loss(similarity: tf.Tensor) -> tf.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(tf.transpose(similarity)) return (caption_loss + image_loss) / 2.0 def hard_softmax(logits: tf.Tensor, dim: int) -> tf.Tensor: y_soft = stable_softmax(logits, dim) # Straight through. index = tf.argmax(y_soft, dim) y_hard = tf.one_hot( index, depth=shape_list(logits)[dim], # TensorFlow expects axis to be -1 or between [0, 3). But received: -2 # This is why the following code snippet is used. axis=range(len(shape_list(logits)))[dim], dtype=y_soft.dtype, ) ret = y_hard - tf.stop_gradient(y_soft) + y_soft return ret def gumbel_softmax(logits: tf.Tensor, tau: float = 1, hard: bool = False, dim: int = -1) -> tf.Tensor: gumbel_dist = tfp.distributions.Gumbel(0.0, 1.0) gumbels = gumbel_dist.sample(tf.shape(logits), dtype=logits.dtype) gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau) y_soft = stable_softmax(gumbels, dim) if hard: # Straight through. index = tf.argmax(y_soft, dim) y_hard = tf.one_hot( index, depth=shape_list(logits)[dim], # TensorFlow expects axis to be -1 or between [0, 3). But received: -2 # This is why the following code snippet is used. axis=range(len(shape_list(logits)))[dim], dtype=y_soft.dtype, ) ret = y_hard - tf.stop_gradient(y_soft) + y_soft else: # Reparametrization trick. ret = y_soft return ret def resize_attention_map(attentions: tf.Tensor, height: int, width: int, align_corners: bool = False) -> tf.Tensor: """ Args: attentions (`tf.Tensor`): attention map of shape [batch_size, groups, feat_height*feat_width] height (`int`): height of the output attention map width (`int`): width of the output attention map align_corners (`bool`, *optional*): the `align_corner` argument for `nn.functional.interpolate`. Returns: `tf.Tensor`: resized attention map of shape [batch_size, groups, height, width] """ scale = (height * width // attentions.shape[2]) ** 0.5 if height > width: feat_width = int(np.round(width / scale)) feat_height = shape_list(attentions)[2] // feat_width else: feat_height = int(np.round(height / scale)) feat_width = shape_list(attentions)[2] // feat_height batch_size = shape_list(attentions)[0] groups = shape_list(attentions)[1] # number of group token # [batch_size, groups, height x width, groups] -> [batch_size, groups, height, width] attentions = tf.reshape(attentions, (batch_size, groups, feat_height, feat_width)) attentions = tf.transpose(attentions, perm=(0, 2, 3, 1)) if align_corners: attentions = tf.compat.v1.image.resize( attentions, size=(height, width), method="bilinear", align_corners=align_corners, ) else: attentions = tf.image.resize(attentions, size=(height, width), method="bilinear") attentions = tf.transpose(attentions, perm=(0, 3, 1, 2)) return attentions def get_grouping_from_attentions(attentions: Tuple[tf.Tensor], hw_shape: Tuple[int]) -> tf.Tensor: """ Args: attentions (`tuple(tf.Tensor)`: tuple of attention maps returned by `TFGroupViTVisionTransformer` hw_shape (`tuple(int)`): height and width of the output attention map Returns: `tf.Tensor`: the attention map of shape [batch_size, groups, height, width] """ attn_maps = [] prev_attn_masks = None for attn_masks in attentions: # [batch_size, num_groups, height x width] -> [batch_size, height x width, num_groups] attn_masks = tf.transpose(attn_masks, perm=(0, 2, 1)) if prev_attn_masks is None: prev_attn_masks = attn_masks else: prev_attn_masks = tf.matmul(prev_attn_masks, attn_masks) # [batch_size, height x width, num_groups] -> [batch_size, num_groups, height x width] -> [batch_size, num_groups, height, width] cur_attn_map = resize_attention_map(tf.transpose(prev_attn_masks, perm=(0, 2, 1)), *hw_shape) attn_maps.append(cur_attn_map) # [batch_size, num_groups, height, width] final_grouping = attn_maps[-1] return tf.stop_gradient(final_grouping) @dataclass class TFGroupViTModelOutput(ModelOutput): """ Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image (`tf.Tensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text (`tf.Tensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. segmentation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels, logits_height, logits_width)`): Classification scores for each pixel. <Tip warning={true}> The logits returned do not necessarily have the same size as the `pixel_values` passed as inputs. This is to avoid doing two interpolations and lose some quality when a user needs to resize the logits to the original image size as post-processing. You should always check your logits shape and resize as needed. </Tip> text_embeds (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`TFGroupViTTextModel`]. image_embeds (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`TFGroupViTVisionModel`]. text_model_output (`TFBaseModelOutputWithPooling`): The output of the [`TFGroupViTTextModel`]. vision_model_output (`TFBaseModelOutputWithPooling`): The output of the [`TFGroupViTVisionModel`]. """ loss: tf.Tensor | None = None logits_per_image: tf.Tensor = None logits_per_text: tf.Tensor = None segmentation_logits: tf.Tensor = None text_embeds: tf.Tensor = None image_embeds: tf.Tensor = None text_model_output: TFBaseModelOutputWithPooling = None vision_model_output: TFBaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class TFGroupViTCrossAttentionLayer(keras.layers.Layer): def __init__(self, config: GroupViTVisionConfig, **kwargs): super().__init__(**kwargs) self.attn = TFGroupViTAttention(config, name="attn") self.norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm2") self.mlp = TFGroupViTMLP(config, name="mlp") self.norm_post = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_post") self.config = config def call(self, query: tf.Tensor, key: tf.Tensor, training: bool = False) -> tf.Tensor: x = query x = x + self.attn(query, encoder_hidden_states=key)[0] x = x + self.mlp(self.norm2(x)) x = self.norm_post(x) return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attn", None) is not None: with tf.name_scope(self.attn.name): self.attn.build(None) if getattr(self, "norm2", None) is not None: with tf.name_scope(self.norm2.name): self.norm2.build([None, None, self.config.hidden_size]) if getattr(self, "mlp", None) is not None: with tf.name_scope(self.mlp.name): self.mlp.build(None) if getattr(self, "norm_post", None) is not None: with tf.name_scope(self.norm_post.name): self.norm_post.build([None, None, self.config.hidden_size]) class TFGroupViTAssignAttention(keras.layers.Layer): def __init__(self, config: GroupViTVisionConfig, **kwargs): super().__init__(**kwargs) self.scale = config.hidden_size**-0.5 self.q_proj = keras.layers.Dense(config.hidden_size, name="q_proj") self.k_proj = keras.layers.Dense(config.hidden_size, name="k_proj") self.v_proj = keras.layers.Dense(config.hidden_size, name="v_proj") self.proj = keras.layers.Dense(config.hidden_size, name="proj") self.assign_eps = config.assign_eps self.config = config def get_attn(self, attn: tf.Tensor, gumbel: bool = True, hard: bool = True, training: bool = False) -> tf.Tensor: if gumbel and training: attn = gumbel_softmax(attn, dim=-2, hard=hard) else: if hard: attn = hard_softmax(attn, dim=-2) else: attn = stable_softmax(attn, axis=-2) return attn def call(self, query: tf.Tensor, key: tf.Tensor, training: bool = False): value = key # [batch_size, query_length, channels] query = self.q_proj(query) # [batch_size, key_length, channels] key = self.k_proj(key) # [batch_size, key_length, channels] value = self.v_proj(value) # [batch_size, query_length, key_length] raw_attn = tf.matmul(query, key, transpose_b=True) * self.scale attn = self.get_attn(raw_attn, training=training) soft_attn = self.get_attn(raw_attn, training=training, gumbel=False, hard=False) attn = attn / (tf.math.reduce_sum(attn, axis=-1, keepdims=True) + self.assign_eps) out = tf.matmul(attn, value) out = self.proj(out) return out, soft_attn def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.config.hidden_size]) if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.config.hidden_size]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.config.hidden_size]) if getattr(self, "proj", None) is not None: with tf.name_scope(self.proj.name): self.proj.build([None, None, self.config.hidden_size]) class TFGroupViTTokenAssign(keras.layers.Layer): def __init__(self, config: GroupViTVisionConfig, num_group_token: int, num_output_group: int, **kwargs): super().__init__(**kwargs) self.num_output_group = num_output_group # norm on group_tokens self.norm_tokens = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_tokens") assign_mlp_ratio = ( config.assign_mlp_ratio if isinstance(config.assign_mlp_ratio, collections.abc.Iterable) else (config.assign_mlp_ratio, config.assign_mlp_ratio) ) tokens_dim, channels_dim = [int(x * config.hidden_size) for x in assign_mlp_ratio] self.mlp_inter = TFGroupViTMixerMLP(config, num_group_token, tokens_dim, num_output_group, name="mlp_inter") self.norm_post_tokens = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_post_tokens") # norm on x self.norm_x = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_x") self.pre_assign_attn = TFGroupViTCrossAttentionLayer(config, name="pre_assign_attn") self.assign = TFGroupViTAssignAttention(config, name="assign") self.norm_new_x = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_new_x") self.mlp_channels = TFGroupViTMLP( config, config.hidden_size, channels_dim, config.hidden_size, name="mlp_channels" ) self.config = config def project_group_token(self, group_tokens: tf.Tensor) -> tf.Tensor: """ Args: group_tokens (tf.Tensor): group tokens, [batch_size, num_group_tokens, channels] Returns: projected_group_tokens (tf.Tensor): [batch_size, num_output_groups, channels] """ # [B, num_output_groups, C] <- [B, num_group_tokens, C] projected_group_tokens = self.mlp_inter(group_tokens) projected_group_tokens = self.norm_post_tokens(projected_group_tokens) return projected_group_tokens def call(self, image_tokens: tf.Tensor, group_tokens: tf.Tensor, training: bool = False): """ Args: image_tokens (`tf.Tensor`): image tokens, of shape [batch_size, input_length, channels] group_tokens (`tf.Tensor`): group tokens, [batch_size, num_group_tokens, channels] """ group_tokens = self.norm_tokens(group_tokens) image_tokens = self.norm_x(image_tokens) # [batch_size, num_output_groups, channels] projected_group_tokens = self.project_group_token(group_tokens) projected_group_tokens = self.pre_assign_attn(projected_group_tokens, image_tokens) new_image_tokens, attention = self.assign(projected_group_tokens, image_tokens) new_image_tokens += projected_group_tokens new_image_tokens = new_image_tokens + self.mlp_channels(self.norm_new_x(new_image_tokens)) return new_image_tokens, attention def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "norm_tokens", None) is not None: with tf.name_scope(self.norm_tokens.name): self.norm_tokens.build([None, None, self.config.hidden_size]) if getattr(self, "mlp_inter", None) is not None: with tf.name_scope(self.mlp_inter.name): self.mlp_inter.build(None) if getattr(self, "norm_post_tokens", None) is not None: with tf.name_scope(self.norm_post_tokens.name): self.norm_post_tokens.build([None, None, self.config.hidden_size]) if getattr(self, "norm_x", None) is not None: with tf.name_scope(self.norm_x.name): self.norm_x.build([None, None, self.config.hidden_size]) if getattr(self, "pre_assign_attn", None) is not None: with tf.name_scope(self.pre_assign_attn.name): self.pre_assign_attn.build(None) if getattr(self, "assign", None) is not None: with tf.name_scope(self.assign.name): self.assign.build(None) if getattr(self, "norm_new_x", None) is not None: with tf.name_scope(self.norm_new_x.name): self.norm_new_x.build([None, None, self.config.hidden_size]) if getattr(self, "mlp_channels", None) is not None: with tf.name_scope(self.mlp_channels.name): self.mlp_channels.build(None) # Adapted from transformers.models.vit.modeling_tf_vit.TFViTPatchEmbeddings with ViT->GroupViT class TFGroupViTPatchEmbeddings(keras.layers.Layer): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config: GroupViTConfig, **kwargs): super().__init__(**kwargs) image_size, patch_size = config.image_size, config.patch_size num_channels = config.num_channels # hidden_size is a member as it will be required in the call method self.hidden_size = config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.num_channels = num_channels self.config = config self.projection = keras.layers.Conv2D( filters=self.hidden_size, kernel_size=patch_size, strides=patch_size, padding="valid", data_format="channels_last", use_bias=True, kernel_initializer=get_initializer(self.config.initializer_range), bias_initializer="zeros", name="projection", ) def call( self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False ) -> tf.Tensor: batch_size, num_channels, height, width = shape_list(pixel_values) if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if ( not interpolate_pos_encoding and tf.executing_eagerly() and (height != self.image_size[0] or width != self.image_size[1]) ): raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) projection = self.projection(pixel_values) # Change the 2D spatial dimensions to a single temporal dimension. # shape = (batch_size, num_patches, out_channels=embed_dim) num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0]) # In the TFGroupViTVisionEmbeddings the embeddings from this layer will be layer normalized # LayerNormalization layer needs to have static last dimension (otherwise the test_keras_save_load fails with symbolic tensors) # This is why we have used the hidden_size in the reshape method embeddings = tf.reshape(tensor=projection, shape=(batch_size, num_patches, self.hidden_size)) return embeddings def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "projection", None) is not None: with tf.name_scope(self.projection.name): self.projection.build([None, None, None, self.num_channels]) # Adapted from transformers.vit.modeling_tf_vit.TFViTEmbeddings class TFGroupViTVisionEmbeddings(keras.layers.Layer): """ Construct the position and patch embeddings. """ def __init__(self, config: GroupViTVisionConfig, **kwargs): super().__init__(**kwargs) self.patch_embeddings = TFGroupViTPatchEmbeddings(config, name="patch_embeddings") self.dropout = keras.layers.Dropout(rate=config.dropout, name="dropout") self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") self.config = config def build(self, input_shape=None): num_patches = self.patch_embeddings.num_patches self.position_embeddings = self.add_weight( shape=(1, num_patches, self.config.hidden_size), initializer="zeros", trainable=True, name="position_embeddings", ) if self.built: return self.built = True if getattr(self, "patch_embeddings", None) is not None: with tf.name_scope(self.patch_embeddings.name): self.patch_embeddings.build(None) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, self.config.hidden_size]) def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ batch_size, num_patches, dim = shape_list(embeddings) num_positions = shape_list(self.position_embeddings)[1] if num_patches == num_positions and height == width: return self.position_embeddings patch_pos_embed = self.position_embeddings h0 = height // self.config.patch_size w0 = width // self.config.patch_size patch_pos_embed = tf.image.resize( images=tf.reshape( patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) ), size=(h0, w0), method="bicubic", ) patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim)) return patch_pos_embed def call( self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False ) -> tf.Tensor: _, _, height, width = shape_list(pixel_values) embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) embeddings = self.layernorm(embeddings) # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextEmbeddings with CLIP->GroupViT class TFGroupViTTextEmbeddings(keras.layers.Layer): def __init__(self, config: GroupViTTextConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.config = config def build(self, input_shape: tf.TensorShape = None): with tf.name_scope("token_embedding"): self.weight = self.add_weight( shape=(self.config.vocab_size, self.embed_dim), initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range), trainable=True, name="weight", ) with tf.name_scope("position_embedding"): self.position_embedding = self.add_weight( shape=(self.config.max_position_embeddings, self.embed_dim), initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range), trainable=True, name="embeddings", ) super().build(input_shape) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ if input_ids is None and inputs_embeds is None: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) position_embeds = tf.gather(params=self.position_embedding, indices=position_ids) position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1)) final_embeddings = inputs_embeds + position_embeds return final_embeddings class TFGroupViTStage(keras.layers.Layer): """This corresponds to the `GroupingLayer` class in the GroupViT implementation.""" def __init__( self, config: GroupViTVisionConfig, depth: int, num_prev_group_token: int, num_group_token: int, num_output_group: int, **kwargs, ): super().__init__(**kwargs) self.config = config self.depth = depth self.num_group_token = num_group_token self.layers = [TFGroupViTEncoderLayer(config, name=f"layers_._{i}") for i in range(depth)] if num_group_token > 0: self.downsample = TFGroupViTTokenAssign( config=config, num_group_token=num_group_token, num_output_group=num_output_group, name="downsample", ) else: self.downsample = None if num_prev_group_token > 0 and num_group_token > 0: self.group_projector = [ keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="group_projector.0"), TFGroupViTMixerMLP( config, num_prev_group_token, config.hidden_size // 2, num_group_token, name="group_projector.1" ), ] else: self.group_projector = None def build(self, input_shape=None): if self.num_group_token > 0: self.group_token = self.add_weight( shape=(1, self.num_group_token, self.config.hidden_size), initializer="zeros", trainable=True, name="group_token", ) else: self.group_token = None if self.built: return self.built = True if getattr(self, "downsample", None) is not None: with tf.name_scope(self.downsample.name): self.downsample.build(None) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) if getattr(self, "group_projector", None) is not None: with tf.name_scope(self.group_projector[0].name): self.group_projector[0].build([None, None, self.config.hidden_size]) with tf.name_scope(self.group_projector[1].name): self.group_projector[1].build(None) @property def with_group_token(self): return self.group_token is not None def split_x(self, x: tf.Tensor) -> tf.Tensor: if self.with_group_token: return x[:, : -self.num_group_token], x[:, -self.num_group_token :] else: return x, None def concat_x(self, x: tf.Tensor, group_token: tf.Tensor | None = None) -> tf.Tensor: if group_token is None: return x return tf.concat([x, group_token], axis=1) def call( self, hidden_states: tf.Tensor, prev_group_token: tf.Tensor | None = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the grouping tensors of Grouping block. """ if self.with_group_token: group_token = tf.tile(self.group_token, multiples=(shape_list(hidden_states)[0], 1, 1)) if self.group_projector is not None: for layer in self.group_projector: prev_group_token = layer(prev_group_token) group_token = group_token + prev_group_token else: group_token = None x = hidden_states cat_x = self.concat_x(x, group_token) for layer in self.layers: layer_out = layer( cat_x, attention_mask=None, causal_attention_mask=None, output_attentions=None, ) cat_x = layer_out[0] x, group_token = self.split_x(cat_x) attention = None if self.downsample is not None: x, attention = self.downsample(x, group_token) outputs = (x, group_token) if output_attentions: outputs = outputs + (attention,) return outputs class TFGroupViTMLP(keras.layers.Layer): def __init__( self, config: GroupViTVisionConfig, hidden_size: Optional[int] = None, intermediate_size: Optional[int] = None, output_size: Optional[int] = None, **kwargs, ): super().__init__(**kwargs) self.config = config self.activation_fn = get_tf_activation(config.hidden_act) hidden_size = hidden_size if hidden_size is not None else config.hidden_size intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size output_size = output_size if output_size is not None else hidden_size self.fc1 = keras.layers.Dense(intermediate_size, name="fc1") self.fc2 = keras.layers.Dense(output_size, name="fc2") self.intermediate_size = intermediate_size self.hidden_size = hidden_size def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.hidden_size]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.intermediate_size]) class TFGroupViTMixerMLP(TFGroupViTMLP): def call(self, x, training: bool = False): x = super().call(hidden_states=tf.transpose(x, perm=(0, 2, 1))) return tf.transpose(x, perm=(0, 2, 1)) # Adapted from transformers.models.clip.modeling_tf_clip.TFCLIPAttention class TFGroupViTAttention(keras.layers.Layer): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: GroupViTConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.num_attention_heads = config.num_attention_heads self.attention_head_size = self.embed_dim // self.num_attention_heads if self.attention_head_size * self.num_attention_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_attention_heads})." ) factor = config.initializer_factor in_proj_std = (self.embed_dim**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) * factor out_proj_std = (self.embed_dim**-0.5) * factor self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.q_proj = keras.layers.Dense( units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="q_proj" ) self.k_proj = keras.layers.Dense( units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="k_proj" ) self.v_proj = keras.layers.Dense( units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="v_proj" ) self.dropout = keras.layers.Dropout(rate=config.attention_dropout) self.out_proj = keras.layers.Dense( units=self.embed_dim, kernel_initializer=get_initializer(out_proj_std), name="out_proj" ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention.transpose_for_scores def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor = None, causal_attention_mask: tf.Tensor = None, output_attentions: bool = None, encoder_hidden_states: tf.Tensor = None, training: bool = False, ) -> Tuple[tf.Tensor]: """Input shape: Batch x Time x Channel""" batch_size = shape_list(hidden_states)[0] is_cross_attention = encoder_hidden_states is not None mixed_query_layer = self.q_proj(inputs=hidden_states) if is_cross_attention: mixed_key_layer = self.k_proj(inputs=encoder_hidden_states) mixed_value_layer = self.v_proj(inputs=encoder_hidden_states) else: mixed_key_layer = self.k_proj(inputs=hidden_states) mixed_value_layer = self.v_proj(inputs=hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) # apply the causal_attention_mask first if causal_attention_mask is not None: # Apply the causal attention mask (precomputed for all layers in TFCLIPModel call() function) attention_scores = tf.add(attention_scores, causal_attention_mask) if attention_mask is not None: # Apply the attention mask (precomputed for all layers in TFCLIPModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. _attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=_attention_probs) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, embed_dim) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.embed_dim)) attention_output = self.out_proj(attention_output) # In TFBert, attention weights are returned after dropout. # However, in CLIP, they are returned before dropout. outputs = (attention_output, _attention_probs) if output_attentions else (attention_output,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim]) # Copied from transformers.models.clip.modeling_tf_clip.TFCLIPEncoderLayer with CLIP->GroupViT class TFGroupViTEncoderLayer(keras.layers.Layer): def __init__(self, config: GroupViTConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.self_attn = TFGroupViTAttention(config, name="self_attn") self.layer_norm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1") self.mlp = TFGroupViTMLP(config, name="mlp") self.layer_norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, causal_attention_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. causal_attention_mask (`tf.Tensor`): causal attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`): Whether or not to return the attentions tensors of all attention layers. See `outputs` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(inputs=hidden_states) attention_outputs = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, training=training, ) hidden_states = attention_outputs[0] hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(inputs=hidden_states) hidden_states = self.mlp(hidden_states=hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) + attention_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "layer_norm1", None) is not None: with tf.name_scope(self.layer_norm1.name): self.layer_norm1.build([None, None, self.embed_dim]) if getattr(self, "mlp", None) is not None: with tf.name_scope(self.mlp.name): self.mlp.build(None) if getattr(self, "layer_norm2", None) is not None: with tf.name_scope(self.layer_norm2.name): self.layer_norm2.build([None, None, self.embed_dim]) # Adapted from transformers.models.clip.modeling_tf_clip.TFGroupViTTextEncoder class TFGroupViTTextEncoder(keras.layers.Layer): def __init__(self, config: GroupViTTextConfig, **kwargs): super().__init__(**kwargs) self.layers = [TFGroupViTEncoderLayer(config, name=f"layers_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states, attention_mask: tf.Tensor, causal_attention_mask: tf.Tensor, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) class TFGroupViTVisionEncoder(keras.layers.Layer): def __init__(self, config: GroupViTVisionConfig, **kwargs) -> None: super().__init__(**kwargs) self.stages = [ TFGroupViTStage( config=config, depth=config.depths[i], num_group_token=config.num_group_tokens[i], num_output_group=config.num_output_groups[i], num_prev_group_token=config.num_output_groups[i - 1] if i > 0 else 0, name=f"stages_._{i}", ) for i in range(len(config.depths)) ] def call( self, hidden_states: tf.Tensor, output_hidden_states: bool, output_attentions: bool, return_dict: bool, training: bool = False, ) -> Union[tuple, TFBaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_groupings = () if output_attentions else None group_tokens = None for stage in self.stages: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = stage(hidden_states, group_tokens, output_attentions) hidden_states = layer_outputs[0] group_tokens = layer_outputs[1] if output_attentions and layer_outputs[2] is not None: all_groupings = all_groupings + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_groupings] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_groupings ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "stages", None) is not None: for layer in self.stages: with tf.name_scope(layer.name): layer.build(None) # Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextTransformer with CLIPText->GroupViTText, CLIPEncoder->GroupViTTextEncoder class TFGroupViTTextTransformer(keras.layers.Layer): def __init__(self, config: GroupViTTextConfig, **kwargs): super().__init__(**kwargs) self.embeddings = TFGroupViTTextEmbeddings(config, name="embeddings") self.encoder = TFGroupViTTextEncoder(config, name="encoder") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="final_layer_norm") # For `pooled_output` computation self.eos_token_id = config.eos_token_id self.embed_dim = config.hidden_size def call( self, input_ids: TFModelInputType, attention_mask: tf.Tensor, position_ids: tf.Tensor, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: input_shape = shape_list(input_ids) embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids) batch_size, seq_length = input_shape # CLIP's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = self._build_causal_attention_mask(batch_size, seq_length, dtype=embedding_output.dtype) # check attention mask and invert # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.final_layer_norm(inputs=sequence_output) if self.eos_token_id == 2: # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added # ------------------------------------------------------------ # text_embeds.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) pooled_output = tf.gather_nd( params=sequence_output, indices=tf.stack( values=(tf.range(input_shape[0], dtype=tf.int64), tf.math.argmax(input_ids, axis=-1)), axis=1 ), ) else: # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) pooled_output = tf.gather_nd( params=sequence_output, indices=tf.stack( values=( tf.range(input_shape[0], dtype=tf.int64), tf.math.argmax(tf.cast(input_ids == self.eos_token_id, dtype=tf.int8), axis=-1), ), axis=1, ), ) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def _build_causal_attention_mask(self, batch_size, seq_length, dtype=tf.float32): # It is possible with an unspecified sequence length for seq_length to be # a runtime value, which is unsupported by tf.constant. Per the TensorFlow # docs, tf.fill can handle runtime dynamic shapes: # https://www.tensorflow.org/api_docs/python/tf/fill diag = tf.cast(tf.fill((seq_length,), 0.0), dtype) # set an additive 2D attention mask with all places being masked to_mask = tf.cast(tf.fill((seq_length, seq_length), -10000.0), dtype) # set diagonal & lower triangular parts to 0 (i.e. the places not to be masked) # TIP: think the 2D matrix as the space of (query_seq, key_seq) to_mask = tf.linalg.band_part(to_mask, 0, -1) # to_mask = tf.linalg.band_part(to_mask, -1, 0) to_mask = tf.linalg.set_diag(to_mask, diagonal=diag) return tf.broadcast_to(input=to_mask, shape=(batch_size, 1, seq_length, seq_length)) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) # Adapted from transformers.models.clip.modeling_tf_clip.TFCLIPVisionTransformer class TFGroupViTVisionTransformer(keras.layers.Layer): def __init__(self, config: GroupViTVisionConfig, **kwargs): super().__init__(**kwargs) self.embeddings = TFGroupViTVisionEmbeddings(config, name="embeddings") self.encoder = TFGroupViTVisionEncoder(config, name="encoder") self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") self.embed_dim = config.hidden_size def call( self, pixel_values: TFModelInputType, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[Tuple, TFBaseModelOutputWithPooling]: embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( hidden_states=embedding_output, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] # normalize the last hidden state last_hidden_state = self.layernorm(last_hidden_state) pooled_output = tf.math.reduce_mean(last_hidden_state, axis=1) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, self.embed_dim]) @keras_serializable # Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextMainLayer with CLIP->GroupViT class TFGroupViTTextMainLayer(keras.layers.Layer): config_class = GroupViTTextConfig def __init__(self, config: GroupViTTextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.text_model = TFGroupViTTextTransformer(config, name="text_model") def get_input_embeddings(self) -> keras.layers.Layer: return self.text_model.embeddings def set_input_embeddings(self, value: tf.Variable): self.text_model.embeddings.weight = value self.text_model.embeddings.vocab_size = shape_list(value)[0] @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = shape_list(input_ids) if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) text_model_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return text_model_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "text_model", None) is not None: with tf.name_scope(self.text_model.name): self.text_model.build(None) @keras_serializable # Copied from transformers.models.clip.modeling_tf_clip.TFCLIPVisionMainLayer with CLIP->GroupViT class TFGroupViTVisionMainLayer(keras.layers.Layer): config_class = GroupViTVisionConfig def __init__(self, config: GroupViTVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.vision_model = TFGroupViTVisionTransformer(config, name="vision_model") def get_input_embeddings(self) -> keras.layers.Layer: return self.vision_model.embeddings @unpack_inputs def call( self, pixel_values: TFModelInputType | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: if pixel_values is None: raise ValueError("You have to specify pixel_values") vision_model_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return vision_model_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "vision_model", None) is not None: with tf.name_scope(self.vision_model.name): self.vision_model.build(None) @keras_serializable # Adapted from transformers.models.clip.modeling_tf_clip.TFCLIPMainLayer class TFGroupViTMainLayer(keras.layers.Layer): config_class = GroupViTConfig def __init__(self, config: GroupViTConfig, **kwargs): super().__init__(**kwargs) if not isinstance(config.text_config, GroupViTTextConfig): raise ValueError( "config.text_config is expected to be of type GroupViTTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, GroupViTVisionConfig): raise ValueError( "config.vision_config is expected to be of type GroupViTVisionConfig but is of type" f" {type(config.vision_config)}." ) self.config = config text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.projection_intermediate_dim = config.projection_intermediate_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = TFGroupViTTextTransformer(text_config, name="text_model") self.vision_model = TFGroupViTVisionTransformer(vision_config, name="vision_model") self.visual_projection = [ keras.layers.Dense(self.projection_intermediate_dim, name="visual_projection.0"), keras.layers.BatchNormalization(name="visual_projection.1", momentum=0.9, epsilon=1e-5), keras.layers.ReLU(name="visual_projection.2"), keras.layers.Dense(self.projection_dim, name="visual_projection.3"), ] self.text_projection = [ keras.layers.Dense(self.projection_intermediate_dim, name="text_projection.0"), keras.layers.BatchNormalization(name="text_projection.1", momentum=0.9, epsilon=1e-5), keras.layers.ReLU(name="text_projection.2"), keras.layers.Dense(self.projection_dim, name="text_projection.3"), ] def build(self, input_shape=None): self.logit_scale = self.add_weight( shape=(1,), initializer=keras.initializers.Constant(self.config.logit_scale_init_value), trainable=True, name="logit_scale", ) if self.built: return self.built = True if getattr(self, "text_model", None) is not None: with tf.name_scope(self.text_model.name): self.text_model.build(None) if getattr(self, "vision_model", None) is not None: with tf.name_scope(self.vision_model.name): self.vision_model.build(None) if getattr(self, "visual_projection", None) is not None: with tf.name_scope(self.visual_projection[0].name): self.visual_projection[0].build([None, None, None, self.vision_embed_dim]) with tf.name_scope(self.visual_projection[1].name): self.visual_projection[1].build((None, self.projection_intermediate_dim)) with tf.name_scope(self.visual_projection[3].name): self.visual_projection[3].build([None, None, None, self.projection_intermediate_dim]) if getattr(self, "text_projection", None) is not None: with tf.name_scope(self.text_projection[0].name): self.text_projection[0].build([None, None, None, self.text_embed_dim]) with tf.name_scope(self.text_projection[1].name): self.text_projection[1].build((None, self.projection_intermediate_dim)) with tf.name_scope(self.text_projection[3].name): self.text_projection[3].build([None, None, None, self.projection_intermediate_dim]) @unpack_inputs def get_text_features( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> tf.Tensor: if input_ids is None: raise ValueError("You have to specify either input_ids") input_shape = shape_list(input_ids) if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = text_outputs[1] for layer in self.text_projection: pooled_output = layer(pooled_output) text_features = pooled_output return text_features @unpack_inputs def get_image_features( self, pixel_values: TFModelInputType | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> tf.Tensor: if pixel_values is None: raise ValueError("You have to specify pixel_values") vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = vision_outputs[1] for layer in self.visual_projection: pooled_output = layer(pooled_output) image_features = pooled_output return image_features @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, pixel_values: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_segmentation: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFGroupViTModelOutput, Tuple[tf.Tensor]]: if input_ids is None: raise ValueError("You have to specify either input_ids") if pixel_values is None: raise ValueError("You have to specify pixel_values") input_shape = shape_list(input_ids) if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) if output_segmentation: output_attentions = True vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) image_embeds = vision_outputs[1] for layer in self.visual_projection: image_embeds = layer(image_embeds) text_embeds = text_outputs[1] for layer in self.text_projection: text_embeds = layer(text_embeds) # normalized features image_embeds = image_embeds / tf.norm(image_embeds, axis=-1, keepdims=True) text_embeds = text_embeds / tf.norm(text_embeds, axis=-1, keepdims=True) # cosine similarity as logits logit_scale = tf.math.exp(self.logit_scale) logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale logits_per_image = tf.transpose(logits_per_text) seg_logits = None if output_segmentation: # grouped features # [batch_size_image, num_group, hidden_size] image_group_embeds = vision_outputs[0] # [batch_size_image*num_group, hidden_size] image_group_embeds = tf.reshape(image_group_embeds, shape=(-1, shape_list(image_group_embeds)[-1])) for layer in self.visual_projection: image_group_embeds = layer(image_group_embeds) if output_hidden_states: attentions = vision_outputs[3] else: attentions = vision_outputs[2] # [batch_size_image, num_group, height, width] grouping = get_grouping_from_attentions(attentions, pixel_values.shape[2:]) # normalized features image_group_embeds = image_group_embeds / tf.norm( tensor=image_group_embeds, ord="euclidean", axis=-1, keepdims=True ) # [batch_size_image x num_group, batch_size_text] logits_per_image_group = tf.matmul(image_group_embeds, text_embeds, transpose_b=True) * logit_scale # [batch_size_image, batch_size_text, num_group] logits_per_image_group = tf.reshape( logits_per_image_group, shape=(image_embeds.shape[0], -1, text_embeds.shape[0]) ) logits_per_image_group = tf.transpose(logits_per_image_group, perm=(0, 2, 1)) # [batch_size_image, batch_size_text, height x width] flatten_grouping = tf.reshape(grouping, shape=(shape_list(grouping)[0], shape_list(grouping)[1], -1)) # [batch_size_image, batch_size_text, height, width] seg_logits = tf.matmul(logits_per_image_group, flatten_grouping) * logit_scale seg_logits = tf.reshape( seg_logits, shape=(seg_logits.shape[0], seg_logits.shape[1], grouping.shape[2], grouping.shape[3]) ) loss = None if return_loss: loss = groupvit_loss(logits_per_text)[None, ...] if not return_dict: if seg_logits is not None: output = ( logits_per_image, logits_per_text, seg_logits, text_embeds, image_embeds, text_outputs, vision_outputs, ) else: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return TFGroupViTModelOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, segmentation_logits=seg_logits, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) class TFGroupViTPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GroupViTConfig base_model_prefix = "groupvit" GROUPVIT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using [`keras.Model.fit`] method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` </Tip> Args: config ([`GroupViTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ GROUPVIT_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ GROUPVIT_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ GROUPVIT_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ class TFGroupViTTextModel(TFGroupViTPreTrainedModel): config_class = GroupViTTextConfig main_input_name = "input_ids" def __init__(self, config: GroupViTTextConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.groupvit = TFGroupViTTextMainLayer(config, name="groupvit") @unpack_inputs @add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=GroupViTTextConfig) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import CLIPTokenizer, TFGroupViTTextModel >>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> model = TFGroupViTTextModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" outputs = self.groupvit( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "groupvit", None) is not None: with tf.name_scope(self.groupvit.name): self.groupvit.build(None) class TFGroupViTVisionModel(TFGroupViTPreTrainedModel): config_class = GroupViTVisionConfig main_input_name = "pixel_values" def __init__(self, config: GroupViTVisionConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.groupvit = TFGroupViTVisionMainLayer(config, name="groupvit") @unpack_inputs @add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=GroupViTVisionConfig) def call( self, pixel_values: TFModelInputType | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFGroupViTVisionModel >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> model = TFGroupViTVisionModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled CLS states ```""" outputs = self.groupvit( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "groupvit", None) is not None: with tf.name_scope(self.groupvit.name): self.groupvit.build(None) @add_start_docstrings(GROUPVIT_START_DOCSTRING) class TFGroupViTModel(TFGroupViTPreTrainedModel): config_class = GroupViTConfig def __init__(self, config: GroupViTConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.groupvit = TFGroupViTMainLayer(config, name="groupvit") @unpack_inputs @add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def get_text_features( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> tf.Tensor: r""" Returns: text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`TFGroupViTTextModel`]. Examples: ```python >>> from transformers import CLIPTokenizer, TFGroupViTModel >>> model = TFGroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf") >>> text_features = model.get_text_features(**inputs) ```""" text_features = self.groupvit.get_text_features( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return text_features @unpack_inputs @add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: TFModelInputType | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> tf.Tensor: r""" Returns: image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`TFGroupViTVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFGroupViTModel >>> model = TFGroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="tf") >>> image_features = model.get_image_features(**inputs) ```""" image_features = self.groupvit.get_image_features( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return image_features @unpack_inputs @add_start_docstrings_to_model_forward(GROUPVIT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFGroupViTModelOutput, config_class=GroupViTConfig) def call( self, input_ids: TFModelInputType | None = None, pixel_values: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_segmentation: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFGroupViTModelOutput, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, TFGroupViTModel >>> import tensorflow as tf >>> model = TFGroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = tf.math.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities ```""" outputs = self.groupvit( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids, return_loss=return_loss, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_segmentation=output_segmentation, return_dict=return_dict, training=training, ) return outputs def serving_output(self, output: TFGroupViTModelOutput) -> TFGroupViTModelOutput: # TODO: As is this currently fails with saved_model=True, because # TensorFlow cannot trace through nested dataclasses. Reference: # https://github.com/huggingface/transformers/pull/16886 return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "groupvit", None) is not None: with tf.name_scope(self.groupvit.name): self.groupvit.build(None)
transformers/src/transformers/models/groupvit/modeling_tf_groupvit.py/0
{ "file_path": "transformers/src/transformers/models/groupvit/modeling_tf_groupvit.py", "repo_id": "transformers", "token_count": 39518 }
92
# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Idefics model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP = { "HuggingFaceM4/idefics-9b": "https://huggingface.co/HuggingFaceM4/idefics-9b/blob/main/config.json", "HuggingFaceM4/idefics-80b": "https://huggingface.co/HuggingFaceM4/idefics-80b/blob/main/config.json", } class IdeficsVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Idefics-9B. e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. (elsewhere referred to as `hidden_size`) image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. intermediate_size (`int`, *optional*, defaults to 5120): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. patch_size (`int`, *optional*, defaults to 14): The size (resolution) of each patch. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. image_num_channels (`int`, *optional*, defaults to `3`): Number of image channels. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization testing). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. """ model_type = "idefics" attribute_map = { "hidden_size": "embed_dim", } def __init__( self, embed_dim=768, image_size=224, intermediate_size=5120, patch_size=14, num_hidden_layers=32, num_attention_heads=16, num_channels=3, hidden_act="gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, **kwargs, ): self.embed_dim = embed_dim self.image_size = image_size self.intermediate_size = intermediate_size self.patch_size = patch_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.layer_norm_eps = layer_norm_eps self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.hidden_act = hidden_act super().__init__(**kwargs) class IdeficsPerceiverConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Idefics-9B. e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: use_resampler (`bool`, *optional*, defaults to `False`): Whether or not to use the resampler resampler_n_latents (`int`, *optional*, defaults to ): Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). resampler_depth (`int`, *optional*, defaults to 6): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). resampler_n_heads (`int`, *optional*, defaults to 16): Number of heads in each Transformer block (for multi-headed self-attention). resampler_head_dim (`int`, *optional*, defaults to 96): Dimensionality of each head projection in the Transformer block. qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`): Whether or not to use qk layer norms in perceiver """ model_type = "idefics" def __init__( self, use_resampler=False, resampler_n_latents=64, resampler_depth=6, resampler_n_heads=16, resampler_head_dim=96, qk_layer_norms_perceiver=False, **kwargs, ): self.use_resampler = use_resampler self.resampler_n_latents = resampler_n_latents self.resampler_depth = resampler_depth self.resampler_n_heads = resampler_n_heads self.resampler_head_dim = resampler_head_dim self.qk_layer_norms_perceiver = qk_layer_norms_perceiver super().__init__(**kwargs) class IdeficsConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Idefics-9B. e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: additional_vocab_size (`int`, *optional`, defaults to 0): Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens are always trainable whereas regular vocab tokens can be frozen or not. vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Idefics model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`~IdeficsModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. alpha_initializer (`str`, *optional*, defaults to `"zeros"`): Initialization type for the alphas. alphas_initializer_range (`float`, *optional*, defaults to 0.0): The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross Attention. alpha_type (`str`, *optional*, defaults to `"float"`): Whether the gating alphas should be vectors or single floats. rms_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 0) Padding token id. bos_token_id (`int`, *optional*, defaults to 1) Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 2) End of stream token id. tie_word_embeddings(`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings cross_layer_interval (`int`, *optional*, default to 1) Interval for cross attention (from text to image) layers. qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`): Exceptions to freezing text layers when `freeze_text_layers` is `True` freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`): Exceptions to freezing vision layers when `freeze_vision_layers` is `True` use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict Example: ```python >>> from transformers import IdeficsModel, IdeficsConfig >>> # Initializing a Idefics idefics-9b style configuration >>> configuration = IdeficsConfig() >>> # Initializing a model from the idefics-9b style configuration >>> model = IdeficsModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "idefics" is_composition = False def __init__( self, vocab_size=32000, additional_vocab_size=0, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, dropout=0.0, hidden_act="silu", initializer_range=0.02, alpha_initializer="zeros", alphas_initializer_range=0.0, alpha_type="float", rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, cross_layer_interval=1, qk_layer_norms=False, freeze_text_layers=True, freeze_text_module_exceptions=[], freeze_lm_head=False, freeze_vision_layers=True, freeze_vision_module_exceptions=[], use_resampler=False, vision_config=None, perceiver_config=None, **kwargs, ): self.vocab_size = vocab_size self.additional_vocab_size = additional_vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.dropout = dropout self.hidden_act = hidden_act self.initializer_range = initializer_range self.alpha_initializer = alpha_initializer self.alphas_initializer_range = alphas_initializer_range self.alpha_type = alpha_type self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.cross_layer_interval = cross_layer_interval self.qk_layer_norms = qk_layer_norms self.freeze_vision_layers = freeze_vision_layers self.freeze_text_layers = freeze_text_layers self.freeze_text_module_exceptions = freeze_text_module_exceptions self.freeze_vision_module_exceptions = freeze_vision_module_exceptions self.freeze_lm_head = freeze_lm_head self.use_resampler = use_resampler if perceiver_config is None: self.perceiver_config = IdeficsPerceiverConfig() elif isinstance(perceiver_config, dict): self.perceiver_config = IdeficsPerceiverConfig(**perceiver_config) elif isinstance(perceiver_config, IdeficsPerceiverConfig): self.perceiver_config = perceiver_config if vision_config is None: self.vision_config = IdeficsVisionConfig() elif isinstance(vision_config, dict): self.vision_config = IdeficsVisionConfig(**vision_config) elif isinstance(vision_config, IdeficsVisionConfig): self.vision_config = vision_config super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # IMPORTANT: Do not do any __init__ args-based checks in the constructor, since # PretrainedConfig.from_dict first instantiates the class with the config dict and only then # updates the config object with `kwargs` from from_pretrained, so during the instantiation # of this object many attributes have default values and haven't yet been overridden. # Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.
transformers/src/transformers/models/idefics/configuration_idefics.py/0
{ "file_path": "transformers/src/transformers/models/idefics/configuration_idefics.py", "repo_id": "transformers", "token_count": 6012 }
93
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ InstructBLIP model configuration""" import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class InstructBlipVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`InstructBlipVisionModel`]. It is used to instantiate a InstructBLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1408): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 6144): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 39): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 14): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. to 1e-5): The epsilon used by the layer normalization layers. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 1e-10): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries and values in the self-attention layers. Example: ```python >>> from transformers import InstructBlipVisionConfig, InstructBlipVisionModel >>> # Initializing a InstructBlipVisionConfig with Salesforce/instruct-blip-flan-t5 style configuration >>> configuration = InstructBlipVisionConfig() >>> # Initializing a InstructBlipVisionModel (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration >>> model = InstructBlipVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "instructblip_vision_model" def __init__( self, hidden_size=1408, intermediate_size=6144, num_hidden_layers=39, num_attention_heads=16, image_size=224, patch_size=14, hidden_act="gelu", layer_norm_eps=1e-6, attention_dropout=0.0, initializer_range=1e-10, qkv_bias=True, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.patch_size = patch_size self.image_size = image_size self.initializer_range = initializer_range self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.qkv_bias = qkv_bias @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type") == "instructblip": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class InstructBlipQFormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`InstructBlipQFormerModel`]. It is used to instantiate a InstructBLIP Querying Transformer (Q-Former) model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Note that [`InstructBlipQFormerModel`] is very similar to [`BertLMHeadModel`] with interleaved cross-attention. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Q-Former model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling the model. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). cross_attention_frequency (`int`, *optional*, defaults to 2): The frequency of adding cross-attention to the Transformer layers. encoder_hidden_size (`int`, *optional*, defaults to 1408): The hidden size of the hidden states for cross-attention. Examples: ```python >>> from transformers import InstructBlipQFormerConfig, InstructBlipQFormerModel >>> # Initializing a InstructBLIP Salesforce/instruct-blip-flan-t5 style configuration >>> configuration = InstructBlipQFormerConfig() >>> # Initializing a model (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration >>> model = InstructBlipQFormerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "instructblip_qformer" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", cross_attention_frequency=2, encoder_hidden_size=1408, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.cross_attention_frequency = cross_attention_frequency self.encoder_hidden_size = encoder_hidden_size @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type") == "instructblip": config_dict = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class InstructBlipConfig(PretrainedConfig): r""" [`InstructBlipConfig`] is the configuration class to store the configuration of a [`InstructBlipForConditionalGeneration`]. It is used to instantiate a InstructBLIP model according to the specified arguments, defining the vision model, Q-Former model and language model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`InstructBlipVisionConfig`]. qformer_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`InstructBlipQFormerConfig`]. text_config (`dict`, *optional*): Dictionary of configuration options used to initialize any [`PretrainedConfig`]. num_query_tokens (`int`, *optional*, defaults to 32): The number of query tokens passed through the Transformer. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import ( ... InstructBlipVisionConfig, ... InstructBlipQFormerConfig, ... OPTConfig, ... InstructBlipConfig, ... InstructBlipForConditionalGeneration, ... ) >>> # Initializing a InstructBlipConfig with Salesforce/instruct-blip-flan-t5 style configuration >>> configuration = InstructBlipConfig() >>> # Initializing a InstructBlipForConditionalGeneration (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration >>> model = InstructBlipForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a InstructBlipConfig from a InstructBlipVisionConfig, InstructBlipQFormerConfig and any PretrainedConfig >>> # Initializing InstructBLIP vision, InstructBLIP Q-Former and language model configurations >>> vision_config = InstructBlipVisionConfig() >>> qformer_config = InstructBlipQFormerConfig() >>> text_config = OPTConfig() >>> config = InstructBlipConfig.from_text_vision_configs(vision_config, qformer_config, text_config) ```""" model_type = "instructblip" def __init__(self, vision_config=None, qformer_config=None, text_config=None, num_query_tokens=32, **kwargs): super().__init__(**kwargs) if vision_config is None: vision_config = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values.") if qformer_config is None: qformer_config = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.") if text_config is None: text_config = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).") self.vision_config = InstructBlipVisionConfig(**vision_config) self.qformer_config = InstructBlipQFormerConfig(**qformer_config) text_model_type = text_config["model_type"] if "model_type" in text_config else "opt" self.text_config = CONFIG_MAPPING[text_model_type](**text_config) self.tie_word_embeddings = self.text_config.tie_word_embeddings self.is_encoder_decoder = self.text_config.is_encoder_decoder self.num_query_tokens = num_query_tokens self.qformer_config.encoder_hidden_size = self.vision_config.hidden_size self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES self.initializer_factor = 1.0 self.initializer_range = 0.02 @classmethod def from_vision_qformer_text_configs( cls, vision_config: InstructBlipVisionConfig, qformer_config: InstructBlipQFormerConfig, text_config: PretrainedConfig, **kwargs, ): r""" Instantiate a [`InstructBlipConfig`] (or a derived class) from a InstructBLIP vision model, Q-Former and language model configurations. Returns: [`InstructBlipConfig`]: An instance of a configuration object """ return cls( vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **kwargs, )
transformers/src/transformers/models/instructblip/configuration_instructblip.py/0
{ "file_path": "transformers/src/transformers/models/instructblip/configuration_instructblip.py", "repo_id": "transformers", "token_count": 6357 }
94
# coding=utf-8 # Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch LayoutLM model.""" import math from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, MaskedLMOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_layoutlm import LayoutLMConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LayoutLMConfig" _CHECKPOINT_FOR_DOC = "microsoft/layoutlm-base-uncased" LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "layoutlm-base-uncased", "layoutlm-large-uncased", ] LayoutLMLayerNorm = nn.LayerNorm class LayoutLMEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super(LayoutLMEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size) self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size) self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size) self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = LayoutLMLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids=None, bbox=None, token_type_ids=None, position_ids=None, inputs_embeds=None, ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] device = input_ids.device if input_ids is not None else inputs_embeds.device if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) words_embeddings = inputs_embeds position_embeddings = self.position_embeddings(position_ids) try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError("The `bbox`coordinate values should be within 0-1000 range.") from e h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = ( words_embeddings + position_embeddings + left_position_embeddings + upper_position_embeddings + right_position_embeddings + lower_position_embeddings + h_position_embeddings + w_position_embeddings + token_type_embeddings ) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->LayoutLM class LayoutLMSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in LayoutLMModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->LayoutLM class LayoutLMSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->LayoutLM class LayoutLMAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = LayoutLMSelfAttention(config, position_embedding_type=position_embedding_type) self.output = LayoutLMSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class LayoutLMIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->LayoutLM class LayoutLMOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->LayoutLM class LayoutLMLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = LayoutLMAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = LayoutLMAttention(config, position_embedding_type="absolute") self.intermediate = LayoutLMIntermediate(config) self.output = LayoutLMOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->LayoutLM class LayoutLMEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LayoutLMLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class LayoutLMPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->LayoutLM class LayoutLMPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->LayoutLM class LayoutLMLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = LayoutLMPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->LayoutLM class LayoutLMOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = LayoutLMLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class LayoutLMPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LayoutLMConfig pretrained_model_archive_map = LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST base_model_prefix = "layoutlm" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, LayoutLMLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) LAYOUTLM_START_DOCSTRING = r""" The LayoutLM model was proposed in [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei and Ming Zhou. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LayoutLMConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LAYOUTLM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): Bounding boxes of each input sequence tokens. Selected in the range `[0, config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: `1` for tokens that are NOT MASKED, `0` for MASKED tokens. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: `0` corresponds to a *sentence A* token, `1` corresponds to a *sentence B* token [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: `1` indicates the head is **not masked**, `0` indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): If set to `True`, the attentions tensors of all attention layers are returned. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): If set to `True`, the hidden states of all layers are returned. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare LayoutLM Model transformer outputting raw hidden-states without any specific head on top.", LAYOUTLM_START_DOCSTRING, ) class LayoutLMModel(LayoutLMPreTrainedModel): def __init__(self, config): super(LayoutLMModel, self).__init__(config) self.config = config self.embeddings = LayoutLMEmbeddings(config) self.encoder = LayoutLMEncoder(config) self.pooler = LayoutLMPooler(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, LayoutLMModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") >>> model = LayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased") >>> words = ["Hello", "world"] >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] >>> token_boxes = [] >>> for word, box in zip(words, normalized_word_boxes): ... word_tokens = tokenizer.tokenize(word) ... token_boxes.extend([box] * len(word_tokens)) >>> # add bounding boxes of cls + sep tokens >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] >>> encoding = tokenizer(" ".join(words), return_tensors="pt") >>> input_ids = encoding["input_ids"] >>> attention_mask = encoding["attention_mask"] >>> token_type_ids = encoding["token_type_ids"] >>> bbox = torch.tensor([token_boxes]) >>> outputs = model( ... input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids ... ) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if bbox is None: bbox = torch.zeros(input_shape + (4,), dtype=torch.long, device=device) extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.to(dtype=next(self.parameters()).dtype) else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings( input_ids=input_ids, bbox=bbox, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings("""LayoutLM Model with a `language modeling` head on top.""", LAYOUTLM_START_DOCSTRING) class LayoutLMForMaskedLM(LayoutLMPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"] def __init__(self, config): super().__init__(config) self.layoutlm = LayoutLMModel(config) self.cls = LayoutLMOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.layoutlm.embeddings.word_embeddings def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import AutoTokenizer, LayoutLMForMaskedLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") >>> model = LayoutLMForMaskedLM.from_pretrained("microsoft/layoutlm-base-uncased") >>> words = ["Hello", "[MASK]"] >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] >>> token_boxes = [] >>> for word, box in zip(words, normalized_word_boxes): ... word_tokens = tokenizer.tokenize(word) ... token_boxes.extend([box] * len(word_tokens)) >>> # add bounding boxes of cls + sep tokens >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] >>> encoding = tokenizer(" ".join(words), return_tensors="pt") >>> input_ids = encoding["input_ids"] >>> attention_mask = encoding["attention_mask"] >>> token_type_ids = encoding["token_type_ids"] >>> bbox = torch.tensor([token_boxes]) >>> labels = tokenizer("Hello world", return_tensors="pt")["input_ids"] >>> outputs = model( ... input_ids=input_ids, ... bbox=bbox, ... attention_mask=attention_mask, ... token_type_ids=token_type_ids, ... labels=labels, ... ) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlm( input_ids, bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), labels.view(-1), ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ LayoutLM Model with a sequence classification head on top (a linear layer on top of the pooled output) e.g. for document image classification tasks such as the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset. """, LAYOUTLM_START_DOCSTRING, ) class LayoutLMForSequenceClassification(LayoutLMPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.layoutlm = LayoutLMModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.layoutlm.embeddings.word_embeddings @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoTokenizer, LayoutLMForSequenceClassification >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") >>> model = LayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased") >>> words = ["Hello", "world"] >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] >>> token_boxes = [] >>> for word, box in zip(words, normalized_word_boxes): ... word_tokens = tokenizer.tokenize(word) ... token_boxes.extend([box] * len(word_tokens)) >>> # add bounding boxes of cls + sep tokens >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] >>> encoding = tokenizer(" ".join(words), return_tensors="pt") >>> input_ids = encoding["input_ids"] >>> attention_mask = encoding["attention_mask"] >>> token_type_ids = encoding["token_type_ids"] >>> bbox = torch.tensor([token_boxes]) >>> sequence_label = torch.tensor([1]) >>> outputs = model( ... input_ids=input_ids, ... bbox=bbox, ... attention_mask=attention_mask, ... token_type_ids=token_type_ids, ... labels=sequence_label, ... ) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlm( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ LayoutLM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for sequence labeling (information extraction) tasks such as the [FUNSD](https://guillaumejaume.github.io/FUNSD/) dataset and the [SROIE](https://rrc.cvc.uab.es/?ch=13) dataset. """, LAYOUTLM_START_DOCSTRING, ) class LayoutLMForTokenClassification(LayoutLMPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.layoutlm = LayoutLMModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.layoutlm.embeddings.word_embeddings @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: Examples: ```python >>> from transformers import AutoTokenizer, LayoutLMForTokenClassification >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") >>> model = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased") >>> words = ["Hello", "world"] >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] >>> token_boxes = [] >>> for word, box in zip(words, normalized_word_boxes): ... word_tokens = tokenizer.tokenize(word) ... token_boxes.extend([box] * len(word_tokens)) >>> # add bounding boxes of cls + sep tokens >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] >>> encoding = tokenizer(" ".join(words), return_tensors="pt") >>> input_ids = encoding["input_ids"] >>> attention_mask = encoding["attention_mask"] >>> token_type_ids = encoding["token_type_ids"] >>> bbox = torch.tensor([token_boxes]) >>> token_labels = torch.tensor([1, 1, 0, 0]).unsqueeze(0) # batch size of 1 >>> outputs = model( ... input_ids=input_ids, ... bbox=bbox, ... attention_mask=attention_mask, ... token_type_ids=token_type_ids, ... labels=token_labels, ... ) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlm( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ LayoutLM Model with a span classification head on top for extractive question-answering tasks such as [DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the final hidden-states output to compute `span start logits` and `span end logits`). """, LAYOUTLM_START_DOCSTRING, ) class LayoutLMForQuestionAnswering(LayoutLMPreTrainedModel): def __init__(self, config, has_visual_segment_embedding=True): super().__init__(config) self.num_labels = config.num_labels self.layoutlm = LayoutLMModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.layoutlm.embeddings.word_embeddings @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Example: In the example below, we prepare a question + context pair for the LayoutLM model. It will give us a prediction of what it thinks the answer is (the span of the answer within the texts parsed from the image). ```python >>> from transformers import AutoTokenizer, LayoutLMForQuestionAnswering >>> from datasets import load_dataset >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("impira/layoutlm-document-qa", add_prefix_space=True) >>> model = LayoutLMForQuestionAnswering.from_pretrained("impira/layoutlm-document-qa", revision="1e3ebac") >>> dataset = load_dataset("nielsr/funsd", split="train") >>> example = dataset[0] >>> question = "what's his name?" >>> words = example["words"] >>> boxes = example["bboxes"] >>> encoding = tokenizer( ... question.split(), words, is_split_into_words=True, return_token_type_ids=True, return_tensors="pt" ... ) >>> bbox = [] >>> for i, s, w in zip(encoding.input_ids[0], encoding.sequence_ids(0), encoding.word_ids(0)): ... if s == 1: ... bbox.append(boxes[w]) ... elif i == tokenizer.sep_token_id: ... bbox.append([1000] * 4) ... else: ... bbox.append([0] * 4) >>> encoding["bbox"] = torch.tensor([bbox]) >>> word_ids = encoding.word_ids(0) >>> outputs = model(**encoding) >>> loss = outputs.loss >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits >>> start, end = word_ids[start_scores.argmax(-1)], word_ids[end_scores.argmax(-1)] >>> print(" ".join(words[start : end + 1])) M. Hamann P. Harper, P. Martinez ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlm( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/layoutlm/modeling_layoutlm.py/0
{ "file_path": "transformers/src/transformers/models/layoutlm/modeling_layoutlm.py", "repo_id": "transformers", "token_count": 26057 }
95
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch LayoutLMv3 model.""" import collections import math from typing import Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_layoutlmv3 import LayoutLMv3Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LayoutLMv3Config" LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/layoutlmv3-base", "microsoft/layoutlmv3-large", # See all LayoutLMv3 models at https://huggingface.co/models?filter=layoutlmv3 ] LAYOUTLMV3_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LayoutLMv3Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LAYOUTLMV3_MODEL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): Bounding boxes of each input sequence tokens. Selected in the range `[0, config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1) represents the position of the lower right corner. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Batch of document images. Each image is divided into patches of shape `(num_channels, config.patch_size, config.patch_size)` and the total number of patches (=`patch_sequence_length`) equals to `((height / config.patch_size) * (width / config.patch_size))`. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ LAYOUTLMV3_DOWNSTREAM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): Bounding boxes of each input sequence tokens. Selected in the range `[0, config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1) represents the position of the lower right corner. pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Batch of document images. Each image is divided into patches of shape `(num_channels, config.patch_size, config.patch_size)` and the total number of patches (=`patch_sequence_length`) equals to `((height / config.patch_size) * (width / config.patch_size))`. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class LayoutLMv3PatchEmbeddings(nn.Module): """LayoutLMv3 image (patch) embeddings. This class also automatically interpolates the position embeddings for varying image sizes.""" def __init__(self, config): super().__init__() image_size = ( config.input_size if isinstance(config.input_size, collections.abc.Iterable) else (config.input_size, config.input_size) ) patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) self.patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.proj = nn.Conv2d(config.num_channels, config.hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values, position_embedding=None): embeddings = self.proj(pixel_values) if position_embedding is not None: # interpolate the position embedding to the corresponding size position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1) position_embedding = position_embedding.permute(0, 3, 1, 2) patch_height, patch_width = embeddings.shape[2], embeddings.shape[3] position_embedding = F.interpolate(position_embedding, size=(patch_height, patch_width), mode="bicubic") embeddings = embeddings + position_embedding embeddings = embeddings.flatten(2).transpose(1, 2) return embeddings class LayoutLMv3TextEmbeddings(nn.Module): """ LayoutLMv3 text embeddings. Same as `RobertaEmbeddings` but with added spatial (layout) embeddings. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size) self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size) self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size) self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size) def calculate_spatial_position_embeddings(self, bbox): try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e h_position_embeddings = self.h_position_embeddings(torch.clip(bbox[:, :, 3] - bbox[:, :, 1], 0, 1023)) w_position_embeddings = self.w_position_embeddings(torch.clip(bbox[:, :, 2] - bbox[:, :, 0], 0, 1023)) # below is the difference between LayoutLMEmbeddingsV2 (torch.cat) and LayoutLMEmbeddingsV1 (add) spatial_position_embeddings = torch.cat( [ left_position_embeddings, upper_position_embeddings, right_position_embeddings, lower_position_embeddings, h_position_embeddings, w_position_embeddings, ], dim=-1, ) return spatial_position_embeddings def create_position_ids_from_input_ids(self, input_ids, padding_idx): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask return incremental_indices.long() + padding_idx def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) def forward( self, input_ids=None, bbox=None, token_type_ids=None, position_ids=None, inputs_embeds=None, ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx).to( input_ids.device ) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings spatial_position_embeddings = self.calculate_spatial_position_embeddings(bbox) embeddings = embeddings + spatial_position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LayoutLMv3PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LayoutLMv3Config base_model_prefix = "layoutlmv3" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class LayoutLMv3SelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.has_relative_attention_bias = config.has_relative_attention_bias self.has_spatial_attention_bias = config.has_spatial_attention_bias def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def cogview_attention(self, attention_scores, alpha=32): """ https://arxiv.org/abs/2105.13290 Section 2.4 Stabilization of training: Precision Bottleneck Relaxation (PB-Relax). A replacement of the original nn.Softmax(dim=-1)(attention_scores). Seems the new attention_probs will result in a slower speed and a little bias. Can use torch.allclose(standard_attention_probs, cogview_attention_probs, atol=1e-08) for comparison. The smaller atol (e.g., 1e-08), the better. """ scaled_attention_scores = attention_scores / alpha max_value = scaled_attention_scores.amax(dim=(-1)).unsqueeze(-1) new_attention_scores = (scaled_attention_scores - max_value) * alpha return nn.Softmax(dim=-1)(new_attention_scores) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # The attention scores QT K/√d could be significantly larger than input elements, and result in overflow. # Changing the computational order into QT(K/√d) alleviates the problem. (https://arxiv.org/pdf/2105.13290.pdf) attention_scores = torch.matmul(query_layer / math.sqrt(self.attention_head_size), key_layer.transpose(-1, -2)) if self.has_relative_attention_bias and self.has_spatial_attention_bias: attention_scores += (rel_pos + rel_2d_pos) / math.sqrt(self.attention_head_size) elif self.has_relative_attention_bias: attention_scores += rel_pos / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. # Use the trick of the CogView paper to stablize training attention_probs = self.cogview_attention(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput class LayoutLMv3SelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.layoutlmv2.modeling_layoutlmv2.LayoutLMv2Attention with LayoutLMv2->LayoutLMv3 class LayoutLMv3Attention(nn.Module): def __init__(self, config): super().__init__() self.self = LayoutLMv3SelfAttention(config) self.output = LayoutLMv3SelfOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.layoutlmv2.modeling_layoutlmv2.LayoutLMv2Layer with LayoutLMv2->LayoutLMv3 class LayoutLMv3Layer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = LayoutLMv3Attention(config) self.intermediate = LayoutLMv3Intermediate(config) self.output = LayoutLMv3Output(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class LayoutLMv3Encoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LayoutLMv3Layer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False self.has_relative_attention_bias = config.has_relative_attention_bias self.has_spatial_attention_bias = config.has_spatial_attention_bias if self.has_relative_attention_bias: self.rel_pos_bins = config.rel_pos_bins self.max_rel_pos = config.max_rel_pos self.rel_pos_bias = nn.Linear(self.rel_pos_bins, config.num_attention_heads, bias=False) if self.has_spatial_attention_bias: self.max_rel_2d_pos = config.max_rel_2d_pos self.rel_2d_pos_bins = config.rel_2d_pos_bins self.rel_pos_x_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False) self.rel_pos_y_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False) def relative_position_bucket(self, relative_position, bidirectional=True, num_buckets=32, max_distance=128): ret = 0 if bidirectional: num_buckets //= 2 ret += (relative_position > 0).long() * num_buckets n = torch.abs(relative_position) else: n = torch.max(-relative_position, torch.zeros_like(relative_position)) # now n is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = n < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def _cal_1d_pos_emb(self, position_ids): rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1) rel_pos = self.relative_position_bucket( rel_pos_mat, num_buckets=self.rel_pos_bins, max_distance=self.max_rel_pos, ) rel_pos = self.rel_pos_bias.weight.t()[rel_pos].permute(0, 3, 1, 2) rel_pos = rel_pos.contiguous() return rel_pos def _cal_2d_pos_emb(self, bbox): position_coord_x = bbox[:, :, 0] position_coord_y = bbox[:, :, 3] rel_pos_x_2d_mat = position_coord_x.unsqueeze(-2) - position_coord_x.unsqueeze(-1) rel_pos_y_2d_mat = position_coord_y.unsqueeze(-2) - position_coord_y.unsqueeze(-1) rel_pos_x = self.relative_position_bucket( rel_pos_x_2d_mat, num_buckets=self.rel_2d_pos_bins, max_distance=self.max_rel_2d_pos, ) rel_pos_y = self.relative_position_bucket( rel_pos_y_2d_mat, num_buckets=self.rel_2d_pos_bins, max_distance=self.max_rel_2d_pos, ) rel_pos_x = self.rel_pos_x_bias.weight.t()[rel_pos_x].permute(0, 3, 1, 2) rel_pos_y = self.rel_pos_y_bias.weight.t()[rel_pos_y].permute(0, 3, 1, 2) rel_pos_x = rel_pos_x.contiguous() rel_pos_y = rel_pos_y.contiguous() rel_2d_pos = rel_pos_x + rel_pos_y return rel_2d_pos def forward( self, hidden_states, bbox=None, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, position_ids=None, patch_height=None, patch_width=None, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None rel_pos = self._cal_1d_pos_emb(position_ids) if self.has_relative_attention_bias else None rel_2d_pos = self._cal_2d_pos_emb(bbox) if self.has_spatial_attention_bias else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, output_attentions, rel_pos, rel_2d_pos, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, all_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate class LayoutLMv3Intermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.roberta.modeling_roberta.RobertaOutput class LayoutLMv3Output(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states @add_start_docstrings( "The bare LayoutLMv3 Model transformer outputting raw hidden-states without any specific head on top.", LAYOUTLMV3_START_DOCSTRING, ) class LayoutLMv3Model(LayoutLMv3PreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config if config.text_embed: self.embeddings = LayoutLMv3TextEmbeddings(config) if config.visual_embed: # use the default pre-training parameters for fine-tuning (e.g., input_size) # when the input_size is larger in fine-tuning, we will interpolate the position embeddings in forward self.patch_embed = LayoutLMv3PatchEmbeddings(config) size = int(config.input_size / config.patch_size) self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.pos_embed = nn.Parameter(torch.zeros(1, size * size + 1, config.hidden_size)) self.pos_drop = nn.Dropout(p=0.0) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) if self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias: self.init_visual_bbox(image_size=(size, size)) self.norm = nn.LayerNorm(config.hidden_size, eps=1e-6) self.encoder = LayoutLMv3Encoder(config) self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def init_visual_bbox(self, image_size=(14, 14), max_len=1000): """ Create the bounding boxes for the visual (patch) tokens. """ visual_bbox_x = torch.div( torch.arange(0, max_len * (image_size[1] + 1), max_len), image_size[1], rounding_mode="trunc" ) visual_bbox_y = torch.div( torch.arange(0, max_len * (image_size[0] + 1), max_len), image_size[0], rounding_mode="trunc" ) visual_bbox = torch.stack( [ visual_bbox_x[:-1].repeat(image_size[0], 1), visual_bbox_y[:-1].repeat(image_size[1], 1).transpose(0, 1), visual_bbox_x[1:].repeat(image_size[0], 1), visual_bbox_y[1:].repeat(image_size[1], 1).transpose(0, 1), ], dim=-1, ).view(-1, 4) cls_token_box = torch.tensor([[0 + 1, 0 + 1, max_len - 1, max_len - 1]]) self.visual_bbox = torch.cat([cls_token_box, visual_bbox], dim=0) def calculate_visual_bbox(self, device, dtype, batch_size): visual_bbox = self.visual_bbox.repeat(batch_size, 1, 1) visual_bbox = visual_bbox.to(device).type(dtype) return visual_bbox def forward_image(self, pixel_values): embeddings = self.patch_embed(pixel_values) # add [CLS] token batch_size, seq_len, _ = embeddings.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add position embeddings if self.pos_embed is not None: embeddings = embeddings + self.pos_embed embeddings = self.pos_drop(embeddings) embeddings = self.norm(embeddings) return embeddings @add_start_docstrings_to_model_forward( LAYOUTLMV3_MODEL_INPUTS_DOCSTRING.format("batch_size, token_sequence_length") ) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModel >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = AutoModel.from_pretrained("microsoft/layoutlmv3-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = processor(image, words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape device = input_ids.device elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape device = inputs_embeds.device elif pixel_values is not None: batch_size = len(pixel_values) device = pixel_values.device else: raise ValueError("You have to specify either input_ids or inputs_embeds or pixel_values") if input_ids is not None or inputs_embeds is not None: if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if bbox is None: bbox = torch.zeros(tuple(list(input_shape) + [4]), dtype=torch.long, device=device) embedding_output = self.embeddings( input_ids=input_ids, bbox=bbox, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) final_bbox = final_position_ids = None patch_height = patch_width = None if pixel_values is not None: patch_height, patch_width = ( int(pixel_values.shape[2] / self.config.patch_size), int(pixel_values.shape[3] / self.config.patch_size), ) visual_embeddings = self.forward_image(pixel_values) visual_attention_mask = torch.ones( (batch_size, visual_embeddings.shape[1]), dtype=torch.long, device=device ) if attention_mask is not None: attention_mask = torch.cat([attention_mask, visual_attention_mask], dim=1) else: attention_mask = visual_attention_mask if self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias: if self.config.has_spatial_attention_bias: visual_bbox = self.calculate_visual_bbox(device, dtype=torch.long, batch_size=batch_size) if bbox is not None: final_bbox = torch.cat([bbox, visual_bbox], dim=1) else: final_bbox = visual_bbox visual_position_ids = torch.arange( 0, visual_embeddings.shape[1], dtype=torch.long, device=device ).repeat(batch_size, 1) if input_ids is not None or inputs_embeds is not None: position_ids = torch.arange(0, input_shape[1], device=device).unsqueeze(0) position_ids = position_ids.expand(input_shape) final_position_ids = torch.cat([position_ids, visual_position_ids], dim=1) else: final_position_ids = visual_position_ids if input_ids is not None or inputs_embeds is not None: embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1) else: embedding_output = visual_embeddings embedding_output = self.LayerNorm(embedding_output) embedding_output = self.dropout(embedding_output) elif self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias: if self.config.has_spatial_attention_bias: final_bbox = bbox if self.config.has_relative_attention_bias: position_ids = self.embeddings.position_ids[:, : input_shape[1]] position_ids = position_ids.expand_as(input_ids) final_position_ids = position_ids extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, None, device, dtype=embedding_output.dtype ) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) encoder_outputs = self.encoder( embedding_output, bbox=final_bbox, position_ids=final_position_ids, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, patch_height=patch_height, patch_width=patch_width, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class LayoutLMv3ClassificationHead(nn.Module): """ Head for sentence-level classification tasks. Reference: RobertaClassificationHead """ def __init__(self, config, pool_feature=False): super().__init__() self.pool_feature = pool_feature if pool_feature: self.dense = nn.Linear(config.hidden_size * 3, config.hidden_size) else: self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, x): x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ LayoutLMv3 Model with a token classification head on top (a linear layer on top of the final hidden states) e.g. for sequence labeling (information extraction) tasks such as [FUNSD](https://guillaumejaume.github.io/FUNSD/), [SROIE](https://rrc.cvc.uab.es/?ch=13), [CORD](https://github.com/clovaai/cord) and [Kleister-NDA](https://github.com/applicaai/kleister-nda). """, LAYOUTLMV3_START_DOCSTRING, ) class LayoutLMv3ForTokenClassification(LayoutLMv3PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.layoutlmv3 = LayoutLMv3Model(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) if config.num_labels < 10: self.classifier = nn.Linear(config.hidden_size, config.num_labels) else: self.classifier = LayoutLMv3ClassificationHead(config, pool_feature=False) self.init_weights() @add_start_docstrings_to_model_forward( LAYOUTLMV3_DOWNSTREAM_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, pixel_values: Optional[torch.LongTensor] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModelForTokenClassification >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = AutoModelForTokenClassification.from_pretrained("microsoft/layoutlmv3-base", num_labels=7) >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> word_labels = example["ner_tags"] >>> encoding = processor(image, words, boxes=boxes, word_labels=word_labels, return_tensors="pt") >>> outputs = model(**encoding) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv3( input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, pixel_values=pixel_values, ) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # only take the text part of the output representations sequence_output = outputs[0][:, :seq_length] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ LayoutLMv3 Model with a span classification head on top for extractive question-answering tasks such as [DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the text part of the hidden-states output to compute `span start logits` and `span end logits`). """, LAYOUTLMV3_START_DOCSTRING, ) class LayoutLMv3ForQuestionAnswering(LayoutLMv3PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.layoutlmv3 = LayoutLMv3Model(config) self.qa_outputs = LayoutLMv3ClassificationHead(config, pool_feature=False) self.init_weights() @add_start_docstrings_to_model_forward( LAYOUTLMV3_DOWNSTREAM_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, bbox: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.LongTensor] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModelForQuestionAnswering >>> from datasets import load_dataset >>> import torch >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = AutoModelForQuestionAnswering.from_pretrained("microsoft/layoutlmv3-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> question = "what's his name?" >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = processor(image, question, words, boxes=boxes, return_tensors="pt") >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(**encoding, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv3( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, bbox=bbox, pixel_values=pixel_values, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ LayoutLMv3 Model with a sequence classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for document image classification tasks such as the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset. """, LAYOUTLMV3_START_DOCSTRING, ) class LayoutLMv3ForSequenceClassification(LayoutLMv3PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.layoutlmv3 = LayoutLMv3Model(config) self.classifier = LayoutLMv3ClassificationHead(config, pool_feature=False) self.init_weights() @add_start_docstrings_to_model_forward( LAYOUTLMV3_DOWNSTREAM_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, bbox: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.LongTensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: """ Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModelForSequenceClassification >>> from datasets import load_dataset >>> import torch >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = processor(image, words, boxes=boxes, return_tensors="pt") >>> sequence_label = torch.tensor([1]) >>> outputs = model(**encoding, labels=sequence_label) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv3( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, bbox=bbox, pixel_values=pixel_values, ) sequence_output = outputs[0][:, 0, :] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/layoutlmv3/modeling_layoutlmv3.py/0
{ "file_path": "transformers/src/transformers/models/layoutlmv3/modeling_layoutlmv3.py", "repo_id": "transformers", "token_count": 26176 }
96
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ LeViT model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class LevitConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LevitModel`]. It is used to instantiate a LeViT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LeViT [facebook/levit-128S](https://huggingface.co/facebook/levit-128S) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size of the input image. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input image. kernel_size (`int`, *optional*, defaults to 3): The kernel size for the initial convolution layers of patch embedding. stride (`int`, *optional*, defaults to 2): The stride size for the initial convolution layers of patch embedding. padding (`int`, *optional*, defaults to 1): The padding size for the initial convolution layers of patch embedding. patch_size (`int`, *optional*, defaults to 16): The patch size for embeddings. hidden_sizes (`List[int]`, *optional*, defaults to `[128, 256, 384]`): Dimension of each of the encoder blocks. num_attention_heads (`List[int]`, *optional*, defaults to `[4, 8, 12]`): Number of attention heads for each attention layer in each block of the Transformer encoder. depths (`List[int]`, *optional*, defaults to `[4, 4, 4]`): The number of layers in each encoder block. key_dim (`List[int]`, *optional*, defaults to `[16, 16, 16]`): The size of key in each of the encoder blocks. drop_path_rate (`int`, *optional*, defaults to 0): The dropout probability for stochastic depths, used in the blocks of the Transformer encoder. mlp_ratios (`List[int]`, *optional*, defaults to `[2, 2, 2]`): Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the encoder blocks. attention_ratios (`List[int]`, *optional*, defaults to `[2, 2, 2]`): Ratio of the size of the output dimension compared to input dimension of attention layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers import LevitConfig, LevitModel >>> # Initializing a LeViT levit-128S style configuration >>> configuration = LevitConfig() >>> # Initializing a model (with random weights) from the levit-128S style configuration >>> model = LevitModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "levit" def __init__( self, image_size=224, num_channels=3, kernel_size=3, stride=2, padding=1, patch_size=16, hidden_sizes=[128, 256, 384], num_attention_heads=[4, 8, 12], depths=[4, 4, 4], key_dim=[16, 16, 16], drop_path_rate=0, mlp_ratio=[2, 2, 2], attention_ratio=[2, 2, 2], initializer_range=0.02, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.num_channels = num_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.hidden_sizes = hidden_sizes self.num_attention_heads = num_attention_heads self.depths = depths self.key_dim = key_dim self.drop_path_rate = drop_path_rate self.patch_size = patch_size self.attention_ratio = attention_ratio self.mlp_ratio = mlp_ratio self.initializer_range = initializer_range self.down_ops = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] # Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig class LevitOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4
transformers/src/transformers/models/levit/configuration_levit.py/0
{ "file_path": "transformers/src/transformers/models/levit/configuration_levit.py", "repo_id": "transformers", "token_count": 2270 }
97
# coding=utf-8 # Copyright 2023 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Llava model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "llava-hf/llava-v1.5-7b": "https://huggingface.co/llava-hf/llava-v1.5-7b/resolve/main/config.json", } class LlavaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LlavaForConditionalGeneration`]. It is used to instantiate an Llava model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Llava-9B. e.g. [llava-hf/llava-9b](https://huggingface.co/llava-hf/llava-9b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`LlavaVisionConfig`, *optional*): Custom vision config or dict text_config (`Union[AutoConfig, dict]`, *optional*): The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`. ignore_index (`int`, *optional*, defaults to -100): The ignore index for the loss function. image_token_index (`int`, *optional*, defaults to 32000): The image token index to encode the image prompt. projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): The activation function used by the multimodal projector. vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): The feature selection strategy used to select the vision feature from the CLIP backbone. vision_feature_layer (`int`, *optional*, defaults to -2): The index of the layer to select the vision feature. vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Llava model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`~LlavaForConditionalGeneration`] Example: ```python >>> from transformers import LlavaForConditionalGeneration, LlavaConfig, CLIPVisionConfig, LlamaConfig >>> # Initializing a CLIP-vision config >>> vision_config = CLIPVisionConfig() >>> # Initializing a Llama config >>> text_config = LlamaConfig() >>> # Initializing a Llava llava-1.5-7b style configuration >>> configuration = LlavaConfig(vision_config, text_config) >>> # Initializing a model from the llava-1.5-7b style configuration >>> model = LlavaForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "llava" is_composition = False def __init__( self, vision_config=None, text_config=None, ignore_index=-100, image_token_index=32000, projector_hidden_act="gelu", vision_feature_select_strategy="default", vision_feature_layer=-2, vocab_size=32000, **kwargs, ): self.ignore_index = ignore_index self.image_token_index = image_token_index self.projector_hidden_act = projector_hidden_act self.vision_feature_select_strategy = vision_feature_select_strategy self.vision_feature_layer = vision_feature_layer self.vocab_size = vocab_size self.vision_config = vision_config if isinstance(self.vision_config, dict): vision_config["model_type"] = ( vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model" ) self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) elif vision_config is None: self.vision_config = CONFIG_MAPPING["clip_vision_model"]( intermediate_size=4096, hidden_size=1024, patch_size=14, image_size=336, num_hidden_layers=24, num_attention_heads=16, vocab_size=32000, projection_dim=768, ) self.vocab_size = self.vocab_size self.text_config = text_config if isinstance(self.text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) self.vocab_size = self.text_config.vocab_size elif text_config is None: self.text_config = CONFIG_MAPPING["llama"]() super().__init__(**kwargs)
transformers/src/transformers/models/llava/configuration_llava.py/0
{ "file_path": "transformers/src/transformers/models/llava/configuration_llava.py", "repo_id": "transformers", "token_count": 2085 }
98
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for M2M100.""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/m2m100_418M": 1024, } # fmt: off FAIRSEQ_LANGUAGE_CODES = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } # fmt: on class M2M100Tokenizer(PreTrainedTokenizer): """ Construct an M2M100 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. spm_file (`str`): Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that contains the vocabulary. src_lang (`str`, *optional*): A string representing the source language. tgt_lang (`str`, *optional*): A string representing the target language. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. language_codes (`str`, *optional*, defaults to `"m2m100"`): What language codes to use. Should be one of `"m2m100"` or `"wmt21"`. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Examples: ```python >>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer >>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") >>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="en", tgt_lang="ro") >>> src_text = " UN Chief Says There Is No Military Solution in Syria" >>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" >>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") >>> outputs = model(**model_inputs) # should work ```""" vocab_files_names = VOCAB_FILES_NAMES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file, spm_file, src_lang=None, tgt_lang=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", pad_token="<pad>", unk_token="<unk>", language_codes="m2m100", sp_model_kwargs: Optional[Dict[str, Any]] = None, num_madeup_words=8, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.language_codes = language_codes fairseq_language_code = FAIRSEQ_LANGUAGE_CODES[language_codes] self.lang_code_to_token = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code} additional_special_tokens = kwargs.pop("additional_special_tokens", []) for lang_code in fairseq_language_code: token = self.get_lang_token(lang_code) if token not in additional_special_tokens and lang_code not in str(token) not in self.added_tokens_encoder: additional_special_tokens.append(token) self.vocab_file = vocab_file self.encoder = load_json(vocab_file) self.decoder = {v: k for k, v in self.encoder.items()} self.spm_file = spm_file self.sp_model = load_spm(spm_file, self.sp_model_kwargs) self.encoder_size = len(self.encoder) self.lang_token_to_id = { self.get_lang_token(lang_code): self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code) } self.lang_code_to_id = {lang_code: self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)} self.id_to_lang_token = {v: k for k, v in self.lang_token_to_id.items()} self._src_lang = src_lang if src_lang is not None else "en" self.tgt_lang = tgt_lang self.cur_lang_id = self.get_lang_id(self._src_lang) self.num_madeup_words = num_madeup_words super().__init__( src_lang=src_lang, tgt_lang=tgt_lang, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, unk_token=unk_token, pad_token=pad_token, language_codes=language_codes, sp_model_kwargs=self.sp_model_kwargs, additional_special_tokens=additional_special_tokens, num_madeup_words=num_madeup_words, **kwargs, ) self.set_src_lang_special_tokens(self._src_lang) @property def vocab_size(self) -> int: return len(self.encoder) def get_vocab(self) -> Dict: vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab @property def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(token, self.encoder[self.unk_token]) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the decoder.""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(current_sub_tokens) + token current_sub_tokens = [] else: current_sub_tokens.append(token) out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] * len(self.suffix_tokens) if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An MBART sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `X [eos, src_lang_code]` - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def __getstate__(self) -> Dict: state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d: Dict) -> None: self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: save_dir = Path(save_directory) if not save_dir.is_dir(): raise OSError(f"{save_directory} should be a directory") vocab_save_path = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) spm_save_path = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder, vocab_save_path) if os.path.abspath(self.spm_file) != os.path.abspath(spm_save_path) and os.path.isfile(self.spm_file): copyfile(self.spm_file, spm_save_path) elif not os.path.isfile(self.spm_file): with open(spm_save_path, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (str(vocab_save_path), str(spm_save_path)) def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "en", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "ro", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang self.set_src_lang_special_tokens(self.src_lang) return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) def _build_translation_inputs(self, raw_inputs, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, **extra_kwargs) tgt_lang_id = self.get_lang_id(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def _switch_to_input_mode(self): self.set_src_lang_special_tokens(self.src_lang) def _switch_to_target_mode(self): self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang: str) -> None: """Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code].""" lang_token = self.get_lang_token(src_lang) self.cur_lang_id = self.lang_token_to_id[lang_token] self.prefix_tokens = [self.cur_lang_id] self.suffix_tokens = [self.eos_token_id] def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: """Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code].""" lang_token = self.get_lang_token(tgt_lang) self.cur_lang_id = self.lang_token_to_id[lang_token] self.prefix_tokens = [self.cur_lang_id] self.suffix_tokens = [self.eos_token_id] def get_lang_token(self, lang: str) -> str: return self.lang_code_to_token[lang] def get_lang_id(self, lang: str) -> int: lang_token = self.get_lang_token(lang) return self.lang_token_to_id[lang_token] def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor: spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs) spm.Load(str(path)) return spm def load_json(path: str) -> Union[Dict, List]: with open(path, "r") as f: return json.load(f) def save_json(data, path: str) -> None: with open(path, "w") as f: json.dump(data, f, indent=2)
transformers/src/transformers/models/m2m_100/tokenization_m2m_100.py/0
{ "file_path": "transformers/src/transformers/models/m2m_100/tokenization_m2m_100.py", "repo_id": "transformers", "token_count": 7599 }
99
#################################################################################################### # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import MegatronBertConfig #################################################################################################### def recursive_print(name, val, spaces=0): # Format the message. if name is None: msg = None else: fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}" msg = fmt.format(name) # Print and recurse (if needed). if isinstance(val, dict): if msg is not None: print(msg) for k in val.keys(): recursive_print(k, val[k], spaces + 2) elif isinstance(val, torch.Tensor): print(msg, ":", val.size()) else: print(msg, ":", val) def fix_query_key_value_ordering(param, checkpoint_version, num_splits, num_heads, hidden_size): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace BERT. input_shape = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:] param = param.view(*saved_shape) param = param.transpose(0, 2) param = param.transpose(1, 2).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:] param = param.view(*saved_shape) param = param.transpose(0, 1).contiguous() param = param.view(*input_shape) return param #################################################################################################### def convert_megatron_checkpoint(args, input_state_dict, config): # The converted output model. output_state_dict = {} # old versions did not store training args ds_args = input_state_dict.get("args", None) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) config.tokenizer_type = ds_args.tokenizer_type config.vocab_size = ds_args.padded_vocab_size config.max_position_embeddings = ds_args.max_position_embeddings config.hidden_size = ds_args.hidden_size config.num_hidden_layers = ds_args.num_layers config.num_attention_heads = ds_args.num_attention_heads config.intermediate_size = ds_args.ffn_hidden_size if "ffn_hidden_size" in ds_args else 4 * ds_args.hidden_size # pprint(config) # The number of heads. heads = config.num_attention_heads # The hidden_size per head. hidden_size_per_head = config.hidden_size // heads # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): checkpoint_version = input_state_dict["checkpoint_version"] else: checkpoint_version = 0.0 # The model. model = input_state_dict["model"] # The language model. lm = model["language_model"] # The embeddings. embeddings = lm["embedding"] # The word embeddings. word_embeddings = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. word_embeddings = word_embeddings[: config.vocab_size, :] # Store the word embeddings. output_state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings # The position embeddings. pos_embeddings = embeddings["position_embeddings"]["weight"] assert pos_embeddings.size(0) == config.max_position_embeddings and pos_embeddings.size(1) == config.hidden_size # Store the position embeddings. output_state_dict["bert.embeddings.position_embeddings.weight"] = pos_embeddings # The token-type embeddings. tokentype_embeddings = embeddings["tokentype_embeddings"]["weight"] # Store the position embeddings. output_state_dict["bert.embeddings.token_type_embeddings.weight"] = tokentype_embeddings # The transformer. transformer = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. layer_re = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)") # The simple map of names for "automated" rules. megatron_to_transformers = { "attention.dense": ".attention.output.dense.", "self_attention.dense": ".attention.output.dense.", "mlp.dense_h_to_4h": ".intermediate.dense.", "mlp.dense_4h_to_h": ".output.dense.", } # Keep track of the attention/query/value tensor. attention_qkv_weight = None # Extract the layers. for key, val in transformer.items(): # Match the name. m = layer_re.match(key) # Stop if that's not a layer if m is None: break # The index of the layer. layer_idx = int(m.group(1)) # The name of the operation. op_name = m.group(2) # Is it a weight or a bias? weight_or_bias = m.group(3) # The name of the layer. layer_name = f"bert.encoder.layer.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm"): ln_name = "attention.ln" if op_name.startswith("input") else "ln" output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Make sure the QKV pointer is nil. assert attention_qkv_weight is None, "" out_val = fix_query_key_value_ordering(val, checkpoint_version, 3, heads, hidden_size_per_head) # Store the tensor as we need the bias as well to interleave QKV and biases. attention_qkv_weight = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": # Make sure we read the weight tensor. assert attention_qkv_weight is not None, "" # Split the QKV matrix into Q, K and V. Megatron stores Q,K,V interleaved. q = attention_qkv_weight[0 * config.hidden_size : 1 * config.hidden_size, :] k = attention_qkv_weight[1 * config.hidden_size : 2 * config.hidden_size, :] v = attention_qkv_weight[2 * config.hidden_size : 3 * config.hidden_size, :] out_val = fix_query_key_value_ordering(val, checkpoint_version, 3, heads, hidden_size_per_head) # Split the bias. q_bias = out_val[0 * config.hidden_size : 1 * config.hidden_size] k_bias = out_val[1 * config.hidden_size : 2 * config.hidden_size] v_bias = out_val[2 * config.hidden_size : 3 * config.hidden_size] # Store. output_state_dict[f"{layer_name}.attention.self.query.weight"] = q output_state_dict[f"{layer_name}.attention.self.query.bias"] = q_bias output_state_dict[f"{layer_name}.attention.self.key.weight"] = k output_state_dict[f"{layer_name}.attention.self.key.bias"] = k_bias output_state_dict[f"{layer_name}.attention.self.value.weight"] = v output_state_dict[f"{layer_name}.attention.self.value.bias"] = v_bias # Clear the stored tensor. attention_qkv_weight = None # Copy weights and biases as is. elif weight_or_bias in ["weight", "bias"]: out_name = megatron_to_transformers[op_name] output_state_dict[layer_name + out_name + weight_or_bias] = val # The final layernorm. output_state_dict["bert.encoder.ln.weight"] = transformer["final_layernorm.weight"] output_state_dict["bert.encoder.ln.bias"] = transformer["final_layernorm.bias"] # The pooler. pooler = lm["pooler"] # Store the matrix and the bias. output_state_dict["bert.pooler.dense.weight"] = pooler["dense.weight"] output_state_dict["bert.pooler.dense.bias"] = pooler["dense.bias"] # The LM head from Megatron (for RACE). lm_head = model["lm_head"] # The transform matrix. output_state_dict["cls.predictions.transform.dense.weight"] = lm_head["dense.weight"] output_state_dict["cls.predictions.transform.dense.bias"] = lm_head["dense.bias"] # The transform LN. output_state_dict["cls.predictions.transform.LayerNorm.weight"] = lm_head["layernorm.weight"] output_state_dict["cls.predictions.transform.LayerNorm.bias"] = lm_head["layernorm.bias"] # For the decoder, we replicate the weights. output_state_dict["cls.predictions.decoder.weight"] = word_embeddings output_state_dict["cls.predictions.bias"] = lm_head["bias"] # The classifier from Megatron (for MLNI). binary_head = model["binary_head"] # Store the classifier. output_state_dict["cls.seq_relationship.weight"] = binary_head["weight"] output_state_dict["cls.seq_relationship.bias"] = binary_head["bias"] # It should be done! return output_state_dict #################################################################################################### def main(): # Create the argument parser. parser = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure", action="store_true") parser.add_argument("path_to_checkpoint", type=str, help="Path to the ZIP file containing the checkpoint") parser.add_argument( "--config_file", default="", type=str, help="An optional config json file describing the pre-trained model.", ) args = parser.parse_args() # Extract the basename. basename = os.path.dirname(args.path_to_checkpoint) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'Extracting PyTorch state dictionary from "{args.path_to_checkpoint}"') if args.path_to_checkpoint.endswith(".zip"): with zipfile.ZipFile(args.path_to_checkpoint, "r") as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt") as pytorch_dict: input_state_dict = torch.load(pytorch_dict, map_location="cpu") else: input_state_dict = torch.load(args.path_to_checkpoint, map_location="cpu") if args.config_file == "": # Default config of megatron-bert 345m config = MegatronBertConfig() # different megatron-bert-*-345m models have different vocab sizes, so override the default # config (which is for megatron-bert-cased-345m) with the actual vocab dimension config.vocab_size = input_state_dict["model"]["lm_head"]["bias"].numel() else: config = MegatronBertConfig.from_json_file(args.config_file) # Convert. print("Converting") output_state_dict = convert_megatron_checkpoint(args, input_state_dict, config) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(None, output_state_dict) # Store the config to file. print("Saving config") config.save_pretrained(basename) # Store the state_dict to file. output_checkpoint_file = os.path.join(basename, "pytorch_model.bin") print(f'Saving checkpoint to "{output_checkpoint_file}"') torch.save(output_state_dict, output_checkpoint_file) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
transformers/src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py/0
{ "file_path": "transformers/src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py", "repo_id": "transformers", "token_count": 5187 }
100
# coding=utf-8 # Copyright 2023 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch MRA model.""" import math from pathlib import Path from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from torch.utils.cpp_extension import load from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_ninja_available, is_torch_cuda_available, logging, ) from .configuration_mra import MraConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "uw-madison/mra-base-512-4" _CONFIG_FOR_DOC = "MraConfig" _TOKENIZER_FOR_DOC = "AutoTokenizer" MRA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "uw-madison/mra-base-512-4", # See all Mra models at https://huggingface.co/models?filter=mra ] mra_cuda_kernel = None def load_cuda_kernels(): global mra_cuda_kernel src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "mra" def append_root(files): return [src_folder / file for file in files] src_files = append_root(["cuda_kernel.cu", "cuda_launch.cu", "torch_extension.cpp"]) mra_cuda_kernel = load("cuda_kernel", src_files, verbose=True) def sparse_max(sparse_qk_prod, indices, query_num_block, key_num_block): """ Computes maximum values for softmax stability. """ if len(sparse_qk_prod.size()) != 4: raise ValueError("sparse_qk_prod must be a 4-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") if sparse_qk_prod.size(2) != 32: raise ValueError("The size of the second dimension of sparse_qk_prod must be 32.") if sparse_qk_prod.size(3) != 32: raise ValueError("The size of the third dimension of sparse_qk_prod must be 32.") index_vals = sparse_qk_prod.max(dim=-2).values.transpose(-1, -2) index_vals = index_vals.contiguous() indices = indices.int() indices = indices.contiguous() max_vals, max_vals_scatter = mra_cuda_kernel.index_max(index_vals, indices, query_num_block, key_num_block) max_vals_scatter = max_vals_scatter.transpose(-1, -2)[:, :, None, :] return max_vals, max_vals_scatter def sparse_mask(mask, indices, block_size=32): """ Converts attention mask to a sparse mask for high resolution logits. """ if len(mask.size()) != 2: raise ValueError("mask must be a 2-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") if mask.shape[0] != indices.shape[0]: raise ValueError("mask and indices must have the same size in the zero-th dimension.") batch_size, seq_len = mask.shape num_block = seq_len // block_size batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device) mask = mask.reshape(batch_size, num_block, block_size) mask = mask[batch_idx[:, None], (indices % num_block).long(), :] return mask def mm_to_sparse(dense_query, dense_key, indices, block_size=32): """ Performs Sampled Dense Matrix Multiplication. """ batch_size, query_size, dim = dense_query.size() _, key_size, dim = dense_key.size() if query_size % block_size != 0: raise ValueError("query_size (size of first dimension of dense_query) must be divisible by block_size.") if key_size % block_size != 0: raise ValueError("key_size (size of first dimension of dense_key) must be divisible by block_size.") dense_query = dense_query.reshape(batch_size, query_size // block_size, block_size, dim).transpose(-1, -2) dense_key = dense_key.reshape(batch_size, key_size // block_size, block_size, dim).transpose(-1, -2) if len(dense_query.size()) != 4: raise ValueError("dense_query must be a 4-dimensional tensor.") if len(dense_key.size()) != 4: raise ValueError("dense_key must be a 4-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") if dense_query.size(3) != 32: raise ValueError("The third dimension of dense_query must be 32.") if dense_key.size(3) != 32: raise ValueError("The third dimension of dense_key must be 32.") dense_query = dense_query.contiguous() dense_key = dense_key.contiguous() indices = indices.int() indices = indices.contiguous() return mra_cuda_kernel.mm_to_sparse(dense_query, dense_key, indices.int()) def sparse_dense_mm(sparse_query, indices, dense_key, query_num_block, block_size=32): """ Performs matrix multiplication of a sparse matrix with a dense matrix. """ batch_size, key_size, dim = dense_key.size() if key_size % block_size != 0: raise ValueError("key_size (size of first dimension of dense_key) must be divisible by block_size.") if sparse_query.size(2) != block_size: raise ValueError("The size of the second dimension of sparse_query must be equal to the block_size.") if sparse_query.size(3) != block_size: raise ValueError("The size of the third dimension of sparse_query must be equal to the block_size.") dense_key = dense_key.reshape(batch_size, key_size // block_size, block_size, dim).transpose(-1, -2) if len(sparse_query.size()) != 4: raise ValueError("sparse_query must be a 4-dimensional tensor.") if len(dense_key.size()) != 4: raise ValueError("dense_key must be a 4-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") if dense_key.size(3) != 32: raise ValueError("The size of the third dimension of dense_key must be 32.") sparse_query = sparse_query.contiguous() indices = indices.int() indices = indices.contiguous() dense_key = dense_key.contiguous() dense_qk_prod = mra_cuda_kernel.sparse_dense_mm(sparse_query, indices, dense_key, query_num_block) dense_qk_prod = dense_qk_prod.transpose(-1, -2).reshape(batch_size, query_num_block * block_size, dim) return dense_qk_prod def transpose_indices(indices, dim_1_block, dim_2_block): return ((indices % dim_2_block) * dim_1_block + torch.div(indices, dim_2_block, rounding_mode="floor")).long() class MraSampledDenseMatMul(torch.autograd.Function): @staticmethod def forward(ctx, dense_query, dense_key, indices, block_size): sparse_qk_prod = mm_to_sparse(dense_query, dense_key, indices, block_size) ctx.save_for_backward(dense_query, dense_key, indices) ctx.block_size = block_size return sparse_qk_prod @staticmethod def backward(ctx, grad): dense_query, dense_key, indices = ctx.saved_tensors block_size = ctx.block_size query_num_block = dense_query.size(1) // block_size key_num_block = dense_key.size(1) // block_size indices_T = transpose_indices(indices, query_num_block, key_num_block) grad_key = sparse_dense_mm(grad.transpose(-1, -2), indices_T, dense_query, key_num_block) grad_query = sparse_dense_mm(grad, indices, dense_key, query_num_block) return grad_query, grad_key, None, None @staticmethod def operator_call(dense_query, dense_key, indices, block_size=32): return MraSampledDenseMatMul.apply(dense_query, dense_key, indices, block_size) class MraSparseDenseMatMul(torch.autograd.Function): @staticmethod def forward(ctx, sparse_query, indices, dense_key, query_num_block): sparse_qk_prod = sparse_dense_mm(sparse_query, indices, dense_key, query_num_block) ctx.save_for_backward(sparse_query, indices, dense_key) ctx.query_num_block = query_num_block return sparse_qk_prod @staticmethod def backward(ctx, grad): sparse_query, indices, dense_key = ctx.saved_tensors query_num_block = ctx.query_num_block key_num_block = dense_key.size(1) // sparse_query.size(-1) indices_T = transpose_indices(indices, query_num_block, key_num_block) grad_key = sparse_dense_mm(sparse_query.transpose(-1, -2), indices_T, grad, key_num_block) grad_query = mm_to_sparse(grad, dense_key, indices) return grad_query, None, grad_key, None @staticmethod def operator_call(sparse_query, indices, dense_key, query_num_block): return MraSparseDenseMatMul.apply(sparse_query, indices, dense_key, query_num_block) class MraReduceSum: @staticmethod def operator_call(sparse_query, indices, query_num_block, key_num_block): batch_size, num_block, block_size, _ = sparse_query.size() if len(sparse_query.size()) != 4: raise ValueError("sparse_query must be a 4-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") _, _, block_size, _ = sparse_query.size() batch_size, num_block = indices.size() sparse_query = sparse_query.sum(dim=2).reshape(batch_size * num_block, block_size) batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device) global_idxes = ( torch.div(indices, key_num_block, rounding_mode="floor").long() + batch_idx[:, None] * query_num_block ).reshape(batch_size * num_block) temp = torch.zeros( (batch_size * query_num_block, block_size), dtype=sparse_query.dtype, device=sparse_query.device ) output = temp.index_add(0, global_idxes, sparse_query).reshape(batch_size, query_num_block, block_size) output = output.reshape(batch_size, query_num_block * block_size) return output def get_low_resolution_logit(query, key, block_size, mask=None, value=None): """ Compute low resolution approximation. """ batch_size, seq_len, head_dim = query.size() num_block_per_row = seq_len // block_size value_hat = None if mask is not None: token_count = mask.reshape(batch_size, num_block_per_row, block_size).sum(dim=-1) query_hat = query.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / ( token_count[:, :, None] + 1e-6 ) key_hat = key.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / ( token_count[:, :, None] + 1e-6 ) if value is not None: value_hat = value.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / ( token_count[:, :, None] + 1e-6 ) else: token_count = block_size * torch.ones(batch_size, num_block_per_row, dtype=torch.float, device=query.device) query_hat = query.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2) key_hat = key.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2) if value is not None: value_hat = value.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2) low_resolution_logit = torch.matmul(query_hat, key_hat.transpose(-1, -2)) / math.sqrt(head_dim) low_resolution_logit_row_max = low_resolution_logit.max(dim=-1, keepdims=True).values if mask is not None: low_resolution_logit = ( low_resolution_logit - 1e4 * ((token_count[:, None, :] * token_count[:, :, None]) < 0.5).float() ) return low_resolution_logit, token_count, low_resolution_logit_row_max, value_hat def get_block_idxes( low_resolution_logit, num_blocks, approx_mode, initial_prior_first_n_blocks, initial_prior_diagonal_n_blocks ): """ Compute the indices of the subset of components to be used in the approximation. """ batch_size, total_blocks_per_row, _ = low_resolution_logit.shape if initial_prior_diagonal_n_blocks > 0: offset = initial_prior_diagonal_n_blocks // 2 temp_mask = torch.ones(total_blocks_per_row, total_blocks_per_row, device=low_resolution_logit.device) diagonal_mask = torch.tril(torch.triu(temp_mask, diagonal=-offset), diagonal=offset) low_resolution_logit = low_resolution_logit + diagonal_mask[None, :, :] * 5e3 if initial_prior_first_n_blocks > 0: low_resolution_logit[:, :initial_prior_first_n_blocks, :] = ( low_resolution_logit[:, :initial_prior_first_n_blocks, :] + 5e3 ) low_resolution_logit[:, :, :initial_prior_first_n_blocks] = ( low_resolution_logit[:, :, :initial_prior_first_n_blocks] + 5e3 ) top_k_vals = torch.topk( low_resolution_logit.reshape(batch_size, -1), num_blocks, dim=-1, largest=True, sorted=False ) indices = top_k_vals.indices if approx_mode == "full": threshold = top_k_vals.values.min(dim=-1).values high_resolution_mask = (low_resolution_logit >= threshold[:, None, None]).float() elif approx_mode == "sparse": high_resolution_mask = None else: raise ValueError(f"{approx_mode} is not a valid approx_model value.") return indices, high_resolution_mask def mra2_attention( query, key, value, mask, num_blocks, approx_mode, block_size=32, initial_prior_first_n_blocks=0, initial_prior_diagonal_n_blocks=0, ): """ Use Mra to approximate self-attention. """ if mra_cuda_kernel is None: return torch.zeros_like(query).requires_grad_() batch_size, num_head, seq_len, head_dim = query.size() meta_batch = batch_size * num_head if seq_len % block_size != 0: raise ValueError("sequence length must be divisible by the block_size.") num_block_per_row = seq_len // block_size query = query.reshape(meta_batch, seq_len, head_dim) key = key.reshape(meta_batch, seq_len, head_dim) value = value.reshape(meta_batch, seq_len, head_dim) if mask is not None: query = query * mask[:, :, None] key = key * mask[:, :, None] value = value * mask[:, :, None] if approx_mode == "full": low_resolution_logit, token_count, low_resolution_logit_row_max, value_hat = get_low_resolution_logit( query, key, block_size, mask, value ) elif approx_mode == "sparse": with torch.no_grad(): low_resolution_logit, token_count, low_resolution_logit_row_max, _ = get_low_resolution_logit( query, key, block_size, mask ) else: raise Exception('approx_mode must be "full" or "sparse"') with torch.no_grad(): low_resolution_logit_normalized = low_resolution_logit - low_resolution_logit_row_max indices, high_resolution_mask = get_block_idxes( low_resolution_logit_normalized, num_blocks, approx_mode, initial_prior_first_n_blocks, initial_prior_diagonal_n_blocks, ) high_resolution_logit = MraSampledDenseMatMul.operator_call( query, key, indices, block_size=block_size ) / math.sqrt(head_dim) max_vals, max_vals_scatter = sparse_max(high_resolution_logit, indices, num_block_per_row, num_block_per_row) high_resolution_logit = high_resolution_logit - max_vals_scatter if mask is not None: high_resolution_logit = high_resolution_logit - 1e4 * (1 - sparse_mask(mask, indices)[:, :, :, None]) high_resolution_attn = torch.exp(high_resolution_logit) high_resolution_attn_out = MraSparseDenseMatMul.operator_call( high_resolution_attn, indices, value, num_block_per_row ) high_resolution_normalizer = MraReduceSum.operator_call( high_resolution_attn, indices, num_block_per_row, num_block_per_row ) if approx_mode == "full": low_resolution_attn = ( torch.exp(low_resolution_logit - low_resolution_logit_row_max - 1e4 * high_resolution_mask) * token_count[:, None, :] ) low_resolution_attn_out = ( torch.matmul(low_resolution_attn, value_hat)[:, :, None, :] .repeat(1, 1, block_size, 1) .reshape(meta_batch, seq_len, head_dim) ) low_resolution_normalizer = ( low_resolution_attn.sum(dim=-1)[:, :, None].repeat(1, 1, block_size).reshape(meta_batch, seq_len) ) log_correction = low_resolution_logit_row_max.repeat(1, 1, block_size).reshape(meta_batch, seq_len) - max_vals if mask is not None: log_correction = log_correction * mask low_resolution_corr = torch.exp(log_correction * (log_correction <= 0).float()) low_resolution_attn_out = low_resolution_attn_out * low_resolution_corr[:, :, None] low_resolution_normalizer = low_resolution_normalizer * low_resolution_corr high_resolution_corr = torch.exp(-log_correction * (log_correction > 0).float()) high_resolution_attn_out = high_resolution_attn_out * high_resolution_corr[:, :, None] high_resolution_normalizer = high_resolution_normalizer * high_resolution_corr context_layer = (high_resolution_attn_out + low_resolution_attn_out) / ( high_resolution_normalizer[:, :, None] + low_resolution_normalizer[:, :, None] + 1e-6 ) elif approx_mode == "sparse": context_layer = high_resolution_attn_out / (high_resolution_normalizer[:, :, None] + 1e-6) else: raise Exception('config.approx_mode must be "full" or "sparse"') if mask is not None: context_layer = context_layer * mask[:, :, None] context_layer = context_layer.reshape(batch_size, num_head, seq_len, head_dim) return context_layer class MraEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), persistent=False, ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MraSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) kernel_loaded = mra_cuda_kernel is not None if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded: try: load_cuda_kernels() except Exception as e: logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}") self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = ( position_embedding_type if position_embedding_type is not None else config.position_embedding_type ) self.num_block = (config.max_position_embeddings // 32) * config.block_per_row self.num_block = min(self.num_block, int((config.max_position_embeddings // 32) ** 2)) self.approx_mode = config.approx_mode self.initial_prior_first_n_blocks = config.initial_prior_first_n_blocks self.initial_prior_diagonal_n_blocks = config.initial_prior_diagonal_n_blocks def transpose_for_scores(self, layer): new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size) layer = layer.view(*new_layer_shape) return layer.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) batch_size, num_heads, seq_len, head_dim = query_layer.size() # revert changes made by get_extended_attention_mask attention_mask = 1.0 + attention_mask / 10000.0 attention_mask = ( attention_mask.squeeze().repeat(1, num_heads, 1).reshape(batch_size * num_heads, seq_len).int() ) # The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs # smaller than this are padded with zeros. gpu_warp_size = 32 if head_dim < gpu_warp_size: pad_size = batch_size, num_heads, seq_len, gpu_warp_size - head_dim query_layer = torch.cat([query_layer, torch.zeros(pad_size, device=query_layer.device)], dim=-1) key_layer = torch.cat([key_layer, torch.zeros(pad_size, device=key_layer.device)], dim=-1) value_layer = torch.cat([value_layer, torch.zeros(pad_size, device=value_layer.device)], dim=-1) context_layer = mra2_attention( query_layer.float(), key_layer.float(), value_layer.float(), attention_mask.float(), self.num_block, approx_mode=self.approx_mode, initial_prior_first_n_blocks=self.initial_prior_first_n_blocks, initial_prior_diagonal_n_blocks=self.initial_prior_diagonal_n_blocks, ) if head_dim < gpu_warp_size: context_layer = context_layer[:, :, :, :head_dim] context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class MraSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class MraAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = MraSelfAttention(config, position_embedding_type=position_embedding_type) self.output = MraSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, attention_mask=None): self_outputs = self.self(hidden_states, attention_mask) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class MraIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class MraOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class MraLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = MraAttention(config) self.add_cross_attention = config.add_cross_attention self.intermediate = MraIntermediate(config) self.output = MraOutput(config) def forward(self, hidden_states, attention_mask=None): self_attention_outputs = self.attention(hidden_states, attention_mask) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class MraEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([MraLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, ) else: layer_outputs = layer_module(hidden_states, attention_mask) hidden_states = layer_outputs[0] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform class MraPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Mra class MraLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MraPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Mra class MraOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MraLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.yoso.modeling_yoso.YosoPreTrainedModel with Yoso->Mra,yoso->mra class MraPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MraConfig base_model_prefix = "mra" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) MRA_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MraConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MRA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MRA Model transformer outputting raw hidden-states without any specific head on top.", MRA_START_DOCSTRING, ) class MraModel(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = MraEmbeddings(config) self.encoder = MraEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutputWithCrossAttentions( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings("""MRA Model with a `language modeling` head on top.""", MRA_START_DOCSTRING) class MraForMaskedLM(MraPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mra = MraModel(config) self.cls = MraOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.yoso.modeling_yoso.YosoClassificationHead with Yoso->Mra class MraClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) self.config = config def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """MRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.""", MRA_START_DOCSTRING, ) class MraForSequenceClassification(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mra = MraModel(config) self.classifier = MraClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """MRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""", MRA_START_DOCSTRING, ) class MraForMultipleChoice(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.mra = MraModel(config) self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_state = outputs[0] # (bs * num_choices, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs * num_choices, dim) pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim) pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """MRA Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""", MRA_START_DOCSTRING, ) class MraForTokenClassification(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mra = MraModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """MRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""", MRA_START_DOCSTRING, ) class MraForQuestionAnswering(MraPreTrainedModel): def __init__(self, config): super().__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.mra = MraModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/mra/modeling_mra.py/0
{ "file_path": "transformers/src/transformers/models/mra/modeling_mra.py", "repo_id": "transformers", "token_count": 26095 }
101
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = {"configuration_nat": ["NAT_PRETRAINED_CONFIG_ARCHIVE_MAP", "NatConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_nat"] = [ "NAT_PRETRAINED_MODEL_ARCHIVE_LIST", "NatForImageClassification", "NatModel", "NatPreTrainedModel", "NatBackbone", ] if TYPE_CHECKING: from .configuration_nat import NAT_PRETRAINED_CONFIG_ARCHIVE_MAP, NatConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nat import ( NAT_PRETRAINED_MODEL_ARCHIVE_LIST, NatBackbone, NatForImageClassification, NatModel, NatPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/nat/__init__.py/0
{ "file_path": "transformers/src/transformers/models/nat/__init__.py", "repo_id": "transformers", "token_count": 657 }
102
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Nougat. """ from typing import Dict, List, Optional, Union from transformers.tokenization_utils_base import PreTokenizedInput, TextInput, TruncationStrategy from ...processing_utils import ProcessorMixin from ...utils import PaddingStrategy, TensorType class NougatProcessor(ProcessorMixin): r""" Constructs a Nougat processor which wraps a Nougat image processor and a Nougat tokenizer into a single processor. [`NougatProcessor`] offers all the functionalities of [`NougatImageProcessor`] and [`NougatTokenizerFast`]. See the [`~NougatProcessor.__call__`] and [`~NougatProcessor.decode`] for more information. Args: image_processor ([`NougatImageProcessor`]): An instance of [`NougatImageProcessor`]. The image processor is a required input. tokenizer ([`NougatTokenizerFast`]): An instance of [`NougatTokenizerFast`]. The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__(self, image_processor, tokenizer): super().__init__(image_processor, tokenizer) self.current_processor = self.image_processor def __call__( self, images=None, text=None, do_crop_margin: bool = None, do_resize: bool = None, size: Dict[str, int] = None, resample: "PILImageResampling" = None, # noqa: F821 do_thumbnail: bool = None, do_align_long_axis: bool = None, do_pad: bool = None, do_rescale: bool = None, rescale_factor: Union[int, float] = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821 input_data_format: Optional[Union[str, "ChannelDimension"]] = None, # noqa: F821 text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair_target: Optional[ Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] ] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, ): if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process.") if images is not None: inputs = self.image_processor( images, do_crop_margin=do_crop_margin, do_resize=do_resize, size=size, resample=resample, do_thumbnail=do_thumbnail, do_align_long_axis=do_align_long_axis, do_pad=do_pad, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, return_tensors=return_tensors, data_format=data_format, input_data_format=input_data_format, ) if text is not None: encodings = self.tokenizer( text, text_pair=text_pair, text_target=text_target, text_pair_target=text_pair_target, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, ) if text is None: return inputs elif images is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def post_process_generation(self, *args, **kwargs): """ This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.post_process_generation`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.post_process_generation(*args, **kwargs)
transformers/src/transformers/models/nougat/processing_nougat.py/0
{ "file_path": "transformers/src/transformers/models/nougat/processing_nougat.py", "repo_id": "transformers", "token_count": 2932 }
103
# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 OpenAI GPT model.""" from __future__ import annotations from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput, TFSequenceClassifierOutput from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFConv1D, TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, TFSequenceSummary, TFSharedEmbeddings, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_openai import OpenAIGPTConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "openai-community/openai-gpt" _CONFIG_FOR_DOC = "OpenAIGPTConfig" TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "openai-community/openai-gpt", # See all OpenAI GPT models at https://huggingface.co/models?filter=openai-community/openai-gpt ] class TFAttention(keras.layers.Layer): def __init__(self, nx, config, scale=False, **kwargs): super().__init__(**kwargs) n_state = nx # in Attention: n_state=768 (nx=n_embd) # [switch nx => n_state from Block to Attention to keep identical to TF implementation] assert ( n_state % config.n_head == 0 ), f"Hidden dimension {n_state} not dividable by number of heads {config.n_head}" self.n_head = config.n_head self.split_size = n_state self.scale = scale self.output_attentions = config.output_attentions self.c_attn = TFConv1D(n_state * 3, nx, initializer_range=config.initializer_range, name="c_attn") self.c_proj = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_proj") self.attn_dropout = keras.layers.Dropout(config.attn_pdrop) self.resid_dropout = keras.layers.Dropout(config.resid_pdrop) self.n_state = n_state self.pruned_heads = set() def prune_heads(self, heads): pass @staticmethod def causal_attention_mask(nd, ns): """ 1's in the lower triangle, counting from the lower right corner. Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs. """ i = tf.range(nd)[:, None] j = tf.range(ns) m = i >= j - ns + nd return m def _attn(self, q, k, v, attention_mask, head_mask, output_attentions, training=False): # q, k, v have shape [batch, heads, sequence, features] w = tf.matmul(q, k, transpose_b=True) if self.scale: dk = tf.cast(shape_list(k)[-1], dtype=w.dtype) # scale attention_scores w = w / tf.math.sqrt(dk) # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst. _, _, nd, ns = shape_list(w) b = tf.cast(self.causal_attention_mask(nd, ns), dtype=w.dtype) b = tf.reshape(b, [1, 1, nd, ns]) w = w * b - 1e4 * (1 - b) if attention_mask is not None: # Apply the attention mask attention_mask = tf.cast(attention_mask, dtype=w.dtype) w = w + attention_mask w = stable_softmax(w, axis=-1) w = self.attn_dropout(w, training=training) # Mask heads if we want to if head_mask is not None: w = w * head_mask outputs = [tf.matmul(w, v)] if output_attentions: outputs.append(w) return outputs def merge_heads(self, x): x = tf.transpose(x, [0, 2, 1, 3]) x_shape = shape_list(x) new_x_shape = x_shape[:-2] + [x_shape[-2] * x_shape[-1]] return tf.reshape(x, new_x_shape) def split_heads(self, x): x_shape = shape_list(x) new_x_shape = x_shape[:-1] + [self.n_head, x_shape[-1] // self.n_head] x = tf.reshape(x, new_x_shape) return tf.transpose(x, (0, 2, 1, 3)) # (batch, head, seq_length, head_features) def call(self, x, attention_mask, head_mask, output_attentions, training=False): x = self.c_attn(x) query, key, value = tf.split(x, 3, axis=2) query = self.split_heads(query) key = self.split_heads(key) value = self.split_heads(value) attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions, training=training) a = attn_outputs[0] a = self.merge_heads(a) a = self.c_proj(a) a = self.resid_dropout(a, training=training) outputs = [a] + attn_outputs[1:] return outputs # a, (attentions) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "c_attn", None) is not None: with tf.name_scope(self.c_attn.name): self.c_attn.build([None, None, self.n_state * 3]) if getattr(self, "c_proj", None) is not None: with tf.name_scope(self.c_proj.name): self.c_proj.build([None, None, self.n_state]) class TFMLP(keras.layers.Layer): def __init__(self, n_state, config, **kwargs): super().__init__(**kwargs) nx = config.n_embd self.c_fc = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_fc") self.c_proj = TFConv1D(nx, n_state, initializer_range=config.initializer_range, name="c_proj") self.act = get_tf_activation("gelu") self.dropout = keras.layers.Dropout(config.resid_pdrop) self.nx = nx self.n_state = n_state def call(self, x, training=False): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) h2 = self.dropout(h2, training=training) return h2 def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "c_fc", None) is not None: with tf.name_scope(self.c_fc.name): self.c_fc.build([None, None, self.n_state]) if getattr(self, "c_proj", None) is not None: with tf.name_scope(self.c_proj.name): self.c_proj.build([None, None, self.nx]) class TFBlock(keras.layers.Layer): def __init__(self, config, scale=False, **kwargs): super().__init__(**kwargs) nx = config.n_embd self.attn = TFAttention(nx, config, scale, name="attn") self.ln_1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1") self.mlp = TFMLP(4 * nx, config, name="mlp") self.ln_2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_2") self.nx = nx def call(self, x, attention_mask, head_mask, output_attentions, training=False): output_attn = self.attn(x, attention_mask, head_mask, output_attentions, training=training) a = output_attn[0] # output_attn: a, (attentions) n = self.ln_1(x + a) m = self.mlp(n, training=training) h = self.ln_2(n + m) outputs = [h] + output_attn[1:] return outputs # x, (attentions) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attn", None) is not None: with tf.name_scope(self.attn.name): self.attn.build(None) if getattr(self, "ln_1", None) is not None: with tf.name_scope(self.ln_1.name): self.ln_1.build([None, None, self.nx]) if getattr(self, "mlp", None) is not None: with tf.name_scope(self.mlp.name): self.mlp.build(None) if getattr(self, "ln_2", None) is not None: with tf.name_scope(self.ln_2.name): self.ln_2.build([None, None, self.nx]) @keras_serializable class TFOpenAIGPTMainLayer(keras.layers.Layer): config_class = OpenAIGPTConfig def __init__(self, config, *inputs, **kwargs): super().__init__(*inputs, **kwargs) self.config = config self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.return_dict = config.use_return_dict self.num_hidden_layers = config.n_layer self.n_embd = config.n_embd self.n_positions = config.n_positions self.initializer_range = config.initializer_range self.tokens_embed = TFSharedEmbeddings( config.vocab_size, config.n_embd, initializer_range=config.initializer_range, name="tokens_embed" ) self.drop = keras.layers.Dropout(config.embd_pdrop) self.h = [TFBlock(config, scale=True, name=f"h_._{i}") for i in range(config.n_layer)] def build(self, input_shape=None): with tf.name_scope("positions_embed"): self.positions_embed = self.add_weight( name="embeddings", shape=[self.n_positions, self.n_embd], initializer=get_initializer(self.initializer_range), ) if self.built: return self.built = True if getattr(self, "tokens_embed", None) is not None: with tf.name_scope(self.tokens_embed.name): self.tokens_embed.build(None) if getattr(self, "h", None) is not None: for layer in self.h: with tf.name_scope(layer.name): layer.build(None) def get_input_embeddings(self): return self.tokens_embed def set_input_embeddings(self, value): self.tokens_embed.weight = value self.tokens_embed.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ raise NotImplementedError @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutput]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) input_ids = tf.reshape(input_ids, [-1, input_shape[-1]]) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if position_ids is None: position_ids = tf.expand_dims(tf.range(input_shape[-1]), axis=0) if attention_mask is not None: # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. one_cst = tf.constant(1.0) attention_mask = tf.cast(attention_mask, dtype=one_cst.dtype) attention_mask = tf.multiply(tf.subtract(one_cst, attention_mask), tf.constant(-10000.0)) else: attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.num_hidden_layers # head_mask = tf.constant([0] * self.num_hidden_layers) position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]]) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = self.tokens_embed(input_ids, mode="embedding") position_embeds = tf.gather(self.positions_embed, position_ids) if token_type_ids is not None: token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]]) check_embeddings_within_bounds(token_type_ids, self.config.vocab_size, "token_type_ids") token_type_embeds = self.tokens_embed(token_type_ids, mode="embedding") else: token_type_embeds = 0 hidden_states = inputs_embeds + position_embeds + token_type_embeds hidden_states = self.drop(hidden_states, training=training) output_shape = input_shape + [shape_list(hidden_states)[-1]] all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, block in enumerate(self.h): if output_hidden_states: all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),) outputs = block( hidden_states, attention_mask, head_mask[i], output_attentions, training=training, ) hidden_states = outputs[0] if output_attentions: all_attentions = all_attentions + (outputs[1],) hidden_states = tf.reshape(hidden_states, output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if output_attentions: # let the number of heads free (-1) so we can extract attention even after head pruning attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:] all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, ) class TFOpenAIGPTPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = OpenAIGPTConfig base_model_prefix = "transformer" @dataclass class TFOpenAIGPTDoubleHeadsModelOutput(ModelOutput): """ Base class for outputs of models predicting if two sentences are consecutive or not. Args: logits (`tf.Tensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). mc_logits (`tf.Tensor` of shape `(batch_size, num_choices)`): Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None mc_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None OPENAI_GPT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`OpenAIGPTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ OPENAI_GPT_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`tf.Tensor` or `Numpy array` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare OpenAI GPT transformer model outputting raw hidden-states without any specific head on top.", OPENAI_GPT_START_DOCSTRING, ) class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") @unpack_inputs @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutput]: outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) @add_start_docstrings( """ OpenAI GPT Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, OPENAI_GPT_START_DOCSTRING, ) class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") # OpenAIGPT does not have past caching features self.supports_xla_generation = False def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) @unpack_inputs @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFCausalLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = transformer_outputs[0] logits = self.transformer.tokens_embed(hidden_states, mode="linear") loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels, shifted_logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def prepare_inputs_for_generation(self, inputs, **kwargs): return {"input_ids": inputs} def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) @add_start_docstrings( """ OpenAI GPT Model transformer with a language modeling and a multiple-choice classification head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the input embeddings, the classification head takes as input the input of a specified classification token index in the input sequence). """, OPENAI_GPT_START_DOCSTRING, ) class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) config.num_labels = 1 self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") self.multiple_choice_head = TFSequenceSummary( config, initializer_range=config.initializer_range, name="multiple_choice_head" ) @unpack_inputs @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFOpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, mc_token_ids: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFOpenAIGPTDoubleHeadsModelOutput]: r""" mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input): Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) - 1]`. Return: Examples: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFOpenAIGPTDoubleHeadsModel >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt") >>> model = TFOpenAIGPTDoubleHeadsModel.from_pretrained("openai-community/openai-gpt") >>> # Add a [CLS] to the vocabulary (we should train it also!) >>> tokenizer.add_special_tokens({"cls_token": "[CLS]"}) >>> model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size >>> print(tokenizer.cls_token_id, len(tokenizer)) # The newly token the last token of the vocabulary >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] >>> encoding = tokenizer(choices, return_tensors="tf") >>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()} >>> inputs["mc_token_ids"] = tf.constant( ... [inputs["input_ids"].shape[-1] - 1, inputs["input_ids"].shape[-1] - 1] ... )[ ... None, : ... ] # Batch size 1 >>> outputs = model(inputs) >>> lm_prediction_scores, mc_prediction_scores = outputs[:2] ```""" if input_ids is not None: input_shapes = shape_list(input_ids) else: input_shapes = shape_list(inputs_embeds)[:-1] seq_length = input_shapes[-1] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None transformer_outputs = self.transformer( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = transformer_outputs[0] hidden_states = tf.reshape(hidden_states, input_shapes + shape_list(hidden_states)[-1:]) if return_dict and output_hidden_states: # We do this to match the slightly odd PT behaviour - the final hidden state is reshaped to rank 4 when the # input is rank 3, but all other hidden states remain at rank-3 (with the first 2 dims merged) all_hidden_states = transformer_outputs.hidden_states[:-1] + (hidden_states,) else: all_hidden_states = None lm_logits = self.transformer.tokens_embed(hidden_states, mode="linear") mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids, training=training) mc_logits = tf.squeeze(mc_logits, axis=-1) if not return_dict: return (lm_logits, mc_logits) + transformer_outputs[1:] return TFOpenAIGPTDoubleHeadsModelOutput( logits=lm_logits, mc_logits=mc_logits, hidden_states=all_hidden_states, attentions=transformer_outputs.attentions, ) @property def input_signature(self): return { "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), "mc_token_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"), } def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "multiple_choice_head", None) is not None: with tf.name_scope(self.multiple_choice_head.name): self.multiple_choice_head.build(None) @add_start_docstrings( """ The OpenAI GPT Model transformer with a sequence classification head on top (linear layer). [`TFOpenAIGPTForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, OPENAI_GPT_START_DOCSTRING, ) class TFOpenAIGPTForSequenceClassification(TFOpenAIGPTPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.score = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="score", use_bias=False, ) self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFSequenceClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) in_logits = None if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = ( tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1) - 1 ) sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1) in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) loss = None if labels is not None: if input_ids is not None: batch_size, sequence_length = shape_list(input_ids)[:2] else: batch_size, sequence_length = shape_list(inputs_embeds)[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if not tf.is_tensor(sequence_lengths): in_logits = logits[0:batch_size, sequence_lengths] loss = self.hf_compute_loss(tf.reshape(labels, [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels])) pooled_logits = in_logits if in_logits is not None else logits if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=pooled_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "score", None) is not None: with tf.name_scope(self.score.name): self.score.build([None, None, self.config.n_embd]) if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None)
transformers/src/transformers/models/openai/modeling_tf_openai.py/0
{ "file_path": "transformers/src/transformers/models/openai/modeling_tf_openai.py", "repo_id": "transformers", "token_count": 17651 }
104
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ OWL-ViT model configuration""" import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class OwlViTTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`OwlViTTextModel`]. It is used to instantiate an OwlViT text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the OwlViT [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 49408): Vocabulary size of the OWL-ViT text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`OwlViTTextModel`]. hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. max_position_embeddings (`int`, *optional*, defaults to 16): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). pad_token_id (`int`, *optional*, defaults to 0): The id of the padding token in the input sequences. bos_token_id (`int`, *optional*, defaults to 49406): The id of the beginning-of-sequence token in the input sequences. eos_token_id (`int`, *optional*, defaults to 49407): The id of the end-of-sequence token in the input sequences. Example: ```python >>> from transformers import OwlViTTextConfig, OwlViTTextModel >>> # Initializing a OwlViTTextModel with google/owlvit-base-patch32 style configuration >>> configuration = OwlViTTextConfig() >>> # Initializing a OwlViTTextConfig from the google/owlvit-base-patch32 style configuration >>> model = OwlViTTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "owlvit_text_model" def __init__( self, vocab_size=49408, hidden_size=512, intermediate_size=2048, num_hidden_layers=12, num_attention_heads=8, max_position_embeddings=16, hidden_act="quick_gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, pad_token_id=0, bos_token_id=49406, eos_token_id=49407, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.initializer_factor = initializer_factor @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type") == "owlvit": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class OwlViTVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`OwlViTVisionModel`]. It is used to instantiate an OWL-ViT image encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the OWL-ViT [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. image_size (`int`, *optional*, defaults to 768): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). Example: ```python >>> from transformers import OwlViTVisionConfig, OwlViTVisionModel >>> # Initializing a OwlViTVisionModel with google/owlvit-base-patch32 style configuration >>> configuration = OwlViTVisionConfig() >>> # Initializing a OwlViTVisionModel model from the google/owlvit-base-patch32 style configuration >>> model = OwlViTVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "owlvit_vision_model" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=768, patch_size=32, hidden_act="quick_gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.initializer_factor = initializer_factor @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type") == "owlvit": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class OwlViTConfig(PretrainedConfig): r""" [`OwlViTConfig`] is the configuration class to store the configuration of an [`OwlViTModel`]. It is used to instantiate an OWL-ViT model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the OWL-ViT [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`OwlViTTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`OwlViTVisionConfig`]. projection_dim (`int`, *optional*, defaults to 512): Dimensionality of text and vision projection layers. logit_scale_init_value (`float`, *optional*, defaults to 2.6592): The inital value of the *logit_scale* parameter. Default is used as per the original OWL-ViT implementation. return_dict (`bool`, *optional*, defaults to `True`): Whether or not the model should return a dictionary. If `False`, returns a tuple. kwargs (*optional*): Dictionary of keyword arguments. """ model_type = "owlvit" def __init__( self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, return_dict=True, **kwargs, ): super().__init__(**kwargs) if text_config is None: text_config = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values.") if vision_config is None: vision_config = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values.") self.text_config = OwlViTTextConfig(**text_config) self.vision_config = OwlViTVisionConfig(**vision_config) self.projection_dim = projection_dim self.logit_scale_init_value = logit_scale_init_value self.return_dict = return_dict self.initializer_factor = 1.0 @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) @classmethod def from_text_vision_configs(cls, text_config: Dict, vision_config: Dict, **kwargs): r""" Instantiate a [`OwlViTConfig`] (or a derived class) from owlvit text model configuration and owlvit vision model configuration. Returns: [`OwlViTConfig`]: An instance of a configuration object """ config_dict = {} config_dict["text_config"] = text_config config_dict["vision_config"] = vision_config return cls.from_dict(config_dict, **kwargs) class OwlViTOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4 def generate_dummy_inputs( self, processor: "ProcessorMixin", batch_size: int = -1, seq_length: int = -1, framework: Optional["TensorType"] = None, ) -> Mapping[str, Any]: text_input_dict = super().generate_dummy_inputs( processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework ) image_input_dict = super().generate_dummy_inputs( processor.image_processor, batch_size=batch_size, framework=framework ) return {**text_input_dict, **image_input_dict} @property def default_onnx_opset(self) -> int: return 14
transformers/src/transformers/models/owlvit/configuration_owlvit.py/0
{ "file_path": "transformers/src/transformers/models/owlvit/configuration_owlvit.py", "repo_id": "transformers", "token_count": 6648 }
105
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import warnings import flatdict import torch from transformers import LlamaTokenizer, PersimmonConfig, PersimmonForCausalLM try: from transformers import LlamaTokenizerFast tokenizer_class = LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) tokenizer_class = LlamaTokenizer """ Sample usage: ``` git clone https://github.com/persimmon-ai-labs/adept-inference wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_base_model_release.tar wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_chat_model_release.tar python src/transformers/models/persimmon/convert_persimmon_weights_to_hf.py --input_dir /path/to/downloaded/persimmon/weights/ --output_dir /output/path ``` Thereafter, models can be loaded via: ```py from transformers import PersimmonForCausalLM, PersimmonTokenizer model = PersimmonForCausalLM.from_pretrained("/output/path") tokenizer = PersimmonTokenizer.from_pretrained("/output/path") ``` Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). """ KEYS_TO_MODIFY_MAPPING = { "self_attention": "self_attn", "language_model.encoder": "model", "word_embeddings_for_head": "lm_head", "language_model.embedding.word_embeddings": "model.embed_tokens", } KEYS_TO_REMOVE = "rotary_emb.inv_freq" def rename_state_dict(state_dict): model_state_dict = {} for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: key = key.replace(key_to_modify, new_key) if KEYS_TO_REMOVE in key: continue model_state_dict[key] = value return model_state_dict def convert_persimmon_checkpoint(pytorch_dump_folder_path, ada_lib_path, pt_model_path, safe_serialization=False): import sys sys.path.insert(0, ada_lib_path) model_state_dict_base = torch.load(pt_model_path, map_location="cpu") state_dict = flatdict.FlatDict(model_state_dict_base["model"], ".") state_dict = rename_state_dict(state_dict) transformers_config = PersimmonConfig() model = PersimmonForCausalLM(transformers_config, eos_token_id=71013, bos_token_id=71013).to(torch.bfloat16) model.load_state_dict(state_dict) model.save_pretrained(pytorch_dump_folder_path, safe_serialization=safe_serialization) transformers_config.save_pretrained(pytorch_dump_folder_path) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--input_dir", help="Location of Persimmon weights, which contains tokenizer.model and model folders", ) parser.add_argument( "--pt_model_path", help="Location of Persimmon `model_optim_rng.pt`", ) parser.add_argument( "--output_dir", help="Location to write HF model and tokenizer", ) parser.add_argument( "--ada_lib_path", help="Location to write HF model and tokenizer", ) parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.") args = parser.parse_args() spm_path = os.path.join(args.input_dir, "adept_vocab.model") convert_persimmon_checkpoint( pytorch_dump_folder_path=args.output_dir, pt_model_path=args.pt_model_path, safe_serialization=args.safe_serialization, ada_lib_path=args.ada_lib_path, ) tokenizer = tokenizer_class(spm_path, bos_token="|ENDOFTEXT|", eos_token="|ENDOFTEXT|") tokenizer.save_pretrained(args.output_dir) if __name__ == "__main__": main()
transformers/src/transformers/models/persimmon/convert_persimmon_weights_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/persimmon/convert_persimmon_weights_to_hf.py", "repo_id": "transformers", "token_count": 1749 }
106
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from torch import nn from transformers import PLBartConfig, PLBartForConditionalGeneration, PLBartForSequenceClassification def remove_ignore_keys_(state_dict): ignore_keys = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(k, None) def make_linear_from_emb(emb): vocab_size, emb_size = emb.weight.shape lin_layer = nn.Linear(vocab_size, emb_size, bias=False) lin_layer.weight.data = emb.weight.data return lin_layer def convert_fairseq_plbart_checkpoint_from_disk( checkpoint_path, hf_config_path="uclanlp/plbart-base", finetuned=False, classification=False ): state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] remove_ignore_keys_(state_dict) vocab_size = state_dict["encoder.embed_tokens.weight"].shape[0] plbart_config = PLBartConfig.from_pretrained(hf_config_path, vocab_size=vocab_size) state_dict["shared.weight"] = state_dict["decoder.embed_tokens.weight"] if not classification: model = PLBartForConditionalGeneration(plbart_config) model.model.load_state_dict(state_dict) if finetuned: model.lm_head = make_linear_from_emb(model.model.shared) else: classification_head = {} for key, value in state_dict.copy().items(): if key.startswith("classification_heads.sentence_classification_head"): classification_head[key.replace("classification_heads.sentence_classification_head.", "")] = value state_dict.pop(key) model = PLBartForSequenceClassification(plbart_config) model.model.load_state_dict(state_dict) model.classification_head.load_state_dict(classification_head) return model if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="uclanlp/plbart-base", type=str, help="Which huggingface architecture to use: plbart-base", ) parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") parser.add_argument( "--classification", action="store_true", help="whether the model is a classification checkpoint" ) args = parser.parse_args() model = convert_fairseq_plbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, classification=args.classification, ) model.save_pretrained(args.pytorch_dump_folder_path)
transformers/src/transformers/models/plbart/convert_plbart_original_checkpoint_to_torch.py/0
{ "file_path": "transformers/src/transformers/models/plbart/convert_plbart_original_checkpoint_to_torch.py", "repo_id": "transformers", "token_count": 1325 }
107
# coding=utf-8 # Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Qwen2.""" import json import os import unicodedata from functools import lru_cache from typing import Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/vocab.json"}, "merges_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/merges.txt"}, } MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768} PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""" @lru_cache() # Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) # Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class Qwen2Tokenizer(PreTrainedTokenizer): """ Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding. Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import Qwen2Tokenizer >>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer") >>> tokenizer("Hello world")["input_ids"] [9707, 1879] >>> tokenizer(" Hello world")["input_ids"] [21927, 1879] ``` This is expected. You should not use GPT2Tokenizer instead, because of the different pretokenization rules. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*): The beginning of sequence token. Not applicable for this tokenizer. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The token used for padding, for example when batching sequences of different lengths. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not the model should cleanup the spaces that were added when splitting the input text during the tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces. split_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the special tokens should be split during the tokenization process. The default behavior is to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") = ['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<', '|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = MAX_MODEL_INPUT_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", unk_token="<|endoftext|>", bos_token=None, eos_token="<|endoftext|>", pad_token="<|endoftext|>", clean_up_tokenization_spaces=False, split_special_tokens=False, **kwargs, ): # Qwen vocab does not contain control tokens; added tokens need to be special bos_token = ( AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(bos_token, str) else bos_token ) eos_token = ( AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(eos_token, str) else eos_token ) unk_token = ( AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(unk_token, str) else unk_token ) pad_token = ( AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(pad_token, str) else pad_token ) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} bpe_merges = [] with open(merges_file, encoding="utf-8") as merges_handle: for line in merges_handle: line = line.strip() if not line or line.startswith("#"): continue bpe_merges.append(tuple(line.split())) self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) # NOTE: the cache can grow without bound and will get really large for long running processes # (esp. for texts of language that do not use space between word, e.g. Chinese); technically # not a memory leak but appears as one. # GPT2Tokenizer has the same problem, so let's be consistent. self.cache = {} self.pat = re.compile(PRETOKENIZE_REGEX) if kwargs.get("add_prefix_space", False): logger.warning_once( f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect." ) super().__init__( errors=errors, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, unk_token=unk_token, clean_up_tokenization_spaces=clean_up_tokenization_spaces, split_special_tokens=split_special_tokens, **kwargs, ) @property def vocab_size(self) -> int: return len(self.encoder) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def decode( self, token_ids, skip_special_tokens: bool = False, clean_up_tokenization_spaces: Optional[bool] = False, spaces_between_special_tokens: bool = False, **kwargs, ) -> str: # `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers # and cannot be configured elsewhere, but it should default to False for Qwen2Tokenizer return super().decode( token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, spaces_between_special_tokens=spaces_between_special_tokens, **kwargs, ) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def prepare_for_tokenization(self, text, **kwargs): text = unicodedata.normalize("NFC", text) return (text, kwargs)
transformers/src/transformers/models/qwen2/tokenization_qwen2.py/0
{ "file_path": "transformers/src/transformers/models/qwen2/tokenization_qwen2.py", "repo_id": "transformers", "token_count": 6208 }
108
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Reformer checkpoint.""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def set_param(torch_layer, weight, bias=None): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f"{torch_layer} layer.weight does not match" torch_layer.weight = nn.Parameter(weight) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"{torch_layer} layer.bias does not match" torch_layer.bias = nn.Parameter(bias) def set_layer_weights_in_torch_lsh(weights, torch_layer, hidden_size): # set torch weights for 1-to-1 comparison np_query_key = np.asarray(weights[0]) np_value = np.asarray(weights[1]) np_dense = np.asarray(weights[2]) set_param( torch_layer.self_attention.query_key, torch.tensor(np_query_key).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.self_attention.value, torch.tensor(np_value).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.output.dense, torch.tensor(np_dense).view(-1, hidden_size).contiguous().transpose(0, 1), ) def set_layer_weights_in_torch_local(weights, torch_layer, hidden_size): # set torch weights for 1-to-1 comparison np_query = np.asarray(weights[0]) np_key = np.asarray(weights[1]) np_value = np.asarray(weights[2]) np_dense = np.asarray(weights[3]) set_param( torch_layer.self_attention.query, torch.tensor(np_query).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.self_attention.key, torch.tensor(np_key).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.self_attention.value, torch.tensor(np_value).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.output.dense, torch.tensor(np_dense).view(-1, hidden_size).contiguous().transpose(0, 1), ) def set_block_weights_in_torch(weights, torch_block, hidden_size): # layernorm 1 layer_norm_1 = weights[0][0][0] layer_norm_1_weight = np.asarray(layer_norm_1[0]) layer_norm_1_bias = np.asarray(layer_norm_1[1]) set_param( torch_block.attention.layer_norm, torch.tensor(layer_norm_1_weight), torch.tensor(layer_norm_1_bias), ) # lsh weights + output attn_weights = weights[0][1] if len(attn_weights) < 4: set_layer_weights_in_torch_lsh(attn_weights, torch_block.attention, hidden_size) else: set_layer_weights_in_torch_local(attn_weights, torch_block.attention, hidden_size) # intermediate weighs intermediate_weights = weights[2][0][1][2] # Chunked Feed Forward if len(intermediate_weights) == 4: intermediate_weights = intermediate_weights[2] # layernorm 2 layer_norm_2_weight = np.asarray(intermediate_weights[0][0]) layer_norm_2_bias = np.asarray(intermediate_weights[0][1]) set_param( torch_block.feed_forward.layer_norm, torch.tensor(layer_norm_2_weight), torch.tensor(layer_norm_2_bias), ) # intermediate dense inter_dense_weight = np.asarray(intermediate_weights[1][0]) inter_dense_bias = np.asarray(intermediate_weights[1][1]) set_param( torch_block.feed_forward.dense.dense, torch.tensor(inter_dense_weight).transpose(0, 1).contiguous(), torch.tensor(inter_dense_bias), ) # intermediate out out_dense_weight = np.asarray(intermediate_weights[4][0]) out_dense_bias = np.asarray(intermediate_weights[4][1]) set_param( torch_block.feed_forward.output.dense, torch.tensor(out_dense_weight).transpose(0, 1).contiguous(), torch.tensor(out_dense_bias), ) def set_model_weights_in_torch(weights, torch_model, hidden_size): # reformer model torch_model_reformer = torch_model.reformer # word embeds word_embeddings = np.asarray(weights[1]) set_param( torch_model_reformer.embeddings.word_embeddings, torch.tensor(word_embeddings), ) if isinstance(weights[3], tuple): position_embeddings = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights)): emb_weights = np.asarray(weights[3][emb_idx][0]) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"{position_embeddings[emb_idx]} emb does not match" position_embeddings.weights[emb_idx] = nn.Parameter(torch.tensor(emb_weights)) trax_layer_weights = weights[5] assert len(torch_model_reformer.encoder.layers) * 4 == len( trax_layer_weights ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers): block_weights = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(block_weights, layer, hidden_size) # output layer norm layer_norm_out_weight = np.asarray(weights[7][0]) layer_norm_out_bias = np.asarray(weights[7][1]) set_param( torch_model_reformer.encoder.layer_norm, torch.tensor(layer_norm_out_weight), torch.tensor(layer_norm_out_bias), ) # output embeddings output_embed_weights = np.asarray(weights[9][0]) output_embed_bias = np.asarray(weights[9][1]) set_param( torch_model.lm_head.decoder, torch.tensor(output_embed_weights).transpose(0, 1).contiguous(), torch.tensor(output_embed_bias), ) def convert_trax_checkpoint_to_pytorch(trax_model_pkl_path, config_file, pytorch_dump_path): # Initialise PyTorch model config = ReformerConfig.from_json_file(config_file) print(f"Building PyTorch model from configuration: {config}") model = ReformerModelWithLMHead(config) with open(trax_model_pkl_path, "rb") as f: model_weights = pickle.load(f)["weights"] set_model_weights_in_torch(model_weights, model, config.hidden_size) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
transformers/src/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 3213 }
109
# coding=utf-8 # Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for RemBERT.""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/rembert": 256, } class RemBertTokenizer(PreTrainedTokenizer): """ Construct a RemBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"[CLS]"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"[SEP]"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=False, remove_space=True, keep_accents=True, bos_token="[CLS]", eos_token="[SEP]", unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(vocab_file) super().__init__( do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs, ) @property def vocab_size(self): return len(self.sp_model) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def _tokenize(self, text, sample=False): """Tokenize a string.""" pieces = self.sp_model.EncodeAsPieces(text) return pieces def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) def convert_tokens_to_string(self, tokens): out_string = self.sp_model.decode_pieces(tokens) return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A REMBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0] if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A RemBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
transformers/src/transformers/models/rembert/tokenization_rembert.py/0
{ "file_path": "transformers/src/transformers/models/rembert/tokenization_rembert.py", "repo_id": "transformers", "token_count": 4632 }
110
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _import_structure = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_roberta_prelayernorm"] = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_roberta_prelayernorm"] = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_roberta_prelayernorm"] = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/roberta_prelayernorm/__init__.py/0
{ "file_path": "transformers/src/transformers/models/roberta_prelayernorm/__init__.py", "repo_id": "transformers", "token_count": 2258 }
111
# coding=utf-8 # Copyright 2022 NVIDIA The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow SegFormer model.""" from __future__ import annotations import math from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import TFBaseModelOutput, TFSemanticSegmenterOutput, TFSequenceClassifierOutput from ...modeling_tf_utils import ( TFPreTrainedModel, TFSequenceClassificationLoss, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import logging from .configuration_segformer import SegformerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SegformerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "nvidia/mit-b0" _EXPECTED_OUTPUT_SHAPE = [1, 256, 16, 16] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "nvidia/mit-b0" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "nvidia/segformer-b0-finetuned-ade-512-512", # See all SegFormer models at https://huggingface.co/models?filter=segformer ] # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->Segformer class TFSegformerDropPath(keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path: float, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x: tf.Tensor, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x class TFSegformerOverlapPatchEmbeddings(keras.layers.Layer): """Construct the overlapping patch embeddings.""" def __init__(self, patch_size, stride, num_channels, hidden_size, **kwargs): super().__init__(**kwargs) self.padding = keras.layers.ZeroPadding2D(padding=patch_size // 2) self.proj = keras.layers.Conv2D( filters=hidden_size, kernel_size=patch_size, strides=stride, padding="VALID", name="proj" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm") self.num_channels = num_channels self.hidden_size = hidden_size def call(self, pixel_values: tf.Tensor) -> Tuple[tf.Tensor, int, int]: embeddings = self.proj(self.padding(pixel_values)) height = shape_list(embeddings)[1] width = shape_list(embeddings)[2] hidden_dim = shape_list(embeddings)[3] # (batch_size, height, width, num_channels) -> (batch_size, height*width, num_channels) # this can be fed to a Transformer layer embeddings = tf.reshape(embeddings, (-1, height * width, hidden_dim)) embeddings = self.layer_norm(embeddings) return embeddings, height, width def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "proj", None) is not None: with tf.name_scope(self.proj.name): self.proj.build([None, None, None, self.num_channels]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.hidden_size]) class TFSegformerEfficientSelfAttention(keras.layers.Layer): """SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT paper](https://arxiv.org/abs/2102.12122).""" def __init__( self, config: SegformerConfig, hidden_size: int, num_attention_heads: int, sequence_reduction_ratio: int, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads if self.hidden_size % self.num_attention_heads != 0: raise ValueError( f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention " f"heads ({self.num_attention_heads})" ) self.attention_head_size = self.hidden_size // self.num_attention_heads self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense(self.all_head_size, name="query") self.key = keras.layers.Dense(self.all_head_size, name="key") self.value = keras.layers.Dense(self.all_head_size, name="value") self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.sr_ratio = sequence_reduction_ratio if sequence_reduction_ratio > 1: self.sr = keras.layers.Conv2D( filters=hidden_size, kernel_size=sequence_reduction_ratio, strides=sequence_reduction_ratio, name="sr" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm") def transpose_for_scores(self, tensor: tf.Tensor) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] # to [batch_size, seq_length, num_attention_heads, attention_head_size] batch_size = shape_list(tensor)[0] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] # to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False, training: bool = False, ) -> Union[tf.Tensor, Tuple[tf.Tensor, tf.Tensor]]: batch_size = shape_list(hidden_states)[0] num_channels = shape_list(hidden_states)[2] query_layer = self.transpose_for_scores(self.query(hidden_states)) if self.sr_ratio > 1: # Reshape to (batch_size, height, width, num_channels) hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) # Apply sequence reduction hidden_states = self.sr(hidden_states) # Reshape back to (batch_size, seq_len, num_channels) hidden_states = tf.reshape(hidden_states, (batch_size, -1, num_channels)) hidden_states = self.layer_norm(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) scale = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, scale) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) context_layer = tf.reshape(context_layer, (batch_size, -1, self.all_head_size)) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.hidden_size]) if getattr(self, "sr", None) is not None: with tf.name_scope(self.sr.name): self.sr.build([None, None, None, self.hidden_size]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.hidden_size]) class TFSegformerSelfOutput(keras.layers.Layer): def __init__(self, config: SegformerConfig, hidden_size: int, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(hidden_size, name="dense") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.hidden_size = hidden_size def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.hidden_size]) class TFSegformerAttention(keras.layers.Layer): def __init__( self, config: SegformerConfig, hidden_size: int, num_attention_heads: int, sequence_reduction_ratio: int, **kwargs, ): super().__init__(**kwargs) self.self = TFSegformerEfficientSelfAttention( config=config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, name="self", ) self.dense_output = TFSegformerSelfOutput(config, hidden_size=hidden_size, name="output") def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False ) -> Union[tf.Tensor, Tuple[tf.Tensor, tf.Tensor]]: self_outputs = self.self(hidden_states, height, width, output_attentions) attention_output = self.dense_output(self_outputs[0]) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) class TFSegformerDWConv(keras.layers.Layer): def __init__(self, dim: int = 768, **kwargs): super().__init__(**kwargs) self.depthwise_convolution = keras.layers.Conv2D( filters=dim, kernel_size=3, strides=1, padding="same", groups=dim, name="dwconv" ) self.dim = dim def call(self, hidden_states: tf.Tensor, height: int, width: int) -> tf.Tensor: batch_size = shape_list(hidden_states)[0] num_channels = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) hidden_states = self.depthwise_convolution(hidden_states) new_height = shape_list(hidden_states)[1] new_width = shape_list(hidden_states)[2] num_channels = shape_list(hidden_states)[3] hidden_states = tf.reshape(hidden_states, (batch_size, new_height * new_width, num_channels)) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "depthwise_convolution", None) is not None: with tf.name_scope(self.depthwise_convolution.name): self.depthwise_convolution.build([None, None, None, self.dim]) class TFSegformerMixFFN(keras.layers.Layer): def __init__( self, config: SegformerConfig, in_features: int, hidden_features: int = None, out_features: int = None, **kwargs, ): super().__init__(**kwargs) out_features = out_features or in_features self.dense1 = keras.layers.Dense(hidden_features, name="dense1") self.depthwise_convolution = TFSegformerDWConv(hidden_features, name="dwconv") if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.dense2 = keras.layers.Dense(out_features, name="dense2") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.hidden_features = hidden_features self.in_features = in_features def call(self, hidden_states: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor: hidden_states = self.dense1(hidden_states) hidden_states = self.depthwise_convolution(hidden_states, height, width) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.dense2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense1", None) is not None: with tf.name_scope(self.dense1.name): self.dense1.build([None, None, self.in_features]) if getattr(self, "depthwise_convolution", None) is not None: with tf.name_scope(self.depthwise_convolution.name): self.depthwise_convolution.build(None) if getattr(self, "dense2", None) is not None: with tf.name_scope(self.dense2.name): self.dense2.build([None, None, self.hidden_features]) class TFSegformerLayer(keras.layers.Layer): """This corresponds to the Block class in the original implementation.""" def __init__( self, config, hidden_size: int, num_attention_heads: int, drop_path: float, sequence_reduction_ratio: int, mlp_ratio: int, **kwargs, ): super().__init__(**kwargs) self.layer_norm_1 = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm_1") self.attention = TFSegformerAttention( config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, name="attention", ) self.drop_path = TFSegformerDropPath(drop_path) if drop_path > 0.0 else keras.layers.Activation("linear") self.layer_norm_2 = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm_2") mlp_hidden_size = int(hidden_size * mlp_ratio) self.mlp = TFSegformerMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size, name="mlp") self.hidden_size = hidden_size def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False, training: bool = False, ) -> Tuple: self_attention_outputs = self.attention( self.layer_norm_1(hidden_states), # in Segformer, layernorm is applied before self-attention height, width, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection (with stochastic depth) attention_output = self.drop_path(attention_output, training=training) hidden_states = attention_output + hidden_states mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width) # second residual connection (with stochastic depth) mlp_output = self.drop_path(mlp_output, training=training) layer_output = mlp_output + hidden_states outputs = (layer_output,) + outputs return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norm_1", None) is not None: with tf.name_scope(self.layer_norm_1.name): self.layer_norm_1.build([None, None, self.hidden_size]) if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "layer_norm_2", None) is not None: with tf.name_scope(self.layer_norm_2.name): self.layer_norm_2.build([None, None, self.hidden_size]) if getattr(self, "mlp", None) is not None: with tf.name_scope(self.mlp.name): self.mlp.build(None) class TFSegformerEncoder(keras.layers.Layer): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.config = config # stochastic depth decay rule drop_path_decays = [x.numpy() for x in tf.linspace(0.0, config.drop_path_rate, sum(config.depths))] # patch embeddings embeddings = [] for i in range(config.num_encoder_blocks): embeddings.append( TFSegformerOverlapPatchEmbeddings( patch_size=config.patch_sizes[i], stride=config.strides[i], num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], hidden_size=config.hidden_sizes[i], name=f"patch_embeddings.{i}", ) ) self.embeddings = embeddings # Transformer blocks blocks = [] cur = 0 for i in range(config.num_encoder_blocks): # each block consists of layers layers = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( TFSegformerLayer( config, hidden_size=config.hidden_sizes[i], num_attention_heads=config.num_attention_heads[i], drop_path=drop_path_decays[cur + j], sequence_reduction_ratio=config.sr_ratios[i], mlp_ratio=config.mlp_ratios[i], name=f"block.{i}.{j}", ) ) blocks.append(layers) self.block = blocks # Layer norms self.layer_norms = [ keras.layers.LayerNormalization(epsilon=1e-05, name=f"layer_norm.{i}") for i in range(config.num_encoder_blocks) ] def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None batch_size = shape_list(pixel_values)[0] hidden_states = pixel_values for idx, x in enumerate(zip(self.embeddings, self.block, self.layer_norms)): embedding_layer, block_layer, norm_layer = x # first, obtain patch embeddings hidden_states, height, width = embedding_layer(hidden_states) # second, send embeddings through blocks # (each block consists of multiple layers i.e., list of layers) for i, blk in enumerate(block_layer): layer_outputs = blk( hidden_states, height, width, output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # third, apply layer norm hidden_states = norm_layer(hidden_states) # fourth, optionally reshape back to (batch_size, height, width, num_channels) if idx != len(self.embeddings) - 1 or (idx == len(self.embeddings) - 1 and self.config.reshape_last_stage): num_channels = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norms", None) is not None: for layer, shape in zip(self.layer_norms, self.config.hidden_sizes): with tf.name_scope(layer.name): layer.build([None, None, shape]) if getattr(self, "block", None) is not None: for block in self.block: for layer in block: with tf.name_scope(layer.name): layer.build(None) if getattr(self, "embeddings", None) is not None: for layer in self.embeddings: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFSegformerMainLayer(keras.layers.Layer): config_class = SegformerConfig def __init__(self, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.config = config # hierarchical Transformer encoder self.encoder = TFSegformerEncoder(config, name="encoder") @unpack_inputs def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) encoder_outputs = self.encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] # Change to NCHW output format to have uniformity in the modules sequence_output = tf.transpose(sequence_output, perm=[0, 3, 1, 2]) # Change the other hidden state outputs to NCHW as well if output_hidden_states: hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) if not return_dict: if tf.greater(len(encoder_outputs[1:]), 0): transposed_encoder_outputs = tuple(tf.transpose(v, perm=[0, 3, 1, 2]) for v in encoder_outputs[1:][0]) return (sequence_output,) + (transposed_encoder_outputs,) else: return (sequence_output,) + encoder_outputs[1:] return TFBaseModelOutput( last_hidden_state=sequence_output, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) class TFSegformerPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SegformerConfig base_model_prefix = "segformer" main_input_name = "pixel_values" @property def input_signature(self): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 512, 512), dtype=tf.float32)} SEGFORMER_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`SegformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SEGFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare SegFormer encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.", SEGFORMER_START_DOCSTRING, ) class TFSegformerModel(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config # hierarchical Transformer encoder self.segformer = TFSegformerMainLayer(config, name="segformer") @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "segformer", None) is not None: with tf.name_scope(self.segformer.name): self.segformer.build(None) @add_start_docstrings( """ SegFormer Model transformer with an image classification head on top (a linear layer on top of the final hidden states) e.g. for ImageNet. """, SEGFORMER_START_DOCSTRING, ) class TFSegformerForImageClassification(TFSegformerPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: SegformerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.segformer = TFSegformerMainLayer(config, name="segformer") # Classifier head self.classifier = keras.layers.Dense(config.num_labels, name="classifier") self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFSequenceClassifierOutput]: outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # convert last hidden states to (batch_size, height*width, hidden_size) batch_size = shape_list(sequence_output)[0] sequence_output = tf.transpose(sequence_output, perm=[0, 2, 3, 1]) sequence_output = tf.reshape(sequence_output, (batch_size, -1, self.config.hidden_sizes[-1])) # global average pooling sequence_output = tf.reduce_mean(sequence_output, axis=1) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "segformer", None) is not None: with tf.name_scope(self.segformer.name): self.segformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_sizes[-1]]) class TFSegformerMLP(keras.layers.Layer): """ Linear Embedding. """ def __init__(self, input_dim: int, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.proj = keras.layers.Dense(config.decoder_hidden_size, name="proj") self.input_dim = input_dim def call(self, hidden_states: tf.Tensor) -> tf.Tensor: height = shape_list(hidden_states)[1] width = shape_list(hidden_states)[2] hidden_dim = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (-1, height * width, hidden_dim)) hidden_states = self.proj(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "proj", None) is not None: with tf.name_scope(self.proj.name): self.proj.build([None, None, self.input_dim]) class TFSegformerDecodeHead(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(config, **kwargs) # linear layers which will unify the channel dimension of each of the encoder blocks to the same config.decoder_hidden_size mlps = [] for i in range(config.num_encoder_blocks): mlp = TFSegformerMLP(config=config, input_dim=config.hidden_sizes[i], name=f"linear_c.{i}") mlps.append(mlp) self.mlps = mlps # the following 3 layers implement the ConvModule of the original implementation self.linear_fuse = keras.layers.Conv2D( filters=config.decoder_hidden_size, kernel_size=1, use_bias=False, name="linear_fuse" ) self.batch_norm = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="batch_norm") self.activation = keras.layers.Activation("relu") self.dropout = keras.layers.Dropout(config.classifier_dropout_prob) self.classifier = keras.layers.Conv2D(filters=config.num_labels, kernel_size=1, name="classifier") self.config = config def call(self, encoder_hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: all_hidden_states = () for encoder_hidden_state, mlp in zip(encoder_hidden_states, self.mlps): if self.config.reshape_last_stage is False and len(shape_list(encoder_hidden_state)) == 3: height = tf.math.sqrt(tf.cast(shape_list(encoder_hidden_state)[1], tf.float32)) height = width = tf.cast(height, tf.int32) channel_dim = shape_list(encoder_hidden_state)[-1] encoder_hidden_state = tf.reshape(encoder_hidden_state, (-1, height, width, channel_dim)) # unify channel dimension encoder_hidden_state = tf.transpose(encoder_hidden_state, perm=[0, 2, 3, 1]) height, width = shape_list(encoder_hidden_state)[1:3] encoder_hidden_state = mlp(encoder_hidden_state) channel_dim = shape_list(encoder_hidden_state)[-1] encoder_hidden_state = tf.reshape(encoder_hidden_state, (-1, height, width, channel_dim)) # upsample temp_state = tf.transpose(encoder_hidden_states[0], perm=[0, 2, 3, 1]) upsample_resolution = shape_list(temp_state)[1:-1] encoder_hidden_state = tf.image.resize(encoder_hidden_state, size=upsample_resolution, method="bilinear") all_hidden_states += (encoder_hidden_state,) hidden_states = self.linear_fuse(tf.concat(all_hidden_states[::-1], axis=-1)) hidden_states = self.batch_norm(hidden_states, training=training) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states, training=training) # logits of shape (batch_size, height/4, width/4, num_labels) logits = self.classifier(hidden_states) return logits def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "linear_fuse", None) is not None: with tf.name_scope(self.linear_fuse.name): self.linear_fuse.build( [None, None, None, self.config.decoder_hidden_size * self.config.num_encoder_blocks] ) if getattr(self, "batch_norm", None) is not None: with tf.name_scope(self.batch_norm.name): self.batch_norm.build([None, None, None, self.config.decoder_hidden_size]) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, None, self.config.decoder_hidden_size]) if getattr(self, "mlps", None) is not None: for layer in self.mlps: with tf.name_scope(layer.name): layer.build(None) @add_start_docstrings( """SegFormer Model transformer with an all-MLP decode head on top e.g. for ADE20k, CityScapes.""", SEGFORMER_START_DOCSTRING, ) class TFSegformerForSemanticSegmentation(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(config, **kwargs) self.segformer = TFSegformerMainLayer(config, name="segformer") self.decode_head = TFSegformerDecodeHead(config, name="decode_head") def hf_compute_loss(self, logits, labels): # upsample logits to the images' original size # `labels` is of shape (batch_size, height, width) label_interp_shape = shape_list(labels)[1:] upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear") # compute weighted loss loss_fct = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none") def masked_loss(real, pred): unmasked_loss = loss_fct(real, pred) mask = tf.cast(real != self.config.semantic_loss_ignore_index, dtype=unmasked_loss.dtype) masked_loss = unmasked_loss * mask # Reduction strategy in the similar spirit with # https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_utils.py#L210 reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(mask) return tf.reshape(reduced_masked_loss, (1,)) return masked_loss(labels, upsampled_logits) @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFSemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFSemanticSegmenterOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a (per-pixel) classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFSegformerForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> model = TFSegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs, training=False) >>> # logits are of shape (batch_size, num_labels, height/4, width/4) >>> logits = outputs.logits >>> list(logits.shape) [1, 150, 128, 128] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.decode_head(encoder_hidden_states) loss = None if labels is not None: if not self.config.num_labels > 1: raise ValueError("The number of labels should be greater than one") else: loss = self.hf_compute_loss(logits=logits, labels=labels) # make logits of shape (batch_size, num_labels, height, width) to # keep them consistent across APIs logits = tf.transpose(logits, perm=[0, 3, 1, 2]) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "segformer", None) is not None: with tf.name_scope(self.segformer.name): self.segformer.build(None) if getattr(self, "decode_head", None) is not None: with tf.name_scope(self.decode_head.name): self.decode_head.build(None)
transformers/src/transformers/models/segformer/modeling_tf_segformer.py/0
{ "file_path": "transformers/src/transformers/models/segformer/modeling_tf_segformer.py", "repo_id": "transformers", "token_count": 19147 }
112
# coding=utf-8 # Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Tokenization classes for Splinter.""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_splinter import SplinterTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "tau/splinter-base": "https://huggingface.co/tau/splinter-base/resolve/main/vocab.txt", "tau/splinter-base-qass": "https://huggingface.co/tau/splinter-base-qass/resolve/main/vocab.txt", "tau/splinter-large": "https://huggingface.co/tau/splinter-large/resolve/main/vocab.txt", "tau/splinter-large-qass": "https://huggingface.co/tau/splinter-large-qass/resolve/main/vocab.txt", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "tau/splinter-base": 512, "tau/splinter-base-qass": 512, "tau/splinter-large": 512, "tau/splinter-large-qass": 512, } PRETRAINED_INIT_CONFIGURATION = { "tau/splinter-base": {"do_lower_case": False}, "tau/splinter-base-qass": {"do_lower_case": False}, "tau/splinter-large": {"do_lower_case": False}, "tau/splinter-large-qass": {"do_lower_case": False}, } class SplinterTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" Splinter tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. question_token (`str`, *optional*, defaults to `"[QUESTION]"`): The token used for constructing question representations. clean_text (`bool`, *optional*, defaults to `True`): Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). wordpieces_prefix (`str`, *optional*, defaults to `"##"`): The prefix for subwords. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = SplinterTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", question_token="[QUESTION]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, additional_special_tokens=(question_token,), **kwargs, ) pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get("lowercase", do_lower_case) != do_lower_case or pre_tok_state.get("strip_accents", strip_accents) != strip_accents ): pre_tok_class = getattr(normalizers, pre_tok_state.pop("type")) pre_tok_state["lowercase"] = do_lower_case pre_tok_state["strip_accents"] = strip_accents self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state) self.do_lower_case = do_lower_case @property def question_token_id(self): """ `Optional[int]`: Id of the question token in the vocabulary, used to condition the answer on a question representation. """ return self.convert_tokens_to_ids(self.question_token) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a pair of sequence for question answering tasks by concatenating and adding special tokens. A Splinter sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences for question answering: `[CLS] question_tokens [QUESTION] . [SEP] context_tokens [SEP]` Args: token_ids_0 (`List[int]`): The question token IDs if pad_on_right, else context tokens IDs token_ids_1 (`List[int]`, *optional*): The context token IDs if pad_on_right, else question token IDs Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] if self.padding_side == "right": # Input is question-then-context return cls + token_ids_0 + question_suffix + sep + token_ids_1 + sep else: # Input is context-then-question return cls + token_ids_0 + sep + token_ids_1 + question_suffix + sep def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create the token type IDs corresponding to the sequences passed. [What are token type IDs?](../glossary#token-type-ids) Should be overridden in a subclass if the model has a special way of building those. Args: token_ids_0 (`List[int]`): The first tokenized sequence. token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. Returns: `List[int]`: The token type ids. """ sep = [self.sep_token_id] cls = [self.cls_token_id] question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] if self.padding_side == "right": # Input is question-then-context return len(cls + token_ids_0 + question_suffix + sep) * [0] + len(token_ids_1 + sep) * [1] else: # Input is context-then-question return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + question_suffix + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
transformers/src/transformers/models/splinter/tokenization_splinter_fast.py/0
{ "file_path": "transformers/src/transformers/models/splinter/tokenization_splinter_fast.py", "repo_id": "transformers", "token_count": 3965 }
113
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def get_swin_config(swin_name): config = SwinConfig() name_split = swin_name.split("_") model_size = name_split[1] img_size = int(name_split[4]) window_size = int(name_split[3][-1]) if model_size == "tiny": embed_dim = 96 depths = (2, 2, 6, 2) num_heads = (3, 6, 12, 24) elif model_size == "small": embed_dim = 96 depths = (2, 2, 18, 2) num_heads = (3, 6, 12, 24) elif model_size == "base": embed_dim = 128 depths = (2, 2, 18, 2) num_heads = (4, 8, 16, 32) else: embed_dim = 192 depths = (2, 2, 18, 2) num_heads = (6, 12, 24, 48) if "in22k" in swin_name: num_classes = 21841 else: num_classes = 1000 repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} config.image_size = img_size config.num_labels = num_classes config.embed_dim = embed_dim config.depths = depths config.num_heads = num_heads config.window_size = window_size return config def rename_key(name): if "patch_embed.proj" in name: name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection") if "patch_embed.norm" in name: name = name.replace("patch_embed.norm", "embeddings.norm") if "layers" in name: name = "encoder." + name if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "attn" in name: name = name.replace("attn", "attention.self") if "norm1" in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if name == "norm.weight": name = "layernorm.weight" if name == "norm.bias": name = "layernorm.bias" if "head" in name: name = name.replace("head", "classifier") else: name = "swin." + name return name def convert_state_dict(orig_state_dict, model): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if "mask" in key: continue elif "qkv" in key: key_split = key.split(".") layer_num = int(key_split[1]) block_num = int(key_split[3]) dim = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: orig_state_dict[ f"swin.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.weight" ] = val[:dim, :] orig_state_dict[f"swin.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.weight"] = val[ dim : dim * 2, : ] orig_state_dict[ f"swin.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.weight" ] = val[-dim:, :] else: orig_state_dict[f"swin.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.bias"] = val[ :dim ] orig_state_dict[f"swin.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.bias"] = val[ dim : dim * 2 ] orig_state_dict[f"swin.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.bias"] = val[ -dim: ] else: orig_state_dict[rename_key(key)] = val return orig_state_dict def convert_swin_checkpoint(swin_name, pytorch_dump_folder_path): timm_model = timm.create_model(swin_name, pretrained=True) timm_model.eval() config = get_swin_config(swin_name) model = SwinForImageClassification(config) model.eval() new_state_dict = convert_state_dict(timm_model.state_dict(), model) model.load_state_dict(new_state_dict) url = "http://images.cocodataset.org/val2017/000000039769.jpg" image_processor = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_", "-"))) image = Image.open(requests.get(url, stream=True).raw) inputs = image_processor(images=image, return_tensors="pt") timm_outs = timm_model(inputs["pixel_values"]) hf_outs = model(**inputs).logits assert torch.allclose(timm_outs, hf_outs, atol=1e-3) print(f"Saving model {swin_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
transformers/src/transformers/models/swin/convert_swin_timm_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/swin/convert_swin_timm_to_pytorch.py", "repo_id": "transformers", "token_count": 2718 }
114
# coding=utf-8 # Copyright 2022 SwitchTransformers Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch SwitchTransformers model.""" import copy import math import warnings from typing import Optional, Tuple, Union import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import ( MoEModelOutput, MoEModelOutputWithPastAndCrossAttentions, Seq2SeqMoEModelOutput, Seq2SeqMoEOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( DUMMY_INPUTS, DUMMY_MASK, add_start_docstrings, add_start_docstrings_to_model_forward, is_torch_fx_proxy, logging, replace_return_docstrings, ) from .configuration_switch_transformers import SwitchTransformersConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "SwitchTransformersConfig" _CHECKPOINT_FOR_DOC = "google/switch-base-8" #################################################### # This dict contains ids and associated url # for the pretrained weights provided with the models #################################################### SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/switch-base-8", "google/switch-base-16", "google/switch-base-32", "google/switch-base-64", "google/switch-base-128", "google/switch-base-256", "google/switch-large-128", "google/switch-xxl-128", "google/switch-c-2048", # See all SwitchTransformers models at https://huggingface.co/models?filter=switch_transformers ] def router_z_loss_func(router_logits: torch.Tensor) -> float: r""" Compute the router z-loss implemented in PyTorch. The router z-loss was introduced in [Designing Effective Sparse Expert Models](https://arxiv.org/abs/2202.08906). It encourages router logits to remain small in an effort to improve stability. Args: router_logits (`float`): Input logits of shape [batch_size, sequence_length, num_experts] Returns: Scalar router z-loss. """ num_groups, tokens_per_group, _ = router_logits.shape log_z = torch.logsumexp(router_logits, dim=-1) z_loss = log_z**2 return torch.sum(z_loss) / (num_groups * tokens_per_group) def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float: r""" Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between experts is too unbalanced. Args: router_probs (`torch.Tensor`): Probability assigned to each expert per token. Shape: [batch_size, seqeunce_length, num_experts]. expert_indices (`torch.Tensor`): Indices tensor of shape [batch_size, seqeunce_length] identifying the selected expert for a given token. Returns: The auxiliary loss. """ num_experts = router_probs.shape[-1] # cast the expert indices to int64, otherwise one-hot encoding will fail if expert_indices.dtype != torch.int64: expert_indices = expert_indices.to(torch.int64) if len(expert_indices.shape) == 2: expert_indices = expert_indices.unsqueeze(2) expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts) # For a given token, determine if it was routed to a given expert. expert_mask = torch.max(expert_mask, axis=-2).values # cast to float32 otherwise mean will fail expert_mask = expert_mask.to(torch.float32) tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2) router_prob_per_group_and_expert = torch.mean(router_probs, axis=-2) return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2) class SwitchTransformersTop1Router(nn.Module): """ Router using tokens choose top-1 experts assignment. This router uses the same mechanism as in Switch Transformer (https://arxiv.org/abs/2101.03961) and V-MoE (https://arxiv.org/abs/2106.05974): tokens choose their top experts. Items are sorted by router_probs and then routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee that each token is processed by an expert**, or that each expert receives at least one token. """ def __init__(self, config: SwitchTransformersConfig): super().__init__() self.num_experts = config.num_experts self.expert_capacity = config.expert_capacity self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias) self.jitter_noise = config.router_jitter_noise self.ignore_padding_tokens = config.router_ignore_padding_tokens self.dtype = getattr(torch, config.router_dtype) def _compute_router_probabilities(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: r""" Computes router probabilities from input hidden states. Args: hidden_states (`torch.Tensor`): (batch_size, sequence_length, hidden_dim) from which router probabilities are computed. Returns: router_probabilities (`torch.Tensor`): Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each token and expert. Used for routing tokens to experts. router_logits (`torch.Tensor`): Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits. This is used later for computing router z-loss. """ # float32 is used to ensure stability. See the discussion of "selective precision" in # https://arxiv.org/abs/2101.03961. # We also store the previous dtype to cast back the output to the previous dtype self.input_dtype = hidden_states.dtype hidden_states = hidden_states.to(self.dtype) if self.training and self.jitter_noise > 0: # Multiply the token inputs by the uniform distribution - adding some noise hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) # Shape: [num_groups, tokens_per_group, num_experts] self._cast_classifier() router_logits = self.classifier(hidden_states) # Apply Softmax and cast back to the original `dtype` router_probabilities = nn.functional.softmax(router_logits, dim=-1, dtype=self.dtype).to(self.input_dtype) return router_probabilities, router_logits def _cast_classifier(self): r""" `bitsandbytes` `Linear8bitLt` layers does not support manual casting Therefore we need to check if they are an instance of the `Linear8bitLt` class by checking special attributes. """ if not (hasattr(self.classifier, "SCB") or hasattr(self.classifier, "CB")): self.classifier = self.classifier.to(self.dtype) def forward(self, hidden_states: torch.Tensor) -> Tuple: r""" Generic forward function for every Router class. Each Router expects to have the same input hidden states (`hidden_states`) corresponding to the hidden states for each token, the `expert_capacity` corresponding to the number of tokens the Router will send to each expert, some Routers can send up to few tokens to each expert. Each Router works as the following: it expects the hidden states for each token, gets the `router_probs` and `router_logits` from the `router_weights`. This will assign for each token, the raw probability to be assigned to an expert. Then each Router class will have to define its own `_compute_routing_instructions`. Args: hidden_states (`torch.Tensor`) : [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. Returns: Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`] Tuple containing the expert index, the router probs and the router logits. The router probabilities and logits are required to compute the loss. """ router_probs, router_logits = self._compute_router_probabilities(hidden_states) expert_index = torch.argmax(router_probs, dim=-1) expert_index = torch.nn.functional.one_hot(expert_index, num_classes=self.num_experts) # Mask tokens outside expert capacity. Sum over each sequence token_priority = torch.cumsum(expert_index, dim=-2) # mask if the token routed to to the expert will overflow expert_capacity_mask = token_priority <= self.expert_capacity expert_index = expert_index * expert_capacity_mask router_probs = torch.max(router_probs, dim=-1).values.unsqueeze(-1) return expert_index, router_probs, router_logits # Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->SwitchTransformers class SwitchTransformersLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Construct a layernorm module in the SwitchTransformers style. No bias and no subtraction of mean. """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): # SwitchTransformers uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states ALL_LAYERNORM_LAYERS.append(SwitchTransformersLayerNorm) # Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->SwitchTransformers class SwitchTransformersDenseActDense(nn.Module): def __init__(self, config: SwitchTransformersConfig): super().__init__() self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) if ( isinstance(self.wo.weight, torch.Tensor) and hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8 ): hidden_states = hidden_states.to(self.wo.weight.dtype) hidden_states = self.wo(hidden_states) return hidden_states class SwitchTransformersSparseMLP(nn.Module): r""" Implementation of the Switch Transformers Sparse MLP module. """ def __init__(self, config: SwitchTransformersConfig, expert_class: nn.Module = SwitchTransformersDenseActDense): super().__init__() # Step 1: Get the correct router according to its class self.router = SwitchTransformersTop1Router(config) # Step 2: Get the experts self.experts = nn.ModuleDict() for idx in range(config.num_experts): self.experts[f"expert_{idx}"] = expert_class(config) def forward(self, hidden_states): r""" Hold on, this will be slightly tricky to understand In the correct order, a MoE layer does the following: 1- Gets the `router_mask` from the router. The shape of the mask is `(batch_size, sequence_length, num_expert)` and corresponds to the argmax of the `router_probs`. The probabilities are needed in the computation of the hidden states : they are broadcasted to the hidden states values (can be interpreted as a scaling factor). 2- Dispatch the tokens to its associated experts. We do a classic for loop over the experts and assign for each expert the corresponding hidden states. """ # Step 1: Get the router_mask from the router as wel as the probabilities router_mask, router_probs, router_logits = self.router(hidden_states) expert_index = torch.argmax(router_mask, dim=-1) # The routers introduced might not always map all the tokens, to a router, which means that some hidden states # can be unchanged from one layer to another. That is why the hidden states are cloned before updating only the seleced ones. next_states = hidden_states.clone() for idx, expert in enumerate(self.experts.values()): token_indices = router_mask[:, :, idx].bool() next_states[token_indices] = expert(hidden_states[token_indices]).to(next_states.dtype) hidden_states = router_probs * next_states return hidden_states, (router_logits, expert_index) class SwitchTransformersLayerFF(nn.Module): r""" Switch Transformers Feed Forward layer module. This is a wrapper around the Mixture of Experts module. Parameters: config : ([`SwitchTransformersConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. is_sparse (`bool`): Whether the MLP layer is a `Sparse` layer (contains a Mixture of Experts) or not """ def __init__(self, config: SwitchTransformersConfig, is_sparse=False): super().__init__() self.is_sparse = is_sparse # Check if it is a sparse layer, if not then it is a dense layer if not self.is_sparse: self.mlp = SwitchTransformersDenseActDense(config) else: self.mlp = SwitchTransformersSparseMLP(config) self.layer_norm = SwitchTransformersLayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward(self, hidden_states, output_router_logits): forwarded_states = self.layer_norm(hidden_states) forwarded_states = self.mlp(forwarded_states) if isinstance(forwarded_states, tuple): forwarded_states, router_tuple = forwarded_states else: router_tuple = None output = hidden_states + self.dropout(forwarded_states) if output_router_logits and router_tuple is not None: output = (output, router_tuple) return output # Copied from transformers.models.t5.modeling_t5.T5Attention with T5->SwitchTransformers class SwitchTransformersAttention(nn.Module): def __init__(self, config: SwitchTransformersConfig, has_relative_attention_bias=False): super().__init__() self.is_decoder = config.is_decoder self.has_relative_attention_bias = has_relative_attention_bias self.relative_attention_num_buckets = config.relative_attention_num_buckets self.relative_attention_max_distance = config.relative_attention_max_distance self.d_model = config.d_model self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.dropout = config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim # Mesh TensorFlow initialization to avoid scaling before softmax self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.pruned_heads = set() self.gradient_checkpointing = False def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads ) # Prune linear layers self.q = prune_linear_layer(self.q, index) self.k = prune_linear_layer(self.k, index) self.v = prune_linear_layer(self.v, index) self.o = prune_linear_layer(self.o, index, dim=1) # Update hyper params self.n_heads = self.n_heads - len(heads) self.inner_dim = self.key_value_proj_dim * self.n_heads self.pruned_heads = self.pruned_heads.union(heads) @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets def compute_bias(self, query_length, key_length, device=None): """Compute binned relative position bias""" if device is None: device = self.relative_attention_bias.weight.device context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] relative_position = memory_position - context_position # shape (query_length, key_length) relative_position_bucket = self._relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) return values def forward( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = hidden_states.shape[:2] real_seq_length = seq_length if past_key_value is not None: if len(past_key_value) != 2: raise ValueError( f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" ) real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] def shape(states): """projection""" return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) def unshape(states): """reshape""" return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) def project(hidden_states, proj_layer, key_value_states, past_key_value): """projects hidden states correctly to key/query states""" if key_value_states is None: # self-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(hidden_states)) elif past_key_value is None: # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) if past_key_value is not None: if key_value_states is None: # self-attn # (batch_size, n_heads, key_length, dim_per_head) hidden_states = torch.cat([past_key_value, hidden_states], dim=2) elif past_key_value.shape[2] != key_value_states.shape[1]: # checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) else: # cross-attn hidden_states = past_key_value return hidden_states # get query states query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) # get key/value states key_states = project( hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None ) value_states = project( hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None ) # compute scores scores = torch.matmul( query_states, key_states.transpose(3, 2) ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 if position_bias is None: if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) # if key and values are already calculated # we want only the last query position bias if past_key_value is not None: position_bias = position_bias[:, :, -hidden_states.size(1) :, :] if mask is not None: position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) if self.pruned_heads: mask = torch.ones(position_bias.shape[1]) mask[list(self.pruned_heads)] = 0 position_bias_masked = position_bias[:, mask.bool()] else: position_bias_masked = position_bias scores += position_bias_masked attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( scores ) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.dropout( attn_weights, p=self.dropout, training=self.training ) # (batch_size, n_heads, seq_length, key_length) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) attn_output = self.o(attn_output) present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs # Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->SwitchTransformers class SwitchTransformersLayerSelfAttention(nn.Module): def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.SelfAttention = SwitchTransformersAttention( config, has_relative_attention_bias=has_relative_attention_bias ) self.layer_norm = SwitchTransformersLayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.SelfAttention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0]) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs # Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->SwitchTransformers class SwitchTransformersLayerCrossAttention(nn.Module): def __init__(self, config): super().__init__() self.EncDecAttention = SwitchTransformersAttention(config, has_relative_attention_bias=False) self.layer_norm = SwitchTransformersLayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, query_length=None, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.EncDecAttention( normed_hidden_states, mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, query_length=query_length, output_attentions=output_attentions, ) layer_output = hidden_states + self.dropout(attention_output[0]) outputs = (layer_output,) + attention_output[1:] # add attentions if we output them return outputs class SwitchTransformersBlock(nn.Module): def __init__(self, config, has_relative_attention_bias=False, is_sparse=False): super().__init__() self.is_decoder = config.is_decoder self.is_sparse = is_sparse self.layer = nn.ModuleList() self.layer.append( SwitchTransformersLayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias) ) if self.is_decoder: self.layer.append(SwitchTransformersLayerCrossAttention(config)) self.layer.append(SwitchTransformersLayerFF(config, is_sparse=self.is_sparse)) def forward( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, output_router_logits=True, return_dict=True, ): if past_key_value is not None: if not self.is_decoder: logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 if len(past_key_value) != expected_num_past_key_values: raise ValueError( f"There should be {expected_num_past_key_values} past states. " f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" f"Got {len(past_key_value)} past key / value states" ) self_attn_past_key_value = past_key_value[:2] cross_attn_past_key_value = past_key_value[2:] else: self_attn_past_key_value, cross_attn_past_key_value = None, None self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=self_attn_past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states, present_key_value_state = self_attention_outputs[:2] attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) do_cross_attention = self.is_decoder and encoder_hidden_states is not None if do_cross_attention: # the actual query length is unknown for cross attention # if using past key value states. Need to inject it here if present_key_value_state is not None: query_length = present_key_value_state[0].shape[2] else: query_length = None cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, query_length=query_length, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = cross_attention_outputs[0] # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) # Combine self attn and cross attn key value states if present_key_value_state is not None: present_key_value_state = present_key_value_state + cross_attention_outputs[1] # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[2:] # Apply Feed Forward layer hidden_states = self.layer[-1](hidden_states, output_router_logits) if isinstance(hidden_states, tuple): hidden_states, router_tuple = hidden_states else: router_tuple = (torch.zeros((1,), device=hidden_states.device, dtype=torch.int64),) # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if use_cache: outputs = outputs + (present_key_value_state,) + attention_outputs + (router_tuple,) else: outputs = outputs + attention_outputs + (router_tuple,) return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights), (router_tuple) class SwitchTransformersPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SwitchTransformersConfig base_model_prefix = "switch_transformers" supports_gradient_checkpointing = True _no_split_modules = ["SwitchTransformersBlock"] @property def dummy_inputs(self): input_ids = torch.tensor(DUMMY_INPUTS) input_mask = torch.tensor(DUMMY_MASK) dummy_inputs = { "decoder_input_ids": input_ids, "input_ids": input_ids, "decoder_attention_mask": input_mask, } return dummy_inputs def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor # Used for testing weights initialization if isinstance(module, SwitchTransformersLayerNorm): module.weight.data.fill_(factor * 1.0) elif isinstance( module, (SwitchTransformersModel, SwitchTransformersForConditionalGeneration, SwitchTransformersEncoderModel), ): # Mesh TensorFlow embeddings initialization # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) elif isinstance(module, SwitchTransformersDenseActDense): # Mesh TensorFlow FF initialization # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi, "bias") and module.wi.bias is not None: module.wi.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, SwitchTransformersAttention): # Mesh TensorFlow attention initialization to avoid scaling before softmax # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 d_model = self.config.d_model key_value_proj_dim = self.config.d_kv n_heads = self.config.num_heads module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) if module.has_relative_attention_bias: module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) elif isinstance(module, SwitchTransformersSparseMLP): # Mesh TensorFlow attention initialization to avoid scaling before softmax # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 d_model = self.config.d_model key_value_proj_dim = self.config.d_kv n_heads = self.config.num_heads module.router.classifier.weight.data.normal_(mean=0.0, std=factor * 1) for idx in range(self.config.num_experts): module.experts[f"expert_{idx}"].wi.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.experts[f"expert_{idx}"].wo.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id if decoder_start_token_id is None: raise ValueError( "self.model.config.decoder_start_token_id has to be defined. In SwitchTransformers it is usually set" " to the pad_token_id. See SwitchTransformers docs for more information" ) # shift inputs to the right if is_torch_fx_proxy(input_ids): # Item assignment is not supported natively for proxies. shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) else: shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class SwitchTransformersStack(SwitchTransformersPreTrainedModel): def __init__(self, config, embed_tokens=None): super().__init__(config) self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.is_decoder = config.is_decoder sparse_step = config.decoder_sparse_step if self.is_decoder else config.encoder_sparse_step config.num_layers = config.num_decoder_layers if self.is_decoder else config.num_layers self.block = nn.ModuleList() for i in range(config.num_layers): is_sparse = (i % sparse_step == 1 or sparse_step == 1) if sparse_step > 0 else False self.block.append( SwitchTransformersBlock(config, has_relative_attention_bias=bool(i == 0), is_sparse=is_sparse) ) self.final_layer_norm = SwitchTransformersLayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) # Initialize weights and apply final processing self.post_init() self.device_map = None self.gradient_checkpointing = False def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, new_embeddings): self.embed_tokens = new_embeddings def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, output_router_logits=True, return_dict=None, ): use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError( f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") if inputs_embeds is None: if self.embed_tokens is None: raise ValueError("You have to initialize the model with valid token embeddings") inputs_embeds = self.embed_tokens(input_ids) batch_size, seq_length = input_shape # required mask seq length can be calculated via length of past mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length if use_cache is True: if not self.is_decoder: raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") if attention_mask is None: attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: encoder_seq_length = encoder_hidden_states.shape[1] encoder_attention_mask = torch.ones( batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long ) # initialize past_key_values with `None` if past does not exist if past_key_values is None: past_key_values = [None] * len(self.block) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.num_layers) cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) present_key_value_states = () if use_cache else None all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_router_probs = () if output_router_logits else None all_cross_attentions = () if (output_attentions and self.is_decoder) else None position_bias = None encoder_decoder_position_bias = None hidden_states = self.dropout(inputs_embeds) for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): layer_head_mask = head_mask[i] cross_attn_layer_head_mask = cross_attn_head_mask[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.forward, hidden_states, extended_attention_mask, position_bias, encoder_hidden_states, encoder_extended_attention_mask, encoder_decoder_position_bias, layer_head_mask, cross_attn_layer_head_mask, None, # past_key_value is always None with gradient checkpointing use_cache, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask=extended_attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, layer_head_mask=layer_head_mask, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, output_router_logits=output_router_logits, ) router_probs = layer_outputs[-1] layer_outputs = layer_outputs[:-1] # layer_outputs is a tuple with: # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) if use_cache is False: layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] hidden_states, present_key_value_state = layer_outputs[:2] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[2] if self.is_decoder and encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] # append next layer key value states if use_cache: present_key_value_states = present_key_value_states + (present_key_value_state,) if output_attentions: all_attentions = all_attentions + (layer_outputs[3],) if self.is_decoder: all_cross_attentions = all_cross_attentions + (layer_outputs[5],) if output_router_logits: all_router_probs = all_router_probs + (router_probs,) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, present_key_value_states, all_hidden_states, all_attentions, all_cross_attentions, all_router_probs, ] if v is not None ) return MoEModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, router_probs=all_router_probs, ) SWITCH_TRANSFORMERS_START_DOCSTRING = r""" The SWITCH_TRANSFORMERS model was proposed in [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by [William Fedus](https://arxiv.org/search/cs?searchtype=author&query=Fedus%2C+W), [Barret Zoph](https://arxiv.org/search/cs?searchtype=author&query=Zoph%2C+B), and [Noam Shazeer](https://arxiv.org/search/cs?searchtype=author&query=Shazeer%2C+N). It's an encoder-decoder T5-like model with sparse Feed Forward that stands for Mixture of Experts (MoE) architecture. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SwitchTransformersConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SWITCH_TRANSFORMERS_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. SWITCH_TRANSFORMERS is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [SWITCH_TRANSFORMERS Training](./switch_transformers#training). attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) SWITCH_TRANSFORMERS uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [SWITCH_TRANSFORMERS Training](./switch_transformers#training). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ SWITCH_TRANSFORMERS_ENCODER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. SWITCH_TRANSFORMERS is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. To know more on how to prepare `input_ids` for pretraining take a look a [SWITCH_TRANSFORMERS Training](./switch_transformers#training). attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask __HEAD_MASK_WARNING_MSG = """ The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, num_heads)`. """ @add_start_docstrings( "The bare SWITCH_TRANSFORMERS Model transformer outputting raw hidden-states without any specific head on top.", SWITCH_TRANSFORMERS_START_DOCSTRING, ) class SwitchTransformersModel(SwitchTransformersPreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: SwitchTransformersConfig): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = SwitchTransformersStack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False self.decoder = SwitchTransformersStack(decoder_config, self.shared) # Initialize weights and apply final processing self.post_init() # Model parallel self.device_map = None def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(SWITCH_TRANSFORMERS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqMoEModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqMoEModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, SwitchTransformersModel >>> tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8") >>> model = SwitchTransformersModel.from_pretrained("google/switch-base-8") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for SwitchTransformersModel. >>> # This is not needed for torch's SwitchTransformersForConditionalGeneration as it does this internally using labels arg. >>> decoder_input_ids = model._shift_right(decoder_input_ids) >>> # forward pass >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask if ( output_router_logits and self.config.num_sparse_encoder_layers == 0 and self.config.num_sparse_encoder_layers == 0 ): raise ValueError( "You asked to return `output_router_logits` but the transformer in dense, and does " " not contain any sparse MLP Layers. Set `output_router_logits = False` and restart" ) # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, MoEModelOutput): encoder_outputs = MoEModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, router_probs=encoder_outputs[3] if len(encoder_outputs) > 3 else None, ) hidden_states = encoder_outputs[0] # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqMoEModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, decoder_router_logits=decoder_outputs.router_probs, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, encoder_router_logits=encoder_outputs.router_probs, ) @add_start_docstrings( """SWITCH_TRANSFORMERS Model with a `language modeling` head on top.""", SWITCH_TRANSFORMERS_START_DOCSTRING ) class SwitchTransformersForConditionalGeneration(SwitchTransformersPreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: SwitchTransformersConfig): super().__init__(config) self.model_dim = config.d_model self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = SwitchTransformersStack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = SwitchTransformersStack(decoder_config, self.shared) self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) self.router_z_loss_coef = config.router_z_loss_coef self.router_aux_loss_coef = config.router_aux_loss_coef # Initialize weights and apply final processing self.post_init() # Model parallel self.device_map = None def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_output_embeddings(self): return self.lm_head def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(SWITCH_TRANSFORMERS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqMoEOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = True, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqMoEOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8") >>> model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-8") >>> # training >>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids >>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids >>> outputs = model(input_ids=input_ids, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits >>> # inference >>> input_ids = tokenizer( ... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> outputs = model.generate(input_ids) >>> # . To, let’s say you have a dog. To summarize: >>> # Since the model has been trained on MLM, this will output gibberish ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: # Convert encoder inputs in embeddings if needed encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, MoEModelOutput): encoder_outputs = MoEModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, router_probs=encoder_outputs[3] if len(encoder_outputs) > 3 else None, ) hidden_states = encoder_outputs[0] if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, ) sequence_output = decoder_outputs[0] if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.model_dim**-0.5) lm_logits = self.lm_head(sequence_output) loss = None encoder_z_loss = None encoder_aux_loss = None decoder_z_loss = None decoder_aux_loss = None if output_router_logits: # Compute the router loss (z_loss + auxiliary loss) for each router in the encoder and decoder if self.encoder.config.encoder_sparse_step > 1: encoder_router_logits, encoder_expert_indexes = self._unpack_router_logits(encoder_outputs[-1]) encoder_z_loss = router_z_loss_func(encoder_router_logits) encoder_router_probs = nn.Softmax(dim=-1)(encoder_router_logits) encoder_aux_loss = load_balancing_loss_func(encoder_router_probs, encoder_expert_indexes) else: encoder_z_loss = 0 encoder_aux_loss = 0 if self.decoder.config.decoder_sparse_step > 1: decoder_router_logits, decoder_expert_indexes = self._unpack_router_logits(decoder_outputs[-1]) decoder_z_loss = router_z_loss_func(decoder_router_logits) decoder_router_probs = nn.Softmax(dim=-1)(decoder_router_logits) decoder_aux_loss = load_balancing_loss_func(decoder_router_probs, decoder_expert_indexes) else: decoder_z_loss = 0 decoder_aux_loss = 0 if labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-100) # move labels to correct device to enable PP labels = labels.to(lm_logits.device) loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) if output_router_logits: z_loss = self.router_z_loss_coef * (encoder_z_loss + decoder_z_loss) aux_loss = self.router_aux_loss_coef * (encoder_aux_loss + decoder_aux_loss) loss = loss + z_loss + aux_loss if not return_dict: output = (lm_logits,) if output_router_logits: output += (encoder_z_loss, encoder_aux_loss, decoder_z_loss, decoder_aux_loss) output += (*decoder_outputs[1:], *encoder_outputs) return ((loss,) + output) if loss is not None else output return Seq2SeqMoEOutput( loss=loss, logits=lm_logits, encoder_z_loss=encoder_z_loss, encoder_aux_loss=encoder_aux_loss, decoder_z_loss=decoder_z_loss, decoder_aux_loss=decoder_aux_loss, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, decoder_router_logits=decoder_outputs.router_probs, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, encoder_router_logits=encoder_outputs.router_probs, ) def _unpack_router_logits(self, router_outputs): total_router_logits = [] total_expert_indexes = [] for router_output in router_outputs: if len(router_output[0].shape) > 1: router_logits, expert_indexes = router_output total_router_logits.append(router_logits) total_expert_indexes.append(expert_indexes) return torch.cat(total_router_logits, dim=1), torch.cat(total_expert_indexes, dim=1) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] return { "decoder_input_ids": input_ids, "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, } def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) def _reorder_cache(self, past_key_values, beam_idx): # if decoder past is not included in output # speedy decoding is disabled and no need to reorder if past_key_values is None: logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") return past_key_values reordered_decoder_past = () for layer_past_states in past_key_values: # get the correct batch idx from layer past batch dim # batch dim of `past` is at 2nd position reordered_layer_past_states = () for layer_past_state in layer_past_states: # need to set correct `past` for each of the four key / value states reordered_layer_past_states = reordered_layer_past_states + ( layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), ) if reordered_layer_past_states[0].shape != layer_past_states[0].shape: raise ValueError( "expected reordered_layer_past_states to have the same shape than layer_past_states, " f"but got {reordered_layer_past_states[0].shape} and {layer_past_states[0].shape}" ) if len(reordered_layer_past_states) != len(layer_past_states): raise ValueError( "expected layer_past_states to have the same length as reordered_layer_past_states, " f"but got {len(layer_past_states)} and {len(reordered_layer_past_states)}" ) reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) return reordered_decoder_past @add_start_docstrings( "The bare SWITCH_TRANSFORMERS Model transformer outputting encoder's raw hidden-states without any specific head" " on top.", SWITCH_TRANSFORMERS_START_DOCSTRING, ) class SwitchTransformersEncoderModel(SwitchTransformersPreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight"] def __init__(self, config: SwitchTransformersConfig): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = SwitchTransformersStack(encoder_config, self.shared) # Initialize weights and apply final processing self.post_init() # Model parallel self.device_map = None def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads) @add_start_docstrings_to_model_forward(SWITCH_TRANSFORMERS_ENCODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MoEModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = True, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], MoEModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, SwitchTransformersEncoderModel >>> tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8") >>> model = SwitchTransformersEncoderModel.from_pretrained("google/switch-base-8") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, ) return encoder_outputs
transformers/src/transformers/models/switch_transformers/modeling_switch_transformers.py/0
{ "file_path": "transformers/src/transformers/models/switch_transformers/modeling_switch_transformers.py", "repo_id": "transformers", "token_count": 37581 }
115
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class TimmBackbone(PreTrainedModel, BackboneMixin): """ Wrapper class for timm models to be used as backbones. This enables using the timm models interchangeably with the other models in the library keeping the same API. """ main_input_name = "pixel_values" supports_gradient_checkpointing = False config_class = TimmBackboneConfig def __init__(self, config, **kwargs): requires_backends(self, "timm") super().__init__(config) self.config = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name.") if config.backbone not in timm.list_models(): raise ValueError(f"backbone {config.backbone} is not supported by timm.") if hasattr(config, "out_features") and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") pretrained = getattr(config, "use_pretrained_backbone", None) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") # We just take the final layer by default. This matches the default for the transformers models. out_indices = config.out_indices if getattr(config, "out_indices", None) is not None else (-1,) self._backbone = timm.create_model( config.backbone, pretrained=pretrained, # This is currently not possible for transformer architectures. features_only=config.features_only, in_chans=config.num_channels, out_indices=out_indices, **kwargs, ) # Converts all `BatchNorm2d` and `SyncBatchNorm` or `BatchNormAct2d` and `SyncBatchNormAct2d` layers of provided module into `FrozenBatchNorm2d` or `FrozenBatchNormAct2d` respectively if getattr(config, "freeze_batch_norm_2d", False): self.freeze_batch_norm_2d() # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. self._return_layers = self._backbone.return_layers self._all_layers = {layer["module"]: str(i) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(config) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): requires_backends(cls, ["vision", "timm"]) from ...models.timm_backbone import TimmBackboneConfig config = kwargs.pop("config", TimmBackboneConfig()) use_timm = kwargs.pop("use_timm_backbone", True) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones") num_channels = kwargs.pop("num_channels", config.num_channels) features_only = kwargs.pop("features_only", config.features_only) use_pretrained_backbone = kwargs.pop("use_pretrained_backbone", config.use_pretrained_backbone) out_indices = kwargs.pop("out_indices", config.out_indices) config = TimmBackboneConfig( backbone=pretrained_model_name_or_path, num_channels=num_channels, features_only=features_only, use_pretrained_backbone=use_pretrained_backbone, out_indices=out_indices, ) return super()._from_config(config, **kwargs) def freeze_batch_norm_2d(self): timm.layers.freeze_batch_norm_2d(self._backbone) def unfreeze_batch_norm_2d(self): timm.layers.unfreeze_batch_norm_2d(self._backbone) def _init_weights(self, module): """ Empty init weights function to ensure compatibility of the class in the library. """ pass def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment") if output_hidden_states: # We modify the return layers to include all the stages of the backbone self._backbone.return_layers = self._all_layers hidden_states = self._backbone(pixel_values, **kwargs) self._backbone.return_layers = self._return_layers feature_maps = tuple(hidden_states[i] for i in self.out_indices) else: feature_maps = self._backbone(pixel_values, **kwargs) hidden_states = None feature_maps = tuple(feature_maps) hidden_states = tuple(hidden_states) if hidden_states is not None else None if not return_dict: output = (feature_maps,) if output_hidden_states: output = output + (hidden_states,) return output return BackboneOutput(feature_maps=feature_maps, hidden_states=hidden_states, attentions=None)
transformers/src/transformers/models/timm_backbone/modeling_timm_backbone.py/0
{ "file_path": "transformers/src/transformers/models/timm_backbone/modeling_timm_backbone.py", "repo_id": "transformers", "token_count": 2548 }
116
# coding=utf-8 # Copyright 2023 The Intel AIA Team Authors, and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License=, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing=, software # distributed under the License is distributed on an "AS IS" BASIS=, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for TVP. """ from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class TvpProcessor(ProcessorMixin): r""" Constructs an TVP processor which wraps a TVP image processor and a Bert tokenizer into a single processor. [`TvpProcessor`] offers all the functionalities of [`TvpImageProcessor`] and [`BertTokenizerFast`]. See the [`~TvpProcessor.__call__`] and [`~TvpProcessor.decode`] for more information. Args: image_processor ([`TvpImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`BertTokenizerFast`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "TvpImageProcessor" tokenizer_class = ("BertTokenizer", "BertTokenizerFast") def __init__(self, image_processor=None, tokenizer=None, **kwargs): if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) def __call__(self, text=None, videos=None, return_tensors=None, **kwargs): """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `videos` and `kwargs` arguments to TvpImageProcessor's [`~TvpImageProcessor.__call__`] if `videos` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). videos (`List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, `List[List[PIL.Image.Image]]`, `List[List[np.ndarrray]]`,: `List[List[torch.Tensor]]`): The video or batch of videos to be prepared. Each video should be a list of frames, which can be either PIL images or NumPy arrays. In case of NumPy arrays/PyTorch tensors, each frame should be of shape (H, W, C), where H and W are frame height and width, and C is a number of channels. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `videos` is not `None`. """ max_text_length = kwargs.pop("max_text_length", None) if text is None and videos is None: raise ValueError("You have to specify either text or videos. Both cannot be none.") encoding = {} if text is not None: textual_input = self.tokenizer.batch_encode_plus( text, truncation=True, padding="max_length", max_length=max_text_length, pad_to_max_length=True, return_tensors=return_tensors, return_token_type_ids=False, **kwargs, ) encoding.update(textual_input) if videos is not None: image_features = self.image_processor(videos, return_tensors=return_tensors, **kwargs) encoding.update(image_features) return BatchEncoding(data=encoding, tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def post_process_video_grounding(self, logits, video_durations): """ Compute the time of the video. Args: logits (`torch.Tensor`): The logits output of TvpForVideoGrounding. video_durations (`float`): The video's duration. Returns: start (`float`): The start time of the video. end (`float`): The end time of the video. """ start, end = ( round(logits.tolist()[0][0] * video_durations, 1), round(logits.tolist()[0][1] * video_durations, 1), ) return start, end @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
transformers/src/transformers/models/tvp/processing_tvp.py/0
{ "file_path": "transformers/src/transformers/models/tvp/processing_tvp.py", "repo_id": "transformers", "token_count": 2826 }
117
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from transformers import UnivNetConfig, UnivNetModel, logging logging.set_verbosity_info() logger = logging.get_logger("transformers.models.univnet") def get_kernel_predictor_key_mapping(config: UnivNetConfig, old_prefix: str = "", new_prefix: str = ""): mapping = {} # Initial conv layer mapping[f"{old_prefix}.input_conv.0.weight_g"] = f"{new_prefix}.input_conv.weight_g" mapping[f"{old_prefix}.input_conv.0.weight_v"] = f"{new_prefix}.input_conv.weight_v" mapping[f"{old_prefix}.input_conv.0.bias"] = f"{new_prefix}.input_conv.bias" # Kernel predictor resnet blocks for i in range(config.kernel_predictor_num_blocks): mapping[f"{old_prefix}.residual_convs.{i}.1.weight_g"] = f"{new_prefix}.resblocks.{i}.conv1.weight_g" mapping[f"{old_prefix}.residual_convs.{i}.1.weight_v"] = f"{new_prefix}.resblocks.{i}.conv1.weight_v" mapping[f"{old_prefix}.residual_convs.{i}.1.bias"] = f"{new_prefix}.resblocks.{i}.conv1.bias" mapping[f"{old_prefix}.residual_convs.{i}.3.weight_g"] = f"{new_prefix}.resblocks.{i}.conv2.weight_g" mapping[f"{old_prefix}.residual_convs.{i}.3.weight_v"] = f"{new_prefix}.resblocks.{i}.conv2.weight_v" mapping[f"{old_prefix}.residual_convs.{i}.3.bias"] = f"{new_prefix}.resblocks.{i}.conv2.bias" # Kernel output conv mapping[f"{old_prefix}.kernel_conv.weight_g"] = f"{new_prefix}.kernel_conv.weight_g" mapping[f"{old_prefix}.kernel_conv.weight_v"] = f"{new_prefix}.kernel_conv.weight_v" mapping[f"{old_prefix}.kernel_conv.bias"] = f"{new_prefix}.kernel_conv.bias" # Bias output conv mapping[f"{old_prefix}.bias_conv.weight_g"] = f"{new_prefix}.bias_conv.weight_g" mapping[f"{old_prefix}.bias_conv.weight_v"] = f"{new_prefix}.bias_conv.weight_v" mapping[f"{old_prefix}.bias_conv.bias"] = f"{new_prefix}.bias_conv.bias" return mapping def get_key_mapping(config: UnivNetConfig): mapping = {} # NOTE: inital conv layer keys are the same # LVC Residual blocks for i in range(len(config.resblock_stride_sizes)): # LVCBlock initial convt layer mapping[f"res_stack.{i}.convt_pre.1.weight_g"] = f"resblocks.{i}.convt_pre.weight_g" mapping[f"res_stack.{i}.convt_pre.1.weight_v"] = f"resblocks.{i}.convt_pre.weight_v" mapping[f"res_stack.{i}.convt_pre.1.bias"] = f"resblocks.{i}.convt_pre.bias" # Kernel predictor kernel_predictor_mapping = get_kernel_predictor_key_mapping( config, old_prefix=f"res_stack.{i}.kernel_predictor", new_prefix=f"resblocks.{i}.kernel_predictor" ) mapping.update(kernel_predictor_mapping) # LVC Residual blocks for j in range(len(config.resblock_dilation_sizes[i])): mapping[f"res_stack.{i}.conv_blocks.{j}.1.weight_g"] = f"resblocks.{i}.resblocks.{j}.conv.weight_g" mapping[f"res_stack.{i}.conv_blocks.{j}.1.weight_v"] = f"resblocks.{i}.resblocks.{j}.conv.weight_v" mapping[f"res_stack.{i}.conv_blocks.{j}.1.bias"] = f"resblocks.{i}.resblocks.{j}.conv.bias" # Output conv layer mapping["conv_post.1.weight_g"] = "conv_post.weight_g" mapping["conv_post.1.weight_v"] = "conv_post.weight_v" mapping["conv_post.1.bias"] = "conv_post.bias" return mapping def rename_state_dict(state_dict, keys_to_modify, keys_to_remove): model_state_dict = {} for key, value in state_dict.items(): if key in keys_to_remove: continue if key in keys_to_modify: new_key = keys_to_modify[key] model_state_dict[new_key] = value else: model_state_dict[key] = value return model_state_dict def convert_univnet_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, repo_id=None, safe_serialization=False, ): model_state_dict_base = torch.load(checkpoint_path, map_location="cpu") # Get the generator's state dict state_dict = model_state_dict_base["model_g"] if config_path is not None: config = UnivNetConfig.from_pretrained(config_path) else: config = UnivNetConfig() keys_to_modify = get_key_mapping(config) keys_to_remove = set() hf_state_dict = rename_state_dict(state_dict, keys_to_modify, keys_to_remove) model = UnivNetModel(config) # Apply weight norm since the original checkpoint has weight norm applied model.apply_weight_norm() model.load_state_dict(hf_state_dict) # Remove weight norm in preparation for inference model.remove_weight_norm() model.save_pretrained(pytorch_dump_folder_path, safe_serialization=safe_serialization) if repo_id: print("Pushing to the hub...") model.push_to_hub(repo_id) def main(): parser = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--safe_serialization", action="store_true", help="Whether to save the model using `safetensors`." ) args = parser.parse_args() convert_univnet_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, args.safe_serialization, ) if __name__ == "__main__": main()
transformers/src/transformers/models/univnet/convert_univnet.py/0
{ "file_path": "transformers/src/transformers/models/univnet/convert_univnet.py", "repo_id": "transformers", "token_count": 2613 }
118
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ViLT checkpoints from the original Github repository.""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config, vqa_model=False, nlvr_model=False, irtr_model=False): rename_keys = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias")) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config): for i in range(config.num_hidden_layers): prefix = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : config.hidden_size, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] def remove_classification_head_(state_dict): ignore_keys = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(k, None) def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val @torch.no_grad() def convert_vilt_checkpoint(checkpoint_url, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our ViLT structure. """ # define configuration and initialize HuggingFace model config = ViltConfig(image_size=384, patch_size=32, tie_word_embeddings=False) mlm_model = False vqa_model = False nlvr_model = False irtr_model = False if "vqa" in checkpoint_url: vqa_model = True config.num_labels = 3129 repo_id = "huggingface/label-files" filename = "vqa2-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} model = ViltForQuestionAnswering(config) elif "nlvr" in checkpoint_url: nlvr_model = True config.num_labels = 2 config.id2label = {0: "False", 1: "True"} config.label2id = {v: k for k, v in config.id2label.items()} config.modality_type_vocab_size = 3 model = ViltForImagesAndTextClassification(config) elif "irtr" in checkpoint_url: irtr_model = True model = ViltForImageAndTextRetrieval(config) elif "mlm_itm" in checkpoint_url: mlm_model = True model = ViltForMaskedLM(config) else: raise ValueError("Unknown model type") # load state_dict of original model, remove and rename some keys state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["state_dict"] rename_keys = create_rename_keys(config, vqa_model, nlvr_model, irtr_model) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config) if mlm_model or irtr_model: ignore_keys = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(k, None) # load state dict into HuggingFace model model.eval() if mlm_model: missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(state_dict) # Define processor image_processor = ViltImageProcessor(size=384) tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") processor = ViltProcessor(image_processor, tokenizer) # Forward pass on example inputs (image + text) if nlvr_model: image1 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg", stream=True).raw) image2 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg", stream=True).raw) text = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) encoding_1 = processor(image1, text, return_tensors="pt") encoding_2 = processor(image2, text, return_tensors="pt") outputs = model( input_ids=encoding_1.input_ids, pixel_values=encoding_1.pixel_values, pixel_values_2=encoding_2.pixel_values, ) else: image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw) if mlm_model: text = "a bunch of [MASK] laying on a [MASK]." else: text = "How many cats are there?" encoding = processor(image, text, return_tensors="pt") outputs = model(**encoding) # Verify outputs if mlm_model: expected_shape = torch.Size([1, 11, 30522]) expected_slice = torch.tensor([-12.5061, -12.5123, -12.5174]) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3], expected_slice, atol=1e-4) # verify masked token prediction equals "cats" predicted_id = outputs.logits[0, 4, :].argmax(-1).item() assert tokenizer.decode([predicted_id]) == "cats" elif vqa_model: expected_shape = torch.Size([1, 3129]) expected_slice = torch.tensor([-15.9495, -18.1472, -10.3041]) assert torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3], expected_slice, atol=1e-4) # verify vqa prediction equals "2" predicted_idx = outputs.logits.argmax(-1).item() assert model.config.id2label[predicted_idx] == "2" elif nlvr_model: expected_shape = torch.Size([1, 2]) expected_slice = torch.tensor([-2.8721, 2.1291]) assert torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4) assert outputs.logits.shape == expected_shape Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model and processor to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
transformers/src/transformers/models/vilt/convert_vilt_original_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/vilt/convert_vilt_original_to_pytorch.py", "repo_id": "transformers", "token_count": 5694 }
119
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax VisionTextDualEncoder model.""" from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.traverse_util import flatten_dict, unflatten_dict from ...modeling_flax_utils import FlaxPreTrainedModel, append_replace_return_docstrings, overwrite_call_docstring from ...utils import add_start_docstrings, logging from ..auto.configuration_auto import AutoConfig from ..auto.modeling_flax_auto import FLAX_MODEL_MAPPING, FlaxAutoModel from ..clip.modeling_flax_clip import FlaxCLIPOutput, FlaxCLIPVisionModel from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "VisionTextDualEncoderConfig" VISION_TEXT_DUAL_ENCODER_START_DOCSTRING = r""" This class can be used to initialize a vision-text dual encoder model with any pretrained vision autoencoding model as the vision encoder and any pretrained text model as the text encoder. The vision and text encoders are loaded via the [`~FlaxAutoModel.from_pretrained`] method. The projection layers are automatically added to the model and should be fine-tuned on a downstream task, like contrastive image-text modeling. In [LiT: Zero-Shot Transfer with Locked-image Text Tuning](https://arxiv.org/abs/2111.07991) it is shown how leveraging pre-trained (locked/frozen) image and text model for contrastive learning yields significant improvment on new zero-shot vision tasks such as image classification or retrieval. After such a Vision-Text-Dual-Encoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`VisionTextDualEncoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ VISION_TEXT_DUAL_ENCODER_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using an image processor (e.g. if you use ViT as the encoder, you should use [`AutoImageProcessor`]). See [`ViTImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxVisionTextDualEncoderModule(nn.Module): config: VisionTextDualEncoderConfig dtype: jnp.dtype = jnp.float32 def setup(self): vision_config = self.config.vision_config text_config = self.config.text_config self.vision_embed_dim = vision_config.hidden_size self.text_embed_dim = text_config.hidden_size self.projection_dim = self.config.projection_dim vision_module = FLAX_MODEL_MAPPING.get(self.config.vision_config.__class__, FlaxCLIPVisionModel).module_class text_module = FLAX_MODEL_MAPPING[self.config.text_config.__class__].module_class self.vision_model = vision_module(vision_config, dtype=self.dtype) self.text_model = text_module(text_config, dtype=self.dtype) self.visual_projection = nn.Dense( self.projection_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.02), use_bias=False, ) self.text_projection = nn.Dense( self.projection_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.02), use_bias=False, ) self.logit_scale = self.param( "logit_scale", lambda _, shape: jnp.ones(shape) * self.config.logit_scale_init_value, [] ) def __call__( self, input_ids=None, pixel_values=None, attention_mask=None, position_ids=None, token_type_ids=None, deterministic: bool = True, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / jnp.linalg.norm(image_embeds, axis=-1, keepdims=True) text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True) # cosine similarity as logits logit_scale = jnp.exp(self.logit_scale) logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale logits_per_image = logits_per_text.T if not return_dict: return (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return FlaxCLIPOutput( logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) @add_start_docstrings(VISION_TEXT_DUAL_ENCODER_START_DOCSTRING) class FlaxVisionTextDualEncoderModel(FlaxPreTrainedModel): config_class = VisionTextDualEncoderConfig module_class = FlaxVisionTextDualEncoderModule def __init__( self, config: VisionTextDualEncoderConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if not _do_init: raise ValueError( "`FlaxVisionTextDualEncoderModel` cannot be created without initializing, `_do_init` must be `True`." ) if input_shape is None: input_shape = ((1, 1), (1, config.vision_config.image_size, config.vision_config.image_size, 3)) module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensor input_ids = jnp.zeros(input_shape[0], dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0]) token_type_ids = jnp.ones_like(input_ids) attention_mask = jnp.ones_like(input_ids) pixel_values = jax.random.normal(rng, input_shape[1]) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, input_ids, pixel_values, attention_mask, position_ids, token_type_ids)[ "params" ] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def __call__( self, input_ids, pixel_values, attention_mask=None, position_ids=None, token_type_ids=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(pixel_values, dtype=jnp.float32), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), jnp.array(token_type_ids, dtype="i4"), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) def get_text_features( self, input_ids, attention_mask=None, position_ids=None, token_type_ids=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False, ): r""" Args: input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) Returns: text_features (`jnp.ndarray` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of text model. """ if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _get_features(module, input_ids, attention_mask, position_ids, token_type_ids, deterministic): text_outputs = module.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, token_type_ids=token_type_ids, deterministic=deterministic, ) pooled_output = text_outputs[1] text_features = module.text_projection(pooled_output) return text_features return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), jnp.array(token_type_ids, dtype="i4"), not train, method=_get_features, rngs=rngs, ) def get_image_features( self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False ): r""" Args: pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`ImageFeatureExtractionMixin`]. See [`ImageFeatureExtractionMixin.__call__`] for details. Returns: image_features (`jnp.ndarray` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of vision model. """ # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _get_features(module, pixel_values, deterministic): vision_outputs = module.vision_model(pixel_values=pixel_values, deterministic=deterministic) pooled_output = vision_outputs[1] # pooled_output image_features = module.visual_projection(pooled_output) return image_features return self.module.apply( {"params": params or self.params}, jnp.array(pixel_values, dtype=jnp.float32), not train, method=_get_features, rngs=rngs, ) @classmethod def from_vision_text_pretrained( cls, vision_model_name_or_path: str = None, text_model_name_or_path: str = None, *model_args, **kwargs, ) -> FlaxPreTrainedModel: """ Params: vision_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the vision model. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *PyTorch checkpoint folder* (e.g, `./pt_model`). In this case, `from_pt` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the PyTorch checkpoint in a Flax model using the provided conversion scripts and loading the Flax model afterwards. text_model_name_or_path (`str`, *optional*): Information necessary to initiate the text model. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *PyTorch checkpoint folder* (e.g, `./pt_model`). In this case, `from_pt` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the PyTorch checkpoint in a Flax model using the provided conversion scripts and loading the Flax model afterwards. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the text configuration, use the prefix *text_* for each configuration parameter. - To update the vision configuration, use the prefix *vision_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import FlaxVisionTextDualEncoderModel >>> # initialize a model from pretrained ViT and BERT models. Note that the projection layers will be randomly initialized. >>> model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( ... "google/vit-base-patch16-224", "google-bert/bert-base-uncased" ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./vit-bert") >>> # load fine-tuned model >>> model = FlaxVisionTextDualEncoderModel.from_pretrained("./vit-bert") ```""" kwargs_vision = { argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_") } kwargs_text = { argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_") } # remove text, vision kwargs from kwargs for key in kwargs_vision.keys(): del kwargs["vision_" + key] for key in kwargs_text.keys(): del kwargs["text_" + key] # Load and initialize the text and vision model vision_model = kwargs_vision.pop("model", None) if vision_model is None: if vision_model_name_or_path is None: raise ValueError( "If `vision_model` is not defined as an argument, a `vision_model_name_or_path` has to be defined" ) if "config" not in kwargs_vision: vision_config = AutoConfig.from_pretrained(vision_model_name_or_path) if vision_config.model_type == "clip": kwargs_vision["config"] = vision_config.vision_config vision_model = FlaxCLIPVisionModel.from_pretrained( vision_model_name_or_path, *model_args, **kwargs_vision ) else: kwargs_vision["config"] = vision_config vision_model = FlaxAutoModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision) text_model = kwargs_text.pop("model", None) if text_model is None: if text_model_name_or_path is None: raise ValueError( "If `text_model` is not defined as an argument, a `text_model_name_or_path` has to be defined" ) if "config" not in kwargs_text: text_config = AutoConfig.from_pretrained(text_model_name_or_path) kwargs_text["config"] = text_config text_model = FlaxAutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text) # instantiate config with corresponding kwargs dtype = kwargs.pop("dtype", jnp.float32) config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_model.config, text_model.config, **kwargs) # init model model = cls(config, *model_args, dtype=dtype, **kwargs) model.params["vision_model"] = vision_model.params model.params["text_model"] = text_model.params # the projection layers are always newly initialized when loading the model # using pre-trained vision and text model. logger.warning( "The projection layer and logit scale weights `[('visual_projection', 'kernel'), ('text_projection'," " 'kernel'), ('logit_scale',)]` are newly initialized. You should probably TRAIN this model on a" " down-stream task to be able to use it for predictions and inference." ) return model VISION_TEXT_DUAL_ENCODER_MODEL_DOCSTRING = r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> import jax >>> from transformers import ( ... FlaxVisionTextDualEncoderModel, ... VisionTextDualEncoderProcessor, ... AutoImageProcessor, ... AutoTokenizer, ... ) >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> image_processor = AutoImageProcesor.from_pretrained("google/vit-base-patch16-224") >>> processor = VisionTextDualEncoderProcessor(image_processor, tokenizer) >>> model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( ... "google/vit-base-patch16-224", "google-bert/bert-base-uncased" ... ) >>> # contrastive training >>> urls = [ ... "http://images.cocodataset.org/val2017/000000039769.jpg", ... "https://farm3.staticflickr.com/2674/5850229113_4fe05d5265_z.jpg", ... ] >>> images = [Image.open(requests.get(url, stream=True).raw) for url in urls] >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=images, return_tensors="np", padding=True ... ) >>> outputs = model( ... input_ids=inputs.input_ids, ... attention_mask=inputs.attention_mask, ... pixel_values=inputs.pixel_values, ... ) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> # save and load from pretrained >>> model.save_pretrained("vit-bert") >>> model = FlaxVisionTextDualEncoderModel.from_pretrained("vit-bert") >>> # inference >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = jax.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities ``` """ overwrite_call_docstring( FlaxVisionTextDualEncoderModel, VISION_TEXT_DUAL_ENCODER_INPUTS_DOCSTRING + VISION_TEXT_DUAL_ENCODER_MODEL_DOCSTRING, ) append_replace_return_docstrings( FlaxVisionTextDualEncoderModel, output_type=FlaxCLIPOutput, config_class=_CONFIG_FOR_DOC )
transformers/src/transformers/models/vision_text_dual_encoder/modeling_flax_vision_text_dual_encoder.py/0
{ "file_path": "transformers/src/transformers/models/vision_text_dual_encoder/modeling_flax_vision_text_dual_encoder.py", "repo_id": "transformers", "token_count": 11058 }
120
# coding=utf-8 # Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ViT model.""" import collections.abc import math from typing import Dict, List, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput, MaskedImageModelingOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_vit import ViTConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "ViTConfig" # Base docstring _CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k" _EXPECTED_OUTPUT_SHAPE = [1, 197, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224" _IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat" VIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/vit-base-patch16-224", # See all ViT models at https://huggingface.co/models?filter=vit ] class ViTEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: ViTConfig, use_mask_token: bool = False) -> None: super().__init__() self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None self.patch_embeddings = ViTPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ num_patches = embeddings.shape[1] - 1 num_positions = self.position_embeddings.shape[1] - 1 if num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, 0] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] h0 = height // self.config.patch_size w0 = width // self.config.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 h0, w0 = h0 + 0.1, w0 + 0.1 patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), mode="bicubic", align_corners=False, ) assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1] patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) def forward( self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: bool = False, ) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if bool_masked_pos is not None: seq_length = embeddings.shape[1] mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) # replace the masked visual tokens by mask_tokens mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask # add the [CLS] token to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings class ViTPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." f" Expected {self.num_channels} but got {num_channels}." ) if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings class ViTSelfAttention(nn.Module): def __init__(self, config: ViTConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class ViTSelfOutput(nn.Module): """ The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViTConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class ViTAttention(nn.Module): def __init__(self, config: ViTConfig) -> None: super().__init__() self.attention = ViTSelfAttention(config) self.output = ViTSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class ViTIntermediate(nn.Module): def __init__(self, config: ViTConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class ViTOutput(nn.Module): def __init__(self, config: ViTConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class ViTLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: ViTConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ViTAttention(config) self.intermediate = ViTIntermediate(config) self.output = ViTOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in ViT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs class ViTEncoder(nn.Module): def __init__(self, config: ViTConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class ViTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViTConfig base_model_prefix = "vit" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["ViTEmbeddings", "ViTLayer"] def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues module.weight.data = nn.init.trunc_normal_( module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range ).to(module.weight.dtype) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, ViTEmbeddings): module.position_embeddings.data = nn.init.trunc_normal_( module.position_embeddings.data.to(torch.float32), mean=0.0, std=self.config.initializer_range, ).to(module.position_embeddings.dtype) module.cls_token.data = nn.init.trunc_normal_( module.cls_token.data.to(torch.float32), mean=0.0, std=self.config.initializer_range, ).to(module.cls_token.dtype) VIT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ViTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. interpolate_pos_encoding (`bool`, *optional*): Whether to interpolate the pre-trained position encodings. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.", VIT_START_DOCSTRING, ) class ViTModel(ViTPreTrainedModel): def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False): super().__init__(config) self.config = config self.embeddings = ViTEmbeddings(config, use_mask_token=use_mask_token) self.encoder = ViTEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = ViTPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> ViTPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?) expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype if pixel_values.dtype != expected_dtype: pixel_values = pixel_values.to(expected_dtype) embedding_output = self.embeddings( pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding ) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class ViTPooler(nn.Module): def __init__(self, config: ViTConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output @add_start_docstrings( """ViT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886). <Tip> Note that we provide a script to pre-train this model on custom data in our [examples directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). </Tip> """, VIT_START_DOCSTRING, ) class ViTForMaskedImageModeling(ViTPreTrainedModel): def __init__(self, config: ViTConfig) -> None: super().__init__(config) self.vit = ViTModel(config, add_pooling_layer=False, use_mask_token=True) self.decoder = nn.Sequential( nn.Conv2d( in_channels=config.hidden_size, out_channels=config.encoder_stride**2 * config.num_channels, kernel_size=1, ), nn.PixelShuffle(config.encoder_stride), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, MaskedImageModelingOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ViTForMaskedImageModeling >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") >>> model = ViTForMaskedImageModeling.from_pretrained("google/vit-base-patch16-224-in21k") >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values >>> # create random boolean mask of shape (batch_size, num_patches) >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction >>> list(reconstructed_pixel_values.shape) [1, 3, 224, 224] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if bool_masked_pos is not None and (self.config.patch_size != self.config.encoder_stride): raise ValueError( "When `bool_masked_pos` is provided, `patch_size` must be equal to `encoder_stride` to ensure that " "the reconstructed image has the same dimensions as the input. " f"Got `patch_size` = {self.config.patch_size} and `encoder_stride` = {self.config.encoder_stride}." ) outputs = self.vit( pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) sequence_output = outputs[0] # Reshape to (batch_size, num_channels, height, width) sequence_output = sequence_output[:, 1:] batch_size, sequence_length, num_channels = sequence_output.shape height = width = math.floor(sequence_length**0.5) sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) # Reconstruct pixel values reconstructed_pixel_values = self.decoder(sequence_output) masked_im_loss = None if bool_masked_pos is not None: size = self.config.image_size // self.config.patch_size bool_masked_pos = bool_masked_pos.reshape(-1, size, size) mask = ( bool_masked_pos.repeat_interleave(self.config.patch_size, 1) .repeat_interleave(self.config.patch_size, 2) .unsqueeze(1) .contiguous() ) reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels if not return_dict: output = (reconstructed_pixel_values,) + outputs[1:] return ((masked_im_loss,) + output) if masked_im_loss is not None else output return MaskedImageModelingOutput( loss=masked_im_loss, reconstruction=reconstructed_pixel_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. <Tip> Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained position embeddings to the higher resolution. </Tip> """, VIT_START_DOCSTRING, ) class ViTForImageClassification(ViTPreTrainedModel): def __init__(self, config: ViTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.vit = ViTModel(config, add_pooling_layer=False) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output[:, 0, :]) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/vit/modeling_vit.py/0
{ "file_path": "transformers/src/transformers/models/vit/modeling_vit.py", "repo_id": "transformers", "token_count": 15053 }
121
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ VitDet model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/vit-det-base": "https://huggingface.co/facebook/vit-det-base/resolve/main/config.json", } class VitDetConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`VitDetModel`]. It is used to instantiate an VitDet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VitDet [google/vitdet-base-patch16-224](https://huggingface.co/google/vitdet-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. mlp_ratio (`int`, *optional*, defaults to 4): Ratio of mlp hidden dim to embedding dim. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. pretrain_image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image during pretraining. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. drop_path_rate (`float`, *optional*, defaults to 0.0): Stochastic depth rate. window_block_indices (`List[int]`, *optional*, defaults to `[]`): List of indices of blocks that should have window attention instead of regular global self-attention. residual_block_indices (`List[int]`, *optional*, defaults to `[]`): List of indices of blocks that should have an extra residual block after the MLP. use_absolute_position_embeddings (`bool`, *optional*, defaults to `True`): Whether to add absolute position embeddings to the patch embeddings. use_relative_position_embeddings (`bool`, *optional*, defaults to `False`): Whether to add relative position embeddings to the attention maps. window_size (`int`, *optional*, defaults to 0): The size of the attention window. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import VitDetConfig, VitDetModel >>> # Initializing a VitDet configuration >>> configuration = VitDetConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = VitDetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vitdet" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, mlp_ratio=4, hidden_act="gelu", dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-6, image_size=224, pretrain_image_size=224, patch_size=16, num_channels=3, qkv_bias=True, drop_path_rate=0.0, window_block_indices=[], residual_block_indices=[], use_absolute_position_embeddings=True, use_relative_position_embeddings=False, window_size=0, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.mlp_ratio = mlp_ratio self.hidden_act = hidden_act self.dropout_prob = dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.pretrain_image_size = pretrain_image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.drop_path_rate = drop_path_rate self.window_block_indices = window_block_indices self.residual_block_indices = residual_block_indices self.use_absolute_position_embeddings = use_absolute_position_embeddings self.use_relative_position_embeddings = use_relative_position_embeddings self.window_size = window_size self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, self.num_hidden_layers + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names )
transformers/src/transformers/models/vitdet/configuration_vitdet.py/0
{ "file_path": "transformers/src/transformers/models/vitdet/configuration_vitdet.py", "repo_id": "transformers", "token_count": 2892 }
122
# coding=utf-8 # Copyright 2023 Google AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ViViT model.""" import math from typing import Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_vivit import VivitConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/vivit-b-16x2-kinetics400" _CONFIG_FOR_DOC = "VivitConfig" VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/vivit-b-16x2-kinetics400", # See all Vivit models at https://huggingface.co/models?filter=vivit ] class VivitTubeletEmbeddings(nn.Module): """ Construct Vivit Tubelet embeddings. This module turns a batch of videos of shape (batch_size, num_frames, num_channels, height, width) into a tensor of shape (batch_size, seq_len, hidden_size) to be consumed by a Transformer encoder. The seq_len (the number of patches) equals (number of frames // tubelet_size[0]) * (height // tubelet_size[1]) * (width // tubelet_size[2]). """ def __init__(self, config): super().__init__() self.num_frames = config.num_frames self.image_size = config.image_size self.patch_size = config.tubelet_size self.num_patches = ( (self.image_size // self.patch_size[2]) * (self.image_size // self.patch_size[1]) * (self.num_frames // self.patch_size[0]) ) self.embed_dim = config.hidden_size self.projection = nn.Conv3d( config.num_channels, config.hidden_size, kernel_size=config.tubelet_size, stride=config.tubelet_size ) def forward(self, pixel_values): batch_size, num_frames, num_channels, height, width = pixel_values.shape if height != self.image_size or width != self.image_size: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})." ) # permute to (batch_size, num_channels, num_frames, height, width) pixel_values = pixel_values.permute(0, 2, 1, 3, 4) x = self.projection(pixel_values) # out_batch_size, out_num_channels, out_num_frames, out_height, out_width = x.shape x = self.projection(pixel_values).flatten(2).transpose(1, 2) return x class VivitEmbeddings(nn.Module): """ Vivit Embeddings. Creates embeddings from a video using VivitTubeletEmbeddings, adds CLS token and positional embeddings. """ def __init__(self, config): super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.patch_embeddings = VivitTubeletEmbeddings(config) self.position_embeddings = nn.Parameter( torch.zeros(1, self.patch_embeddings.num_patches + 1, config.hidden_size) ) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def forward(self, pixel_values): batch_size = pixel_values.shape[0] embeddings = self.patch_embeddings(pixel_values) cls_tokens = self.cls_token.tile([batch_size, 1, 1]) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Vivit class VivitSelfAttention(nn.Module): def __init__(self, config: VivitConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Vivit class VivitSelfOutput(nn.Module): """ The residual connection is defined in VivitLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: VivitConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Vivit class VivitAttention(nn.Module): def __init__(self, config: VivitConfig) -> None: super().__init__() self.attention = VivitSelfAttention(config) self.output = VivitSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class VivitIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class VivitOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class VivitLayer(nn.Module): """This corresponds to the EncoderBlock class in the scenic/vivit implementation.""" def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = VivitAttention(config) self.intermediate = VivitIntermediate(config) self.output = VivitOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, head_mask=None, output_attentions=False): self_attention_outputs = self.attention( # in Vivit, layernorm is applied before self-attention self.layernorm_before(hidden_states), head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] # add self attentions if we output attention weights outputs = self_attention_outputs[1:] # first residual connection hidden_states = attention_output + hidden_states # in Vivit, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs class VivitEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([VivitLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class VivitPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class VivitPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = VivitConfig base_model_prefix = "vivit" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv3d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Parameter): module.data.normal_(mean=0.0, std=self.config.initializer_range) VIVIT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`VivitConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VIVIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`VivitImageProcessor`]. See [`VivitImageProcessor.preprocess`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ViViT Transformer model outputting raw hidden-states without any specific head on top.", VIVIT_START_DOCSTRING, ) class VivitModel(VivitPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = VivitEmbeddings(config) self.encoder = VivitEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = VivitPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. Args: heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VIVIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> import av >>> import numpy as np >>> from transformers import VivitImageProcessor, VivitModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`List[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 32 frames >>> indices = sample_frame_indices(clip_len=32, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container=container, indices=indices) >>> image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400") >>> model = VivitModel.from_pretrained("google/vivit-b-16x2-kinetics400") >>> # prepare video for the model >>> inputs = image_processor(list(video), return_tensors="pt") >>> # forward pass >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 3137, 768] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ViViT Transformer model with a video classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for Kinetics-400.""", VIVIT_START_DOCSTRING, ) class VivitForVideoClassification(VivitPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.vivit = VivitModel(config, add_pooling_layer=False) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VIVIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> import av >>> import numpy as np >>> import torch >>> from transformers import VivitImageProcessor, VivitForVideoClassification >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`List[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 32 frames >>> indices = sample_frame_indices(clip_len=32, frame_sample_rate=4, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container=container, indices=indices) >>> image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400") >>> model = VivitForVideoClassification.from_pretrained("google/vivit-b-16x2-kinetics400") >>> inputs = image_processor(list(video), return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) ... logits = outputs.logits >>> # model predicts one of the 400 Kinetics-400 classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) LABEL_116 ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vivit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output[:, 0, :]) loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/vivit/modeling_vivit.py/0
{ "file_path": "transformers/src/transformers/models/vivit/modeling_vivit.py", "repo_id": "transformers", "token_count": 12679 }
123
# Copyright 2022 The OpenAI team and The HuggingFace Team. All rights reserved. # Most of the code is copy pasted from the original whisper repository # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import unicodedata from fractions import Fraction from typing import Iterator, List, Match, Optional, Union import regex # non-ASCII letters that are not separated by "NFKD" normalization ADDITIONAL_DIACRITICS = { "œ": "oe", "Œ": "OE", "ø": "o", "Ø": "O", "æ": "ae", "Æ": "AE", "ß": "ss", "ẞ": "SS", "đ": "d", "Đ": "D", "ð": "d", "Ð": "D", "þ": "th", "Þ": "th", "ł": "l", "Ł": "L", } def remove_symbols_and_diacritics(s: str, keep=""): """ Replace any other markers, symbols, and punctuations with a space, and drop any diacritics (category 'Mn' and some manual mappings) """ def replace_character(char): if char in keep: return char elif char in ADDITIONAL_DIACRITICS: return ADDITIONAL_DIACRITICS[char] elif unicodedata.category(char) == "Mn": return "" elif unicodedata.category(char)[0] in "MSP": return " " return char return "".join(replace_character(c) for c in unicodedata.normalize("NFKD", s)) def remove_symbols(s: str): """ Replace any other markers, symbols, punctuations with a space, keeping diacritics """ return "".join(" " if unicodedata.category(c)[0] in "MSP" else c for c in unicodedata.normalize("NFKC", s)) class BasicTextNormalizer: def __init__(self, remove_diacritics: bool = False, split_letters: bool = False): self.clean = remove_symbols_and_diacritics if remove_diacritics else remove_symbols self.split_letters = split_letters def __call__(self, s: str): s = s.lower() s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis s = self.clean(s).lower() if self.split_letters: s = " ".join(regex.findall(r"\X", s, regex.U)) s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space return s class EnglishNumberNormalizer: """ Convert any spelled-out numbers into arabic numbers, while handling: - remove any commas - keep the suffixes such as: `1960s`, `274th`, `32nd`, etc. - spell out currency symbols after the number. e.g. `$20 million` -> `20000000 dollars` - spell out `one` and `ones` - interpret successive single-digit numbers as nominal: `one oh one` -> `101` """ def __init__(self): super().__init__() self.zeros = {"o", "oh", "zero"} # fmt: off self.ones = { name: i for i, name in enumerate( ["one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen"], start=1, ) } # fmt: on self.ones_plural = { "sixes" if name == "six" else name + "s": (value, "s") for name, value in self.ones.items() } self.ones_ordinal = { "zeroth": (0, "th"), "first": (1, "st"), "second": (2, "nd"), "third": (3, "rd"), "fifth": (5, "th"), "twelfth": (12, "th"), **{ name + ("h" if name.endswith("t") else "th"): (value, "th") for name, value in self.ones.items() if value > 3 and value != 5 and value != 12 }, } self.ones_suffixed = {**self.ones_plural, **self.ones_ordinal} self.tens = { "twenty": 20, "thirty": 30, "forty": 40, "fifty": 50, "sixty": 60, "seventy": 70, "eighty": 80, "ninety": 90, } self.tens_plural = {name.replace("y", "ies"): (value, "s") for name, value in self.tens.items()} self.tens_ordinal = {name.replace("y", "ieth"): (value, "th") for name, value in self.tens.items()} self.tens_suffixed = {**self.tens_plural, **self.tens_ordinal} self.multipliers = { "hundred": 100, "thousand": 1_000, "million": 1_000_000, "billion": 1_000_000_000, "trillion": 1_000_000_000_000, "quadrillion": 1_000_000_000_000_000, "quintillion": 1_000_000_000_000_000_000, "sextillion": 1_000_000_000_000_000_000_000, "septillion": 1_000_000_000_000_000_000_000_000, "octillion": 1_000_000_000_000_000_000_000_000_000, "nonillion": 1_000_000_000_000_000_000_000_000_000_000, "decillion": 1_000_000_000_000_000_000_000_000_000_000_000, } self.multipliers_plural = {name + "s": (value, "s") for name, value in self.multipliers.items()} self.multipliers_ordinal = {name + "th": (value, "th") for name, value in self.multipliers.items()} self.multipliers_suffixed = {**self.multipliers_plural, **self.multipliers_ordinal} self.decimals = {*self.ones, *self.tens, *self.zeros} self.preceding_prefixers = { "minus": "-", "negative": "-", "plus": "+", "positive": "+", } self.following_prefixers = { "pound": "£", "pounds": "£", "euro": "€", "euros": "€", "dollar": "$", "dollars": "$", "cent": "¢", "cents": "¢", } self.prefixes = set(list(self.preceding_prefixers.values()) + list(self.following_prefixers.values())) self.suffixers = { "per": {"cent": "%"}, "percent": "%", } self.specials = {"and", "double", "triple", "point"} self.words = { key for mapping in [ self.zeros, self.ones, self.ones_suffixed, self.tens, self.tens_suffixed, self.multipliers, self.multipliers_suffixed, self.preceding_prefixers, self.following_prefixers, self.suffixers, self.specials, ] for key in mapping } self.literal_words = {"one", "ones"} def process_words(self, words: List[str]) -> Iterator[str]: prefix: Optional[str] = None value: Optional[Union[str, int]] = None skip = False def to_fraction(s: str): try: return Fraction(s) except ValueError: return None def output(result: Union[str, int]): nonlocal prefix, value result = str(result) if prefix is not None: result = prefix + result value = None prefix = None return result if len(words) == 0: return for i, current in enumerate(words): prev = words[i - 1] if i != 0 else None next = words[i + 1] if i != len(words) - 1 else None if skip: skip = False continue next_is_numeric = next is not None and re.match(r"^\d+(\.\d+)?$", next) has_prefix = current[0] in self.prefixes current_without_prefix = current[1:] if has_prefix else current if re.match(r"^\d+(\.\d+)?$", current_without_prefix): # arabic numbers (potentially with signs and fractions) f = to_fraction(current_without_prefix) if f is None: raise ValueError("Converting the fraction failed") if value is not None: if isinstance(value, str) and value.endswith("."): # concatenate decimals / ip address components value = str(value) + str(current) continue else: yield output(value) prefix = current[0] if has_prefix else prefix if f.denominator == 1: value = f.numerator # store integers as int else: value = current_without_prefix elif current not in self.words: # non-numeric words if value is not None: yield output(value) yield output(current) elif current in self.zeros: value = str(value or "") + "0" elif current in self.ones: ones = self.ones[current] if value is None: value = ones elif isinstance(value, str) or prev in self.ones: if prev in self.tens and ones < 10: # replace the last zero with the digit value = value[:-1] + str(ones) else: value = str(value) + str(ones) elif ones < 10: if value % 10 == 0: value += ones else: value = str(value) + str(ones) else: # eleven to nineteen if value % 100 == 0: value += ones else: value = str(value) + str(ones) elif current in self.ones_suffixed: # ordinal or cardinal; yield the number right away ones, suffix = self.ones_suffixed[current] if value is None: yield output(str(ones) + suffix) elif isinstance(value, str) or prev in self.ones: if prev in self.tens and ones < 10: yield output(value[:-1] + str(ones) + suffix) else: yield output(str(value) + str(ones) + suffix) elif ones < 10: if value % 10 == 0: yield output(str(value + ones) + suffix) else: yield output(str(value) + str(ones) + suffix) else: # eleven to nineteen if value % 100 == 0: yield output(str(value + ones) + suffix) else: yield output(str(value) + str(ones) + suffix) value = None elif current in self.tens: tens = self.tens[current] if value is None: value = tens elif isinstance(value, str): value = str(value) + str(tens) else: if value % 100 == 0: value += tens else: value = str(value) + str(tens) elif current in self.tens_suffixed: # ordinal or cardinal; yield the number right away tens, suffix = self.tens_suffixed[current] if value is None: yield output(str(tens) + suffix) elif isinstance(value, str): yield output(str(value) + str(tens) + suffix) else: if value % 100 == 0: yield output(str(value + tens) + suffix) else: yield output(str(value) + str(tens) + suffix) elif current in self.multipliers: multiplier = self.multipliers[current] if value is None: value = multiplier elif isinstance(value, str) or value == 0: f = to_fraction(value) p = f * multiplier if f is not None else None if f is not None and p.denominator == 1: value = p.numerator else: yield output(value) value = multiplier else: before = value // 1000 * 1000 residual = value % 1000 value = before + residual * multiplier elif current in self.multipliers_suffixed: multiplier, suffix = self.multipliers_suffixed[current] if value is None: yield output(str(multiplier) + suffix) elif isinstance(value, str): f = to_fraction(value) p = f * multiplier if f is not None else None if f is not None and p.denominator == 1: yield output(str(p.numerator) + suffix) else: yield output(value) yield output(str(multiplier) + suffix) else: # int before = value // 1000 * 1000 residual = value % 1000 value = before + residual * multiplier yield output(str(value) + suffix) value = None elif current in self.preceding_prefixers: # apply prefix (positive, minus, etc.) if it precedes a number if value is not None: yield output(value) if next in self.words or next_is_numeric: prefix = self.preceding_prefixers[current] else: yield output(current) elif current in self.following_prefixers: # apply prefix (dollars, cents, etc.) only after a number if value is not None: prefix = self.following_prefixers[current] yield output(value) else: yield output(current) elif current in self.suffixers: # apply suffix symbols (percent -> '%') if value is not None: suffix = self.suffixers[current] if isinstance(suffix, dict): if next in suffix: yield output(str(value) + suffix[next]) skip = True else: yield output(value) yield output(current) else: yield output(str(value) + suffix) else: yield output(current) elif current in self.specials: if next not in self.words and not next_is_numeric: # apply special handling only if the next word can be numeric if value is not None: yield output(value) yield output(current) elif current == "and": # ignore "and" after hundreds, thousands, etc. if prev not in self.multipliers: if value is not None: yield output(value) yield output(current) elif current == "double" or current == "triple": if next in self.ones or next in self.zeros: repeats = 2 if current == "double" else 3 ones = self.ones.get(next, 0) value = str(value or "") + str(ones) * repeats skip = True else: if value is not None: yield output(value) yield output(current) elif current == "point": if next in self.decimals or next_is_numeric: value = str(value or "") + "." else: # should all have been covered at this point raise ValueError(f"Unexpected token: {current}") else: # all should have been covered at this point raise ValueError(f"Unexpected token: {current}") if value is not None: yield output(value) def preprocess(self, s: str): # replace "<number> and a half" with "<number> point five" results = [] segments = re.split(r"\band\s+a\s+half\b", s) for i, segment in enumerate(segments): if len(segment.strip()) == 0: continue if i == len(segments) - 1: results.append(segment) else: results.append(segment) last_word = segment.rsplit(maxsplit=2)[-1] if last_word in self.decimals or last_word in self.multipliers: results.append("point five") else: results.append("and a half") s = " ".join(results) # put a space at number/letter boundary s = re.sub(r"([a-z])([0-9])", r"\1 \2", s) s = re.sub(r"([0-9])([a-z])", r"\1 \2", s) # but remove spaces which could be a suffix s = re.sub(r"([0-9])\s+(st|nd|rd|th|s)\b", r"\1\2", s) return s def postprocess(self, s: str): def combine_cents(m: Match): try: currency = m.group(1) integer = m.group(2) cents = int(m.group(3)) return f"{currency}{integer}.{cents:02d}" except ValueError: return m.string def extract_cents(m: Match): try: return f"¢{int(m.group(1))}" except ValueError: return m.string # apply currency postprocessing; "$2 and ¢7" -> "$2.07" s = re.sub(r"([€£$])([0-9]+) (?:and )?¢([0-9]{1,2})\b", combine_cents, s) s = re.sub(r"[€£$]0.([0-9]{1,2})\b", extract_cents, s) # write "one(s)" instead of "1(s)", just for the readability s = re.sub(r"\b1(s?)\b", r"one\1", s) return s def __call__(self, s: str): s = self.preprocess(s) s = " ".join(word for word in self.process_words(s.split()) if word is not None) s = self.postprocess(s) return s class EnglishSpellingNormalizer: """ Applies British-American spelling mappings as listed in [1]. [1] https://www.tysto.com/uk-us-spelling-list.html """ def __init__(self, english_spelling_mapping): self.mapping = english_spelling_mapping def __call__(self, s: str): return " ".join(self.mapping.get(word, word) for word in s.split()) class EnglishTextNormalizer: def __init__(self, english_spelling_mapping): self.ignore_patterns = r"\b(hmm|mm|mhm|mmm|uh|um)\b" self.replacers = { # common contractions r"\bwon't\b": "will not", r"\bcan't\b": "can not", r"\blet's\b": "let us", r"\bain't\b": "aint", r"\by'all\b": "you all", r"\bwanna\b": "want to", r"\bgotta\b": "got to", r"\bgonna\b": "going to", r"\bi'ma\b": "i am going to", r"\bimma\b": "i am going to", r"\bwoulda\b": "would have", r"\bcoulda\b": "could have", r"\bshoulda\b": "should have", r"\bma'am\b": "madam", # contractions in titles/prefixes r"\bmr\b": "mister ", r"\bmrs\b": "missus ", r"\bst\b": "saint ", r"\bdr\b": "doctor ", r"\bprof\b": "professor ", r"\bcapt\b": "captain ", r"\bgov\b": "governor ", r"\bald\b": "alderman ", r"\bgen\b": "general ", r"\bsen\b": "senator ", r"\brep\b": "representative ", r"\bpres\b": "president ", r"\brev\b": "reverend ", r"\bhon\b": "honorable ", r"\basst\b": "assistant ", r"\bassoc\b": "associate ", r"\blt\b": "lieutenant ", r"\bcol\b": "colonel ", r"\bjr\b": "junior ", r"\bsr\b": "senior ", r"\besq\b": "esquire ", # prefect tenses, ideally it should be any past participles, but it's harder.. r"'d been\b": " had been", r"'s been\b": " has been", r"'d gone\b": " had gone", r"'s gone\b": " has gone", r"'d done\b": " had done", # "'s done" is ambiguous r"'s got\b": " has got", # general contractions r"n't\b": " not", r"'re\b": " are", r"'s\b": " is", r"'d\b": " would", r"'ll\b": " will", r"'t\b": " not", r"'ve\b": " have", r"'m\b": " am", } self.standardize_numbers = EnglishNumberNormalizer() self.standardize_spellings = EnglishSpellingNormalizer(english_spelling_mapping) def __call__(self, s: str): s = s.lower() s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis s = re.sub(self.ignore_patterns, "", s) s = re.sub(r"\s+'", "'", s) # standardize when there's a space before an apostrophe for pattern, replacement in self.replacers.items(): s = re.sub(pattern, replacement, s) s = re.sub(r"(\d),(\d)", r"\1\2", s) # remove commas between digits s = re.sub(r"\.([^0-9]|$)", r" \1", s) # remove periods not followed by numbers s = remove_symbols_and_diacritics(s, keep=".%$¢€£") # keep some symbols for numerics s = self.standardize_numbers(s) s = self.standardize_spellings(s) # now remove prefix/suffix symbols that are not preceded/followed by numbers s = re.sub(r"[.$¢€£]([^0-9])", r" \1", s) s = re.sub(r"([^0-9])%", r"\1 ", s) s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space return s
transformers/src/transformers/models/whisper/english_normalizer.py/0
{ "file_path": "transformers/src/transformers/models/whisper/english_normalizer.py", "repo_id": "transformers", "token_count": 12164 }
124
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def remove_ignore_keys_(state_dict): ignore_keys = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(k, None) def make_linear_from_emb(emb): vocab_size, emb_size = emb.weight.shape lin_layer = nn.Linear(vocab_size, emb_size, bias=False) lin_layer.weight.data = emb.weight.data return lin_layer def convert_fairseq_xglm_checkpoint_from_disk(checkpoint_path): checkpoint = torch.load(checkpoint_path, map_location="cpu") args = Namespace(**checkpoint["cfg"]["model"]) state_dict = checkpoint["model"] remove_ignore_keys_(state_dict) vocab_size = state_dict["decoder.embed_tokens.weight"].shape[0] state_dict = {key.replace("decoder", "model"): val for key, val in state_dict.items()} config = XGLMConfig( vocab_size=vocab_size, max_position_embeddings=args.max_target_positions, num_layers=args.decoder_layers, attention_heads=args.decoder_attention_heads, ffn_dim=args.decoder_ffn_embed_dim, d_model=args.decoder_embed_dim, layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function="gelu", scale_embedding=not args.no_scale_embedding, tie_word_embeddings=args.share_decoder_input_output_embed, ) model = XGLMForCausalLM(config) missing = model.load_state_dict(state_dict, strict=False) print(missing) model.lm_head = make_linear_from_emb(model.model.embed_tokens) return model if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") args = parser.parse_args() model = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
transformers/src/transformers/models/xglm/convert_xglm_original_ckpt_to_trfms.py/0
{ "file_path": "transformers/src/transformers/models/xglm/convert_xglm_original_ckpt_to_trfms.py", "repo_id": "transformers", "token_count": 938 }
125
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for XLNet model.""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "xlnet/xlnet-base-cased": "https://huggingface.co/xlnet/xlnet-base-cased/resolve/main/spiece.model", "xlnet/xlnet-large-cased": "https://huggingface.co/xlnet/xlnet-large-cased/resolve/main/spiece.model", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "xlnet/xlnet-base-cased": None, "xlnet/xlnet-large-cased": None, } # Segments (not really needed) SEG_ID_A = 0 SEG_ID_B = 1 SEG_ID_CLS = 2 SEG_ID_SEP = 3 SEG_ID_PAD = 4 class XLNetTokenizer(PreTrainedTokenizer): """ Construct an XLNet tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `False`): Whether to lowercase the input when tokenizing. remove_space (`bool`, *optional*, defaults to `True`): Whether to strip the text when tokenizing (removing excess spaces before and after the string). keep_accents (`bool`, *optional*, defaults to `False`): Whether to keep accents when tokenizing. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"<sep>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"<cls>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `['<eop>', '<eod>']`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES padding_side = "left" def __init__( self, vocab_file, do_lower_case=False, remove_space=True, keep_accents=False, bos_token="<s>", eos_token="</s>", unk_token="<unk>", sep_token="<sep>", pad_token="<pad>", cls_token="<cls>", mask_token="<mask>", additional_special_tokens=["<eop>", "<eod>"], sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) super().__init__( do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self._pad_token_type_id = 3 @property def vocab_size(self): return len(self.sp_model) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def preprocess_text(self, inputs): if self.remove_space: outputs = " ".join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if not self.keep_accents: outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if self.do_lower_case: outputs = outputs.lower() return outputs def _tokenize(self, text: str) -> List[str]: """Tokenize a string.""" text = self.preprocess_text(text) pieces = self.sp_model.encode(text, out_type=str) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) return new_pieces def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, spaces_between_special_tokens: bool = True, **kwargs, ) -> str: self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 sub_texts = [] current_sub_text = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) current_sub_text = [] sub_texts.append(token) else: current_sub_text.append(token) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens text = "".join(sub_texts) clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: clean_text = self.clean_up_tokenization(text) return clean_text else: return text def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLNet sequence has the following format: - single sequence: `X <sep> <cls>` - pair of sequences: `A <sep> B <sep> <cls>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return token_ids_0 + sep + cls return token_ids_0 + sep + token_ids_1 + sep + cls def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1, 1] return ([0] * len(token_ids_0)) + [1, 1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls_segment_id = [2] if token_ids_1 is None: return len(token_ids_0 + sep) * [0] + cls_segment_id return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
transformers/src/transformers/models/xlnet/tokenization_xlnet.py/0
{ "file_path": "transformers/src/transformers/models/xlnet/tokenization_xlnet.py", "repo_id": "transformers", "token_count": 7082 }
126
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..utils import _LazyModule _import_structure = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/onnx/__init__.py/0
{ "file_path": "transformers/src/transformers/onnx/__init__.py", "repo_id": "transformers", "token_count": 548 }
127
from typing import Dict from ..utils import add_end_docstrings from .base import GenericTensor, Pipeline, build_pipeline_init_args @add_end_docstrings( build_pipeline_init_args(has_tokenizer=True, supports_binary_output=False), r""" tokenize_kwargs (`dict`, *optional*): Additional dictionary of keyword arguments passed along to the tokenizer. return_tensors (`bool`, *optional*): If `True`, returns a tensor according to the specified framework, otherwise returns a list.""", ) class FeatureExtractionPipeline(Pipeline): """ Feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks. Example: ```python >>> from transformers import pipeline >>> extractor = pipeline(model="google-bert/bert-base-uncased", task="feature-extraction") >>> result = extractor("This is a simple test.", return_tensors=True) >>> result.shape # This is a tensor of shape [1, sequence_lenth, hidden_dimension] representing the input string. torch.Size([1, 8, 768]) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier: `"feature-extraction"`. All models may be used for this pipeline. See a list of all models, including community-contributed models on [huggingface.co/models](https://huggingface.co/models). """ def _sanitize_parameters(self, truncation=None, tokenize_kwargs=None, return_tensors=None, **kwargs): if tokenize_kwargs is None: tokenize_kwargs = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) tokenize_kwargs["truncation"] = truncation preprocess_params = tokenize_kwargs postprocess_params = {} if return_tensors is not None: postprocess_params["return_tensors"] = return_tensors return preprocess_params, {}, postprocess_params def preprocess(self, inputs, **tokenize_kwargs) -> Dict[str, GenericTensor]: model_inputs = self.tokenizer(inputs, return_tensors=self.framework, **tokenize_kwargs) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs, return_tensors=False): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__(self, *args, **kwargs): """ Extract the features of the input(s). Args: args (`str` or `List[str]`): One or several texts (or one list of texts) to get the features of. Return: A nested list of `float`: The features computed by the model. """ return super().__call__(*args, **kwargs)
transformers/src/transformers/pipelines/feature_extraction.py/0
{ "file_path": "transformers/src/transformers/pipelines/feature_extraction.py", "repo_id": "transformers", "token_count": 1280 }
128
import types import warnings from typing import List, Optional, Tuple, Union import numpy as np from ..models.bert.tokenization_bert import BasicTokenizer from ..utils import ( ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available, ) from .base import ArgumentHandler, ChunkPipeline, Dataset, build_pipeline_init_args if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES class TokenClassificationArgumentHandler(ArgumentHandler): """ Handles arguments for token classification. """ def __call__(self, inputs: Union[str, List[str]], **kwargs): if inputs is not None and isinstance(inputs, (list, tuple)) and len(inputs) > 0: inputs = list(inputs) batch_size = len(inputs) elif isinstance(inputs, str): inputs = [inputs] batch_size = 1 elif Dataset is not None and isinstance(inputs, Dataset) or isinstance(inputs, types.GeneratorType): return inputs, None else: raise ValueError("At least one input is required.") offset_mapping = kwargs.get("offset_mapping") if offset_mapping: if isinstance(offset_mapping, list) and isinstance(offset_mapping[0], tuple): offset_mapping = [offset_mapping] if len(offset_mapping) != batch_size: raise ValueError("offset_mapping should have the same batch size as the input") return inputs, offset_mapping class AggregationStrategy(ExplicitEnum): """All the valid aggregation strategies for TokenClassificationPipeline""" NONE = "none" SIMPLE = "simple" FIRST = "first" AVERAGE = "average" MAX = "max" @add_end_docstrings( build_pipeline_init_args(has_tokenizer=True), r""" ignore_labels (`List[str]`, defaults to `["O"]`): A list of labels to ignore. grouped_entities (`bool`, *optional*, defaults to `False`): DEPRECATED, use `aggregation_strategy` instead. Whether or not to group the tokens corresponding to the same entity together in the predictions or not. stride (`int`, *optional*): If stride is provided, the pipeline is applied on all the text. The text is split into chunks of size model_max_length. Works only with fast tokenizers and `aggregation_strategy` different from `NONE`. The value of this argument defines the number of overlapping tokens between chunks. In other words, the model will shift forward by `tokenizer.model_max_length - stride` tokens each step. aggregation_strategy (`str`, *optional*, defaults to `"none"`): The strategy to fuse (or not) tokens based on the model prediction. - "none" : Will simply not do any aggregation and simply return raw results from the model - "simple" : Will attempt to group entities following the default schema. (A, B-TAG), (B, I-TAG), (C, I-TAG), (D, B-TAG2) (E, B-TAG2) will end up being [{"word": ABC, "entity": "TAG"}, {"word": "D", "entity": "TAG2"}, {"word": "E", "entity": "TAG2"}] Notice that two consecutive B tags will end up as different entities. On word based languages, we might end up splitting words undesirably : Imagine Microsoft being tagged as [{"word": "Micro", "entity": "ENTERPRISE"}, {"word": "soft", "entity": "NAME"}]. Look for FIRST, MAX, AVERAGE for ways to mitigate that and disambiguate words (on languages that support that meaning, which is basically tokens separated by a space). These mitigations will only work on real words, "New york" might still be tagged with two different entities. - "first" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot end up with different tags. Words will simply use the tag of the first token of the word when there is ambiguity. - "average" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot end up with different tags. scores will be averaged first across tokens, and then the maximum label is applied. - "max" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot end up with different tags. Word entity will simply be the token with the maximum score.""", ) class TokenClassificationPipeline(ChunkPipeline): """ Named Entity Recognition pipeline using any `ModelForTokenClassification`. See the [named entity recognition examples](../task_summary#named-entity-recognition) for more information. Example: ```python >>> from transformers import pipeline >>> token_classifier = pipeline(model="Jean-Baptiste/camembert-ner", aggregation_strategy="simple") >>> sentence = "Je m'appelle jean-baptiste et je vis à montréal" >>> tokens = token_classifier(sentence) >>> tokens [{'entity_group': 'PER', 'score': 0.9931, 'word': 'jean-baptiste', 'start': 12, 'end': 26}, {'entity_group': 'LOC', 'score': 0.998, 'word': 'montréal', 'start': 38, 'end': 47}] >>> token = tokens[0] >>> # Start and end provide an easy way to highlight words in the original text. >>> sentence[token["start"] : token["end"]] ' jean-baptiste' >>> # Some models use the same idea to do part of speech. >>> syntaxer = pipeline(model="vblagoje/bert-english-uncased-finetuned-pos", aggregation_strategy="simple") >>> syntaxer("My name is Sarah and I live in London") [{'entity_group': 'PRON', 'score': 0.999, 'word': 'my', 'start': 0, 'end': 2}, {'entity_group': 'NOUN', 'score': 0.997, 'word': 'name', 'start': 3, 'end': 7}, {'entity_group': 'AUX', 'score': 0.994, 'word': 'is', 'start': 8, 'end': 10}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'sarah', 'start': 11, 'end': 16}, {'entity_group': 'CCONJ', 'score': 0.999, 'word': 'and', 'start': 17, 'end': 20}, {'entity_group': 'PRON', 'score': 0.999, 'word': 'i', 'start': 21, 'end': 22}, {'entity_group': 'VERB', 'score': 0.998, 'word': 'live', 'start': 23, 'end': 27}, {'entity_group': 'ADP', 'score': 0.999, 'word': 'in', 'start': 28, 'end': 30}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'london', 'start': 31, 'end': 37}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This token recognition pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"ner"` (for predicting the classes of tokens in a sequence: person, organisation, location or miscellaneous). The models that this pipeline can use are models that have been fine-tuned on a token classification task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=token-classification). """ default_input_names = "sequences" def __init__(self, args_parser=TokenClassificationArgumentHandler(), *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) self._basic_tokenizer = BasicTokenizer(do_lower_case=False) self._args_parser = args_parser def _sanitize_parameters( self, ignore_labels=None, grouped_entities: Optional[bool] = None, ignore_subwords: Optional[bool] = None, aggregation_strategy: Optional[AggregationStrategy] = None, offset_mapping: Optional[List[Tuple[int, int]]] = None, stride: Optional[int] = None, ): preprocess_params = {} if offset_mapping is not None: preprocess_params["offset_mapping"] = offset_mapping postprocess_params = {} if grouped_entities is not None or ignore_subwords is not None: if grouped_entities and ignore_subwords: aggregation_strategy = AggregationStrategy.FIRST elif grouped_entities and not ignore_subwords: aggregation_strategy = AggregationStrategy.SIMPLE else: aggregation_strategy = AggregationStrategy.NONE if grouped_entities is not None: warnings.warn( "`grouped_entities` is deprecated and will be removed in version v5.0.0, defaulted to" f' `aggregation_strategy="{aggregation_strategy}"` instead.' ) if ignore_subwords is not None: warnings.warn( "`ignore_subwords` is deprecated and will be removed in version v5.0.0, defaulted to" f' `aggregation_strategy="{aggregation_strategy}"` instead.' ) if aggregation_strategy is not None: if isinstance(aggregation_strategy, str): aggregation_strategy = AggregationStrategy[aggregation_strategy.upper()] if ( aggregation_strategy in {AggregationStrategy.FIRST, AggregationStrategy.MAX, AggregationStrategy.AVERAGE} and not self.tokenizer.is_fast ): raise ValueError( "Slow tokenizers cannot handle subwords. Please set the `aggregation_strategy` option" ' to `"simple"` or use a fast tokenizer.' ) postprocess_params["aggregation_strategy"] = aggregation_strategy if ignore_labels is not None: postprocess_params["ignore_labels"] = ignore_labels if stride is not None: if stride >= self.tokenizer.model_max_length: raise ValueError( "`stride` must be less than `tokenizer.model_max_length` (or even lower if the tokenizer adds special tokens)" ) if aggregation_strategy == AggregationStrategy.NONE: raise ValueError( "`stride` was provided to process all the text but `aggregation_strategy=" f'"{aggregation_strategy}"`, please select another one instead.' ) else: if self.tokenizer.is_fast: tokenizer_params = { "return_overflowing_tokens": True, "padding": True, "stride": stride, } preprocess_params["tokenizer_params"] = tokenizer_params else: raise ValueError( "`stride` was provided to process all the text but you're using a slow tokenizer." " Please use a fast tokenizer." ) return preprocess_params, {}, postprocess_params def __call__(self, inputs: Union[str, List[str]], **kwargs): """ Classify each token of the text(s) given as inputs. Args: inputs (`str` or `List[str]`): One or several texts (or one list of texts) for token classification. Return: A list or a list of list of `dict`: Each result comes as a list of dictionaries (one for each token in the corresponding input, or each entity if this pipeline was instantiated with an aggregation_strategy) with the following keys: - **word** (`str`) -- The token/word classified. This is obtained by decoding the selected tokens. If you want to have the exact string in the original sentence, use `start` and `end`. - **score** (`float`) -- The corresponding probability for `entity`. - **entity** (`str`) -- The entity predicted for that token/word (it is named *entity_group* when *aggregation_strategy* is not `"none"`. - **index** (`int`, only present when `aggregation_strategy="none"`) -- The index of the corresponding token in the sentence. - **start** (`int`, *optional*) -- The index of the start of the corresponding entity in the sentence. Only exists if the offsets are available within the tokenizer - **end** (`int`, *optional*) -- The index of the end of the corresponding entity in the sentence. Only exists if the offsets are available within the tokenizer """ _inputs, offset_mapping = self._args_parser(inputs, **kwargs) if offset_mapping: kwargs["offset_mapping"] = offset_mapping return super().__call__(inputs, **kwargs) def preprocess(self, sentence, offset_mapping=None, **preprocess_params): tokenizer_params = preprocess_params.pop("tokenizer_params", {}) truncation = True if self.tokenizer.model_max_length and self.tokenizer.model_max_length > 0 else False inputs = self.tokenizer( sentence, return_tensors=self.framework, truncation=truncation, return_special_tokens_mask=True, return_offsets_mapping=self.tokenizer.is_fast, **tokenizer_params, ) inputs.pop("overflow_to_sample_mapping", None) num_chunks = len(inputs["input_ids"]) for i in range(num_chunks): if self.framework == "tf": model_inputs = {k: tf.expand_dims(v[i], 0) for k, v in inputs.items()} else: model_inputs = {k: v[i].unsqueeze(0) for k, v in inputs.items()} if offset_mapping is not None: model_inputs["offset_mapping"] = offset_mapping model_inputs["sentence"] = sentence if i == 0 else None model_inputs["is_last"] = i == num_chunks - 1 yield model_inputs def _forward(self, model_inputs): # Forward special_tokens_mask = model_inputs.pop("special_tokens_mask") offset_mapping = model_inputs.pop("offset_mapping", None) sentence = model_inputs.pop("sentence") is_last = model_inputs.pop("is_last") if self.framework == "tf": logits = self.model(**model_inputs)[0] else: output = self.model(**model_inputs) logits = output["logits"] if isinstance(output, dict) else output[0] return { "logits": logits, "special_tokens_mask": special_tokens_mask, "offset_mapping": offset_mapping, "sentence": sentence, "is_last": is_last, **model_inputs, } def postprocess(self, all_outputs, aggregation_strategy=AggregationStrategy.NONE, ignore_labels=None): if ignore_labels is None: ignore_labels = ["O"] all_entities = [] for model_outputs in all_outputs: logits = model_outputs["logits"][0].numpy() sentence = all_outputs[0]["sentence"] input_ids = model_outputs["input_ids"][0] offset_mapping = ( model_outputs["offset_mapping"][0] if model_outputs["offset_mapping"] is not None else None ) special_tokens_mask = model_outputs["special_tokens_mask"][0].numpy() maxes = np.max(logits, axis=-1, keepdims=True) shifted_exp = np.exp(logits - maxes) scores = shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) if self.framework == "tf": input_ids = input_ids.numpy() offset_mapping = offset_mapping.numpy() if offset_mapping is not None else None pre_entities = self.gather_pre_entities( sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy ) grouped_entities = self.aggregate(pre_entities, aggregation_strategy) # Filter anything that is in self.ignore_labels entities = [ entity for entity in grouped_entities if entity.get("entity", None) not in ignore_labels and entity.get("entity_group", None) not in ignore_labels ] all_entities.extend(entities) num_chunks = len(all_outputs) if num_chunks > 1: all_entities = self.aggregate_overlapping_entities(all_entities) return all_entities def aggregate_overlapping_entities(self, entities): if len(entities) == 0: return entities entities = sorted(entities, key=lambda x: x["start"]) aggregated_entities = [] previous_entity = entities[0] for entity in entities: if previous_entity["start"] <= entity["start"] < previous_entity["end"]: current_length = entity["end"] - entity["start"] previous_length = previous_entity["end"] - previous_entity["start"] if current_length > previous_length: previous_entity = entity elif current_length == previous_length and entity["score"] > previous_entity["score"]: previous_entity = entity else: aggregated_entities.append(previous_entity) previous_entity = entity aggregated_entities.append(previous_entity) return aggregated_entities def gather_pre_entities( self, sentence: str, input_ids: np.ndarray, scores: np.ndarray, offset_mapping: Optional[List[Tuple[int, int]]], special_tokens_mask: np.ndarray, aggregation_strategy: AggregationStrategy, ) -> List[dict]: """Fuse various numpy arrays into dicts with all the information needed for aggregation""" pre_entities = [] for idx, token_scores in enumerate(scores): # Filter special_tokens if special_tokens_mask[idx]: continue word = self.tokenizer.convert_ids_to_tokens(int(input_ids[idx])) if offset_mapping is not None: start_ind, end_ind = offset_mapping[idx] if not isinstance(start_ind, int): if self.framework == "pt": start_ind = start_ind.item() end_ind = end_ind.item() word_ref = sentence[start_ind:end_ind] if getattr(self.tokenizer, "_tokenizer", None) and getattr( self.tokenizer._tokenizer.model, "continuing_subword_prefix", None ): # This is a BPE, word aware tokenizer, there is a correct way # to fuse tokens is_subword = len(word) != len(word_ref) else: # This is a fallback heuristic. This will fail most likely on any kind of text + punctuation mixtures that will be considered "words". Non word aware models cannot do better than this unfortunately. if aggregation_strategy in { AggregationStrategy.FIRST, AggregationStrategy.AVERAGE, AggregationStrategy.MAX, }: warnings.warn( "Tokenizer does not support real words, using fallback heuristic", UserWarning, ) is_subword = start_ind > 0 and " " not in sentence[start_ind - 1 : start_ind + 1] if int(input_ids[idx]) == self.tokenizer.unk_token_id: word = word_ref is_subword = False else: start_ind = None end_ind = None is_subword = False pre_entity = { "word": word, "scores": token_scores, "start": start_ind, "end": end_ind, "index": idx, "is_subword": is_subword, } pre_entities.append(pre_entity) return pre_entities def aggregate(self, pre_entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]: if aggregation_strategy in {AggregationStrategy.NONE, AggregationStrategy.SIMPLE}: entities = [] for pre_entity in pre_entities: entity_idx = pre_entity["scores"].argmax() score = pre_entity["scores"][entity_idx] entity = { "entity": self.model.config.id2label[entity_idx], "score": score, "index": pre_entity["index"], "word": pre_entity["word"], "start": pre_entity["start"], "end": pre_entity["end"], } entities.append(entity) else: entities = self.aggregate_words(pre_entities, aggregation_strategy) if aggregation_strategy == AggregationStrategy.NONE: return entities return self.group_entities(entities) def aggregate_word(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> dict: word = self.tokenizer.convert_tokens_to_string([entity["word"] for entity in entities]) if aggregation_strategy == AggregationStrategy.FIRST: scores = entities[0]["scores"] idx = scores.argmax() score = scores[idx] entity = self.model.config.id2label[idx] elif aggregation_strategy == AggregationStrategy.MAX: max_entity = max(entities, key=lambda entity: entity["scores"].max()) scores = max_entity["scores"] idx = scores.argmax() score = scores[idx] entity = self.model.config.id2label[idx] elif aggregation_strategy == AggregationStrategy.AVERAGE: scores = np.stack([entity["scores"] for entity in entities]) average_scores = np.nanmean(scores, axis=0) entity_idx = average_scores.argmax() entity = self.model.config.id2label[entity_idx] score = average_scores[entity_idx] else: raise ValueError("Invalid aggregation_strategy") new_entity = { "entity": entity, "score": score, "word": word, "start": entities[0]["start"], "end": entities[-1]["end"], } return new_entity def aggregate_words(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]: """ Override tokens from a given word that disagree to force agreement on word boundaries. Example: micro|soft| com|pany| B-ENT I-NAME I-ENT I-ENT will be rewritten with first strategy as microsoft| company| B-ENT I-ENT """ if aggregation_strategy in { AggregationStrategy.NONE, AggregationStrategy.SIMPLE, }: raise ValueError("NONE and SIMPLE strategies are invalid for word aggregation") word_entities = [] word_group = None for entity in entities: if word_group is None: word_group = [entity] elif entity["is_subword"]: word_group.append(entity) else: word_entities.append(self.aggregate_word(word_group, aggregation_strategy)) word_group = [entity] # Last item if word_group is not None: word_entities.append(self.aggregate_word(word_group, aggregation_strategy)) return word_entities def group_sub_entities(self, entities: List[dict]) -> dict: """ Group together the adjacent tokens with the same entity predicted. Args: entities (`dict`): The entities predicted by the pipeline. """ # Get the first entity in the entity group entity = entities[0]["entity"].split("-", 1)[-1] scores = np.nanmean([entity["score"] for entity in entities]) tokens = [entity["word"] for entity in entities] entity_group = { "entity_group": entity, "score": np.mean(scores), "word": self.tokenizer.convert_tokens_to_string(tokens), "start": entities[0]["start"], "end": entities[-1]["end"], } return entity_group def get_tag(self, entity_name: str) -> Tuple[str, str]: if entity_name.startswith("B-"): bi = "B" tag = entity_name[2:] elif entity_name.startswith("I-"): bi = "I" tag = entity_name[2:] else: # It's not in B-, I- format # Default to I- for continuation. bi = "I" tag = entity_name return bi, tag def group_entities(self, entities: List[dict]) -> List[dict]: """ Find and group together the adjacent tokens with the same entity predicted. Args: entities (`dict`): The entities predicted by the pipeline. """ entity_groups = [] entity_group_disagg = [] for entity in entities: if not entity_group_disagg: entity_group_disagg.append(entity) continue # If the current entity is similar and adjacent to the previous entity, # append it to the disaggregated entity group # The split is meant to account for the "B" and "I" prefixes # Shouldn't merge if both entities are B-type bi, tag = self.get_tag(entity["entity"]) last_bi, last_tag = self.get_tag(entity_group_disagg[-1]["entity"]) if tag == last_tag and bi != "B": # Modify subword type to be previous_type entity_group_disagg.append(entity) else: # If the current entity is different from the previous entity # aggregate the disaggregated entity group entity_groups.append(self.group_sub_entities(entity_group_disagg)) entity_group_disagg = [entity] if entity_group_disagg: # it's the last entity, add it to the entity groups entity_groups.append(self.group_sub_entities(entity_group_disagg)) return entity_groups NerPipeline = TokenClassificationPipeline
transformers/src/transformers/pipelines/token_classification.py/0
{ "file_path": "transformers/src/transformers/pipelines/token_classification.py", "repo_id": "transformers", "token_count": 11839 }
129
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from typing import TYPE_CHECKING, Optional from packaging import version from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_auto_gptq_available, is_optimum_available, is_torch_available, logging from ..utils.quantization_config import GPTQConfig, QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class GptqHfQuantizer(HfQuantizer): """ Quantizer of the GPTQ method - for GPTQ the quantizer support calibration of the model through `auto_gptq` package. Quantization is done under the hood for users if they load a non-prequantized model. """ requires_calibration = False required_packages = ["optimum", "auto_gptq"] optimum_quantizer = None def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) from optimum.gptq import GPTQQuantizer self.optimum_quantizer = GPTQQuantizer.from_dict(self.quantization_config.to_dict_optimum()) def validate_environment(self, *args, **kwargs): gptq_supports_cpu = version.parse(importlib.metadata.version("auto-gptq")) > version.parse("0.4.2") if not gptq_supports_cpu and not torch.cuda.is_available(): raise RuntimeError("GPU is required to quantize or run quantize model.") elif not (is_optimum_available() and is_auto_gptq_available()): raise ImportError( "Loading a GPTQ quantized model requires optimum (`pip install optimum`) and auto-gptq library (`pip install auto-gptq`)" ) elif version.parse(importlib.metadata.version("auto_gptq")) < version.parse("0.4.2"): raise ImportError( "You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq`" ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = torch.float16 elif torch_dtype != torch.float16: logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with GPTQ.") return torch_dtype def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): if model.__class__.main_input_name != "input_ids": raise RuntimeError("We can only quantize pure text model.") if self.pre_quantized: model = self.optimum_quantizer.convert_model(model) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): if self.pre_quantized: model = self.optimum_quantizer.post_init_model(model) else: if self.quantization_config.tokenizer is None: self.quantization_config.tokenizer = model.name_or_path self.optimum_quantizer.quantize_model(model, self.quantization_config.tokenizer) model.config.quantization_config = GPTQConfig.from_dict(self.optimum_quantizer.to_dict()) @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return True @property def is_serializable(self): return True
transformers/src/transformers/quantizers/quantizer_gptq.py/0
{ "file_path": "transformers/src/transformers/quantizers/quantizer_gptq.py", "repo_id": "transformers", "token_count": 1447 }
130
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class DocumentQuestionAnsweringTool(PipelineTool): default_checkpoint = "naver-clova-ix/donut-base-finetuned-docvqa" description = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) name = "document_qa" pre_processor_class = AutoProcessor model_class = VisionEncoderDecoderModel inputs = ["image", "text"] outputs = ["text"] def __init__(self, *args, **kwargs): if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool.") super().__init__(*args, **kwargs) def encode(self, document: "Image", question: str): task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" prompt = task_prompt.replace("{user_input}", question) decoder_input_ids = self.pre_processor.tokenizer( prompt, add_special_tokens=False, return_tensors="pt" ).input_ids pixel_values = self.pre_processor(document, return_tensors="pt").pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def forward(self, inputs): return self.model.generate( inputs["pixel_values"].to(self.device), decoder_input_ids=inputs["decoder_input_ids"].to(self.device), max_length=self.model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=self.pre_processor.tokenizer.pad_token_id, eos_token_id=self.pre_processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ).sequences def decode(self, outputs): sequence = self.pre_processor.batch_decode(outputs)[0] sequence = sequence.replace(self.pre_processor.tokenizer.eos_token, "") sequence = sequence.replace(self.pre_processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token sequence = self.pre_processor.token2json(sequence) return sequence["answer"]
transformers/src/transformers/tools/document_question_answering.py/0
{ "file_path": "transformers/src/transformers/tools/document_question_answering.py", "repo_id": "transformers", "token_count": 1230 }
131
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import deepcopy from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import Dataset from .generation.configuration_utils import GenerationConfig from .integrations.deepspeed import is_deepspeed_zero3_enabled from .trainer import Trainer from .utils import logging if TYPE_CHECKING: from .data.data_collator import DataCollator from .modeling_utils import PreTrainedModel from .tokenization_utils_base import PreTrainedTokenizerBase from .trainer_callback import TrainerCallback from .trainer_utils import EvalPrediction, PredictionOutput from .training_args import TrainingArguments logger = logging.get_logger(__name__) class Seq2SeqTrainer(Trainer): def __init__( self, model: Union["PreTrainedModel", nn.Module] = None, args: "TrainingArguments" = None, data_collator: Optional["DataCollator"] = None, train_dataset: Optional[Dataset] = None, eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None, tokenizer: Optional["PreTrainedTokenizerBase"] = None, model_init: Optional[Callable[[], "PreTrainedModel"]] = None, compute_metrics: Optional[Callable[["EvalPrediction"], Dict]] = None, callbacks: Optional[List["TrainerCallback"]] = None, optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, ): super().__init__( model=model, args=args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=eval_dataset, tokenizer=tokenizer, model_init=model_init, compute_metrics=compute_metrics, callbacks=callbacks, optimizers=optimizers, preprocess_logits_for_metrics=preprocess_logits_for_metrics, ) # Override self.model.generation_config if a GenerationConfig is specified in args. # Priority: args.generation_config > model.generation_config > default GenerationConfig. if self.args.generation_config is not None: gen_config = self.load_generation_config(self.args.generation_config) self.model.generation_config = gen_config @staticmethod def load_generation_config(gen_config_arg: Union[str, GenerationConfig]) -> GenerationConfig: """ Loads a `~generation.GenerationConfig` from the `Seq2SeqTrainingArguments.generation_config` arguments. Args: gen_config_arg (`str` or [`~generation.GenerationConfig`]): `Seq2SeqTrainingArguments.generation_config` argument. Returns: A `~generation.GenerationConfig`. """ # GenerationConfig provided, nothing to do if isinstance(gen_config_arg, GenerationConfig): return deepcopy(gen_config_arg) # str or Path pretrained_model_name = Path(gen_config_arg) if isinstance(gen_config_arg, str) else gen_config_arg config_file_name = None # Figuring if it is path pointing to a file, pointing to a directory or else a model id or URL # This step is required in order to determine config_file_name if pretrained_model_name.is_file(): config_file_name = pretrained_model_name.name pretrained_model_name = pretrained_model_name.parent # dir path elif pretrained_model_name.is_dir(): pass # model id or URL else: pretrained_model_name = gen_config_arg gen_config = GenerationConfig.from_pretrained(pretrained_model_name, config_file_name) return gen_config def evaluate( self, eval_dataset: Optional[Dataset] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", **gen_kwargs, ) -> Dict[str, float]: """ Run evaluation and returns metrics. The calling script will be responsible for providing a method to compute metrics, as they are task-dependent (pass it to the init `compute_metrics` argument). You can also subclass and override this method to inject custom behavior. Args: eval_dataset (`Dataset`, *optional*): Pass a dataset if you wish to override `self.eval_dataset`. If it is an [`~datasets.Dataset`], columns not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__` method. ignore_keys (`List[str]`, *optional*): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (`str`, *optional*, defaults to `"eval"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is `"eval"` (default) max_length (`int`, *optional*): The maximum target length to use when predicting with the generate method. num_beams (`int`, *optional*): Number of beams for beam search that will be used when predicting with the generate method. 1 means no beam search. gen_kwargs: Additional `generate` specific kwargs. Returns: A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The dictionary also contains the epoch number which comes from the training state. """ gen_kwargs = gen_kwargs.copy() # Use legacy argument setting if a) the option is not explicitly passed; and b) the argument is set in the # training args if ( gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None and self.args.generation_max_length is not None ): gen_kwargs["max_length"] = self.args.generation_max_length if gen_kwargs.get("num_beams") is None and self.args.generation_num_beams is not None: gen_kwargs["num_beams"] = self.args.generation_num_beams # We don't want to drop samples in general self.gather_function = self.accelerator.gather self._gen_kwargs = gen_kwargs return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix) def predict( self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test", **gen_kwargs, ) -> "PredictionOutput": """ Run prediction and returns predictions and potential metrics. Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in `evaluate()`. Args: test_dataset (`Dataset`): Dataset to run the predictions on. If it is a [`~datasets.Dataset`], columns not accepted by the `model.forward()` method are automatically removed. Has to implement the method `__len__` ignore_keys (`List[str]`, *optional*): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (`str`, *optional*, defaults to `"eval"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is `"eval"` (default) max_length (`int`, *optional*): The maximum target length to use when predicting with the generate method. num_beams (`int`, *optional*): Number of beams for beam search that will be used when predicting with the generate method. 1 means no beam search. gen_kwargs: Additional `generate` specific kwargs. <Tip> If your predictions or labels have different sequence lengths (for instance because you're doing dynamic padding in a token classification task) the predictions will be padded (on the right) to allow for concatenation into one array. The padding index is -100. </Tip> Returns: *NamedTuple* A namedtuple with the following keys: - predictions (`np.ndarray`): The predictions on `test_dataset`. - label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some). - metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained labels). """ gen_kwargs = gen_kwargs.copy() # Use legacy argument setting if a) the option is not explicitly passed; and b) the argument is set in the # training args if ( gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None and self.args.generation_max_length is not None ): gen_kwargs["max_length"] = self.args.generation_max_length if gen_kwargs.get("num_beams") is None and self.args.generation_num_beams is not None: gen_kwargs["num_beams"] = self.args.generation_num_beams self.gather_function = self.accelerator.gather self._gen_kwargs = gen_kwargs return super().predict(test_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix) def prediction_step( self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[List[str]] = None, **gen_kwargs, ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """ Perform an evaluation step on `model` using `inputs`. Subclass and override to inject custom behavior. Args: model (`nn.Module`): The model to evaluate. inputs (`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument `labels`. Check your model's documentation for all accepted arguments. prediction_loss_only (`bool`): Whether or not to return the loss only. gen_kwargs: Additional `generate` specific kwargs. Return: Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and labels (each being optional). """ if not self.args.predict_with_generate or prediction_loss_only: return super().prediction_step( model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys ) has_labels = "labels" in inputs inputs = self._prepare_inputs(inputs) # Priority (handled in generate): # non-`None` gen_kwargs > model.generation_config > default GenerationConfig() if len(gen_kwargs) == 0 and hasattr(self, "_gen_kwargs"): gen_kwargs = self._gen_kwargs.copy() if "num_beams" in gen_kwargs and gen_kwargs["num_beams"] is None: gen_kwargs.pop("num_beams") if "max_length" in gen_kwargs and gen_kwargs["max_length"] is None: gen_kwargs.pop("max_length") default_synced_gpus = True if is_deepspeed_zero3_enabled() else False gen_kwargs["synced_gpus"] = ( gen_kwargs["synced_gpus"] if gen_kwargs.get("synced_gpus") is not None else default_synced_gpus ) generation_inputs = inputs.copy() # If the `decoder_input_ids` was created from `labels`, evict the former, so that the model can freely generate # (otherwise, it would continue generating from the padded `decoder_input_ids`) if ( "labels" in generation_inputs and "decoder_input_ids" in generation_inputs and generation_inputs["labels"].shape == generation_inputs["decoder_input_ids"].shape ): generation_inputs = { k: v for k, v in inputs.items() if k not in ("decoder_input_ids", "decoder_attention_mask") } generated_tokens = self.model.generate(**generation_inputs, **gen_kwargs) # Temporary hack to ensure the generation config is not initialized for each iteration of the evaluation loop # TODO: remove this hack when the legacy code that initializes generation_config from a model config is # removed in https://github.com/huggingface/transformers/blob/98d88b23f54e5a23e741833f1e973fdf600cc2c5/src/transformers/generation/utils.py#L1183 if self.model.generation_config._from_model_config: self.model.generation_config._from_model_config = False # Retrieves GenerationConfig from model.generation_config gen_config = self.model.generation_config # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_config.max_length: generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_config.max_length) elif gen_config.max_new_tokens is not None and generated_tokens.shape[-1] < gen_config.max_new_tokens + 1: generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_config.max_new_tokens + 1) with torch.no_grad(): if has_labels: with self.compute_loss_context_manager(): outputs = model(**inputs) if self.label_smoother is not None: loss = self.label_smoother(outputs, inputs["labels"]).mean().detach() else: loss = (outputs["loss"] if isinstance(outputs, dict) else outputs[0]).mean().detach() else: loss = None if self.args.prediction_loss_only: return loss, None, None if has_labels: labels = inputs["labels"] if labels.shape[-1] < gen_config.max_length: labels = self._pad_tensors_to_max_len(labels, gen_config.max_length) elif gen_config.max_new_tokens is not None and labels.shape[-1] < gen_config.max_new_tokens + 1: labels = self._pad_tensors_to_max_len(labels, gen_config.max_new_tokens + 1) else: labels = None return loss, generated_tokens, labels def _pad_tensors_to_max_len(self, tensor, max_length): if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"): # If PAD token is not defined at least EOS token has to be defined pad_token_id = ( self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id ) else: if self.model.config.pad_token_id is not None: pad_token_id = self.model.config.pad_token_id else: raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors") padded_tensor = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) padded_tensor[:, : tensor.shape[-1]] = tensor return padded_tensor
transformers/src/transformers/trainer_seq2seq.py/0
{ "file_path": "transformers/src/transformers/trainer_seq2seq.py", "repo_id": "transformers", "token_count": 6769 }
132
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends SLOW_TO_FAST_CONVERTERS = None def convert_slow_tokenizer(*args, **kwargs): requires_backends(convert_slow_tokenizer, ["sentencepiece", "tokenizers"])
transformers/src/transformers/utils/dummy_sentencepiece_and_tokenizers_objects.py/0
{ "file_path": "transformers/src/transformers/utils/dummy_sentencepiece_and_tokenizers_objects.py", "repo_id": "transformers", "token_count": 94 }
133
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, List, Optional, Union from packaging import version from ..utils import is_auto_awq_available, is_torch_available, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) class QuantizationMethod(str, Enum): BITS_AND_BYTES = "bitsandbytes" GPTQ = "gptq" AWQ = "awq" AQLM = "aqlm" class AWQLinearVersion(str, Enum): GEMM = "gemm" GEMV = "gemv" @staticmethod def from_str(version: str): version = version.lower() if version == "gemm": return AWQLinearVersion.GEMM elif version == "gemv": return AWQLinearVersion.GEMV else: raise ValueError(f"Unknown AWQLinearVersion {version}") class AwqBackendPackingMethod(str, Enum): AUTOAWQ = "autoawq" LLMAWQ = "llm-awq" @dataclass class QuantizationConfigMixin: """ Mixin class for quantization config """ quant_method: QuantizationMethod @classmethod def from_dict(cls, config_dict, return_unused_kwargs=False, **kwargs): """ Instantiates a [`QuantizationConfigMixin`] from a Python dictionary of parameters. Args: config_dict (`Dict[str, Any]`): Dictionary that will be used to instantiate the configuration object. return_unused_kwargs (`bool`,*optional*, defaults to `False`): Whether or not to return a list of unused keyword arguments. Used for `from_pretrained` method in `PreTrainedModel`. kwargs (`Dict[str, Any]`): Additional parameters from which to initialize the configuration object. Returns: [`QuantizationConfigMixin`]: The configuration object instantiated from those parameters. """ config = cls(**config_dict) to_remove = [] for key, value in kwargs.items(): if hasattr(config, key): setattr(config, key, value) to_remove.append(key) for key in to_remove: kwargs.pop(key, None) if return_unused_kwargs: return config, kwargs else: return config def to_json_file(self, json_file_path: Union[str, os.PathLike]): """ Save this instance to a JSON file. Args: json_file_path (`str` or `os.PathLike`): Path to the JSON file in which this configuration instance's parameters will be saved. use_diff (`bool`, *optional*, defaults to `True`): If set to `True`, only the difference between the config instance and the default `QuantizationConfig()` is serialized to JSON file. """ with open(json_file_path, "w", encoding="utf-8") as writer: config_dict = self.to_dict() json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n" writer.write(json_string) def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. """ return copy.deepcopy(self.__dict__) def __iter__(self): """allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin""" for attr, value in copy.deepcopy(self.__dict__).items(): yield attr, value def __repr__(self): return f"{self.__class__.__name__} {self.to_json_string()}" def to_json_string(self, use_diff: bool = True) -> str: """ Serializes this instance to a JSON string. Args: use_diff (`bool`, *optional*, defaults to `True`): If set to `True`, only the difference between the config instance and the default `PretrainedConfig()` is serialized to JSON string. Returns: `str`: String containing all the attributes that make up this configuration instance in JSON format. """ if use_diff is True: config_dict = self.to_diff_dict() else: config_dict = self.to_dict() return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" def update(self, **kwargs): """ Updates attributes of this class instance with attributes from `kwargs` if they match existing atributtes, returning all the unused kwargs. Args: kwargs (`Dict[str, Any]`): Dictionary of attributes to tentatively update this class. Returns: `Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance. """ to_remove = [] for key, value in kwargs.items(): if hasattr(self, key): setattr(self, key, value) to_remove.append(key) # Remove all the attributes that were updated, without modifying the input dict unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove} return unused_kwargs @dataclass class BitsAndBytesConfig(QuantizationConfigMixin): """ This is a wrapper class about all possible attributes and features that you can play with a model that has been loaded using `bitsandbytes`. This replaces `load_in_8bit` or `load_in_4bit`therefore both options are mutually exclusive. Currently only supports `LLM.int8()`, `FP4`, and `NF4` quantization. If more methods are added to `bitsandbytes`, then more arguments will be added to this class. Args: load_in_8bit (`bool`, *optional*, defaults to `False`): This flag is used to enable 8-bit quantization with LLM.int8(). load_in_4bit (`bool`, *optional*, defaults to `False`): This flag is used to enable 4-bit quantization by replacing the Linear layers with FP4/NF4 layers from `bitsandbytes`. llm_int8_threshold (`float`, *optional*, defaults to 6.0): This corresponds to the outlier threshold for outlier detection as described in `LLM.int8() : 8-bit Matrix Multiplication for Transformers at Scale` paper: https://arxiv.org/abs/2208.07339 Any hidden states value that is above this threshold will be considered an outlier and the operation on those values will be done in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but there are some exceptional systematic outliers that are very differently distributed for large models. These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6, but a lower threshold might be needed for more unstable models (small models, fine-tuning). llm_int8_skip_modules (`List[str]`, *optional*): An explicit list of the modules that we do not want to convert in 8-bit. This is useful for models such as Jukebox that has several heads in different places and not necessarily at the last position. For example for `CausalLM` models, the last `lm_head` is kept in its original `dtype`. llm_int8_enable_fp32_cpu_offload (`bool`, *optional*, defaults to `False`): This flag is used for advanced use cases and users that are aware of this feature. If you want to split your model in different parts and run some parts in int8 on GPU and some parts in fp32 on CPU, you can use this flag. This is useful for offloading large models such as `google/flan-t5-xxl`. Note that the int8 operations will not be run on CPU. llm_int8_has_fp16_weight (`bool`, *optional*, defaults to `False`): This flag runs LLM.int8() with 16-bit main weights. This is useful for fine-tuning as the weights do not have to be converted back and forth for the backward pass. bnb_4bit_compute_dtype (`torch.dtype` or str, *optional*, defaults to `torch.float32`): This sets the computational type which might be different than the input time. For example, inputs might be fp32, but computation can be set to bf16 for speedups. bnb_4bit_quant_type (`str`, *optional*, defaults to `"fp4"`): This sets the quantization data type in the bnb.nn.Linear4Bit layers. Options are FP4 and NF4 data types which are specified by `fp4` or `nf4`. bnb_4bit_use_double_quant (`bool`, *optional*, defaults to `False`): This flag is used for nested quantization where the quantization constants from the first quantization are quantized again. kwargs (`Dict[str, Any]`, *optional*): Additional parameters from which to initialize the configuration object. """ def __init__( self, load_in_8bit=False, load_in_4bit=False, llm_int8_threshold=6.0, llm_int8_skip_modules=None, llm_int8_enable_fp32_cpu_offload=False, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=None, bnb_4bit_quant_type="fp4", bnb_4bit_use_double_quant=False, **kwargs, ): self.quant_method = QuantizationMethod.BITS_AND_BYTES if load_in_4bit and load_in_8bit: raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") self._load_in_8bit = load_in_8bit self._load_in_4bit = load_in_4bit self.llm_int8_threshold = llm_int8_threshold self.llm_int8_skip_modules = llm_int8_skip_modules self.llm_int8_enable_fp32_cpu_offload = llm_int8_enable_fp32_cpu_offload self.llm_int8_has_fp16_weight = llm_int8_has_fp16_weight self.bnb_4bit_quant_type = bnb_4bit_quant_type self.bnb_4bit_use_double_quant = bnb_4bit_use_double_quant if bnb_4bit_compute_dtype is None: self.bnb_4bit_compute_dtype = torch.float32 elif isinstance(bnb_4bit_compute_dtype, str): self.bnb_4bit_compute_dtype = getattr(torch, bnb_4bit_compute_dtype) elif isinstance(bnb_4bit_compute_dtype, torch.dtype): self.bnb_4bit_compute_dtype = bnb_4bit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype") self.post_init() @property def load_in_4bit(self): return self._load_in_4bit @load_in_4bit.setter def load_in_4bit(self, value: bool): if self.load_in_8bit and value: raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") self._load_in_4bit = value @property def load_in_8bit(self): return self._load_in_8bit @load_in_8bit.setter def load_in_8bit(self, value: bool): if self.load_in_4bit and value: raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") self._load_in_8bit = value def post_init(self): r""" Safety checker that arguments are correct - also replaces some NoneType arguments with their default values. """ if not isinstance(self.llm_int8_threshold, float): raise ValueError("llm_int8_threshold must be a float") if self.llm_int8_skip_modules is not None and not isinstance(self.llm_int8_skip_modules, list): raise ValueError("llm_int8_skip_modules must be a list of strings") if not isinstance(self.llm_int8_enable_fp32_cpu_offload, bool): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean") if not isinstance(self.llm_int8_has_fp16_weight, bool): raise ValueError("llm_int8_has_fp16_weight must be a boolean") if self.bnb_4bit_compute_dtype is not None and not isinstance(self.bnb_4bit_compute_dtype, torch.dtype): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype") if not isinstance(self.bnb_4bit_quant_type, str): raise ValueError("bnb_4bit_quant_type must be a string") if not isinstance(self.bnb_4bit_use_double_quant, bool): raise ValueError("bnb_4bit_use_double_quant must be a boolean") if self.load_in_4bit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def is_quantizable(self): r""" Returns `True` if the model is quantizable, `False` otherwise. """ return self.load_in_8bit or self.load_in_4bit def quantization_method(self): r""" This method returns the quantization method used for the model. If the model is not quantizable, it returns `None`. """ if self.load_in_8bit: return "llm_int8" elif self.load_in_4bit and self.bnb_4bit_quant_type == "fp4": return "fp4" elif self.load_in_4bit and self.bnb_4bit_quant_type == "nf4": return "nf4" else: return None def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. """ output = copy.deepcopy(self.__dict__) output["bnb_4bit_compute_dtype"] = str(output["bnb_4bit_compute_dtype"]).split(".")[1] output["load_in_4bit"] = self.load_in_4bit output["load_in_8bit"] = self.load_in_8bit return output def __repr__(self): config_dict = self.to_dict() return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n" def to_diff_dict(self) -> Dict[str, Any]: """ Removes all attributes from config which correspond to the default config attributes for better readability and serializes to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, """ config_dict = self.to_dict() # get the default config dict default_config_dict = BitsAndBytesConfig().to_dict() serializable_config_dict = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: serializable_config_dict[key] = value return serializable_config_dict class ExllamaVersion(int, Enum): ONE = 1 TWO = 2 @dataclass class GPTQConfig(QuantizationConfigMixin): """ This is a wrapper class about all possible attributes and features that you can play with a model that has been loaded using `optimum` api for gptq quantization relying on auto_gptq backend. Args: bits (`int`): The number of bits to quantize to, supported numbers are (2, 3, 4, 8). tokenizer (`str` or `PreTrainedTokenizerBase`, *optional*): The tokenizer used to process the dataset. You can pass either: - A custom tokenizer object. - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. dataset (`Union[List[str]]`, *optional*): The dataset used for quantization. You can provide your own dataset in a list of string or just use the original datasets used in GPTQ paper ['wikitext2','c4','c4-new','ptb','ptb-new'] group_size (`int`, *optional*, defaults to 128): The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization. damp_percent (`float`, *optional*, defaults to 0.1): The percent of the average Hessian diagonal to use for dampening. Recommended value is 0.1. desc_act (`bool`, *optional*, defaults to `False`): Whether to quantize columns in order of decreasing activation size. Setting it to False can significantly speed up inference but the perplexity may become slightly worse. Also known as act-order. sym (`bool`, *optional*, defaults to `True`): Whether to use symetric quantization. true_sequential (`bool`, *optional*, defaults to `True`): Whether to perform sequential quantization even within a single Transformer block. Instead of quantizing the entire block at once, we perform layer-wise quantization. As a result, each layer undergoes quantization using inputs that have passed through the previously quantized layers. use_cuda_fp16 (`bool`, *optional*, defaults to `False`): Whether or not to use optimized cuda kernel for fp16 model. Need to have model in fp16. model_seqlen (`int`, *optional*): The maximum sequence length that the model can take. block_name_to_quantize (`str`, *optional*): The transformers block name to quantize. If None, we will infer the block name using common patterns (e.g. model.layers) module_name_preceding_first_block (`List[str]`, *optional*): The layers that are preceding the first Transformer block. batch_size (`int`, *optional*, defaults to 1): The batch size used when processing the dataset pad_token_id (`int`, *optional*): The pad token id. Needed to prepare the dataset when `batch_size` > 1. use_exllama (`bool`, *optional*): Whether to use exllama backend. Defaults to `True` if unset. Only works with `bits` = 4. max_input_length (`int`, *optional*): The maximum input length. This is needed to initialize a buffer that depends on the maximum expected input length. It is specific to the exllama backend with act-order. exllama_config (`Dict[str, Any]`, *optional*): The exllama config. You can specify the version of the exllama kernel through the `version` key. Defaults to `{"version": 1}` if unset. cache_block_outputs (`bool`, *optional*, defaults to `True`): Whether to cache block outputs to reuse as inputs for the succeeding block. modules_in_block_to_quantize (`List[List[str]]`, *optional*): List of list of module names to quantize in the specified block. This argument is useful to exclude certain linear modules from being quantized. The block to quantize can be specified by setting `block_name_to_quantize`. We will quantize each list sequentially. If not set, we will quantize all linear layers. Example: `modules_in_block_to_quantize =[["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"], ["self_attn.o_proj"]]`. In this example, we will first quantize the q,k,v layers simultaneously since they are independent. Then, we will quantize `self_attn.o_proj` layer with the q,k,v layers quantized. This way, we will get better results since it reflects the real input `self_attn.o_proj` will get when the model is quantized. """ def __init__( self, bits: int, tokenizer: Any = None, dataset: Optional[Union[List[str], str]] = None, group_size: int = 128, damp_percent: float = 0.1, desc_act: bool = False, sym: bool = True, true_sequential: bool = True, use_cuda_fp16: bool = False, model_seqlen: Optional[int] = None, block_name_to_quantize: Optional[str] = None, module_name_preceding_first_block: Optional[List[str]] = None, batch_size: int = 1, pad_token_id: Optional[int] = None, use_exllama: Optional[bool] = None, max_input_length: Optional[int] = None, exllama_config: Optional[Dict[str, Any]] = None, cache_block_outputs: bool = True, modules_in_block_to_quantize: Optional[List[List[str]]] = None, **kwargs, ): self.quant_method = QuantizationMethod.GPTQ self.bits = bits self.tokenizer = tokenizer self.dataset = dataset self.group_size = group_size self.damp_percent = damp_percent self.desc_act = desc_act self.sym = sym self.true_sequential = true_sequential self.use_cuda_fp16 = use_cuda_fp16 self.model_seqlen = model_seqlen self.block_name_to_quantize = block_name_to_quantize self.module_name_preceding_first_block = module_name_preceding_first_block self.batch_size = batch_size self.pad_token_id = pad_token_id self.use_exllama = use_exllama self.max_input_length = max_input_length self.exllama_config = exllama_config self.disable_exllama = kwargs.pop("disable_exllama", None) self.cache_block_outputs = cache_block_outputs self.modules_in_block_to_quantize = modules_in_block_to_quantize self.post_init() def get_loading_attributes(self): attibutes_dict = copy.deepcopy(self.__dict__) loading_attibutes = ["disable_exllama", "use_exllama", "exllama_config", "use_cuda_fp16", "max_input_length"] loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes} return loading_attibutes_dict def post_init(self): r""" Safety checker that arguments are correct """ if self.bits not in [2, 3, 4, 8]: raise ValueError(f"Only support quantization to [2,3,4,8] bits but found {self.bits}") if self.group_size != -1 and self.group_size <= 0: raise ValueError("group_size must be greater than 0 or equal to -1") if not (0 < self.damp_percent < 1): raise ValueError("damp_percent must between 0 and 1.") if self.dataset is not None: if isinstance(self.dataset, str): if self.dataset not in ["wikitext2", "c4", "c4-new", "ptb", "ptb-new"]: raise ValueError( f"""You have entered a string value for dataset. You can only choose between ['wikitext2','c4','c4-new','ptb','ptb-new'], but we found {self.dataset}""" ) elif not isinstance(self.dataset, list): raise ValueError( f"""dataset needs to be either a list of string or a value in ['wikitext2','c4','c4-new','ptb','ptb-new'], but we found {self.dataset}""" ) if self.disable_exllama is None and self.use_exllama is None: # New default behaviour self.use_exllama = True elif self.disable_exllama is not None and self.use_exllama is None: # Follow pattern of old config logger.warning( "Using `disable_exllama` is deprecated and will be removed in version 4.37. Use `use_exllama` instead and specify the version with `exllama_config`." "The value of `use_exllama` will be overwritten by `disable_exllama` passed in `GPTQConfig` or stored in your config file." ) self.use_exllama = not self.disable_exllama self.disable_exllama = None elif self.disable_exllama is not None and self.use_exllama is not None: # Only happens if user explicitly passes in both arguments raise ValueError("Cannot specify both `disable_exllama` and `use_exllama`. Please use just `use_exllama`") if self.exllama_config is None: self.exllama_config = {"version": ExllamaVersion.ONE} else: if "version" not in self.exllama_config: raise ValueError("`exllama_config` needs to have a `version` key.") elif self.exllama_config["version"] not in [ExllamaVersion.ONE, ExllamaVersion.TWO]: exllama_version = self.exllama_config["version"] raise ValueError( f"Only supported versions are in [ExllamaVersion.ONE, ExllamaVersion.TWO] - not recognized version {exllama_version}" ) if self.bits == 4 and self.use_exllama: if self.exllama_config["version"] == ExllamaVersion.ONE: logger.info( "You have activated exllama backend. Note that you can get better inference " "speed using exllamav2 kernel by setting `exllama_config`." ) elif self.exllama_config["version"] == ExllamaVersion.TWO: optimum_version = version.parse(importlib.metadata.version("optimum")) autogptq_version = version.parse(importlib.metadata.version("auto_gptq")) if optimum_version <= version.parse("1.13.2") or autogptq_version <= version.parse("0.4.2"): raise ValueError( f"You need optimum > 1.13.2 and auto-gptq > 0.4.2 . Make sure to have that version installed - detected version : optimum {optimum_version} and autogptq {autogptq_version}" ) if self.modules_in_block_to_quantize is not None: optimum_version = version.parse(importlib.metadata.version("optimum")) if optimum_version < version.parse("1.15.0"): raise ValueError( "You current version of `optimum` does not support `modules_in_block_to_quantize` quantization argument, please upgrade `optimum` package to a version superior than 1.15.0 ." ) def to_dict(self): config_dict = super().to_dict() config_dict.pop("disable_exllama", None) return config_dict def to_dict_optimum(self): """ Get compatible dict for optimum gptq config """ quant_dict = self.to_dict() # make it compatible with optimum config quant_dict["disable_exllama"] = not self.use_exllama return quant_dict @classmethod def from_dict_optimum(cls, config_dict): """ Get compatible class with optimum gptq config dict """ if "disable_exllama" in config_dict: config_dict["use_exllama"] = not config_dict["disable_exllama"] # switch to None to not trigger the warning config_dict["disable_exllama"] = None config = cls(**config_dict) return config @dataclass class AwqConfig(QuantizationConfigMixin): """ This is a wrapper class about all possible attributes and features that you can play with a model that has been loaded using `auto-awq` library awq quantization relying on auto_awq backend. Args: bits (`int`, *optional*, defaults to 4): The number of bits to quantize to. group_size (`int`, *optional*, defaults to 128): The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization. zero_point (`bool`, *optional*, defaults to `True`): Whether to use zero point quantization. version (`AWQLinearVersion`, *optional*, defaults to `AWQLinearVersion.GEMM`): The version of the quantization algorithm to use. GEMM is better for big batch_size (e.g. >= 8) otherwise, GEMV is better (e.g. < 8 ) backend (`AwqBackendPackingMethod`, *optional*, defaults to `AwqBackendPackingMethod.AUTOAWQ`): The quantization backend. Some models might be quantized using `llm-awq` backend. This is useful for users that quantize their own models using `llm-awq` library. do_fuse (`bool`, *optional*, defaults to `False`): Whether to fuse attention and mlp layers together for faster inference fuse_max_seq_len (`int`, *optional*): The Maximum sequence length to generate when using fusing. modules_to_fuse (`dict`, *optional*, default to `None`): Overwrite the natively supported fusing scheme with the one specified by the users. modules_to_not_convert (`list`, *optional*, default to `None`): The list of modules to not quantize, useful for quantizing models that explicitly require to have some modules left in their original precision (e.g. Whisper encoder, Llava encoder, Mixtral gate layers). Note you cannot quantize directly with transformers, please refer to `AutoAWQ` documentation for quantizing HF models. """ def __init__( self, bits: int = 4, group_size: int = 128, zero_point: bool = True, version: AWQLinearVersion = AWQLinearVersion.GEMM, backend: AwqBackendPackingMethod = AwqBackendPackingMethod.AUTOAWQ, do_fuse: Optional[bool] = None, fuse_max_seq_len: Optional[int] = None, modules_to_fuse: Optional[dict] = None, modules_to_not_convert: Optional[List] = None, **kwargs, ): self.quant_method = QuantizationMethod.AWQ self.bits = bits self.group_size = group_size self.zero_point = zero_point self.version = version self.backend = backend self.fuse_max_seq_len = fuse_max_seq_len self.modules_to_not_convert = modules_to_not_convert self.modules_to_fuse = modules_to_fuse if do_fuse is None: self.do_fuse = modules_to_fuse is not None and len(modules_to_fuse) > 0 else: self.do_fuse = do_fuse self.fuse_max_seq_len = fuse_max_seq_len self.post_init() def post_init(self): r""" Safety checker that arguments are correct """ if not torch.cuda.is_available(): raise ValueError("AWQ is only available on GPU") if self.backend not in [AwqBackendPackingMethod.AUTOAWQ, AwqBackendPackingMethod.LLMAWQ]: raise ValueError( f"Only supported quantization backends in {AwqBackendPackingMethod.AUTOAWQ} and {AwqBackendPackingMethod.LLMAWQ} - not recognized backend {self.backend}" ) self.version = AWQLinearVersion.from_str(self.version) if self.version not in [AWQLinearVersion.GEMM, AWQLinearVersion.GEMV]: raise ValueError( f"Only supported versions are in [AWQLinearVersion.GEMM, AWQLinearVersion.GEMV] - not recognized version {self.version}" ) if self.backend == AwqBackendPackingMethod.LLMAWQ: compute_capability = torch.cuda.get_device_capability() major, minor = compute_capability if major < 8: raise ValueError("LLM-AWQ backend is only supported on GPUs with compute capability >= 8.0") if self.do_fuse and self.fuse_max_seq_len is None: raise ValueError( "You cannot enable fused modules without specifying a `fuse_max_seq_len`, make sure to pass a valid `fuse_max_seq_len` for your usecase" ) if self.do_fuse: awq_version_supports_fusing = False MIN_AWQ_VERSION = "0.1.7" if is_auto_awq_available(): awq_version_supports_fusing = version.parse(importlib.metadata.version("autoawq")) >= version.parse( MIN_AWQ_VERSION ) if not awq_version_supports_fusing: raise ValueError( f"You current version of `autoawq` does not support module fusing, please upgrade `autoawq` package to at least {MIN_AWQ_VERSION}." ) if self.modules_to_not_convert is not None: awq_version_supports_non_conversion = False MIN_AWQ_VERSION = "0.1.8" if is_auto_awq_available(): awq_version_supports_non_conversion = version.parse( importlib.metadata.version("autoawq") ) >= version.parse(MIN_AWQ_VERSION) if not awq_version_supports_non_conversion: raise ValueError( f"You current version of `autoawq` does not support module quantization skipping, please upgrade `autoawq` package to at least {MIN_AWQ_VERSION}." ) if self.do_fuse and self.modules_to_fuse is not None: required_keys = [ "hidden_size", "num_attention_heads", "num_key_value_heads", "mlp", "attention", "layernorm", "use_alibi", ] if not all(key in self.modules_to_fuse for key in required_keys): raise ValueError( f"Required fields are missing in the fusing mapping, required fields are {required_keys}" ) def get_loading_attributes(self): attibutes_dict = copy.deepcopy(self.__dict__) loading_attibutes = ["do_fuse", "modules_to_fuse", "fuse_max_seq_len"] loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes} return loading_attibutes_dict @dataclass class AqlmConfig(QuantizationConfigMixin): """ This is a wrapper class about `aqlm` parameters. Args: in_group_size (`int`, *optional*, defaults to 8): The group size along the input dimension. out_group_size (`int`, *optional*, defaults to 1): The group size along the output dimension. It's recommended to always use 1. num_codebooks (`int`, *optional*, defaults to 1): Number of codebooks for the Additive Quantization procedure. nbits_per_codebook (`int`, *optional*, defaults to 16): Number of bits encoding a single codebook vector. Codebooks size is 2**nbits_per_codebook. linear_weights_not_to_quantize (`Optional[List[str]]`, *optional*): List of full paths of `nn.Linear` weight parameters that shall not be quantized. kwargs (`Dict[str, Any]`, *optional*): Additional parameters from which to initialize the configuration object. """ def __init__( self, in_group_size: int = 8, out_group_size: int = 1, num_codebooks: int = 1, nbits_per_codebook: int = 16, linear_weights_not_to_quantize: Optional[List[str]] = None, **kwargs, ): self.quant_method = QuantizationMethod.AQLM self.in_group_size = in_group_size self.out_group_size = out_group_size self.num_codebooks = num_codebooks self.nbits_per_codebook = nbits_per_codebook self.linear_weights_not_to_quantize = linear_weights_not_to_quantize self.post_init() def post_init(self): r""" Safety checker that arguments are correct - also replaces some NoneType arguments with their default values. """ if not isinstance(self.in_group_size, int): raise ValueError("in_group_size must be a float") if not isinstance(self.out_group_size, int): raise ValueError("out_group_size must be a float") if not isinstance(self.num_codebooks, int): raise ValueError("num_codebooks must be a float") if not isinstance(self.nbits_per_codebook, int): raise ValueError("nbits_per_codebook must be a float") if self.linear_weights_not_to_quantize is not None and not isinstance( self.linear_weights_not_to_quantize, list ): raise ValueError("linear_weights_not_to_quantize must be a list of strings") if self.linear_weights_not_to_quantize is None: self.linear_weights_not_to_quantize = []
transformers/src/transformers/utils/quantization_config.py/0
{ "file_path": "transformers/src/transformers/utils/quantization_config.py", "repo_id": "transformers", "token_count": 15462 }
134
# coding=utf-8 # Copyright 2022 {{cookiecutter.authors}} and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 {{cookiecutter.modelname}} model. """ {% if cookiecutter.is_encoder_decoder_model == "False" %} import math from typing import Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...utils import ( DUMMY_INPUTS, MULTIPLE_CHOICE_DUMMY_INPUTS, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, ) from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFCausalLMOutputWithCrossAttentions, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSequenceSummary, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import logging from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "{{cookiecutter.checkpoint_identifier}}" _CONFIG_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Config" TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST = [ "{{cookiecutter.checkpoint_identifier}}", # See all {{cookiecutter.modelname}} models at https://huggingface.co/models?filter={{cookiecutter.lowercase_modelname}} ] # Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}Embeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.type_vocab_size = config.type_vocab_size self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape: tf.TensorShape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.type_vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) super().build(input_shape) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, past_key_values_length=0, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: position_ids = tf.expand_dims( tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0 ) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}SelfAttention(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TF{{cookiecutter.camelcase_modelname}}Model call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}SelfOutput(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}Attention(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.self_attention = TF{{cookiecutter.camelcase_modelname}}SelfAttention(config, name="self") self.dense_output = TF{{cookiecutter.camelcase_modelname}}SelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) # add attentions (possibly with past_key_value) if we output them outputs = (attention_output,) + self_outputs[1:] return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}Intermediate(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}Output(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}Layer(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.attention = TF{{cookiecutter.camelcase_modelname}}Attention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TF{{cookiecutter.camelcase_modelname}}Attention(config, name="crossattention") self.intermediate = TF{{cookiecutter.camelcase_modelname}}Intermediate(config, name="intermediate") self.bert_output = TF{{cookiecutter.camelcase_modelname}}Output(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_value: Tuple[tf.Tensor] | None, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers " "by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( input_tensor=attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}Encoder(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.config = config self.layer = [TF{{cookiecutter.camelcase_modelname}}Layer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_values: Tuple[Tuple[tf.Tensor]] | None, use_cache: Optional[bool], output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.config.add_cross_attention and encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}PredictionHeadTransform(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(inputs=hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}LMPredictionHead(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.hidden_size = config.hidden_size self.transform = TF{{cookiecutter.camelcase_modelname}}PredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape: tf.TensorShape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self) -> keras.layers.Layer: return self.input_embeddings def set_output_embeddings(self, value: tf.Variable): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self) -> Dict[str, tf.Variable]: return {"bias": self.bias} def set_bias(self, value: tf.Variable): self.bias = value["bias"] self.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.transform(hidden_states=hidden_states) seq_length = shape_list(hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}MLMHead(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.predictions = TF{{cookiecutter.camelcase_modelname}}LMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(hidden_states=sequence_output) return prediction_scores @keras_serializable class TF{{cookiecutter.camelcase_modelname}}MainLayer(keras.layers.Layer): config_class = {{cookiecutter.camelcase_modelname}}Config def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, add_pooling_layer: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.is_decoder = config.is_decoder self.embeddings = TF{{cookiecutter.camelcase_modelname}}Embeddings(config, name="embeddings") self.encoder = TF{{cookiecutter.camelcase_modelname}}Encoder(config, name="encoder") # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: if not self.config.is_decoder: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values_length = 0 past_key_values = [None] * len(self.encoder.layer) else: past_key_values_length = shape_list(past_key_values[0][0])[-2] if attention_mask is None: attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(attention_mask) mask_seq_length = seq_length + past_key_values_length # Copied from `modeling_tf_t5.py` # Provided a padding mask of dimensions [batch_size, mask_seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] if self.is_decoder: seq_ids = tf.range(mask_seq_length) causal_mask = tf.less_equal( tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), seq_ids[None, :, None], ) causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) extended_attention_mask = causal_mask * attention_mask[:, None, :] attention_mask_shape = shape_list(extended_attention_mask) extended_attention_mask = tf.reshape( extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) ) if past_key_values[0] is not None: # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length] extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] else: extended_attention_mask = tf.reshape( attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Copied from `modeling_tf_t5.py` with -1e9 -> -10000 if self.is_decoder and encoder_attention_mask is not None: # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] encoder_attention_mask = tf.cast( encoder_attention_mask, dtype=extended_attention_mask.dtype ) num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) if num_dims_encoder_attention_mask == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if num_dims_encoder_attention_mask == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] if not return_dict: return ( sequence_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=sequence_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) class TF{{cookiecutter.camelcase_modelname}}PreTrainedModel(TFPreTrainedModel): """An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = {{cookiecutter.camelcase_modelname}}Config base_model_prefix = "{{cookiecutter.lowercase_modelname}}" {{cookiecutter.uppercase_modelname}}_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with (subclassing)[https://keras.io/guides/making_new_layers_and_models_via_subclassing/] then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`~{{cookiecutter.camelcase_modelname}}Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ {{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare {{cookiecutter.modelname}} Model transformer outputing raw hidden-states without any specific head on top.", {{cookiecutter.uppercase_modelname}}_START_DOCSTRING, ) class TF{{cookiecutter.camelcase_modelname}}Model(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.{{cookiecutter.lowercase_modelname}} = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="{{cookiecutter.lowercase_modelname}}") @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation """ outputs = self.{{cookiecutter.lowercase_modelname}}( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings("""{{cookiecutter.modelname}} Model with a `language modeling` head on top. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING) class TF{{cookiecutter.camelcase_modelname}}ForMaskedLM(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TF{{cookiecutter.camelcase_modelname}}ForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.{{cookiecutter.lowercase_modelname}} = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="{{cookiecutter.lowercase_modelname}}") self.mlm = TF{{cookiecutter.camelcase_modelname}}MLMHead(config, input_embeddings=self.{{cookiecutter.lowercase_modelname}}.embeddings, name="mlm___cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.{{cookiecutter.lowercase_modelname}}( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.mlm(sequence_output=sequence_output, training=training) loss = ( None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """{{cookiecutter.modelname}} Model with a `language modeling` head on top for CLM fine-tuning. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING ) class TF{{cookiecutter.camelcase_modelname}}ForCausalLM(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if not config.is_decoder: logger.warning("If you want to use `TF{{cookiecutter.camelcase_modelname}}ForCausalLM` as a standalone, add `is_decoder=True.`") self.{{cookiecutter.lowercase_modelname}} = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="{{cookiecutter.lowercase_modelname}}") self.mlm = TF{{cookiecutter.camelcase_modelname}}MLMHead(config, input_embeddings=self.{{cookiecutter.lowercase_modelname}}.embeddings, name="mlm___cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions def prepare_inputs_for_generation(self, inputs, past_key_values=None, attention_mask=None, **model_kwargs): # cut decoder_input_ids if past is used if past_key_values: inputs = tf.expand_dims(inputs[:, -1], -1) return { "input_ids": inputs, "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": model_kwargs["use_cache"], } @unpack_inputs @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ outputs = self.{{cookiecutter.lowercase_modelname}}( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.mlm(sequence_output=sequence_output, training=training) loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels=labels, logits=shifted_logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) class TF{{cookiecutter.camelcase_modelname}}ClassificationHead(keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.out_proj = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) if isinstance(config.hidden_act, str): self.classifier_act_fn = get_tf_activation(config.hidden_act) else: self.classifier_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.dense(inputs=hidden_states) hidden_states = self.classifier_act_fn(hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.out_proj(hidden_states) return hidden_states @add_start_docstrings( """{{cookiecutter.modelname}} Model transformer with a sequence classification/regression head on top e.g., for GLUE tasks. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING, ) class TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.{{cookiecutter.lowercase_modelname}} = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="{{cookiecutter.lowercase_modelname}}") self.classifier = TF{{cookiecutter.camelcase_modelname}}ClassificationHead(config, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.{{cookiecutter.lowercase_modelname}}( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) logits = self.classifier(hidden_states=outputs[0], training=training) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """{{cookiecutter.modelname}} Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING, ) class TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.{{cookiecutter.lowercase_modelname}} = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="{{cookiecutter.lowercase_modelname}}") self.sequence_summary = TFSequenceSummary( config, config.initializer_range, name="sequence_summary" ) self.classifier = keras.layers.Dense( units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = ( tf.reshape(tensor=input_ids, shape=(-1, seq_length)) if input_ids is not None else None ) flat_attention_mask = ( tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None ) flat_token_type_ids = ( tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None ) flat_position_ids = ( tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None ) flat_inputs_embeds = ( tf.reshape( tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3]) ) if inputs_embeds is not None else None ) outputs = self.{{cookiecutter.lowercase_modelname}}( input_ids=flat_input_ids, attention_mask=flat_attention_mask, token_type_ids=flat_token_type_ids, position_ids=flat_position_ids, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) logits = self.sequence_summary(inputs=outputs[0], training=training) logits = self.classifier(inputs=logits) reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """{{cookiecutter.modelname}} Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING, ) class TF{{cookiecutter.camelcase_modelname}}ForTokenClassification(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, TFTokenClassificationLoss): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.{{cookiecutter.lowercase_modelname}} = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="{{cookiecutter.lowercase_modelname}}") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.{{cookiecutter.lowercase_modelname}}( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(inputs=sequence_output, training=training) logits = self.classifier(inputs=sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """{{cookiecutter.modelname}} Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING, ) class TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.{{cookiecutter.lowercase_modelname}} = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="{{cookiecutter.lowercase_modelname}}") self.qa_outputs = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.{{cookiecutter.lowercase_modelname}}( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(inputs=sequence_output) start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) start_logits = tf.squeeze(input=start_logits, axis=-1) end_logits = tf.squeeze(input=end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) {% else %} import random from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPastAndCrossAttentions, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) # Public API from ...modeling_tf_utils import ( DUMMY_INPUTS, TFPreTrainedModel, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ContextManagers, logging from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "{{cookiecutter.checkpoint_identifier}}" _CONFIG_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Config" _TOKENIZER_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Tokenizer" LARGE_NEGATIVE = -1e8 # Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): pad_token_id = tf.cast(pad_token_id, input_ids.dtype) decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill((shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=shifted_input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TF{{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding(keras.layers.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): super().__init__(num_embeddings, embedding_dim, **kwargs) def call(self, input_shape: tf.TensorShape, past_key_values_length: int = 0): """Input is expected to be of size [bsz x seqlen].""" seq_len = input_shape[1] position_ids = tf.range(seq_len, delta=1, name="range") position_ids += past_key_values_length return super().call(tf.cast(position_ids, dtype=tf.int32)) class TF{{cookiecutter.camelcase_modelname}}Attention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training=False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {shape_list(attn_weights)}", ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {shape_list(attention_mask)}", ) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=f"Head mask for a single layer should be of size {(self.num_heads)}, but is {shape_list(layer_head_mask)}", ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {shape_list(attn_output)}", ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value class TF{{cookiecutter.camelcase_modelname}}EncoderLayer(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TF{{cookiecutter.camelcase_modelname}}Attention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call(self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training=False): """ Args: hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* attention_mask (`tf.Tensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size *(encoder_attention_heads,)* """ residual = hidden_states hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return hidden_states, self_attn_weights class TF{{cookiecutter.camelcase_modelname}}DecoderLayer(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TF{{cookiecutter.camelcase_modelname}}Attention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TF{{cookiecutter.camelcase_modelname}}Attention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call( self, hidden_states, attention_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Tuple[tf.Tensor] | None = None, training=False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* attention_mask (`tf.Tensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape *(batch, seq_len, embed_dim)* encoder_attention_mask (`tf.Tensor`): encoder attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size *(decoder_attention_heads,)* cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. *(decoder_attention_heads,)* past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) class TF{{cookiecutter.camelcase_modelname}}PreTrainedModel(TFPreTrainedModel): config_class = {{cookiecutter.camelcase_modelname}}Config base_model_prefix = "model" {{cookiecutter.uppercase_modelname}}_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with (subclassing)[https://keras.io/guides/making_new_layers_and_models_via_subclassing/] then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`~{{cookiecutter.camelcase_modelname}}Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ {{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) {{cookiecutter.camelcase_modelname}} uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tf.FloatTensor`, *optional*): hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape `(batch_size, sequence_length, hidden_size)` is a sequence of past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @keras_serializable class TF{{cookiecutter.camelcase_modelname}}Encoder(keras.layers.Layer): config_class = {{cookiecutter.camelcase_modelname}}Config """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TF{{cookiecutter.camelcase_modelname}}EncoderLayer`]. Args: config: {{cookiecutter.camelcase_modelname}}Config """ def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens self.embed_positions = TF{{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.layers = [TF{{cookiecutter.camelcase_modelname}}EncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): """ Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout(hidden_states, training=training) # check attention mask and invert if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.layers), message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(head_mask)[0]}.", ) # encoder layers for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, ) if output_attentions: all_attentions += (attn,) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @keras_serializable class TF{{cookiecutter.camelcase_modelname}}Decoder(keras.layers.Layer): config_class = {{cookiecutter.camelcase_modelname}}Config """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TF{{cookiecutter.camelcase_modelname}}DecoderLayer`] Args: config: {{cookiecutter.camelcase_modelname}}Config embed_tokens: output embedding """ def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.embed_tokens = embed_tokens self.layerdrop = config.decoder_layerdrop self.embed_positions = TF{{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.layers = [TF{{cookiecutter.camelcase_modelname}}DecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") self.dropout = keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = ( shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 ) # embed positions positions = self.embed_positions(input_shape, past_key_values_length) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds attention_mask, combined_attention_mask = self.compute_combined_attns_mask( input_ids, attention_mask, input_shape, past_key_values_length ) if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) hidden_states = self.layernorm_embedding(hidden_states + positions) hidden_states = self.dropout(hidden_states, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None present_key_values = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for {shape_list(attn_mask)[0]}.", ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, past_key_value=past_key_value, ) if use_cache: present_key_values += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attns += (layer_cross_attn,) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) @tf.function def compute_combined_attns_mask(self, input_ids, attention_mask, input_shape, past_key_values_length): # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if attention_mask is None and input_ids is not None and input_shape[-1] > 1: attention_mask = tf.cast( tf.math.not_equal(input_ids, self.config.pad_token_id), input_ids.dtype ) attention_mask = tf.concat( [ tf.ones((input_shape[0], past_key_values_length), dtype=attention_mask.dtype), attention_mask, ], axis=-1, ) else: attention_mask = tf.ones((input_shape[0], input_shape[1] + past_key_values_length)) return attention_mask, combined_attention_mask @keras_serializable class TF{{cookiecutter.camelcase_modelname}}MainLayer(keras.layers.Layer): config_class = {{cookiecutter.camelcase_modelname}}Config def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.config = config self.shared = keras.layers.Embedding( input_dim=config.vocab_size, output_dim=config.d_model, embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), name="model.shared" ) # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) self.shared.load_weight_prefix = "model.shared" self.encoder = TF{{cookiecutter.camelcase_modelname}}Encoder(config, self.shared, name="encoder") self.decoder = TF{{cookiecutter.camelcase_modelname}}Decoder(config, self.shared, name="decoder") def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared @unpack_inputs def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs ): if decoder_input_ids is None and decoder_inputs_embeds is None: use_cache = False if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not return_dict and not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() decoder_outputs = self.decoder( decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): # The shared/tied weights expect to be in the model base namespace # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than # the current one. with tf.name_scope(self.shared.load_weight_prefix + '/' + self.shared.name + '/'): self.shared.build(None) @add_start_docstrings( "The bare {{cookiecutter.uppercase_modelname}} Model outputting raw hidden-states without any specific head on top.", {{cookiecutter.uppercase_modelname}}_START_DOCSTRING, ) class TF{{cookiecutter.camelcase_modelname}}Model(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.bart.modeling_tf_bart.BiasLayer class BiasLayer(keras.layers.Layer): """ Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis, so all weights have to be registered in a layer. """ def __init__(self, shape, initializer, trainable, name, **kwargs): super().__init__(name=name, **kwargs) # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) def call(self, x): return x + self.bias @add_start_docstrings( "The {{cookiecutter.uppercase_modelname}} Model with a language modeling head. Can be used for summarization.", {{cookiecutter.uppercase_modelname}}_START_DOCSTRING, ) class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel): _keys_to_ignore_on_load_unexpected = [ r"model.encoder.embed_tokens.weight", r"model.decoder.embed_tokens.weight", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="model") self.use_cache = config.use_cache # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False ) def get_decoder(self): return self.model.decoder def get_encoder(self): return self.model.encoder def get_bias(self): return {"final_logits_bias": self.bias_layer.bias} def set_bias(self, value): # Replaces the existing layers containing bias for correct (de)serialization. vocab_size = value["final_logits_bias"].shape[-1] self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False ) self.bias_layer.bias.assign(value["final_logits_bias"]) def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[TFBaseModelOutput] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, ): """ Returns: Examples: ```python >>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration >>> import tensorflow as tf >>> mname = '{{cookiecutter.checkpoint_identifier}}' >>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained(mname) >>> TXT = "My friends are <mask> but they eat too many carbs." >>> model = TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained(mname) >>> batch = tokenizer([TXT], return_tensors='tf') >>> logits = model(inputs=batch.input_ids).logits >>> probs = tf.nn.softmax(logits[0]) >>> # probs[5] is associated with the mask token ```""" if labels is not None: use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training ) lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) lm_logits = self.bias_layer(lm_logits) masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, # index 1 of d outputs decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs cross_attentions=outputs.cross_attentions, # index 4 of d outputs encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out encoder_attentions=outputs.encoder_attentions, # 2 of e out ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, # needs to be passed to make Keras.layer.__call__ happy "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def hf_compute_loss(self, labels, logits): """CrossEntropyLoss that ignores pad tokens""" loss_fn = keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction=keras.losses.Reduction.NONE, ) melted_labels = tf.reshape(labels, (-1,)) active_loss = tf.not_equal(melted_labels, self.config.pad_token_id) reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss) labels = tf.boolean_mask(melted_labels, active_loss) return loss_fn(labels, reduced_logits) {% endif -%}
transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/modeling_tf_{{cookiecutter.lowercase_modelname}}.py/0
{ "file_path": "transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/modeling_tf_{{cookiecutter.lowercase_modelname}}.py", "repo_id": "transformers", "token_count": 57175 }
135
{ "modelname": "PTNewENCDEC", "uppercase_modelname": "PT_NEW_ENC_DEC", "lowercase_modelname": "pt_new_enc_dec_template", "camelcase_modelname": "PtNewEncDec", "authors": "The HuggingFace Team", "checkpoint_identifier": "pt-new-enc-dec-base", "tokenizer_type": "Based on BART", "generate_tensorflow_pytorch_and_flax": "PyTorch", "is_encoder_decoder_model": "True" }
transformers/templates/adding_a_new_model/tests/pt-seq-2-seq-bart-tokenizer.json/0
{ "file_path": "transformers/templates/adding_a_new_model/tests/pt-seq-2-seq-bart-tokenizer.json", "repo_id": "transformers", "token_count": 158 }
136
{ "add_copied_from": true, "old_model_type": "distilbert", "new_model_patterns": { "model_name": "BERT New", "checkpoint": "huggingface/bert-new-base", "model_type": "bert-new", "model_lower_cased": "bert_new", "model_camel_cased": "BertNew", "model_upper_cased": "BERT_NEW", "config_class": "BertNewConfig", "tokenizer_class": "DistilBertTokenizer" }, "frameworks": [ "pt", "tf", "flax" ] }
transformers/tests/fixtures/add_distilbert_like_config.json/0
{ "file_path": "transformers/tests/fixtures/add_distilbert_like_config.json", "repo_id": "transformers", "token_count": 266 }
137
""" Framework agnostic tests for generate()-related methods. """ import numpy as np from transformers import AutoTokenizer from transformers.testing_utils import slow, torch_device class GenerationIntegrationTestsMixin: # To be populated by the child classes framework_dependent_parameters = { "AutoModelForCausalLM": None, "AutoModelForSpeechSeq2Seq": None, "AutoModelForSeq2SeqLM": None, "AutoModelForVision2Seq": None, "LogitsProcessorList": None, "MinLengthLogitsProcessor": None, "create_tensor_fn": None, "floats_tensor": None, "return_tensors": None, "set_seed": None, } def test_validate_generation_inputs(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") model = model_cls.from_pretrained("hf-internal-testing/tiny-random-t5") encoder_input_str = "Hello world" input_ids = tokenizer(encoder_input_str, return_tensors=return_tensors).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(ValueError, "do_samples"): model.generate(input_ids, do_samples=True) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(ValueError, "foo"): fake_model_kwargs = {"foo": "bar"} model.generate(input_ids, **fake_model_kwargs) # however, valid model_kwargs are accepted valid_model_kwargs = {"attention_mask": create_tensor_fn(np.zeros_like(input_ids))} model.generate(input_ids, **valid_model_kwargs) def test_custom_logits_processor(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] logits_processor_list_cls = self.framework_dependent_parameters["LogitsProcessorList"] min_length_logits_processor_cls = self.framework_dependent_parameters["MinLengthLogitsProcessor"] return_tensors = self.framework_dependent_parameters["return_tensors"] bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" bart_model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", min_length=1) input_ids = bart_tokenizer(article, return_tensors=return_tensors).input_ids logits_processor = logits_processor_list_cls() logits_processor.append(min_length_logits_processor_cls(min_length=10, eos_token_id=0)) # it should not be allowed to both define `min_length` via config and `logits_processor` list with self.assertRaises(ValueError): bart_model.generate(input_ids, logits_processor=logits_processor) bart_model.config.min_length = None bart_model.generate(input_ids, logits_processor=logits_processor) def test_max_new_tokens_encoder_decoder(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") bart_model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart") input_ids = bart_tokenizer(article, return_tensors=return_tensors).input_ids if is_pt: bart_model = bart_model.to(torch_device) input_ids = input_ids.to(torch_device) self.assertEqual(list(input_ids.shape), [1, 29]) max_new_tokens = 3 bart_model.config.max_length = 20 bart_model.config.eos_token_id = None # Encoder decoder call outputs = bart_model.generate(input_ids, max_new_tokens=max_new_tokens) # 1 BOS + 3 new tokens self.assertEqual(list(outputs.shape), [1, 4]) # Decoder only call outputs = bart_model.generate(decoder_input_ids=input_ids, max_new_tokens=max_new_tokens) # 1 BOS + 29 (input length) + 3 new tokens self.assertEqual(list(outputs.shape), [1, 33]) # Encoder decoder call > 20 outputs = bart_model.generate(max_new_tokens=max_new_tokens + 20) # 1 BOS + 20 + 3 new tokens self.assertEqual(list(outputs.shape), [1, 24]) def test_max_new_tokens_decoder_only(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") article = """Justin Timberlake.""" gpt2_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") gpt2_model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") input_ids = gpt2_tokenizer(article, return_tensors=return_tensors).input_ids if is_pt: gpt2_model = gpt2_model.to(torch_device) input_ids = input_ids.to(torch_device) self.assertEqual(list(input_ids.shape), [1, 9]) max_new_tokens = 3 gpt2_model.config.max_length = 20 # call < 20 outputs = gpt2_model.generate(input_ids, max_new_tokens=max_new_tokens) # 9 input_ids + 3 new tokens self.assertEqual(list(outputs.shape), [1, 12]) # call > 20 outputs = gpt2_model.generate(max_new_tokens=max_new_tokens + 20) # 1 BOS token + 23 new tokens self.assertEqual(list(outputs.shape), [1, 24]) def test_encoder_decoder_generate_with_inputs_embeds(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5) model.config.eos_token_id = None input_ids = tokenizer(article, return_tensors=return_tensors).input_ids inputs_embeds = model.get_input_embeddings()(input_ids) output_sequences = model.generate(inputs_embeds=inputs_embeds) # make sure model generated correctly until `max_length` self.assertEqual(output_sequences.shape, (1, 5)) def test_transition_scores_greedy_search(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") articles = ["Justin Timberlake", "Michael Phelps"] tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2", padding_side="left") tokenizer.pad_token = tokenizer.eos_token model = model_cls.from_pretrained("distilbert/distilgpt2") input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate( input_ids=input_ids, max_new_tokens=5, pad_token_id=tokenizer.eos_token_id, eos_token_id=None, return_dict_in_generate=True, output_scores=True, ) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores) if is_pt: transition_scores = transition_scores.cpu().numpy() expected_scores = np.array( [ [-57.8844, -60.45698, -70.16364, -65.50791, -66.35648], [-54.417572, -60.216614, -62.661243, -58.621933, -58.298683], ] ) self.assertTrue(np.allclose(transition_scores, expected_scores, atol=1e-3)) def test_transition_scores_greedy_search_normalized(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") articles = ["Justin Timberlake", "Michael Phelps"] tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2", padding_side="left") tokenizer.pad_token = tokenizer.eos_token model = model_cls.from_pretrained("distilbert/distilgpt2") input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate( input_ids=input_ids, max_new_tokens=5, pad_token_id=tokenizer.eos_token_id, eos_token_id=None, return_dict_in_generate=True, output_scores=True, ) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True) if is_pt: transition_scores = transition_scores.cpu().numpy() expected_scores = np.array( [ [-2.538938, -2.2694316, -2.1580915, -1.572299, -2.6719835], [-1.8826028, -2.2461371, -1.7556462, -2.9644494, -1.7996008], ] ) self.assertTrue(np.allclose(transition_scores, expected_scores, atol=1e-3)) def test_transition_scores_beam_search_encoder_decoder(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") articles = [ "Justin Timberlake and Jessica Biel, welcome to parenthood.", "Michael Phelps is arguably the most decorated Olympian of all time.", ] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = model_cls.from_pretrained( "hf-internal-testing/tiny-random-bart", max_length=10, num_beams=4, num_return_sequences=2, eos_token_id=None, return_dict_in_generate=True, output_scores=True, length_penalty=0.0, ) input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate(input_ids=input_ids) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) if is_pt: transition_scores = transition_scores.cpu().numpy() outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) def test_transition_scores_beam_search_encoder_decoder_with_eos(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") articles = [ "Justin Timberlake and Jessica Biel, welcome to parenthood.", "Michael Phelps is arguably the most decorated Olympian of all time.", ] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = model_cls.from_pretrained( "hf-internal-testing/tiny-random-bart", max_length=10, num_beams=4, num_return_sequences=2, return_dict_in_generate=True, output_scores=True, length_penalty=0.0, ) input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate(input_ids=input_ids) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) if is_pt: transition_scores = transition_scores.cpu().numpy() outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) def test_transition_scores_beam_search_decoder_only(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") articles = [ "Justin Timberlake", "Michael Phelps", ] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") tokenizer.pad_token = tokenizer.eos_token model = model_cls.from_pretrained( "hf-internal-testing/tiny-random-gpt2", max_length=10, num_beams=4, num_return_sequences=2, pad_token_id=tokenizer.eos_token_id, eos_token_id=None, return_dict_in_generate=True, output_scores=True, length_penalty=0.0, ) input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate(input_ids=input_ids) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) if is_pt: transition_scores = transition_scores.cpu().numpy() outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) def test_transition_scores_beam_sample_encoder_decoder(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") articles = [ "Justin Timberlake and Jessica Biel, welcome to parenthood.", "Michael Phelps is arguably the most decorated Olympian of all time.", ] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = model_cls.from_pretrained( "hf-internal-testing/tiny-random-bart", do_sample=True, max_length=10, num_beams=4, num_return_sequences=2, eos_token_id=None, return_dict_in_generate=True, output_scores=True, length_penalty=0.0, ) input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate(input_ids=input_ids) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) if is_pt: transition_scores = transition_scores.cpu().numpy() outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) @slow def test_transition_scores_early_stopping(self): # This is an aggressive test that makes sure that `beam_search's` # transition scores are computed correctly for varying `num_return_sequences`, `num_beams` and `batch_size > 1` # 2 x input_ids for "question: How are you? \n context: I had a long day, " model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] is_pt = not model_cls.__name__.startswith("TF") input_ids = create_tensor_fn(2 * [[822, 10, 571, 33, 25, 58, 2625, 10, 27, 141, 3, 9, 307, 239, 6, 1]]) model = model_cls.from_pretrained("google-t5/t5-small") if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate( input_ids, max_length=10, return_dict_in_generate=True, output_scores=True, forced_eos_token_id=model.config.eos_token_id, num_beams=4, do_sample=False, num_return_sequences=3, length_penalty=0.0, ) transition_scores = model.compute_transition_scores( sequences=outputs.sequences, scores=outputs.scores, beam_indices=outputs.beam_indices ) if is_pt: transition_scores = transition_scores.cpu().numpy() outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores)) def test_encoder_decoder_generate_attention_mask(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") articles = ["Timberlake", "Jessica Biel, welcome to parenthood among other things"] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") # need extreme generation values here to force this test # to fail when `attention_mask` is not correctly treated in generate model = model_cls.from_pretrained( "hf-internal-testing/tiny-random-bart", max_length=50, num_beams=5, num_return_sequences=5 ) model.config.eos_token_id = None input_ids = tokenizer(articles[0], return_tensors=return_tensors).input_ids input_ids_batched = tokenizer(articles, padding=True, return_tensors=return_tensors).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) input_ids_batched = input_ids_batched.to(torch_device) output_sequences_batched = model.generate( input_ids=input_ids_batched, return_dict_in_generate=True, output_scores=True ) output_sequences = model.generate(input_ids=input_ids, return_dict_in_generate=True, output_scores=True) batched_out = output_sequences_batched.sequences_scores out = output_sequences.sequences_scores if is_pt: batched_out = batched_out.cpu().numpy() out = out.cpu().numpy() diff = np.abs(np.sum(batched_out[:5]) - np.sum(out)) self.assertTrue(diff < 1e-4) def test_generate_input_ids_as_kwarg(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") article = """I need input_ids to generate""" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=15) input_ids = tokenizer(article, return_tensors=return_tensors).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) output_sequences_kwargs = model.generate(input_ids=input_ids) output_sequences = model.generate(input_ids) if is_pt: output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() output_sequences = output_sequences.cpu().numpy() self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) self.assertEqual(output_sequences.shape, (1, 15)) def test_generate_input_ids_as_encoder_kwarg(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5) model.config.eos_token_id = None input_ids = tokenizer(article, return_tensors=return_tensors).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) output_sequences_kwargs = model.generate(input_ids=input_ids) output_sequences = model.generate(input_ids) if is_pt: output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() output_sequences = output_sequences.cpu().numpy() self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) self.assertEqual(output_sequences.shape, (1, 5)) def test_generate_inputs_and_encoder_kwargs(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] article = """I need input_ids to generate""" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=10) input_ids = tokenizer(article, return_tensors=return_tensors).input_ids with self.assertRaises(ValueError): model.generate(input_ids, input_ids=input_ids) def test_generate_too_many_encoder_kwargs(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] article = """I need input_ids to generate""" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=10) input_ids = tokenizer(article, return_tensors=return_tensors).input_ids with self.assertRaises(ValueError): model.generate(input_ids=input_ids, inputs_embeds=input_ids) def test_generate_input_features_as_encoder_kwarg(self): model_cls = self.framework_dependent_parameters["AutoModelForSpeechSeq2Seq"] floats_tensor = self.framework_dependent_parameters["floats_tensor"] is_pt = not model_cls.__name__.startswith("TF") input_features = floats_tensor((3, 80, 60)) model = model_cls.from_pretrained("hf-internal-testing/tiny-random-WhisperForConditionalGeneration") if is_pt: input_features.to(torch_device) model = model.to(torch_device) output_sequences_kwargs = model.generate(input_features=input_features, max_length=5) output_sequences = model.generate(input_features, max_length=5) if is_pt: output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() output_sequences = output_sequences.cpu().numpy() self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) self.assertEqual(output_sequences.shape, (3, 5)) def test_generate_pixel_values_as_encoder_kwarg(self): model_cls = self.framework_dependent_parameters["AutoModelForVision2Seq"] floats_tensor = self.framework_dependent_parameters["floats_tensor"] is_pt = not model_cls.__name__.startswith("TF") pixel_values = floats_tensor((2, 3, 30, 30)) model = model_cls.from_pretrained("hf-internal-testing/tiny-random-VisionEncoderDecoderModel-vit-gpt2") model.generation_config.eos_token_id = None if is_pt: pixel_values = pixel_values.to(torch_device) model = model.to(torch_device) output_sequences_kwargs = model.generate(pixel_values=pixel_values, max_length=5) output_sequences = model.generate(pixel_values, max_length=5) if is_pt: output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() output_sequences = output_sequences.cpu().numpy() self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) self.assertEqual(output_sequences.shape, (2, 5)) def test_generate_encoder_outputs_attention_mask(self): model_cls = self.framework_dependent_parameters["AutoModelForSpeechSeq2Seq"] floats_tensor = self.framework_dependent_parameters["floats_tensor"] create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] is_pt = not model_cls.__name__.startswith("TF") input_features = floats_tensor((3, 80, 60)) attention_mask = create_tensor_fn(np.ones(input_features.shape)) model = model_cls.from_pretrained("hf-internal-testing/tiny-random-WhisperForConditionalGeneration") if is_pt: input_features = input_features.to(torch_device) attention_mask = attention_mask.to(torch_device) model = model.to(torch_device) encoder = model.get_encoder() encoder_outputs = encoder(input_features) output_sequences_no_mask = model.generate(encoder_outputs=encoder_outputs) output_sequences_with_mask = model.generate(encoder_outputs=encoder_outputs, attention_mask=attention_mask) if is_pt: output_sequences_no_mask = output_sequences_no_mask.cpu().numpy() output_sequences_with_mask = output_sequences_with_mask.cpu().numpy() self.assertTrue(np.array_equal(output_sequences_no_mask, output_sequences_with_mask)) def test_eos_token_id_int_and_list_greedy_search(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") generation_kwargs = { "do_sample": False, "num_beams": 1, } expectation = 13 tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") text = """Hello, my dog is cute and""" tokens = tokenizer(text, return_tensors=return_tensors) model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") if is_pt: model = model.to(torch_device) tokens = tokens.to(torch_device) eos_token_id = 873 generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) eos_token_id = [873, 198] generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) def test_eos_token_id_int_and_list_contrastive_search(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") generation_kwargs = { "do_sample": False, "num_beams": 1, "penalty_alpha": 0.6, "top_k": 4, } expectation = 17 tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") text = """Hello, my dog is cute and""" tokens = tokenizer(text, return_tensors=return_tensors) model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") if is_pt: model = model.to(torch_device) tokens = tokens.to(torch_device) eos_token_id = 225 generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) eos_token_id = [225, 198] generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) def test_eos_token_id_int_and_list_beam_search(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") generation_kwargs = { "do_sample": False, "num_beams": 3, } expectation = 13 tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") text = """Hello, my dog is cute and""" tokens = tokenizer(text, return_tensors=return_tensors) model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") if is_pt: model = model.to(torch_device) tokens = tokens.to(torch_device) eos_token_id = 873 generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) unpadded_correct_condition = expectation == len(generated_tokens[0]) padded_correct_condition = expectation < len(generated_tokens[0]) and all( token == model.config.pad_token_id for token in generated_tokens[0][expectation:] ) self.assertTrue(unpadded_correct_condition or padded_correct_condition) eos_token_id = [873, 198] generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) unpadded_correct_condition = expectation == len(generated_tokens[0]) padded_correct_condition = expectation < len(generated_tokens[0]) and all( token == model.config.pad_token_id for token in generated_tokens[0][expectation:] ) self.assertTrue(unpadded_correct_condition or padded_correct_condition) def test_generate_vision2text_conditioning(self): model_cls = self.framework_dependent_parameters["AutoModelForVision2Seq"] floats_tensor = self.framework_dependent_parameters["floats_tensor"] create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] is_pt = not model_cls.__name__.startswith("TF") pixel_values = floats_tensor((2, 3, 30, 30)) conditioning_input = create_tensor_fn([[10], [10]]) # this should be the 2nd output token, after the BOS token model = model_cls.from_pretrained("hf-internal-testing/tiny-random-VisionEncoderDecoderModel-vit-gpt2") if is_pt: pixel_values = pixel_values.to(torch_device) model = model.to(torch_device) conditioning_input = conditioning_input.to(torch_device) # we can condition on decoder_input_ids (expected decoder input) and input_ids (which we pipe internally as # decoder_input_ids, if the encoder is not a model with text input) output_sequences_decoder_input_ids = model.generate( pixel_values, max_length=5, decoder_input_ids=conditioning_input ) output_sequences_input_ids = model.generate(pixel_values, max_length=5, input_ids=conditioning_input) if is_pt: output_sequences_decoder_input_ids = output_sequences_decoder_input_ids.cpu().numpy() output_sequences_input_ids = output_sequences_input_ids.cpu().numpy() conditioning_input = conditioning_input.cpu().numpy() self.assertTrue(np.array_equal(output_sequences_decoder_input_ids, output_sequences_input_ids)) self.assertTrue(np.array_equal(output_sequences_decoder_input_ids[:, 1:2], conditioning_input))
transformers/tests/generation/test_framework_agnostic.py/0
{ "file_path": "transformers/tests/generation/test_framework_agnostic.py", "repo_id": "transformers", "token_count": 14175 }
138
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Autoformer model. """ import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin TOLERANCE = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class AutoformerModelTester: def __init__( self, parent, d_model=16, batch_size=13, prediction_length=7, context_length=14, label_length=10, cardinality=19, embedding_dimension=5, num_time_features=4, is_training=True, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, lags_sequence=[1, 2, 3, 4, 5], moving_average=25, autocorrelation_factor=5, ): self.d_model = d_model self.parent = parent self.batch_size = batch_size self.prediction_length = prediction_length self.context_length = context_length self.cardinality = cardinality self.num_time_features = num_time_features self.lags_sequence = lags_sequence self.embedding_dimension = embedding_dimension self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.encoder_seq_length = context_length self.decoder_seq_length = prediction_length + label_length self.label_length = label_length self.moving_average = moving_average self.autocorrelation_factor = autocorrelation_factor def get_config(self): return AutoformerConfig( d_model=self.d_model, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, prediction_length=self.prediction_length, context_length=self.context_length, label_length=self.label_length, lags_sequence=self.lags_sequence, num_time_features=self.num_time_features, num_static_categorical_features=1, cardinality=[self.cardinality], embedding_dimension=[self.embedding_dimension], moving_average=self.moving_average, ) def prepare_autoformer_inputs_dict(self, config): _past_length = config.context_length + max(config.lags_sequence) static_categorical_features = ids_tensor([self.batch_size, 1], config.cardinality[0]) past_time_features = floats_tensor([self.batch_size, _past_length, config.num_time_features]) past_values = floats_tensor([self.batch_size, _past_length]) past_observed_mask = floats_tensor([self.batch_size, _past_length]) > 0.5 # decoder inputs future_time_features = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features]) future_values = floats_tensor([self.batch_size, config.prediction_length]) inputs_dict = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def prepare_config_and_inputs(self): config = self.get_config() inputs_dict = self.prepare_autoformer_inputs_dict(config) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = AutoformerModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = AutoformerEncoder.from_pretrained(tmpdirname).to(torch_device) transformer_inputs, feature, _, _, _ = model.create_network_inputs(**inputs_dict) seasonal_input, trend_input = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...]) enc_input = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]), dim=-1, ) encoder_last_hidden_state_2 = encoder(inputs_embeds=enc_input)[0] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) mean = ( torch.mean(transformer_inputs[:, : config.context_length, ...], dim=1) .unsqueeze(1) .repeat(1, config.prediction_length, 1) ) zeros = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]], device=enc_input.device, ) dec_input = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros), dim=1), feature[:, config.context_length - config.label_length :, ...], ), dim=-1, ) trend_init = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean), dim=1), feature[:, config.context_length - config.label_length :, ...], ), dim=-1, ) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = AutoformerDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( trend=trend_init, inputs_embeds=dec_input, encoder_hidden_states=encoder_last_hidden_state, )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class AutoformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () all_generative_model_classes = (AutoformerForPrediction,) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": AutoformerModel} if is_torch_available() else {} test_pruning = False test_head_masking = False test_missing_keys = False test_torchscript = False test_inputs_embeds = False test_model_common_attributes = False def setUp(self): self.model_tester = AutoformerModelTester(self) self.config_tester = ConfigTester(self, config_class=AutoformerConfig, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) @unittest.skip(reason="Model has no tokens embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass # # Input is 'static_categorical_features' not 'input_ids' def test_model_main_input_name(self): model_signature = inspect.signature(getattr(AutoformerModel, "forward")) # The main input is the name of the argument after `self` observed_main_input_name = list(model_signature.parameters.keys())[1] self.assertEqual(AutoformerModel.main_input_name, observed_main_input_name) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask") expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) d_model = getattr(self.model_tester, "d_model", None) num_attention_heads = getattr(self.model_tester, "num_attention_heads", None) dim = d_model // num_attention_heads for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, dim], ) out_len = len(outputs) correct_outlen = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, dim], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, dim], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 2, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, dim], ) @is_flaky() def test_retain_grad_hidden_states_attentions(self): super().test_retain_grad_hidden_states_attentions() def prepare_batch(filename="train-batch.pt"): file = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch", filename=filename, repo_type="dataset") batch = torch.load(file, map_location=torch_device) return batch @require_torch @slow class AutoformerModelIntegrationTests(unittest.TestCase): def test_inference_no_head(self): model = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly").to(torch_device) batch = prepare_batch() with torch.no_grad(): output = model( past_values=batch["past_values"], past_time_features=batch["past_time_features"], past_observed_mask=batch["past_observed_mask"], static_categorical_features=batch["static_categorical_features"], future_values=batch["future_values"], future_time_features=batch["future_time_features"], )[0] expected_shape = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]], device=torch_device ) self.assertTrue(torch.allclose(output[0, :3, :3], expected_slice, atol=TOLERANCE)) def test_inference_head(self): model = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly").to(torch_device) batch = prepare_batch("val-batch.pt") with torch.no_grad(): output = model( past_values=batch["past_values"], past_time_features=batch["past_time_features"], past_observed_mask=batch["past_observed_mask"], static_categorical_features=batch["static_categorical_features"], ).encoder_last_hidden_state expected_shape = torch.Size((64, model.config.context_length, model.config.d_model)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]], device=torch_device ) self.assertTrue(torch.allclose(output[0, :3, :3], expected_slice, atol=TOLERANCE)) def test_seq_to_seq_generation(self): model = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly").to(torch_device) batch = prepare_batch("val-batch.pt") with torch.no_grad(): outputs = model.generate( static_categorical_features=batch["static_categorical_features"], past_time_features=batch["past_time_features"], past_values=batch["past_values"], future_time_features=batch["future_time_features"], past_observed_mask=batch["past_observed_mask"], ) expected_shape = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length)) self.assertEqual(outputs.sequences.shape, expected_shape) expected_slice = torch.tensor([3130.6763, 4056.5293, 7053.0786], device=torch_device) mean_prediction = outputs.sequences.mean(dim=1) self.assertTrue(torch.allclose(mean_prediction[0, -3:], expected_slice, rtol=1e-1))
transformers/tests/models/autoformer/test_modeling_autoformer.py/0
{ "file_path": "transformers/tests/models/autoformer/test_modeling_autoformer.py", "repo_id": "transformers", "token_count": 8817 }
139
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class FlaxBeitModelTester(unittest.TestCase): def __init__( self, parent, vocab_size=100, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, ): self.parent = parent self.vocab_size = vocab_size self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, ) return config, pixel_values, labels def create_and_check_model(self, config, pixel_values, labels): model = FlaxBeitModel(config=config) result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm(self, config, pixel_values, labels): model = FlaxBeitForMaskedImageModeling(config=config) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = FlaxBeitForImageClassification(config=config) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = FlaxBeitForImageClassification(config) pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, labels, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class FlaxBeitModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def setUp(self) -> None: self.model_tester = FlaxBeitModelTester(self) self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() # We need to override this test because Beit's forward signature is different than text models. def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) # We need to override this test because Beit expects pixel_values instead of input_ids def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(pixel_values, **kwargs): return model(pixel_values=pixel_values, **kwargs) with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("microsoft/beit-base-patch16-224") outputs = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(outputs) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class FlaxBeitModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None @slow def test_inference_masked_image_modeling_head(self): model = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k") image_processor = self.default_image_processor image = prepare_img() pixel_values = image_processor(images=image, return_tensors="np").pixel_values # prepare bool_masked_pos bool_masked_pos = np.ones((1, 196), dtype=bool) # forward pass outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos) logits = outputs.logits # verify the logits expected_shape = (1, 196, 8192) self.assertEqual(logits.shape, expected_shape) expected_slice = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2)) @slow def test_inference_image_classification_head_imagenet_1k(self): model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="np") # forward pass outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = (1, 1000) self.assertEqual(logits.shape, expected_shape) expected_slice = np.array([-1.2385, -1.0987, -1.0108]) self.assertTrue(np.allclose(logits[0, :3], expected_slice, atol=1e-4)) expected_class_idx = 281 self.assertEqual(logits.argmax(-1).item(), expected_class_idx) @slow def test_inference_image_classification_head_imagenet_22k(self): model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="np") # forward pass outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = (1, 21841) self.assertEqual(logits.shape, expected_shape) expected_slice = np.array([1.6881, -0.2787, 0.5901]) self.assertTrue(np.allclose(logits[0, :3], expected_slice, atol=1e-4)) expected_class_idx = 2396 self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
transformers/tests/models/beit/test_modeling_flax_beit.py/0
{ "file_path": "transformers/tests/models/beit/test_modeling_flax_beit.py", "repo_id": "transformers", "token_count": 4819 }
140
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class FlaxBigBirdModelTester(unittest.TestCase): def __init__( self, parent, batch_size=2, seq_length=56, is_training=True, use_attention_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=2, intermediate_size=7, hidden_act="gelu_new", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_choices=4, attention_type="block_sparse", use_bias=True, rescale_embeddings=False, block_size=2, num_random_blocks=3, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_choices = num_choices self.rescale_embeddings = rescale_embeddings self.attention_type = attention_type self.use_bias = use_bias self.block_size = block_size self.num_random_blocks = num_random_blocks def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) config = BigBirdConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, attention_type=self.attention_type, block_size=self.block_size, num_random_blocks=self.num_random_blocks, use_bias=self.use_bias, rescale_embeddings=self.rescale_embeddings, ) return config, input_ids, token_type_ids, attention_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, token_type_ids, attention_mask = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class FlaxBigBirdModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) test_attn_probs = False test_mismatched_shapes = False def setUp(self): self.model_tester = FlaxBigBirdModelTester(self) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def test_from_pretrained_save_pretrained(self): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def test_from_pretrained_with_no_automatic_init(self): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def test_no_automatic_init(self): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def test_hidden_states_output(self): super().test_hidden_states_output() @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("google/bigbird-roberta-base") self.assertIsNotNone(model) def test_attention_outputs(self): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(input_ids, attention_mask=None, **kwargs): return model(input_ids=input_ids, attention_mask=attention_mask, **kwargs) with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) # overwrite from common in order to skip the check on `attentions` def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions"): return else: super().check_pt_flax_outputs(fx_outputs, pt_outputs, model_class, tol, name, attributes)
transformers/tests/models/big_bird/test_modeling_flax_big_bird.py/0
{ "file_path": "transformers/tests/models/big_bird/test_modeling_flax_big_bird.py", "repo_id": "transformers", "token_count": 3793 }
141
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_jinja, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class BloomTokenizationTest(TokenizerTesterMixin, unittest.TestCase): slow_tokenizer_class = None rust_tokenizer_class = BloomTokenizerFast tokenizer_class = BloomTokenizerFast test_rust_tokenizer = True test_slow_tokenizer = False from_pretrained_vocab_key = "tokenizer_file" special_tokens_map = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def setUp(self): super().setUp() tokenizer = BloomTokenizerFast.from_pretrained("bigscience/tokenizer") tokenizer.save_pretrained(self.tmpdirname) def get_rust_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) @unittest.skip("This needs a slow tokenizer. Bloom does not have one!") def test_encode_decode_with_spaces(self): return def test_encodings_from_sample_data(self): """ Assert that the created tokens are the same than the hard-coded ones """ tokenizer = self.get_rust_tokenizer() INPUT_SENTENCES = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] TARGET_TOKENS = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] computed_tokens = tokenizer.batch_encode_plus(INPUT_SENTENCES)["input_ids"] self.assertListEqual(TARGET_TOKENS, computed_tokens) decoded_tokens = tokenizer.batch_decode(computed_tokens) self.assertListEqual(decoded_tokens, INPUT_SENTENCES) def test_padding(self, max_length=6): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input s = "This is a simple input" s2 = ["This is a simple input 1", "This is a simple input 2"] p = ("This is a simple input", "This is a pair") p2 = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(s, max_length=max_length) tokenizer_r.encode_plus(s, max_length=max_length) tokenizer_r.batch_encode_plus(s2, max_length=max_length) tokenizer_r.encode(p, max_length=max_length) tokenizer_r.batch_encode_plus(p2, max_length=max_length) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding") tokenizer_r.pad_token = None # Hotfixing padding = None self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, s2, max_length=max_length, padding="max_length", ) # Pair input self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, p2, max_length=max_length, padding="max_length", ) def test_encodings_from_xnli_dataset(self): """ Tests the tokenizer downloaded from here: - https://huggingface.co/bigscience/tokenizer/ """ tokenizer = self.get_rust_tokenizer() ds = load_dataset("xnli", "all_languages", split="test", streaming=True) sample_data = next(iter(ds))["premise"] # pick up one data input_text = list(sample_data.values()) output_tokens = list(map(tokenizer.encode, input_text)) predicted_text = [tokenizer.decode(x, clean_up_tokenization_spaces=False) for x in output_tokens] self.assertListEqual(predicted_text, input_text) def test_pretrained_model_lists(self): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1) @require_jinja def test_tokenization_for_chat(self): tokenizer = self.get_rust_tokenizer() test_chats = [ [{"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hello!"}], [ {"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hello!"}, {"role": "assistant", "content": "Nice to meet you."}, ], [{"role": "assistant", "content": "Nice to meet you."}, {"role": "user", "content": "Hello!"}], ] tokenized_chats = [tokenizer.apply_chat_template(test_chat) for test_chat in test_chats] expected_tokens = [ [5448, 1306, 267, 66799, 44799, 37143, 17, 2, 59414, 4, 2], [5448, 1306, 267, 66799, 44799, 37143, 17, 2, 59414, 4, 2, 229126, 427, 11890, 1152, 17, 2], [229126, 427, 11890, 1152, 17, 2, 59414, 4, 2], ] for tokenized_chat, expected_tokens in zip(tokenized_chats, expected_tokens): self.assertListEqual(tokenized_chat, expected_tokens) def test_add_prefix_space_fast(self): tokenizer_w_prefix = self.get_rust_tokenizer(add_prefix_space=True) tokenizer_wo_prefix = self.get_rust_tokenizer(add_prefix_space=False) tokens_w_prefix = tokenizer_w_prefix.tokenize("Hey") tokens_wo_prefix = tokenizer_wo_prefix.tokenize("Hey") self.assertNotEqual(tokens_w_prefix, tokens_wo_prefix)
transformers/tests/models/bloom/test_tokenization_bloom.py/0
{ "file_path": "transformers/tests/models/bloom/test_tokenization_bloom.py", "repo_id": "transformers", "token_count": 3390 }
142
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import ChineseCLIPImageProcessor if is_torch_available(): pass class ChineseCLIPImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, do_normalize=True, image_mean=[0.48145466, 0.4578275, 0.40821073], image_std=[0.26862954, 0.26130258, 0.27577711], do_convert_rgb=True, ): size = size if size is not None else {"height": 224, "width": 224} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_convert_rgb = do_convert_rgb def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def expected_output_image_shape(self, images): return 3, self.crop_size["height"], self.crop_size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class ChineseCLIPImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = ChineseCLIPImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = ChineseCLIPImageProcessingTester(self, do_center_crop=True) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "center_crop")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_convert_rgb")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 224, "width": 224}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84}) @unittest.skip("ChineseCLIPImageProcessor doesn't treat 4 channel PIL and numpy consistently yet") # FIXME Amy def test_call_numpy_4_channels(self): pass @require_torch @require_vision class ChineseCLIPImageProcessingTestFourChannels(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = ChineseCLIPImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = ChineseCLIPImageProcessingTester(self, num_channels=4, do_center_crop=True) self.expected_encoded_image_num_channels = 3 @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "center_crop")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_convert_rgb")) @unittest.skip("ChineseCLIPImageProcessor does not support 4 channels yet") # FIXME Amy def test_call_numpy(self): return super().test_call_numpy() @unittest.skip("ChineseCLIPImageProcessor does not support 4 channels yet") # FIXME Amy def test_call_pytorch(self): return super().test_call_torch() @unittest.skip("ChineseCLIPImageProcessor doesn't treat 4 channel PIL and numpy consistently yet") # FIXME Amy def test_call_numpy_4_channels(self): pass
transformers/tests/models/chinese_clip/test_image_processing_chinese_clip.py/0
{ "file_path": "transformers/tests/models/chinese_clip/test_image_processing_chinese_clip.py", "repo_id": "transformers", "token_count": 2634 }
143
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class CLIPSegProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: skip vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) image_processor_map = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(image_processor_map, fp) def get_tokenizer(self, **kwargs): return CLIPTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) def get_image_processor(self, **kwargs): return ViTImageProcessor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True.""" image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_default(self): tokenizer_slow = self.get_tokenizer() tokenizer_fast = self.get_rust_tokenizer() image_processor = self.get_image_processor() processor_slow = CLIPSegProcessor(tokenizer=tokenizer_slow, image_processor=image_processor) processor_slow.save_pretrained(self.tmpdirname) processor_slow = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=False) processor_fast = CLIPSegProcessor(tokenizer=tokenizer_fast, image_processor=image_processor) processor_fast.save_pretrained(self.tmpdirname) processor_fast = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer) self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, ViTImageProcessor) self.assertIsInstance(processor_fast.image_processor, ViTImageProcessor) def test_save_load_pretrained_additional_features(self): processor = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, ViTImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor_text(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_processor_visual_prompt(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() visual_prompt_input = self.prepare_image_inputs() inputs = processor(images=image_input, visual_prompt=visual_prompt_input) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor)
transformers/tests/models/clipseg/test_processor_clipseg.py/0
{ "file_path": "transformers/tests/models/clipseg/test_processor_clipseg.py", "repo_id": "transformers", "token_count": 3413 }
144
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) from transformers.modeling_tf_utils import keras class TFConvBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 384 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.embedding_size = 128 self.head_ratio = 2 self.conv_kernel_size = 9 self.num_groups = 1 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = ConvBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=True, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFConvBertModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFConvBertForMaskedLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFConvBertForSequenceClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = TFConvBertForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFConvBertForTokenClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFConvBertForQuestionAnswering(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFConvBertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) test_pruning = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFConvBertModelTester(self) self.config_tester = ConfigTester(self, config_class=ConvBertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_saved_model_creation_extended(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True if hasattr(config, "use_cache"): config.use_cache = True encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) num_out = len(model(class_inputs_dict)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=True) saved_model_dir = os.path.join(tmpdirname, "saved_model", "1") model = keras.models.load_model(saved_model_dir) outputs = model(class_inputs_dict) if self.is_encoder_decoder: output_hidden_states = outputs["encoder_hidden_states"] output_attentions = outputs["encoder_attentions"] else: output_hidden_states = outputs["hidden_states"] output_attentions = outputs["attentions"] self.assertEqual(len(outputs), num_out) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(output_hidden_states), expected_num_layers) self.assertListEqual( list(output_hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) self.assertEqual(len(output_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) @slow def test_model_from_pretrained(self): model = TFConvBertModel.from_pretrained("YituTech/conv-bert-base") self.assertIsNotNone(model) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) def check_decoder_attentions_output(outputs): out_len = len(outputs) self.assertEqual(out_len % 2, 0) decoder_attentions = outputs.decoder_attentions self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length], ) def check_encoder_attentions_output(outputs): attentions = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True config.output_hidden_states = False model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) out_len = len(outputs) self.assertEqual(config.output_hidden_states, False) check_encoder_attentions_output(outputs) if self.is_encoder_decoder: model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(config.output_hidden_states, False) check_decoder_attentions_output(outputs) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(config.output_hidden_states, False) check_encoder_attentions_output(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True config.output_hidden_states = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs)) self.assertEqual(model.config.output_hidden_states, True) check_encoder_attentions_output(outputs) @require_tf class TFConvBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TFConvBertModel.from_pretrained("YituTech/conv-bert-base") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] expected_shape = [1, 6, 768] self.assertEqual(output.shape, expected_shape) expected_slice = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
transformers/tests/models/convbert/test_modeling_tf_convbert.py/0
{ "file_path": "transformers/tests/models/convbert/test_modeling_tf_convbert.py", "repo_id": "transformers", "token_count": 8020 }
145
# coding=utf-8 # Copyright 2018 Salesforce and HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class CTRLTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = CTRLTokenizer test_rust_tokenizer = False test_seq2seq = False def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "adapt react readapt apt" output_text = "adapt react readapt apt" return input_text, output_text def test_full_tokenizer(self): tokenizer = CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) text = "adapt react readapt apt" bpe_tokens = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
transformers/tests/models/ctrl/test_tokenization_ctrl.py/0
{ "file_path": "transformers/tests/models/ctrl/test_tokenization_ctrl.py", "repo_id": "transformers", "token_count": 1074 }
146
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import pathlib import unittest from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import AnnotationFormatTestMixin, ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class DetrImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_rescale=True, rescale_factor=1 / 255, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], do_pad=True, ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_pad = do_pad def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def get_expected_values(self, image_inputs, batched=False): """ This function computes the expected height and width when providing images to DetrImageProcessor, assuming do_resize is set to True with a scalar size. """ if not batched: image = image_inputs[0] if isinstance(image, Image.Image): w, h = image.size else: h, w = image.shape[1], image.shape[2] if w < h: expected_height = int(self.size["shortest_edge"] * h / w) expected_width = self.size["shortest_edge"] elif w > h: expected_height = self.size["shortest_edge"] expected_width = int(self.size["shortest_edge"] * w / h) else: expected_height = self.size["shortest_edge"] expected_width = self.size["shortest_edge"] else: expected_values = [] for image in image_inputs: expected_height, expected_width = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) expected_height = max(expected_values, key=lambda item: item[0])[0] expected_width = max(expected_values, key=lambda item: item[1])[1] return expected_height, expected_width def expected_output_image_shape(self, images): height, width = self.get_expected_values(images, batched=True) return self.num_channels, height, width def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class DetrImageProcessingTest(AnnotationFormatTestMixin, ImageProcessingTestMixin, unittest.TestCase): image_processing_class = DetrImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = DetrImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "rescale_factor")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_pad")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333}) self.assertEqual(image_processor.do_pad, True) image_processor = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=False ) self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84}) self.assertEqual(image_processor.do_pad, False) def test_should_raise_if_annotation_format_invalid(self): image_processor_dict = self.image_processor_tester.prepare_image_processor_dict() with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: detection_target = json.loads(f.read()) annotations = {"image_id": 39769, "annotations": detection_target} params = { "images": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), "annotations": annotations, "return_tensors": "pt", } image_processor_params = {**image_processor_dict, **{"format": "_INVALID_FORMAT_"}} image_processor = self.image_processing_class(**image_processor_params) with self.assertRaises(ValueError) as e: image_processor(**params) self.assertTrue(str(e.exception).startswith("_INVALID_FORMAT_ is not a valid AnnotationFormat")) def test_valid_coco_detection_annotations(self): # prepare image and target image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: target = json.loads(f.read()) params = {"image_id": 39769, "annotations": target} # encode them image_processing = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") # legal encodings (single image) _ = image_processing(images=image, annotations=params, return_tensors="pt") _ = image_processing(images=image, annotations=[params], return_tensors="pt") # legal encodings (batch of one image) _ = image_processing(images=[image], annotations=params, return_tensors="pt") _ = image_processing(images=[image], annotations=[params], return_tensors="pt") # legal encoding (batch of more than one image) n = 5 _ = image_processing(images=[image] * n, annotations=[params] * n, return_tensors="pt") # example of an illegal encoding (missing the 'image_id' key) with self.assertRaises(ValueError) as e: image_processing(images=image, annotations={"annotations": target}, return_tensors="pt") self.assertTrue(str(e.exception).startswith("Invalid COCO detection annotations")) # example of an illegal encoding (unequal lengths of images and annotations) with self.assertRaises(ValueError) as e: image_processing(images=[image] * n, annotations=[params] * (n - 1), return_tensors="pt") self.assertTrue(str(e.exception) == "The number of images (5) and annotations (4) do not match.") @slow def test_call_pytorch_with_coco_detection_annotations(self): # prepare image and target image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: target = json.loads(f.read()) target = {"image_id": 39769, "annotations": target} # encode them image_processing = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") encoding = image_processing(images=image, annotations=target, return_tensors="pt") # verify pixel values expected_shape = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape, expected_shape) expected_slice = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4)) # verify area expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area)) # verify boxes expected_boxes_shape = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape) expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3)) # verify image_id expected_image_id = torch.tensor([39769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id)) # verify is_crowd expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd)) # verify class_labels expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels)) # verify orig_size expected_orig_size = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size)) # verify size expected_size = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size)) @slow def test_call_pytorch_with_coco_panoptic_annotations(self): # prepare image, target and masks_path image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f: target = json.loads(f.read()) target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") # encode them image_processing = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic") encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt") # verify pixel values expected_shape = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape, expected_shape) expected_slice = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4)) # verify area expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area)) # verify boxes expected_boxes_shape = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape) expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3)) # verify image_id expected_image_id = torch.tensor([39769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id)) # verify is_crowd expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd)) # verify class_labels expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels)) # verify masks expected_masks_sum = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum) # verify orig_size expected_orig_size = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size)) # verify size expected_size = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size)) @slow def test_batched_coco_detection_annotations(self): image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800)) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: target = json.loads(f.read()) annotations_0 = {"image_id": 39769, "annotations": target} annotations_1 = {"image_id": 39769, "annotations": target} # Adjust the bounding boxes for the resized image w_0, h_0 = image_0.size w_1, h_1 = image_1.size for i in range(len(annotations_1["annotations"])): coords = annotations_1["annotations"][i]["bbox"] new_bbox = [ coords[0] * w_1 / w_0, coords[1] * h_1 / h_0, coords[2] * w_1 / w_0, coords[3] * h_1 / h_0, ] annotations_1["annotations"][i]["bbox"] = new_bbox images = [image_0, image_1] annotations = [annotations_0, annotations_1] image_processing = DetrImageProcessor() encoding = image_processing( images=images, annotations=annotations, return_segmentation_masks=True, return_tensors="pt", # do_convert_annotations=True ) # Check the pixel values have been padded postprocessed_height, postprocessed_width = 800, 1066 expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width]) self.assertEqual(encoding["pixel_values"].shape, expected_shape) # Check the bounding boxes have been adjusted for padded images self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4])) self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4])) expected_boxes_0 = torch.tensor( [ [0.6879, 0.4609, 0.0755, 0.3691], [0.2118, 0.3359, 0.2601, 0.1566], [0.5011, 0.5000, 0.9979, 1.0000], [0.5010, 0.5020, 0.9979, 0.9959], [0.3284, 0.5944, 0.5884, 0.8112], [0.8394, 0.5445, 0.3213, 0.9110], ] ) expected_boxes_1 = torch.tensor( [ [0.4130, 0.2765, 0.0453, 0.2215], [0.1272, 0.2016, 0.1561, 0.0940], [0.3757, 0.4933, 0.7488, 0.9865], [0.3759, 0.5002, 0.7492, 0.9955], [0.1971, 0.5456, 0.3532, 0.8646], [0.5790, 0.4115, 0.3430, 0.7161], ] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1e-3)) self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1e-3)) # Check the masks have also been padded self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066])) self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066])) # Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height # format and not in the range [0, 1] encoding = image_processing( images=images, annotations=annotations, return_segmentation_masks=True, do_convert_annotations=False, return_tensors="pt", ) self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4])) self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4])) # Convert to absolute coordinates unnormalized_boxes_0 = torch.vstack( [ expected_boxes_0[:, 0] * postprocessed_width, expected_boxes_0[:, 1] * postprocessed_height, expected_boxes_0[:, 2] * postprocessed_width, expected_boxes_0[:, 3] * postprocessed_height, ] ).T unnormalized_boxes_1 = torch.vstack( [ expected_boxes_1[:, 0] * postprocessed_width, expected_boxes_1[:, 1] * postprocessed_height, expected_boxes_1[:, 2] * postprocessed_width, expected_boxes_1[:, 3] * postprocessed_height, ] ).T # Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max expected_boxes_0 = torch.vstack( [ unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2, unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2, unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2, unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2, ] ).T expected_boxes_1 = torch.vstack( [ unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2, unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2, unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2, unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2, ] ).T self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1)) self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1)) @slow def test_batched_coco_panoptic_annotations(self): # prepare image, target and masks_path image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800)) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f: target = json.loads(f.read()) annotation_0 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} annotation_1 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} w_0, h_0 = image_0.size w_1, h_1 = image_1.size for i in range(len(annotation_1["segments_info"])): coords = annotation_1["segments_info"][i]["bbox"] new_bbox = [ coords[0] * w_1 / w_0, coords[1] * h_1 / h_0, coords[2] * w_1 / w_0, coords[3] * h_1 / h_0, ] annotation_1["segments_info"][i]["bbox"] = new_bbox masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") images = [image_0, image_1] annotations = [annotation_0, annotation_1] # encode them image_processing = DetrImageProcessor(format="coco_panoptic") encoding = image_processing( images=images, annotations=annotations, masks_path=masks_path, return_tensors="pt", return_segmentation_masks=True, ) # Check the pixel values have been padded postprocessed_height, postprocessed_width = 800, 1066 expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width]) self.assertEqual(encoding["pixel_values"].shape, expected_shape) # Check the bounding boxes have been adjusted for padded images self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4])) self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4])) expected_boxes_0 = torch.tensor( [ [0.2625, 0.5437, 0.4688, 0.8625], [0.7719, 0.4104, 0.4531, 0.7125], [0.5000, 0.4927, 0.9969, 0.9854], [0.1688, 0.2000, 0.2063, 0.0917], [0.5492, 0.2760, 0.0578, 0.2187], [0.4992, 0.4990, 0.9984, 0.9979], ] ) expected_boxes_1 = torch.tensor( [ [0.1576, 0.3262, 0.2814, 0.5175], [0.4634, 0.2463, 0.2720, 0.4275], [0.3002, 0.2956, 0.5985, 0.5913], [0.1013, 0.1200, 0.1238, 0.0550], [0.3297, 0.1656, 0.0347, 0.1312], [0.2997, 0.2994, 0.5994, 0.5987], ] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1e-3)) self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1e-3)) # Check the masks have also been padded self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066])) self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066])) # Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height # format and not in the range [0, 1] encoding = image_processing( images=images, annotations=annotations, masks_path=masks_path, return_segmentation_masks=True, do_convert_annotations=False, return_tensors="pt", ) self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4])) self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4])) # Convert to absolute coordinates unnormalized_boxes_0 = torch.vstack( [ expected_boxes_0[:, 0] * postprocessed_width, expected_boxes_0[:, 1] * postprocessed_height, expected_boxes_0[:, 2] * postprocessed_width, expected_boxes_0[:, 3] * postprocessed_height, ] ).T unnormalized_boxes_1 = torch.vstack( [ expected_boxes_1[:, 0] * postprocessed_width, expected_boxes_1[:, 1] * postprocessed_height, expected_boxes_1[:, 2] * postprocessed_width, expected_boxes_1[:, 3] * postprocessed_height, ] ).T # Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max expected_boxes_0 = torch.vstack( [ unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2, unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2, unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2, unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2, ] ).T expected_boxes_1 = torch.vstack( [ unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2, unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2, unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2, unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2, ] ).T self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1)) self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1))
transformers/tests/models/detr/test_image_processing_detr.py/0
{ "file_path": "transformers/tests/models/detr/test_image_processing_detr.py", "repo_id": "transformers", "token_count": 11666 }
147
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch EfficientNet model. """ import unittest from transformers import EfficientNetConfig from transformers.testing_utils import is_pipeline_test, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EfficientNetForImageClassification, EfficientNetModel from transformers.models.efficientnet.modeling_efficientnet import EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class EfficientNetModelTester: def __init__( self, parent, batch_size=13, image_size=32, num_channels=3, kernel_sizes=[3, 3, 5], in_channels=[32, 16, 24], out_channels=[16, 24, 20], strides=[1, 1, 2], num_block_repeats=[1, 1, 2], expand_ratios=[1, 6, 6], is_training=True, use_labels=True, intermediate_size=37, hidden_act="gelu", num_labels=10, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.kernel_sizes = kernel_sizes self.in_channels = in_channels self.out_channels = out_channels self.strides = strides self.num_block_repeats = num_block_repeats self.expand_ratios = expand_ratios self.is_training = is_training self.hidden_act = hidden_act self.num_labels = num_labels self.use_labels = use_labels def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return EfficientNetConfig( num_channels=self.num_channels, kernel_sizes=self.kernel_sizes, in_channels=self.in_channels, out_channels=self.out_channels, strides=self.strides, num_block_repeats=self.num_block_repeats, expand_ratios=self.expand_ratios, hidden_act=self.hidden_act, num_labels=self.num_labels, ) def create_and_check_model(self, config, pixel_values, labels): model = EfficientNetModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # expected last hidden states: B, C, H // 4, W // 4 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, config.hidden_dim, self.image_size // 4, self.image_size // 4), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): model = EfficientNetForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class EfficientNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as EfficientNet does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (EfficientNetModel, EfficientNetForImageClassification) if is_torch_available() else () pipeline_model_mapping = ( {"image-feature-extraction": EfficientNetModel, "image-classification": EfficientNetForImageClassification} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = EfficientNetModelTester(self) self.config_tester = ConfigTester( self, config_class=EfficientNetConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="EfficientNet does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="EfficientNet does not support input and output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="EfficientNet does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states num_blocks = sum(config.num_block_repeats) * 4 self.assertEqual(len(hidden_states), num_blocks) # EfficientNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 2, self.model_tester.image_size // 2], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = EfficientNetModel.from_pretrained(model_name) self.assertIsNotNone(model) @is_pipeline_test @require_vision @slow def test_pipeline_image_feature_extraction(self): super().test_pipeline_image_feature_extraction() @is_pipeline_test @require_vision @slow def test_pipeline_image_classification(self): super().test_pipeline_image_classification() # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class EfficientNetModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("google/efficientnet-b7") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = EfficientNetForImageClassification.from_pretrained("google/efficientnet-b7").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.2962, 0.4487, 0.4499]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
transformers/tests/models/efficientnet/test_modeling_efficientnet.py/0
{ "file_path": "transformers/tests/models/efficientnet/test_modeling_efficientnet.py", "repo_id": "transformers", "token_count": 3981 }
148
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. and Baidu team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ErnieM model. """ import unittest from transformers import ErnieMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( ErnieMForInformationExtraction, ErnieMForMultipleChoice, ErnieMForQuestionAnswering, ErnieMForSequenceClassification, ErnieMForTokenClassification, ErnieMModel, ) from transformers.models.ernie_m.modeling_ernie_m import ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST class ErnieMModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def prepare_config_and_inputs_for_uiem(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() return config, input_ids, input_mask def get_config(self): return ErnieMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels): model = ErnieMModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, return_dict=True) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_question_answering( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = ErnieMForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_information_extraction( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = ErnieMForInformationExtraction(config=config) model.to(torch_device) model.eval() sequence_labels = torch.ones_like(input_ids, dtype=torch.float32) result = model( input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = ErnieMForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = ErnieMForTokenClassification(config=config) model.to(torch_device) model.eval() input_ids.to(torch_device) input_mask.to(torch_device) token_labels.to(torch_device) result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = ErnieMForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class ErnieMModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( ErnieMModel, ErnieMForMultipleChoice, ErnieMForQuestionAnswering, ErnieMForSequenceClassification, ErnieMForTokenClassification, ) if is_torch_available() else () ) all_generative_model_classes = () pipeline_model_mapping = ( { "feature-extraction": ErnieMModel, "question-answering": ErnieMForQuestionAnswering, "text-classification": ErnieMForSequenceClassification, "token-classification": ErnieMForTokenClassification, "zero-shot": ErnieMForSequenceClassification, } if is_torch_available() else {} ) test_torchscript = False # TODO: Fix the failed tests when this model gets more usage def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "QAPipelineTests": return True return False def setUp(self): self.model_tester = ErnieMModelTester(self) self.config_tester = ConfigTester(self, config_class=ErnieMConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_information_extraction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_information_extraction(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ErnieMModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class ErnieMModelIntegrationTest(unittest.TestCase): @slow def test_inference_model(self): model = ErnieMModel.from_pretrained("susnato/ernie-m-base_pytorch") model.eval() input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] # TODO Replace vocab size hidden_size = 768 expected_shape = torch.Size((1, 6, hidden_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.0012, 0.1245, -0.0214], [-0.0742, 0.0244, -0.0771], [-0.0333, 0.1164, -0.1554]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3))
transformers/tests/models/ernie_m/test_modeling_ernie_m.py/0
{ "file_path": "transformers/tests/models/ernie_m/test_modeling_ernie_m.py", "repo_id": "transformers", "token_count": 5555 }
149
# coding=utf-8 # Copyright 2022 Meta Platforms authors and HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): import PIL from transformers import FlavaImageProcessor from transformers.image_utils import PILImageResampling from transformers.models.flava.image_processing_flava import ( FLAVA_CODEBOOK_MEAN, FLAVA_CODEBOOK_STD, FLAVA_IMAGE_MEAN, FLAVA_IMAGE_STD, ) else: FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None class FlavaImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, resample=None, do_rescale=True, rescale_factor=1 / 255, do_normalize=True, image_mean=FLAVA_IMAGE_MEAN, image_std=FLAVA_IMAGE_STD, input_size_patches=14, total_mask_patches=75, mask_group_max_patches=None, mask_group_min_patches=16, mask_group_min_aspect_ratio=0.3, mask_group_max_aspect_ratio=None, codebook_do_resize=True, codebook_size=None, codebook_resample=None, codebook_do_center_crop=True, codebook_crop_size=None, codebook_do_map_pixels=True, codebook_do_normalize=True, codebook_image_mean=FLAVA_CODEBOOK_MEAN, codebook_image_std=FLAVA_CODEBOOK_STD, ): size = size if size is not None else {"height": 224, "width": 224} crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112} codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.do_resize = do_resize self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.min_resolution = min_resolution self.max_resolution = max_resolution self.size = size self.resample = resample if resample is not None else PILImageResampling.BICUBIC self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_center_crop = do_center_crop self.crop_size = crop_size self.input_size_patches = input_size_patches self.total_mask_patches = total_mask_patches self.mask_group_max_patches = mask_group_max_patches self.mask_group_min_patches = mask_group_min_patches self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio self.codebook_do_resize = codebook_do_resize self.codebook_size = codebook_size self.codebook_resample = codebook_resample if codebook_resample is not None else PILImageResampling.LANCZOS self.codebook_do_center_crop = codebook_do_center_crop self.codebook_crop_size = codebook_crop_size self.codebook_do_map_pixels = codebook_do_map_pixels self.codebook_do_normalize = codebook_do_normalize self.codebook_image_mean = codebook_image_mean self.codebook_image_std = codebook_image_std def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "resample": self.resample, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "input_size_patches": self.input_size_patches, "total_mask_patches": self.total_mask_patches, "mask_group_max_patches": self.mask_group_max_patches, "mask_group_min_patches": self.mask_group_min_patches, "mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio, "mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio, "codebook_do_resize": self.codebook_do_resize, "codebook_size": self.codebook_size, "codebook_resample": self.codebook_resample, "codebook_do_center_crop": self.codebook_do_center_crop, "codebook_crop_size": self.codebook_crop_size, "codebook_do_map_pixels": self.codebook_do_map_pixels, "codebook_do_normalize": self.codebook_do_normalize, "codebook_image_mean": self.codebook_image_mean, "codebook_image_std": self.codebook_image_std, } def get_expected_image_size(self): return (self.size["height"], self.size["width"]) def get_expected_mask_size(self): return ( (self.input_size_patches, self.input_size_patches) if not isinstance(self.input_size_patches, tuple) else self.input_size_patches ) def get_expected_codebook_image_size(self): return (self.codebook_size["height"], self.codebook_size["width"]) def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class FlavaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = FlavaImageProcessor if is_vision_available() else None maxDiff = None def setUp(self): self.image_processor_tester = FlavaImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "resample")) self.assertTrue(hasattr(image_processing, "crop_size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "rescale_factor")) self.assertTrue(hasattr(image_processing, "masking_generator")) self.assertTrue(hasattr(image_processing, "codebook_do_resize")) self.assertTrue(hasattr(image_processing, "codebook_size")) self.assertTrue(hasattr(image_processing, "codebook_resample")) self.assertTrue(hasattr(image_processing, "codebook_do_center_crop")) self.assertTrue(hasattr(image_processing, "codebook_crop_size")) self.assertTrue(hasattr(image_processing, "codebook_do_map_pixels")) self.assertTrue(hasattr(image_processing, "codebook_do_normalize")) self.assertTrue(hasattr(image_processing, "codebook_image_mean")) self.assertTrue(hasattr(image_processing, "codebook_image_std")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 224, "width": 224}) self.assertEqual(image_processor.crop_size, {"height": 224, "width": 224}) self.assertEqual(image_processor.codebook_size, {"height": 112, "width": 112}) self.assertEqual(image_processor.codebook_crop_size, {"height": 112, "width": 112}) image_processor = self.image_processing_class.from_dict( self.image_processor_dict, size=42, crop_size=84, codebook_size=33, codebook_crop_size=66 ) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84}) self.assertEqual(image_processor.codebook_size, {"height": 33, "width": 33}) self.assertEqual(image_processor.codebook_crop_size, {"height": 66, "width": 66}) def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, PIL.Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt") # Test no bool masked pos self.assertFalse("bool_masked_pos" in encoded_images) expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() # Test no bool masked pos self.assertFalse("bool_masked_pos" in encoded_images) self.assertEqual( encoded_images.pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def _test_call_framework(self, instance_class, prepare_kwargs): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, **prepare_kwargs) for image in image_inputs: self.assertIsInstance(image, instance_class) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) expected_height, expected_width = self.image_processor_tester.get_expected_mask_size() self.assertEqual( encoded_images.bool_masked_pos.shape, ( self.image_processor_tester.batch_size, expected_height, expected_width, ), ) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) # Test masking encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) expected_height, expected_width = self.image_processor_tester.get_expected_mask_size() self.assertEqual( encoded_images.bool_masked_pos.shape, ( self.image_processor_tester.batch_size, expected_height, expected_width, ), ) def test_call_numpy(self): self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True}) def test_call_numpy_4_channels(self): self.image_processing_class.num_channels = 4 self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True}) self.image_processing_class.num_channels = 3 def test_call_pytorch(self): self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True}) def test_masking(self): # Initialize image_processing random.seed(1234) image_processing = self.image_processing_class(**self.image_processor_dict) image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) # Test not batched input encoded_images = image_processing(image_inputs[0], return_image_mask=True, return_tensors="pt") self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75) def test_codebook_pixels(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, PIL.Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_codebook_pixels=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size() self.assertEqual( encoded_images.codebook_pixel_values.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched encoded_images = image_processing(image_inputs, return_codebook_pixels=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size() self.assertEqual( encoded_images.codebook_pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), )
transformers/tests/models/flava/test_image_processing_flava.py/0
{ "file_path": "transformers/tests/models/flava/test_image_processing_flava.py", "repo_id": "transformers", "token_count": 7088 }
150
import unittest import numpy as np from transformers import is_torch_available, is_vision_available from transformers.testing_utils import ( require_torch, require_torchvision, require_vision, ) if is_torch_available() and is_vision_available(): import torch from transformers import FuyuImageProcessor if is_vision_available(): from PIL import Image @require_torch @require_vision @require_torchvision class TestFuyuImageProcessor(unittest.TestCase): def setUp(self): self.size = {"height": 160, "width": 320} self.processor = FuyuImageProcessor(size=self.size, padding_value=1.0) self.batch_size = 3 self.channels = 3 self.height = 300 self.width = 300 self.image_input = torch.rand(self.batch_size, self.channels, self.height, self.width) self.image_patch_dim_h = 30 self.image_patch_dim_w = 30 self.sample_image = np.zeros((450, 210, 3), dtype=np.uint8) self.sample_image_pil = Image.fromarray(self.sample_image) def test_patches(self): expected_num_patches = self.processor.get_num_patches(image_height=self.height, image_width=self.width) patches_final = self.processor.patchify_image(image=self.image_input) assert ( patches_final.shape[1] == expected_num_patches ), f"Expected {expected_num_patches} patches, got {patches_final.shape[1]}." def test_scale_to_target_aspect_ratio(self): # (h:450, w:210) fitting (160, 320) -> (160, 210*160/450) scaled_image = self.processor.resize(self.sample_image, size=self.size) self.assertEqual(scaled_image.shape[0], 160) self.assertEqual(scaled_image.shape[1], 74) def test_apply_transformation_numpy(self): transformed_image = self.processor.preprocess(self.sample_image).images[0][0] self.assertEqual(transformed_image.shape[1], 160) self.assertEqual(transformed_image.shape[2], 320) def test_apply_transformation_pil(self): transformed_image = self.processor.preprocess(self.sample_image_pil).images[0][0] self.assertEqual(transformed_image.shape[1], 160) self.assertEqual(transformed_image.shape[2], 320)
transformers/tests/models/fuyu/test_image_processing_fuyu.py/0
{ "file_path": "transformers/tests/models/fuyu/test_image_processing_fuyu.py", "repo_id": "transformers", "token_count": 906 }
151
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import GPT2Config, is_tf_available from transformers.testing_utils import require_tf, require_tf2onnx, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPT2Tokenizer from transformers.models.gpt2.modeling_tf_gpt2 import ( TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, TFGPT2DoubleHeadsModel, TFGPT2ForSequenceClassification, TFGPT2LMHeadModel, TFGPT2Model, ) from transformers.tf_utils import shape_list class TFGPT2ModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_token_type_ids = True self.use_input_mask = True self.use_labels = True self.use_mc_token_ids = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None self.bos_token_id = self.vocab_size - 1 self.eos_token_id = self.vocab_size - 1 self.pad_token_id = self.vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = GPT2Config( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, # intermediate_size=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, # type_vocab_size=self.type_vocab_size, # initializer_range=self.initializer_range bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=True, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2Model(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) inputs = [input_ids, None, input_mask] # None is the input for 'past' result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2Model(config=config) # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) def create_and_check_gpt2_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = TFGPT2Model(config=config) # create attention mask half_seq_length = self.seq_length // 2 attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) # first forward pass output, past_key_values = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) condition = tf.transpose( tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) ) input_ids = tf.where(condition, random_other_next_tokens, input_ids) # append to next input_ids and attn_mask next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[ "last_hidden_state" ] # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12) def create_and_check_gpt2_model_past_large_inputs( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = TFGPT2Model(config=config) input_ids = input_ids[:1, :] input_mask = input_mask[:1, :] token_type_ids = token_type_ids[:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) output_from_no_past = model( next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask )["last_hidden_state"] output_from_past = model( next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past_key_values, )["last_hidden_state"] self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2LMHeadModel(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_gpt2_double_head( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args ): model = TFGPT2DoubleHeadsModel(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "mc_token_ids": mc_token_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices)) def create_and_check_gpt2_for_sequence_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args ): config.num_labels = self.num_labels inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, "labels": sequence_labels, } model = TFGPT2ForSequenceClassification(config) result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class TFGPT2ModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel) if is_tf_available() else () ) all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else () pipeline_model_mapping = ( { "feature-extraction": TFGPT2Model, "text-classification": TFGPT2ForSequenceClassification, "text-generation": TFGPT2LMHeadModel, "zero-shot": TFGPT2ForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = True onnx_min_opset = 10 def setUp(self): self.model_tester = TFGPT2ModelTester(self) self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_gpt2_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model(*config_and_inputs) def test_gpt2_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs) def test_gpt2_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs) def test_gpt2_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs) def test_gpt2_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs) def test_gpt2_double_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs) def test_gpt2_sequence_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFGPT2Model.from_pretrained(model_name) self.assertIsNotNone(model) # overwrite from common since ONNX runtime optimization doesn't work with tf.gather() when the argument # `batch_dims` > 0" @require_tf2onnx @slow def test_onnx_runtime_optimize(self): if not self.test_onnx: return import onnxruntime import tf2onnx config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Skip these 2 classes which uses `tf.gather` with `batch_dims=1` if model_class in [TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel]: continue model = model_class(config) model.build_in_name_scope() onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset) onnxruntime.InferenceSession(onnx_model_proto.SerializeToString()) # TODO (Joao): fix me @unittest.skip("Onnx compliancy broke with TF 2.10") def test_onnx_compliancy(self): pass @require_tf class TFGPT2ModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_greedy_distilgpt2_batch_special(self): model = TFGPT2LMHeadModel.from_pretrained("distilbert/distilgpt2") tokenizer = GPT2Tokenizer.from_pretrained("distilbert/distilgpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentences = ["Today is a beautiful day and", "Yesterday was"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True) generation_kwargs = { "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], "no_repeat_ngram_size": 2, "do_sample": False, "repetition_penalty": 1.3, } output_ids = model.generate(**input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = [ "Today is a beautiful day and I am so happy to be able take part in this amazing event.", "Yesterday was a very interesting time for the world to see how much of this is", ] self.assertListEqual(output_strings, expected_output_string) @slow def test_lm_generate_sample_distilgpt2_batch_special(self): model = TFGPT2LMHeadModel.from_pretrained("distilbert/distilgpt2") tokenizer = GPT2Tokenizer.from_pretrained("distilbert/distilgpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentences = ["Today is a beautiful day and", "Yesterday was"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True) generation_kwargs = { "do_sample": True, "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], "no_repeat_ngram_size": 2, "repetition_penalty": 1.3, "temperature": 1.5, "top_k": 500, "top_p": 0.9, "seed": [42, 0], # seed set -> deterministic sampling sequence -> deterministic generation } # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): output_ids = model.generate(**input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = [ "Today is a beautiful day and we will make you feel very hot/terrific in all your", "Yesterday was known by national television networks as Le Big Show or Wild Dog Jeopard", ] self.assertListEqual(output_strings, expected_output_string) @slow def test_lm_generate_greedy_distilgpt2_beam_search_special(self): model = TFGPT2LMHeadModel.from_pretrained("distilbert/distilgpt2") tokenizer = GPT2Tokenizer.from_pretrained("distilbert/distilgpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentences = ["Today is a beautiful day and", "Yesterday was"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True) generation_kwargs = { "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], "no_repeat_ngram_size": 2, "do_sample": False, "num_beams": 2, } output_ids = model.generate(**input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = [ "Today is a beautiful day and a great day for all of us.\n\nI’m", "Yesterday was the first time that a person has been arrested in the United States for", ] self.assertListEqual(output_strings, expected_output_string) @slow def test_lm_generate_distilgpt2_left_padding(self): """Tests that the generated text is the same, regarless of left padding""" model = TFGPT2LMHeadModel.from_pretrained("distilbert/distilgpt2") tokenizer = GPT2Tokenizer.from_pretrained("distilbert/distilgpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" generation_kwargs = { "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], "no_repeat_ngram_size": 2, "do_sample": False, "repetition_penalty": 1.3, } expected_output_string = ( "Today is a beautiful day and I am so happy to be able take part in this amazing event." ) sentences = ["Today is a beautiful day and"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True) # using default length output_ids = model.generate(**input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertEqual(output_strings[0], expected_output_string) sentences = ["Today is a beautiful day and", "This is a very long input that we absolutely don't care about"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True) # longer max length to capture the full length (remember: it is left padded) output_ids = model.generate(**input_ids, **generation_kwargs, max_length=27) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertEqual(output_strings[0], expected_output_string) @slow def test_lm_generate_gpt2_greedy_xla(self): model = TFGPT2LMHeadModel.from_pretrained("openai-community/gpt2") tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentences = ["The dog", "The flying machine"] expected_output_strings = [ "The dog was found in a field near the intersection of West and West Streets.\n\nThe", "The flying machine is a small, lightweight, and lightweight aircraft that can be used for any type of", ] input_ids = tokenizer(sentences, return_tensors="tf", padding=True) output_ids = model.generate(**input_ids, do_sample=False) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_strings) xla_generate = tf.function(model.generate, jit_compile=True) output_ids = xla_generate(**input_ids, do_sample=False) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_strings) @slow def test_lm_generate_gpt2_sample_xla(self): # NOTE: due to the small numerical differences that are natural when we compile to XLA, sampling the same # output out of the same seed is far from guaranteed. We can, however, confirm that the results are sensible # and that we can seed both versions. # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): model = TFGPT2LMHeadModel.from_pretrained("openai-community/gpt2") tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentence = ["The dog", "The flying machine"] expected_output_string = [ "The dog owner asked why did our vet decide there needed to be extra ventilation inside because most" " puppies", "The flying machine was made by an artist who found it difficult to control it as it did not use", ] expected_output_string_xla = [ "The dog has been named in connection with the murder of a 20-year-old man in", "The flying machine is a new and improved system to operate and operate a new system and system " "system system", ] input_ids = tokenizer(sentence, return_tensors="tf", padding=True) output_ids = model.generate(**input_ids, do_sample=True, seed=[7, 0]) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_string) xla_generate = tf.function(model.generate, jit_compile=True) output_ids = xla_generate(**input_ids, do_sample=True, seed=[7, 0]) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_string_xla) @slow def test_lm_generate_gpt2_beam_search_xla(self): model = TFGPT2LMHeadModel.from_pretrained("openai-community/gpt2") tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentences = ["The dog", "The flying machine"] expected_output_strings = [ "The dog was found in the backyard of a home in the 6500 block of South Main Street", "The flying machine is a very powerful machine, but it's not a very powerful machine. It's", ] input_ids = tokenizer(sentences, return_tensors="tf", padding=True) output_ids = model.generate(**input_ids, do_sample=False, num_beams=2) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_strings) xla_generate = tf.function(model.generate, jit_compile=True) output_ids = xla_generate(**input_ids, do_sample=False, num_beams=2) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_strings) @slow def test_contrastive_search_gpt2(self): article = ( "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research " "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based" ) gpt2_tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2-large") gpt2_model = TFGPT2LMHeadModel.from_pretrained("openai-community/gpt2-large") input_ids = gpt2_tokenizer(article, return_tensors="tf") outputs = gpt2_model.generate(**input_ids, penalty_alpha=0.6, top_k=4, max_length=256) generated_text = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research " "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, " "United Kingdom\n\nGoogle has a lot of data on its users and uses it to improve its products, such as " "Google Now, which helps users find the information they're looking for on the web. But the company " "is not the only one to collect data on its users. Facebook, for example, has its own facial " "recognition technology, as well as a database of millions of photos that it uses to personalize its " "News Feed.\n\nFacebook's use of data is a hot topic in the tech industry, with privacy advocates " "concerned about the company's ability to keep users' information private. In a blog post last " 'year, Facebook CEO Mark Zuckerberg said his company would "do our best to be transparent about our ' 'data use and how we use it."\n\n"We have made it clear that we do not sell or share your data with ' 'third parties," Zuckerberg wrote. "If you have questions or concerns, please reach out to us at ' '[email protected]."\n\nGoogle declined to comment on the privacy implications of its use of data, ' "but said in a statement to The Associated Press that" ], ) @slow def test_contrastive_search_gpt2_xla(self): article = ( "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research " "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based" ) gpt2_tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2-large") gpt2_model = TFGPT2LMHeadModel.from_pretrained("openai-community/gpt2-large") input_ids = gpt2_tokenizer(article, return_tensors="tf") xla_generate = tf.function(gpt2_model.generate, jit_compile=True) outputs = xla_generate(**input_ids, penalty_alpha=0.6, top_k=4, max_length=256) generated_text = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research " "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, " "United Kingdom\n\nGoogle has a lot of data on its users and uses it to improve its products, such as " "Google Now, which helps users find the information they're looking for on the web. But the company " "is not the only one to collect data on its users. Facebook, for example, has its own facial " "recognition technology, as well as a database of millions of photos that it uses to personalize its " "News Feed.\n\nFacebook's use of data is a hot topic in the tech industry, with privacy advocates " "concerned about the company's ability to keep users' information private. In a blog post last " 'year, Facebook CEO Mark Zuckerberg said his company would "do our best to be transparent about our ' 'data use and how we use it."\n\n"We have made it clear that we do not sell or share your data with ' 'third parties," Zuckerberg wrote. "If you have questions or concerns, please reach out to us at ' '[email protected]."\n\nGoogle declined to comment on the privacy implications of its use of data, ' "but said in a statement to The Associated Press that" ], )
transformers/tests/models/gpt2/test_modeling_tf_gpt2.py/0
{ "file_path": "transformers/tests/models/gpt2/test_modeling_tf_gpt2.py", "repo_id": "transformers", "token_count": 14292 }
152
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class JukeboxTokenizationTest(unittest.TestCase): tokenizer_class = JukeboxTokenizer metas = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": """I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def test_1b_lyrics_tokenizer(self): """ how to run the same test with openAI ... """ import torch tokenizer = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics") tokens = tokenizer(**self.metas)["input_ids"] # fmt: off EXPECTED_OUTPUT = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 1069, 11]]), torch.tensor([[0, 0, 0, 1069, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2])) @require_torch def test_5b_lyrics_tokenizer(self): """ The outputs are similar that open AI but do not have the same format as this one is adapted to the HF integration. """ import torch tokenizer = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics") tokens = tokenizer(**self.metas)["input_ids"] # fmt: off EXPECTED_OUTPUT = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2]))
transformers/tests/models/jukebox/test_tokenization_jukebox.py/0
{ "file_path": "transformers/tests/models/jukebox/test_tokenization_jukebox.py", "repo_id": "transformers", "token_count": 6342 }
153
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow LayoutLMv3 model. """ from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMv3Config, TFLayoutLMv3ForQuestionAnswering, TFLayoutLMv3ForSequenceClassification, TFLayoutLMv3ForTokenClassification, TFLayoutLMv3Model, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMv3ImageProcessor class TFLayoutLMv3ModelTester: def __init__( self, parent, batch_size=2, num_channels=3, image_size=4, patch_size=2, text_seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=36, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, coordinate_size=6, shape_size=6, num_labels=3, num_choices=4, scope=None, range_bbox=1000, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.coordinate_size = coordinate_size self.shape_size = shape_size self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.range_bbox = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) self.text_seq_length = text_seq_length self.image_seq_length = (image_size // patch_size) ** 2 + 1 self.seq_length = self.text_seq_length + self.image_seq_length def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size) bbox = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox) bbox = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: tmp_coordinate = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: tmp_coordinate = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = tmp_coordinate bbox = tf.constant(bbox) pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.text_seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size) sequence_labels = None token_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels) config = LayoutLMv3Config( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def create_and_check_model(self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask): model = TFLayoutLMv3Model(config=config) # text + image result = model(input_ids, pixel_values=pixel_values, training=False) result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, training=False, ) result = model(input_ids, bbox=bbox, pixel_values=pixel_values, training=False) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # text only result = model(input_ids, training=False) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only result = model({"pixel_values": pixel_values}, training=False) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def create_and_check_for_sequence_classification( self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels ): config.num_labels = self.num_labels model = TFLayoutLMv3ForSequenceClassification(config=config) result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, training=False, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, token_labels ): config.num_labels = self.num_labels model = TFLayoutLMv3ForTokenClassification(config=config) result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, training=False, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels ): config.num_labels = 2 model = TFLayoutLMv3ForQuestionAnswering(config=config) result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, training=False, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, bbox, pixel_values, token_type_ids, input_mask, _, _) = config_and_inputs inputs_dict = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class TFLayoutLMv3ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFLayoutLMv3Model, TFLayoutLMv3ForQuestionAnswering, TFLayoutLMv3ForSequenceClassification, TFLayoutLMv3ForTokenClassification, ) if is_tf_available() else () ) pipeline_model_mapping = ( {"document-question-answering": TFLayoutLMv3ForQuestionAnswering, "feature-extraction": TFLayoutLMv3Model} if is_tf_available() else {} ) test_pruning = False test_resize_embeddings = False test_onnx = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return True def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict: inputs_dict = copy.deepcopy(inputs_dict) if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): inputs_dict = { k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) if isinstance(v, tf.Tensor) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32) elif model_class in get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING): inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING): inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING): inputs_dict["labels"] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=tf.int32 ) return inputs_dict def setUp(self): self.model_tester = TFLayoutLMv3ModelTester(self) self.config_tester = ConfigTester(self, config_class=LayoutLMv3Config, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_loss_computation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) if getattr(model, "hf_compute_loss", None): # The number of elements in the loss should be the same as the number of elements in the label prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) added_label = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0] ] expected_loss_size = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) input_ids = prepared_for_class.pop("input_ids") loss = model(input_ids, **prepared_for_class)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss when we mask some positions prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) input_ids = prepared_for_class.pop("input_ids") if "labels" in prepared_for_class: labels = prepared_for_class["labels"].numpy() if len(labels.shape) > 1 and labels.shape[1] != 1: labels[0] = -100 prepared_for_class["labels"] = tf.convert_to_tensor(labels) loss = model(input_ids, **prepared_for_class)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) self.assertTrue(not np.any(np.isnan(loss.numpy()))) # Test that model correctly compute the loss with a dict prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) loss = model(prepared_for_class)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss with a tuple prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) # Get keys that were added with the _prepare_for_class function label_keys = prepared_for_class.keys() - inputs_dict.keys() signature = inspect.signature(model.call).parameters signature_names = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple tuple_index_mapping = {0: "input_ids"} for label_key in label_keys: label_key_index = signature_names.index(label_key) tuple_index_mapping[label_key_index] = label_key sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple list_input = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: list_input[index] = prepared_for_class[value] tuple_input = tuple(list_input) # Send to model loss = model(tuple_input[:-1])[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) def test_model(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, _, _, ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(config, input_ids, bbox, pixel_values, token_type_ids, input_mask) def test_model_various_embeddings(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, _, _, ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config.position_embedding_type = type self.model_tester.create_and_check_model(config, input_ids, bbox, pixel_values, token_type_ids, input_mask) def test_for_sequence_classification(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, _, ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels ) def test_for_token_classification(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, _, token_labels, ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, token_labels ) def test_for_question_answering(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, _, ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels ) @slow def test_model_from_pretrained(self): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFLayoutLMv3Model.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf class TFLayoutLMv3ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return LayoutLMv3ImageProcessor(apply_ocr=False) if is_vision_available() else None @slow def test_inference_no_head(self): model = TFLayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base") image_processor = self.default_image_processor image = prepare_img() pixel_values = image_processor(images=image, return_tensors="tf").pixel_values input_ids = tf.constant([[1, 2]]) bbox = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]]), axis=0) # forward pass outputs = model(input_ids=input_ids, bbox=bbox, pixel_values=pixel_values, training=False) # verify the logits expected_shape = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/layoutlmv3/test_modeling_tf_layoutlmv3.py/0
{ "file_path": "transformers/tests/models/layoutlmv3/test_modeling_tf_layoutlmv3.py", "repo_id": "transformers", "token_count": 9738 }
154
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import LlamaConfig, is_flax_available, is_tokenizers_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import jax.numpy as jnp from transformers.models.llama.modeling_flax_llama import FlaxLlamaForCausalLM, FlaxLlamaModel if is_tokenizers_available(): from transformers import LlamaTokenizerFast class FlaxLlamaModelTester: def __init__( self, parent, batch_size=2, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=2, intermediate_size=64, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, window_size=7, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.window_size = window_size self.initializer_range = initializer_range self.scope = None self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = np.tril(np.ones((self.batch_size, self.seq_length))) config = LlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, use_cache=True, is_decoder=False, initializer_range=self.initializer_range, ) return (config, input_ids, input_mask) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask): max_decoder_length = 20 model = model_class_name(config) past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4") position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], attention_mask=attention_mask, past_key_values=outputs_cache.past_key_values, position_ids=position_ids, ) outputs = model(input_ids) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask): max_decoder_length = 20 model = model_class_name(config) attention_mask_cache = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))], axis=-1, ) past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask_cache, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=attention_mask_cache, position_ids=position_ids, ) outputs = model(input_ids, attention_mask=attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") @require_flax class FlaxLlamaModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase): all_model_classes = (FlaxLlamaModel, FlaxLlamaForCausalLM) if is_flax_available() else () all_generative_model_classes = (FlaxLlamaForCausalLM,) if is_flax_available() else () def setUp(self): self.model_tester = FlaxLlamaModelTester(self) def test_use_cache_forward(self): for model_class_name in self.all_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask) def test_use_cache_forward_with_attn_mask(self): for model_class_name in self.all_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( model_class_name, config, input_ids, attention_mask ) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("openlm-research/open_llama_3b_v2", from_pt=True) outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs) @slow @require_flax class FlaxLlamaIntegrationTest(unittest.TestCase): def setUp(self): self.model_id = "openlm-research/open_llama_3b_v2" self.model = FlaxLlamaForCausalLM.from_pretrained(self.model_id, from_pt=True) self.test_batch = jnp.arange(32).reshape(4, 8) + 1911 def test_model_logits(self): flax_logits = self.model(self.test_batch).logits # fmt: off EXPECTED_LOGITS = [-74.4243, -74.0680, -65.2507, -79.1658, -77.7460, -69.2379, -86.4588, -84.8933, -77.8456] EXPECTED_MIN, EXPECTED_MAX, EXPECTED_MEAN = -96.9952 EXPECTED_MAX = -18.4571 EXPECTED_MEAN = -65.0608 # fmt: on self.assertTrue(np.allclose(flax_logits[0, :3, :3].flatten(), EXPECTED_LOGITS, atol=1e-4)) self.assertAlmostEqual(flax_logits.min(), EXPECTED_MIN, places=3) self.assertAlmostEqual(flax_logits.max(), EXPECTED_MAX, places=3) self.assertAlmostEqual(flax_logits.mean(), EXPECTED_MEAN, places=3) def test_model_hidden_states(self): flax_hidden_states = self.model(self.test_batch, output_hidden_states=True).hidden_states flax_hidden_means = [h.mean() for h in flax_hidden_states] # fmt: off EXPECTED_HIDDEN_MEANS = [ -0.00007,-0.00049,-0.00169,-0.00253,-0.00271, -0.00290,-0.00252,0.00230,0.00230,0.00198, 0.00196,0.00174,0.00246,0.00205,0.00242, 0.00171,0.00092,0.00054,0.00102,0.00024, 0.00029,0.00037,-0.00101,-0.00062,-0.00341,-0.00636,-0.00357 ] # fmt: on self.assertTrue(np.allclose(flax_hidden_means, EXPECTED_HIDDEN_MEANS, atol=1e-4)) def test_generated_text(self): tokenizer = LlamaTokenizerFast.from_pretrained(self.model_id) tokenizer.pad_token_id = 2 test_batch = ["Aloha, World! ", "2 + 2 = ", "Paris is the capital of ", "我很高興認識"] inputs = tokenizer(test_batch, return_tensors="np", truncation=True, padding=True) generated_ids = self.model.generate(**inputs, max_length=15).sequences generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) # fmt: off EXPECTED_GENERATION = [ "Aloha, World! 201", "2 + 2 = 4\n2", "Paris is the capital of Île-", "我很高興認識你,我" ] # fmt: on self.assertListEqual(generated_text, EXPECTED_GENERATION)
transformers/tests/models/llama/test_modeling_flax_llama.py/0
{ "file_path": "transformers/tests/models/llama/test_modeling_flax_llama.py", "repo_id": "transformers", "token_count": 4765 }
155
# coding=utf-8 # Copyright 2018 LXMERT Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import unittest import numpy as np from transformers import LxmertConfig, is_tf_available, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, ) from transformers.models.lxmert.modeling_lxmert import LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST if is_tf_available(): import tensorflow as tf class LxmertModelTester: def __init__( self, parent, vocab_size=300, hidden_size=28, num_attention_heads=2, num_labels=2, intermediate_size=64, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, num_qa_labels=30, num_object_labels=16, num_attr_labels=4, num_visual_features=10, l_layers=2, x_layers=1, r_layers=1, visual_feat_dim=128, visual_pos_dim=4, visual_loss_normalizer=6.67, seq_length=20, batch_size=4, is_training=True, task_matched=True, task_mask_lm=True, task_obj_predict=True, task_qa=True, visual_obj_loss=True, visual_attr_loss=True, visual_feat_loss=True, use_token_type_ids=True, use_lang_mask=True, output_attentions=False, output_hidden_states=False, scope=None, ): self.parent = parent self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_labels = num_labels self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.pad_token_id = pad_token_id self.num_qa_labels = num_qa_labels self.num_object_labels = num_object_labels self.num_attr_labels = num_attr_labels self.l_layers = l_layers self.x_layers = x_layers self.r_layers = r_layers self.visual_feat_dim = visual_feat_dim self.visual_pos_dim = visual_pos_dim self.visual_loss_normalizer = visual_loss_normalizer self.seq_length = seq_length self.batch_size = batch_size self.is_training = is_training self.use_lang_mask = use_lang_mask self.task_matched = task_matched self.task_mask_lm = task_mask_lm self.task_obj_predict = task_obj_predict self.task_qa = task_qa self.visual_obj_loss = visual_obj_loss self.visual_attr_loss = visual_attr_loss self.visual_feat_loss = visual_feat_loss self.num_visual_features = num_visual_features self.use_token_type_ids = use_token_type_ids self.output_attentions = output_attentions self.output_hidden_states = output_hidden_states self.scope = scope self.num_hidden_layers = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} def prepare_config_and_inputs(self): output_attentions = self.output_attentions input_ids = ids_tensor([self.batch_size, self.seq_length], vocab_size=self.vocab_size) visual_feats = torch.rand(self.batch_size, self.num_visual_features, self.visual_feat_dim, device=torch_device) bounding_boxes = torch.rand(self.batch_size, self.num_visual_features, 4, device=torch_device) input_mask = None if self.use_lang_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) obj_labels = None if self.task_obj_predict: obj_labels = {} if self.visual_attr_loss and self.task_obj_predict: obj_labels["attr"] = ( ids_tensor([self.batch_size, self.num_visual_features], self.num_attr_labels), ids_tensor([self.batch_size, self.num_visual_features], self.num_attr_labels), ) if self.visual_feat_loss and self.task_obj_predict: obj_labels["feat"] = ( ids_tensor( [self.batch_size, self.num_visual_features, self.visual_feat_dim], self.num_visual_features ), ids_tensor([self.batch_size, self.num_visual_features], self.num_visual_features), ) if self.visual_obj_loss and self.task_obj_predict: obj_labels["obj"] = ( ids_tensor([self.batch_size, self.num_visual_features], self.num_object_labels), ids_tensor([self.batch_size, self.num_visual_features], self.num_object_labels), ) ans = None if self.task_qa: ans = ids_tensor([self.batch_size], self.num_qa_labels) masked_lm_labels = None if self.task_mask_lm: masked_lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) matched_label = None if self.task_matched: matched_label = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return ( config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ) def get_config(self): return LxmertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_attention_heads=self.num_attention_heads, num_labels=self.num_labels, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, layer_norm_eps=self.layer_norm_eps, pad_token_id=self.pad_token_id, num_qa_labels=self.num_qa_labels, num_object_labels=self.num_object_labels, num_attr_labels=self.num_attr_labels, l_layers=self.l_layers, x_layers=self.x_layers, r_layers=self.r_layers, visual_feat_dim=self.visual_feat_dim, visual_pos_dim=self.visual_pos_dim, visual_loss_normalizer=self.visual_loss_normalizer, task_matched=self.task_matched, task_mask_lm=self.task_mask_lm, task_obj_predict=self.task_obj_predict, task_qa=self.task_qa, visual_obj_loss=self.visual_obj_loss, visual_attr_loss=self.visual_attr_loss, visual_feat_loss=self.visual_feat_loss, output_attentions=self.output_attentions, output_hidden_states=self.output_hidden_states, ) def create_and_check_lxmert_model( self, config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ): model = LxmertModel(config=config) model.to(torch_device) model.eval() result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, output_attentions=output_attentions, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, output_attentions=not output_attentions, ) result = model(input_ids, visual_feats, bounding_boxes, return_dict=False) result = model(input_ids, visual_feats, bounding_boxes, return_dict=True) self.parent.assertEqual(result.language_output.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual( result.vision_output.shape, (self.batch_size, self.num_visual_features, self.hidden_size) ) self.parent.assertEqual(result.pooled_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_lxmert_for_question_answering( self, config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ): model = LxmertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, labels=ans, output_attentions=output_attentions, ) result = model(input_ids, visual_feats, bounding_boxes, labels=ans) result = model( input_ids, visual_feats, bounding_boxes, labels=ans, token_type_ids=token_type_ids, attention_mask=input_mask, output_attentions=output_attentions, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, labels=ans, output_attentions=not output_attentions, ) self.parent.assertEqual(result.question_answering_score.shape, (self.batch_size, self.num_qa_labels)) def create_and_check_lxmert_for_pretraining( self, config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ): model = LxmertForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, masked_lm_labels=masked_lm_labels, obj_labels=obj_labels, matched_label=matched_label, ans=ans, output_attentions=output_attentions, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, masked_lm_labels=masked_lm_labels, output_attentions=not output_attentions, return_dict=False, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, masked_lm_labels=masked_lm_labels, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, obj_labels=obj_labels, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, matched_label=matched_label, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, ans=ans, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, masked_lm_labels=masked_lm_labels, obj_labels=obj_labels, matched_label=matched_label, ans=ans, output_attentions=not output_attentions, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def resize_lxmert_num_qa_labels( self, config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ): start_labels = config.num_qa_labels num_large_labels = config.num_qa_labels * 2 num_small_labels = int(config.num_qa_labels * 2) less_labels_ans = ids_tensor([self.batch_size], num_small_labels) more_labels_ans = ids_tensor([self.batch_size], num_large_labels) model_pretrain = LxmertForPreTraining(config=config).to(torch_device) model_qa = LxmertForQuestionAnswering(config=config).to(torch_device) config.num_labels = num_small_labels end_labels = config.num_labels result_pretrain = model_pretrain( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, ans=ans, ) result_qa = model_qa( input_ids, visual_feats, bounding_boxes, labels=ans, token_type_ids=token_type_ids, attention_mask=input_mask, ) model_pretrain.resize_num_qa_labels(num_small_labels) model_qa.resize_num_qa_labels(num_small_labels) result_pretrain_less = model_pretrain( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, ans=less_labels_ans, ) result_qa_less = model_qa( input_ids, visual_feats, bounding_boxes, labels=less_labels_ans, token_type_ids=token_type_ids, attention_mask=input_mask, ) model_pretrain.resize_num_qa_labels(num_large_labels) model_qa.resize_num_qa_labels(num_large_labels) result_pretrain_more = model_pretrain( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, ans=more_labels_ans, ) result_qa_more = model_qa( input_ids, visual_feats, bounding_boxes, labels=more_labels_ans, token_type_ids=token_type_ids, attention_mask=input_mask, ) model_qa_labels = model_qa.num_qa_labels self.parent.assertNotEqual(start_labels, end_labels) self.parent.assertNotEqual(model_qa_labels, start_labels) self.parent.assertEqual(result_qa.question_answering_score.shape, (self.batch_size, start_labels)) self.parent.assertEqual(result_pretrain.question_answering_score.shape, (self.batch_size, start_labels)) self.parent.assertEqual(result_qa_less.question_answering_score.shape, (self.batch_size, num_small_labels)) self.parent.assertEqual( result_pretrain_less.question_answering_score.shape, (self.batch_size, num_small_labels) ) self.parent.assertEqual(result_qa_more.question_answering_score.shape, (self.batch_size, num_large_labels)) self.parent.assertEqual( result_pretrain_more.question_answering_score.shape, (self.batch_size, num_large_labels) ) def prepare_config_and_inputs_for_common(self, return_obj_labels=False): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "visual_feats": visual_feats, "visual_pos": bounding_boxes, "token_type_ids": token_type_ids, "attention_mask": input_mask, } if return_obj_labels: inputs_dict["obj_labels"] = obj_labels else: config.task_obj_predict = False return config, inputs_dict @require_torch class LxmertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (LxmertModel, LxmertForPreTraining, LxmertForQuestionAnswering) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": LxmertModel, "question-answering": LxmertForQuestionAnswering} if is_torch_available() else {} ) fx_compatible = True test_head_masking = False test_pruning = False test_torchscript = False # overwrite function because qa models takes different input label shape def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if return_labels: if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING): inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): # special case for models like BERT that use multi-loss training for PreTraining inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = LxmertModelTester(self) self.config_tester = ConfigTester(self, config_class=LxmertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_lxmert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lxmert_model(*config_and_inputs) def test_lxmert_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lxmert_for_question_answering(*config_and_inputs) def test_lxmert_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lxmert_for_pretraining(*config_and_inputs) def test_lxmert_question_answering_labels_resize(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.resize_lxmert_num_qa_labels(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = LxmertModel.from_pretrained(model_name) model.to(torch_device) self.assertIsNotNone(model) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() seq_len = getattr(self.model_tester, "seq_length", None) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) chunk_length = getattr(self.model_tester, "chunk_length", None) if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1]) self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"]) self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"]) self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"]) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1]) self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"]) self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"]) self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"]) attentions = [language_attentions, vision_attentions, cross_encoder_attentions] attention_shapes = [ [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], [ self.model_tester.num_attention_heads, self.model_tester.num_visual_features, self.model_tester.num_visual_features, ], [self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features], ] for attention, attention_shape in zip(attentions, attention_shapes): self.assertListEqual(list(attention[0].shape[-3:]), attention_shape) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # 2 hidden states were added self.assertEqual(out_len + 2, len(outputs)) language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1]) self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"]) self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"]) self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"]) attentions = [language_attentions, vision_attentions, cross_encoder_attentions] attention_shapes = [ [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], [ self.model_tester.num_attention_heads, self.model_tester.num_visual_features, self.model_tester.num_visual_features, ], [self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features], ] for attention, attention_shape in zip(attentions, attention_shapes): self.assertListEqual(list(attention[0].shape[-3:]), attention_shape) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) language_hidden_states, vision_hidden_states = outputs[-2], outputs[-1] self.assertEqual(len(language_hidden_states), self.model_tester.num_hidden_layers["language"] + 1) self.assertEqual(len(vision_hidden_states), self.model_tester.num_hidden_layers["vision"] + 1) seq_length = self.model_tester.seq_length num_visual_features = self.model_tester.num_visual_features self.assertListEqual( list(language_hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) self.assertListEqual( list(vision_hidden_states[0].shape[-2:]), [num_visual_features, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) hidden_states_lang = outputs.language_hidden_states[0] attentions_lang = outputs.language_attentions[0] hidden_states_vision = outputs.vision_hidden_states[0] attentions_vision = outputs.vision_attentions[0] hidden_states_lang.retain_grad() attentions_lang.retain_grad() hidden_states_vision.retain_grad() attentions_vision.retain_grad() outputs.language_output.flatten()[0].backward(retain_graph=True) outputs.vision_output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states_lang.grad) self.assertIsNotNone(attentions_vision.grad) self.assertIsNotNone(hidden_states_vision.grad) self.assertIsNotNone(attentions_vision.grad) def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict): tf_inputs_dict = {} for key, value in pt_inputs_dict.items(): # skip key that does not exist in tf if isinstance(value, dict): tf_inputs_dict[key] = self.prepare_pt_inputs_from_tf_inputs(value) elif isinstance(value, (list, tuple)): tf_inputs_dict[key] = (self.prepare_pt_inputs_from_tf_inputs(iter_value) for iter_value in value) elif isinstance(value, bool): tf_inputs_dict[key] = value elif key == "input_values": tf_inputs_dict[key] = tf.convert_to_tensor(value.cpu().numpy(), dtype=tf.float32) elif key == "pixel_values": tf_inputs_dict[key] = tf.convert_to_tensor(value.cpu().numpy(), dtype=tf.float32) elif key == "input_features": tf_inputs_dict[key] = tf.convert_to_tensor(value.cpu().numpy(), dtype=tf.float32) # other general float inputs elif value.is_floating_point(): tf_inputs_dict[key] = tf.convert_to_tensor(value.cpu().numpy(), dtype=tf.float32) else: tf_inputs_dict[key] = tf.convert_to_tensor(value.cpu().numpy(), dtype=tf.int32) return tf_inputs_dict @require_torch class LxmertModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = LxmertModel.from_pretrained(LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) input_ids = torch.tensor([[101, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 102]]) num_visual_features = 10 _, visual_feats = np.random.seed(0), np.random.rand(1, num_visual_features, model.config.visual_feat_dim) _, visual_pos = np.random.seed(0), np.random.rand(1, num_visual_features, 4) visual_feats = torch.as_tensor(visual_feats, dtype=torch.float32) visual_pos = torch.as_tensor(visual_pos, dtype=torch.float32) output = model(input_ids, visual_feats=visual_feats, visual_pos=visual_pos)[0] expected_shape = torch.Size([1, 11, 768]) self.assertEqual(expected_shape, output.shape) expected_slice = torch.tensor( [[[0.2417, -0.9807, 0.1480], [1.2541, -0.8320, 0.5112], [1.4070, -1.1052, 0.6990]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/lxmert/test_modeling_lxmert.py/0
{ "file_path": "transformers/tests/models/lxmert/test_modeling_lxmert.py", "repo_id": "transformers", "token_count": 15109 }
156
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class MobileBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=64, embedding_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.embedding_size = embedding_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_mobilebert_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_mobilebert_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_mobilebert_for_next_sequence_prediction( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertForNextSentencePrediction(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def create_and_check_mobilebert_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, next_sentence_label=sequence_labels, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def create_and_check_mobilebert_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_mobilebert_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MobileBertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_mobilebert_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MobileBertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_mobilebert_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = MobileBertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class MobileBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["next_sentence_label"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict # TODO (@SunMarc): Fix me @unittest.skip("It's broken.") def test_resize_tokens_embeddings(self): super().test_resize_tokens_embeddings() def setUp(self): self.model_tester = MobileBertModelTester(self) self.config_tester = ConfigTester(self, config_class=MobileBertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_mobilebert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*config_and_inputs) def test_for_next_sequence_prediction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*config_and_inputs) def _long_tensor(tok_lst): return torch.tensor( tok_lst, dtype=torch.long, device=torch_device, ) TOLERANCE = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class MobileBertModelIntegrationTests(unittest.TestCase): @slow def test_inference_no_head(self): model = MobileBertModel.from_pretrained("google/mobilebert-uncased").to(torch_device) input_ids = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 9, 512)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [ [ [-2.4736526e07, 8.2691656e04, 1.6521838e05], [-5.7541704e-01, 3.9056022e00, 4.4011507e00], [2.6047359e00, 1.5677652e00, -1.7324188e-01], ] ], device=torch_device, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lower_bound = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE) upper_bound = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE) self.assertTrue(lower_bound and upper_bound)
transformers/tests/models/mobilebert/test_modeling_mobilebert.py/0
{ "file_path": "transformers/tests/models/mobilebert/test_modeling_mobilebert.py", "repo_id": "transformers", "token_count": 7069 }
157
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team, Microsoft Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class MPNetModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=64, num_hidden_layers=2, num_attention_heads=4, intermediate_size=64, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def get_large_model_config(self): return MPNetConfig.from_pretrained("microsoft/mpnet-base") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return MPNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def create_and_check_mpnet_model( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MPNetModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_mpnet_for_question_answering( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MPNetForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_mpnet_for_sequence_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MPNetForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_mpnet_for_multiple_choice( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = MPNetForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_mpnet_for_token_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MPNetForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class MPNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = True def setUp(self): self.model_tester = MPNetModelTester(self) self.config_tester = ConfigTester(self, config_class=MPNetConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_mpnet_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*config_and_inputs) @unittest.skip("TFMPNet adds poolers to all models, unlike the PT model class.") def test_tf_from_pt_safetensors(self): return @require_torch class MPNetModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head(self): model = MPNetModel.from_pretrained("microsoft/mpnet-base") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) output = model(input_ids)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/mpnet/test_modeling_mpnet.py/0
{ "file_path": "transformers/tests/models/mpnet/test_modeling_mpnet.py", "repo_id": "transformers", "token_count": 4626 }
158
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch OneFormer model. """ import copy import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import OneFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import ( require_torch, require_torch_accelerator, require_torch_fp16, require_torch_multi_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OneFormerForUniversalSegmentation, OneFormerModel if is_vision_available(): from transformers import OneFormerProcessor if is_vision_available(): from PIL import Image def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(configs_no_init, key, 1e-10) return configs_no_init class OneFormerModelTester: def __init__( self, parent, batch_size=2, is_training=True, vocab_size=99, use_auxiliary_loss=False, num_queries=10, num_channels=3, min_size=32 * 8, max_size=32 * 8, num_labels=4, hidden_dim=64, sequence_length=77, n_ctx=4, ): self.parent = parent self.batch_size = batch_size self.is_training = is_training self.vocab_size = vocab_size self.use_auxiliary_loss = use_auxiliary_loss self.num_queries = num_queries self.num_channels = num_channels self.min_size = min_size self.max_size = max_size self.num_labels = num_labels self.hidden_dim = hidden_dim self.sequence_length = sequence_length self.n_ctx = n_ctx def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( torch_device ) task_inputs = ( torch.randint(high=self.vocab_size, size=(self.batch_size, self.sequence_length)).to(torch_device).long() ) pixel_mask = torch.ones([self.batch_size, self.min_size, self.max_size], device=torch_device) text_inputs = ( torch.randint( high=self.vocab_size, size=(self.batch_size, self.num_queries - self.n_ctx, self.sequence_length) ) .to(torch_device) .long() ) mask_labels = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=torch_device) > 0.5 ).float() class_labels = (torch.rand((self.batch_size, self.num_labels), device=torch_device) > 0.5).long() config = self.get_config() return config, pixel_values, task_inputs, text_inputs, pixel_mask, mask_labels, class_labels def get_config(self): config = OneFormerConfig( text_encoder_vocab_size=self.vocab_size, hidden_size=self.hidden_dim, num_queries=self.num_queries, num_labels=self.num_labels, encoder_feedforward_dim=32, dim_feedforward=64, encoder_layers=2, decoder_layers=2, ) config.backbone_config.embed_dim = 16 config.backbone_config.depths = [1, 1, 1, 1] config.backbone_config.hidden_size = 16 config.backbone_config.num_channels = self.num_channels config.backbone_config.num_heads = [1, 1, 2, 2] config.backbone = None config.hidden_dim = self.hidden_dim config.mask_dim = self.hidden_dim config.conv_dim = self.hidden_dim config.text_encoder_width = self.hidden_dim config.task_seq_len = self.sequence_length config.max_seq_len = self.sequence_length config.text_encoder_context_length = self.sequence_length config.text_encoder_n_ctx = self.n_ctx return config def prepare_config_and_inputs_for_common(self): config, pixel_values, task_inputs, pixel_mask, _, _, _ = self.prepare_config_and_inputs() inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask, "task_inputs": task_inputs} return config, inputs_dict def check_output_hidden_state(self, output, config): encoder_hidden_states = output.encoder_hidden_states pixel_decoder_hidden_states = output.pixel_decoder_hidden_states transformer_decoder_hidden_states = output.transformer_decoder_hidden_states self.parent.assertTrue(len(encoder_hidden_states), len(config.backbone_config.depths)) self.parent.assertTrue(len(pixel_decoder_hidden_states), config.encoder_layers) self.parent.assertTrue(len(transformer_decoder_hidden_states), config.decoder_layers - 1) def create_and_check_oneformer_model( self, config, pixel_values, task_inputs, pixel_mask, output_hidden_states=False ): with torch.no_grad(): model = OneFormerModel(config=config) model.to(torch_device) model.eval() output = model(pixel_values=pixel_values, task_inputs=task_inputs, pixel_mask=pixel_mask) output = model(pixel_values, task_inputs=task_inputs, output_hidden_states=True) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_object_queries.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_hidden_states is not None) self.parent.assertTrue(output.encoder_hidden_states is not None) if output_hidden_states: self.check_output_hidden_state(output, config) def create_and_check_oneformer_universal_segmentation_head_model( self, config, pixel_values, task_inputs, text_inputs, pixel_mask, mask_labels, class_labels ): model = OneFormerForUniversalSegmentation(config=config) model.to(torch_device) model.eval() def comm_check_on_output(result): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_hidden_states is not None) self.parent.assertTrue(result.pixel_decoder_hidden_states is not None) self.parent.assertTrue(result.encoder_hidden_states is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): result = model(pixel_values=pixel_values, task_inputs=task_inputs, pixel_mask=pixel_mask) result = model(pixel_values, task_inputs) comm_check_on_output(result) config.is_training = True model = OneFormerForUniversalSegmentation(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model( pixel_values=pixel_values, task_inputs=task_inputs, pixel_mask=pixel_mask, mask_labels=mask_labels, class_labels=class_labels, text_inputs=text_inputs, ) comm_check_on_output(result) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape, torch.Size([1])) @require_torch class OneFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (OneFormerModel, OneFormerForUniversalSegmentation) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": OneFormerModel} if is_torch_available() else {} is_encoder_decoder = False test_pruning = False test_head_masking = False test_missing_keys = False # TODO: Fix the failed tests when this model gets more usage def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "FeatureExtractionPipelineTests": return True return False def setUp(self): self.model_tester = OneFormerModelTester(self) self.config_tester = ConfigTester(self, config_class=OneFormerConfig, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() def test_oneformer_model(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_oneformer_model(config, **inputs, output_hidden_states=False) def test_oneformer_universal_segmentation_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_oneformer_universal_segmentation_head_model(*config_and_inputs) def test_model_main_input_name(self): for model_class in self.all_model_classes: model_signature = inspect.signature(getattr(model_class, "forward")) # The main input is the name of the argument after `self` observed_main_input_name = list(model_signature.parameters.keys())[1:3] self.assertEqual(model_class.main_input_name, observed_main_input_name) @unittest.skip(reason="OneFormer uses two main inputs") def test_torchscript_simple(self): pass @unittest.skip(reason="OneFormer uses two main inputs") def test_torchscript_output_attentions(self): pass @unittest.skip(reason="OneFormer uses two main inputs") def test_torchscript_output_hidden_state(self): pass @unittest.skip(reason="OneFormer does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="OneFormer does not have a get_input_embeddings method") def test_model_common_attributes(self): pass @unittest.skip(reason="OneFormer is not a generative model") def test_generate_without_input_ids(self): pass @unittest.skip(reason="OneFormer does not use token embeddings") def test_resize_tokens_embeddings(self): pass @require_torch_multi_gpu @unittest.skip( reason="OneFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def test_multi_gpu_data_parallel_forward(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values", "task_inputs"] self.assertListEqual(arg_names[:2], expected_arg_names) @slow def test_model_from_pretrained(self): for model_name in ["shi-labs/oneformer_ade20k_swin_tiny"]: model = OneFormerModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_model_with_labels(self): size = (self.model_tester.min_size,) * 2 inputs = { "pixel_values": torch.randn((2, 3, *size), device=torch_device), "task_inputs": torch.randint(high=self.model_tester.vocab_size, size=(2, 77), device=torch_device).long(), "text_inputs": torch.randint( high=self.model_tester.vocab_size, size=(2, 6, 77), device=torch_device ).long(), "mask_labels": torch.randn((2, 150, *size), device=torch_device), "class_labels": torch.zeros(2, 150, device=torch_device).long(), } config = self.model_tester.get_config() config.is_training = True model = OneFormerForUniversalSegmentation(config).to(torch_device) outputs = model(**inputs) self.assertTrue(outputs.loss is not None) def test_hidden_states_output(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_oneformer_model(config, **inputs, output_hidden_states=True) def test_attention_outputs(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config).to(torch_device) outputs = model(**inputs, output_attentions=True) self.assertTrue(outputs.attentions is not None) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.contrastive_temperature = 1 configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_training(self): if not self.model_tester.is_training: return # only OneFormerForUniversalSegmentation has the loss model_class = self.all_model_classes[1] ( config, pixel_values, task_inputs, text_inputs, pixel_mask, mask_labels, class_labels, ) = self.model_tester.prepare_config_and_inputs() config.is_training = True model = model_class(config) model.to(torch_device) model.train() loss = model( pixel_values, task_inputs, text_inputs=text_inputs, mask_labels=mask_labels, class_labels=class_labels ).loss loss.backward() def test_retain_grad_hidden_states_attentions(self): # only OneFormerForUniversalSegmentation has the loss model_class = self.all_model_classes[1] ( config, pixel_values, task_inputs, text_inputs, pixel_mask, mask_labels, class_labels, ) = self.model_tester.prepare_config_and_inputs() config.output_hidden_states = True config.output_attentions = True config.is_training = True model = model_class(config) model.to(torch_device) model.train() outputs = model( pixel_values, task_inputs, text_inputs=text_inputs, mask_labels=mask_labels, class_labels=class_labels ) encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() pixel_decoder_hidden_states = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() transformer_decoder_class_predictions = outputs.transformer_decoder_class_predictions transformer_decoder_class_predictions.retain_grad() transformer_decoder_mask_predictions = outputs.transformer_decoder_mask_predictions transformer_decoder_mask_predictions.retain_grad() attentions = outputs.attentions[0][0] attentions.retain_grad() outputs.loss.backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_class_predictions.grad) self.assertIsNotNone(transformer_decoder_mask_predictions.grad) self.assertIsNotNone(attentions.grad) TOLERANCE = 1e-4 # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @slow class OneFormerModelIntegrationTest(unittest.TestCase): @cached_property def model_checkpoints(self): return "shi-labs/oneformer_ade20k_swin_tiny" @cached_property def default_processor(self): return OneFormerProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def test_inference_no_head(self): model = OneFormerModel.from_pretrained(self.model_checkpoints).to(torch_device) processor = self.default_processor image = prepare_img() inputs = processor(image, ["semantic"], return_tensors="pt").to(torch_device) inputs_shape = inputs["pixel_values"].shape # check size self.assertEqual(inputs_shape, (1, 3, 512, 682)) task_inputs_shape = inputs["task_inputs"].shape # check size self.assertEqual(task_inputs_shape, (1, 77)) with torch.no_grad(): outputs = model(**inputs) expected_slice_hidden_state = torch.tensor( [[0.2723, 0.8280, 0.6026], [1.2699, 1.1257, 1.1444], [1.1344, 0.6153, 0.4177]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.encoder_hidden_states[-1][0, 0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) expected_slice_hidden_state = torch.tensor( [[1.0581, 1.2276, 1.2003], [1.1903, 1.2925, 1.2862], [1.158, 1.2559, 1.3216]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.pixel_decoder_hidden_states[0][0, 0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) expected_slice_hidden_state = torch.tensor( [[3.0668, -1.1833, -5.1103], [3.344, -3.362, -5.1101], [2.6017, -4.3613, -4.1444]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.transformer_decoder_class_predictions[0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) def test_inference_universal_segmentation_head(self): model = OneFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(torch_device).eval() processor = self.default_processor image = prepare_img() inputs = processor(image, ["semantic"], return_tensors="pt").to(torch_device) inputs_shape = inputs["pixel_values"].shape # check size self.assertEqual(inputs_shape, (1, 3, 512, 682)) with torch.no_grad(): outputs = model(**inputs) # masks_queries_logits masks_queries_logits = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, (inputs_shape[-1] + 2) // 4), ) expected_slice = [[[3.1848, 4.2141, 4.1993], [2.9000, 3.5721, 3.6603], [2.5358, 3.0883, 3.6168]]] expected_slice = torch.tensor(expected_slice).to(torch_device) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], expected_slice, atol=TOLERANCE)) # class_queries_logits class_queries_logits = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1), ) expected_slice = torch.tensor( [[3.0668, -1.1833, -5.1103], [3.3440, -3.3620, -5.1101], [2.6017, -4.3613, -4.1444]] ).to(torch_device) self.assertTrue(torch.allclose(class_queries_logits[0, :3, :3], expected_slice, atol=TOLERANCE)) @require_torch_accelerator @require_torch_fp16 def test_inference_fp16(self): model = ( OneFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints) .to(torch_device, dtype=torch.float16) .eval() ) processor = self.default_processor image = prepare_img() inputs = processor(image, ["semantic"], return_tensors="pt").to(torch_device, dtype=torch.float16) with torch.no_grad(): _ = model(**inputs) def test_with_segmentation_maps_and_loss(self): dummy_model = OneFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints) processor = self.default_processor processor.image_processor.num_text = dummy_model.config.num_queries - dummy_model.config.text_encoder_n_ctx dummy_model.config.is_training = True model = OneFormerForUniversalSegmentation(dummy_model.config).to(torch_device).eval() del dummy_model inputs = processor( [np.zeros((3, 512, 640)), np.zeros((3, 512, 640))], ["semantic", "semantic"], segmentation_maps=[np.zeros((384, 384)).astype(np.float32), np.zeros((384, 384)).astype(np.float32)], return_tensors="pt", ) inputs["pixel_values"] = inputs["pixel_values"].to(torch_device) inputs["task_inputs"] = inputs["task_inputs"].to(torch_device) inputs["text_inputs"] = inputs["text_inputs"].to(torch_device) inputs["mask_labels"] = [el.to(torch_device) for el in inputs["mask_labels"]] inputs["class_labels"] = [el.to(torch_device) for el in inputs["class_labels"]] with torch.no_grad(): outputs = model(**inputs) self.assertTrue(outputs.loss is not None)
transformers/tests/models/oneformer/test_modeling_oneformer.py/0
{ "file_path": "transformers/tests/models/oneformer/test_modeling_oneformer.py", "repo_id": "transformers", "token_count": 10046 }
159
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class OwlViTProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() vocab = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: skip vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) image_processor_map = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(image_processor_map, fp) def get_tokenizer(self, **kwargs): return CLIPTokenizer.from_pretrained(self.tmpdirname, pad_token="!", **kwargs) def get_rust_tokenizer(self, **kwargs): return CLIPTokenizerFast.from_pretrained(self.tmpdirname, pad_token="!", **kwargs) def get_image_processor(self, **kwargs): return OwlViTImageProcessor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_default(self): tokenizer_slow = self.get_tokenizer() tokenizer_fast = self.get_rust_tokenizer() image_processor = self.get_image_processor() processor_slow = OwlViTProcessor(tokenizer=tokenizer_slow, image_processor=image_processor) processor_slow.save_pretrained(self.tmpdirname) processor_slow = OwlViTProcessor.from_pretrained(self.tmpdirname, use_fast=False) processor_fast = OwlViTProcessor(tokenizer=tokenizer_fast, image_processor=image_processor) processor_fast.save_pretrained(self.tmpdirname) processor_fast = OwlViTProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer) self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, OwlViTImageProcessor) self.assertIsInstance(processor_fast.image_processor, OwlViTImageProcessor) def test_save_load_pretrained_additional_features(self): processor = OwlViTProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False) processor = OwlViTProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", pad_token="!", do_normalize=False ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, OwlViTImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_image_proc = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" encoded_processor = processor(text=input_str, return_tensors="np") encoded_tok = tokenizer(input_str, return_tensors="np") for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist(), encoded_processor[key][0].tolist()) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_processor_with_text_list(self): model_name = "google/owlvit-base-patch32" processor = OwlViTProcessor.from_pretrained(model_name) input_text = ["cat", "nasa badge"] inputs = processor(text=input_text) seq_length = 16 self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape, (2, seq_length)) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_processor_with_nested_text_list(self): model_name = "google/owlvit-base-patch32" processor = OwlViTProcessor.from_pretrained(model_name) input_texts = [["cat", "nasa badge"], ["person"]] inputs = processor(text=input_texts) seq_length = 16 batch_size = len(input_texts) num_max_text_queries = max([len(texts) for texts in input_texts]) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape, (batch_size * num_max_text_queries, seq_length)) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_processor_case(self): model_name = "google/owlvit-base-patch32" processor = OwlViTProcessor.from_pretrained(model_name) input_texts = ["cat", "nasa badge"] inputs = processor(text=input_texts) seq_length = 16 input_ids = inputs["input_ids"] predicted_ids = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape, (2, seq_length)) self.assertListEqual(list(input_ids[0]), predicted_ids[0]) self.assertListEqual(list(input_ids[1]), predicted_ids[1]) def test_processor_case2(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() query_input = self.prepare_image_inputs() inputs = processor(images=image_input, query_images=query_input) self.assertListEqual(list(inputs.keys()), ["query_pixel_values", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = OwlViTProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor)
transformers/tests/models/owlvit/test_processor_owlvit.py/0
{ "file_path": "transformers/tests/models/owlvit/test_processor_owlvit.py", "repo_id": "transformers", "token_count": 4354 }
160
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Persimmon model. """ import gc import unittest from parameterized import parameterized from transformers import PersimmonConfig, is_torch_available, set_seed from transformers.testing_utils import ( backend_empty_cache, require_torch, require_torch_accelerator, require_torch_fp16, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AutoTokenizer, PersimmonForCausalLM, PersimmonForSequenceClassification, PersimmonModel, ) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester with Llama->Persimmon class PersimmonModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return PersimmonConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = PersimmonModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = PersimmonModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = PersimmonForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = PersimmonForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class PersimmonModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (PersimmonModel, PersimmonForCausalLM, PersimmonForSequenceClassification) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": PersimmonModel, "text-classification": PersimmonForSequenceClassification, # TODO (ydshieh): check why these two fail. Fix them or skip them in a better way. # "text-generation": PersimmonForCausalLM, # "zero-shot": PersimmonForSequenceClassification, } if is_torch_available() else {} ) all_generative_model_classes = (PersimmonForCausalLM,) if is_torch_available() else () test_headmasking = False test_pruning = False # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.setUp with Llama->Persimmon def setUp(self): self.model_tester = PersimmonModelTester(self) self.config_tester = ConfigTester(self, config_class=PersimmonConfig, hidden_size=37) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_config def test_config(self): self.config_tester.run_common_tests() # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model_various_embeddings def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model with Llama->Persimmon,llama->persimmon def test_persimmon_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = PersimmonForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model_for_single_label with Llama->Persimmon,llama->persimmon def test_persimmon_sequence_classification_model_for_single_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "single_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = PersimmonForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_sequence_classification_model_for_multi_label with Llama->Persimmon,llama->persimmon def test_persimmon_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = PersimmonForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip("Persimmon buffers include complex numbers, which breaks this test") # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_save_load_fast_init_from_base def test_save_load_fast_init_from_base(self): pass @parameterized.expand([("linear",), ("dynamic",)]) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model_rope_scaling with Llama->Persimmon def test_model_rope_scaling(self, scaling_type): config, _ = self.model_tester.prepare_config_and_inputs_for_common() short_input = ids_tensor([1, 10], config.vocab_size) long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights original_model = PersimmonModel(config) original_model.to(torch_device) original_model.eval() original_short_output = original_model(short_input).last_hidden_state original_long_output = original_model(long_input).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights config.rope_scaling = {"type": scaling_type, "factor": 10.0} scaled_model = PersimmonModel(config) scaled_model.to(torch_device) scaled_model.eval() scaled_short_output = scaled_model(short_input).last_hidden_state scaled_long_output = scaled_model(long_input).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) else: self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5)) @require_torch class PersimmonIntegrationTest(unittest.TestCase): @slow def test_model_8b_chat_logits(self): input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338] model = PersimmonForCausalLM.from_pretrained( "adept/persimmon-8b-chat", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.float16 ) out = model(torch.tensor([input_ids], device=torch_device)).logits EXPECTED_MEAN = torch.tensor( [[-11.4726, -11.1495, -11.2694, -11.2223, -10.9452, -11.0663, -11.0031, -11.1028]] ) # change dtype to `torch.float32` before calling `mean` to avoid `nan` values torch.testing.assert_close(out.cpu().to(torch.float32).mean(-1), EXPECTED_MEAN, atol=1e-4, rtol=1e-4) # fmt: off EXPECTED_SLICE = torch.tensor( [-16.9062, -16.9062, -16.9062, -16.9062, -16.8906, -16.9062, -16.9531, -16.9062, -16.9062, -16.9062, -16.9531, -16.9062, -16.9531, -16.9062, -16.9062, -16.9062, -16.9062, -16.9062, -16.9531, -16.9062, -16.9062, -16.9062, -16.9062, -16.9062, -16.9062, -16.9531, -16.9062, -16.9531, -16.9062, -16.9062], dtype=torch.float16 ) # fmt: on torch.testing.assert_close(out.cpu()[0, 0, :30], EXPECTED_SLICE, atol=1e-5, rtol=1e-5) backend_empty_cache(torch_device) del model gc.collect() @slow @require_torch_accelerator @require_torch_fp16 def test_model_8b_chat_greedy_generation(self): EXPECTED_TEXT_COMPLETION = """human: Simply put, the theory of relativity states that?\n\nadept: The theory of relativity states that the laws of physics are the same for all observers, regardless of their relative motion.""" prompt = "human: Simply put, the theory of relativity states that?\n\nadept:" tokenizer = AutoTokenizer.from_pretrained("adept/persimmon-8b-chat", use_fast=False) input_ids = tokenizer.encode(prompt, return_tensors="pt").to(torch_device) model = PersimmonForCausalLM.from_pretrained( "adept/persimmon-8b-chat", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.float16 ) # greedy generation outputs generated_ids = model.generate(input_ids, max_new_tokens=64) text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, text) backend_empty_cache(torch_device) del model gc.collect()
transformers/tests/models/persimmon/test_modeling_persimmon.py/0
{ "file_path": "transformers/tests/models/persimmon/test_modeling_persimmon.py", "repo_id": "transformers", "token_count": 8403 }
161
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import ( check_json_file_has_correct_format, require_essentia, require_librosa, require_scipy, require_tf, require_torch, ) from transformers.utils.import_utils import ( is_essentia_available, is_librosa_available, is_scipy_available, is_torch_available, ) from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin requirements_available = ( is_torch_available() and is_essentia_available() and is_scipy_available() and is_librosa_available() ) if requirements_available: import torch from transformers import Pop2PianoFeatureExtractor class Pop2PianoFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, n_bars=2, sample_rate=22050, use_mel=True, padding_value=0, vocab_size_special=4, vocab_size_note=128, vocab_size_velocity=2, vocab_size_time=100, ): self.parent = parent self.n_bars = n_bars self.sample_rate = sample_rate self.use_mel = use_mel self.padding_value = padding_value self.vocab_size_special = vocab_size_special self.vocab_size_note = vocab_size_note self.vocab_size_velocity = vocab_size_velocity self.vocab_size_time = vocab_size_time def prepare_feat_extract_dict(self): return { "n_bars": self.n_bars, "sample_rate": self.sample_rate, "use_mel": self.use_mel, "padding_value": self.padding_value, "vocab_size_special": self.vocab_size_special, "vocab_size_note": self.vocab_size_note, "vocab_size_velocity": self.vocab_size_velocity, "vocab_size_time": self.vocab_size_time, } @require_torch @require_essentia @require_librosa @require_scipy class Pop2PianoFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): feature_extraction_class = Pop2PianoFeatureExtractor if requirements_available else None def setUp(self): self.feat_extract_tester = Pop2PianoFeatureExtractionTester(self) def test_feat_extract_from_and_save_pretrained(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: saved_file = feat_extract_first.save_pretrained(tmpdirname)[0] check_json_file_has_correct_format(saved_file) feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() mel_1 = feat_extract_first.use_mel mel_2 = feat_extract_second.use_mel self.assertTrue(np.allclose(mel_1, mel_2)) self.assertEqual(dict_first, dict_second) def test_feat_extract_to_json_file(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "feat_extract.json") feat_extract_first.to_json_file(json_file_path) feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() mel_1 = feat_extract_first.use_mel mel_2 = feat_extract_second.use_mel self.assertTrue(np.allclose(mel_1, mel_2)) self.assertEqual(dict_first, dict_second) def test_call(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_input = np.zeros([1000000], dtype=np.float32) input_features = feature_extractor(speech_input, sampling_rate=16_000, return_tensors="np") self.assertTrue(input_features.input_features.ndim == 3) self.assertEqual(input_features.input_features.shape[-1], 512) self.assertTrue(input_features.beatsteps.ndim == 2) self.assertTrue(input_features.extrapolated_beatstep.ndim == 2) def test_integration(self): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") speech_samples = ds.sort("id").select([0])["audio"] input_speech = [x["array"] for x in speech_samples][0] sampling_rate = [x["sampling_rate"] for x in speech_samples][0] feaure_extractor = Pop2PianoFeatureExtractor.from_pretrained("sweetcocoa/pop2piano") input_features = feaure_extractor( input_speech, sampling_rate=sampling_rate, return_tensors="pt" ).input_features EXPECTED_INPUT_FEATURES = torch.tensor( [[-7.1493, -6.8701, -4.3214], [-5.9473, -5.7548, -3.8438], [-6.1324, -5.9018, -4.3778]] ) self.assertTrue(torch.allclose(input_features[0, :3, :3], EXPECTED_INPUT_FEATURES, atol=1e-4)) def test_attention_mask(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_input1 = np.zeros([1_000_000], dtype=np.float32) speech_input2 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32) input_features = feature_extractor( [speech_input1, speech_input2], sampling_rate=[44_100, 16_000], return_tensors="np", return_attention_mask=True, ) self.assertTrue(hasattr(input_features, "attention_mask")) # check shapes self.assertTrue(input_features["attention_mask"].ndim == 2) self.assertEqual(input_features["attention_mask_beatsteps"].shape[0], 2) self.assertEqual(input_features["attention_mask_extrapolated_beatstep"].shape[0], 2) # check if they are any values except 0 and 1 self.assertTrue(np.max(input_features["attention_mask"]) == 1) self.assertTrue(np.max(input_features["attention_mask_beatsteps"]) == 1) self.assertTrue(np.max(input_features["attention_mask_extrapolated_beatstep"]) == 1) self.assertTrue(np.min(input_features["attention_mask"]) == 0) self.assertTrue(np.min(input_features["attention_mask_beatsteps"]) == 0) self.assertTrue(np.min(input_features["attention_mask_extrapolated_beatstep"]) == 0) def test_batch_feature(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_input1 = np.zeros([1_000_000], dtype=np.float32) speech_input2 = np.ones([2_000_000], dtype=np.float32) speech_input3 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32) input_features = feature_extractor( [speech_input1, speech_input2, speech_input3], sampling_rate=[44_100, 16_000, 48_000], return_attention_mask=True, ) self.assertEqual(len(input_features["input_features"].shape), 3) # check shape self.assertEqual(input_features["beatsteps"].shape[0], 3) self.assertEqual(input_features["extrapolated_beatstep"].shape[0], 3) def test_batch_feature_np(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_input1 = np.zeros([1_000_000], dtype=np.float32) speech_input2 = np.ones([2_000_000], dtype=np.float32) speech_input3 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32) input_features = feature_extractor( [speech_input1, speech_input2, speech_input3], sampling_rate=[44_100, 16_000, 48_000], return_tensors="np", return_attention_mask=True, ) # check np array or not self.assertEqual(type(input_features["input_features"]), np.ndarray) # check shape self.assertEqual(len(input_features["input_features"].shape), 3) def test_batch_feature_pt(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_input1 = np.zeros([1_000_000], dtype=np.float32) speech_input2 = np.ones([2_000_000], dtype=np.float32) speech_input3 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32) input_features = feature_extractor( [speech_input1, speech_input2, speech_input3], sampling_rate=[44_100, 16_000, 48_000], return_tensors="pt", return_attention_mask=True, ) # check pt tensor or not self.assertEqual(type(input_features["input_features"]), torch.Tensor) # check shape self.assertEqual(len(input_features["input_features"].shape), 3) @require_tf def test_batch_feature_tf(self): import tensorflow as tf feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_input1 = np.zeros([1_000_000], dtype=np.float32) speech_input2 = np.ones([2_000_000], dtype=np.float32) speech_input3 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32) input_features = feature_extractor( [speech_input1, speech_input2, speech_input3], sampling_rate=[44_100, 16_000, 48_000], return_tensors="tf", return_attention_mask=True, ) # check tf tensor or not self.assertTrue(tf.is_tensor(input_features["input_features"])) # check shape self.assertEqual(len(input_features["input_features"].shape), 3) @unittest.skip( "Pop2PianoFeatureExtractor does not supports padding externally (while processing audios in batches padding is automatically applied to max_length)" ) def test_padding_accepts_tensors_pt(self): pass @unittest.skip( "Pop2PianoFeatureExtractor does not supports padding externally (while processing audios in batches padding is automatically applied to max_length)" ) def test_padding_accepts_tensors_tf(self): pass @unittest.skip( "Pop2PianoFeatureExtractor does not supports padding externally (while processing audios in batches padding is automatically applied to max_length)" ) def test_padding_from_list(self): pass @unittest.skip( "Pop2PianoFeatureExtractor does not supports padding externally (while processing audios in batches padding is automatically applied to max_length)" ) def test_padding_from_array(self): pass @unittest.skip("Pop2PianoFeatureExtractor does not support truncation") def test_attention_mask_with_truncation(self): pass @unittest.skip("Pop2PianoFeatureExtractor does not supports truncation") def test_truncation_from_array(self): pass @unittest.skip("Pop2PianoFeatureExtractor does not supports truncation") def test_truncation_from_list(self): pass
transformers/tests/models/pop2piano/test_feature_extraction_pop2piano.py/0
{ "file_path": "transformers/tests/models/pop2piano/test_feature_extraction_pop2piano.py", "repo_id": "transformers", "token_count": 4962 }
162
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import json import os import shutil import tempfile import unittest from unittest.mock import patch import numpy as np from transformers import BartTokenizer, T5Tokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import ( get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, require_torch_non_multi_gpu, slow, torch_device, ) from transformers.utils import cached_property, is_datasets_available, is_faiss_available, is_torch_available from ..bart.test_modeling_bart import BartModelTester from ..dpr.test_modeling_dpr import DPRModelTester from ..t5.test_modeling_t5 import T5ModelTester TOLERANCE = 1e-3 T5_SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available() and is_datasets_available() and is_faiss_available(): import faiss import torch from datasets import Dataset from transformers import ( AutoConfig, AutoModel, AutoModelForSeq2SeqLM, DPRContextEncoder, RagConfig, RagModel, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration, RagTokenizer, ) from transformers.modeling_outputs import BaseModelOutput def _assert_tensors_equal(a, b, atol=1e-12, prefix=""): """If tensors not close, or a and b arent both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: msg = f"{a} != {b}" if prefix: msg = prefix + ": " + msg raise AssertionError(msg) def require_retrieval(test_case): """ Decorator marking a test that requires a set of dependencies necessary for pefrorm retrieval with [`RagRetriever`]. These tests are skipped when respective libraries are not installed. """ if not (is_torch_available() and is_datasets_available() and is_faiss_available()): test_case = unittest.skip("test requires PyTorch, datasets and faiss")(test_case) return test_case @require_torch @require_retrieval @require_sentencepiece class RagTestMixin: all_model_classes = ( (RagModel, RagTokenForGeneration, RagSequenceForGeneration) if is_torch_available() and is_datasets_available() and is_faiss_available() else () ) retrieval_vector_size = 32 n_docs = 3 max_combined_length = 16 def setUp(self): self.tmpdirname = tempfile.mkdtemp() # DPR tok vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer") os.makedirs(dpr_tokenizer_path, exist_ok=True) self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) # BART tok vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer") os.makedirs(bart_tokenizer_path, exist_ok=True) self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) t5_tokenizer = T5Tokenizer(T5_SAMPLE_VOCAB) t5_tokenizer_path = os.path.join(self.tmpdirname, "t5_tokenizer") t5_tokenizer.save_pretrained(t5_tokenizer_path) @cached_property def dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer")) @cached_property def dpr_ctx_encoder_tokenizer(self) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer")) @cached_property def bart_tokenizer(self) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer")) @cached_property def t5_tokenizer(self) -> BartTokenizer: return T5Tokenizer.from_pretrained(os.path.join(self.tmpdirname, "t5_tokenizer")) def tearDown(self): shutil.rmtree(self.tmpdirname) # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def get_retriever(self, config): dataset = Dataset.from_dict( { "id": ["0", "1", "3"], "text": ["foo", "bar", "qux"], "title": ["Foo", "Bar", "Qux"], "embeddings": [ np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size), 3 * np.ones(self.retrieval_vector_size), ], } ) dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT) tokenizer = self.bart_tokenizer if config.generator.model_type == "bart" else self.t5_tokenizer with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset: mock_load_dataset.return_value = dataset retriever = RagRetriever( config, question_encoder_tokenizer=self.dpr_tokenizer, generator_tokenizer=tokenizer, ) return retriever def check_model_with_retriever( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) for model_class in self.all_model_classes: model = model_class(config, retriever=self.get_retriever(config)).to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) outputs = model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) # logits self.assertEqual( outputs.logits.shape, (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size), ) # generator encoder last hidden states self.assertEqual( outputs.generator_enc_last_hidden_state.shape, (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size), ) # doc scores self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs)) def check_model_with_end2end_retriever( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) context_encoder_tokenizer = self.dpr_ctx_encoder_tokenizer dpr_context_encoder = DPRContextEncoder(config.question_encoder) # dpr is a twin tower retriever = self.get_retriever(config) retriever.set_ctx_encoder_tokenizer(context_encoder_tokenizer) # setting the ctx_encoder_tokenizer. for model_class in [RagTokenForGeneration, RagSequenceForGeneration]: model = model_class(config, retriever=retriever) model.set_context_encoder_for_training(dpr_context_encoder) # set the context_encoder for training model.to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) outputs = model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) # logits self.assertEqual( outputs.logits.shape, (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size), ) # generator encoder last hidden states self.assertEqual( outputs.generator_enc_last_hidden_state.shape, (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size), ) # doc scores self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs)) def check_model_generate_from_context_input_ids( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) retriever = self.get_retriever(config) for model_class in self.all_model_classes: model = model_class(config).to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0] out = retriever( input_ids, question_hidden_states.cpu().detach().to(torch.float32).numpy(), prefix=config.generator.prefix, return_tensors="pt", ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) # cast retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) # compute doc_scores doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze( 1 ) outputs = model.generate( context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, do_deduplication=True, ) self.assertIsNotNone(outputs) def check_model_generate( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) for model_class in self.all_model_classes[1:]: model = model_class(config, retriever=self.get_retriever(config)).to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) outputs = model.generate( input_ids=input_ids, num_beams=2, num_return_sequences=2, decoder_start_token_id=config.generator.eos_token_id, ) self.assertIsNotNone(outputs) def check_model_without_retriever( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) retriever = self.get_retriever(config) for model_class in self.all_model_classes: model = model_class(config).to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0] out = retriever( input_ids, question_hidden_states.cpu().detach().to(torch.float32).numpy(), prefix=config.generator.prefix, return_tensors="pt", ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) # cast retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) # compute doc_scores doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze( 1 ) outputs = model( context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) # logits self.assertEqual( outputs.logits.shape, (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size), ) # generator encoder last hidden states self.assertEqual( outputs.generator_enc_last_hidden_state.shape, (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size), ) # doc scores self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs)) def check_model_custom_n_docs( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, n_docs, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) retriever = self.get_retriever(config) for model_class in self.all_model_classes: model = model_class(config).to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0] out = retriever( input_ids, question_hidden_states.cpu().detach().to(torch.float32).numpy(), prefix=config.generator.prefix, return_tensors="pt", n_docs=n_docs, ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) # cast retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) # compute doc_scores doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze( 1 ) outputs = model( context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, n_docs=n_docs, ) # logits self.assertEqual( outputs.logits.shape, (n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size), ) # generator encoder last hidden states self.assertEqual( outputs.generator_enc_last_hidden_state.shape, (n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size), ) # doc scores self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], n_docs)) def check_model_with_mismatch_n_docs_value( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, retriever_n_docs, generator_n_docs, **kwargs, ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) retriever = self.get_retriever(config) for model_class in self.all_model_classes: model = model_class(config).to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0] out = retriever( input_ids, question_hidden_states.cpu().detach().to(torch.float32).numpy(), prefix=config.generator.prefix, return_tensors="pt", n_docs=retriever_n_docs, ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) # cast retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) # compute doc_scores doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze( 1 ) self.assertRaises( AssertionError, model.__call__, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, n_docs=generator_n_docs, ) def check_model_with_encoder_outputs( self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs ): self.assertIsNotNone(config.question_encoder) self.assertIsNotNone(config.generator) for model_class in self.all_model_classes: model = model_class(config, retriever=self.get_retriever(config)).to(torch_device) model.eval() self.assertTrue(model.config.is_encoder_decoder) outputs = model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) encoder_outputs = BaseModelOutput(outputs.generator_enc_last_hidden_state) # run only generator outputs = model( encoder_outputs=encoder_outputs, doc_scores=outputs.doc_scores, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) # logits self.assertEqual( outputs.logits.shape, (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size), ) # generator encoder last hidden states self.assertEqual( outputs.generator_enc_last_hidden_state.shape, (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size), ) # doc scores self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs)) def test_model_with_retriever(self): inputs_dict = self.config_and_inputs self.check_model_with_retriever(**inputs_dict) def test_model_with_end2end_retriever(self): inputs_dict = self.config_and_inputs self.check_model_with_end2end_retriever(**inputs_dict) def test_model_without_retriever(self): inputs_dict = self.config_and_inputs self.check_model_without_retriever(**inputs_dict) def test_model_with_encoder_outputs(self): inputs_dict = self.config_and_inputs self.check_model_with_encoder_outputs(**inputs_dict) def test_model_generate(self): inputs_dict = self.config_and_inputs self.check_model_generate(**inputs_dict) def test_model_with_custom_n_docs(self): inputs_dict = self.config_and_inputs inputs_dict["n_docs"] = 1 self.check_model_custom_n_docs(**inputs_dict) def test_model_with_mismatch_n_docs_value(self): inputs_dict = self.config_and_inputs inputs_dict["retriever_n_docs"] = 3 inputs_dict["generator_n_docs"] = 2 self.check_model_with_mismatch_n_docs_value(**inputs_dict) @require_torch @require_retrieval class RagDPRBartTest(RagTestMixin, unittest.TestCase): @cached_property def config_and_inputs(self): question_encoder_tester = DPRModelTester(self) dpr_config_and_inputs = question_encoder_tester.prepare_config_and_inputs() generator_tester = BartModelTester(self) bart_config_and_inputs = generator_tester.prepare_config_and_inputs_for_common() (question_encoder_config, input_ids, _, input_mask, _, _, _) = dpr_config_and_inputs (generator_config, bart_inputs_dict) = bart_config_and_inputs decoder_input_ids, decoder_attention_mask = bart_inputs_dict["input_ids"], bart_inputs_dict["attention_mask"] config = RagConfig.from_question_encoder_generator_configs( question_encoder_config, generator_config, n_docs=self.n_docs, retrieval_vector_size=self.retrieval_vector_size, max_combined_length=self.max_combined_length, ) return { "config": config, "input_ids": input_ids, "attention_mask": input_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } @require_torch @require_retrieval class RagDPRT5Test(RagTestMixin, unittest.TestCase): @cached_property def config_and_inputs(self): question_encoder_tester = DPRModelTester(self) dpr_config_and_inputs = question_encoder_tester.prepare_config_and_inputs() generator_tester = T5ModelTester(self, vocab_size=1100) t5_config_and_inputs = generator_tester.prepare_config_and_inputs() (question_encoder_config, input_ids, _, input_mask, _, _, _) = dpr_config_and_inputs (generator_config, _, decoder_input_ids, _, decoder_attention_mask, _) = t5_config_and_inputs config = RagConfig.from_question_encoder_generator_configs( question_encoder_config, generator_config, n_docs=self.n_docs, retrieval_vector_size=self.retrieval_vector_size, max_combined_length=self.max_combined_length, ) return { "config": config, "input_ids": input_ids, "attention_mask": input_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } @require_torch @require_retrieval @require_sentencepiece @require_tokenizers @require_torch_non_multi_gpu class RagModelIntegrationTests(unittest.TestCase): def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @cached_property def sequence_model(self): return ( RagSequenceForGeneration.from_pretrained_question_encoder_generator( "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn" ) .to(torch_device) .eval() ) @cached_property def token_model(self): return ( RagTokenForGeneration.from_pretrained_question_encoder_generator( "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn" ) .to(torch_device) .eval() ) def get_rag_config(self): question_encoder_config = AutoConfig.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator_config = AutoConfig.from_pretrained("facebook/bart-large-cnn") return RagConfig.from_question_encoder_generator_configs( question_encoder_config, generator_config, bos_token_id=0, decoder_start_token_id=2, eos_token_id=2, is_encoder_decoder=True, pad_token_id=1, vocab_size=50264, title_sep=" / ", doc_sep=" // ", n_docs=5, max_combined_length=300, dataset="wiki_dpr", dataset_split="train", index_name="exact", index_path=None, use_dummy_dataset=True, retrieval_vector_size=768, retrieval_batch_size=8, ) @slow def test_rag_sequence_inference(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) rag_sequence = self.sequence_model rag_sequence.set_retriever(rag_retriever) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="pt" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids input_ids = input_ids.to(torch_device) decoder_input_ids = decoder_input_ids.to(torch_device) with torch.no_grad(): output = rag_sequence( input_ids, labels=decoder_input_ids, ) expected_shape = torch.Size([5, 5, 50264]) self.assertEqual(output.logits.shape, expected_shape) expected_doc_scores = torch.tensor([[75.0286, 74.4998, 74.0804, 74.0306, 73.9504]]).to(torch_device) _assert_tensors_equal(expected_doc_scores, output.doc_scores, atol=TOLERANCE) expected_loss = torch.tensor([36.7368]).to(torch_device) _assert_tensors_equal(expected_loss, output.loss, atol=TOLERANCE) @slow def test_rag_token_inference(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) rag_token = self.token_model rag_token.set_retriever(rag_retriever) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="pt" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids input_ids = input_ids.to(torch_device) decoder_input_ids = decoder_input_ids.to(torch_device) with torch.no_grad(): output = rag_token( input_ids, labels=decoder_input_ids, ) expected_shape = torch.Size([5, 5, 50264]) self.assertEqual(output.logits.shape, expected_shape) expected_doc_scores = torch.tensor([[75.0286, 74.4998, 74.0804, 74.0306, 73.9504]]).to(torch_device) _assert_tensors_equal(expected_doc_scores, output.doc_scores, atol=TOLERANCE) expected_loss = torch.tensor([36.3557]).to(torch_device) _assert_tensors_equal(expected_loss, output.loss, atol=TOLERANCE) @slow def test_rag_token_generate_beam(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) rag_token = self.token_model rag_token.set_retriever(rag_retriever) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="pt" ).input_ids input_ids = input_ids.to(torch_device) output_ids = rag_token.generate( input_ids, decoder_start_token_id=rag_token.generator.config.decoder_start_token_id, num_beams=2, num_return_sequences=2, ) # sequence generate test output_text_1 = rag_decoder_tokenizer.decode(output_ids[0], skip_special_tokens=True) output_text_2 = rag_decoder_tokenizer.decode(output_ids[1], skip_special_tokens=True) # Expected outputs as given by model at integration time. EXPECTED_OUTPUT_TEXT_1 = "\"She's My Kind of Girl" EXPECTED_OUTPUT_TEXT_2 = "\"She's My Kind of Love" self.assertEqual(output_text_1, EXPECTED_OUTPUT_TEXT_1) self.assertEqual(output_text_2, EXPECTED_OUTPUT_TEXT_2) @slow def test_rag_sequence_generate_beam(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) rag_sequence = self.sequence_model rag_sequence.set_retriever(rag_retriever) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="pt" ).input_ids input_ids = input_ids.to(torch_device) output_ids = rag_sequence.generate( input_ids, decoder_start_token_id=rag_sequence.generator.config.decoder_start_token_id, num_beams=2, num_return_sequences=2, ) # sequence generate test output_text_1 = rag_decoder_tokenizer.decode(output_ids[0], skip_special_tokens=True) output_text_2 = rag_decoder_tokenizer.decode(output_ids[1], skip_special_tokens=True) # Expected outputs as given by model at integration time. EXPECTED_OUTPUT_TEXT_1 = """\"She's My Kind of Girl\" was released through Epic Records in Japan in March 1972, giving the duo a Top 10 hit. Two more singles were released in Japan, \"En Carousel\" and \"Love Has Its Ways\" Ulvaeus and Andersson persevered with their songwriting and experimented with new sounds and vocal arrangements.""" EXPECTED_OUTPUT_TEXT_2 = """In September 2018, Björn Ulvaeus revealed that the two new songs, \"I Still Have Faith In You\" and \"Don't Shut Me Down\", would be released no earlier than March 2019. The two new tracks will feature in a TV special set to air later in the year.""" self.assertEqual(output_text_1, EXPECTED_OUTPUT_TEXT_1) self.assertEqual(output_text_2, EXPECTED_OUTPUT_TEXT_2) @property def test_data_questions(self): return [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", ] @slow def test_rag_sequence_generate_batch(self): tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") retriever = RagRetriever.from_pretrained( "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True ) rag_sequence = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever).to( torch_device ) input_dict = tokenizer( self.test_data_questions, return_tensors="pt", padding=True, truncation=True, ) input_ids = input_dict.input_ids.to(torch_device) attention_mask = input_dict.attention_mask.to(torch_device) output_ids = rag_sequence.generate( input_ids, attention_mask=attention_mask, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) EXPECTED_OUTPUTS = [ " albert einstein", " june 22, 2018", " amplitude modulation", " tim besley ( chairman )", " june 20, 2018", " 1980", " 7.0", " 8", ] self.assertListEqual(outputs, EXPECTED_OUTPUTS) @slow def test_rag_sequence_generate_batch_from_context_input_ids(self): tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") retriever = RagRetriever.from_pretrained( "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True ) rag_sequence = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever).to( torch_device ) input_dict = tokenizer( self.test_data_questions, return_tensors="pt", padding=True, truncation=True, ) input_ids = input_dict.input_ids.to(torch_device) attention_mask = input_dict.attention_mask.to(torch_device) question_hidden_states = rag_sequence.question_encoder(input_ids, attention_mask=attention_mask)[0] docs_dict = retriever( input_ids.cpu().detach().numpy(), question_hidden_states.cpu().detach().numpy(), return_tensors="pt" ) doc_scores = torch.bmm( question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].to(torch_device).float().transpose(1, 2), ).squeeze(1) output_ids = rag_sequence.generate( context_input_ids=docs_dict["context_input_ids"].to(torch_device), context_attention_mask=docs_dict["context_attention_mask"].to(torch_device), doc_scores=doc_scores.to(torch_device), do_deduplication=True, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) EXPECTED_OUTPUTS = [ " albert einstein", " june 22, 2018", " amplitude modulation", " tim besley ( chairman )", " june 20, 2018", " 1980", " 7.0", " 8", ] self.assertListEqual(outputs, EXPECTED_OUTPUTS) @slow def test_rag_token_generate_batch(self): tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True) rag_token = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever).to( torch_device ) if torch_device == "cuda": rag_token.half() input_dict = tokenizer( self.test_data_questions, return_tensors="pt", padding=True, truncation=True, ) input_ids = input_dict.input_ids.to(torch_device) attention_mask = input_dict.attention_mask.to(torch_device) output_ids = rag_token.generate( input_ids, attention_mask=attention_mask, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) EXPECTED_OUTPUTS = [ " albert einstein", " september 22, 2017", " amplitude modulation", " stefan persson", " april 20, 2018", " the 1970s", " 7.1. 2", " 13", ] self.assertListEqual(outputs, EXPECTED_OUTPUTS) @require_torch @require_retrieval class RagModelSaveLoadTests(unittest.TestCase): def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def get_rag_config(self): question_encoder_config = AutoConfig.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator_config = AutoConfig.from_pretrained("facebook/bart-large-cnn") return RagConfig.from_question_encoder_generator_configs( question_encoder_config, generator_config, bos_token_id=0, decoder_start_token_id=2, eos_token_id=2, is_encoder_decoder=True, pad_token_id=1, vocab_size=50264, title_sep=" / ", doc_sep=" // ", n_docs=5, max_combined_length=300, dataset="wiki_dpr", dataset_split="train", index_name="exact", index_path=None, use_dummy_dataset=True, retrieval_vector_size=768, retrieval_batch_size=8, ) @slow def test_rag_sequence_from_pretrained(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="pt" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids input_ids = input_ids.to(torch_device) decoder_input_ids = decoder_input_ids.to(torch_device) with tempfile.TemporaryDirectory() as tmp_dirname: rag_sequence = RagSequenceForGeneration.from_pretrained_question_encoder_generator( "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn", retriever=rag_retriever, config=rag_config, ).to(torch_device) # check that the from pretrained methods work rag_sequence.save_pretrained(tmp_dirname) rag_sequence.from_pretrained(tmp_dirname, retriever=rag_retriever) rag_sequence.to(torch_device) with torch.no_grad(): output = rag_sequence( input_ids, labels=decoder_input_ids, ) loss_pretrained = output.loss del rag_sequence question_encoder = AutoModel.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn") rag_sequence = RagSequenceForGeneration( config=rag_config, question_encoder=question_encoder, generator=generator, retriever=rag_retriever ) rag_sequence.to(torch_device) with torch.no_grad(): output = rag_sequence( input_ids, labels=decoder_input_ids, ) loss_init = output.loss self.assertAlmostEqual(loss_pretrained.item(), loss_init.item(), places=4) @slow def test_rag_token_from_pretrained(self): rag_config = self.get_rag_config() rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( "facebook/dpr-question_encoder-single-nq-base" ) rag_retriever = RagRetriever( rag_config, question_encoder_tokenizer=rag_question_encoder_tokenizer, generator_tokenizer=rag_decoder_tokenizer, ) input_ids = rag_question_encoder_tokenizer( "who sings does he love me with reba", return_tensors="pt" ).input_ids decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids input_ids = input_ids.to(torch_device) decoder_input_ids = decoder_input_ids.to(torch_device) with tempfile.TemporaryDirectory() as tmp_dirname: rag_token = RagTokenForGeneration.from_pretrained_question_encoder_generator( "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn", retriever=rag_retriever, config=rag_config, question_encoder_max_length=200, generator_max_length=200, ).to(torch_device) # check that the from pretrained methods work rag_token.save_pretrained(tmp_dirname) rag_token.from_pretrained(tmp_dirname, retriever=rag_retriever) rag_token.to(torch_device) self.assertTrue(rag_token.question_encoder.config.max_length == 200) self.assertTrue(rag_token.generator.config.max_length == 200) with torch.no_grad(): output = rag_token( input_ids, labels=decoder_input_ids, ) loss_pretrained = output.loss del rag_token question_encoder = AutoModel.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn") rag_token = RagTokenForGeneration( config=rag_config, question_encoder=question_encoder, generator=generator, retriever=rag_retriever ) rag_token.to(torch_device) with torch.no_grad(): output = rag_token( input_ids, labels=decoder_input_ids, ) loss_init = output.loss self.assertAlmostEqual(loss_pretrained.item(), loss_init.item(), places=4)
transformers/tests/models/rag/test_modeling_rag.py/0
{ "file_path": "transformers/tests/models/rag/test_modeling_rag.py", "repo_id": "transformers", "token_count": 21728 }
163
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch RemBERT model. """ import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( RemBertConfig, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertModel, ) from transformers.models.rembert.modeling_rembert import REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST class RemBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, input_embedding_size=18, output_embedding_size=43, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.input_embedding_size = input_embedding_size self.output_embedding_size = output_embedding_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = RemBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, input_embedding_size=self.input_embedding_size, output_embedding_size=self.output_embedding_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RemBertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = RemBertModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = RemBertForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RemBertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = RemBertForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RemBertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = RemBertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = RemBertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = RemBertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class RemBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( RemBertModel, RemBertForMaskedLM, RemBertForCausalLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, ) if is_torch_available() else () ) all_generative_model_classes = (RemBertForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": RemBertModel, "fill-mask": RemBertForMaskedLM, "question-answering": RemBertForQuestionAnswering, "text-classification": RemBertForSequenceClassification, "text-generation": RemBertForCausalLM, "token-classification": RemBertForTokenClassification, "zero-shot": RemBertForSequenceClassification, } if is_torch_available() else {} ) def setUp(self): self.model_tester = RemBertModelTester(self) self.config_tester = ConfigTester(self, config_class=RemBertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) @slow def test_model_from_pretrained(self): for model_name in REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = RemBertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class RemBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_model(self): # Test exact values at the last hidden layer model = RemBertModel.from_pretrained("google/rembert") input_ids = torch.tensor([[312, 56498, 313, 2125, 313]]) segment_ids = torch.tensor([[0, 0, 0, 1, 1]]) with torch.no_grad(): output = model(input_ids, token_type_ids=segment_ids, output_hidden_states=True) hidden_size = 1152 expected_shape = torch.Size((1, 5, hidden_size)) self.assertEqual(output["last_hidden_state"].shape, expected_shape) expected_implementation = torch.tensor( [ [ [0.0754, -0.2022, 0.1904], [-0.3354, -0.3692, -0.4791], [-0.2314, -0.6729, -0.0749], [-0.0396, -0.3105, -0.4234], [-0.1571, -0.0525, 0.5353], ] ] ) # Running on the original tf implementation gives slightly different results here. # Not clear why this variations is present # TODO: Find reason for discrepancy # expected_original_implementation = [[ # [0.07630594074726105, -0.20146065950393677, 0.19107051193714142], # [-0.3405614495277405, -0.36971670389175415, -0.4808273911476135], # [-0.22587086260318756, -0.6656315922737122, -0.07844287157058716], # [-0.04145475849509239, -0.3077218234539032, -0.42316967248916626], # [-0.15887849032878876, -0.054529931396245956, 0.5356100797653198] # ]] self.assertTrue(torch.allclose(output["last_hidden_state"][:, :, :3], expected_implementation, atol=1e-4))
transformers/tests/models/rembert/test_modeling_rembert.py/0
{ "file_path": "transformers/tests/models/rembert/test_modeling_rembert.py", "repo_id": "transformers", "token_count": 9297 }
164
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch SeamlessM4T model. """ import copy import tempfile import unittest from transformers import SeamlessM4TConfig, is_speech_available, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from transformers.trainer_utils import set_seed from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SeamlessM4TForSpeechToSpeech, SeamlessM4TForSpeechToText, SeamlessM4TForTextToSpeech, SeamlessM4TForTextToText, SeamlessM4TModel, ) from transformers.models.seamless_m4t.modeling_seamless_m4t import ( SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_speech_available(): from transformers import SeamlessM4TProcessor class SeamlessM4TModelTester: def __init__( self, parent, input_modality="speech", batch_size=2, seq_length=4, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, max_new_tokens=None, num_labels=3, num_choices=4, scope=None, vocab_size=20, t2u_vocab_size=20, hidden_size=6, num_hidden_layers=2, intermediate_size=6, max_position_embeddings=256, encoder_layers=2, decoder_layers=2, encoder_ffn_dim=6, decoder_ffn_dim=6, t2u_encoder_layers=2, t2u_decoder_layers=2, t2u_encoder_ffn_dim=6, t2u_decoder_ffn_dim=6, num_heads=2, vocoder_num_spkrs=5, vocoder_num_langs=5, upsample_initial_channel=32, unit_embed_dim=25, spkr_embed_dim=6, lang_embed_dim=6, num_conv_pos_embeddings=8, unit_hifi_gan_vocab_size=20, t2u_num_langs=0, t2u_max_new_tokens=25, t2u_offset_tgt_lang=0, vocoder_offset=0, ): self.parent = parent self.input_modality = input_modality self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.vocab_size = vocab_size self.t2u_vocab_size = t2u_vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.max_position_embeddings = max_position_embeddings self.encoder_layers = encoder_layers self.decoder_layers = decoder_layers self.encoder_ffn_dim = encoder_ffn_dim self.decoder_ffn_dim = decoder_ffn_dim self.t2u_encoder_layers = t2u_encoder_layers self.t2u_decoder_layers = t2u_decoder_layers self.t2u_encoder_ffn_dim = t2u_encoder_ffn_dim self.t2u_decoder_ffn_dim = t2u_decoder_ffn_dim self.num_heads = num_heads self.num_attention_heads = num_heads self.vocoder_num_spkrs = vocoder_num_spkrs self.vocoder_num_langs = vocoder_num_langs self.upsample_initial_channel = upsample_initial_channel self.unit_embed_dim = unit_embed_dim self.spkr_embed_dim = spkr_embed_dim self.num_conv_pos_embeddings = num_conv_pos_embeddings self.lang_embed_dim = lang_embed_dim self.max_new_tokens = max_new_tokens self.unit_hifi_gan_vocab_size = unit_hifi_gan_vocab_size self.t2u_num_langs = t2u_num_langs self.t2u_max_new_tokens = t2u_max_new_tokens self.t2u_offset_tgt_lang = t2u_offset_tgt_lang self.vocoder_offset = vocoder_offset def prepare_config_and_inputs(self): if self.input_modality == "text": inputs = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1) else: inputs = ids_tensor([self.batch_size, self.seq_length, 160], self.vocab_size - 1).float() input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1) lm_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = self.get_config() return config, inputs, decoder_input_ids, input_mask, lm_labels def get_config(self): return SeamlessM4TConfig( hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, vocab_size=self.vocab_size, t2u_vocab_size=self.t2u_vocab_size, hidden_size=self.hidden_size, speech_encoder_layers=self.num_heads, speech_encoder_intermediate_size=self.intermediate_size, max_position_embeddings=self.max_position_embeddings, encoder_layers=self.encoder_layers, decoder_layers=self.decoder_layers, encoder_ffn_dim=self.encoder_ffn_dim, decoder_ffn_dim=self.decoder_ffn_dim, t2u_encoder_layers=self.t2u_encoder_layers, t2u_decoder_layers=self.t2u_decoder_layers, t2u_encoder_ffn_dim=self.t2u_encoder_ffn_dim, t2u_decoder_ffn_dim=self.t2u_decoder_ffn_dim, num_attention_heads=self.num_heads, encoder_attention_heads=self.num_heads, decoder_attention_heads=self.num_heads, t2u_encoder_attention_heads=self.num_heads, t2u_decoder_attention_heads=self.num_heads, speech_encoder_attention_heads=self.num_heads, unit_hifigan_vocab_vise=self.t2u_vocab_size, vocoder_num_spkrs=self.vocoder_num_spkrs, vocoder_num_langs=self.vocoder_num_langs, upsample_initial_channel=self.upsample_initial_channel, unit_embed_dim=self.unit_embed_dim, spkr_embed_dim=self.spkr_embed_dim, num_conv_pos_embeddings=self.num_conv_pos_embeddings, lang_embed_dim=self.lang_embed_dim, max_new_tokens=self.max_new_tokens, unit_hifi_gan_vocab_size=self.unit_hifi_gan_vocab_size, t2u_num_langs=self.t2u_num_langs, t2u_max_new_tokens=self.t2u_max_new_tokens, t2u_offset_tgt_lang=self.t2u_offset_tgt_lang, vocoder_offset=self.vocoder_offset, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, decoder_input_ids, input_mask, lm_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, decoder_input_ids, input_mask, lm_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model(self, config, input_ids, decoder_input_ids, input_mask, labels): model = SeamlessM4TModel(config=config) model.to(torch_device) model.eval() if self.input_modality == "text": result = model(input_ids=input_ids, attention_mask=input_mask, decoder_input_ids=decoder_input_ids) result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) else: result = model(input_features=input_ids, attention_mask=input_mask, decoder_input_ids=decoder_input_ids) result = model(input_features=input_ids, decoder_input_ids=decoder_input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) decoder_output = result.logits decoder_past = result.past_key_values encoder_output = result.encoder_last_hidden_state if self.input_modality == "text": seq_length = self.seq_length else: # if speech, expected length has been subsampled. seq_length = model._compute_sub_sample_lengths_from_attention_mask(input_mask).max().item() self.parent.assertEqual(encoder_output.size(), (self.batch_size, seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size(), (self.batch_size, decoder_input_ids.shape[1], self.vocab_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(decoder_past), config.decoder_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]), 4) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, decoder_input_ids, input_mask, lm_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True model = SeamlessM4TModel(config=config) model.to(torch_device) model.eval() # make sure no pad token in decoder_input_ids decoder_input_ids = torch.clamp(decoder_input_ids, config.pad_token_id + 1) # first forward pass outputs = model( input_ids, decoder_input_ids=decoder_input_ids, decoder_attention_mask=input_mask, use_cache=True ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([decoder_input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( input_ids, decoder_input_ids=next_input_ids, decoder_attention_mask=next_attention_mask, output_hidden_states=True, ) output_from_no_past = output_from_no_past["decoder_hidden_states"][0] output_from_past = model( input_ids, decoder_input_ids=next_tokens, decoder_attention_mask=next_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["decoder_hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, decoder_input_ids, input_mask, lm_labels, ) = config_and_inputs input_name = "input_ids" if self.input_modality == "text" else "input_features" inputs_dict = { input_name: input_ids, "attention_mask": input_mask, "decoder_input_ids": decoder_input_ids, "labels": lm_labels, } return config, inputs_dict @require_torch class SeamlessM4TModelWithSpeechInputTest(ModelTesterMixin, unittest.TestCase): is_encoder_decoder = True fx_compatible = False test_missing_keys = False test_pruning = False test_model_parallel = False test_resize_embeddings = False test_headmasking = False test_torchscript = False all_model_classes = ( ( SeamlessM4TModel, SeamlessM4TForSpeechToSpeech, SeamlessM4TForSpeechToText, ) if is_torch_available() else () ) all_generative_model_classes = (SeamlessM4TForSpeechToText,) if is_torch_available() else () input_name = "input_features" def setUp(self): self.model_tester = SeamlessM4TModelTester(self, input_modality="speech") self.config_tester = ConfigTester(self, config_class=SeamlessM4TConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = SeamlessM4TModel.from_pretrained(model_name) self.assertIsNotNone(model) def _get_input_ids_and_config(self, batch_size=2): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict[self.input_name] # cut to half length & take max batch_size 3 sequence_length = input_ids.shape[-1] // 2 input_ids = input_ids[:batch_size, :sequence_length] # generate max 3 tokens max_length = input_ids.shape[-1] + 3 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` if isinstance(config.eos_token_id, int): config.eos_token_id = [config.eos_token_id] config.pad_token_id = config.eos_token_id[0] attention_mask = torch.ones(input_ids.shape[:2], dtype=torch.long)[:batch_size, :sequence_length] return config, input_ids.float(), attention_mask, max_length @staticmethod def _get_encoder_outputs( model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1 ): encoder = model.get_encoder() encoder_outputs = encoder( input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave( num_interleave, dim=0 ) input_ids = ( torch.zeros(input_ids.shape[:2], dtype=torch.int64, layout=input_ids.layout, device=input_ids.device) + model._get_decoder_start_token_id() ) attention_mask = None return encoder_outputs, input_ids, attention_mask def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "pos_bias_v", "pos_bias_u", "pointwise_conv1", "pointwise_conv2", "feature_projection.projection.weight", "feature_projection.projection.bias", "objective.weight", "adapter", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="SeamlessM4TSpeechEncoder doesn't have an embedding layer") def test_inputs_embeds(self): pass @unittest.skip( reason="Expected missing keys serve when using SeamlessM4TForXXX.from_pretrained from a checkpoint saved by SeamlessM4TModel.save_pretrained." ) def test_model_weights_reload_no_missing_tied_weights(self): pass @unittest.skip( reason="SeamlessM4TModel is base class but has actually a bigger architecture than seamlessM4T task-specific models." ) def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="SeamlessM4TModel can takes input_ids or input_features") def test_forward_signature(self): pass @unittest.skip(reason="SeamlessM4T has no base model") def test_save_load_fast_init_from_base(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_attention_outputs(self): # expected length is subsampled so need to change a bit this test if not self.has_attentions: self.skipTest(reason="Model does not output attentions") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) # no more chunk_length test for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) if self.is_encoder_decoder: correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) sub_sampled_length = ( model._compute_sub_sample_lengths_from_attention_mask(inputs_dict["attention_mask"]).max().item() ) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, sub_sampled_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) @unittest.skip( reason="In training model, the first speech encoder layer is sometimes skipped. Training is not supported yet, so the test is ignored." ) def test_retain_grad_hidden_states_attentions(self): pass @require_torch class SeamlessM4TModelWithTextInputTest( ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase ): is_encoder_decoder = True fx_compatible = False test_missing_keys = False test_pruning = False test_model_parallel = False test_resize_embeddings = True test_headmasking = False test_torchscript = False all_model_classes = ( ( SeamlessM4TModel, SeamlessM4TForTextToSpeech, SeamlessM4TForTextToText, ) if is_torch_available() else () ) all_generative_model_classes = (SeamlessM4TForTextToText,) if is_torch_available() else () pipeline_model_mapping = ( { "automatic-speech-recognition": SeamlessM4TForSpeechToText, "conversational": SeamlessM4TForTextToText, "feature-extraction": SeamlessM4TModel, "summarization": SeamlessM4TForTextToText, "text-to-audio": SeamlessM4TForTextToSpeech, "text2text-generation": SeamlessM4TForTextToText, "translation": SeamlessM4TForTextToText, } if is_torch_available() else {} ) def setUp(self): self.model_tester = SeamlessM4TModelTester(self, input_modality="text") self.config_tester = ConfigTester(self, config_class=SeamlessM4TConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = SeamlessM4TModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "pos_bias_v", "pos_bias_u", "pointwise_conv1", "pointwise_conv2", "feature_projection.projection.weight", "feature_projection.projection.bias", "objective.weight", "adapter", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip( reason="Expected missing keys serve when using SeamlessM4TForXXX.from_pretrained from a checkpoint saved by SeamlessM4TModel.save_pretrained." ) def test_model_weights_reload_no_missing_tied_weights(self): pass @unittest.skip(reason="SeamlessM4TModel can take input_ids or input_features") def test_forward_signature(self): pass def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) @unittest.skip( reason="SeamlessM4TModel is base class but has actually a bigger architecture than seamlessM4T task-specific models." ) def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="SeamlessM4T has no base model") def test_save_load_fast_init_from_base(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip( reason="In training model, the first encoder layer is sometimes skipped. Training is not supported yet, so the test is ignored." ) def test_retain_grad_hidden_states_attentions(self): pass @require_torch class SeamlessM4TGenerationTest(unittest.TestCase): # test that non-standard generation works # test generation of: SeamlessM4TModel, SeamlessM4TForSpeechToSpeech, SeamlessM4TForSpeechToText, SeamlessM4TForTextToSpeech def setUp(self): self.speech_model_tester = SeamlessM4TModelTester(self, input_modality="speech") self.text_model_tester = SeamlessM4TModelTester(self, input_modality="text") self.tmpdirname = tempfile.mkdtemp() def update_generation(self, model): lang_code_to_id = { "fra": 4, "eng": 4, } generation_config = copy.deepcopy(model.generation_config) generation_config.__setattr__("text_decoder_lang_to_code_id", lang_code_to_id) generation_config.__setattr__("t2u_lang_code_to_id", lang_code_to_id) generation_config.__setattr__("vocoder_lang_code_to_id", lang_code_to_id) generation_config._from_model_config = False model.generation_config = generation_config def prepare_text_input(self): config, inputs, decoder_input_ids, input_mask, lm_labels = self.text_model_tester.prepare_config_and_inputs() input_dict = { "input_ids": inputs, "attention_mask": input_mask, "tgt_lang": "eng", "num_beams": 2, "do_sample": True, } return config, input_dict def prepare_speech_input(self): config, inputs, decoder_input_ids, input_mask, lm_labels = self.speech_model_tester.prepare_config_and_inputs() input_dict = { "input_features": inputs, "attention_mask": input_mask, "tgt_lang": "fra", "num_beams": 2, "do_sample": True, } return config, input_dict def prepare_speech_and_text_input(self): config, inputs, decoder_input_ids, input_mask, lm_labels = self.speech_model_tester.prepare_config_and_inputs() input_speech = { "input_features": inputs, "attention_mask": input_mask, "tgt_lang": "fra", "num_beams": 2, "do_sample": True, } config, inputs, decoder_input_ids, input_mask, lm_labels = self.text_model_tester.prepare_config_and_inputs() input_text = { "input_ids": inputs, "attention_mask": input_mask, "tgt_lang": "eng", "num_beams": 2, "do_sample": True, } return config, input_speech, input_text def factory_generation_speech_test(self, model, inputs): set_seed(0) output = model.generate(**inputs) return output def test_speech_generation(self): config, input_speech, input_text = self.prepare_speech_and_text_input() model = SeamlessM4TModel(config=config) self.update_generation(model) model.save_pretrained(self.tmpdirname) model.to(torch_device) model.eval() output_original_text = self.factory_generation_speech_test(model, input_text) output_original_speech = self.factory_generation_speech_test(model, input_speech) state_dict = model.state_dict() text_model = SeamlessM4TForTextToSpeech.from_pretrained(self.tmpdirname) self.update_generation(text_model) text_model.to(torch_device) text_model.eval() output_text = self.factory_generation_speech_test(model, input_text) speech_model = SeamlessM4TForSpeechToSpeech.from_pretrained(self.tmpdirname) self.update_generation(speech_model) speech_model.to(torch_device) speech_model.eval() for name, tensor in speech_model.state_dict().items(): right_tensor = state_dict.get(name) self.assertEqual(tensor.tolist(), right_tensor.tolist(), f"Tensor {name}") output_speech = self.factory_generation_speech_test(model, input_speech) # test same text output from input text self.assertListEqual(output_original_text[0].ravel().tolist(), output_text[0].ravel().tolist()) self.assertListEqual(output_original_text[1].ravel().tolist(), output_text[1].ravel().tolist()) # test same speech output from input text # assertTrue because super long list makes this hang in case of failure self.assertTrue( output_original_speech[0].ravel().tolist() == output_speech[0].ravel().tolist(), "Speech generated was different", ) self.assertTrue( output_original_speech[1].ravel().tolist() == output_speech[1].ravel().tolist(), "Speech generated was different", ) def test_text_generation(self): config, input_speech, input_text = self.prepare_speech_and_text_input() # to return speech input_speech["generate_speech"] = False input_text["generate_speech"] = False model = SeamlessM4TModel(config=config) self.update_generation(model) model.save_pretrained(self.tmpdirname) model.to(torch_device) model.eval() output_original_text = self.factory_generation_speech_test(model, input_text) output_original_speech = self.factory_generation_speech_test(model, input_speech) # other models don't need it input_speech.pop("generate_speech") input_text.pop("generate_speech") state_dict = model.state_dict() text_model = SeamlessM4TForTextToText.from_pretrained(self.tmpdirname) self.update_generation(text_model) text_model.to(torch_device) text_model.eval() for name, tensor in text_model.state_dict().items(): right_tensor = state_dict.get(name) self.assertEqual(tensor.tolist(), right_tensor.tolist()) output_text = self.factory_generation_speech_test(text_model, input_text) speech_model = SeamlessM4TForSpeechToText.from_pretrained(self.tmpdirname) for name, tensor in speech_model.state_dict().items(): right_tensor = state_dict.get(name) self.assertEqual(tensor.tolist(), right_tensor.tolist(), f"Tensor {name}") self.update_generation(speech_model) speech_model.to(torch_device) speech_model.eval() output_speech = self.factory_generation_speech_test(speech_model, input_speech) # test same text output from input text self.assertListEqual(output_original_text[0].ravel().tolist(), output_text.ravel().tolist()) # test same speech output from input text self.assertListEqual(output_original_speech[0].ravel().tolist(), output_speech.ravel().tolist()) def test_generation(self): config, input_speech, input_text = self.prepare_speech_and_text_input() input_speech["num_beams"] = 3 input_speech["do_sample"] = True input_speech["num_return_sequences"] = 3 input_text["num_beams"] = 3 input_text["do_sample"] = True input_text["num_return_sequences"] = 3 for model_class in [SeamlessM4TForSpeechToSpeech, SeamlessM4TForSpeechToText, SeamlessM4TModel]: model = model_class(config=config) self.update_generation(model) model.to(torch_device) model.eval() output = model.generate(**input_speech) output = output[0] if isinstance(output, tuple) else output self.assertEqual(output.shape[0], 3 * input_speech["input_features"].shape[0]) for model_class in [SeamlessM4TForTextToSpeech, SeamlessM4TForTextToText, SeamlessM4TModel]: model = model_class(config=config) self.update_generation(model) model.to(torch_device) model.eval() output = model.generate(**input_text) output = output[0] if isinstance(output, tuple) else output self.assertEqual(output.shape[0], 3 * input_text["input_ids"].shape[0]) @require_torch class SeamlessM4TModelIntegrationTest(unittest.TestCase): repo_id = "facebook/hf-seamless-m4t-medium" def assertListAlmostEqual(self, list1, list2, tol=1e-3): self.assertEqual(len(list1), len(list2)) for a, b in zip(list1, list2): self.assertAlmostEqual(a, b, delta=tol) @cached_property def processor(self): return SeamlessM4TProcessor.from_pretrained(self.repo_id) @cached_property def input_text(self): # corresponds to "C'est un test." with seamlessM4T_medium checkpoint input_ids = torch.tensor([[256057, 152, 248116, 354, 159, 7356, 248075, 3]]) # fmt: skip input_ids = input_ids.to(torch_device) attention_mask = torch.ones_like(input_ids).to(torch_device) inputs = { "attention_mask": attention_mask, "input_ids": input_ids, } return inputs @cached_property def input_audio(self): set_seed(0) seq_len = 20000 sampling_rate = 16000 input_features = torch.rand((2, seq_len)) return self.processor(audios=[input_features.tolist()], sampling_rate=sampling_rate, return_tensors="pt").to( torch_device ) def factory_test_task(self, class1, class2, inputs, class1_kwargs, class2_kwargs): model1 = class1.from_pretrained(self.repo_id).to(torch_device) model2 = class2.from_pretrained(self.repo_id).to(torch_device) set_seed(0) output_1 = model1.generate(**inputs, **class1_kwargs) set_seed(0) output_2 = model2.generate(**inputs, **class2_kwargs) for key in output_1: if isinstance(output_1[key], torch.Tensor): if len(output_1[key].shape) == 0: self.assertEqual(output_1[key].item(), output_2[key].item()) else: self.assertListAlmostEqual(output_1[key].squeeze().tolist(), output_2[key].squeeze().tolist()) @slow def test_to_eng_text(self): model = SeamlessM4TModel.from_pretrained(self.repo_id).to(torch_device) # test text - tgt lang: eng expected_text_tokens = [3, 256047, 3291, 248116, 248066, 9, 7356, 248075, 3] # fmt: skip # fmt: off expected_unit_tokens = [ 2,10051,8980,8212,949,1270,4311,1123,5918,2333,5311,3882,2415,5284,1123,612,8816,6370,5386,7334,4345,5645, 9437,5748,1378,9818,4319,7968,7375,2909,9119,5151,8728,5335,3896,4013,8939,8885,6048,9530,3167,5833,1072,693, 431,9867,364,7909,4608,5938,1889,9984,7947,4944,6171,3767,9861,9169,1187,8365,4571,7635,7784,7635,800,2393, 32,5380,5852,8289,2530,2762,1833,2056,3553,4641,3553,5683,370,2288,1344,1518,7534,703,8359,7699,2 ] # fmt: on expected_wav_slice = [-3e-05, -0.0004, -0.00037, -0.00013, -6e-05, 0.00012, -0.00016, 0.00025, 7e-05, -3e-05] # fmt: skip set_seed(0) output = model.generate(**self.input_text, num_beams=1, tgt_lang="eng", return_intermediate_token_ids=True) self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist()) # FOR NOW, only first units correspondance self.assertListEqual(expected_unit_tokens[:10], output.unit_sequences.squeeze().tolist()[:10]) self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60]) @slow def test_to_swh_text(self): model = SeamlessM4TModel.from_pretrained(self.repo_id).to(torch_device) # test text - tgt lang: swh expected_text_tokens = [3, 256168, 1665, 188589, 7040, 248075, 3] # fmt: skip # fmt: off expected_unit_tokens = [ 2,10071,5729,9995,3089,7546,1204,1721,2532,4340,5623,3496,432,7730,9096,7677,3143,8211,6447,8399,4248,3565, 4529,7700,9308,217,6476,3485,9667,3194,8476,4923,5593,1148,4466,7416,4872,463,4872,253,2348,4640,3450,2133, 6318,2806,817,7613,2698,6563,8712,8344,9286,6878,6387,4281,6387,640,6387,3200,640,8355,640,6708,979,1738,2 ] # fmt: on expected_wav_slice = [1e-05, -7e-05, -4e-05, -4e-05, -6e-05, -9e-05, -0.0001, -2e-05, -7e-05, -2e-05] # fmt: skip set_seed(0) output = model.generate(**self.input_text, num_beams=1, tgt_lang="swh", return_intermediate_token_ids=True) self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist()) self.assertListEqual(expected_unit_tokens[:10], output.unit_sequences.squeeze().tolist()[:10]) self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60]) @slow def test_to_rus_speech(self): model = SeamlessM4TModel.from_pretrained(self.repo_id).to(torch_device) # test audio - tgt lang: rus expected_text_tokens = [3, 256147, 1197, 73565, 3413, 537, 233331, 248075, 3] # fmt: skip # fmt: off expected_unit_tokens = [ 2, 10067, 5729, 4798, 9631, 8378, 4446, 2393, 6901, 5983, 2817, 4629, 8532, 1991, 2931, 8576, 8857, 5936, 4317, 9000, 7740, 7995, 1225, 5980, 6094, 1420, 5373, 8771, 6600, 4487, 7029, 3630, 6740, 4870, 1483, 3003, 5585, 5511, 7465, 3222, 32, 6272, 1950, 3120, 5368, 639, 3713, 5935, 7943, 567, 6129, 6822, 1226, 5063, 9878, 7756, 8825, 1078, 5943, 457, 9282, 9668, 817, 7613, 2698, 6563, 8712, 8704, 9286, 8704, 6387, 4281, 6387, 640, 3200, 6387, 640, 8355, 6708, 979, 1738, 2 ] # fmt: on expected_wav_slice = [0.00013, 0.00012, 0.00014, 3e-05, 0.0, -6e-05, -0.00018, -0.00016, -0.00021, -0.00018] # fmt: skip set_seed(0) output = model.generate(**self.input_audio, num_beams=1, tgt_lang="rus", return_intermediate_token_ids=True) self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist()) self.assertListEqual(expected_unit_tokens[:10], output.unit_sequences.squeeze().tolist()[:10]) self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60]) @slow def test_text_to_text_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True, "generate_speech": False} kwargs2 = { "tgt_lang": "eng", "output_hidden_states": True, "return_dict_in_generate": True, "output_scores": True, } self.factory_test_task(SeamlessM4TModel, SeamlessM4TForTextToText, self.input_text, kwargs1, kwargs2) @slow def test_speech_to_text_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True, "generate_speech": False} kwargs2 = { "tgt_lang": "eng", "output_hidden_states": True, "return_dict_in_generate": True, "output_scores": True, } self.factory_test_task(SeamlessM4TModel, SeamlessM4TForSpeechToText, self.input_audio, kwargs1, kwargs2) @slow def test_speech_to_speech_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True} self.factory_test_task(SeamlessM4TModel, SeamlessM4TForSpeechToSpeech, self.input_audio, kwargs1, kwargs1) @slow def test_text_to_speech_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True} self.factory_test_task(SeamlessM4TModel, SeamlessM4TForTextToSpeech, self.input_text, kwargs1, kwargs1)
transformers/tests/models/seamless_m4t/test_modeling_seamless_m4t.py/0
{ "file_path": "transformers/tests/models/seamless_m4t/test_modeling_seamless_m4t.py", "repo_id": "transformers", "token_count": 21929 }
165
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile import unittest from transformers import SPIECE_UNDERLINE, AddedToken, BatchEncoding, SiglipTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): FRAMEWORK = "pt" elif is_tf_available(): FRAMEWORK = "tf" else: FRAMEWORK = "jax" @require_sentencepiece @require_tokenizers class SiglipTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = SiglipTokenizer test_rust_tokenizer = False test_sentencepiece = True test_sentencepiece_ignore_case = True # Copied from tests.models.t5.test_tokenization_t5.T5TokenizationTest.setUp with T5->Siglip def setUp(self): super().setUp() # We have a SentencePiece fixture for testing tokenizer = SiglipTokenizer(SAMPLE_VOCAB) tokenizer.save_pretrained(self.tmpdirname) # Copied from tests.models.t5.test_tokenization_t5.T5TokenizationTest.test_convert_token_and_id with T5->Siglip def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "<s>" token_id = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<unk>") self.assertEqual(vocab_keys[1], "<s>") def test_full_tokenizer(self): tokenizer = SiglipTokenizer(SAMPLE_VOCAB) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁this", "▁is", "▁a", "▁t", "est"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [66, 46, 10, 170, 382]) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, [ SPIECE_UNDERLINE, "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ], ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual(ids, [7, 23, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 12, 66, 46, 72, 80, 6, 0]) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, [ SPIECE_UNDERLINE, "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ], ) @cached_property def siglip_tokenizer(self): return SiglipTokenizer.from_pretrained("google/siglip-base-patch16-224") # Copied from tests.models.t5.test_tokenization_t5.T5TokenizationTest.get_tokenizer with T5->Siglip def get_tokenizer(self, **kwargs) -> SiglipTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) # Copied from tests.models.t5.test_tokenization_t5.T5TokenizationTest.test_rust_and_python_full_tokenizers with T5->Siglip def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "I was born in 92000, and this is falsé." tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) def test_eos_treatment(self): tokenizer = self.siglip_tokenizer batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"]) batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""]) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"]) def test_prepare_batch(self): tokenizer = self.siglip_tokenizer src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] expected_src_tokens = [262, 266, 476, 8532, 270, 4460, 3949, 1682, tokenizer.eos_token_id] batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK) self.assertIsInstance(batch, BatchEncoding) if FRAMEWORK != "jax": result = list(batch.input_ids.numpy()[0]) else: result = list(batch.input_ids.tolist()[0]) self.assertListEqual(expected_src_tokens, result) self.assertEqual((2, 9), batch.input_ids.shape) def test_empty_target_text(self): tokenizer = self.siglip_tokenizer src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", batch) self.assertNotIn("decoder_input_ids", batch) self.assertNotIn("decoder_attention_mask", batch) def test_max_length(self): tokenizer = self.siglip_tokenizer tgt_text = ["Summary of the text.", "Another summary."] targets = tokenizer( text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK ) self.assertEqual(32, targets["input_ids"].shape[1]) def test_eos_in_input(self): tokenizer = self.siglip_tokenizer src_text = ["A long paragraph for summarization. </s>"] tgt_text = ["Summary of the text. </s>"] expected_src_tokens = [262, 266, 476, 8532, 270, 4460, 3949, 1682, 1] expected_tgt_tokens = [6254, 267, 260, 1443, 1] batch = tokenizer(src_text, text_target=tgt_text) self.assertEqual(expected_src_tokens, batch["input_ids"][0]) self.assertEqual(expected_tgt_tokens, batch["labels"][0]) @unittest.skip(reason="SiglipTokenizer strips the punctuation") def test_subword_regularization_tokenizer(self): pass @unittest.skip(reason="SiglipTokenizer strips the punctuation") def test_pickle_subword_regularization_tokenizer(self): pass # Copied from tests.models.t5.test_tokenization_t5.T5TokenizationTest.test_special_tokens_initialization with T5->Siglip def test_special_tokens_initialization(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): added_tokens = [f"<extra_id_{i}>" for i in range(100)] + [AddedToken("<special>", lstrip=True)] tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) tokenizer_cr = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True ) tokenizer_p = self.tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) p_output = tokenizer_p.encode("Hey this is a <special> token") r_output = tokenizer_r.encode("Hey this is a <special> token") cr_output = tokenizer_cr.encode("Hey this is a <special> token") special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0] self.assertEqual(p_output, r_output) self.assertEqual(cr_output, r_output) self.assertTrue(special_token_id in p_output) self.assertTrue(special_token_id in r_output) self.assertTrue(special_token_id in cr_output) # Copied from tests.models.t5.test_tokenization_t5.T5TokenizationTest.test_special_tokens_initialization_with_non_empty_additional_special_tokens with T5->Siglip def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): tokenizer_list = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(tmp_dir) with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file: special_tokens_map = json.load(json_file) with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file: tokenizer_config = json.load(json_file) added_tokens_extra_ids = [f"<extra_id_{i}>" for i in range(100)] special_tokens_map["additional_special_tokens"] = added_tokens_extra_ids + [ "an_additional_special_token" ] tokenizer_config["additional_special_tokens"] = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: json.dump(special_tokens_map, outfile) with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: json.dump(tokenizer_config, outfile) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files tokenizer_without_change_in_init = tokenizer_class.from_pretrained( tmp_dir, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # BySiglipTokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"]) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained new_added_tokens = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=True)] tokenizer = tokenizer_class.from_pretrained( tmp_dir, additional_special_tokens=new_added_tokens, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"]) ), ) def test_sentencepiece_tokenize_and_convert_tokens_to_string(self): """Test ``_tokenize`` and ``convert_tokens_to_string``.""" if not self.test_sentencepiece: return tokenizer = self.get_tokenizer() text = "This is text to test the tokenizer." if self.test_sentencepiece_ignore_case: text = text.lower() tokens = tokenizer.tokenize(text) self.assertTrue(len(tokens) > 0) # check if converting back to original text works reverse_text = tokenizer.convert_tokens_to_string(tokens) if self.test_sentencepiece_ignore_case: reverse_text = reverse_text.lower() expected_text = "this is text to test the tokenizer" self.assertEqual(reverse_text, expected_text) special_tokens = tokenizer.all_special_tokens special_tokens_string = tokenizer.convert_tokens_to_string(special_tokens) for special_token in special_tokens: self.assertIn(special_token, special_tokens_string) if self.test_rust_tokenizer: rust_tokenizer = self.get_rust_tokenizer() special_tokens_string_rust = rust_tokenizer.convert_tokens_to_string(special_tokens) self.assertEqual(special_tokens_string, special_tokens_string_rust) # overwritten from `test_tokenization_common` since Siglip has no max length # Copied from tests.models.t5.test_tokenization_t5.T5TokenizationTest.test_pretrained_model_lists with T5->Siglip def test_pretrained_model_lists(self): # We should have at least one default checkpoint for each tokenizer # We should specify the max input length as well (used in some part to list the pretrained checkpoints) self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1) @slow def test_tokenizer_integration(self): tokenizer = SiglipTokenizer.from_pretrained("google/siglip-base-patch16-224") # fmt: off texts = [ 'the real mountain view', 'Zürich', 'San Francisco', 'a picture of a laptop with the lockscreen on, a cup of cappucino, salt and pepper grinders. The view through the window reveals lake Zürich and the Alps in the background of the city.', ] expected_input_ids = [ [260, 638, 3293, 870, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [262, 761, 5879, 5345, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [262, 264, 452, 20563, 15949, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [262, 266, 1357, 267, 262, 266, 4429, 275, 260, 3940, 6360, 277, 262, 266, 3064, 267, 3549, 388, 16538, 296, 298, 2617, 263, 4869, 14998, 264, 260, 870, 393, 260, 1710, 7958, 4324, 262, 761, 5879, 5345, 263, 260, 1518, 388, 264, 268, 260, 1970, 267, 260, 741, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ] # fmt: on for text, expected in zip(texts, expected_input_ids): input_ids = tokenizer(text, padding="max_length").input_ids self.assertListEqual(input_ids, expected) def test_some_edge_cases(self): tokenizer = SiglipTokenizer.from_pretrained("google/siglip-base-patch16-224", legacy=False) sp_tokens = tokenizer.sp_model.encode("</s>>", out_type=str) self.assertEqual(sp_tokens, ["</", "s", ">", ">"]) tokens = tokenizer.tokenize("</s>>") self.assertNotEqual(sp_tokens, tokens) self.assertEqual(tokens, ["</s>"]) tokens = tokenizer.tokenize("") self.assertEqual(tokens, []) self.assertEqual(tokens, tokenizer.sp_model.encode("", out_type=str)) tokens = tokenizer.tokenize(" ") self.assertEqual(tokens, []) self.assertEqual(tokens, tokenizer.sp_model.encode(" ", out_type=str)) tokens = tokenizer.tokenize("▁") self.assertEqual(tokens, []) self.assertEqual(tokens, tokenizer.sp_model.encode("▁", out_type=str)) tokens = tokenizer.tokenize(" ▁") self.assertEqual(tokens, []) self.assertEqual(tokens, tokenizer.sp_model.encode("▁", out_type=str)) @require_sentencepiece @require_tokenizers class CommonSpmIntegrationTests(unittest.TestCase): """ A class that regroups important test to make sure that we properly handle the special tokens. """ @classmethod def setUpClass(cls): tokenizer = SiglipTokenizer(SAMPLE_VOCAB, extra_ids=0, legacy=False) tokenizer.add_special_tokens( {"additional_special_tokens": [AddedToken("<extra_id_0>", rstrip=False, lstrip=False)]} ) cls.tokenizer = tokenizer def test_add_dummy_prefix(self): # make sure `'▁'` is prepended, and outputs match sp_model's # `sentencepiece.NormalizerSpec.add_dummy_prefix` attribute input_ids = self.tokenizer.encode(". Hello", add_special_tokens=False) self.assertEqual(input_ids, [37, 86, 20]) self.assertEqual(input_ids, [37, 86, 20]) tokens = self.tokenizer.tokenize(". Hello") self.assertEqual(tokens, ["▁he", "ll", "o"]) tokens = self.tokenizer.tokenize("") self.assertEqual(tokens, []) self.assertEqual(tokens, self.tokenizer.sp_model.encode("", out_type=str)) tokens = self.tokenizer.tokenize(" ") self.assertEqual(tokens, []) self.assertEqual(tokens, self.tokenizer.sp_model.encode(" ", out_type=str)) tokens = self.tokenizer.tokenize("▁") self.assertEqual(tokens, []) self.assertEqual(tokens, self.tokenizer.sp_model.encode("▁", out_type=str)) def test_remove_extra_whitespaces(self): # make sure the extra spaces are eaten # sentencepiece.NormalizerSpec.remove_extra_whitespaces attribute input_ids = self.tokenizer.encode(" . Hello", add_special_tokens=False) self.assertEqual(input_ids, [37, 86, 20]) self.assertEqual(input_ids, [37, 86, 20]) tokens = self.tokenizer.tokenize(" . Hello") self.assertEqual(tokens, ["▁he", "ll", "o"]) # `'▁'` is also a whitespace input_ids = self.tokenizer.encode("▁He is not") self.assertEqual(input_ids, [37, 46, 44, 2]) tokens = self.tokenizer.tokenize("▁He is not") self.assertEqual(tokens, ["▁he", "▁is", "▁not"]) # no extra space added input_ids = self.tokenizer.encode("▁He is not ▁He") self.assertEqual(input_ids, [37, 46, 44, 37, 2]) tokens = self.tokenizer.tokenize("▁He is not ▁He") self.assertEqual(tokens, ["▁he", "▁is", "▁not", "▁he"]) # spaces are eaten by spm even if not start
transformers/tests/models/siglip/test_tokenization_siglip.py/0
{ "file_path": "transformers/tests/models/siglip/test_tokenization_siglip.py", "repo_id": "transformers", "token_count": 9751 }
166
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the SpeechT5 processors.""" import json import os import shutil import tempfile import unittest from transformers import is_speech_available, is_torch_available from transformers.models.speecht5 import SpeechT5Tokenizer from transformers.testing_utils import get_tests_dir, require_torch from transformers.utils import FEATURE_EXTRACTOR_NAME if is_speech_available() and is_torch_available(): from transformers import SpeechT5FeatureExtractor, SpeechT5Processor from .test_feature_extraction_speecht5 import floats_list SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_torch class SpeechT5ProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() tokenizer = SpeechT5Tokenizer(SAMPLE_VOCAB) tokenizer.save_pretrained(self.tmpdirname) feature_extractor_map = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 16000, "do_normalize": False, "num_mel_bins": 80, "hop_length": 16, "win_length": 64, "win_function": "hann_window", "fmin": 80, "fmax": 7600, "mel_floor": 1e-10, "reduction_factor": 2, "return_attention_mask": True, } self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME) with open(self.feature_extraction_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(feature_extractor_map) + "\n") def get_tokenizer(self, **kwargs): return SpeechT5Tokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_feature_extractor(self, **kwargs): return SpeechT5FeatureExtractor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() feature_extractor = self.get_feature_extractor() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) processor.save_pretrained(self.tmpdirname) processor = SpeechT5Processor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, SpeechT5Tokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, SpeechT5FeatureExtractor) def test_save_load_pretrained_additional_features(self): processor = SpeechT5Processor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0) processor = SpeechT5Processor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, SpeechT5Tokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, SpeechT5FeatureExtractor) def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(audio=raw_speech, return_tensors="np") input_processor = processor(audio=raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_feature_extractor_target(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(audio_target=raw_speech, return_tensors="np") input_processor = processor(audio_target=raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "This is a test string" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_tokenizer_target(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "This is a test string" encoded_processor = processor(text_target=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_tokenizer_decode(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg="`processor` and `feature_extractor` model input names do not match", )
transformers/tests/models/speecht5/test_processor_speecht5.py/0
{ "file_path": "transformers/tests/models/speecht5/test_processor_speecht5.py", "repo_id": "transformers", "token_count": 2860 }
167
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Swin2SR model. """ import unittest from transformers import Swin2SRConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import Swin2SRForImageSuperResolution, Swin2SRModel from transformers.models.swin2sr.modeling_swin2sr import SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import Swin2SRImageProcessor class Swin2SRModelTester: def __init__( self, parent, batch_size=13, image_size=32, patch_size=1, num_channels=3, num_channels_out=1, embed_dim=16, depths=[1, 2, 1], num_heads=[2, 2, 4], window_size=2, mlp_ratio=2.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", use_absolute_embeddings=False, patch_norm=True, initializer_range=0.02, layer_norm_eps=1e-5, is_training=True, scope=None, use_labels=False, upscale=2, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_channels_out = num_channels_out self.embed_dim = embed_dim self.depths = depths self.num_heads = num_heads self.window_size = window_size self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_absolute_embeddings = use_absolute_embeddings self.patch_norm = patch_norm self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.is_training = is_training self.scope = scope self.use_labels = use_labels self.upscale = upscale # here we set some attributes to make tests pass self.num_hidden_layers = len(depths) self.hidden_size = embed_dim self.seq_length = (image_size // patch_size) ** 2 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return Swin2SRConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_channels_out=self.num_channels_out, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, upscale=self.upscale, ) def create_and_check_model(self, config, pixel_values, labels): model = Swin2SRModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.embed_dim, self.image_size, self.image_size) ) def create_and_check_for_image_super_resolution(self, config, pixel_values, labels): model = Swin2SRForImageSuperResolution(config) model.to(torch_device) model.eval() result = model(pixel_values) expected_image_size = self.image_size * self.upscale self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels_out, expected_image_size, expected_image_size), ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class Swin2SRModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (Swin2SRModel, Swin2SRForImageSuperResolution) if is_torch_available() else () pipeline_model_mapping = ( {"image-feature-extraction": Swin2SRModel, "image-to-image": Swin2SRForImageSuperResolution} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False test_torchscript = False def setUp(self): self.model_tester = Swin2SRModelTester(self) self.config_tester = ConfigTester(self, config_class=Swin2SRConfig, embed_dim=37) def test_config(self): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_for_image_super_resolution(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_super_resolution(*config_and_inputs) # TODO: check if this works again for PyTorch 2.x.y @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0.") def test_multi_gpu_data_parallel_forward(self): pass @unittest.skip(reason="Swin2SR does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Swin2SR does not support training yet") def test_training(self): pass @unittest.skip(reason="Swin2SR does not support training yet") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) @slow def test_model_from_pretrained(self): for model_name in SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Swin2SRModel.from_pretrained(model_name) self.assertIsNotNone(model) # overwriting because of `logit_scale` parameter def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if "logit_scale" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions expected_num_attentions = len(self.model_tester.depths) self.assertEqual(len(attentions), expected_num_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True window_size_squared = config.window_size**2 model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), expected_num_attentions) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_attentions) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) @require_vision @require_torch @slow class Swin2SRModelIntegrationTest(unittest.TestCase): def test_inference_image_super_resolution_head(self): processor = Swin2SRImageProcessor() model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64").to(torch_device) image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size([1, 3, 976, 1296]) self.assertEqual(outputs.reconstruction.shape, expected_shape) expected_slice = torch.tensor( [[0.5458, 0.5546, 0.5638], [0.5526, 0.5565, 0.5651], [0.5396, 0.5426, 0.5621]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.reconstruction[0, 0, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/swin2sr/test_modeling_swin2sr.py/0
{ "file_path": "transformers/tests/models/swin2sr/test_modeling_swin2sr.py", "repo_id": "transformers", "token_count": 5792 }
168
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ViLT model. """ import unittest from datasets import load_dataset from packaging import version from transformers import ViltConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltForTokenClassification, ViltModel, ) from transformers.models.vilt.modeling_vilt import VILT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import ViltProcessor class ViltModelTester: def __init__( self, parent, batch_size=13, seq_length=7, image_size=30, patch_size=2, num_channels=3, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, scope=None, modality_type_vocab_size=2, add_multiple_images=False, num_images=-1, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope self.modality_type_vocab_size = modality_type_vocab_size self.add_multiple_images = add_multiple_images self.num_images = num_images # we set the expected sequence length (which is used in several tests) # this is equal to the seq length of the text tokens + number of image patches + 1 for the CLS token self.expected_seq_len = self.seq_length + (self.image_size // self.patch_size) ** 2 + 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) if self.add_multiple_images: pixel_values = floats_tensor([self.batch_size, 2, self.num_channels, self.image_size, self.image_size]) else: pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) if self.use_labels: token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = self.get_config() return (config, input_ids, token_type_ids, input_mask, pixel_values, token_labels) def get_config(self): return ViltConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, num_labels=self.num_labels, modality_type_vocab_size=self.modality_type_vocab_size, num_images=self.num_images, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, pixel_values, token_labels, ): model = ViltModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, pixel_values=pixel_values) result = model(input_ids, token_type_ids=token_type_ids, pixel_values=pixel_values) result = model(input_ids, pixel_values=pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) ) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, pixel_values, token_labels, ): model = ViltForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, pixel_values=pixel_values) result = model(input_ids, token_type_ids=token_type_ids, pixel_values=pixel_values) result = model(input_ids, pixel_values=pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, pixel_values, token_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, "pixel_values": pixel_values, } return config, inputs_dict def prepare_pixel_values(self): return floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) @require_torch class ViltModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( ViltModel, ViltForQuestionAnswering, ViltForImageAndTextRetrieval, ViltForMaskedLM, ViltForTokenClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"image-feature-extraction": ViltModel, "visual-question-answering": ViltForQuestionAnswering} if is_torch_available() else {} ) test_pruning = False test_headmasking = False test_torchscript = False model_split_percents = [0.5, 0.8, 0.9] # ViltForMaskedLM, ViltForQuestionAnswering and ViltForImagesAndTextClassification require special treatment def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "ViltForQuestionAnswering": inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, self.model_tester.num_labels, device=torch_device ) elif model_class.__name__ in ["ViltForMaskedLM", "ViltForTokenClassification"]: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) elif model_class.__name__ == "ViltForImagesAndTextClassification": inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = ViltModelTester(self) self.config_tester = ConfigTester(self, config_class=ViltConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True if model_class.__name__ == "ViltForImagesAndTextClassification": config.modality_type_vocab_size = 3 # ViltForImageAndTextRetrieval doesn't support training for now if model_class in [*get_values(MODEL_MAPPING), ViltForImageAndTextRetrieval]: continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) for k, v in inputs.items(): print(k, v.shape) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True # ViltForImageAndTextRetrieval doesn't support training for now if ( model_class in [*get_values(MODEL_MAPPING), ViltForImageAndTextRetrieval] or not model_class.supports_gradient_checkpointing ): continue model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip( reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic hidden states""" ) def test_save_load(self): pass @unittest.skip( reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic hidden states""" ) def test_determinism(self): pass @unittest.skip( reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic hidden states""" ) def test_model_outputs_equivalence(self): pass def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "expected_seq_len", None) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions if model_class.__name__ == "ViltForImagesAndTextClassification": # attentions are a list of length num_images # each element contains the attentions of a particular image index self.assertEqual(len(attentions), self.model_tester.num_images) self.assertEqual(len(attentions[0]), self.model_tester.num_hidden_layers) else: self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions if model_class.__name__ == "ViltForImagesAndTextClassification": # attentions are a list of length num_images # each element contains the attentions of a particular image index self.assertEqual(len(attentions), self.model_tester.num_images) self.assertEqual(len(attentions[0]), self.model_tester.num_hidden_layers) else: self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) if model_class.__name__ == "ViltForImagesAndTextClassification": self.assertListEqual( list(attentions[0][0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) else: self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions if model_class.__name__ == "ViltForImagesAndTextClassification": self.assertEqual(len(self_attentions), self.model_tester.num_images) self.assertEqual(len(self_attentions[0]), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0][0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) else: self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) if model_class.__name__ == "ViltForImagesAndTextClassification": # hidden_states are a list of length num_images # each element contains the hidden states of a particular image index self.assertEqual(len(hidden_states), self.model_tester.num_images) self.assertEqual(len(hidden_states[0]), expected_num_layers) else: self.assertEqual(len(hidden_states), expected_num_layers) seq_length = self.model_tester.expected_seq_len if model_class.__name__ == "ViltForImagesAndTextClassification": self.assertListEqual( list(hidden_states[0][0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) else: self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: print("Model class:", model_class) inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] attentions = outputs.attentions[0] if model_class.__name__ == "ViltForImagesAndTextClassification": # hidden_states are a list of length num_images # each element contains the hidden states of a particular image index hidden_states[0].retain_grad() attentions[0].retain_grad() else: hidden_states.retain_grad() attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) if model_class.__name__ == "ViltForImagesAndTextClassification": # hidden_states are a list of length num_images # each element contains the hidden states of a particular image index self.assertIsNotNone(hidden_states[0].grad) self.assertIsNotNone(attentions[0].grad) else: self.assertIsNotNone(hidden_states.grad) self.assertIsNotNone(attentions.grad) @slow def test_model_from_pretrained(self): for model_name in VILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ViltModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class ViltForImagesAndTextClassificationModelTest(ViltModelTest, unittest.TestCase): all_model_classes = (ViltForImagesAndTextClassification,) if is_torch_available() else () def setUp(self): self.model_tester = ViltModelTester(self, modality_type_vocab_size=3, add_multiple_images=True, num_images=2) self.config_tester = ConfigTester(self, config_class=ViltConfig, hidden_size=37) @unittest.skip("We only test the model that takes in multiple images") def test_model(self): pass @unittest.skip("We only test the model that takes in multiple images") def test_for_token_classification(self): pass # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ViltModelIntegrationTest(unittest.TestCase): @cached_property def default_processor(self): return ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") if is_vision_available() else None @slow def test_inference_masked_lm(self): model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm").to(torch_device) processor = self.default_processor image = prepare_img() text = "a bunch of [MASK] laying on a [MASK]." inputs = processor(image, text, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size([1, 11, 30522]) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-12.5061, -12.5123, -12.5174]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3], expected_slice, atol=1e-4)) # verify masked token prediction equals "cats" predicted_id = outputs.logits[0, 4, :].argmax(-1).item() assert processor.decode([predicted_id]) == "cats" @slow def test_inference_visual_question_answering(self): model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa").to(torch_device) processor = self.default_processor image = prepare_img() text = "How many cats are there?" inputs = processor(image, text, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 3129)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-15.9495, -18.1472, -10.3041]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) # compute loss vqa_labels = [[2, 3, 155, 800]] vqa_scores = [[1.0, 0.3, 0.3, 0.3]] labels = torch.zeros(1, model.config.num_labels).to(torch_device) for i, (labels_example, scores_example) in enumerate(zip(vqa_labels, vqa_scores)): for l, s in zip(labels_example, scores_example): labels[i, l] = s # forward pass outputs = model(**inputs, labels=labels) # verify we have a positive loss self.assertTrue(outputs.loss > 0) @slow def test_inference_natural_language_visual_reasoning(self): model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2").to( torch_device ) processor = self.default_processor dataset = load_dataset("hf-internal-testing/fixtures_nlvr2", split="test") image1 = Image.open(dataset[0]["file"]).convert("RGB") image2 = Image.open(dataset[1]["file"]).convert("RGB") text = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) encoding_1 = processor(image1, text, return_tensors="pt") encoding_2 = processor(image2, text, return_tensors="pt") pixel_values = torch.stack([encoding_1.pixel_values, encoding_2.pixel_values], dim=1) # forward pass outputs = model( input_ids=encoding_1.input_ids.to(torch_device), pixel_values=pixel_values.to(torch_device), ) # verify the logits expected_shape = torch.Size([1, 2]) self.assertEqual(outputs.logits.shape, expected_shape) is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0") if is_pillow_less_than_9: expected_slice = torch.tensor( [-2.4013, 2.9342], device=torch_device, ) else: expected_slice = torch.tensor( [-2.3713, 2.9168], device=torch_device, ) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
transformers/tests/models/vilt/test_modeling_vilt.py/0
{ "file_path": "transformers/tests/models/vilt/test_modeling_vilt.py", "repo_id": "transformers", "token_count": 11966 }
169
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class FlaxViTModelTester(unittest.TestCase): def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = ViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, ) return config, pixel_values def create_and_check_model(self, config, pixel_values): model = FlaxViTModel(config=config) result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) def create_and_check_for_image_classification(self, config, pixel_values): config.num_labels = self.type_sequence_label_size model = FlaxViTForImageClassification(config=config) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = FlaxViTForImageClassification(config) pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class FlaxViTModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def setUp(self) -> None: self.model_tester = FlaxViTModelTester(self) self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) # We need to override this test because ViT's forward signature is different than text models. def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) # We need to override this test because ViT expects pixel_values instead of input_ids def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(pixel_values, **kwargs): return model(pixel_values=pixel_values, **kwargs) with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("google/vit-base-patch16-224") outputs = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(outputs)
transformers/tests/models/vit/test_modeling_flax_vit.py/0
{ "file_path": "transformers/tests/models/vit/test_modeling_flax_vit.py", "repo_id": "transformers", "token_count": 3243 }
170
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch VITS model. """ import copy import os import tempfile import unittest from typing import Dict, List, Tuple import numpy as np from transformers import PretrainedConfig, VitsConfig from transformers.testing_utils import ( is_flaky, is_torch_available, require_torch, require_torch_multi_gpu, slow, torch_device, ) from transformers.trainer_utils import set_seed from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, global_rng, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import VitsModel, VitsTokenizer CONFIG_NAME = "config.json" GENERATION_CONFIG_NAME = "generation_config.json" def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(configs_no_init, key, 1e-10) if isinstance(getattr(configs_no_init, key, None), PretrainedConfig): no_init_subconfig = _config_zero_init(getattr(configs_no_init, key)) setattr(configs_no_init, key, no_init_subconfig) return configs_no_init @require_torch class VitsModelTester: def __init__( self, parent, batch_size=2, seq_length=7, is_training=False, hidden_size=16, num_hidden_layers=2, num_attention_heads=2, intermediate_size=64, flow_size=16, vocab_size=38, spectrogram_bins=8, duration_predictor_num_flows=2, duration_predictor_filter_channels=16, prior_encoder_num_flows=2, upsample_initial_channel=16, upsample_rates=[8, 2], upsample_kernel_sizes=[16, 4], resblock_kernel_sizes=[3, 7], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]], ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.flow_size = flow_size self.vocab_size = vocab_size self.spectrogram_bins = spectrogram_bins self.duration_predictor_num_flows = duration_predictor_num_flows self.duration_predictor_filter_channels = duration_predictor_filter_channels self.prior_encoder_num_flows = prior_encoder_num_flows self.upsample_initial_channel = upsample_initial_channel self.upsample_rates = upsample_rates self.upsample_kernel_sizes = upsample_kernel_sizes self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(2) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def get_config(self): return VitsConfig( hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, flow_size=self.flow_size, vocab_size=self.vocab_size, spectrogram_bins=self.spectrogram_bins, duration_predictor_num_flows=self.duration_predictor_num_flows, prior_encoder_num_flows=self.prior_encoder_num_flows, duration_predictor_filter_channels=self.duration_predictor_filter_channels, posterior_encoder_num_wavenet_layers=self.num_hidden_layers, upsample_initial_channel=self.upsample_initial_channel, upsample_rates=self.upsample_rates, upsample_kernel_sizes=self.upsample_kernel_sizes, resblock_kernel_sizes=self.resblock_kernel_sizes, resblock_dilation_sizes=self.resblock_dilation_sizes, ) def create_and_check_model_forward(self, config, inputs_dict): model = VitsModel(config=config).to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] result = model(input_ids, attention_mask=attention_mask) self.parent.assertEqual((self.batch_size, 624), result.waveform.shape) @require_torch class VitsModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (VitsModel,) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": VitsModel, "text-to-audio": VitsModel} if is_torch_available() else {} ) is_encoder_decoder = False test_pruning = False test_headmasking = False test_resize_embeddings = False test_head_masking = False test_torchscript = False has_attentions = False input_name = "input_ids" def setUp(self): self.model_tester = VitsModelTester(self) self.config_tester = ConfigTester(self, config_class=VitsConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() # TODO: @ydshieh @is_flaky(description="torch 2.2.0 gives `Timeout >120.0s`") def test_pipeline_feature_extraction(self): super().test_pipeline_feature_extraction() @unittest.skip("Need to fix this after #26538") def test_model_forward(self): set_seed(12345) global_rng.seed(12345) config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_forward(*config_and_inputs) @require_torch_multi_gpu # override to force all elements of the batch to have the same sequence length across GPUs def test_multi_gpu_data_parallel_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_stochastic_duration_prediction = False # move input tensors to cuda:O for key, value in inputs_dict.items(): if torch.is_tensor(value): # make all elements of the batch the same -> ensures the output seq lengths are the same for DP value[1:] = value[0] inputs_dict[key] = value.to(0) for model_class in self.all_model_classes: model = model_class(config=config) model.to(0) model.eval() # Wrap model in nn.DataParallel model = torch.nn.DataParallel(model) set_seed(555) with torch.no_grad(): _ = model(**self._prepare_for_class(inputs_dict, model_class)).waveform @unittest.skip("VITS is not deterministic") def test_determinism(self): pass @is_flaky( max_attempts=3, description="Weight initialisation for the VITS conv layers sometimes exceeds the kaiming normal range", ) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() uniform_init_parms = [ "emb_rel_k", "emb_rel_v", "conv_1", "conv_2", "conv_pre", "conv_post", "conv_proj", "conv_dds", "project", "wavenet.in_layers", "wavenet.res_skip_layers", "upsampler", "resblocks", ] configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip("VITS has no inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip("VITS has no input embeddings") def test_model_common_attributes(self): pass # override since the model is not deterministic, so we need to set the seed for each forward pass def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): set_seed(0) tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) set_seed(0) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) if self.has_attentions: tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence( model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} ) # override since the model is not deterministic, so we need to set the seed for each forward pass def test_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_save_load(out1, out2): # make sure we don't have nans out_2 = out2.cpu().numpy() out_2[np.isnan(out_2)] = 0 out_1 = out1.cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): set_seed(0) first = model(**self._prepare_for_class(inputs_dict, model_class))[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) # the config file (and the generation config file, if it can generate) should be saved self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME))) self.assertEqual( model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME)) ) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) with torch.no_grad(): set_seed(0) second = model(**self._prepare_for_class(inputs_dict, model_class))[0] if isinstance(first, tuple) and isinstance(second, tuple): for tensor1, tensor2 in zip(first, second): check_save_load(tensor1, tensor2) else: check_save_load(first, second) # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) @require_torch @slow class VitsModelIntegrationTests(unittest.TestCase): def test_forward(self): # GPU gives different results than CPU torch_device = "cpu" model = VitsModel.from_pretrained("facebook/mms-tts-eng") model.to(torch_device) tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") set_seed(555) # make deterministic input_text = "Mister quilter is the apostle of the middle classes and we are glad to welcome his gospel!" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(torch_device) with torch.no_grad(): outputs = model(input_ids) self.assertEqual(outputs.waveform.shape, (1, 87040)) # fmt: off EXPECTED_LOGITS = torch.tensor( [ -0.0042, 0.0176, 0.0354, 0.0504, 0.0621, 0.0777, 0.0980, 0.1224, 0.1475, 0.1679, 0.1817, 0.1832, 0.1713, 0.1542, 0.1384, 0.1256, 0.1147, 0.1066, 0.1026, 0.0958, 0.0823, 0.0610, 0.0340, 0.0022, -0.0337, -0.0677, -0.0969, -0.1178, -0.1311, -0.1363 ] ) # fmt: on self.assertTrue(torch.allclose(outputs.waveform[0, 10000:10030].cpu(), EXPECTED_LOGITS, atol=1e-4))
transformers/tests/models/vits/test_modeling_vits.py/0
{ "file_path": "transformers/tests/models/vits/test_modeling_vits.py", "repo_id": "transformers", "token_count": 8429 }
171
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Wav2Vec2-Conformer model. """ import math import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import Wav2Vec2ConformerConfig, is_torch_available from transformers.testing_utils import ( is_pt_flax_cross_test, require_torch, require_torch_accelerator, require_torch_fp16, slow, torch_device, ) from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( Wav2Vec2ConformerForAudioFrameClassification, Wav2Vec2ConformerForCTC, Wav2Vec2ConformerForPreTraining, Wav2Vec2ConformerForSequenceClassification, Wav2Vec2ConformerForXVector, Wav2Vec2ConformerModel, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, ) from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import ( Wav2Vec2ConformerGumbelVectorQuantizer, _compute_mask_indices, _sample_negative_indices, ) class Wav2Vec2ConformerModelTester: def __init__( self, parent, batch_size=13, seq_length=1024, # speech is longer is_training=False, hidden_size=16, feat_extract_norm="group", feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, num_hidden_layers=2, num_attention_heads=2, hidden_dropout_prob=0.1, intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, mask_time_prob=0.5, mask_time_length=2, vocab_size=32, do_stable_layer_norm=False, num_adapter_layers=1, adapter_stride=2, tdnn_dim=(32, 32), tdnn_kernel=(5, 3), tdnn_dilation=(1, 2), xvector_output_dim=32, position_embeddings_type="relative", scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.num_adapter_layers = num_adapter_layers self.adapter_stride = adapter_stride self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.scope = scope self.tdnn_dim = tdnn_dim self.tdnn_kernel = tdnn_kernel self.tdnn_dilation = tdnn_dilation self.xvector_output_dim = xvector_output_dim self.position_embeddings_type = position_embeddings_type output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length self.adapter_output_seq_length = (self.output_seq_length - 1) // adapter_stride + 1 def prepare_config_and_inputs(self, position_embeddings_type="relative"): input_values = floats_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config(position_embeddings_type=position_embeddings_type) return config, input_values, attention_mask def get_config(self, position_embeddings_type="relative"): return Wav2Vec2ConformerConfig( hidden_size=self.hidden_size, feat_extract_norm=self.feat_extract_norm, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, mask_time_prob=self.mask_time_prob, mask_time_length=self.mask_time_length, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout_prob=self.hidden_dropout_prob, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, do_stable_layer_norm=self.do_stable_layer_norm, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, num_adapter_layers=self.num_adapter_layers, adapter_stride=self.adapter_stride, tdnn_dim=self.tdnn_dim, tdnn_kernel=self.tdnn_kernel, tdnn_dilation=self.tdnn_dilation, xvector_output_dim=self.xvector_output_dim, position_embeddings_type=position_embeddings_type, ) def create_and_check_model(self, config, input_values, attention_mask): model = Wav2Vec2ConformerModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_model_with_adapter(self, config, input_values, attention_mask): config.add_adapter = True model = Wav2Vec2ConformerModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, self.hidden_size) ) def create_and_check_model_with_adapter_for_ctc(self, config, input_values, attention_mask): config.add_adapter = True config.output_hidden_size = 2 * config.hidden_size model = Wav2Vec2ConformerForCTC(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.adapter_output_seq_length, self.vocab_size) ) def create_and_check_model_with_adapter_proj_dim(self, config, input_values, attention_mask): config.add_adapter = True config.output_hidden_size = 8 model = Wav2Vec2ConformerModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, config.output_hidden_size), ) def create_and_check_model_float16(self, config, input_values, attention_mask): model = Wav2Vec2ConformerModel(config=config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = Wav2Vec2ConformerModel.from_pretrained(tmpdirname, torch_dtype=torch.float16) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_values.type(dtype=torch.float16), attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 model = Wav2Vec2ConformerModel(config=config) model.to(torch_device) model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0.0 batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3)) def check_ctc_loss(self, config, input_values, *args): model = Wav2Vec2ConformerForCTC(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 model.config.ctc_loss_reduction = "sum" sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() model.config.ctc_loss_reduction = "mean" mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() self.parent.assertTrue(isinstance(sum_loss, float)) self.parent.assertTrue(isinstance(mean_loss, float)) def check_seq_classifier_loss(self, config, input_values, *args): model = Wav2Vec2ConformerForSequenceClassification(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() unmasked_loss = model(input_values, labels=labels).loss.item() self.parent.assertTrue(isinstance(masked_loss, float)) self.parent.assertTrue(isinstance(unmasked_loss, float)) self.parent.assertTrue(masked_loss != unmasked_loss) def check_ctc_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Wav2Vec2ConformerForCTC(config=config) model.to(torch_device) model.train() # freeze feature encoder model.freeze_feature_encoder() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 if max_length_labels[i] < labels.shape[-1]: # it's important that we make sure that target lengths are at least # one shorter than logit lengths to prevent -inf labels[i, max_length_labels[i] - 1 :] = -100 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_seq_classifier_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Wav2Vec2ConformerForSequenceClassification(config=config) model.to(torch_device) model.train() # freeze everything but the classification head model.freeze_base_model() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_xvector_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Wav2Vec2ConformerForXVector(config=config) model.to(torch_device) model.train() # freeze everything but the classification head model.freeze_base_model() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_labels_out_of_vocab(self, config, input_values, *args): model = Wav2Vec2ConformerForCTC(config) model.to(torch_device) model.train() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100) with self.parent.assertRaises(ValueError): model(input_values, labels=labels) def prepare_config_and_inputs_for_common(self): config, input_values, attention_mask = self.prepare_config_and_inputs() inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_torch class Wav2Vec2ConformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( Wav2Vec2ConformerForCTC, Wav2Vec2ConformerModel, Wav2Vec2ConformerForSequenceClassification, Wav2Vec2ConformerForPreTraining, Wav2Vec2ConformerForAudioFrameClassification, Wav2Vec2ConformerForXVector, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "audio-classification": Wav2Vec2ConformerForSequenceClassification, "automatic-speech-recognition": Wav2Vec2ConformerForCTC, "feature-extraction": Wav2Vec2ConformerModel, } if is_torch_available() else {} ) test_pruning = False test_headmasking = False test_torchscript = False def setUp(self): self.model_tester = Wav2Vec2ConformerModelTester(self) self.config_tester = ConfigTester(self, config_class=Wav2Vec2ConformerConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_relative(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="relative") self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_rotary(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="rotary") self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_no_rel_pos(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type=None) self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_adapter(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_adapter(*config_and_inputs) def test_model_with_adapter_for_ctc(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_adapter_for_ctc(*config_and_inputs) def test_model_with_adapter_proj_dim(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs) @require_torch_accelerator @require_torch_fp16 def test_model_float16_with_relative(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="relative") self.model_tester.create_and_check_model_float16(*config_and_inputs) @require_torch_accelerator @require_torch_fp16 def test_model_float16_with_rotary(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="rotary") self.model_tester.create_and_check_model_float16(*config_and_inputs) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) def test_seq_classifier_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_loss(*config_and_inputs) def test_ctc_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_training(*config_and_inputs) def test_seq_classifier_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_training(*config_and_inputs) def test_xvector_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_xvector_training(*config_and_inputs) def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) # Wav2Vec2Conformer has no inputs_embeds def test_inputs_embeds(self): pass # `input_ids` is renamed to `input_values` def test_forward_signature(self): pass # Wav2Vec2Conformer cannot resize token embeddings # since it has no tokens embeddings def test_resize_tokens_embeddings(self): pass # Wav2Vec2Conformer has no inputs_embeds # and thus the `get_input_embeddings` fn # is not implemented def test_model_common_attributes(self): pass @is_pt_flax_cross_test # non-robust architecture does not exist in Flax def test_equivalence_flax_to_pt(self): pass @is_pt_flax_cross_test # non-robust architecture does not exist in Flax def test_equivalence_pt_to_flax(self): pass def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) # set layer drop to 0 model.config.layerdrop = 0.0 input_values = inputs_dict["input_values"] input_lengths = torch.tensor( [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device ) output_lengths = model._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size) inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"]) inputs_dict["labels"] = labels outputs = model(**inputs_dict) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] attentions = outputs.attentions[0] hidden_states.retain_grad() attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) self.assertIsNotNone(attentions.grad) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "conv.parametrizations.weight", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "pos_bias_v", "pos_bias_u", "pointwise_conv1", "pointwise_conv2", "feature_projection.projection.weight", "feature_projection.projection.bias", "objective.weight", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) if hasattr(module, "pos_bias_u") and module.pos_bias_u is not None: module.pos_bias_u.data.fill_(3) if hasattr(module, "pos_bias_v") and module.pos_bias_v is not None: module.pos_bias_v.data.fill_(3) if hasattr(module, "codevectors") and module.codevectors is not None: module.codevectors.data.fill_(3) if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: module.masked_spec_embed.data.fill_(3) def test_mask_feature_prob_ctc(self): model = Wav2Vec2ConformerForCTC.from_pretrained( "hf-internal-testing/tiny-random-wav2vec2-conformer", mask_feature_prob=0.2, mask_feature_length=2 ) model.to(torch_device).train() processor = Wav2Vec2Processor.from_pretrained( "hf-internal-testing/tiny-random-wav2vec2-conformer", return_attention_mask=True ) batch_duration_in_seconds = [1, 3, 2, 6] input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds] batch = processor( input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt" ) logits = model( input_values=batch["input_values"].to(torch_device), attention_mask=batch["attention_mask"].to(torch_device), ).logits self.assertEqual(logits.shape, (4, 1498, 32)) def test_mask_time_prob_ctc(self): model = Wav2Vec2ConformerForCTC.from_pretrained( "hf-internal-testing/tiny-random-wav2vec2-conformer", mask_time_prob=0.2, mask_time_length=2 ) model.to(torch_device).train() processor = Wav2Vec2Processor.from_pretrained( "hf-internal-testing/tiny-random-wav2vec2-conformer", return_attention_mask=True ) batch_duration_in_seconds = [1, 3, 2, 6] input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds] batch = processor( input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt" ) logits = model( input_values=batch["input_values"].to(torch_device), attention_mask=batch["attention_mask"].to(torch_device), ).logits self.assertEqual(logits.shape, (4, 1498, 32)) @unittest.skip(reason="Feed forward chunking is not implemented") def test_feed_forward_chunking(self): pass @slow def test_model_from_pretrained(self): model = Wav2Vec2ConformerModel.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") self.assertIsNotNone(model) @require_torch class Wav2Vec2ConformerUtilsTest(unittest.TestCase): def test_compute_mask_indices(self): batch_size = 4 sequence_length = 60 mask_prob = 0.5 mask_length = 1 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)]) def test_compute_mask_indices_low_prob(self): # with these settings num_masked_spans=0.5, which means probabilistic rounding # ensures that in 5 out of 10 method calls, num_masked_spans=0, and in # the other 5 out of 10, cases num_masked_spans=1 n_trials = 100 batch_size = 4 sequence_length = 100 mask_prob = 0.05 mask_length = 10 count_dimensions_masked = 0 count_dimensions_not_masked = 0 for _ in range(n_trials): mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) num_masks = torch.sum(mask).item() if num_masks > 0: count_dimensions_masked += 1 else: count_dimensions_not_masked += 1 # as we test for at least 10 masked dimension and at least # 10 non-masked dimension, this test could fail with probability: # P(100 coin flips, at most 9 heads) = 1.66e-18 self.assertGreater(count_dimensions_masked, int(n_trials * 0.1)) self.assertGreater(count_dimensions_not_masked, int(n_trials * 0.1)) def test_compute_mask_indices_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) def test_compute_mask_indices_attn_mask_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device) attention_mask[:2, sequence_length // 2 :] = 0 mask = _compute_mask_indices( (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask ) mask = torch.from_numpy(mask).to(torch_device) for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0) def test_compute_mask_indices_short_audio(self): batch_size = 4 sequence_length = 100 mask_prob = 0.05 mask_length = 10 attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device) # force one example to be heavily padded attention_mask[0, 5:] = 0 mask = _compute_mask_indices( (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask, min_masks=2 ) # make sure that non-padded examples cannot be padded self.assertFalse(mask[0][attention_mask[0].to(torch.bool).cpu()].any()) def test_compute_perplexity(self): probs = torch.arange(100, device=torch_device).reshape(2, 5, 10) / 100 ppl = Wav2Vec2ConformerGumbelVectorQuantizer._compute_perplexity(probs) self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3) # mask half of the input mask = torch.ones((2,), device=torch_device, dtype=torch.bool) mask[0] = 0 ppl = Wav2Vec2ConformerGumbelVectorQuantizer._compute_perplexity(probs, mask) self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3) def test_sample_negatives(self): batch_size = 2 sequence_length = 10 hidden_size = 4 num_negatives = 3 features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view( sequence_length, hidden_size ) # each value in vector consits of same value features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous() # sample negative indices sampled_negative_indices = _sample_negative_indices((batch_size, sequence_length), num_negatives, None) sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device) negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)] negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3) self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size)) # make sure no negatively sampled vector is actually a positive one for negative in negatives: self.assertTrue(((negative - features) == 0).sum() == 0.0) # make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1)) def test_sample_negatives_with_mask(self): batch_size = 2 sequence_length = 10 hidden_size = 4 num_negatives = 3 # second half of last input tensor is padded mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device) mask[-1, sequence_length // 2 :] = 0 features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view( sequence_length, hidden_size ) # each value in vector consits of same value features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous() # replace masked feature vectors with -100 to test that those are not sampled features = torch.where(mask[:, :, None].expand(features.shape).bool(), features, -100) # sample negative indices sampled_negative_indices = _sample_negative_indices( (batch_size, sequence_length), num_negatives, mask.cpu().numpy() ) sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device) negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)] negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3) self.assertTrue((negatives >= 0).all().item()) self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size)) # make sure no negatively sampled vector is actually a positive one for negative in negatives: self.assertTrue(((negative - features) == 0).sum() == 0.0) # make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1)) @require_torch @slow class Wav2Vec2ConformerModelIntegrationTest(unittest.TestCase): def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter(lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]) speech_samples = speech_samples[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_inference_ctc_normal_batched_rel_pos(self): model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft") model.to(torch_device) processor = Wav2Vec2Processor.from_pretrained( "facebook/wav2vec2-conformer-rel-pos-large-960h-ft", do_lower_case=True ) input_speech = self._load_datasamples(2) inputs = processor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight loincloth that was the only garment he wore", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_ctc_normal_batched_rope(self): model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft") model.to(torch_device) processor = Wav2Vec2Processor.from_pretrained( "facebook/wav2vec2-conformer-rope-large-960h-ft", do_lower_case=True ) input_speech = self._load_datasamples(2) inputs = processor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_pretrained(self): model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") model.to(torch_device) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "facebook/wav2vec2-conformer-rel-pos-large", return_attention_mask=True ) input_speech = self._load_datasamples(2) inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True) batch_size = inputs_dict["input_values"].shape[0] feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1])) features_shape = (batch_size, feature_seq_length) torch.manual_seed(0) mask_time_indices = _compute_mask_indices( features_shape, model.config.mask_time_prob, model.config.mask_time_length, min_masks=2, ) mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device) with torch.no_grad(): outputs = model( inputs_dict.input_values.to(torch_device), attention_mask=inputs_dict.attention_mask.to(torch_device), mask_time_indices=mask_time_indices, ) # compute cosine similarity cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1) # retrieve cosine sim of masked features cosine_sim_masked = cosine_sim[mask_time_indices] # ... now compare to randomly initialized model config = Wav2Vec2ConformerConfig.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") model_rand = Wav2Vec2ConformerForPreTraining(config).to(torch_device).eval() with torch.no_grad(): outputs_rand = model_rand( inputs_dict.input_values.to(torch_device), attention_mask=inputs_dict.attention_mask.to(torch_device), mask_time_indices=mask_time_indices, ) # compute cosine similarity cosine_sim_rand = torch.cosine_similarity( outputs_rand.projected_states, outputs_rand.projected_quantized_states, dim=-1 ) # retrieve cosine sim of masked features cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices] # a pretrained wav2vec2_conformer model has learned to predict the quantized latent states # => the cosine similarity between quantized states and predicted states > 0.5 # a random wav2vec2_conformer model has not learned to predict the quantized latent states # => the cosine similarity between quantized states and predicted states is very likely < 0.1 self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)
transformers/tests/models/wav2vec2_conformer/test_modeling_wav2vec2_conformer.py/0
{ "file_path": "transformers/tests/models/wav2vec2_conformer/test_modeling_wav2vec2_conformer.py", "repo_id": "transformers", "token_count": 17966 }
172
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class OptimizationFTest(unittest.TestCase): def assertListAlmostEqual(self, list1, list2, tol): self.assertEqual(len(list1), len(list2)) for a, b in zip(list1, list2): self.assertAlmostEqual(a, b, delta=tol) def testGradientAccumulator(self): accumulator = GradientAccumulator() accumulator([tf.constant([1.0, 2.0])]) accumulator([tf.constant([-2.0, 1.0])]) accumulator([tf.constant([-1.0, 2.0])]) with self.assertRaises(ValueError): accumulator([tf.constant([1.0, 1.0]), tf.constant([2.0, 2.0])]) self.assertEqual(accumulator.step, 3) self.assertEqual(len(accumulator.gradients), 1) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [-2.0, 5.0], tol=1e-2) accumulator.reset() self.assertEqual(accumulator.step, 0) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [0.0, 0.0], tol=1e-2) def testGradientAccumulatorDistributionStrategy(self): context._context = None ops.enable_eager_execution_internal() physical_devices = tf.config.list_physical_devices("CPU") if len(physical_devices) == 1: tf.config.set_logical_device_configuration( physical_devices[0], [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) devices = tf.config.list_logical_devices(device_type="CPU") strategy = tf.distribute.MirroredStrategy(devices=devices[:2]) with strategy.scope(): accumulator = GradientAccumulator() variable = tf.Variable([4.0, 3.0]) optimizer, _ = create_optimizer(5e-5, 10, 5) gradient_placeholder = tf.Variable([0.0, 0.0], trainable=False) def accumulate_on_replica(gradient): accumulator([gradient]) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients, [variable]))) @tf.function def accumulate(grad1, grad2): with strategy.scope(): local_variables = strategy.experimental_local_results(gradient_placeholder) local_variables[0].assign(grad1) local_variables[1].assign(grad2) strategy.run(accumulate_on_replica, args=(gradient_placeholder,)) @tf.function def apply_grad(): with strategy.scope(): strategy.run(apply_on_replica) def _check_local_values(grad1, grad2): values = strategy.experimental_local_results(accumulator._gradients[0]) self.assertListAlmostEqual(values[0].value(), grad1, tol=1e-2) self.assertListAlmostEqual(values[1].value(), grad2, tol=1e-2) accumulate([1.0, 2.0], [-1.0, 1.0]) accumulate([3.0, -1.0], [-1.0, -1.0]) accumulate([-2.0, 2.0], [3.0, -2.0]) self.assertEqual(accumulator.step, 3) _check_local_values([2.0, 3.0], [1.0, -2.0]) apply_grad() self.assertListAlmostEqual(variable.value(), [4.0, 3.0], tol=1e-2) accumulator.reset() self.assertEqual(accumulator.step, 0) _check_local_values([0.0, 0.0], [0.0, 0.0])
transformers/tests/optimization/test_optimization_tf.py/0
{ "file_path": "transformers/tests/optimization/test_optimization_tf.py", "repo_id": "transformers", "token_count": 1782 }
173
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from typing import Dict import numpy as np from huggingface_hub.utils import insecure_hashlib from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class Image: @staticmethod def open(*args, **kwargs): pass def hashimage(image: Image) -> str: m = insecure_hashlib.md5(image.tobytes()) return m.hexdigest()[:10] def mask_to_test_readable(mask: Image) -> Dict: npimg = np.array(mask) shape = npimg.shape return {"hash": hashimage(mask), "shape": shape} @is_pipeline_test @require_vision @require_torch class MaskGenerationPipelineTests(unittest.TestCase): model_mapping = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items()) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) tf_model_mapping = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items()) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def get_test_pipeline(self, model, tokenizer, processor): image_segmenter = MaskGenerationPipeline(model=model, image_processor=processor) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] # TODO: Implement me @Arthur def run_pipeline_test(self, mask_generator, examples): pass @require_tf @unittest.skip("Image segmentation not implemented in TF") def test_small_model_tf(self): pass @slow @require_torch def test_small_model_pt(self): image_segmenter = pipeline("mask-generation", model="facebook/sam-vit-huge") outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", points_per_batch=256) # Shortening by hashing new_outupt = [] for i, o in enumerate(outputs["masks"]): new_outupt += [{"mask": mask_to_test_readable(o), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(new_outupt, decimals=4), [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9967}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9909}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9879}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9834}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9716}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9612}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9552}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9532}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9499}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9483}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9408}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9335}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9326}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9262}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8986}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8984}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8873}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8871} ], ) # fmt: on @require_torch @slow def test_threshold(self): model_id = "facebook/sam-vit-huge" image_segmenter = pipeline("mask-generation", model=model_id) outputs = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg", pred_iou_thresh=1, points_per_batch=256 ) # Shortening by hashing new_outupt = [] for i, o in enumerate(outputs["masks"]): new_outupt += [{"mask": mask_to_test_readable(o), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(new_outupt, decimals=4), [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0210}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0053}, ], )
transformers/tests/pipelines/test_pipelines_mask_generation.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_mask_generation.py", "repo_id": "transformers", "token_count": 3309 }
174
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class Image: @staticmethod def open(*args, **kwargs): pass @is_pipeline_test @require_vision @require_torch class ZeroShotObjectDetectionPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def get_test_pipeline(self, model, tokenizer, processor): object_detector = pipeline( "zero-shot-object-detection", model="hf-internal-testing/tiny-random-owlvit-object-detection" ) examples = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def run_pipeline_test(self, object_detector, examples): outputs = object_detector(examples[0], threshold=0.0) n = len(outputs) self.assertGreater(n, 0) self.assertEqual( outputs, [ { "score": ANY(float), "label": ANY(str), "box": {"xmin": ANY(int), "ymin": ANY(int), "xmax": ANY(int), "ymax": ANY(int)}, } for i in range(n) ], ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF") def test_small_model_tf(self): pass @require_torch def test_small_model_pt(self): object_detector = pipeline( "zero-shot-object-detection", model="hf-internal-testing/tiny-random-owlvit-object-detection" ) outputs = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png", candidate_labels=["cat", "remote", "couch"], threshold=0.64, ) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ], ) outputs = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ], threshold=0.64, ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ], ) @require_torch @slow def test_large_model_pt(self): object_detector = pipeline("zero-shot-object-detection") outputs = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg", candidate_labels=["cat", "remote", "couch"], ) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ) outputs = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ], ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ], ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF") def test_large_model_tf(self): pass @require_torch @slow def test_threshold(self): threshold = 0.2 object_detector = pipeline("zero-shot-object-detection") outputs = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg", candidate_labels=["cat", "remote", "couch"], threshold=threshold, ) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ], ) @require_torch @slow def test_top_k(self): top_k = 2 object_detector = pipeline("zero-shot-object-detection") outputs = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg", candidate_labels=["cat", "remote", "couch"], top_k=top_k, ) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ], )
transformers/tests/pipelines/test_pipelines_zero_shot_object_detection.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_zero_shot_object_detection.py", "repo_id": "transformers", "token_count": 5064 }
175
# Testing new Hugging Face Deep Learning Container. This document explains the testing strategy for releasing the new Hugging Face Deep Learning Container. AWS maintains 14 days of currency with framework releases. Besides framework releases, AWS release train is bi-weekly on Monday. Code cutoff date for any changes is the Wednesday before release-Monday. ## Test Case 1: Releasing a New Version (Minor/Major) of 🤗 Transformers ### Requirements: Test should run on Release Candidate for new `transformers` release to validate the new release is compatible with the DLCs. To run these tests you need credentials for the HF SageMaker AWS Account. You can ask @philschmid or @n1t0 to get access. ### Run Tests: Before we can run the tests we need to adjust the `requirements.txt` for PyTorch under `/tests/sagemaker/scripts/pytorch` and for TensorFlow under `/tests/sagemaker/scripts/pytorch`. We adjust the branch to the new RC-tag. ``` git+https://github.com/huggingface/[email protected] # install main or adjust ist with vX.X.X for installing version specific-transforms ``` After we adjusted the `requirements.txt` we can run Amazon SageMaker tests with: ```bash AWS_PROFILE=<enter-your-profile> make test-sagemaker ``` These tests take around 10-15 minutes to finish. Preferably make a screenshot of the successfully ran tests. ### After Transformers Release: After we have released the Release Candidate we need to create a PR at the [Deep Learning Container Repository](https://github.com/aws/deep-learning-containers). **Creating the update PR:** 1. Update the two latest `buildspec.yaml` config for [PyTorch](https://github.com/aws/deep-learning-containers/tree/master/huggingface/pytorch) and [TensorFlow](https://github.com/aws/deep-learning-containers/tree/master/huggingface/tensorflow). The two latest `buildspec.yaml` are the `buildspec.yaml` without a version tag and the one with the highest framework version, e.g. `buildspec-1-7-1.yml` and not `buildspec-1-6.yml`. To update the `buildspec.yaml` we need to adjust either the `transformers_version` or the `datasets_version` or both. Example for upgrading to `transformers 4.5.0` and `datasets 1.6.0`. ```yaml account_id: &ACCOUNT_ID <set-$ACCOUNT_ID-in-environment> region: &REGION <set-$REGION-in-environment> base_framework: &BASE_FRAMEWORK pytorch framework: &FRAMEWORK !join [ "huggingface_", *BASE_FRAMEWORK] version: &VERSION 1.6.0 short_version: &SHORT_VERSION 1.6 repository_info: training_repository: &TRAINING_REPOSITORY image_type: &TRAINING_IMAGE_TYPE training root: !join [ "huggingface/", *BASE_FRAMEWORK, "/", *TRAINING_IMAGE_TYPE ] repository_name: &REPOSITORY_NAME !join ["pr", "-", "huggingface", "-", *BASE_FRAMEWORK, "-", *TRAINING_IMAGE_TYPE] repository: &REPOSITORY !join [ *ACCOUNT_ID, .dkr.ecr., *REGION, .amazonaws.com/, *REPOSITORY_NAME ] images: BuildHuggingFacePytorchGpuPy37Cu110TrainingDockerImage: <<: *TRAINING_REPOSITORY build: &HUGGINGFACE_PYTORCH_GPU_TRAINING_PY3 false image_size_baseline: &IMAGE_SIZE_BASELINE 15000 device_type: &DEVICE_TYPE gpu python_version: &DOCKER_PYTHON_VERSION py3 tag_python_version: &TAG_PYTHON_VERSION py36 cuda_version: &CUDA_VERSION cu110 os_version: &OS_VERSION ubuntu18.04 transformers_version: &TRANSFORMERS_VERSION 4.5.0 # this was adjusted from 4.4.2 to 4.5.0 datasets_version: &DATASETS_VERSION 1.6.0 # this was adjusted from 1.5.0 to 1.6.0 tag: !join [ *VERSION, '-', 'transformers', *TRANSFORMERS_VERSION, '-', *DEVICE_TYPE, '-', *TAG_PYTHON_VERSION, '-', *CUDA_VERSION, '-', *OS_VERSION ] docker_file: !join [ docker/, *SHORT_VERSION, /, *DOCKER_PYTHON_VERSION, /, *CUDA_VERSION, /Dockerfile., *DEVICE_TYPE ] ``` 2. In the PR comment describe what test, we ran and with which package versions. Here you can copy the table from [Current Tests](#current-tests). 2. In the PR comment describe what test we ran and with which framework versions. Here you can copy the table from [Current Tests](#current-tests). You can take a look at this [PR](https://github.com/aws/deep-learning-containers/pull/1016), which information are needed. ## Test Case 2: Releasing a New AWS Framework DLC ## Execute Tests ### Requirements: AWS is going to release new DLCs for PyTorch and/or TensorFlow. The Tests should run on the new framework versions with current `transformers` release to validate the new framework release is compatible with the `transformers` version. To run these tests you need credentials for the HF SageMaker AWS Account. You can ask @philschmid or @n1t0 to get access. AWS will notify us with a new issue in the repository pointing to their framework upgrade PR. ### Run Tests: Before we can run the tests we need to adjust the `requirements.txt` for Pytorch under `/tests/sagemaker/scripts/pytorch` and for Tensorflow under `/tests/sagemaker/scripts/pytorch`. We add the new framework version to it. ``` torch==1.8.1 # for pytorch tensorflow-gpu==2.5.0 # for tensorflow ``` After we adjusted the `requirements.txt` we can run Amazon SageMaker tests with. ```bash AWS_PROFILE=<enter-your-profile> make test-sagemaker ``` These tests take around 10-15 minutes to finish. Preferably make a screenshot of the successfully ran tests. ### After successful Tests: After we have successfully run tests for the new framework version we need to create a PR at the [Deep Learning Container Repository](https://github.com/aws/deep-learning-containers). **Creating the update PR:** 1. Create a new `buildspec.yaml` config for [PyTorch](https://github.com/aws/deep-learning-containers/tree/master/huggingface/pytorch) and [TensorFlow](https://github.com/aws/deep-learning-containers/tree/master/huggingface/tensorflow) and rename the old `buildspec.yaml` to `buildespec-x.x.x`, where `x.x.x` is the base framework version, e.g. if pytorch 1.6.0 is the latest version in `buildspec.yaml` the file should be renamed to `buildspec-yaml-1-6.yaml`. To create the new `buildspec.yaml` we need to adjust the `version` and the `short_version`. Example for upgrading to `pytorch 1.7.1`. ```yaml account_id: &ACCOUNT_ID <set-$ACCOUNT_ID-in-environment> region: &REGION <set-$REGION-in-environment> base_framework: &BASE_FRAMEWORK pytorch framework: &FRAMEWORK !join [ "huggingface_", *BASE_FRAMEWORK] version: &VERSION 1.7.1 # this was adjusted from 1.6.0 to 1.7.1 short_version: &SHORT_VERSION 1.7 # this was adjusted from 1.6 to 1.7 repository_info: training_repository: &TRAINING_REPOSITORY image_type: &TRAINING_IMAGE_TYPE training root: !join [ "huggingface/", *BASE_FRAMEWORK, "/", *TRAINING_IMAGE_TYPE ] repository_name: &REPOSITORY_NAME !join ["pr", "-", "huggingface", "-", *BASE_FRAMEWORK, "-", *TRAINING_IMAGE_TYPE] repository: &REPOSITORY !join [ *ACCOUNT_ID, .dkr.ecr., *REGION, .amazonaws.com/, *REPOSITORY_NAME ] images: BuildHuggingFacePytorchGpuPy37Cu110TrainingDockerImage: <<: *TRAINING_REPOSITORY build: &HUGGINGFACE_PYTORCH_GPU_TRAINING_PY3 false image_size_baseline: &IMAGE_SIZE_BASELINE 15000 device_type: &DEVICE_TYPE gpu python_version: &DOCKER_PYTHON_VERSION py3 tag_python_version: &TAG_PYTHON_VERSION py36 cuda_version: &CUDA_VERSION cu110 os_version: &OS_VERSION ubuntu18.04 transformers_version: &TRANSFORMERS_VERSION 4.4.2 datasets_version: &DATASETS_VERSION 1.5.0 tag: !join [ *VERSION, '-', 'transformers', *TRANSFORMERS_VERSION, '-', *DEVICE_TYPE, '-', *TAG_PYTHON_VERSION, '-', *CUDA_VERSION, '-', *OS_VERSION ] docker_file: !join [ docker/, *SHORT_VERSION, /, *DOCKER_PYTHON_VERSION, /, *CUDA_VERSION, /Dockerfile., *DEVICE_TYPE ] ``` 2. In the PR comment describe what test we ran and with which framework versions. Here you can copy the table from [Current Tests](#current-tests). You can take a look at this [PR](https://github.com/aws/deep-learning-containers/pull/1025), which information are needed. ## Current Tests | ID | Description | Platform | #GPUS | Collected & evaluated metrics | |-------------------------------------|-------------------------------------------------------------------|-----------------------------|-------|------------------------------------------| | pytorch-transfromers-test-single | test bert finetuning using BERT fromtransformerlib+PT | SageMaker createTrainingJob | 1 | train_runtime, eval_accuracy & eval_loss | | pytorch-transfromers-test-2-ddp | test bert finetuning using BERT from transformer lib+ PT DPP | SageMaker createTrainingJob | 16 | train_runtime, eval_accuracy & eval_loss | | pytorch-transfromers-test-2-smd | test bert finetuning using BERT from transformer lib+ PT SM DDP | SageMaker createTrainingJob | 16 | train_runtime, eval_accuracy & eval_loss | | pytorch-transfromers-test-1-smp | test roberta finetuning using BERT from transformer lib+ PT SM MP | SageMaker createTrainingJob | 8 | train_runtime, eval_accuracy & eval_loss | | tensorflow-transfromers-test-single | Test bert finetuning using BERT from transformer lib+TF | SageMaker createTrainingJob | 1 | train_runtime, eval_accuracy & eval_loss | | tensorflow-transfromers-test-2-smd | test bert finetuning using BERT from transformer lib+ TF SM DDP | SageMaker createTrainingJob | 16 | train_runtime, eval_accuracy & eval_loss |
transformers/tests/sagemaker/README.md/0
{ "file_path": "transformers/tests/sagemaker/README.md", "repo_id": "transformers", "token_count": 3293 }
176
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class FeatureExtractionSavingTestMixin: test_cast_dtype = None def test_feat_extract_to_json_string(self): feat_extract = self.feature_extraction_class(**self.feat_extract_dict) obj = json.loads(feat_extract.to_json_string()) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key], value) def test_feat_extract_to_json_file(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "feat_extract.json") feat_extract_first.to_json_file(json_file_path) feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path) self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict()) def test_feat_extract_from_and_save_pretrained(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: saved_file = feat_extract_first.save_pretrained(tmpdirname)[0] check_json_file_has_correct_format(saved_file) feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname) self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict()) def test_init_without_params(self): feat_extract = self.feature_extraction_class() self.assertIsNotNone(feat_extract)
transformers/tests/test_feature_extraction_common.py/0
{ "file_path": "transformers/tests/test_feature_extraction_common.py", "repo_id": "transformers", "token_count": 828 }
177
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import load_tool from transformers.tools.agent_types import AGENT_TYPE_MAPPING from .test_tools_common import ToolTesterMixin, output_types class TranslationToolTester(unittest.TestCase, ToolTesterMixin): def setUp(self): self.tool = load_tool("translation") self.tool.setup() self.remote_tool = load_tool("translation", remote=True) def test_exact_match_arg(self): result = self.tool("Hey, what's up?", src_lang="English", tgt_lang="French") self.assertEqual(result, "- Hé, comment ça va?") def test_exact_match_arg_remote(self): result = self.remote_tool("Hey, what's up?", src_lang="English", tgt_lang="French") self.assertEqual(result, "- Hé, comment ça va?") def test_exact_match_kwarg(self): result = self.tool(text="Hey, what's up?", src_lang="English", tgt_lang="French") self.assertEqual(result, "- Hé, comment ça va?") def test_exact_match_kwarg_remote(self): result = self.remote_tool(text="Hey, what's up?", src_lang="English", tgt_lang="French") self.assertEqual(result, "- Hé, comment ça va?") def test_call(self): inputs = ["Hey, what's up?", "English", "Spanish"] outputs = self.tool(*inputs) # There is a single output if len(self.tool.outputs) == 1: outputs = [outputs] self.assertListEqual(output_types(outputs), self.tool.outputs) def test_agent_types_outputs(self): inputs = ["Hey, what's up?", "English", "Spanish"] outputs = self.tool(*inputs) if not isinstance(outputs, list): outputs = [outputs] self.assertEqual(len(outputs), len(self.tool.outputs)) for output, output_type in zip(outputs, self.tool.outputs): agent_type = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(output, agent_type)) def test_agent_types_inputs(self): inputs = ["Hey, what's up?", "English", "Spanish"] _inputs = [] for _input, input_type in zip(inputs, self.tool.inputs): if isinstance(input_type, list): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error outputs = self.tool(*inputs) if not isinstance(outputs, list): outputs = [outputs] self.assertEqual(len(outputs), len(self.tool.outputs))
transformers/tests/tools/test_translation.py/0
{ "file_path": "transformers/tests/tools/test_translation.py", "repo_id": "transformers", "token_count": 1249 }
178
import unittest import warnings from dataclasses import dataclass from transformers.convert_slow_tokenizer import SpmConverter from transformers.testing_utils import get_tests_dir @dataclass class FakeOriginalTokenizer: vocab_file: str class ConvertSlowTokenizerTest(unittest.TestCase): def test_spm_converter_bytefallback_warning(self): spm_model_file_without_bytefallback = get_tests_dir("fixtures/test_sentencepiece.model") spm_model_file_with_bytefallback = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") original_tokenizer_without_bytefallback = FakeOriginalTokenizer(vocab_file=spm_model_file_without_bytefallback) with warnings.catch_warnings(record=True) as w: _ = SpmConverter(original_tokenizer_without_bytefallback) self.assertEqual(len(w), 0) original_tokenizer_with_bytefallback = FakeOriginalTokenizer(vocab_file=spm_model_file_with_bytefallback) with warnings.catch_warnings(record=True) as w: _ = SpmConverter(original_tokenizer_with_bytefallback) self.assertEqual(len(w), 1) self.assertIn( "The sentencepiece tokenizer that you are converting to a fast tokenizer uses the byte fallback option" " which is not implemented in the fast tokenizers.", str(w[0].message), )
transformers/tests/utils/test_convert_slow_tokenizer.py/0
{ "file_path": "transformers/tests/utils/test_convert_slow_tokenizer.py", "repo_id": "transformers", "token_count": 524 }
179
{ "ASTForAudioClassification": { "tokenizer_classes": [], "processor_classes": [ "ASTFeatureExtractor" ], "model_classes": [ "ASTForAudioClassification" ], "sha": "83d6e076db7768a3645401bad3204624985e1d08" }, "ASTModel": { "tokenizer_classes": [], "processor_classes": [ "ASTFeatureExtractor" ], "model_classes": [ "ASTModel" ], "sha": "75e68f956f6f2c0709b01e596e7a6aecb1b29dce" }, "AlbertForMaskedLM": { "tokenizer_classes": [ "AlbertTokenizer", "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "AlbertForMaskedLM", "TFAlbertForMaskedLM" ], "sha": "d29de71ac29e1019c3a7762f7357f750730cb037" }, "AlbertForMultipleChoice": { "tokenizer_classes": [ "AlbertTokenizer", "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "AlbertForMultipleChoice", "TFAlbertForMultipleChoice" ], "sha": "242aecce6a589a2964c0f695621fa22a83751579" }, "AlbertForPreTraining": { "tokenizer_classes": [ "AlbertTokenizer", "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "AlbertForPreTraining", "TFAlbertForPreTraining" ], "sha": "41330be4b271687f4d88ddc96346c12aa11de983" }, "AlbertForQuestionAnswering": { "tokenizer_classes": [ "AlbertTokenizer", "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "AlbertForQuestionAnswering", "TFAlbertForQuestionAnswering" ], "sha": "040b81c15f437f4722349dc5b41fccd17ebd7fdc" }, "AlbertForSequenceClassification": { "tokenizer_classes": [ "AlbertTokenizer", "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "AlbertForSequenceClassification", "TFAlbertForSequenceClassification" ], "sha": "39c1a0e2c1c2623106d3211d751e9b32f23a91a0" }, "AlbertForTokenClassification": { "tokenizer_classes": [ "AlbertTokenizer", "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "AlbertForTokenClassification", "TFAlbertForTokenClassification" ], "sha": "359c3f4a311a4053a6f6d6a880db5f82c8e3ff1f" }, "AlbertModel": { "tokenizer_classes": [ "AlbertTokenizer", "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "AlbertModel", "TFAlbertModel" ], "sha": "34a63314686b64aaeb595ddb95006f1ff2ffda17" }, "AlignModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [ "EfficientNetImageProcessor" ], "model_classes": [ "AlignModel" ], "sha": "68a4f9d3f493f44efa7c1dde6fcca23350e2c92b" }, "AltCLIPModel": { "tokenizer_classes": [ "XLMRobertaTokenizerFast" ], "processor_classes": [ "CLIPImageProcessor" ], "model_classes": [ "AltCLIPModel" ], "sha": "3106af0fd503970717c05f27218e5cacf19ba872" }, "BarkModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "BarkModel" ], "sha": "187e590fd87359cea47693e8cb11a604cd7b673c" }, "BartForCausalLM": { "tokenizer_classes": [ "BartTokenizer", "BartTokenizerFast" ], "processor_classes": [], "model_classes": [ "BartForCausalLM" ], "sha": "c25526ac67d2dbe79fe5462af4b7908ca2fbc3ff" }, "BartForConditionalGeneration": { "tokenizer_classes": [ "BartTokenizer", "BartTokenizerFast" ], "processor_classes": [], "model_classes": [ "BartForConditionalGeneration", "TFBartForConditionalGeneration" ], "sha": "3a489a21e4b04705f4a6047924b7616a67be7e37" }, "BartForQuestionAnswering": { "tokenizer_classes": [ "BartTokenizer", "BartTokenizerFast" ], "processor_classes": [], "model_classes": [ "BartForQuestionAnswering" ], "sha": "3ebf9aab39a57ceab55128d5fc6f61e4db0dadd4" }, "BartForSequenceClassification": { "tokenizer_classes": [ "BartTokenizer", "BartTokenizerFast" ], "processor_classes": [], "model_classes": [ "BartForSequenceClassification", "TFBartForSequenceClassification" ], "sha": "ea452fd9a928cfebd71723afa50feb20326917bc" }, "BartModel": { "tokenizer_classes": [ "BartTokenizer", "BartTokenizerFast" ], "processor_classes": [], "model_classes": [ "BartModel", "TFBartModel" ], "sha": "e5df6d1aa75f03833b2df328b9c35463f73a421b" }, "BeitForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "BeitImageProcessor" ], "model_classes": [ "BeitForImageClassification" ], "sha": "e997587bb890f82faad4bd25eb23d85ba21ecaaa" }, "BeitForSemanticSegmentation": { "tokenizer_classes": [], "processor_classes": [ "BeitImageProcessor" ], "model_classes": [ "BeitForSemanticSegmentation" ], "sha": "d4afa9e21e3fe5b087578ed68974d9b3ffc1fb22" }, "BeitModel": { "tokenizer_classes": [], "processor_classes": [ "BeitImageProcessor" ], "model_classes": [ "BeitModel" ], "sha": "5c4a051f0cca6f64d02c6168deb88413cae10d2c" }, "BertForMaskedLM": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "BertForMaskedLM", "TFBertForMaskedLM" ], "sha": "3e32baa52ce044c75edfb5c28abd51ee8d051282" }, "BertForMultipleChoice": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "BertForMultipleChoice", "TFBertForMultipleChoice" ], "sha": "0b8c3a6d411d1e19e5fd98d4d8631ae7616eeeaa" }, "BertForNextSentencePrediction": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "BertForNextSentencePrediction", "TFBertForNextSentencePrediction" ], "sha": "628e70debf8864bd0b63aff7901d17d9c4f7612c" }, "BertForPreTraining": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "BertForPreTraining", "TFBertForPreTraining" ], "sha": "c748ad37e6a200a6f64b2764191bfe13f976032f" }, "BertForQuestionAnswering": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "BertForQuestionAnswering", "TFBertForQuestionAnswering" ], "sha": "4671ad0c21493b97c5eb2f0201192704c29876d5" }, "BertForSequenceClassification": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "BertForSequenceClassification", "TFBertForSequenceClassification" ], "sha": "37a9d44022264c12bdf3ec257778f953b63d4aaf" }, "BertForTokenClassification": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "BertForTokenClassification", "TFBertForTokenClassification" ], "sha": "d7dc3a0793ff6dfcb794b21130ee0f185d2c61a2" }, "BertLMHeadModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "BertLMHeadModel", "TFBertLMHeadModel" ], "sha": "b4e3acc1990f3e365ffddbd54b620a26d9fb4b09" }, "BertModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "BertModel", "TFBertModel" ], "sha": "3956d303d3cddf0708ff20660c1ea5f6ec30e434" }, "BigBirdForCausalLM": { "tokenizer_classes": [ "BigBirdTokenizer", "BigBirdTokenizerFast" ], "processor_classes": [], "model_classes": [ "BigBirdForCausalLM" ], "sha": "5c7a487af5248d9c01b45d5481b7d7bb9b36e1b5" }, "BigBirdForMaskedLM": { "tokenizer_classes": [ "BigBirdTokenizer", "BigBirdTokenizerFast" ], "processor_classes": [], "model_classes": [ "BigBirdForMaskedLM" ], "sha": "476ef8225c0f69270b577706ad4f1dda13e4dde5" }, "BigBirdForMultipleChoice": { "tokenizer_classes": [ "BigBirdTokenizer", "BigBirdTokenizerFast" ], "processor_classes": [], "model_classes": [ "BigBirdForMultipleChoice" ], "sha": "cf93eaa1019987112c171a407745bc183a20513a" }, "BigBirdForPreTraining": { "tokenizer_classes": [ "BigBirdTokenizer", "BigBirdTokenizerFast" ], "processor_classes": [], "model_classes": [ "BigBirdForPreTraining" ], "sha": "5fb9efa13334431e7c186a9fa314b89c4a1eee72" }, "BigBirdForQuestionAnswering": { "tokenizer_classes": [ "BigBirdTokenizer", "BigBirdTokenizerFast" ], "processor_classes": [], "model_classes": [ "BigBirdForQuestionAnswering" ], "sha": "f82f88bd71fba819a8ffb0692915d3529e705417" }, "BigBirdForSequenceClassification": { "tokenizer_classes": [ "BigBirdTokenizer", "BigBirdTokenizerFast" ], "processor_classes": [], "model_classes": [ "BigBirdForSequenceClassification" ], "sha": "ea398090858f9af93b54fc9a8d65cfed78ac27ff" }, "BigBirdForTokenClassification": { "tokenizer_classes": [ "BigBirdTokenizer", "BigBirdTokenizerFast" ], "processor_classes": [], "model_classes": [ "BigBirdForTokenClassification" ], "sha": "2cdea118999fa58ba9fb0162d99e2ffa146c3df1" }, "BigBirdModel": { "tokenizer_classes": [ "BigBirdTokenizer", "BigBirdTokenizerFast" ], "processor_classes": [], "model_classes": [ "BigBirdModel" ], "sha": "9c55989f31df156194e6997606fb14d9897e0300" }, "BigBirdPegasusForCausalLM": { "tokenizer_classes": [ "PegasusTokenizer", "PegasusTokenizerFast" ], "processor_classes": [], "model_classes": [ "BigBirdPegasusForCausalLM" ], "sha": "49bc8816c666dee32e27cd8e00136b604eb85243" }, "BigBirdPegasusForConditionalGeneration": { "tokenizer_classes": [ "PegasusTokenizer", "PegasusTokenizerFast" ], "processor_classes": [], "model_classes": [ "BigBirdPegasusForConditionalGeneration" ], "sha": "e791aa6d1af5a76ca0926d95b1f28bd2d8adf376" }, "BigBirdPegasusForQuestionAnswering": { "tokenizer_classes": [ "PegasusTokenizer", "PegasusTokenizerFast" ], "processor_classes": [], "model_classes": [ "BigBirdPegasusForQuestionAnswering" ], "sha": "7650e076713ca707a37062adc8c9c1cd60dad7c7" }, "BigBirdPegasusForSequenceClassification": { "tokenizer_classes": [ "PegasusTokenizer", "PegasusTokenizerFast" ], "processor_classes": [], "model_classes": [ "BigBirdPegasusForSequenceClassification" ], "sha": "02500e8ebd9c53528750013fb963fbdc2be34034" }, "BigBirdPegasusModel": { "tokenizer_classes": [ "PegasusTokenizer", "PegasusTokenizerFast" ], "processor_classes": [], "model_classes": [ "BigBirdPegasusModel" ], "sha": "b07c5304dfba673cf8b9cf5cd1aa45fbfea1c2f3" }, "BioGptForCausalLM": { "tokenizer_classes": [ "BioGptTokenizer" ], "processor_classes": [], "model_classes": [ "BioGptForCausalLM" ], "sha": "07073b31da84054fd12226e3cae4cb3beb2547f9" }, "BioGptForSequenceClassification": { "tokenizer_classes": [ "BioGptTokenizer" ], "processor_classes": [], "model_classes": [ "BioGptForSequenceClassification" ], "sha": "8e18ad6218abd795e050dec324a8c827ccedacb4" }, "BioGptForTokenClassification": { "tokenizer_classes": [ "BioGptTokenizer" ], "processor_classes": [], "model_classes": [ "BioGptForTokenClassification" ], "sha": "67f8173c1a17273064d452a9031a51b67f327b6a" }, "BioGptModel": { "tokenizer_classes": [ "BioGptTokenizer" ], "processor_classes": [], "model_classes": [ "BioGptModel" ], "sha": "fe18551d0743538a990520b75707294ec57b4ebe" }, "BitBackbone": { "tokenizer_classes": [], "processor_classes": [ "BitImageProcessor" ], "model_classes": [ "BitBackbone" ], "sha": "2f06f6b4395b6dce2b00ac839ff757410e743cd7" }, "BitForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "BitImageProcessor" ], "model_classes": [ "BitForImageClassification" ], "sha": "d0d8476f2d285ddda7c42c0d4a8e4bf6f5d2bfdf" }, "BitModel": { "tokenizer_classes": [], "processor_classes": [ "BitImageProcessor" ], "model_classes": [ "BitModel" ], "sha": "30a8a9b1a6b253cc500c01cf41bc1fc9581ea5e5" }, "BlenderbotForCausalLM": { "tokenizer_classes": [ "BlenderbotTokenizer", "BlenderbotTokenizerFast" ], "processor_classes": [], "model_classes": [ "BlenderbotForCausalLM" ], "sha": "8aad2e13e8920bca3cf988ba45f8a7b008b51a81" }, "BlenderbotForConditionalGeneration": { "tokenizer_classes": [ "BlenderbotTokenizer", "BlenderbotTokenizerFast" ], "processor_classes": [], "model_classes": [ "BlenderbotForConditionalGeneration", "TFBlenderbotForConditionalGeneration" ], "sha": "e8532878b9924fa02fb4b059b7f6e7fa372fff91" }, "BlenderbotModel": { "tokenizer_classes": [ "BlenderbotTokenizer", "BlenderbotTokenizerFast" ], "processor_classes": [], "model_classes": [ "BlenderbotModel", "TFBlenderbotModel" ], "sha": "ff848a40c30ca98eb7c6870bbb02677d5af9db55" }, "BlenderbotSmallForCausalLM": { "tokenizer_classes": [ "BlenderbotSmallTokenizer" ], "processor_classes": [], "model_classes": [ "BlenderbotSmallForCausalLM" ], "sha": "4c57c106630932eb9de4d76210a540d04616304d" }, "BlenderbotSmallForConditionalGeneration": { "tokenizer_classes": [ "BlenderbotSmallTokenizer" ], "processor_classes": [], "model_classes": [ "BlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallForConditionalGeneration" ], "sha": "b8db01fcf3e37a5b369cd50e169bf383b8e905d8" }, "BlenderbotSmallModel": { "tokenizer_classes": [ "BlenderbotSmallTokenizer" ], "processor_classes": [], "model_classes": [ "BlenderbotSmallModel", "TFBlenderbotSmallModel" ], "sha": "0a10c70e225ec63278faffa8fabf759f063f0e55" }, "Blip2ForConditionalGeneration": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [ "BlipImageProcessor" ], "model_classes": [ "Blip2ForConditionalGeneration" ], "sha": "35e1ef43da3554af62eb29a7b3dbbef3f3bef48e" }, "Blip2Model": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [ "BlipImageProcessor" ], "model_classes": [ "Blip2Model" ], "sha": "c23378f225be31872fff33c103cf0ebc2454ffcc" }, "BlipForConditionalGeneration": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [ "BlipImageProcessor" ], "model_classes": [ "BlipForConditionalGeneration", "TFBlipForConditionalGeneration" ], "sha": "eaf32bc0369349deef0c777442fc185119171d1f" }, "BlipModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [ "BlipImageProcessor" ], "model_classes": [ "BlipModel", "TFBlipModel" ], "sha": "3d1d1c15eff22d6b2664a2d15757fa6f5d93827d" }, "BloomForCausalLM": { "tokenizer_classes": [ "BloomTokenizerFast" ], "processor_classes": [], "model_classes": [ "BloomForCausalLM" ], "sha": "0f4f06f162cd67d34d03ee156484e4001d468500" }, "BloomForQuestionAnswering": { "tokenizer_classes": [ "BloomTokenizerFast" ], "processor_classes": [], "model_classes": [ "BloomForQuestionAnswering" ], "sha": "23f369f163eef8c9c9685900440b0cbb0f3439fd" }, "BloomForSequenceClassification": { "tokenizer_classes": [ "BloomTokenizerFast" ], "processor_classes": [], "model_classes": [ "BloomForSequenceClassification" ], "sha": "b2280eef7172835f39b265eb0c46623257f67bbe" }, "BloomForTokenClassification": { "tokenizer_classes": [ "BloomTokenizerFast" ], "processor_classes": [], "model_classes": [ "BloomForTokenClassification" ], "sha": "9796aa45f99adff987c978089e11c0bd9d7b997f" }, "BloomModel": { "tokenizer_classes": [ "BloomTokenizerFast" ], "processor_classes": [], "model_classes": [ "BloomModel" ], "sha": "28b600fcfdc4f4938406fb518abf895620048cb2" }, "BrosForTokenClassification": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "BrosForTokenClassification" ], "sha": "4ec2c91936f96b93667e8946fc7abbdeeb08a6d7" }, "BrosModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "BrosModel" ], "sha": "e2464830b1874eeaf9f4b425fbe0ce8e7c7643e9" }, "CLIPModel": { "tokenizer_classes": [ "CLIPTokenizer", "CLIPTokenizerFast" ], "processor_classes": [ "CLIPImageProcessor" ], "model_classes": [ "CLIPModel", "TFCLIPModel" ], "sha": "0452d344074485d0e7eb5d5c12447b7c9dbc9619" }, "CLIPSegModel": { "tokenizer_classes": [ "CLIPTokenizer", "CLIPTokenizerFast" ], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "CLIPSegModel" ], "sha": "7b1305214ccc85d29b776ffbee06748693852a04" }, "CTRLForSequenceClassification": { "tokenizer_classes": [ "CTRLTokenizer" ], "processor_classes": [], "model_classes": [ "CTRLForSequenceClassification", "TFCTRLForSequenceClassification" ], "sha": "280b5a3502d607c55c9f8d9f198fe9c2802d6f73" }, "CTRLLMHeadModel": { "tokenizer_classes": [ "CTRLTokenizer" ], "processor_classes": [], "model_classes": [ "CTRLLMHeadModel", "TFCTRLLMHeadModel" ], "sha": "662381663b216f1dd3c9cd30e2e83cb4c6fc9552" }, "CTRLModel": { "tokenizer_classes": [ "CTRLTokenizer" ], "processor_classes": [], "model_classes": [ "CTRLModel", "TFCTRLModel" ], "sha": "68b19b4f132d5a191a73acd78d983cbdcf068e9c" }, "CanineForMultipleChoice": { "tokenizer_classes": [ "CanineTokenizer" ], "processor_classes": [], "model_classes": [ "CanineForMultipleChoice" ], "sha": "fa0451453ed202f903ff7dcf6071aab6630fb89f" }, "CanineForQuestionAnswering": { "tokenizer_classes": [ "CanineTokenizer" ], "processor_classes": [], "model_classes": [ "CanineForQuestionAnswering" ], "sha": "5e1012bb086ac2e0b1497eeb7ed14eb2183d4ecb" }, "CanineForSequenceClassification": { "tokenizer_classes": [ "CanineTokenizer" ], "processor_classes": [], "model_classes": [ "CanineForSequenceClassification" ], "sha": "75336dc9179153869c38a8047ce4b1e02677a260" }, "CanineForTokenClassification": { "tokenizer_classes": [ "CanineTokenizer" ], "processor_classes": [], "model_classes": [ "CanineForTokenClassification" ], "sha": "65a622ea8e12597e12f45e59d46d8dbe8461fc10" }, "CanineModel": { "tokenizer_classes": [ "CanineTokenizer" ], "processor_classes": [], "model_classes": [ "CanineModel" ], "sha": "531ef67ad4f0b3dc7a9e5d722c774096b7401b1b" }, "ChineseCLIPModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [ "ChineseCLIPImageProcessor" ], "model_classes": [ "ChineseCLIPModel" ], "sha": "504271a3c5fd9c2e877f5b4c01848bc18778c7c3" }, "ClapModel": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [ "ClapFeatureExtractor" ], "model_classes": [ "ClapModel" ], "sha": "a7874595b900f9b2ddc79130dafc3ff48f4fbfb9" }, "ClvpModelForConditionalGeneration": { "tokenizer_classes": [ "ClvpTokenizer" ], "processor_classes": [ "ClvpFeatureExtractor" ], "model_classes": [], "sha": "45df7581535be337ff781707b6c20994ca221f05" }, "CodeGenForCausalLM": { "tokenizer_classes": [ "CodeGenTokenizer", "CodeGenTokenizerFast" ], "processor_classes": [], "model_classes": [ "CodeGenForCausalLM" ], "sha": "a3fc69d757fd1f0aa01bcbc4337f586651c7cb10" }, "CodeGenModel": { "tokenizer_classes": [ "CodeGenTokenizer", "CodeGenTokenizerFast" ], "processor_classes": [], "model_classes": [ "CodeGenModel" ], "sha": "dad4941a2b7429fc6e8206fcc4a04fc40f4a0beb" }, "ConditionalDetrForObjectDetection": { "tokenizer_classes": [], "processor_classes": [ "ConditionalDetrImageProcessor" ], "model_classes": [ "ConditionalDetrForObjectDetection" ], "sha": "762c213a0285edc84eb813a2ed90063cf971ca43" }, "ConditionalDetrModel": { "tokenizer_classes": [], "processor_classes": [ "ConditionalDetrImageProcessor" ], "model_classes": [ "ConditionalDetrModel" ], "sha": "18b75874158cac520c63605293b06e0b1327c263" }, "ConvBertForMaskedLM": { "tokenizer_classes": [ "ConvBertTokenizer", "ConvBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ConvBertForMaskedLM", "TFConvBertForMaskedLM" ], "sha": "307c70e32c3d3c18aeb45e0cbdc9fcd2957d9aba" }, "ConvBertForMultipleChoice": { "tokenizer_classes": [ "ConvBertTokenizer", "ConvBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ConvBertForMultipleChoice", "TFConvBertForMultipleChoice" ], "sha": "d6561a21ffdb82d03c1822af0510eb7482ce5026" }, "ConvBertForQuestionAnswering": { "tokenizer_classes": [ "ConvBertTokenizer", "ConvBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ConvBertForQuestionAnswering", "TFConvBertForQuestionAnswering" ], "sha": "8a056da5cc421415c2a24b9f644dd95ca279411d" }, "ConvBertForSequenceClassification": { "tokenizer_classes": [ "ConvBertTokenizer", "ConvBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ConvBertForSequenceClassification", "TFConvBertForSequenceClassification" ], "sha": "8bb8b20e51d282d777cc567cacadd97a35f0811e" }, "ConvBertForTokenClassification": { "tokenizer_classes": [ "ConvBertTokenizer", "ConvBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ConvBertForTokenClassification", "TFConvBertForTokenClassification" ], "sha": "8db0dd3c2b8ccc958fa9a84801f4f837b42fcf2c" }, "ConvBertModel": { "tokenizer_classes": [ "ConvBertTokenizer", "ConvBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ConvBertModel", "TFConvBertModel" ], "sha": "c9c5b1a74f0e468d8467473cabeaa67fcdbaddb7" }, "ConvNextBackbone": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "ConvNextBackbone" ], "sha": "499c7d6a97825b79e19663b70f3b60c4813b6bf2" }, "ConvNextForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "ConvNextForImageClassification", "TFConvNextForImageClassification" ], "sha": "0b490fd6b19cdbf721025dbd6ee45dcc5828e6e3" }, "ConvNextModel": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "ConvNextModel", "TFConvNextModel" ], "sha": "7b3b47a57b9a9120e022b91d6067daeac55b794f" }, "ConvNextV2Backbone": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "ConvNextV2Backbone" ], "sha": "c82fc526949dfd892a1fee3c34be6f8d80c4d3df" }, "ConvNextV2ForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "ConvNextV2ForImageClassification", "TFConvNextV2ForImageClassification" ], "sha": "ee22bae1cbb87d66fc7f62f7e15a43d6ff80d3cc" }, "ConvNextV2Model": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "ConvNextV2Model", "TFConvNextV2Model" ], "sha": "c4dd68ee1102cba05bcc483da2a88e39427b7249" }, "CvtForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "CvtForImageClassification", "TFCvtForImageClassification" ], "sha": "4b1938e252fdb26a06c1f5755e07fa8f6eed2d75" }, "CvtModel": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "CvtModel", "TFCvtModel" ], "sha": "27fed12c174f4f4f1fe27075d1c29602fe0669f0" }, "DPRQuestionEncoder": { "tokenizer_classes": [ "DPRQuestionEncoderTokenizer", "DPRQuestionEncoderTokenizerFast" ], "processor_classes": [], "model_classes": [ "DPRQuestionEncoder", "TFDPRQuestionEncoder" ], "sha": "09ae0269780271e0a4916f7bab1dbc4f8a76070d" }, "DPTForDepthEstimation": { "tokenizer_classes": [], "processor_classes": [ "DPTImageProcessor" ], "model_classes": [ "DPTForDepthEstimation" ], "sha": "11b7735d64d95b6599811631b012d2dec6eaa2c1" }, "DPTForSemanticSegmentation": { "tokenizer_classes": [], "processor_classes": [ "DPTImageProcessor" ], "model_classes": [ "DPTForSemanticSegmentation" ], "sha": "e140c3c716a4bf11dad875e5f5f0abd2bd4cbbcb" }, "DPTModel": { "tokenizer_classes": [], "processor_classes": [ "DPTImageProcessor" ], "model_classes": [ "DPTModel" ], "sha": "1d6ae6c0b60868dffbef0dddeda381c51c6dcba5" }, "Data2VecAudioForAudioFrameClassification": { "tokenizer_classes": [], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Data2VecAudioForAudioFrameClassification" ], "sha": "a64828b27e73fc8dd95aeb315108ca2f6a66b55f" }, "Data2VecAudioForCTC": { "tokenizer_classes": [], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Data2VecAudioForCTC" ], "sha": "bb161b6a181bd2c22cf30222f46fa6ef42225744" }, "Data2VecAudioForSequenceClassification": { "tokenizer_classes": [], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Data2VecAudioForSequenceClassification" ], "sha": "8de17e0a959eca5f72b2ea59a11bc1fa744785d9" }, "Data2VecAudioForXVector": { "tokenizer_classes": [], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Data2VecAudioForXVector" ], "sha": "dcb92484cf28fb4fe1dcf5d6e8d78e04382fdce9" }, "Data2VecAudioModel": { "tokenizer_classes": [], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Data2VecAudioModel" ], "sha": "73f503fdff73b7616154f64dbe38a685cc48e8eb" }, "Data2VecTextForCausalLM": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "Data2VecTextForCausalLM" ], "sha": "1f3658ce623653338cd31516551e8181aa08bb38" }, "Data2VecTextForMaskedLM": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "Data2VecTextForMaskedLM" ], "sha": "fb41ac30d0faa0899bf5afaa0986df8993395ca6" }, "Data2VecTextForMultipleChoice": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "Data2VecTextForMultipleChoice" ], "sha": "e7556d520ad90ebae5ad88554d45a37488d00040" }, "Data2VecTextForQuestionAnswering": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "Data2VecTextForQuestionAnswering" ], "sha": "9630833d76a1fd7e96b904d87bb11b7c00ccd021" }, "Data2VecTextForSequenceClassification": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "Data2VecTextForSequenceClassification" ], "sha": "156e4019c37d9592f193ba80553cd245cbccecb3" }, "Data2VecTextForTokenClassification": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "Data2VecTextForTokenClassification" ], "sha": "55b3a49fdbf22479d6eb939261d4b884ea288270" }, "Data2VecTextModel": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "Data2VecTextModel" ], "sha": "c21be3e4f88e8357bf33bfba8f8e05ae2e735124" }, "Data2VecVisionForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "BeitImageProcessor" ], "model_classes": [ "Data2VecVisionForImageClassification", "TFData2VecVisionForImageClassification" ], "sha": "d640e7ced7a3fbbb8c8661a4f67b934e55406172" }, "Data2VecVisionForSemanticSegmentation": { "tokenizer_classes": [], "processor_classes": [ "BeitImageProcessor" ], "model_classes": [ "Data2VecVisionForSemanticSegmentation", "TFData2VecVisionForSemanticSegmentation" ], "sha": "3eba3cd694fab6530b7e5da8f49d3951301c816a" }, "Data2VecVisionModel": { "tokenizer_classes": [], "processor_classes": [ "BeitImageProcessor" ], "model_classes": [ "Data2VecVisionModel", "TFData2VecVisionModel" ], "sha": "2a7ad25e4359970dc70494a2f3eb98e2a3c9806d" }, "DebertaForMaskedLM": { "tokenizer_classes": [ "DebertaTokenizer", "DebertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "DebertaForMaskedLM", "TFDebertaForMaskedLM" ], "sha": "e0f9ada9e0f6d4d7cc39d7cbd58369b0c84de33d" }, "DebertaForQuestionAnswering": { "tokenizer_classes": [ "DebertaTokenizer", "DebertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "DebertaForQuestionAnswering", "TFDebertaForQuestionAnswering" ], "sha": "a3eb69cdb0b52f7d0fb730e882f1a54b9a7442ea" }, "DebertaForSequenceClassification": { "tokenizer_classes": [ "DebertaTokenizer", "DebertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "DebertaForSequenceClassification", "TFDebertaForSequenceClassification" ], "sha": "32af91d12c4e9b6d62b420bee93311fd77d3c933" }, "DebertaForTokenClassification": { "tokenizer_classes": [ "DebertaTokenizer", "DebertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "DebertaForTokenClassification", "TFDebertaForTokenClassification" ], "sha": "ba62ba2726d813e60e512476fc1b178aa3858175" }, "DebertaModel": { "tokenizer_classes": [ "DebertaTokenizer", "DebertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "DebertaModel", "TFDebertaModel" ], "sha": "4273294e14cd04c0e2cd1dcff5cf7e5d4fe906ba" }, "DebertaV2ForMaskedLM": { "tokenizer_classes": [ "DebertaV2Tokenizer", "DebertaV2TokenizerFast" ], "processor_classes": [], "model_classes": [ "DebertaV2ForMaskedLM", "TFDebertaV2ForMaskedLM" ], "sha": "a053dedc2cdf32918a84277cb0c05186604496a5" }, "DebertaV2ForMultipleChoice": { "tokenizer_classes": [ "DebertaV2Tokenizer", "DebertaV2TokenizerFast" ], "processor_classes": [], "model_classes": [ "DebertaV2ForMultipleChoice", "TFDebertaV2ForMultipleChoice" ], "sha": "07e39f520ce239b39ef8cb24cd7874d06c791063" }, "DebertaV2ForQuestionAnswering": { "tokenizer_classes": [ "DebertaV2Tokenizer", "DebertaV2TokenizerFast" ], "processor_classes": [], "model_classes": [ "DebertaV2ForQuestionAnswering", "TFDebertaV2ForQuestionAnswering" ], "sha": "9cecb3a7fc6b95099122283644ea1f8ced287d1b" }, "DebertaV2ForSequenceClassification": { "tokenizer_classes": [ "DebertaV2Tokenizer", "DebertaV2TokenizerFast" ], "processor_classes": [], "model_classes": [ "DebertaV2ForSequenceClassification", "TFDebertaV2ForSequenceClassification" ], "sha": "df9ea1f5c0f2ccd139b21cfb3963a5a5ebfb5b81" }, "DebertaV2ForTokenClassification": { "tokenizer_classes": [ "DebertaV2Tokenizer", "DebertaV2TokenizerFast" ], "processor_classes": [], "model_classes": [ "DebertaV2ForTokenClassification", "TFDebertaV2ForTokenClassification" ], "sha": "51fe01989df38a540ac1abca5ee71a51365defd5" }, "DebertaV2Model": { "tokenizer_classes": [ "DebertaV2Tokenizer", "DebertaV2TokenizerFast" ], "processor_classes": [], "model_classes": [ "DebertaV2Model", "TFDebertaV2Model" ], "sha": "211df4bd1a4a9b66c97af3f9231a5d2af8de7b9f" }, "DeformableDetrForObjectDetection": { "tokenizer_classes": [], "processor_classes": [ "DeformableDetrImageProcessor" ], "model_classes": [ "DeformableDetrForObjectDetection" ], "sha": "8fa0db215c458f60ae4d455d6fb067c1c5e39fdc" }, "DeformableDetrModel": { "tokenizer_classes": [], "processor_classes": [ "DeformableDetrImageProcessor" ], "model_classes": [ "DeformableDetrModel" ], "sha": "0faac5624696b03edd14694642f9804f2cd8f3da" }, "DeiTForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "DeiTImageProcessor" ], "model_classes": [ "DeiTForImageClassification", "TFDeiTForImageClassification" ], "sha": "21fc864199dafa0130f16a45769c6b6ca22c7784" }, "DeiTForImageClassificationWithTeacher": { "tokenizer_classes": [], "processor_classes": [ "DeiTImageProcessor" ], "model_classes": [ "DeiTForImageClassificationWithTeacher", "TFDeiTForImageClassificationWithTeacher" ], "sha": "5a5738a109e27f3d4b78a0db4cb1d3331140c10e" }, "DeiTForMaskedImageModeling": { "tokenizer_classes": [], "processor_classes": [ "DeiTImageProcessor" ], "model_classes": [ "DeiTForMaskedImageModeling", "TFDeiTForMaskedImageModeling" ], "sha": "d5df5c538fe1efb8d668a3893d1691d505a0de06" }, "DeiTModel": { "tokenizer_classes": [], "processor_classes": [ "DeiTImageProcessor" ], "model_classes": [ "DeiTModel", "TFDeiTModel" ], "sha": "0fdbff6f44b7c6933c2027fec1d7f87bec06b590" }, "DetaForObjectDetection": { "tokenizer_classes": [], "processor_classes": [ "DetaImageProcessor" ], "model_classes": [ "DetaForObjectDetection" ], "sha": "a15ad6ce64fbcb5021b2b99e9587c4011ef3341d" }, "DetaModel": { "tokenizer_classes": [], "processor_classes": [ "DetaImageProcessor" ], "model_classes": [ "DetaModel" ], "sha": "8820f2297ec0dec8f1875054559c8b7a162098e3" }, "DetrForObjectDetection": { "tokenizer_classes": [], "processor_classes": [ "DetrImageProcessor" ], "model_classes": [ "DetrForObjectDetection" ], "sha": "7dc967c53f4b3f07904c42b255346b744d0ad84e" }, "DetrForSegmentation": { "tokenizer_classes": [], "processor_classes": [ "DetrImageProcessor" ], "model_classes": [ "DetrForSegmentation" ], "sha": "e34330acdae359588ef853e961a78d419dc4e8eb" }, "DetrModel": { "tokenizer_classes": [], "processor_classes": [ "DetrImageProcessor" ], "model_classes": [ "DetrModel" ], "sha": "f15ce38a10c7447e8048b1681e4811322a005722" }, "DinatBackbone": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "DinatBackbone" ], "sha": "3ba13790a0796d90104c207f75bb3d5d79723d51" }, "DinatForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "DinatForImageClassification" ], "sha": "624cf2d864a7ea2f90e24014a213e34597e8bd76" }, "DinatModel": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "DinatModel" ], "sha": "d6c75bc51196f0a683afb12de6310fdda13efefd" }, "Dinov2Backbone": { "tokenizer_classes": [], "processor_classes": [ "BitImageProcessor" ], "model_classes": [ "Dinov2Backbone" ], "sha": "dbf8d2ff3092ac53c11e6525e6cbae7ace84769a" }, "Dinov2ForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "BitImageProcessor" ], "model_classes": [ "Dinov2ForImageClassification" ], "sha": "ae44840966456aae33641df2c8c8a4af5b457b24" }, "Dinov2Model": { "tokenizer_classes": [], "processor_classes": [ "BitImageProcessor" ], "model_classes": [ "Dinov2Model" ], "sha": "6f560b1cc9806bcf84fe0b0c60b5faf9c29be959" }, "DistilBertForMaskedLM": { "tokenizer_classes": [ "DistilBertTokenizer", "DistilBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "DistilBertForMaskedLM", "TFDistilBertForMaskedLM" ], "sha": "b2dfda30b012821996e6e603729562d9c900bc0f" }, "DistilBertForMultipleChoice": { "tokenizer_classes": [ "DistilBertTokenizer", "DistilBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "DistilBertForMultipleChoice", "TFDistilBertForMultipleChoice" ], "sha": "ec6b83129a7d1be2a6b8d58303abcca5541a5cb3" }, "DistilBertForQuestionAnswering": { "tokenizer_classes": [ "DistilBertTokenizer", "DistilBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "DistilBertForQuestionAnswering", "TFDistilBertForQuestionAnswering" ], "sha": "812406b226415044469b0e0a84c4fe0ff338c5d3" }, "DistilBertForSequenceClassification": { "tokenizer_classes": [ "DistilBertTokenizer", "DistilBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "DistilBertForSequenceClassification", "TFDistilBertForSequenceClassification" ], "sha": "6f427ce7b3e5aaa596938fbd98437d3875581b7b" }, "DistilBertForTokenClassification": { "tokenizer_classes": [ "DistilBertTokenizer", "DistilBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "DistilBertForTokenClassification", "TFDistilBertForTokenClassification" ], "sha": "166dbe3f5d6ecd871762567069454d6ec65234b4" }, "DistilBertModel": { "tokenizer_classes": [ "DistilBertTokenizer", "DistilBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "DistilBertModel", "TFDistilBertModel" ], "sha": "cc4425ad0676f3ec00e8bffe485fe83cae61041a" }, "DonutSwinModel": { "tokenizer_classes": [], "processor_classes": [ "DonutImageProcessor" ], "model_classes": [ "DonutSwinModel" ], "sha": "1b10654fbfe2f2ea410a672ab605bd5c60d3f284" }, "EfficientFormerForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "EfficientFormerImageProcessor" ], "model_classes": [ "EfficientFormerForImageClassification", "TFEfficientFormerForImageClassification" ], "sha": "ebadb628e12f268e321fcc756fa4606f7b5b3178" }, "EfficientFormerForImageClassificationWithTeacher": { "tokenizer_classes": [], "processor_classes": [ "EfficientFormerImageProcessor" ], "model_classes": [ "EfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerForImageClassificationWithTeacher" ], "sha": "1beabce6da9cb4ebbeafcd1ef23fac36b4a269e2" }, "EfficientFormerModel": { "tokenizer_classes": [], "processor_classes": [ "EfficientFormerImageProcessor" ], "model_classes": [ "EfficientFormerModel", "TFEfficientFormerModel" ], "sha": "200fae5b875844d09c8a91d1c155b72b06a517f6" }, "EfficientNetForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "EfficientNetImageProcessor" ], "model_classes": [ "EfficientNetForImageClassification" ], "sha": "6ed195ee636d2c0b885139da8c7b45d57ebaeee0" }, "EfficientNetModel": { "tokenizer_classes": [], "processor_classes": [ "EfficientNetImageProcessor" ], "model_classes": [ "EfficientNetModel" ], "sha": "eb03c90d4aaad98af0f19e0dfbdc41106297ffff" }, "ElectraForCausalLM": { "tokenizer_classes": [ "ElectraTokenizer", "ElectraTokenizerFast" ], "processor_classes": [], "model_classes": [ "ElectraForCausalLM" ], "sha": "c78396bc8cdd8db247892339de8da80d691d1d04" }, "ElectraForMaskedLM": { "tokenizer_classes": [ "ElectraTokenizer", "ElectraTokenizerFast" ], "processor_classes": [], "model_classes": [ "ElectraForMaskedLM", "TFElectraForMaskedLM" ], "sha": "631337703dbd8d41904c39891a41c6f1edd31813" }, "ElectraForMultipleChoice": { "tokenizer_classes": [ "ElectraTokenizer", "ElectraTokenizerFast" ], "processor_classes": [], "model_classes": [ "ElectraForMultipleChoice", "TFElectraForMultipleChoice" ], "sha": "66fdea6e22cfcbd3caa49ea82f31871c460612fa" }, "ElectraForPreTraining": { "tokenizer_classes": [ "ElectraTokenizer", "ElectraTokenizerFast" ], "processor_classes": [], "model_classes": [ "ElectraForPreTraining", "TFElectraForPreTraining" ], "sha": "7b2d0fa8726b1180c7d6cde4f4afc3800eba7e6f" }, "ElectraForQuestionAnswering": { "tokenizer_classes": [ "ElectraTokenizer", "ElectraTokenizerFast" ], "processor_classes": [], "model_classes": [ "ElectraForQuestionAnswering", "TFElectraForQuestionAnswering" ], "sha": "c6b127fd9f3019462e4ca2373762836207e39ce2" }, "ElectraForSequenceClassification": { "tokenizer_classes": [ "ElectraTokenizer", "ElectraTokenizerFast" ], "processor_classes": [], "model_classes": [ "ElectraForSequenceClassification", "TFElectraForSequenceClassification" ], "sha": "41f0089ab7876abe0e28dbbd565144acb31f8127" }, "ElectraForTokenClassification": { "tokenizer_classes": [ "ElectraTokenizer", "ElectraTokenizerFast" ], "processor_classes": [], "model_classes": [ "ElectraForTokenClassification", "TFElectraForTokenClassification" ], "sha": "1fdbbe70c1ddd16503820a1443d6a379a15ed777" }, "ElectraModel": { "tokenizer_classes": [ "ElectraTokenizer", "ElectraTokenizerFast" ], "processor_classes": [], "model_classes": [ "ElectraModel", "TFElectraModel" ], "sha": "312b532cbef26610d80f2bd008650160cae4f7a1" }, "EncodecModel": { "tokenizer_classes": [], "processor_classes": [ "EncodecFeatureExtractor" ], "model_classes": [ "EncodecModel" ], "sha": "e14c5a2fd6529c85cd4ac5a05ee9e550ced6a006" }, "EncoderDecoderModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "EncoderDecoderModel", "TFEncoderDecoderModel" ], "sha": "1038be9fd1b87b2e0a8f33721ff8e4612d34b3b6" }, "ErnieForCausalLM": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ErnieForCausalLM" ], "sha": "b49e00112ff06c2f0a0e54499921dddcf8c3c6a8" }, "ErnieForMaskedLM": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ErnieForMaskedLM" ], "sha": "30429830d1997222d885dcfdbd36d5e02d0d34b1" }, "ErnieForMultipleChoice": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ErnieForMultipleChoice" ], "sha": "5a21144bf35dfb60560ff8249116ad4459c0069a" }, "ErnieForNextSentencePrediction": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ErnieForNextSentencePrediction" ], "sha": "ed5868efb39bf6afb29f0cf444deafcf1e50b5bc" }, "ErnieForPreTraining": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ErnieForPreTraining" ], "sha": "e4ad30d291c310fea25e6f91f91393f993513b42" }, "ErnieForQuestionAnswering": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ErnieForQuestionAnswering" ], "sha": "fe7c74b763f63a9fd864dad325385075df7c80c8" }, "ErnieForSequenceClassification": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ErnieForSequenceClassification" ], "sha": "84e0be05fcd52f54e96a69f67a2481323a58a9db" }, "ErnieForTokenClassification": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ErnieForTokenClassification" ], "sha": "91cf62c43a5a83332552ffa2d8e5e44d63a224ea" }, "ErnieMForMultipleChoice": { "tokenizer_classes": [ "ErnieMTokenizer" ], "processor_classes": [], "model_classes": [ "ErnieMForMultipleChoice" ], "sha": "c42ee7fcb132a323ace314c32e63c8a7d36ce18f" }, "ErnieMForQuestionAnswering": { "tokenizer_classes": [ "ErnieMTokenizer" ], "processor_classes": [], "model_classes": [ "ErnieMForQuestionAnswering" ], "sha": "2b90dee75ca87b214f96db00002aa18244ec8e84" }, "ErnieMForSequenceClassification": { "tokenizer_classes": [ "ErnieMTokenizer" ], "processor_classes": [], "model_classes": [ "ErnieMForSequenceClassification" ], "sha": "d8368646d8b1c67b1460af9c6ec13fd9d894cae6" }, "ErnieMForTokenClassification": { "tokenizer_classes": [ "ErnieMTokenizer" ], "processor_classes": [], "model_classes": [ "ErnieMForTokenClassification" ], "sha": "a9e29ba60fa0b7bedc2ed26a6b9911427df1ca6b" }, "ErnieMModel": { "tokenizer_classes": [ "ErnieMTokenizer" ], "processor_classes": [], "model_classes": [ "ErnieMModel" ], "sha": "7306eac3f38c3cf6211f0e741fdb81c6cc92bc09" }, "ErnieModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "ErnieModel" ], "sha": "b51478a9f40e353c41be3a29ccef103dcfe22b4b" }, "EsmForMaskedLM": { "tokenizer_classes": [ "EsmTokenizer" ], "processor_classes": [], "model_classes": [ "EsmForMaskedLM", "TFEsmForMaskedLM" ], "sha": "b56297b6cd64b9ba7c613d0cd146f1ecbea8115e" }, "EsmForSequenceClassification": { "tokenizer_classes": [ "EsmTokenizer" ], "processor_classes": [], "model_classes": [ "EsmForSequenceClassification", "TFEsmForSequenceClassification" ], "sha": "cc6d7ef0a4763540d67b7a4fb31bede9a7d3f245" }, "EsmForTokenClassification": { "tokenizer_classes": [ "EsmTokenizer" ], "processor_classes": [], "model_classes": [ "EsmForTokenClassification", "TFEsmForTokenClassification" ], "sha": "498953f66e260b974c504abbc863ee266d6c84a9" }, "EsmModel": { "tokenizer_classes": [ "EsmTokenizer" ], "processor_classes": [], "model_classes": [ "EsmModel", "TFEsmModel" ], "sha": "183838263b70809310117a0761542501acf64c21" }, "FNetForMaskedLM": { "tokenizer_classes": [ "FNetTokenizer", "FNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "FNetForMaskedLM" ], "sha": "91eaae1eac894af5d96c0221ec9bcef7f1af41c8" }, "FNetForMultipleChoice": { "tokenizer_classes": [ "FNetTokenizer", "FNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "FNetForMultipleChoice" ], "sha": "c15d98d5f7a6f3ef3099b1257949bee208d5466e" }, "FNetForNextSentencePrediction": { "tokenizer_classes": [ "FNetTokenizer", "FNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "FNetForNextSentencePrediction" ], "sha": "c59440b44d07d61fc45a90ded7fc11d6f25b143d" }, "FNetForPreTraining": { "tokenizer_classes": [ "FNetTokenizer", "FNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "FNetForPreTraining" ], "sha": "c05f55ccfb2f2533babd3c6e99de7749bc8081da" }, "FNetForQuestionAnswering": { "tokenizer_classes": [ "FNetTokenizer", "FNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "FNetForQuestionAnswering" ], "sha": "47788e49dd435653fa2aa4b3ccae3572a870758e" }, "FNetForSequenceClassification": { "tokenizer_classes": [ "FNetTokenizer", "FNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "FNetForSequenceClassification" ], "sha": "a3049b896ea6c5a32c364989c3afe604ee58b9fc" }, "FNetForTokenClassification": { "tokenizer_classes": [ "FNetTokenizer", "FNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "FNetForTokenClassification" ], "sha": "3bcdafca57d544bb81e2f7eead1e512c168582fc" }, "FNetModel": { "tokenizer_classes": [ "FNetTokenizer", "FNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "FNetModel" ], "sha": "48fa66de37df126504db3b658806135eb877f505" }, "FSMTForConditionalGeneration": { "tokenizer_classes": [ "FSMTTokenizer" ], "processor_classes": [], "model_classes": [ "FSMTForConditionalGeneration" ], "sha": "6a1a981b29c8a98c1fd31bd0ad809f5575ca6c7a" }, "FSMTModel": { "tokenizer_classes": [ "FSMTTokenizer" ], "processor_classes": [], "model_classes": [ "FSMTModel" ], "sha": "683f6f73a2ab87801f1695a72d1af63cf173ab7c" }, "FalconForCausalLM": { "tokenizer_classes": [ "PreTrainedTokenizerFast" ], "processor_classes": [], "model_classes": [ "FalconForCausalLM" ], "sha": "60076d5dafc5e33ba9c90dcd05e7c0834e44049a" }, "FalconForQuestionAnswering": { "tokenizer_classes": [ "PreTrainedTokenizerFast" ], "processor_classes": [], "model_classes": [ "FalconForQuestionAnswering" ], "sha": "b1ee9cd5fad2d177ea5a46df4611cd02f66ae788" }, "FalconForSequenceClassification": { "tokenizer_classes": [ "PreTrainedTokenizerFast" ], "processor_classes": [], "model_classes": [ "FalconForSequenceClassification" ], "sha": "007838c0991c2b6a87dc49a8a5c20f29149a00fa" }, "FalconForTokenClassification": { "tokenizer_classes": [ "PreTrainedTokenizerFast" ], "processor_classes": [], "model_classes": [ "FalconForTokenClassification" ], "sha": "0ea6ae548773daa6e3317fddc058957e956eebf4" }, "FalconModel": { "tokenizer_classes": [ "PreTrainedTokenizerFast" ], "processor_classes": [], "model_classes": [ "FalconModel" ], "sha": "ca15a579c946eb00c5b39cc8e0ea63d0c1460f84" }, "FlaubertForMultipleChoice": { "tokenizer_classes": [ "FlaubertTokenizer" ], "processor_classes": [], "model_classes": [ "FlaubertForMultipleChoice", "TFFlaubertForMultipleChoice" ], "sha": "8b12bd87a63f2e86c3482431742f6d8abf6ec4fd" }, "FlaubertForQuestionAnsweringSimple": { "tokenizer_classes": [ "FlaubertTokenizer" ], "processor_classes": [], "model_classes": [ "FlaubertForQuestionAnsweringSimple", "TFFlaubertForQuestionAnsweringSimple" ], "sha": "5c0e7ad1efae7e3497f5cd6d2d9519403df49d37" }, "FlaubertForSequenceClassification": { "tokenizer_classes": [ "FlaubertTokenizer" ], "processor_classes": [], "model_classes": [ "FlaubertForSequenceClassification", "TFFlaubertForSequenceClassification" ], "sha": "762f12a8c99690be8ed2663b7af3011660174a7c" }, "FlaubertForTokenClassification": { "tokenizer_classes": [ "FlaubertTokenizer" ], "processor_classes": [], "model_classes": [ "FlaubertForTokenClassification", "TFFlaubertForTokenClassification" ], "sha": "d2ab741c937bb69ef27c89e4c86a8c9d444874ca" }, "FlaubertModel": { "tokenizer_classes": [ "FlaubertTokenizer" ], "processor_classes": [], "model_classes": [ "FlaubertModel", "TFFlaubertModel" ], "sha": "bdc2f8e17bb869393053429ec8c1c842bfeabb07" }, "FlaubertWithLMHeadModel": { "tokenizer_classes": [ "FlaubertTokenizer" ], "processor_classes": [], "model_classes": [ "FlaubertWithLMHeadModel", "TFFlaubertWithLMHeadModel" ], "sha": "f20eb0932c90061003c9cc4e109c6ea22559c4f2" }, "FlavaForPreTraining": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [ "FlavaImageProcessor" ], "model_classes": [ "FlavaForPreTraining" ], "sha": "6e9b2094060a5fa27984c7b49e5d0e820a88b487" }, "FlavaModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [ "FlavaImageProcessor" ], "model_classes": [ "FlavaModel" ], "sha": "31ebf1b7a0ef1fd5059b98e28e5ab1c366d2c482" }, "FocalNetBackbone": { "tokenizer_classes": [], "processor_classes": [ "BitImageProcessor" ], "model_classes": [ "FocalNetBackbone" ], "sha": "eb8c580969443cb87de7dd9a256deaface03692f" }, "FocalNetForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "BitImageProcessor" ], "model_classes": [ "FocalNetForImageClassification" ], "sha": "28d30ded26a3213e8fb7011a455afc3aa98b0a95" }, "FocalNetForMaskedImageModeling": { "tokenizer_classes": [], "processor_classes": [ "BitImageProcessor" ], "model_classes": [ "FocalNetForMaskedImageModeling" ], "sha": "0ea7626d19c9dd2f3113d977f643a1babc720bd3" }, "FocalNetModel": { "tokenizer_classes": [], "processor_classes": [ "BitImageProcessor" ], "model_classes": [ "FocalNetModel" ], "sha": "107b004e6aa14108a359b7d22bdb9aa141ec05d5" }, "FunnelBaseModel": { "tokenizer_classes": [ "FunnelTokenizer", "FunnelTokenizerFast" ], "processor_classes": [], "model_classes": [ "FunnelBaseModel", "TFFunnelBaseModel" ], "sha": "87fed4252812df23315a56531625333e315681c6" }, "FunnelForMaskedLM": { "tokenizer_classes": [ "FunnelTokenizer", "FunnelTokenizerFast" ], "processor_classes": [], "model_classes": [ "FunnelForMaskedLM", "TFFunnelForMaskedLM" ], "sha": "5543daf29f185cd45f2599bd6f38c96064c9c8de" }, "FunnelForMultipleChoice": { "tokenizer_classes": [ "FunnelTokenizer", "FunnelTokenizerFast" ], "processor_classes": [], "model_classes": [ "FunnelForMultipleChoice", "TFFunnelForMultipleChoice" ], "sha": "a8bf597e37dbefb1ac5c97c4cb162c3d522a33a1" }, "FunnelForPreTraining": { "tokenizer_classes": [ "FunnelTokenizer", "FunnelTokenizerFast" ], "processor_classes": [], "model_classes": [ "FunnelForPreTraining", "TFFunnelForPreTraining" ], "sha": "cbcb300d60aacd5950a45409b6e3f0f240c9082e" }, "FunnelForQuestionAnswering": { "tokenizer_classes": [ "FunnelTokenizer", "FunnelTokenizerFast" ], "processor_classes": [], "model_classes": [ "FunnelForQuestionAnswering", "TFFunnelForQuestionAnswering" ], "sha": "6a5675305e096434e818486a13892cb55daffd13" }, "FunnelForSequenceClassification": { "tokenizer_classes": [ "FunnelTokenizer", "FunnelTokenizerFast" ], "processor_classes": [], "model_classes": [ "FunnelForSequenceClassification", "TFFunnelForSequenceClassification" ], "sha": "1bc557a1e4314da21a44dee57b799e95a7025e5c" }, "FunnelForTokenClassification": { "tokenizer_classes": [ "FunnelTokenizer", "FunnelTokenizerFast" ], "processor_classes": [], "model_classes": [ "FunnelForTokenClassification", "TFFunnelForTokenClassification" ], "sha": "693bc1217a224efd558f410ddc8ffc63739bebc3" }, "FunnelModel": { "tokenizer_classes": [ "FunnelTokenizer", "FunnelTokenizerFast" ], "processor_classes": [], "model_classes": [ "FunnelModel", "TFFunnelModel" ], "sha": "bfbaa8fa21c3abf80b94e7168b5ecff8ec5b5f76" }, "FuyuForCausalLM": { "tokenizer_classes": [ "LlamaTokenizerFast" ], "processor_classes": [ "FuyuImageProcessor" ], "model_classes": [ "FuyuForCausalLM" ], "sha": "685d78258ea95c5c82e0e4555d0d4a2270ab8bff" }, "GLPNForDepthEstimation": { "tokenizer_classes": [], "processor_classes": [ "GLPNImageProcessor" ], "model_classes": [ "GLPNForDepthEstimation" ], "sha": "32ca1c1ef5d33242e5e7c0433bcd773c082f0260" }, "GLPNModel": { "tokenizer_classes": [], "processor_classes": [ "GLPNImageProcessor" ], "model_classes": [ "GLPNModel" ], "sha": "24a8dbb48b1aa0ba2eba44324fcd0c78cca64dd4" }, "GPT2ForQuestionAnswering": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPT2ForQuestionAnswering" ], "sha": "a5bdd6bd4d79feece85ea9a8bd4ee5fe54c1d45b" }, "GPT2ForSequenceClassification": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPT2ForSequenceClassification", "TFGPT2ForSequenceClassification" ], "sha": "90a2d78e5c7f288152f8456c3d58a43b40a58449" }, "GPT2ForTokenClassification": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPT2ForTokenClassification" ], "sha": "da78bc95b45fab2da9d43f2ca27164996e31ade1" }, "GPT2LMHeadModel": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPT2LMHeadModel", "TFGPT2LMHeadModel" ], "sha": "78f56535d4ce19e9d7c0992e390085c5a4196b37" }, "GPT2Model": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPT2Model", "TFGPT2Model" ], "sha": "d6694b0d8fe17978761c9305dc151780506b192e" }, "GPTBigCodeForCausalLM": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTBigCodeForCausalLM" ], "sha": "99f7aaadf9c29669c63ef6c16f6bc5c07dbb9126" }, "GPTBigCodeForSequenceClassification": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTBigCodeForSequenceClassification" ], "sha": "64a7398d5763161037b818314c60dd83d93d03e9" }, "GPTBigCodeForTokenClassification": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTBigCodeForTokenClassification" ], "sha": "310537ecd22d45f71bf594b17922cf2abc338eaf" }, "GPTBigCodeModel": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTBigCodeModel" ], "sha": "3069419084a9dc36802d47de9df3d314ccfc2f28" }, "GPTJForCausalLM": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTJForCausalLM", "TFGPTJForCausalLM" ], "sha": "1fff390baa45cb187903ebdd269c975bb9ed7386" }, "GPTJForQuestionAnswering": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTJForQuestionAnswering", "TFGPTJForQuestionAnswering" ], "sha": "3d4ec61dbed01f844d4c309971eeb5ad722c6c84" }, "GPTJForSequenceClassification": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTJForSequenceClassification", "TFGPTJForSequenceClassification" ], "sha": "4b5db259cd16ca84ae2cd79aa4851cdd14479128" }, "GPTJModel": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTJModel", "TFGPTJModel" ], "sha": "d8e1db30d08fbf57da6fc139aea3ffd63ab6226e" }, "GPTNeoForCausalLM": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTNeoForCausalLM" ], "sha": "e88934e402c15195dd99b2947632415dd7645268" }, "GPTNeoForQuestionAnswering": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTNeoForQuestionAnswering" ], "sha": "623883e94bd08caf9b3f839b98debeea72d5bc2b" }, "GPTNeoForSequenceClassification": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTNeoForSequenceClassification" ], "sha": "bf2090d5d91a70eb37ba51fbdcf23afc7031fea8" }, "GPTNeoForTokenClassification": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTNeoForTokenClassification" ], "sha": "d5208e73e24a1671219776b50fe5f96e0e4cd218" }, "GPTNeoModel": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTNeoModel" ], "sha": "72a7cd49da613c3125a90884df4763545c594e56" }, "GPTNeoXForCausalLM": { "tokenizer_classes": [ "GPTNeoXTokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTNeoXForCausalLM" ], "sha": "0229cfaaa843c6b492ac2abffabb00f1ff1936f8" }, "GPTNeoXForQuestionAnswering": { "tokenizer_classes": [ "GPTNeoXTokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTNeoXForQuestionAnswering" ], "sha": "7d2f08c959c211129952ee03b5562add09fe6864" }, "GPTNeoXForSequenceClassification": { "tokenizer_classes": [ "GPTNeoXTokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTNeoXForSequenceClassification" ], "sha": "17c4b845ee2e0bb780ca2dea2d59a3d9d5d3c651" }, "GPTNeoXForTokenClassification": { "tokenizer_classes": [ "GPTNeoXTokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTNeoXForTokenClassification" ], "sha": "3aa4fe8a562f32230041d6d3616aa5ecc3f30192" }, "GPTNeoXJapaneseForCausalLM": { "tokenizer_classes": [ "GPTNeoXJapaneseTokenizer" ], "processor_classes": [], "model_classes": [ "GPTNeoXJapaneseForCausalLM" ], "sha": "5fca2479f1064fd22e17f944c8fcc14f7e73f1d5" }, "GPTNeoXJapaneseModel": { "tokenizer_classes": [ "GPTNeoXJapaneseTokenizer" ], "processor_classes": [], "model_classes": [ "GPTNeoXJapaneseModel" ], "sha": "5c6ed124150df845cfc701d70b97fdcde687be52" }, "GPTNeoXModel": { "tokenizer_classes": [ "GPTNeoXTokenizerFast" ], "processor_classes": [], "model_classes": [ "GPTNeoXModel" ], "sha": "33114ba2f72189d5a2bd63f0cdb78551189242ff" }, "GPTSanJapaneseForConditionalGeneration": { "tokenizer_classes": [ "GPTSanJapaneseTokenizer" ], "processor_classes": [], "model_classes": [ "GPTSanJapaneseForConditionalGeneration" ], "sha": "ff6a41faaa713c7fbd5d9a1a50539745f9e1178e" }, "GitForCausalLM": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [ "CLIPImageProcessor" ], "model_classes": [ "GitForCausalLM" ], "sha": "60f9c50466ae0beeb11776ca5bfeb6473f441554" }, "GitModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [ "CLIPImageProcessor" ], "model_classes": [ "GitModel" ], "sha": "3d2eb6bddf95bb4a4e59b045d4e464c730c07f41" }, "GroupViTModel": { "tokenizer_classes": [ "CLIPTokenizer", "CLIPTokenizerFast" ], "processor_classes": [ "CLIPImageProcessor" ], "model_classes": [ "GroupViTModel", "TFGroupViTModel" ], "sha": "05a3a02dd46cb9eb078608dec98f633c0cf559ef" }, "HubertForCTC": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "HubertForCTC" ], "sha": "13431b76106f993eedcff48a75bae590a09b14f7" }, "HubertForSequenceClassification": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "HubertForSequenceClassification" ], "sha": "d23f46607a900b1a55dfee4b7ed205a6823035b1" }, "HubertModel": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "HubertModel", "TFHubertModel" ], "sha": "3224562c86c4669db65ae7defdc5fb555b113e95" }, "IBertForMaskedLM": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "IBertForMaskedLM" ], "sha": "e333a9c9d375f4d839b7e9e21d1a1c8dad58d7d1" }, "IBertForMultipleChoice": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "IBertForMultipleChoice" ], "sha": "a81f7d64cd7ce5fe6cd726b23d9d14ac5d17bf53" }, "IBertForQuestionAnswering": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "IBertForQuestionAnswering" ], "sha": "7b66d13d4d6801a82cbeb7f9fd853ca1630d1f8b" }, "IBertForSequenceClassification": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "IBertForSequenceClassification" ], "sha": "309d57145c40f889222fe5df62f14dddf4496b38" }, "IBertForTokenClassification": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "IBertForTokenClassification" ], "sha": "b032e9bff4b081b78c098b2d8bc610ac035c6ddf" }, "IBertModel": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "IBertModel" ], "sha": "6749164c678d4883d455f98b1dfc98c62da8f08b" }, "IdeficsForVisionText2Text": { "tokenizer_classes": [ "LlamaTokenizerFast" ], "processor_classes": [ "IdeficsImageProcessor" ], "model_classes": [ "IdeficsForVisionText2Text" ], "sha": "2c2f2e2cd6b02a77d0cdd8c3767ba9a6267dbd20" }, "IdeficsModel": { "tokenizer_classes": [ "LlamaTokenizerFast" ], "processor_classes": [ "IdeficsImageProcessor" ], "model_classes": [ "IdeficsModel" ], "sha": "649df2e35e067efd573ff2d083784a5cf876545e" }, "ImageGPTForCausalImageModeling": { "tokenizer_classes": [], "processor_classes": [ "ImageGPTImageProcessor" ], "model_classes": [ "ImageGPTForCausalImageModeling" ], "sha": "9a7d1fc04439ab1d9d690de9c3e7673f08568cdf" }, "ImageGPTForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ImageGPTImageProcessor" ], "model_classes": [ "ImageGPTForImageClassification" ], "sha": "d92c7aed4ba5de74a1f542b736010090e4a58b42" }, "ImageGPTModel": { "tokenizer_classes": [], "processor_classes": [ "ImageGPTImageProcessor" ], "model_classes": [ "ImageGPTModel" ], "sha": "5a7983e48d5841704733dd0756177680ed50c074" }, "Kosmos2ForConditionalGeneration": { "tokenizer_classes": [ "XLMRobertaTokenizerFast" ], "processor_classes": [ "CLIPImageProcessor" ], "model_classes": [ "Kosmos2ForConditionalGeneration" ], "sha": "d1d4607782b911411676f1ee79997dee645def58" }, "Kosmos2Model": { "tokenizer_classes": [ "XLMRobertaTokenizerFast" ], "processor_classes": [ "CLIPImageProcessor" ], "model_classes": [ "Kosmos2Model" ], "sha": "379d8944a65312094d9ab1c4b8a82058a2d3274e" }, "LEDForConditionalGeneration": { "tokenizer_classes": [ "LEDTokenizer", "LEDTokenizerFast" ], "processor_classes": [], "model_classes": [ "LEDForConditionalGeneration", "TFLEDForConditionalGeneration" ], "sha": "a354b49a79351f3ea8ae7776d9f8352ae26cfc14" }, "LEDForQuestionAnswering": { "tokenizer_classes": [ "LEDTokenizer", "LEDTokenizerFast" ], "processor_classes": [], "model_classes": [ "LEDForQuestionAnswering" ], "sha": "47c7a75a1e650dae60ff6e9bbab0f2386946670c" }, "LEDForSequenceClassification": { "tokenizer_classes": [ "LEDTokenizer", "LEDTokenizerFast" ], "processor_classes": [], "model_classes": [ "LEDForSequenceClassification" ], "sha": "3571e2c9d9f2f2ec0b8fe47090330b128be05126" }, "LEDModel": { "tokenizer_classes": [ "LEDTokenizer", "LEDTokenizerFast" ], "processor_classes": [], "model_classes": [ "LEDModel", "TFLEDModel" ], "sha": "3c3f6eb142545afc570187bfdabfe65d43dafbe4" }, "LayoutLMForMaskedLM": { "tokenizer_classes": [ "LayoutLMTokenizer", "LayoutLMTokenizerFast" ], "processor_classes": [], "model_classes": [ "LayoutLMForMaskedLM", "TFLayoutLMForMaskedLM" ], "sha": "0368bd9bd8fd3eb43b8a3b38962b5345b8765514" }, "LayoutLMForQuestionAnswering": { "tokenizer_classes": [ "LayoutLMTokenizer", "LayoutLMTokenizerFast" ], "processor_classes": [], "model_classes": [ "LayoutLMForQuestionAnswering", "TFLayoutLMForQuestionAnswering" ], "sha": "0d6a4bc614fccfa313c1fb6d132a250929518f85" }, "LayoutLMForSequenceClassification": { "tokenizer_classes": [ "LayoutLMTokenizer", "LayoutLMTokenizerFast" ], "processor_classes": [], "model_classes": [ "LayoutLMForSequenceClassification", "TFLayoutLMForSequenceClassification" ], "sha": "1bd68c73dbf6c8c0526d24fbe2831be82998c440" }, "LayoutLMForTokenClassification": { "tokenizer_classes": [ "LayoutLMTokenizer", "LayoutLMTokenizerFast" ], "processor_classes": [], "model_classes": [ "LayoutLMForTokenClassification", "TFLayoutLMForTokenClassification" ], "sha": "155e7da3f1d786aa39d957b16080c52de4a7efd7" }, "LayoutLMModel": { "tokenizer_classes": [ "LayoutLMTokenizer", "LayoutLMTokenizerFast" ], "processor_classes": [], "model_classes": [ "LayoutLMModel", "TFLayoutLMModel" ], "sha": "14f77b30d267910f11f0fd532a91a6b85ab3a4de" }, "LayoutLMv2ForQuestionAnswering": { "tokenizer_classes": [ "LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" ], "processor_classes": [ "LayoutLMv2ImageProcessor" ], "model_classes": [ "LayoutLMv2ForQuestionAnswering" ], "sha": "f452e28dd34d3c38cce046b1cc7b0ada69f587b1" }, "LayoutLMv2ForSequenceClassification": { "tokenizer_classes": [ "LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" ], "processor_classes": [ "LayoutLMv2ImageProcessor" ], "model_classes": [ "LayoutLMv2ForSequenceClassification" ], "sha": "b483e08fd143113629ecda3dbfd57e69bfeb5f11" }, "LayoutLMv2ForTokenClassification": { "tokenizer_classes": [ "LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" ], "processor_classes": [ "LayoutLMv2ImageProcessor" ], "model_classes": [ "LayoutLMv2ForTokenClassification" ], "sha": "0721ae69bff00ecfff1b3d1521a475cde0253299" }, "LayoutLMv2Model": { "tokenizer_classes": [ "LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" ], "processor_classes": [ "LayoutLMv2ImageProcessor" ], "model_classes": [ "LayoutLMv2Model" ], "sha": "6a1b510769b344979a910a7d0bade613a9ec2dfc" }, "LayoutLMv3ForQuestionAnswering": { "tokenizer_classes": [ "LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" ], "processor_classes": [ "LayoutLMv3ImageProcessor" ], "model_classes": [ "LayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForQuestionAnswering" ], "sha": "4640242388e69cf77ea2dd3ac36ec6f1b26628c8" }, "LayoutLMv3ForSequenceClassification": { "tokenizer_classes": [ "LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" ], "processor_classes": [ "LayoutLMv3ImageProcessor" ], "model_classes": [ "LayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForSequenceClassification" ], "sha": "96515f699874cfbfbec7a64c539ae92419e4c6dc" }, "LayoutLMv3ForTokenClassification": { "tokenizer_classes": [ "LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" ], "processor_classes": [ "LayoutLMv3ImageProcessor" ], "model_classes": [ "LayoutLMv3ForTokenClassification", "TFLayoutLMv3ForTokenClassification" ], "sha": "ed4ffc464f2028fe50dfc6823f4eda78d34be7e6" }, "LayoutLMv3Model": { "tokenizer_classes": [ "LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" ], "processor_classes": [ "LayoutLMv3ImageProcessor" ], "model_classes": [ "LayoutLMv3Model", "TFLayoutLMv3Model" ], "sha": "69725e5e2445e5c1c3aa8a2aa49cfd72e0a44565" }, "LevitForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "LevitImageProcessor" ], "model_classes": [ "LevitForImageClassification" ], "sha": "5ae8ccaa1fe1c947cb8ae6499e4a150c668bb9f0" }, "LevitForImageClassificationWithTeacher": { "tokenizer_classes": [], "processor_classes": [ "LevitImageProcessor" ], "model_classes": [ "LevitForImageClassificationWithTeacher" ], "sha": "568cc0d965b9bd293f240e7724314db6d50f6722" }, "LevitModel": { "tokenizer_classes": [], "processor_classes": [ "LevitImageProcessor" ], "model_classes": [ "LevitModel" ], "sha": "172efa52b50c75c3b3e498fa638f55e65b2ebf87" }, "LiltForQuestionAnswering": { "tokenizer_classes": [ "LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" ], "processor_classes": [], "model_classes": [ "LiltForQuestionAnswering" ], "sha": "0a348441999e98ec003b29fc4d5a67ad22ee6ca2" }, "LiltForSequenceClassification": { "tokenizer_classes": [ "LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" ], "processor_classes": [], "model_classes": [ "LiltForSequenceClassification" ], "sha": "c53ab0ba33536fe564a4a1e4f1674d990c01b83a" }, "LiltForTokenClassification": { "tokenizer_classes": [ "LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" ], "processor_classes": [], "model_classes": [ "LiltForTokenClassification" ], "sha": "14f85076f9b3f7016917e324d51ebd22511a2ae5" }, "LiltModel": { "tokenizer_classes": [ "LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" ], "processor_classes": [], "model_classes": [ "LiltModel" ], "sha": "3f1166cc14c532388df7e82336a8e575a813bd3f" }, "LongT5ForConditionalGeneration": { "tokenizer_classes": [ "T5Tokenizer", "T5TokenizerFast" ], "processor_classes": [], "model_classes": [ "LongT5ForConditionalGeneration" ], "sha": "c685cbbe706ad5c9a28689631765726a1874dcc7" }, "LongT5Model": { "tokenizer_classes": [ "T5Tokenizer", "T5TokenizerFast" ], "processor_classes": [], "model_classes": [ "LongT5Model" ], "sha": "6b468e55e2490565e6155690201086ac00c72062" }, "LongformerForMaskedLM": { "tokenizer_classes": [ "LongformerTokenizer", "LongformerTokenizerFast" ], "processor_classes": [], "model_classes": [ "LongformerForMaskedLM", "TFLongformerForMaskedLM" ], "sha": "929d3bda9a1485d9bae41f9dbfc1d149c1c4e78e" }, "LongformerForMultipleChoice": { "tokenizer_classes": [ "LongformerTokenizer", "LongformerTokenizerFast" ], "processor_classes": [], "model_classes": [ "LongformerForMultipleChoice", "TFLongformerForMultipleChoice" ], "sha": "60b1ecac6b9385ce18c7e6978ab161cce8e7f9d4" }, "LongformerForQuestionAnswering": { "tokenizer_classes": [ "LongformerTokenizer", "LongformerTokenizerFast" ], "processor_classes": [], "model_classes": [ "LongformerForQuestionAnswering", "TFLongformerForQuestionAnswering" ], "sha": "be45ab1321b703f2200cbbcae560aaf2e2afef88" }, "LongformerForSequenceClassification": { "tokenizer_classes": [ "LongformerTokenizer", "LongformerTokenizerFast" ], "processor_classes": [], "model_classes": [ "LongformerForSequenceClassification", "TFLongformerForSequenceClassification" ], "sha": "8bc0de0b0f740bf397eb2770ec3ce3a24f3d7af9" }, "LongformerForTokenClassification": { "tokenizer_classes": [ "LongformerTokenizer", "LongformerTokenizerFast" ], "processor_classes": [], "model_classes": [ "LongformerForTokenClassification", "TFLongformerForTokenClassification" ], "sha": "efa33a9b6f47f0f7979af08ae8d04a5a7363a14b" }, "LongformerModel": { "tokenizer_classes": [ "LongformerTokenizer", "LongformerTokenizerFast" ], "processor_classes": [], "model_classes": [ "LongformerModel", "TFLongformerModel" ], "sha": "b023d531688e8655fc09300ac36742588efb3240" }, "LukeForMaskedLM": { "tokenizer_classes": [ "LukeTokenizer" ], "processor_classes": [], "model_classes": [ "LukeForMaskedLM" ], "sha": "954cf6cd2bf1f298a3956b10c36656c57387506d" }, "LukeForMultipleChoice": { "tokenizer_classes": [ "LukeTokenizer" ], "processor_classes": [], "model_classes": [ "LukeForMultipleChoice" ], "sha": "d1310a9174ad50d60b30ad6049e165deb2539034" }, "LukeForQuestionAnswering": { "tokenizer_classes": [ "LukeTokenizer" ], "processor_classes": [], "model_classes": [ "LukeForQuestionAnswering" ], "sha": "3ea38da4e32cb4e45bea82b2e81a8639aeba2c35" }, "LukeForSequenceClassification": { "tokenizer_classes": [ "LukeTokenizer" ], "processor_classes": [], "model_classes": [ "LukeForSequenceClassification" ], "sha": "b5b11248aeb4f5976379d15a977aeb2677e0c0f9" }, "LukeForTokenClassification": { "tokenizer_classes": [ "LukeTokenizer" ], "processor_classes": [], "model_classes": [ "LukeForTokenClassification" ], "sha": "8aab1a33ad26a344a6f4dfd68630e9661e174471" }, "LukeModel": { "tokenizer_classes": [ "LukeTokenizer" ], "processor_classes": [], "model_classes": [ "LukeModel" ], "sha": "ae23a674e7297d41f33c9af86e039757dfd2d531" }, "LxmertForPreTraining": { "tokenizer_classes": [ "LxmertTokenizer", "LxmertTokenizerFast" ], "processor_classes": [], "model_classes": [ "LxmertForPreTraining", "TFLxmertForPreTraining" ], "sha": "7b0843403c187aef00f20d5087086468d9613d2c" }, "LxmertForQuestionAnswering": { "tokenizer_classes": [ "LxmertTokenizer", "LxmertTokenizerFast" ], "processor_classes": [], "model_classes": [ "LxmertForQuestionAnswering" ], "sha": "27a74bd2cd156e46656c43ceb432c4deda0df5c1" }, "LxmertModel": { "tokenizer_classes": [ "LxmertTokenizer", "LxmertTokenizerFast" ], "processor_classes": [], "model_classes": [ "LxmertModel", "TFLxmertModel" ], "sha": "97612a0d6b14406ea9bfd7672e6974e0961cbef1" }, "M2M100ForConditionalGeneration": { "tokenizer_classes": [ "M2M100Tokenizer" ], "processor_classes": [], "model_classes": [ "M2M100ForConditionalGeneration" ], "sha": "32ac347092d51f658b41ffc111b67d49acdeab46" }, "M2M100Model": { "tokenizer_classes": [ "M2M100Tokenizer" ], "processor_classes": [], "model_classes": [ "M2M100Model" ], "sha": "e95c2ae168c7ba19f8114def40e1b1edd953b2f5" }, "MBartForCausalLM": { "tokenizer_classes": [ "MBartTokenizer", "MBartTokenizerFast" ], "processor_classes": [], "model_classes": [ "MBartForCausalLM" ], "sha": "a45044f8056328d20a764356eca3d0746a7a195e" }, "MBartForConditionalGeneration": { "tokenizer_classes": [ "MBartTokenizer", "MBartTokenizerFast" ], "processor_classes": [], "model_classes": [ "MBartForConditionalGeneration", "TFMBartForConditionalGeneration" ], "sha": "171e918962d6c0ee56c6b070858e19e16c8dd09f" }, "MBartForQuestionAnswering": { "tokenizer_classes": [ "MBartTokenizer", "MBartTokenizerFast" ], "processor_classes": [], "model_classes": [ "MBartForQuestionAnswering" ], "sha": "1ee08565d24777335595e0d2940e454abdcff731" }, "MBartForSequenceClassification": { "tokenizer_classes": [ "MBartTokenizer", "MBartTokenizerFast" ], "processor_classes": [], "model_classes": [ "MBartForSequenceClassification" ], "sha": "53e9c88ecfa2475d27afe099ffa7a8bcdb7ef7e4" }, "MBartModel": { "tokenizer_classes": [ "MBartTokenizer", "MBartTokenizerFast" ], "processor_classes": [], "model_classes": [ "MBartModel", "TFMBartModel" ], "sha": "2d492b34d69dd63b411990d5c8bb692fd637e91c" }, "MCTCTForCTC": { "tokenizer_classes": [], "processor_classes": [ "MCTCTFeatureExtractor" ], "model_classes": [ "MCTCTForCTC" ], "sha": "895a3d74f87b344b1f0a71eae4f085941d51b5cf" }, "MCTCTModel": { "tokenizer_classes": [], "processor_classes": [ "MCTCTFeatureExtractor" ], "model_classes": [ "MCTCTModel" ], "sha": "ce73d5c2b6fe163de778697d7b0543bf00d7ffa8" }, "MPNetForMaskedLM": { "tokenizer_classes": [ "MPNetTokenizer", "MPNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "MPNetForMaskedLM", "TFMPNetForMaskedLM" ], "sha": "50af96e7d0202aef86e396c136e4c4fde8afe183" }, "MPNetForMultipleChoice": { "tokenizer_classes": [ "MPNetTokenizer", "MPNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "MPNetForMultipleChoice", "TFMPNetForMultipleChoice" ], "sha": "af4ff8bf296a3a51f5ab6cd9f56741e4c732487c" }, "MPNetForQuestionAnswering": { "tokenizer_classes": [ "MPNetTokenizer", "MPNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "MPNetForQuestionAnswering", "TFMPNetForQuestionAnswering" ], "sha": "3e1a25c0d3243f78f81580c312ada3b39c06b428" }, "MPNetForSequenceClassification": { "tokenizer_classes": [ "MPNetTokenizer", "MPNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "MPNetForSequenceClassification", "TFMPNetForSequenceClassification" ], "sha": "43da45c0a0d73c5a5567b4c7ec512ec5023e52dd" }, "MPNetForTokenClassification": { "tokenizer_classes": [ "MPNetTokenizer", "MPNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "MPNetForTokenClassification", "TFMPNetForTokenClassification" ], "sha": "4e825eff24df533321ebab823eb66ce67e4ab3d9" }, "MPNetModel": { "tokenizer_classes": [ "MPNetTokenizer", "MPNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "MPNetModel", "TFMPNetModel" ], "sha": "847c68344c2922e9a71fa8835b87a0f6f72b9f47" }, "MarianForCausalLM": { "tokenizer_classes": [ "MarianTokenizer" ], "processor_classes": [], "model_classes": [], "sha": "5fb205e6db8e18e3c6cdd4e4709be292ba4599f3" }, "MarianMTModel": { "tokenizer_classes": [ "MarianTokenizer" ], "processor_classes": [], "model_classes": [ "MarianMTModel", "TFMarianMTModel" ], "sha": "0405f542b31561592231a86e3009d05256cbf49f" }, "MarianModel": { "tokenizer_classes": [ "MarianTokenizer" ], "processor_classes": [], "model_classes": [ "MarianModel", "TFMarianModel" ], "sha": "3649748c0286c6d5179a7013a716f7314db182a8" }, "MarkupLMForQuestionAnswering": { "tokenizer_classes": [ "MarkupLMTokenizer", "MarkupLMTokenizerFast" ], "processor_classes": [ "MarkupLMFeatureExtractor" ], "model_classes": [ "MarkupLMForQuestionAnswering" ], "sha": "c8bb9f93591d980362547b0bdca9f23ace2f383e" }, "MarkupLMForSequenceClassification": { "tokenizer_classes": [ "MarkupLMTokenizer", "MarkupLMTokenizerFast" ], "processor_classes": [ "MarkupLMFeatureExtractor" ], "model_classes": [ "MarkupLMForSequenceClassification" ], "sha": "c2cb7245d68d76e0a5f993fc8a3de099ecebc68b" }, "MarkupLMForTokenClassification": { "tokenizer_classes": [ "MarkupLMTokenizer", "MarkupLMTokenizerFast" ], "processor_classes": [ "MarkupLMFeatureExtractor" ], "model_classes": [ "MarkupLMForTokenClassification" ], "sha": "b9f924e82f400de0b34b46ee4ba276d686bd4890" }, "MarkupLMModel": { "tokenizer_classes": [ "MarkupLMTokenizer", "MarkupLMTokenizerFast" ], "processor_classes": [ "MarkupLMFeatureExtractor" ], "model_classes": [ "MarkupLMModel" ], "sha": "9687ba29f1c59d978e3d4b0fa702031f88eff53b" }, "Mask2FormerForUniversalSegmentation": { "tokenizer_classes": [], "processor_classes": [ "Mask2FormerImageProcessor" ], "model_classes": [ "Mask2FormerForUniversalSegmentation" ], "sha": "6429a7349527c9ef140ae691b83c47702cce1bc0" }, "Mask2FormerModel": { "tokenizer_classes": [], "processor_classes": [ "Mask2FormerImageProcessor" ], "model_classes": [ "Mask2FormerModel" ], "sha": "9bee8709204024b3669d503cdfe8890182f2a075" }, "MaskFormerForInstanceSegmentation": { "tokenizer_classes": [], "processor_classes": [ "MaskFormerImageProcessor" ], "model_classes": [ "MaskFormerForInstanceSegmentation" ], "sha": "f844aaa81f55cb199c115f1bf95c217a70685570" }, "MaskFormerModel": { "tokenizer_classes": [], "processor_classes": [ "MaskFormerImageProcessor" ], "model_classes": [ "MaskFormerModel" ], "sha": "473b54a464bc0ccee29bc23b4f6610f32eec05af" }, "MegaForCausalLM": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegaForCausalLM" ], "sha": "6642b9da860f8b62abcfb0660feabcebf6698418" }, "MegaForMaskedLM": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegaForMaskedLM" ], "sha": "6b2d47ba03bec9e6f7eefdd4a67351fa191aae6f" }, "MegaForMultipleChoice": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegaForMultipleChoice" ], "sha": "2b1e751da36a4410473eef07a62b09227a26d504" }, "MegaForQuestionAnswering": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegaForQuestionAnswering" ], "sha": "612acd9a53c351c42514adb3c04f2057d2870be7" }, "MegaForSequenceClassification": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegaForSequenceClassification" ], "sha": "4871572da1613b7e9cfd3640c6d1129af004eefb" }, "MegaForTokenClassification": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegaForTokenClassification" ], "sha": "450d3722c3b995215d06b9c12544c99f958581c7" }, "MegaModel": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegaModel" ], "sha": "ca0862db27428893fe22f9bb5d2eb0875c2156f3" }, "MegatronBertForCausalLM": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegatronBertForCausalLM" ], "sha": "ff08d05ef8f98fdccf1f01560ec6ec4adbc8a3e3" }, "MegatronBertForMaskedLM": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegatronBertForMaskedLM" ], "sha": "2ed25e2681d26b51b404ef1347a385c5f2c86a9a" }, "MegatronBertForMultipleChoice": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegatronBertForMultipleChoice" ], "sha": "1485af4b75f8f234d2b4b5aea50ab2ec55223a15" }, "MegatronBertForNextSentencePrediction": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegatronBertForNextSentencePrediction" ], "sha": "52bc9ee1d5145344f66b088ed278f07ed3d90584" }, "MegatronBertForPreTraining": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegatronBertForPreTraining" ], "sha": "e580d0efd54e1c92789e39b32929234e36ee427f" }, "MegatronBertForQuestionAnswering": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegatronBertForQuestionAnswering" ], "sha": "7342ba042a3c30c15382d00fcb0521533fc43841" }, "MegatronBertForSequenceClassification": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegatronBertForSequenceClassification" ], "sha": "6a7cd480511d817a1e221c8f7558c55a93baed1b" }, "MegatronBertForTokenClassification": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegatronBertForTokenClassification" ], "sha": "8b5334b6ec5f025293ca861de474b57ca84bc005" }, "MegatronBertModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MegatronBertModel" ], "sha": "f2457fbe535ba97ea13db049f53618b42e13f047" }, "MgpstrForSceneTextRecognition": { "tokenizer_classes": [], "processor_classes": [ "MgpstrProcessor" ], "model_classes": [ "MgpstrForSceneTextRecognition" ], "sha": "f197d5bfa1fe27b5f28a6e6d4e3ad229b753450a" }, "MistralForCausalLM": { "tokenizer_classes": [ "LlamaTokenizer", "LlamaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MistralForCausalLM" ], "sha": "f7e06aeedbba8f4f665b438b868ed932d451f64b" }, "MistralForSequenceClassification": { "tokenizer_classes": [ "LlamaTokenizer", "LlamaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MistralForSequenceClassification" ], "sha": "65045444ea1933309270d8b08b21d3fa94a84290" }, "MistralModel": { "tokenizer_classes": [ "LlamaTokenizer", "LlamaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MistralModel" ], "sha": "becd727ad72b1e8a7c0fa0ea39b61904fa68aeac" }, "MobileBertForMaskedLM": { "tokenizer_classes": [ "MobileBertTokenizer", "MobileBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MobileBertForMaskedLM", "TFMobileBertForMaskedLM" ], "sha": "d689e737d73ad23aed3aabd3177591fc827d1c62" }, "MobileBertForMultipleChoice": { "tokenizer_classes": [ "MobileBertTokenizer", "MobileBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MobileBertForMultipleChoice", "TFMobileBertForMultipleChoice" ], "sha": "403d1f88be7eb0c769ff3a8e57eab21cc3e75afb" }, "MobileBertForNextSentencePrediction": { "tokenizer_classes": [ "MobileBertTokenizer", "MobileBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MobileBertForNextSentencePrediction", "TFMobileBertForNextSentencePrediction" ], "sha": "b4d8836a0f259ee3bca9f230093836c9117c5e4d" }, "MobileBertForPreTraining": { "tokenizer_classes": [ "MobileBertTokenizer", "MobileBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MobileBertForPreTraining", "TFMobileBertForPreTraining" ], "sha": "fbaa13ea6f9fcebb9fde620dd009d12510440d17" }, "MobileBertForQuestionAnswering": { "tokenizer_classes": [ "MobileBertTokenizer", "MobileBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MobileBertForQuestionAnswering", "TFMobileBertForQuestionAnswering" ], "sha": "ba6a55cf2daec55bfb220c9bab0bc4ad96510087" }, "MobileBertForSequenceClassification": { "tokenizer_classes": [ "MobileBertTokenizer", "MobileBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MobileBertForSequenceClassification", "TFMobileBertForSequenceClassification" ], "sha": "17ab35603bec351457e035eef2d0426538071f72" }, "MobileBertForTokenClassification": { "tokenizer_classes": [ "MobileBertTokenizer", "MobileBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MobileBertForTokenClassification", "TFMobileBertForTokenClassification" ], "sha": "dee83e820e6c4f069886a5d1875bf6775897313e" }, "MobileBertModel": { "tokenizer_classes": [ "MobileBertTokenizer", "MobileBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "MobileBertModel", "TFMobileBertModel" ], "sha": "09b2db33ea798a762eeaf7e727e95f9ea8a6d14f" }, "MobileNetV1ForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "MobileNetV1ImageProcessor" ], "model_classes": [ "MobileNetV1ForImageClassification" ], "sha": "55023dbd0935f147bf1bccf960cea01ca07e0f0c" }, "MobileNetV1Model": { "tokenizer_classes": [], "processor_classes": [ "MobileNetV1ImageProcessor" ], "model_classes": [ "MobileNetV1Model" ], "sha": "178bd24528147a028938d6ee5c7e65c969ea37b0" }, "MobileNetV2ForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "MobileNetV2ImageProcessor" ], "model_classes": [ "MobileNetV2ForImageClassification" ], "sha": "ff907f740cf9ea91bc3cdf403a94ae28fbb2548a" }, "MobileNetV2ForSemanticSegmentation": { "tokenizer_classes": [], "processor_classes": [ "MobileNetV2ImageProcessor" ], "model_classes": [ "MobileNetV2ForSemanticSegmentation" ], "sha": "48adbc340e42882f52b54d4f5dd045e16e9ef2d6" }, "MobileNetV2Model": { "tokenizer_classes": [], "processor_classes": [ "MobileNetV2ImageProcessor" ], "model_classes": [ "MobileNetV2Model" ], "sha": "e876885828825472a80ef1796d89d60b901813ba" }, "MobileViTForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "MobileViTImageProcessor" ], "model_classes": [ "MobileViTForImageClassification", "TFMobileViTForImageClassification" ], "sha": "7d0b31864f856e00f9e34e8c6781dcc7a8cdaf1e" }, "MobileViTForSemanticSegmentation": { "tokenizer_classes": [], "processor_classes": [ "MobileViTImageProcessor" ], "model_classes": [ "MobileViTForSemanticSegmentation", "TFMobileViTForSemanticSegmentation" ], "sha": "215f727caa3c3fc94fa4df486aa706e5d99d4194" }, "MobileViTModel": { "tokenizer_classes": [], "processor_classes": [ "MobileViTImageProcessor" ], "model_classes": [ "MobileViTModel", "TFMobileViTModel" ], "sha": "b3a1452e7cb44b600b21ee14f3d5382366855a46" }, "MobileViTV2ForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "MobileViTImageProcessor" ], "model_classes": [ "MobileViTV2ForImageClassification" ], "sha": "25752b0967ad594341d1b685401450d7f698433c" }, "MobileViTV2ForSemanticSegmentation": { "tokenizer_classes": [], "processor_classes": [ "MobileViTImageProcessor" ], "model_classes": [ "MobileViTV2ForSemanticSegmentation" ], "sha": "13b953f50be33219d55a12f1098be38b88000897" }, "MobileViTV2Model": { "tokenizer_classes": [], "processor_classes": [ "MobileViTImageProcessor" ], "model_classes": [ "MobileViTV2Model" ], "sha": "2f46357659db2d6d54d870e28073deeea1c8cb64" }, "MptForCausalLM": { "tokenizer_classes": [ "GPTNeoXTokenizerFast" ], "processor_classes": [], "model_classes": [ "MptForCausalLM" ], "sha": "500c869b956c65f6b1a7b4867727f124c6f5728a" }, "MptForQuestionAnswering": { "tokenizer_classes": [ "GPTNeoXTokenizerFast" ], "processor_classes": [], "model_classes": [ "MptForQuestionAnswering" ], "sha": "6ee46572bf61eb5e7dbbdaf00b73c4d37efc42d9" }, "MptForSequenceClassification": { "tokenizer_classes": [ "GPTNeoXTokenizerFast" ], "processor_classes": [], "model_classes": [ "MptForSequenceClassification" ], "sha": "f0b9153413b5dfceeb96b67d4b0f22c94bbaf64a" }, "MptForTokenClassification": { "tokenizer_classes": [ "GPTNeoXTokenizerFast" ], "processor_classes": [], "model_classes": [ "MptForTokenClassification" ], "sha": "3f7c3ccd67cd0b2aae56d37613429a64ef813246" }, "MptModel": { "tokenizer_classes": [ "GPTNeoXTokenizerFast" ], "processor_classes": [], "model_classes": [ "MptModel" ], "sha": "ea747f234556661b0c8b84a626f267066ce586bf" }, "MraForMaskedLM": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MraForMaskedLM" ], "sha": "c00ee46cfd2b8fed29cc37f0a4ead40ad51a439c" }, "MraForMultipleChoice": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MraForMultipleChoice" ], "sha": "f397469ba8109f64dab2d75335ea7bf0c2dbeb74" }, "MraForQuestionAnswering": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MraForQuestionAnswering" ], "sha": "c2ed75acd20e5440a76d6504d9a3ebc2513011f0" }, "MraForSequenceClassification": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MraForSequenceClassification" ], "sha": "f47672d3708508bda7774215bee44a92ec16ab2f" }, "MraForTokenClassification": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MraForTokenClassification" ], "sha": "f0961ab5818bca473607fb94b391c186dc1d3492" }, "MraModel": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "MraModel" ], "sha": "315f34f30bcc4b0b66b11987726df2a80c50e271" }, "MusicgenForCausalLM": { "tokenizer_classes": [ "T5TokenizerFast" ], "processor_classes": [], "model_classes": [], "sha": "f67d387eaaa7c71ddf88af95eda4bf14ace08d49" }, "MusicgenForConditionalGeneration": { "tokenizer_classes": [ "T5TokenizerFast" ], "processor_classes": [], "model_classes": [ "MusicgenForConditionalGeneration" ], "sha": "16102cdf580e70cf0b4e0e2cda5bc75b934da92c" }, "MvpForCausalLM": { "tokenizer_classes": [ "MvpTokenizer", "MvpTokenizerFast" ], "processor_classes": [], "model_classes": [ "MvpForCausalLM" ], "sha": "105e5f2c8a0f20d404cb71795539cda5dd49716d" }, "MvpForConditionalGeneration": { "tokenizer_classes": [ "MvpTokenizer", "MvpTokenizerFast" ], "processor_classes": [], "model_classes": [ "MvpForConditionalGeneration" ], "sha": "b0b706f14b2f8aae288cba30ae0064e0be7e888b" }, "MvpForQuestionAnswering": { "tokenizer_classes": [ "MvpTokenizer", "MvpTokenizerFast" ], "processor_classes": [], "model_classes": [ "MvpForQuestionAnswering" ], "sha": "82f152b36a40a4c22edcb146e6eaec636d84fa2d" }, "MvpForSequenceClassification": { "tokenizer_classes": [ "MvpTokenizer", "MvpTokenizerFast" ], "processor_classes": [], "model_classes": [ "MvpForSequenceClassification" ], "sha": "506b68544d064001929ee9e6db3752e62972a6aa" }, "MvpModel": { "tokenizer_classes": [ "MvpTokenizer", "MvpTokenizerFast" ], "processor_classes": [], "model_classes": [ "MvpModel" ], "sha": "3f4653184721a2bc029b27706d335ef7ddd219d5" }, "NatBackbone": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "NatBackbone" ], "sha": "d5cc5eccba4da609c82e9f5c649301b9f9fee9fb" }, "NatForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "NatForImageClassification" ], "sha": "2ff4c9e73c49c392c02a467e87b5511fd924242a" }, "NatModel": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "NatModel" ], "sha": "75e9756bb94d0ccdce98a8e963eeecbc66f9d573" }, "NezhaForMaskedLM": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "NezhaForMaskedLM" ], "sha": "5991cca4b78f0ed7299259a71f3eeed3f3452b72" }, "NezhaForMultipleChoice": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "NezhaForMultipleChoice" ], "sha": "0f6e9ec791d85ad4503acdec50b3a120f984016b" }, "NezhaForNextSentencePrediction": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "NezhaForNextSentencePrediction" ], "sha": "9a34316c14ec8ecc98ff08e46760915c80098a57" }, "NezhaForPreTraining": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "NezhaForPreTraining" ], "sha": "6259db427a0073061de352ea819d38a74798edd7" }, "NezhaForQuestionAnswering": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "NezhaForQuestionAnswering" ], "sha": "31c6a34e85ae8c41294e0f4ef25044e00e511c4d" }, "NezhaForSequenceClassification": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "NezhaForSequenceClassification" ], "sha": "db057c308ba2e05f223404de11e1816ce4bd62a9" }, "NezhaForTokenClassification": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "NezhaForTokenClassification" ], "sha": "235f4e10b4a59709650c2bece3e342ec153d9cfc" }, "NezhaModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "NezhaModel" ], "sha": "80e05ba7c55bcdd7f4d1387ef9a09a7a8e95b5ac" }, "NllbMoeForConditionalGeneration": { "tokenizer_classes": [ "NllbTokenizer", "NllbTokenizerFast" ], "processor_classes": [], "model_classes": [ "NllbMoeForConditionalGeneration" ], "sha": "2a7f87dffe826af3d52086888f3f3773246e5528" }, "NllbMoeModel": { "tokenizer_classes": [ "NllbTokenizer", "NllbTokenizerFast" ], "processor_classes": [], "model_classes": [ "NllbMoeModel" ], "sha": "9f7a2261eed4658e1aa5623be4672ba64bee7da5" }, "NystromformerForMaskedLM": { "tokenizer_classes": [ "AlbertTokenizer", "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "NystromformerForMaskedLM" ], "sha": "37036847783f1e65e81ecd43803270a1ecb276f3" }, "NystromformerForMultipleChoice": { "tokenizer_classes": [ "AlbertTokenizer", "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "NystromformerForMultipleChoice" ], "sha": "42a077d5ab6830e20560466eaccc525eff10c3ae" }, "NystromformerForQuestionAnswering": { "tokenizer_classes": [ "AlbertTokenizer", "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "NystromformerForQuestionAnswering" ], "sha": "1cfaf79051731824db4f09989f093f87f4fceec5" }, "NystromformerForSequenceClassification": { "tokenizer_classes": [ "AlbertTokenizer", "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "NystromformerForSequenceClassification" ], "sha": "d75231203066df41e9b6b25dbee9ad40e8515c18" }, "NystromformerForTokenClassification": { "tokenizer_classes": [ "AlbertTokenizer", "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "NystromformerForTokenClassification" ], "sha": "5a499dc96e106bf41fc9166f2ad06527ec7ca14e" }, "NystromformerModel": { "tokenizer_classes": [ "AlbertTokenizer", "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "NystromformerModel" ], "sha": "2b6adb37ec473b15d71e2eb459acea08df6940ce" }, "OPTForCausalLM": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "OPTForCausalLM", "TFOPTForCausalLM" ], "sha": "190d1f4fc0011d2eaeaa05282e0fbd2445e4b11f" }, "OPTForQuestionAnswering": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "OPTForQuestionAnswering" ], "sha": "0fa9277ce10dbc3d0922b354befb684a136af00b" }, "OPTForSequenceClassification": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "OPTForSequenceClassification" ], "sha": "784ab288ab7280b1853ee400ef10ee2a965df352" }, "OPTModel": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [], "model_classes": [ "OPTModel", "TFOPTModel" ], "sha": "901d92b8f51edb0ec9614cb185fb66a8b5d364c3" }, "OneFormerForUniversalSegmentation": { "tokenizer_classes": [ "CLIPTokenizer", "CLIPTokenizerFast" ], "processor_classes": [ "OneFormerImageProcessor" ], "model_classes": [ "OneFormerForUniversalSegmentation" ], "sha": "fee1cfd676acc40f09017702ddac6504f3090d14" }, "OneFormerModel": { "tokenizer_classes": [ "CLIPTokenizer", "CLIPTokenizerFast" ], "processor_classes": [ "OneFormerImageProcessor" ], "model_classes": [ "OneFormerModel" ], "sha": "4163a79328c78f93ec57942598698a138c19a577" }, "OpenAIGPTForSequenceClassification": { "tokenizer_classes": [ "OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" ], "processor_classes": [], "model_classes": [ "OpenAIGPTForSequenceClassification", "TFOpenAIGPTForSequenceClassification" ], "sha": "c513f7f952935085f7573bf70a1ac3ad8f33434c" }, "OpenAIGPTLMHeadModel": { "tokenizer_classes": [ "OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" ], "processor_classes": [], "model_classes": [ "OpenAIGPTLMHeadModel", "TFOpenAIGPTLMHeadModel" ], "sha": "33f59ecd860f7a998483ec7631fe32d257235461" }, "OpenAIGPTModel": { "tokenizer_classes": [ "OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" ], "processor_classes": [], "model_classes": [ "OpenAIGPTModel", "TFOpenAIGPTModel" ], "sha": "00f6ec0a3a5276af71d08a26199e0ccbf2556fc9" }, "OwlViTForObjectDetection": { "tokenizer_classes": [ "CLIPTokenizer", "CLIPTokenizerFast" ], "processor_classes": [ "OwlViTImageProcessor" ], "model_classes": [ "OwlViTForObjectDetection" ], "sha": "af958c9164f23d0f12921a8edf687f9aaa6af90e" }, "OwlViTModel": { "tokenizer_classes": [ "CLIPTokenizer", "CLIPTokenizerFast" ], "processor_classes": [ "OwlViTImageProcessor" ], "model_classes": [ "OwlViTModel" ], "sha": "f0e27b2b4e53ba70e05d13dcfea8e85272b292a5" }, "Owlv2ForObjectDetection": { "tokenizer_classes": [ "CLIPTokenizer", "CLIPTokenizerFast" ], "processor_classes": [ "Owlv2ImageProcessor" ], "model_classes": [ "Owlv2ForObjectDetection" ], "sha": "30439c0b2749726468dc13a755261e8101170052" }, "Owlv2Model": { "tokenizer_classes": [ "CLIPTokenizer", "CLIPTokenizerFast" ], "processor_classes": [ "Owlv2ImageProcessor" ], "model_classes": [ "Owlv2Model" ], "sha": "7aeebdad5f72b36cb07c74355afad8e6052e2377" }, "PLBartForCausalLM": { "tokenizer_classes": [ "PLBartTokenizer" ], "processor_classes": [], "model_classes": [ "PLBartForCausalLM" ], "sha": "6ee51133246dbdb18fc3681ebd62d21e421b9bb4" }, "PLBartForConditionalGeneration": { "tokenizer_classes": [ "PLBartTokenizer" ], "processor_classes": [], "model_classes": [ "PLBartForConditionalGeneration" ], "sha": "ba191d28f4678d20b4dfed5fca5944018282cf20" }, "PLBartForSequenceClassification": { "tokenizer_classes": [ "PLBartTokenizer" ], "processor_classes": [], "model_classes": [ "PLBartForSequenceClassification" ], "sha": "02063b3d9707fcff619a4e37a0d6e58f76e39b18" }, "PLBartModel": { "tokenizer_classes": [ "PLBartTokenizer" ], "processor_classes": [], "model_classes": [ "PLBartModel" ], "sha": "cfbba29169b3f40d800403fc1b53982e1f88c5f8" }, "PegasusForCausalLM": { "tokenizer_classes": [ "PegasusTokenizer", "PegasusTokenizerFast" ], "processor_classes": [], "model_classes": [ "PegasusForCausalLM" ], "sha": "6e685a698302a3ba33e5379d3a37eb0bc1ae2f70" }, "PegasusForConditionalGeneration": { "tokenizer_classes": [ "PegasusTokenizer", "PegasusTokenizerFast" ], "processor_classes": [], "model_classes": [ "PegasusForConditionalGeneration", "TFPegasusForConditionalGeneration" ], "sha": "15e58ee2ebc14b6e80ef2891259057ee5f049be2" }, "PegasusModel": { "tokenizer_classes": [ "PegasusTokenizer", "PegasusTokenizerFast" ], "processor_classes": [], "model_classes": [ "PegasusModel", "TFPegasusModel" ], "sha": "fa36b24523db411ef77903453346b8be81ef73fe" }, "PegasusXForConditionalGeneration": { "tokenizer_classes": [ "PegasusTokenizer", "PegasusTokenizerFast" ], "processor_classes": [], "model_classes": [ "PegasusXForConditionalGeneration" ], "sha": "7588a8120f26a36c1687c14bdf1e9f9656891c1a" }, "PegasusXModel": { "tokenizer_classes": [ "PegasusTokenizer", "PegasusTokenizerFast" ], "processor_classes": [], "model_classes": [ "PegasusXModel" ], "sha": "a0bdff627416ac3c39c22d081f5d88d8b8fd99cc" }, "PerceiverForImageClassificationConvProcessing": { "tokenizer_classes": [ "PerceiverTokenizer" ], "processor_classes": [ "PerceiverImageProcessor" ], "model_classes": [ "PerceiverForImageClassificationConvProcessing" ], "sha": "2c1e5e62ebc9d0c931adc8c665fb05bde6c1c1f1" }, "PerceiverForImageClassificationFourier": { "tokenizer_classes": [ "PerceiverTokenizer" ], "processor_classes": [ "PerceiverImageProcessor" ], "model_classes": [ "PerceiverForImageClassificationFourier" ], "sha": "88da41b8851b76b8be0dacdb3de023db02bb031a" }, "PerceiverForImageClassificationLearned": { "tokenizer_classes": [ "PerceiverTokenizer" ], "processor_classes": [ "PerceiverImageProcessor" ], "model_classes": [ "PerceiverForImageClassificationLearned" ], "sha": "879bd1fa38d3baddb027bb2cacba2d160a741375" }, "PerceiverForMaskedLM": { "tokenizer_classes": [ "PerceiverTokenizer" ], "processor_classes": [ "PerceiverImageProcessor" ], "model_classes": [ "PerceiverForMaskedLM" ], "sha": "1d2459cbd281ef72da5682e65102aaca96183045" }, "PerceiverForSequenceClassification": { "tokenizer_classes": [ "PerceiverTokenizer" ], "processor_classes": [ "PerceiverImageProcessor" ], "model_classes": [ "PerceiverForSequenceClassification" ], "sha": "576f1f96348f0343458499fbf53d4102b5c0f2ff" }, "PerceiverModel": { "tokenizer_classes": [ "PerceiverTokenizer" ], "processor_classes": [ "PerceiverImageProcessor" ], "model_classes": [ "PerceiverModel" ], "sha": "83ec4d2d61ed62525ee033e13d144817beb29d19" }, "PersimmonForCausalLM": { "tokenizer_classes": [ "LlamaTokenizer", "LlamaTokenizerFast" ], "processor_classes": [], "model_classes": [ "PersimmonForCausalLM" ], "sha": "454234d6496c3857f5bf3eafb784616e2cd3ea82" }, "PersimmonForSequenceClassification": { "tokenizer_classes": [ "LlamaTokenizer", "LlamaTokenizerFast" ], "processor_classes": [], "model_classes": [ "PersimmonForSequenceClassification" ], "sha": "1d2674846543a181ca67bafa8b8f3a48bd2eefd1" }, "PersimmonModel": { "tokenizer_classes": [ "LlamaTokenizer", "LlamaTokenizerFast" ], "processor_classes": [], "model_classes": [ "PersimmonModel" ], "sha": "b8c8d479e29e9ee048e2d0b05b001ac835ad8859" }, "PhiForCausalLM": { "tokenizer_classes": [ "CodeGenTokenizer", "CodeGenTokenizerFast" ], "processor_classes": [], "model_classes": [ "PhiForCausalLM" ], "sha": "3fecc0109a4a3a230e3a5509eaf47a26eba85d79" }, "PhiForSequenceClassification": { "tokenizer_classes": [ "CodeGenTokenizer", "CodeGenTokenizerFast" ], "processor_classes": [], "model_classes": [ "PhiForSequenceClassification" ], "sha": "e1c9f8ebf1317516acc1cd6338de71a53e770245" }, "PhiForTokenClassification": { "tokenizer_classes": [ "CodeGenTokenizer", "CodeGenTokenizerFast" ], "processor_classes": [], "model_classes": [ "PhiForTokenClassification" ], "sha": "d3a8054903753b5c96c05eaf9877905a116a1d5e" }, "PhiModel": { "tokenizer_classes": [ "CodeGenTokenizer", "CodeGenTokenizerFast" ], "processor_classes": [], "model_classes": [ "PhiModel" ], "sha": "99c38d5ce7ace35127d00ed3eeb3561308ea6b21" }, "Pix2StructForConditionalGeneration": { "tokenizer_classes": [ "T5TokenizerFast" ], "processor_classes": [ "Pix2StructImageProcessor", "Pix2StructProcessor" ], "model_classes": [ "Pix2StructForConditionalGeneration" ], "sha": "42b3de00ad535076c4893e4ac5ae2d2748cc4ccb" }, "PoolFormerForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "PoolFormerImageProcessor" ], "model_classes": [ "PoolFormerForImageClassification" ], "sha": "ef04de5a6896100d457fb9553dd9789c09cca98e" }, "PoolFormerModel": { "tokenizer_classes": [], "processor_classes": [ "PoolFormerImageProcessor" ], "model_classes": [ "PoolFormerModel" ], "sha": "e8037215ebdbf795329ef6525cdc6aa547f04ace" }, "ProphetNetForCausalLM": { "tokenizer_classes": [ "ProphetNetTokenizer" ], "processor_classes": [], "model_classes": [ "ProphetNetForCausalLM" ], "sha": "d40b1e75bbc5ea0839563457aff6eee5bc0bb03e" }, "ProphetNetForConditionalGeneration": { "tokenizer_classes": [ "ProphetNetTokenizer" ], "processor_classes": [], "model_classes": [ "ProphetNetForConditionalGeneration" ], "sha": "d842875c41278032af39c03c66902786bb5ff2c7" }, "ProphetNetModel": { "tokenizer_classes": [ "ProphetNetTokenizer" ], "processor_classes": [], "model_classes": [ "ProphetNetModel" ], "sha": "f1ddbbcc768c7ba54c4d75b319540c1635e65937" }, "PvtForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "PvtImageProcessor" ], "model_classes": [ "PvtForImageClassification" ], "sha": "589b37bd6941aff6dd248259f9eee3c422a41fde" }, "PvtModel": { "tokenizer_classes": [], "processor_classes": [ "PvtImageProcessor" ], "model_classes": [ "PvtModel" ], "sha": "c40765c382515ae627652d60e9077b6478448d48" }, "ReformerForMaskedLM": { "tokenizer_classes": [ "ReformerTokenizer", "ReformerTokenizerFast" ], "processor_classes": [], "model_classes": [ "ReformerForMaskedLM" ], "sha": "1e6431e42c676b525e3215e9e3cc8f1404f9f82b" }, "ReformerForQuestionAnswering": { "tokenizer_classes": [ "ReformerTokenizer", "ReformerTokenizerFast" ], "processor_classes": [], "model_classes": [ "ReformerForQuestionAnswering" ], "sha": "62b43977f244474bd6982c6327d0c57310258fcd" }, "ReformerForSequenceClassification": { "tokenizer_classes": [ "ReformerTokenizer", "ReformerTokenizerFast" ], "processor_classes": [], "model_classes": [ "ReformerForSequenceClassification" ], "sha": "67bd534a990a7dcfa02406987e7f066caa2a30e8" }, "ReformerModel": { "tokenizer_classes": [ "ReformerTokenizer", "ReformerTokenizerFast" ], "processor_classes": [], "model_classes": [ "ReformerModel" ], "sha": "a34ddb1389067448e9bc1323de674951cfb4cff1" }, "ReformerModelWithLMHead": { "tokenizer_classes": [ "ReformerTokenizer", "ReformerTokenizerFast" ], "processor_classes": [], "model_classes": [], "sha": "e7a8addaea8407d4c55e144e48aee04be6cca618" }, "RegNetForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "RegNetForImageClassification", "TFRegNetForImageClassification" ], "sha": "5ec67c84fc7944c0c5b386bd26820bc4d1f3b32a" }, "RegNetModel": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "RegNetModel", "TFRegNetModel" ], "sha": "72375e1401dc8271d4abb6295c9cee376f7b8f1a" }, "RemBertForCausalLM": { "tokenizer_classes": [ "RemBertTokenizer", "RemBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "RemBertForCausalLM", "TFRemBertForCausalLM" ], "sha": "8d9ae3d74a0e0a8958b4ee8c9dca3632abf52ef9" }, "RemBertForMaskedLM": { "tokenizer_classes": [ "RemBertTokenizer", "RemBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "RemBertForMaskedLM", "TFRemBertForMaskedLM" ], "sha": "b7c27d01e1cc3bef9ddd6a78627d700b3bffd759" }, "RemBertForMultipleChoice": { "tokenizer_classes": [ "RemBertTokenizer", "RemBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "RemBertForMultipleChoice", "TFRemBertForMultipleChoice" ], "sha": "2fe192677b9740cf24dd559339d46925e8ac23d4" }, "RemBertForQuestionAnswering": { "tokenizer_classes": [ "RemBertTokenizer", "RemBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "RemBertForQuestionAnswering", "TFRemBertForQuestionAnswering" ], "sha": "22b8ba44681b96292a1cf7f6df4ba6bb7937ec6e" }, "RemBertForSequenceClassification": { "tokenizer_classes": [ "RemBertTokenizer", "RemBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "RemBertForSequenceClassification", "TFRemBertForSequenceClassification" ], "sha": "20f3e89341ea15266d2685a8798142fba03c3f98" }, "RemBertForTokenClassification": { "tokenizer_classes": [ "RemBertTokenizer", "RemBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "RemBertForTokenClassification", "TFRemBertForTokenClassification" ], "sha": "15712ff753708da3cf0550e76e73a5d0bba7784e" }, "RemBertModel": { "tokenizer_classes": [ "RemBertTokenizer", "RemBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "RemBertModel", "TFRemBertModel" ], "sha": "59cc6d099b1ded0aaead8684457415b129f79e86" }, "ResNetBackbone": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "ResNetBackbone" ], "sha": "c84a6bcf8af4b6a3403dea3cf4c55965ac39f239" }, "ResNetForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "ResNetForImageClassification", "TFResNetForImageClassification" ], "sha": "34a180ad24d80811d420d7aa4fbec4a17751aaf8" }, "ResNetModel": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "ResNetModel", "TFResNetModel" ], "sha": "fafa6cdf9986c6cfbae360596b3574162430bcd3" }, "RoCBertForCausalLM": { "tokenizer_classes": [ "RoCBertTokenizer" ], "processor_classes": [], "model_classes": [ "RoCBertForCausalLM" ], "sha": "194d8dafc4f4142f8d31e6b4be14b55d812f923b" }, "RoCBertForMaskedLM": { "tokenizer_classes": [ "RoCBertTokenizer" ], "processor_classes": [], "model_classes": [ "RoCBertForMaskedLM" ], "sha": "8bc285f32f3b932dbd56ddf91b1170734d638eeb" }, "RoCBertForMultipleChoice": { "tokenizer_classes": [ "RoCBertTokenizer" ], "processor_classes": [], "model_classes": [ "RoCBertForMultipleChoice" ], "sha": "bb54e5ae021d728022d34b12fee3f087d9486af9" }, "RoCBertForPreTraining": { "tokenizer_classes": [ "RoCBertTokenizer" ], "processor_classes": [], "model_classes": [ "RoCBertForPreTraining" ], "sha": "86ebbd5b0bc84660ad7f505082eff19b86c137c8" }, "RoCBertForQuestionAnswering": { "tokenizer_classes": [ "RoCBertTokenizer" ], "processor_classes": [], "model_classes": [ "RoCBertForQuestionAnswering" ], "sha": "1bfc2dc3d6e76170e6dca1ff32a54a0887ff28a3" }, "RoCBertForSequenceClassification": { "tokenizer_classes": [ "RoCBertTokenizer" ], "processor_classes": [], "model_classes": [ "RoCBertForSequenceClassification" ], "sha": "c329038802241f454273894128fea38b60f7c739" }, "RoCBertForTokenClassification": { "tokenizer_classes": [ "RoCBertTokenizer" ], "processor_classes": [], "model_classes": [ "RoCBertForTokenClassification" ], "sha": "afe5ec22c2ad1d9ff6e3e64c87eb7555faaa936d" }, "RoCBertModel": { "tokenizer_classes": [ "RoCBertTokenizer" ], "processor_classes": [], "model_classes": [ "RoCBertModel" ], "sha": "29de5580d5f5d3461a88673e7b4c492a9d8a67a4" }, "RoFormerForCausalLM": { "tokenizer_classes": [ "RoFormerTokenizer", "RoFormerTokenizerFast" ], "processor_classes": [], "model_classes": [ "RoFormerForCausalLM", "TFRoFormerForCausalLM" ], "sha": "6e074219c6dd8f8b221bbfda64fba100f729f88d" }, "RoFormerForMaskedLM": { "tokenizer_classes": [ "RoFormerTokenizer", "RoFormerTokenizerFast" ], "processor_classes": [], "model_classes": [ "RoFormerForMaskedLM", "TFRoFormerForMaskedLM" ], "sha": "a3a4d05f9b29601553a77244f2adcf8194f9367c" }, "RoFormerForMultipleChoice": { "tokenizer_classes": [ "RoFormerTokenizer", "RoFormerTokenizerFast" ], "processor_classes": [], "model_classes": [ "RoFormerForMultipleChoice", "TFRoFormerForMultipleChoice" ], "sha": "aca3999a1d14f09644faed44e2cdfb28ed68a3d3" }, "RoFormerForQuestionAnswering": { "tokenizer_classes": [ "RoFormerTokenizer", "RoFormerTokenizerFast" ], "processor_classes": [], "model_classes": [ "RoFormerForQuestionAnswering", "TFRoFormerForQuestionAnswering" ], "sha": "b8a20b3a788f178b9ef64e2eb9587f693dca1b69" }, "RoFormerForSequenceClassification": { "tokenizer_classes": [ "RoFormerTokenizer", "RoFormerTokenizerFast" ], "processor_classes": [], "model_classes": [ "RoFormerForSequenceClassification", "TFRoFormerForSequenceClassification" ], "sha": "d092e2d5e62012bf4ec921e763b37865d6189216" }, "RoFormerForTokenClassification": { "tokenizer_classes": [ "RoFormerTokenizer", "RoFormerTokenizerFast" ], "processor_classes": [], "model_classes": [ "RoFormerForTokenClassification", "TFRoFormerForTokenClassification" ], "sha": "85d3a17062e1f3e0539abfe738a88203e25349b6" }, "RoFormerModel": { "tokenizer_classes": [ "RoFormerTokenizer", "RoFormerTokenizerFast" ], "processor_classes": [], "model_classes": [ "RoFormerModel", "TFRoFormerModel" ], "sha": "22e7df2f4cd66caf449f2342f63d176005afccc9" }, "RobertaForCausalLM": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "RobertaForCausalLM", "TFRobertaForCausalLM" ], "sha": "5d1d24d56f9735402e50a2ea513ffde44487733e" }, "RobertaForMaskedLM": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "RobertaForMaskedLM", "TFRobertaForMaskedLM" ], "sha": "b21c9daf0b3b66530bf5d45d67df5ec392b5059c" }, "RobertaForMultipleChoice": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "RobertaForMultipleChoice", "TFRobertaForMultipleChoice" ], "sha": "10020d9546d4d7318f4d514fe13daaad07e6269f" }, "RobertaForQuestionAnswering": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "RobertaForQuestionAnswering", "TFRobertaForQuestionAnswering" ], "sha": "eea4a81306891746bac9e7715f805a2d9dbf4be7" }, "RobertaForSequenceClassification": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "RobertaForSequenceClassification", "TFRobertaForSequenceClassification" ], "sha": "6a6f53fc6ab98e29ed539e76b1cb76d25a2cd720" }, "RobertaForTokenClassification": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "RobertaForTokenClassification", "TFRobertaForTokenClassification" ], "sha": "9190044c4091eb0d98ae7638c453e24846bca5d7" }, "RobertaModel": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "RobertaModel", "TFRobertaModel" ], "sha": "181a0b8a7ad24500ec327ad07ddb225f0680ac0a" }, "RobertaPreLayerNormForCausalLM": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "RobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForCausalLM" ], "sha": "73b6d4531b41f295a5d310d7aa44736004a59865" }, "RobertaPreLayerNormForMaskedLM": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "RobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMaskedLM" ], "sha": "a61723c77e5ab7adc95285e7823a0a49b99af395" }, "RobertaPreLayerNormForMultipleChoice": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "RobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForMultipleChoice" ], "sha": "3dcfa62e0771358c60232a18135bfe7c7f6d715e" }, "RobertaPreLayerNormForQuestionAnswering": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "RobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForQuestionAnswering" ], "sha": "a8e76a5a50f7df60055e5ed6a1c3af2e7d34cf01" }, "RobertaPreLayerNormForSequenceClassification": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "RobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForSequenceClassification" ], "sha": "7509cb0286d146ef2fc6beb8867ae31b92fb1b16" }, "RobertaPreLayerNormForTokenClassification": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "RobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormForTokenClassification" ], "sha": "3ad5814ba126b41e18c1978c970e396fab6da9bf" }, "RobertaPreLayerNormModel": { "tokenizer_classes": [ "RobertaTokenizer", "RobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "RobertaPreLayerNormModel", "TFRobertaPreLayerNormModel" ], "sha": "4830db38fd310404c5ab70bd00684eca0bc06ca8" }, "RwkvForCausalLM": { "tokenizer_classes": [ "GPTNeoXTokenizerFast" ], "processor_classes": [], "model_classes": [ "RwkvForCausalLM" ], "sha": "2f452fd46b39e39b1a6a95fa1d8232405bbb3e96" }, "RwkvModel": { "tokenizer_classes": [ "GPTNeoXTokenizerFast" ], "processor_classes": [], "model_classes": [ "RwkvModel" ], "sha": "88a52c9437dc3c06f65a8252490be7eb91197804" }, "SEWDForCTC": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "SEWDForCTC" ], "sha": "5c7495c77ae9e0f12c0de05d3a5fb95bdcd91768" }, "SEWDForSequenceClassification": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "SEWDForSequenceClassification" ], "sha": "d6cbf1164ce1999fdaf3deeb7a6eba19a3b1f873" }, "SEWDModel": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "SEWDModel" ], "sha": "dde4e02219449f149bb3403bbeae127cafaf9c79" }, "SEWForCTC": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "SEWForCTC" ], "sha": "4477c7a277059fba08772acf91cf3e3dd3cb073b" }, "SEWForSequenceClassification": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "SEWForSequenceClassification" ], "sha": "3b90fbb1c0c3848fed18f91a0169bb297a3e6619" }, "SEWModel": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "SEWModel" ], "sha": "0a0fbb844eeefa0dce62bd05db30a2bb91e5dc88" }, "SamModel": { "tokenizer_classes": [], "processor_classes": [ "SamImageProcessor" ], "model_classes": [ "SamModel", "TFSamModel" ], "sha": "eca8651bc84e5ac3b1b62e784b744a6bd1b82575" }, "SegformerForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "SegformerImageProcessor" ], "model_classes": [ "SegformerForImageClassification", "TFSegformerForImageClassification" ], "sha": "c566ae0ed382be4ed61ed6dacffa2ba663e9cc19" }, "SegformerForSemanticSegmentation": { "tokenizer_classes": [], "processor_classes": [ "SegformerImageProcessor" ], "model_classes": [ "SegformerForSemanticSegmentation", "TFSegformerForSemanticSegmentation" ], "sha": "b73798972cdf24daafa858994713aca60e2bf90d" }, "SegformerModel": { "tokenizer_classes": [], "processor_classes": [ "SegformerImageProcessor" ], "model_classes": [ "SegformerModel", "TFSegformerModel" ], "sha": "3d4ba8ed2bdf801e6afa855b9d77893f2b7f9e10" }, "Speech2TextForConditionalGeneration": { "tokenizer_classes": [ "Speech2TextTokenizer" ], "processor_classes": [ "Speech2TextFeatureExtractor" ], "model_classes": [ "Speech2TextForConditionalGeneration", "TFSpeech2TextForConditionalGeneration" ], "sha": "1da80293ec78762e136cf6dd64b652693f9ab364" }, "Speech2TextModel": { "tokenizer_classes": [ "Speech2TextTokenizer" ], "processor_classes": [ "Speech2TextFeatureExtractor" ], "model_classes": [ "Speech2TextModel", "TFSpeech2TextModel" ], "sha": "7c6e63bd0c15dd99ef01573d4c43f90e4920cc91" }, "SpeechEncoderDecoderModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "SpeechEncoderDecoderModel" ], "sha": "78602ae0857728e95de4042bdca8a31ef818890a" }, "SpeechT5ForSpeechToText": { "tokenizer_classes": [ "SpeechT5Tokenizer" ], "processor_classes": [ "SpeechT5FeatureExtractor" ], "model_classes": [ "SpeechT5ForSpeechToText" ], "sha": "d46f0a83324e5865420a27a738ef203292de3479" }, "SpeechT5ForTextToSpeech": { "tokenizer_classes": [ "SpeechT5Tokenizer" ], "processor_classes": [ "SpeechT5FeatureExtractor" ], "model_classes": [ "SpeechT5ForTextToSpeech" ], "sha": "922e748d9e1ea256a8d9259782021cd3820d5924" }, "SpeechT5Model": { "tokenizer_classes": [ "SpeechT5Tokenizer" ], "processor_classes": [ "SpeechT5FeatureExtractor" ], "model_classes": [ "SpeechT5Model" ], "sha": "7b248f77ca88ffddcdb538e772f6de63a86a4f9b" }, "SplinterForPreTraining": { "tokenizer_classes": [ "SplinterTokenizer" ], "processor_classes": [], "model_classes": [ "SplinterForPreTraining" ], "sha": "e8a94efa740f1d685fa553f49132c6f022de5389" }, "SplinterForQuestionAnswering": { "tokenizer_classes": [ "SplinterTokenizer" ], "processor_classes": [], "model_classes": [ "SplinterForQuestionAnswering" ], "sha": "d038b7b683face4a361ab0f474d8a5b111c44c4d" }, "SplinterModel": { "tokenizer_classes": [ "SplinterTokenizer" ], "processor_classes": [], "model_classes": [ "SplinterModel" ], "sha": "a35b13cbb7faba46dc265761bb839267eb53d248" }, "SqueezeBertForMaskedLM": { "tokenizer_classes": [ "SqueezeBertTokenizer", "SqueezeBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "SqueezeBertForMaskedLM" ], "sha": "33ce239408c22d2c98be63c9ab4607ef9ceb6d49" }, "SqueezeBertForMultipleChoice": { "tokenizer_classes": [ "SqueezeBertTokenizer", "SqueezeBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "SqueezeBertForMultipleChoice" ], "sha": "7e9e666896420c7839e27dcb280981d034ba4da5" }, "SqueezeBertForQuestionAnswering": { "tokenizer_classes": [ "SqueezeBertTokenizer", "SqueezeBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "SqueezeBertForQuestionAnswering" ], "sha": "bceb045a9ac6eb2ded7d358ed577c6dc28ea487a" }, "SqueezeBertForSequenceClassification": { "tokenizer_classes": [ "SqueezeBertTokenizer", "SqueezeBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "SqueezeBertForSequenceClassification" ], "sha": "c5aeb1f454a1d059d41a5f8dacaf784b9de0b899" }, "SqueezeBertForTokenClassification": { "tokenizer_classes": [ "SqueezeBertTokenizer", "SqueezeBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "SqueezeBertForTokenClassification" ], "sha": "70ba60ca44a380e6aa983a37b163c57217219df7" }, "SqueezeBertModel": { "tokenizer_classes": [ "SqueezeBertTokenizer", "SqueezeBertTokenizerFast" ], "processor_classes": [], "model_classes": [ "SqueezeBertModel" ], "sha": "e0a3ac56a4047da3f921638252ead5e44438bbdb" }, "SwiftFormerForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "SwiftFormerForImageClassification" ], "sha": "a249b14a525d29e675b6e4af4baacd9ba7df7598" }, "SwiftFormerModel": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "SwiftFormerModel" ], "sha": "25ba2d88c770533f8c69811d2a454a00c1d09f5d" }, "Swin2SRForImageSuperResolution": { "tokenizer_classes": [], "processor_classes": [ "Swin2SRImageProcessor" ], "model_classes": [ "Swin2SRForImageSuperResolution" ], "sha": "3a2780de0b455084c018ac8a62b56040969e26ec" }, "Swin2SRModel": { "tokenizer_classes": [], "processor_classes": [ "Swin2SRImageProcessor" ], "model_classes": [ "Swin2SRModel" ], "sha": "c67f6ecff9ef8675c3869c987277b0a1e040f4be" }, "SwinBackbone": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "SwinBackbone" ], "sha": "89b28b8ec05a7b3357be75a77eb7809e6fd5cfef" }, "SwinForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "SwinForImageClassification", "TFSwinForImageClassification" ], "sha": "e3c2e80f380ef79781313981da1a993dd8b8d34d" }, "SwinForMaskedImageModeling": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "SwinForMaskedImageModeling", "TFSwinForMaskedImageModeling" ], "sha": "d84b061fbace1bc6e697e3253e222de42053f978" }, "SwinModel": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "SwinModel", "TFSwinModel" ], "sha": "23ff641295660ec4fea399be8aa1bc14565961f8" }, "Swinv2ForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "Swinv2ForImageClassification" ], "sha": "3fd755cdf4cf611db83f72f9c9b00eb9257a38ca" }, "Swinv2ForMaskedImageModeling": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "Swinv2ForMaskedImageModeling" ], "sha": "8375c31eb6231fde36ec6533a34ba5b28e296163" }, "Swinv2Model": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "Swinv2Model" ], "sha": "70aeb72e8a266f668c8b51a517ec01003b8d6804" }, "SwitchTransformersForConditionalGeneration": { "tokenizer_classes": [ "T5Tokenizer", "T5TokenizerFast" ], "processor_classes": [], "model_classes": [ "SwitchTransformersForConditionalGeneration" ], "sha": "c8fcd2bb735894c78db7f1e5b51afc78aced7adb" }, "SwitchTransformersModel": { "tokenizer_classes": [ "T5Tokenizer", "T5TokenizerFast" ], "processor_classes": [], "model_classes": [ "SwitchTransformersModel" ], "sha": "275bbf6d389bfd0540b9f824c609c6b22a577328" }, "T5EncoderModel": { "tokenizer_classes": [ "T5Tokenizer", "T5TokenizerFast" ], "processor_classes": [], "model_classes": [ "T5EncoderModel", "TFT5EncoderModel" ], "sha": "1c75090036a2b3740dfe2d570b889332ad8e59e8" }, "T5ForConditionalGeneration": { "tokenizer_classes": [ "T5Tokenizer", "T5TokenizerFast" ], "processor_classes": [], "model_classes": [ "T5ForConditionalGeneration", "TFT5ForConditionalGeneration" ], "sha": "593fd6072a4e265f5cc73b1973cd8af76b261f29" }, "T5ForQuestionAnswering": { "tokenizer_classes": [ "T5Tokenizer", "T5TokenizerFast" ], "processor_classes": [], "model_classes": [ "T5ForQuestionAnswering" ], "sha": "b9edf2de494244ff032f67d2d7bdf6c591000c94" }, "T5ForSequenceClassification": { "tokenizer_classes": [ "T5Tokenizer", "T5TokenizerFast" ], "processor_classes": [], "model_classes": [ "T5ForSequenceClassification" ], "sha": "105b5c4c8e1efe927444108f1388c4f102ebad15" }, "T5Model": { "tokenizer_classes": [ "T5Tokenizer", "T5TokenizerFast" ], "processor_classes": [], "model_classes": [ "T5Model", "TFT5Model" ], "sha": "eb3d20dda0ba77c1de618d78116a1a0c784c515c" }, "TableTransformerForObjectDetection": { "tokenizer_classes": [], "processor_classes": [ "DetrImageProcessor" ], "model_classes": [ "TableTransformerForObjectDetection" ], "sha": "9cf1e3f5c3555a727672a32b49f8b96c5aa20be6" }, "TableTransformerModel": { "tokenizer_classes": [], "processor_classes": [ "DetrImageProcessor" ], "model_classes": [ "TableTransformerModel" ], "sha": "7b446244d8739b0c29d98f7d537b15ad578577d5" }, "TapasForMaskedLM": { "tokenizer_classes": [ "TapasTokenizer" ], "processor_classes": [], "model_classes": [ "TFTapasForMaskedLM", "TapasForMaskedLM" ], "sha": "2cedb92dd9a3dc37ffb7d35ad5190b110992577c" }, "TapasForQuestionAnswering": { "tokenizer_classes": [ "TapasTokenizer" ], "processor_classes": [], "model_classes": [ "TFTapasForQuestionAnswering", "TapasForQuestionAnswering" ], "sha": "4cc91b9e5db662e6e392d8052587ae419896d72b" }, "TapasForSequenceClassification": { "tokenizer_classes": [ "TapasTokenizer" ], "processor_classes": [], "model_classes": [ "TFTapasForSequenceClassification", "TapasForSequenceClassification" ], "sha": "7c37bfb87a6fce2f8604bb3cab2a14e09a285e14" }, "TapasModel": { "tokenizer_classes": [ "TapasTokenizer" ], "processor_classes": [], "model_classes": [ "TFTapasModel", "TapasModel" ], "sha": "bc004af0a415afe1f566c3afe8dd4d48d08c1ce0" }, "TimesformerForVideoClassification": { "tokenizer_classes": [], "processor_classes": [ "VideoMAEImageProcessor" ], "model_classes": [ "TimesformerForVideoClassification" ], "sha": "0b3b8e314618d7af34fb44477745491b44bf556d" }, "TimesformerModel": { "tokenizer_classes": [], "processor_classes": [ "VideoMAEImageProcessor" ], "model_classes": [ "TimesformerModel" ], "sha": "ea51f7ebb6426ad2b1fa1396e83f8e8ad5bc3b44" }, "TransfoXLForSequenceClassification": { "tokenizer_classes": [ "TransfoXLTokenizer" ], "processor_classes": [], "model_classes": [ "TFTransfoXLForSequenceClassification", "TransfoXLForSequenceClassification" ], "sha": "f3d370184350667d74056b979081b0bf5b0083c1" }, "TransfoXLLMHeadModel": { "tokenizer_classes": [ "TransfoXLTokenizer" ], "processor_classes": [], "model_classes": [ "TFTransfoXLLMHeadModel", "TransfoXLLMHeadModel" ], "sha": "e0d4cebcdde52d8d4c81782a1edc606830bd6afd" }, "TransfoXLModel": { "tokenizer_classes": [ "TransfoXLTokenizer" ], "processor_classes": [], "model_classes": [ "TFTransfoXLModel", "TransfoXLModel" ], "sha": "6938eeae35662a862accb01412dfc486454bdc8f" }, "TvltForPreTraining": { "tokenizer_classes": [], "processor_classes": [ "TvltProcessor" ], "model_classes": [ "TvltForPreTraining" ], "sha": "f7bd2833764eb6d55a921aaed81d3f21119016ae" }, "TvltModel": { "tokenizer_classes": [], "processor_classes": [ "TvltProcessor" ], "model_classes": [ "TvltModel" ], "sha": "c3cbf7a6159c038f333ce7adda2480ea3396b2b3" }, "UMT5EncoderModel": { "tokenizer_classes": [ "T5Tokenizer", "T5TokenizerFast" ], "processor_classes": [], "model_classes": [ "UMT5EncoderModel" ], "sha": "2894e49c9fbd17ea4b3dab56ec388be354c1a5f0" }, "UMT5ForQuestionAnswering": { "tokenizer_classes": [ "T5Tokenizer", "T5TokenizerFast" ], "processor_classes": [], "model_classes": [ "UMT5ForQuestionAnswering" ], "sha": "b381aa068a44200db539f2f48f4e34a5ed1cb093" }, "UMT5ForSequenceClassification": { "tokenizer_classes": [ "T5Tokenizer", "T5TokenizerFast" ], "processor_classes": [], "model_classes": [ "UMT5ForSequenceClassification" ], "sha": "aa9f77b7b3cff21425b7512e7c0f478af7b5db14" }, "UMT5Model": { "tokenizer_classes": [ "T5Tokenizer", "T5TokenizerFast" ], "processor_classes": [], "model_classes": [ "UMT5Model" ], "sha": "9180d850b24e5494442a4f7a8ca1a4c102f9babd" }, "UniSpeechForCTC": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "UniSpeechForCTC" ], "sha": "102b56d76f4d74cface309801c0ad80892583751" }, "UniSpeechForPreTraining": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "UniSpeechForPreTraining" ], "sha": "830be5b3e85aaae7bcc961218e417c29743d6042" }, "UniSpeechForSequenceClassification": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "UniSpeechForSequenceClassification" ], "sha": "a30ac1516944757ccd8efcbcf94033a03f8708bf" }, "UniSpeechModel": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "UniSpeechModel" ], "sha": "18e170eb1091715b74ace28c8c380b6bf2b6202d" }, "UniSpeechSatForAudioFrameClassification": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "UniSpeechSatForAudioFrameClassification" ], "sha": "7eba5a1c6cd610928b27ecb217bb17c729a07a57" }, "UniSpeechSatForCTC": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "UniSpeechSatForCTC" ], "sha": "a8617538d3a2ae990f022bb0c36b8428a4870822" }, "UniSpeechSatForPreTraining": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "UniSpeechSatForPreTraining" ], "sha": "a772f66db0ab49e1050e524d7fcbe5106ebdaf96" }, "UniSpeechSatForSequenceClassification": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "UniSpeechSatForSequenceClassification" ], "sha": "f1c16567bd829a6d8a7a2d167d22e9653149e625" }, "UniSpeechSatForXVector": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "UniSpeechSatForXVector" ], "sha": "71cb3780cf3678f74fba00e19df82df76dca6133" }, "UniSpeechSatModel": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "UniSpeechSatModel" ], "sha": "ea755bbc7c6c6aa649c58b4b000f243acbbd6b5a" }, "UperNetForSemanticSegmentation": { "tokenizer_classes": [], "processor_classes": [ "SegformerImageProcessor" ], "model_classes": [ "UperNetForSemanticSegmentation" ], "sha": "f1871cb388bc0b203f5397bfc06a373736c2fb9c" }, "VanForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "VanForImageClassification" ], "sha": "694eb147bc4768aeabeffbfb97732281b71a621d" }, "VanModel": { "tokenizer_classes": [], "processor_classes": [ "ConvNextImageProcessor" ], "model_classes": [ "VanModel" ], "sha": "d8ac60ce952020f2b0355fc566d634b2c5ba635d" }, "ViTForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "TFViTForImageClassification", "ViTForImageClassification" ], "sha": "5b3b44a3ed492070c273e481e30ecf4deddc5ec3" }, "ViTForMaskedImageModeling": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "ViTForMaskedImageModeling" ], "sha": "d984e0b432fe195c2c26952d4f249031e7b1e2ea" }, "ViTHybridForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ViTHybridImageProcessor" ], "model_classes": [ "ViTHybridForImageClassification" ], "sha": "69c7c396032ffe60d54953b584394899fb95ccc1" }, "ViTHybridModel": { "tokenizer_classes": [], "processor_classes": [ "ViTHybridImageProcessor" ], "model_classes": [ "ViTHybridModel" ], "sha": "077443bfefe40d625314dbd274d2ff8089624797" }, "ViTMAEForPreTraining": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "TFViTMAEForPreTraining", "ViTMAEForPreTraining" ], "sha": "2d98d80d9c45eef0d5b6f5426d7196bb546fe9fc" }, "ViTMAEModel": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "TFViTMAEModel", "ViTMAEModel" ], "sha": "c7c2f12c19d2dbec08851a9dac7485909629a5fd" }, "ViTMSNForImageClassification": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "ViTMSNForImageClassification" ], "sha": "feda819aa7dbb55d850130f4cf1d210858d7eb89" }, "ViTMSNModel": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "ViTMSNModel" ], "sha": "0733abf168cb47a149821fdd2113d546e15c47de" }, "ViTModel": { "tokenizer_classes": [], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "TFViTModel", "ViTModel" ], "sha": "31817b7a64ebc3333fcd4801dfbb356ab07b13dd" }, "VideoMAEForPreTraining": { "tokenizer_classes": [], "processor_classes": [ "VideoMAEImageProcessor" ], "model_classes": [ "VideoMAEForPreTraining" ], "sha": "9de66c4bb759dc7269a7af17bf70b3194550acaa" }, "VideoMAEForVideoClassification": { "tokenizer_classes": [], "processor_classes": [ "VideoMAEImageProcessor" ], "model_classes": [ "VideoMAEForVideoClassification" ], "sha": "d3f743408386bc0ffe2d979de35335e87bc34aec" }, "VideoMAEModel": { "tokenizer_classes": [], "processor_classes": [ "VideoMAEImageProcessor" ], "model_classes": [ "VideoMAEModel" ], "sha": "a2be96beba888817d92b67525601569d830342ff" }, "ViltForQuestionAnswering": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [ "ViltImageProcessor" ], "model_classes": [ "ViltForQuestionAnswering" ], "sha": "faeffbf43da6621717d8b13e7ebe87d58d750cb2" }, "ViltModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [ "ViltImageProcessor" ], "model_classes": [ "ViltModel" ], "sha": "3a89b7b5782947c4f4125162ffe1c9cc18c9c800" }, "VisionEncoderDecoderModel": { "tokenizer_classes": [ "GPT2Tokenizer", "GPT2TokenizerFast" ], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "TFVisionEncoderDecoderModel", "VisionEncoderDecoderModel" ], "sha": "23917761070cf16b26a6d033b6bff9100bbc618b" }, "VisionTextDualEncoderModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [ "ViTImageProcessor" ], "model_classes": [ "TFVisionTextDualEncoderModel", "VisionTextDualEncoderModel" ], "sha": "c3569ef17f66acbacb76f7ceb6f71e02d075dd6c" }, "VisualBertForPreTraining": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "VisualBertForPreTraining" ], "sha": "ce5a4d93ce762971cd216cda9aef8b9ce3f0450b" }, "VisualBertModel": { "tokenizer_classes": [ "BertTokenizer", "BertTokenizerFast" ], "processor_classes": [], "model_classes": [ "VisualBertModel" ], "sha": "85020189fb7bf1217eb9370b09bca8ec5bcfdafa" }, "VitsModel": { "tokenizer_classes": [ "VitsTokenizer" ], "processor_classes": [], "model_classes": [ "VitsModel" ], "sha": "b9a20ca5b6a7874576e485850260578895587dd2" }, "Wav2Vec2ConformerForAudioFrameClassification": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Wav2Vec2ConformerForAudioFrameClassification" ], "sha": "e316a18a1d165b4cb51a7f28f8e8dab676da4b56" }, "Wav2Vec2ConformerForCTC": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Wav2Vec2ConformerForCTC" ], "sha": "a2ecb2985fcbb9f3ed000c12c1af6da36f5eaa3a" }, "Wav2Vec2ConformerForPreTraining": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Wav2Vec2ConformerForPreTraining" ], "sha": "099279b69e5da19efb05589804ccee210a0e57ae" }, "Wav2Vec2ConformerForSequenceClassification": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Wav2Vec2ConformerForSequenceClassification" ], "sha": "e8c1bca543c54bf15a6c026cb3761993b52cf617" }, "Wav2Vec2ConformerForXVector": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Wav2Vec2ConformerForXVector" ], "sha": "ba206a55998f16e134960728bd02006eaf39114f" }, "Wav2Vec2ConformerModel": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Wav2Vec2ConformerModel" ], "sha": "ef2fe3aa8c23e6f8696e6612061aaddecae49994" }, "Wav2Vec2ForAudioFrameClassification": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Wav2Vec2ForAudioFrameClassification" ], "sha": "ab219f119e10f56e1059966c66d23f0df3c2c343" }, "Wav2Vec2ForCTC": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Wav2Vec2ForCTC" ], "sha": "6245fbb1cb99cea5c4de1e73f81fba978fb275ac" }, "Wav2Vec2ForMaskedLM": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Wav2Vec2ForMaskedLM" ], "sha": "e083cf4fefec4df3c241dbbe5e17a84a794a89bd" }, "Wav2Vec2ForPreTraining": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Wav2Vec2ForPreTraining" ], "sha": "a8d71e216334260353ccbf5ce84cd6924f7457da" }, "Wav2Vec2ForSequenceClassification": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "TFWav2Vec2ForSequenceClassification", "Wav2Vec2ForSequenceClassification" ], "sha": "2000b2022abcc37100241485f5872126b70164c9" }, "Wav2Vec2ForXVector": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "Wav2Vec2ForXVector" ], "sha": "f4c422db53aae061ea609f4407af7cd5b33c8942" }, "Wav2Vec2Model": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "TFWav2Vec2Model", "Wav2Vec2Model" ], "sha": "7a998ee3ee0619a52828a79c3eed6872fd053f37" }, "WavLMForAudioFrameClassification": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "WavLMForAudioFrameClassification" ], "sha": "b135610f8d5de0b1a5bf5ed7212966135c63d6ec" }, "WavLMForCTC": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "WavLMForCTC" ], "sha": "f1139c5ddf34d2327ae1f6917edd7da180b06971" }, "WavLMForSequenceClassification": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "WavLMForSequenceClassification" ], "sha": "4ba5f2019b46866ce2011c993194ebda60afc028" }, "WavLMForXVector": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "WavLMForXVector" ], "sha": "faf9264eac56a56d5510a0984d7e1146e4c8cf62" }, "WavLMModel": { "tokenizer_classes": [ "Wav2Vec2CTCTokenizer" ], "processor_classes": [ "Wav2Vec2FeatureExtractor" ], "model_classes": [ "WavLMModel" ], "sha": "e932275e37cb643be271f655bd1d649f4f4b4bd5" }, "WhisperForAudioClassification": { "tokenizer_classes": [ "WhisperTokenizer" ], "processor_classes": [ "WhisperFeatureExtractor" ], "model_classes": [ "WhisperForAudioClassification" ], "sha": "d71b13674b1a67443cd19d0594a3b5b1e5968f0d" }, "WhisperForCausalLM": { "tokenizer_classes": [ "WhisperTokenizer" ], "processor_classes": [ "WhisperFeatureExtractor" ], "model_classes": [ "WhisperForCausalLM" ], "sha": "e7febfd7f4512e029293c677e6d2633e23fc459a" }, "WhisperForConditionalGeneration": { "tokenizer_classes": [ "WhisperTokenizer", "WhisperTokenizerFast" ], "processor_classes": [ "WhisperFeatureExtractor" ], "model_classes": [ "TFWhisperForConditionalGeneration", "WhisperForConditionalGeneration" ], "sha": "598101b885b24508042d9292e54aa04bff96318e" }, "WhisperModel": { "tokenizer_classes": [ "WhisperTokenizer", "WhisperTokenizerFast" ], "processor_classes": [ "WhisperFeatureExtractor" ], "model_classes": [ "TFWhisperModel", "WhisperModel" ], "sha": "c04c50216bb6b0a8f4d55f2fa9f9f4cf61c8a77c" }, "XCLIPModel": { "tokenizer_classes": [ "CLIPTokenizer", "CLIPTokenizerFast" ], "processor_classes": [ "VideoMAEImageProcessor" ], "model_classes": [ "XCLIPModel" ], "sha": "299ffffc6b94c3558bf7dbc38e24074c99490046" }, "XGLMForCausalLM": { "tokenizer_classes": [ "XGLMTokenizer", "XGLMTokenizerFast" ], "processor_classes": [], "model_classes": [ "TFXGLMForCausalLM", "XGLMForCausalLM" ], "sha": "d5381ce297c249d559937c6bb6316cf1fdad2613" }, "XGLMModel": { "tokenizer_classes": [ "XGLMTokenizer", "XGLMTokenizerFast" ], "processor_classes": [], "model_classes": [ "TFXGLMModel", "XGLMModel" ], "sha": "2b5cef167822cfaa558d259af1722e2f785cd3d5" }, "XLMForMultipleChoice": { "tokenizer_classes": [ "XLMTokenizer" ], "processor_classes": [], "model_classes": [ "TFXLMForMultipleChoice", "XLMForMultipleChoice" ], "sha": "f0c8cc6462449ac9eb9b4158e433bd3c923db3af" }, "XLMForQuestionAnsweringSimple": { "tokenizer_classes": [ "XLMTokenizer" ], "processor_classes": [], "model_classes": [ "TFXLMForQuestionAnsweringSimple", "XLMForQuestionAnsweringSimple" ], "sha": "82e93a2653cf3646eaaf02d8cc5f8ff9a4551523" }, "XLMForSequenceClassification": { "tokenizer_classes": [ "XLMTokenizer" ], "processor_classes": [], "model_classes": [ "TFXLMForSequenceClassification", "XLMForSequenceClassification" ], "sha": "2d6892f5f703be9b481bca91477032bd0e36dbe5" }, "XLMForTokenClassification": { "tokenizer_classes": [ "XLMTokenizer" ], "processor_classes": [], "model_classes": [ "TFXLMForTokenClassification", "XLMForTokenClassification" ], "sha": "9a591395e7a0643a03f5d2debb98caa3966e021c" }, "XLMModel": { "tokenizer_classes": [ "XLMTokenizer" ], "processor_classes": [], "model_classes": [ "TFXLMModel", "XLMModel" ], "sha": "022b86df246414ff712475d9ca55db690ff1d3bf" }, "XLMRobertaXLForCausalLM": { "tokenizer_classes": [ "XLMRobertaTokenizer", "XLMRobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "XLMRobertaXLForCausalLM" ], "sha": "fc05408e5b33a31638476ef337719dfbb7615ef3" }, "XLMRobertaXLForMaskedLM": { "tokenizer_classes": [ "XLMRobertaTokenizer", "XLMRobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "XLMRobertaXLForMaskedLM" ], "sha": "e96f198eede757e5ae2c87632fdcfb341073ef6e" }, "XLMRobertaXLForMultipleChoice": { "tokenizer_classes": [ "XLMRobertaTokenizer", "XLMRobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "XLMRobertaXLForMultipleChoice" ], "sha": "52732625f1bfbbb7cb4ba1cf0963de596d81822d" }, "XLMRobertaXLForQuestionAnswering": { "tokenizer_classes": [ "XLMRobertaTokenizer", "XLMRobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "XLMRobertaXLForQuestionAnswering" ], "sha": "da388fdd2d28e0757eb0c2b2c612a8ff03af2223" }, "XLMRobertaXLForSequenceClassification": { "tokenizer_classes": [ "XLMRobertaTokenizer", "XLMRobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "XLMRobertaXLForSequenceClassification" ], "sha": "980721187633bcf21ac0b8edbed933527f4611df" }, "XLMRobertaXLForTokenClassification": { "tokenizer_classes": [ "XLMRobertaTokenizer", "XLMRobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "XLMRobertaXLForTokenClassification" ], "sha": "37a97280faf6fef0bd946d3934d77a1b60fbf473" }, "XLMRobertaXLModel": { "tokenizer_classes": [ "XLMRobertaTokenizer", "XLMRobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "XLMRobertaXLModel" ], "sha": "8fbeb39a984912e47f5d24a31be61639031a0fc3" }, "XLMWithLMHeadModel": { "tokenizer_classes": [ "XLMTokenizer" ], "processor_classes": [], "model_classes": [ "TFXLMWithLMHeadModel", "XLMWithLMHeadModel" ], "sha": "db70bdefbaf095e88b8097e4b601d9105a511afa" }, "XLNetForMultipleChoice": { "tokenizer_classes": [ "XLNetTokenizer", "XLNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "TFXLNetForMultipleChoice", "XLNetForMultipleChoice" ], "sha": "8bb7e28d0cd1e93154d3232baf5e9c79acaf9f1a" }, "XLNetForQuestionAnsweringSimple": { "tokenizer_classes": [ "XLNetTokenizer", "XLNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "TFXLNetForQuestionAnsweringSimple", "XLNetForQuestionAnsweringSimple" ], "sha": "fabd06a45d947f3d46f1b8dce2186cf3b27776dc" }, "XLNetForSequenceClassification": { "tokenizer_classes": [ "XLNetTokenizer", "XLNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "TFXLNetForSequenceClassification", "XLNetForSequenceClassification" ], "sha": "e3c194f24537ebf2c474ade60becb9397696edec" }, "XLNetForTokenClassification": { "tokenizer_classes": [ "XLNetTokenizer", "XLNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "TFXLNetForTokenClassification", "XLNetForTokenClassification" ], "sha": "16aa15029aa667046d504c4a88ceddfdd5b5fb40" }, "XLNetLMHeadModel": { "tokenizer_classes": [ "XLNetTokenizer", "XLNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "TFXLNetLMHeadModel", "XLNetLMHeadModel" ], "sha": "c9a98cc982a16ca162832a8cbea25116479bb938" }, "XLNetModel": { "tokenizer_classes": [ "XLNetTokenizer", "XLNetTokenizerFast" ], "processor_classes": [], "model_classes": [ "TFXLNetModel", "XLNetModel" ], "sha": "1d6e231942135faf32b8d9a97773d8f6c85ca561" }, "XmodForCausalLM": { "tokenizer_classes": [ "XLMRobertaTokenizer", "XLMRobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "XmodForCausalLM" ], "sha": "c6b746071f2f067099a8fb4f57ce3c27a7e4b67d" }, "XmodForMaskedLM": { "tokenizer_classes": [ "XLMRobertaTokenizer", "XLMRobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "XmodForMaskedLM" ], "sha": "e1085818f4ed3c6073b2038635e5f3061208923d" }, "XmodForMultipleChoice": { "tokenizer_classes": [ "XLMRobertaTokenizer", "XLMRobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "XmodForMultipleChoice" ], "sha": "c63042cdf196be3fed846421b345d439b2483f69" }, "XmodForQuestionAnswering": { "tokenizer_classes": [ "XLMRobertaTokenizer", "XLMRobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "XmodForQuestionAnswering" ], "sha": "75acd3071fae9978c82618cd0f090c87aabc1f23" }, "XmodForSequenceClassification": { "tokenizer_classes": [ "XLMRobertaTokenizer", "XLMRobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "XmodForSequenceClassification" ], "sha": "523a16570be048618913ac17ccd00d343bcb5e99" }, "XmodForTokenClassification": { "tokenizer_classes": [ "XLMRobertaTokenizer", "XLMRobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "XmodForTokenClassification" ], "sha": "a0f0a02732b4579670dad11a69ae244ebd777b49" }, "XmodModel": { "tokenizer_classes": [ "XLMRobertaTokenizer", "XLMRobertaTokenizerFast" ], "processor_classes": [], "model_classes": [ "XmodModel" ], "sha": "bc286de0035450e7dcd6bcce78098a967b9c2b6c" }, "YolosForObjectDetection": { "tokenizer_classes": [], "processor_classes": [ "YolosImageProcessor" ], "model_classes": [ "YolosForObjectDetection" ], "sha": "0a4aae25bfbe8b5edd4815cb00d697a6ba7d2126" }, "YolosModel": { "tokenizer_classes": [], "processor_classes": [ "YolosImageProcessor" ], "model_classes": [ "YolosModel" ], "sha": "339bc51f1914f031a550e5f95095ed4a4c22a7de" }, "YosoForMaskedLM": { "tokenizer_classes": [ "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "YosoForMaskedLM" ], "sha": "cb291bedcbec199ea195f086e3ebea6fab026bba" }, "YosoForMultipleChoice": { "tokenizer_classes": [ "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "YosoForMultipleChoice" ], "sha": "cf2d3a3f0628bc9d0da68ea8de26b12016453fee" }, "YosoForQuestionAnswering": { "tokenizer_classes": [ "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "YosoForQuestionAnswering" ], "sha": "e8c3091f674588adfa3371b3de0427a9b39dd03f" }, "YosoForSequenceClassification": { "tokenizer_classes": [ "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "YosoForSequenceClassification" ], "sha": "88132cbaa1a9a87f65b6f9813c388011377f18cf" }, "YosoForTokenClassification": { "tokenizer_classes": [ "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "YosoForTokenClassification" ], "sha": "fd2219856608d3dba70dc7b1a06af629903dec31" }, "YosoModel": { "tokenizer_classes": [ "AlbertTokenizerFast" ], "processor_classes": [], "model_classes": [ "YosoModel" ], "sha": "e144d9f1fe39c21eda1177702640e126892605ce" } }
transformers/tests/utils/tiny_model_summary.json/0
{ "file_path": "transformers/tests/utils/tiny_model_summary.json", "repo_id": "transformers", "token_count": 116904 }
180