text
stringlengths 29
320k
| id
stringlengths 22
166
| metadata
dict | __index_level_0__
int64 0
195
|
---|---|---|---|
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Any, Callable, Dict, List, Type, TypeVar, Union, overload
import torch
import torch.nn as nn
import torch.types
def add(m1: torch.Tensor, m2: torch.Tensor, inplace: bool) -> torch.Tensor:
# The first operation in a checkpoint can't be in-place, but it's
# nice to have in-place addition during inference. Thus...
if not inplace:
m1 = m1 + m2
else:
m1 += m2
return m1
def permute_final_dims(tensor: torch.Tensor, inds: List[int]) -> torch.Tensor:
zero_index = -1 * len(inds)
first_inds = list(range(len(tensor.shape[:zero_index])))
return tensor.permute(first_inds + [zero_index + i for i in inds])
def flatten_final_dims(t: torch.Tensor, no_dims: int) -> torch.Tensor:
return t.reshape(t.shape[:-no_dims] + (-1,))
def masked_mean(mask: torch.Tensor, value: torch.Tensor, dim: int, eps: float = 1e-4) -> torch.Tensor:
mask = mask.expand(*value.shape)
return torch.sum(mask * value, dim=dim) / (eps + torch.sum(mask, dim=dim))
def pts_to_distogram(
pts: torch.Tensor, min_bin: torch.types.Number = 2.3125, max_bin: torch.types.Number = 21.6875, no_bins: int = 64
) -> torch.Tensor:
boundaries = torch.linspace(min_bin, max_bin, no_bins - 1, device=pts.device)
dists = torch.sqrt(torch.sum((pts.unsqueeze(-2) - pts.unsqueeze(-3)) ** 2, dim=-1))
return torch.bucketize(dists, boundaries)
def dict_multimap(fn: Callable[[list], Any], dicts: List[dict]) -> dict:
first = dicts[0]
new_dict = {}
for k, v in first.items():
all_v = [d[k] for d in dicts]
if isinstance(v, dict):
new_dict[k] = dict_multimap(fn, all_v)
else:
new_dict[k] = fn(all_v)
return new_dict
def one_hot(x: torch.Tensor, v_bins: torch.Tensor) -> torch.Tensor:
reshaped_bins = v_bins.view(((1,) * len(x.shape)) + (len(v_bins),))
diffs = x[..., None] - reshaped_bins
am = torch.argmin(torch.abs(diffs), dim=-1)
return nn.functional.one_hot(am, num_classes=len(v_bins)).float()
def batched_gather(data: torch.Tensor, inds: torch.Tensor, dim: int = 0, no_batch_dims: int = 0) -> torch.Tensor:
ranges: List[Union[slice, torch.Tensor]] = []
for i, s in enumerate(data.shape[:no_batch_dims]):
r = torch.arange(s)
r = r.view(*(*((1,) * i), -1, *((1,) * (len(inds.shape) - i - 1))))
ranges.append(r)
remaining_dims: List[Union[slice, torch.Tensor]] = [slice(None) for _ in range(len(data.shape) - no_batch_dims)]
remaining_dims[dim - no_batch_dims if dim >= 0 else dim] = inds
ranges.extend(remaining_dims)
# Matt note: Editing this to get around the behaviour of using a list as an array index changing
# in recent Numpy versions
return data[tuple(ranges)]
T = TypeVar("T")
# With tree_map, a poor man's JAX tree_map
def dict_map(
fn: Callable[[T], Any], dic: Dict[Any, Union[dict, list, tuple, T]], leaf_type: Type[T]
) -> Dict[Any, Union[dict, list, tuple, Any]]:
new_dict: Dict[Any, Union[dict, list, tuple, Any]] = {}
for k, v in dic.items():
if isinstance(v, dict):
new_dict[k] = dict_map(fn, v, leaf_type)
else:
new_dict[k] = tree_map(fn, v, leaf_type)
return new_dict
@overload
def tree_map(fn: Callable[[T], Any], tree: T, leaf_type: Type[T]) -> Any:
...
@overload
def tree_map(fn: Callable[[T], Any], tree: dict, leaf_type: Type[T]) -> dict:
...
@overload
def tree_map(fn: Callable[[T], Any], tree: list, leaf_type: Type[T]) -> list:
...
@overload
def tree_map(fn: Callable[[T], Any], tree: tuple, leaf_type: Type[T]) -> tuple:
...
def tree_map(fn, tree, leaf_type):
if isinstance(tree, dict):
return dict_map(fn, tree, leaf_type)
elif isinstance(tree, list):
return [tree_map(fn, x, leaf_type) for x in tree]
elif isinstance(tree, tuple):
return tuple(tree_map(fn, x, leaf_type) for x in tree)
elif isinstance(tree, leaf_type):
return fn(tree)
else:
print(type(tree))
raise ValueError("Not supported")
tensor_tree_map = partial(tree_map, leaf_type=torch.Tensor)
| transformers/src/transformers/models/esm/openfold_utils/tensor_utils.py/0 | {
"file_path": "transformers/src/transformers/models/esm/openfold_utils/tensor_utils.py",
"repo_id": "transformers",
"token_count": 1946
} | 97 |
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
TF 2.0 Flaubert model.
"""
from __future__ import annotations
import itertools
import random
import warnings
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFMultipleChoiceModelOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFModelInputType,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFSequenceSummary,
TFSharedEmbeddings,
TFTokenClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
MULTIPLE_CHOICE_DUMMY_INPUTS,
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_flaubert import FlaubertConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "flaubert/flaubert_base_cased"
_CONFIG_FOR_DOC = "FlaubertConfig"
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
# See all Flaubert models at https://huggingface.co/models?filter=flaubert
]
FLAUBERT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`FlaubertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FLAUBERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- `1` for tokens that are **not masked**,
- `0` for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
langs (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are
languages ids which can be obtained from the language names by using two conversion mappings provided in
the configuration of the model (only provided for multilingual models). More precisely, the *language name
to language id* mapping is in `model.config.lang2id` (which is a dictionary string to int) and the
*language id to language name* mapping is in `model.config.id2lang` (dictionary int to string).
See usage examples detailed in the [multilingual documentation](../multilingual).
token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- `0` corresponds to a *sentence A* token,
- `1` corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
lengths (`tf.Tensor` or `Numpy array` of shape `(batch_size,)`, *optional*):
Length of each sentence that can be used to avoid performing attention on padding token indices. You can
also use *attention_mask* for the same result (see above), kept here for compatibility Indices selected in
`[0, ..., input_ids.size(-1)]`:
cache (`Dict[str, tf.Tensor]`, *optional*):
Dictionary string to `tf.FloatTensor` that contains precomputed hidden states (key and values in the
attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential
decoding.
The dictionary object will be modified in-place during the forward pass to add newly computed
hidden-states.
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- `1` indicates the head is **not masked**,
- `0` indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
def get_masks(slen, lengths, causal, padding_mask=None):
"""
Generate hidden states mask, and optionally an attention mask.
"""
bs = shape_list(lengths)[0]
if padding_mask is not None:
mask = padding_mask
else:
# assert lengths.max().item() <= slen
alen = tf.range(slen, dtype=lengths.dtype)
mask = alen < tf.expand_dims(lengths, axis=1)
# attention mask is the same as mask, or triangular inferior attention (causal)
if causal:
attn_mask = tf.less_equal(
tf.tile(tf.reshape(alen, (1, 1, slen)), (bs, slen, 1)), tf.reshape(alen, (1, slen, 1))
)
else:
attn_mask = mask
# sanity check
# assert shape_list(mask) == [bs, slen]
tf.debugging.assert_equal(shape_list(mask), [bs, slen])
if causal:
tf.debugging.assert_equal(shape_list(attn_mask), [bs, slen, slen])
return mask, attn_mask
class TFFlaubertPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FlaubertConfig
base_model_prefix = "transformer"
@property
def dummy_inputs(self):
# Sometimes Flaubert has language embeddings so don't forget to build them as well if needed
inputs_list = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]], dtype=tf.int32)
attns_list = tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32)
if self.config.use_lang_emb and self.config.n_langs > 1:
return {
"input_ids": inputs_list,
"attention_mask": attns_list,
"langs": tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32),
}
else:
return {"input_ids": inputs_list, "attention_mask": attns_list}
@add_start_docstrings(
"The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.",
FLAUBERT_START_DOCSTRING,
)
class TFFlaubertModel(TFFlaubertPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFFlaubertMainLayer(config, name="transformer")
@unpack_inputs
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: np.ndarray | tf.Tensor | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFBaseModelOutput]:
outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMMultiHeadAttention with XLM->Flaubert
class TFFlaubertMultiHeadAttention(keras.layers.Layer):
NEW_ID = itertools.count()
def __init__(self, n_heads, dim, config, **kwargs):
super().__init__(**kwargs)
self.layer_id = next(TFFlaubertMultiHeadAttention.NEW_ID)
self.dim = dim
self.n_heads = n_heads
self.output_attentions = config.output_attentions
assert self.dim % self.n_heads == 0
self.q_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="q_lin")
self.k_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="k_lin")
self.v_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="v_lin")
self.out_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="out_lin")
self.dropout = keras.layers.Dropout(config.attention_dropout)
self.pruned_heads = set()
self.dim = dim
def prune_heads(self, heads):
raise NotImplementedError
def call(self, input, mask, kv, cache, head_mask, output_attentions, training=False):
"""
Self-attention (if kv is None) or attention over source sentence (provided by kv).
"""
# Input is (bs, qlen, dim)
# Mask is (bs, klen) (non-causal) or (bs, klen, klen)
bs, qlen, dim = shape_list(input)
if kv is None:
klen = qlen if cache is None else cache["slen"] + qlen
else:
klen = shape_list(kv)[1]
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
dim_per_head = self.dim // self.n_heads
mask_reshape = (bs, 1, qlen, klen) if len(shape_list(mask)) == 3 else (bs, 1, 1, klen)
def shape(x):
"""projection"""
return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3))
def unshape(x):
"""compute context"""
return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head))
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head)
if kv is None:
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head)
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head)
elif cache is None or self.layer_id not in cache:
k = v = kv
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head)
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head)
if cache is not None:
if self.layer_id in cache:
if kv is None:
k_, v_ = cache[self.layer_id]
k = tf.concat([k_, k], axis=2) # (bs, n_heads, klen, dim_per_head)
v = tf.concat([v_, v], axis=2) # (bs, n_heads, klen, dim_per_head)
else:
k, v = cache[self.layer_id]
cache[self.layer_id] = (k, v)
f_dim_per_head = tf.cast(dim_per_head, dtype=q.dtype)
q = tf.multiply(q, tf.math.rsqrt(f_dim_per_head)) # (bs, n_heads, qlen, dim_per_head)
k = tf.cast(k, dtype=q.dtype)
scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, qlen, klen)
mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen)
# scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, qlen, klen)
mask = tf.cast(mask, dtype=scores.dtype)
scores = scores - 1e30 * (1.0 - mask)
weights = stable_softmax(scores, axis=-1) # (bs, n_heads, qlen, klen)
weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen)
# Mask heads if we want to
if head_mask is not None:
weights = weights * head_mask
context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
context = unshape(context) # (bs, qlen, dim)
outputs = (self.out_lin(context),)
if output_attentions:
outputs = outputs + (weights,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "q_lin", None) is not None:
with tf.name_scope(self.q_lin.name):
self.q_lin.build([None, None, self.dim])
if getattr(self, "k_lin", None) is not None:
with tf.name_scope(self.k_lin.name):
self.k_lin.build([None, None, self.dim])
if getattr(self, "v_lin", None) is not None:
with tf.name_scope(self.v_lin.name):
self.v_lin.build([None, None, self.dim])
if getattr(self, "out_lin", None) is not None:
with tf.name_scope(self.out_lin.name):
self.out_lin.build([None, None, self.dim])
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMTransformerFFN
class TFFlaubertTransformerFFN(keras.layers.Layer):
def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs):
super().__init__(**kwargs)
self.lin1 = keras.layers.Dense(dim_hidden, kernel_initializer=get_initializer(config.init_std), name="lin1")
self.lin2 = keras.layers.Dense(out_dim, kernel_initializer=get_initializer(config.init_std), name="lin2")
self.act = get_tf_activation("gelu") if config.gelu_activation else get_tf_activation("relu")
self.dropout = keras.layers.Dropout(config.dropout)
self.in_dim = in_dim
self.dim_hidden = dim_hidden
def call(self, input, training=False):
x = self.lin1(input)
x = self.act(x)
x = self.lin2(x)
x = self.dropout(x, training=training)
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "lin1", None) is not None:
with tf.name_scope(self.lin1.name):
self.lin1.build([None, None, self.in_dim])
if getattr(self, "lin2", None) is not None:
with tf.name_scope(self.lin2.name):
self.lin2.build([None, None, self.dim_hidden])
@keras_serializable
class TFFlaubertMainLayer(keras.layers.Layer):
config_class = FlaubertConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.n_heads = config.n_heads
self.n_langs = config.n_langs
self.dim = config.emb_dim
self.hidden_dim = self.dim * 4
self.n_words = config.n_words
self.pad_index = config.pad_index
self.causal = config.causal
self.n_layers = config.n_layers
self.use_lang_emb = config.use_lang_emb
self.layerdrop = getattr(config, "layerdrop", 0.0)
self.pre_norm = getattr(config, "pre_norm", False)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.max_position_embeddings = config.max_position_embeddings
self.embed_init_std = config.embed_init_std
self.dropout = keras.layers.Dropout(config.dropout)
self.embeddings = TFSharedEmbeddings(
self.n_words, self.dim, initializer_range=config.embed_init_std, name="embeddings"
)
self.layer_norm_emb = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm_emb")
self.attentions = []
self.layer_norm1 = []
self.ffns = []
self.layer_norm2 = []
for i in range(self.n_layers):
self.attentions.append(
TFFlaubertMultiHeadAttention(self.n_heads, self.dim, config=config, name=f"attentions_._{i}")
)
self.layer_norm1.append(
keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm1_._{i}")
)
# if self.is_decoder:
# self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
# self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
self.ffns.append(
TFFlaubertTransformerFFN(self.dim, self.hidden_dim, self.dim, config=config, name=f"ffns_._{i}")
)
self.layer_norm2.append(
keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm2_._{i}")
)
def build(self, input_shape=None):
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.dim],
initializer=get_initializer(self.embed_init_std),
)
if self.n_langs > 1 and self.use_lang_emb:
with tf.name_scope("lang_embeddings"):
self.lang_embeddings = self.add_weight(
name="embeddings",
shape=[self.n_langs, self.dim],
initializer=get_initializer(self.embed_init_std),
)
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "layer_norm_emb", None) is not None:
with tf.name_scope(self.layer_norm_emb.name):
self.layer_norm_emb.build([None, None, self.dim])
for layer in self.attentions:
with tf.name_scope(layer.name):
layer.build(None)
for layer in self.layer_norm1:
with tf.name_scope(layer.name):
layer.build([None, None, self.dim])
for layer in self.ffns:
with tf.name_scope(layer.name):
layer.build(None)
for layer in self.layer_norm2:
with tf.name_scope(layer.name):
layer.build([None, None, self.dim])
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
@unpack_inputs
def call(
self,
input_ids: np.ndarray | tf.Tensor | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFBaseModelOutput]:
# removed: src_enc=None, src_len=None
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
bs, slen = shape_list(input_ids)
elif inputs_embeds is not None:
bs, slen = shape_list(inputs_embeds)[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if lengths is None:
if input_ids is not None:
lengths = tf.reduce_sum(
tf.cast(tf.not_equal(input_ids, self.pad_index), dtype=input_ids.dtype), axis=1
)
else:
lengths = tf.convert_to_tensor([slen] * bs)
# mask = input_ids != self.pad_index
# check inputs
# assert shape_list(lengths)[0] == bs
(
tf.debugging.assert_equal(shape_list(lengths)[0], bs),
f"Expected batch size {shape_list(lengths)[0]} and received batch size {bs} mismatched",
)
# assert lengths.max().item() <= slen
# input_ids = input_ids.transpose(0, 1) # batch size as dimension 0
# assert (src_enc is None) == (src_len is None)
# if src_enc is not None:
# assert self.is_decoder
# assert src_enc.size(0) == bs
# generate masks
mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
# if self.is_decoder and src_enc is not None:
# src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
# position_ids
if position_ids is None:
position_ids = tf.expand_dims(tf.range(slen), axis=0)
position_ids = tf.tile(position_ids, (bs, 1))
# assert shape_list(position_ids) == [bs, slen] # (slen, bs)
(
tf.debugging.assert_equal(shape_list(position_ids), [bs, slen]),
f"Position id shape {shape_list(position_ids)} and input shape {[bs, slen]} mismatched",
)
# position_ids = position_ids.transpose(0, 1)
# langs
if langs is not None:
# assert shape_list(langs) == [bs, slen] # (slen, bs)
(
tf.debugging.assert_equal(shape_list(langs), [bs, slen]),
f"Lang shape {shape_list(langs)} and input shape {[bs, slen]} mismatched",
)
# langs = langs.transpose(0, 1)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.n_layers
# do not recompute cached elements
if cache is not None and input_ids is not None:
_slen = slen - cache["slen"]
input_ids = input_ids[:, -_slen:]
position_ids = position_ids[:, -_slen:]
if langs is not None:
langs = langs[:, -_slen:]
mask = mask[:, -_slen:]
attn_mask = attn_mask[:, -_slen:]
# embeddings
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embeddings.vocab_size)
inputs_embeds = self.embeddings(input_ids)
tensor = inputs_embeds + tf.gather(self.position_embeddings, position_ids)
if langs is not None and self.use_lang_emb:
tensor = tensor + tf.gather(self.lang_embeddings, langs)
if token_type_ids is not None:
tensor = tensor + self.embeddings(token_type_ids)
tensor = self.layer_norm_emb(tensor)
tensor = self.dropout(tensor, training=training)
mask = tf.cast(mask, dtype=tensor.dtype)
tensor = tensor * tf.expand_dims(mask, axis=-1)
# hidden_states and attentions cannot be None in graph mode.
hidden_states = () if output_hidden_states else None
attentions = () if output_attentions else None
# transformer layers
for i in range(self.n_layers):
# LayerDrop
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop):
continue
if output_hidden_states:
hidden_states = hidden_states + (tensor,)
# self attention
if not self.pre_norm:
attn_outputs = self.attentions[i](
tensor,
attn_mask,
None,
cache,
head_mask[i],
output_attentions,
training=training,
)
attn = attn_outputs[0]
if output_attentions:
attentions = attentions + (attn_outputs[1],)
attn = self.dropout(attn, training=training)
tensor = tensor + attn
tensor = self.layer_norm1[i](tensor)
else:
tensor_normalized = self.layer_norm1[i](tensor)
attn_outputs = self.attentions[i](
tensor_normalized,
attn_mask,
None,
cache,
head_mask[i],
output_attentions,
training=training,
)
attn = attn_outputs[0]
if output_attentions:
attentions = attentions + (attn_outputs[1],)
attn = self.dropout(attn, training=training)
tensor = tensor + attn
# encoder attention (for decoder only)
# if self.is_decoder and src_enc is not None:
# attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
# attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
# tensor = tensor + attn
# tensor = self.layer_norm15[i](tensor)
# FFN
if not self.pre_norm:
tensor = tensor + self.ffns[i](tensor)
tensor = self.layer_norm2[i](tensor)
else:
tensor_normalized = self.layer_norm2[i](tensor)
tensor = tensor + self.ffns[i](tensor_normalized)
tensor = tensor * tf.expand_dims(mask, axis=-1)
# Add last hidden state
if output_hidden_states:
hidden_states = hidden_states + (tensor,)
# update cache length
if cache is not None:
cache["slen"] += tensor.size(1)
# move back sequence length to dimension 0
# tensor = tensor.transpose(0, 1)
if not return_dict:
return tuple(v for v in [tensor, hidden_states, attentions] if v is not None)
return TFBaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMPredLayer
class TFFlaubertPredLayer(keras.layers.Layer):
"""
Prediction layer (cross_entropy or adaptive_softmax).
"""
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.asm = config.asm
self.n_words = config.n_words
self.pad_index = config.pad_index
if config.asm is False:
self.input_embeddings = input_embeddings
else:
raise NotImplementedError
# self.proj = nn.AdaptiveLogSoftmaxWithLoss(
# in_features=dim,
# n_classes=config.n_words,
# cutoffs=config.asm_cutoffs,
# div_value=config.asm_div_value,
# head_bias=True, # default is False
# )
def build(self, input_shape):
# The output weights are the same as the input embeddings, but there is an output-only bias for each token.
self.bias = self.add_weight(shape=(self.n_words,), initializer="zeros", trainable=True, name="bias")
super().build(input_shape)
def get_output_embeddings(self):
return self.input_embeddings
def set_output_embeddings(self, value):
self.input_embeddings.weight = value
self.input_embeddings.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states):
hidden_states = self.input_embeddings(hidden_states, mode="linear")
hidden_states = hidden_states + self.bias
return hidden_states
@dataclass
class TFFlaubertWithLMHeadModelOutput(ModelOutput):
"""
Base class for [`TFFlaubertWithLMHeadModel`] outputs.
Args:
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
@add_start_docstrings(
"""
The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
FLAUBERT_START_DOCSTRING,
)
class TFFlaubertWithLMHeadModel(TFFlaubertPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFFlaubertMainLayer(config, name="transformer")
self.pred_layer = TFFlaubertPredLayer(config, self.transformer.embeddings, name="pred_layer_._proj")
# Flaubert does not have past caching features
self.supports_xla_generation = False
def get_lm_head(self):
return self.pred_layer
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.pred_layer.name
def prepare_inputs_for_generation(self, inputs, **kwargs):
mask_token_id = self.config.mask_token_id
lang_id = self.config.lang_id
effective_batch_size = inputs.shape[0]
mask_token = tf.fill((effective_batch_size, 1), 1) * mask_token_id
inputs = tf.concat([inputs, mask_token], axis=1)
if lang_id is not None:
langs = tf.ones_like(inputs) * lang_id
else:
langs = None
return {"input_ids": inputs, "langs": langs}
@unpack_inputs
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFFlaubertWithLMHeadModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: np.ndarray | tf.Tensor | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFFlaubertWithLMHeadModelOutput]:
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
output = transformer_outputs[0]
outputs = self.pred_layer(output)
if not return_dict:
return (outputs,) + transformer_outputs[1:]
return TFFlaubertWithLMHeadModelOutput(
logits=outputs, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "pred_layer", None) is not None:
with tf.name_scope(self.pred_layer.name):
self.pred_layer.build(None)
@add_start_docstrings(
"""
Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output)
e.g. for GLUE tasks.
""",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForSequenceClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class TFFlaubertForSequenceClassification(TFFlaubertPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFFlaubertMainLayer(config, name="transformer")
self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary")
@unpack_inputs
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
output = transformer_outputs[0]
logits = self.sequence_summary(output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "sequence_summary", None) is not None:
with tf.name_scope(self.sequence_summary.name):
self.sequence_summary.build(None)
@add_start_docstrings(
"""
Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForQuestionAnsweringSimple with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class TFFlaubertForQuestionAnsweringSimple(TFFlaubertPreTrainedModel, TFQuestionAnsweringLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFFlaubertMainLayer(config, name="transformer")
self.qa_outputs = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.init_std), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = transformer_outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForTokenClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class TFFlaubertForTokenClassification(TFFlaubertPreTrainedModel, TFTokenClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFFlaubertMainLayer(config, name="transformer")
self.dropout = keras.layers.Dropout(config.dropout)
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.init_std), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = transformer_outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForMultipleChoice with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class TFFlaubertForMultipleChoice(TFFlaubertPreTrainedModel, TFMultipleChoiceLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFFlaubertMainLayer(config, name="transformer")
self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary")
self.logits_proj = keras.layers.Dense(
1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj"
)
self.config = config
@property
def dummy_inputs(self):
"""
Dummy inputs to build the network.
Returns:
tf.Tensor with dummy inputs
"""
# Sometimes Flaubert has language embeddings so don't forget to build them as well if needed
if self.config.use_lang_emb and self.config.n_langs > 1:
return {
"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
"langs": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
}
else:
return {
"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
}
@unpack_inputs
@add_start_docstrings_to_model_forward(
FLAUBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_langs = tf.reshape(langs, (-1, seq_length)) if langs is not None else None
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
if lengths is not None:
logger.warning(
"The `lengths` parameter cannot be used with the Flaubert multiple choice models. Please use the "
"attention mask instead.",
)
lengths = None
transformer_outputs = self.transformer(
flat_input_ids,
flat_attention_mask,
flat_langs,
flat_token_type_ids,
flat_position_ids,
lengths,
cache,
head_mask,
flat_inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
output = transformer_outputs[0]
logits = self.sequence_summary(output)
logits = self.logits_proj(logits)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "sequence_summary", None) is not None:
with tf.name_scope(self.sequence_summary.name):
self.sequence_summary.build(None)
if getattr(self, "logits_proj", None) is not None:
with tf.name_scope(self.logits_proj.name):
self.logits_proj.build([None, None, self.config.num_labels])
| transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py/0 | {
"file_path": "transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py",
"repo_id": "transformers",
"token_count": 25400
} | 98 |
# coding=utf-8
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch GIT model."""
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...file_utils import ModelOutput
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPast,
BaseModelOutputWithPooling,
CausalLMOutputWithPast,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_git import GitConfig, GitVisionConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/git-base"
_CONFIG_FOR_DOC = "GitConfig"
GIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/git-base",
# See all GIT models at https://huggingface.co/models?filter=git
]
@dataclass
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Git
class GitVisionModelOutput(ModelOutput):
"""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class GitEmbeddings(nn.Module):
"""Construct the embeddings from word and position embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
if inputs_embeds is None:
embeddings = self.word_embeddings(input_ids)
else:
embeddings = inputs_embeds
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class GitSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.image_patch_tokens = int((config.vision_config.image_size / config.vision_config.patch_size) ** 2 + 1)
if config.num_image_with_embedding is not None:
self.image_patch_tokens *= config.num_image_with_embedding
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
pixel_values_present: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
cutoff = self.image_patch_tokens if pixel_values_present else 0
if past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([key_layer[:, :, :cutoff, :], past_key_value[0], key_layer[:, :, -1:, :]], dim=2)
value_layer = torch.cat(
[value_layer[:, :, :cutoff, :], past_key_value[1], value_layer[:, :, -1:, :]], dim=2
)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
# NOTE: like in other caches, we store the text component. In GIT it means we discard the image component.
past_key_value = (
key_layer[:, :, cutoff:, :],
value_layer[:, :, cutoff:, :],
)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in GitModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class GitSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class GitAttention(nn.Module):
# Copied from transformers.models.bert.modeling_bert.BertAttention.__init__ with Bert->Git
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = GitSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = GitSelfOutput(config)
self.pruned_heads = set()
# Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
pixel_values_present: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
past_key_value,
output_attentions,
pixel_values_present,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class GitIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class GitOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class GitLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = GitAttention(config)
self.intermediate = GitIntermediate(config)
self.output = GitOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
pixel_values_present: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
pixel_values_present=pixel_values_present,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class GitEncoder(nn.Module):
# Copied from transformers.models.bert.modeling_bert.BertEncoder.__init__ with Bert->Git
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([GitLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
pixel_values_present: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
past_key_value,
output_attentions,
pixel_values_present,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class GitPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GitConfig
base_model_prefix = "git"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, GitVisionEmbeddings):
nn.init.normal_(module.class_embedding, mean=0.0, std=self.config.initializer_range)
nn.init.normal_(module.patch_embedding.weight, std=self.config.initializer_range)
nn.init.normal_(module.position_embedding.weight, std=self.config.initializer_range)
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
GIT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`GitConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GIT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`CLIPImageProcessor.__call__`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Git
class GitVisionEmbeddings(nn.Module):
def __init__(self, config: GitVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPMLP
class GitVisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPAttention
class GitVisionAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->GitVision
class GitVisionEncoderLayer(nn.Module):
def __init__(self, config: GitVisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = GitVisionAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = GitVisionMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->GitVision, CLIPConfig
class GitVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`GitVisionEncoderLayer`].
Args:
config: GitVisionConfig
"""
def __init__(self, config: GitVisionConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([GitVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
GIT_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class GitVisionTransformer(nn.Module):
# Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.__init__ with CLIPEncoder->GitVisionEncoder, CLIP->Git
def __init__(self, config: GitVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = GitVisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = GitVisionEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(GIT_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=GitVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.post_layernorm(last_hidden_state)
if not return_dict:
return (last_hidden_state,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=last_hidden_state,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""The vision model from CLIP, used in GIT, without any head or projection on top.""",
GIT_START_DOCSTRING,
)
class GitVisionModel(GitPreTrainedModel):
config_class = GitVisionConfig
main_input_name = "pixel_values"
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP->Git
def __init__(self, config: GitVisionConfig):
super().__init__(config)
self.vision_model = GitVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(GIT_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=GitVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, GitVisionModel
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base")
>>> model = GitVisionModel.from_pretrained("microsoft/git-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class GitProjection(nn.Module):
def __init__(self, config: GitConfig):
super().__init__()
self.config = config
self.visual_projection = nn.Sequential(
nn.Linear(config.vision_config.hidden_size, config.hidden_size),
nn.LayerNorm(config.hidden_size, eps=config.vision_config.layer_norm_eps),
)
def forward(self, embeddings: torch.Tensor) -> torch.Tensor:
return self.visual_projection(embeddings)
@add_start_docstrings(
"The bare GIT Model transformer consisting of a CLIP image encoder and text decoder outputting raw hidden-states"
" without any specific head on top.",
GIT_START_DOCSTRING,
)
class GitModel(GitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = GitEmbeddings(config)
self.image_encoder = GitVisionModel(config.vision_config)
self.encoder = GitEncoder(config)
self.visual_projection = GitProjection(config)
if config.num_image_with_embedding is not None:
self.img_temperal_embedding = nn.ParameterList(
nn.Parameter(torch.zeros(1, 1, config.vision_config.hidden_size))
for _ in range(config.num_image_with_embedding)
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def _generate_future_mask(self, size: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
# Default mask is for forward direction. Flip for backward direction.
mask = torch.triu(torch.ones(size, size, device=device, dtype=dtype), diagonal=1)
mask = mask.masked_fill(mask == 1, float("-inf"))
return mask
def create_attention_mask(self, tgt, memory, tgt_mask, past_key_values_length, memory_key_padding_mask=None):
num_tgt = tgt.shape[1]
num_memory = memory.shape[1]
device = tgt.device
dtype = tgt.dtype
top_left = torch.zeros((num_memory, num_memory), device=device, dtype=dtype)
top_right = torch.full(
(num_memory, num_tgt + past_key_values_length),
float("-inf"),
device=tgt.device,
dtype=dtype,
)
bottom_left = torch.zeros(
(num_tgt, num_memory),
dtype=dtype,
device=tgt_mask.device,
)
if past_key_values_length > 0:
tgt_mask = torch.zeros(
(tgt_mask.shape[0], tgt_mask.shape[0] + past_key_values_length),
dtype=dtype,
device=tgt_mask.device,
)
left = torch.cat((top_left, bottom_left), dim=0)
right = torch.cat((top_right, tgt_mask.to(dtype)), dim=0)
full_attention_mask = torch.cat((left, right), dim=1)[None, :]
if memory_key_padding_mask is None:
memory_key_padding_mask = torch.full((memory.shape[0], memory.shape[1]), fill_value=False, device=device)
# if it is False, it means valid. That is, it is not a padding
if memory_key_padding_mask.dtype != torch.bool:
raise ValueError("Memory key padding mask must be a boolean tensor.")
zero_negative_infinity = torch.zeros_like(memory_key_padding_mask, dtype=tgt.dtype)
zero_negative_infinity[memory_key_padding_mask] = float("-inf")
full_attention_mask = full_attention_mask.expand(
(memory_key_padding_mask.shape[0], num_memory + num_tgt, num_memory + past_key_values_length + num_tgt)
)
full_attention_mask = full_attention_mask.clone()
origin_left = full_attention_mask[:, :, :num_memory]
update = zero_negative_infinity[:, None, :]
full_attention_mask[:, :, :num_memory] = origin_left + update
# add axis for multi-head
full_attention_mask = full_attention_mask[:, None, :, :]
return full_attention_mask
@add_start_docstrings_to_model_forward(GIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, AutoModel
>>> import requests
>>> from PIL import Image
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base")
>>> model = AutoModel.from_pretrained("microsoft/git-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "this is an image of two cats"
>>> inputs = processor(text, images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
seq_length = input_shape[1]
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
projected_visual_features = None
if pixel_values is not None:
if pixel_values.ndim == 4:
# here we assume pixel_values is of shape (batch_size, num_channels, height, width)
visual_features = self.image_encoder(pixel_values).last_hidden_state
elif pixel_values.ndim == 5:
# here we assume pixel_values is of shape (batch_size, num_frames, num_channels, height, width)
visual_features = []
for frame_idx in range(pixel_values.shape[1]):
visual_features_frame = self.image_encoder(pixel_values[:, frame_idx, :, :]).last_hidden_state
visual_features_frame += self.img_temperal_embedding[frame_idx]
visual_features.append(visual_features_frame)
# finally, concatenate all features along sequence dimension
visual_features = torch.cat(visual_features, dim=1)
else:
raise ValueError("pixel_values must be of rank 4 or 5")
projected_visual_features = self.visual_projection(visual_features)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
if projected_visual_features is None:
projected_visual_features = torch.zeros(
(embedding_output.shape[0], 0, embedding_output.shape[2]),
dtype=embedding_output.dtype,
device=embedding_output.device,
)
# Repeat visual features to match embedding batch size.
projected_visual_features = projected_visual_features.repeat(
embedding_output.size(0) // projected_visual_features.size(0), 1, 1
)
# concatenate patch token and text token embeddings
hidden_states = torch.cat((projected_visual_features, embedding_output), dim=1)
# By default, an additive causal mask is created
# for masking the future (one direction).
tgt_mask = self._generate_future_mask(seq_length, embedding_output.dtype, embedding_output.device)
# Create an attention mask of shape (batch_size, 1, tgt_seq_len, src_seq_len)
combined_attention_mask = self.create_attention_mask(
tgt=embedding_output,
memory=projected_visual_features,
tgt_mask=tgt_mask,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# if the user provides an attention mask, we add it to the default one
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _prepare_4d_attention_mask(
attention_mask, embedding_output.dtype, tgt_len=input_shape[-1]
).to(embedding_output.device)
if past_key_values_length > 0:
expanded_attn_mask = expanded_attn_mask[:, :, -past_key_values_length:, :]
else:
combined_attention_mask[:, :, -input_shape[1] :, -input_shape[1] :] += expanded_attn_mask
encoder_outputs = self.encoder(
hidden_states,
attention_mask=combined_attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
pixel_values_present=pixel_values is not None,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithPast(
last_hidden_state=sequence_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""GIT Model with a `language modeling` head on top for autoregressive language modeling.""", GIT_START_DOCSTRING
)
class GitForCausalLM(GitPreTrainedModel):
_tied_weights_keys = ["output.weight"]
def __init__(self, config):
super().__init__(config)
self.git = GitModel(config)
self.output = nn.Linear(config.hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.output
def set_output_embeddings(self, new_embeddings):
self.output = new_embeddings
@add_start_docstrings_to_model_forward(GIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Examples:
Image captioning example:
```python
>>> from transformers import AutoProcessor, AutoModelForCausalLM
>>> import requests
>>> from PIL import Image
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
>>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
>>> generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print(generated_caption)
two cats sleeping on a pink blanket next to remotes.
```
Visual question answering (VQA) example:
```python
>>> from transformers import AutoProcessor, AutoModelForCausalLM
>>> from huggingface_hub import hf_hub_download
>>> from PIL import Image
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa")
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa")
>>> file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
>>> image = Image.open(file_path).convert("RGB")
>>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
>>> question = "what does the front of the bus say at the top?"
>>> input_ids = processor(text=question, add_special_tokens=False).input_ids
>>> input_ids = [processor.tokenizer.cls_token_id] + input_ids
>>> input_ids = torch.tensor(input_ids).unsqueeze(0)
>>> generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
>>> print(processor.batch_decode(generated_ids, skip_special_tokens=True))
['what does the front of the bus say at the top? special']
```
Video captioning example:
```python
>>> import av
>>> import numpy as np
>>> from PIL import Image
>>> from huggingface_hub import hf_hub_download
>>> from transformers import AutoProcessor, AutoModelForCausalLM
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-vatex")
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vatex")
>>> # set seed for reproducability
>>> np.random.seed(45)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # load video
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample frames
>>> num_frames = model.config.num_image_with_embedding
>>> indices = sample_frame_indices(
... clip_len=num_frames, frame_sample_rate=4, seg_len=container.streams.video[0].frames
... )
>>> frames = read_video_pyav(container, indices)
>>> pixel_values = processor(images=list(frames), return_tensors="pt").pixel_values
>>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
>>> print("Generated caption:", processor.batch_decode(generated_ids, skip_special_tokens=True))
Generated caption: ['a woman is sitting at a table and she is talking about the food she is holding.']
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.git(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
pixel_values=pixel_values,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.output(sequence_output)
loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
num_image_tokens = self.git.encoder.layer[0].attention.self.image_patch_tokens
shifted_logits = logits[:, num_image_tokens:-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
loss = loss_fct(shifted_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
):
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
input_shape = input_ids.shape
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": kwargs.get("pixel_values", None),
"past_key_values": past_key_values,
"use_cache": use_cache,
}
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
| transformers/src/transformers/models/git/modeling_git.py/0 | {
"file_path": "transformers/src/transformers/models/git/modeling_git.py",
"repo_id": "transformers",
"token_count": 29391
} | 99 |
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
import json
from typing import Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpt2 import GPT2Tokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"openai-community/gpt2": "https://huggingface.co/openai-community/gpt2/resolve/main/vocab.json",
"openai-community/gpt2-medium": "https://huggingface.co/openai-community/gpt2-medium/resolve/main/vocab.json",
"openai-community/gpt2-large": "https://huggingface.co/openai-community/gpt2-large/resolve/main/vocab.json",
"openai-community/gpt2-xl": "https://huggingface.co/openai-community/gpt2-xl/resolve/main/vocab.json",
"distilbert/distilgpt2": "https://huggingface.co/distilbert/distilgpt2/resolve/main/vocab.json",
},
"merges_file": {
"openai-community/gpt2": "https://huggingface.co/openai-community/gpt2/resolve/main/merges.txt",
"openai-community/gpt2-medium": "https://huggingface.co/openai-community/gpt2-medium/resolve/main/merges.txt",
"openai-community/gpt2-large": "https://huggingface.co/openai-community/gpt2-large/resolve/main/merges.txt",
"openai-community/gpt2-xl": "https://huggingface.co/openai-community/gpt2-xl/resolve/main/merges.txt",
"distilbert/distilgpt2": "https://huggingface.co/distilbert/distilgpt2/resolve/main/merges.txt",
},
"tokenizer_file": {
"openai-community/gpt2": "https://huggingface.co/openai-community/gpt2/resolve/main/tokenizer.json",
"openai-community/gpt2-medium": "https://huggingface.co/openai-community/gpt2-medium/resolve/main/tokenizer.json",
"openai-community/gpt2-large": "https://huggingface.co/openai-community/gpt2-large/resolve/main/tokenizer.json",
"openai-community/gpt2-xl": "https://huggingface.co/openai-community/gpt2-xl/resolve/main/tokenizer.json",
"distilbert/distilgpt2": "https://huggingface.co/distilbert/distilgpt2/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"openai-community/gpt2": 1024,
"openai-community/gpt2-medium": 1024,
"openai-community/gpt2-large": 1024,
"openai-community/gpt2-xl": 1024,
"distilbert/distilgpt2": 1024,
}
class GPT2TokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" GPT-2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import GPT2TokenizerFast
>>> tokenizer = GPT2TokenizerFast.from_pretrained("openai-community/gpt2")
>>> tokenizer("Hello world")["input_ids"]
[15496, 995]
>>> tokenizer(" Hello world")["input_ids"]
[18435, 995]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
</Tip>
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`, *optional*):
Path to the vocabulary file.
merges_file (`str`, *optional*):
Path to the merges file.
tokenizer_file (`str`, *optional*):
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (GPT2 tokenizer detect beginning of words by the preceding space).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = GPT2Tokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
add_prefix_space=False,
**kwargs,
):
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
self.add_bos_token = kwargs.pop("add_bos_token", False)
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
pre_tok_state["add_prefix_space"] = add_prefix_space
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
self.add_prefix_space = add_prefix_space
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*args, **kwargs)
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*args, **kwargs)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
@property
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template
def default_chat_template(self):
"""
A simple chat template that ignores role information and just concatenates messages with EOS tokens.
"""
logger.warning_once(
"\nNo chat template is defined for this tokenizer - using the default template "
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
"your model, please set `tokenizer.chat_template` to an appropriate template. "
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
)
return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
| transformers/src/transformers/models/gpt2/tokenization_gpt2_fast.py/0 | {
"file_path": "transformers/src/transformers/models/gpt2/tokenization_gpt2_fast.py",
"repo_id": "transformers",
"token_count": 3468
} | 100 |
# coding=utf-8
# Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch GPTNeoX model."""
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_gpt_neox_japanese import GPTNeoXJapaneseConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "abeja/gpt-neox-japanese-2.7b"
_CONFIG_FOR_DOC = "GPTNeoXJapaneseConfig"
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST = {
"https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json",
# See all GPTNeoXJapanese models at https://huggingface.co/models?filter=gpt_neox_japanese
}
class GPTNeoXJapanesePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPTNeoXJapaneseConfig
base_model_prefix = "gpt_neox_japanese"
_no_split_modules = ["GPTNeoXJapaneseLayer"]
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class GPTNeoXJapaneseAttention(nn.Module):
def __init__(self, config, use_bias=False):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_attention_heads
self.rotary_ndims = int(self.head_size * config.rotary_pct)
self.rotary_emb = RotaryEmbedding(
self.rotary_ndims, config.max_position_embeddings, base=config.rotary_emb_base
)
self.max_positions = config.max_position_embeddings
self.attention_dropout = nn.Dropout(config.attention_dropout)
self.norm_factor = torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)).to(torch.get_default_dtype())
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=False)
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
# Activate bias if the last layer
self.use_bias = use_bias
self.dense_bias = nn.Parameter(torch.zeros(config.hidden_size)) if use_bias else None
def forward(
self,
hidden_states,
attention_mask,
head_mask=None,
layer_past=None,
use_cache=False,
output_attentions=False,
):
has_layer_past = layer_past is not None and layer_past[0].numel() > 0
# Compute QKV
# Attention heads [batch, seq_len, hidden_size]
# --> [batch, seq_len, (np * 3 * head_size)]
qkv = self.query_key_value(hidden_states)
# [batch, seq_len, (num_heads * 3 * head_size)]
# --> [batch, seq_len, num_heads, 3 * head_size]
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
qkv = qkv.view(*new_qkv_shape)
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
# Compute rotary embeddings on rotary_ndims
query_rot = query[..., : self.rotary_ndims]
query_pass = query[..., self.rotary_ndims :]
key_rot = key[..., : self.rotary_ndims]
key_pass = key[..., self.rotary_ndims :]
# Compute token offset for rotary embeddings (when decoding)
seq_len = key.shape[-2]
offset = 0
if has_layer_past:
offset = layer_past[0].shape[-2]
seq_len += offset
cos, sin = self.rotary_emb(value, seq_len=seq_len)
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, offset=offset)
query = torch.cat((query, query_pass), dim=-1)
key = torch.cat((key, key_pass), dim=-1)
# Cache QKV values
if has_layer_past:
past_key = layer_past[0]
past_value = layer_past[1]
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
present = (key, value) if use_cache else None
# Compute attention
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
# Reshape outputs
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
attn_output = self.dense(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs, self.dense_bias
@classmethod
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
"""
Splits hidden dim into attn_head_size and num_attention_heads
"""
# tensor: [bs, seq_len, hidden_size]
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
# -> [bs, seq_len, num_attention_heads, attn_head_size]
tensor = tensor.view(new_shape)
# -> [bs, num_attention_heads, seq_len, attn_head_size]
tensor = tensor.permute(0, 2, 1, 3)
return tensor
@classmethod
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden dim
"""
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
tensor = tensor.permute(0, 2, 1, 3).contiguous()
# -> [bs, seq_len, num_attention_heads, attn_head_size]
tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
# -> [bs, seq_len, hidden_size]
return tensor
def _create_causal_mask(self, key_length, query_length):
causal_mask = torch.tril(
torch.ones((self.max_positions, self.max_positions), dtype=torch.bool).view(
1, 1, self.max_positions, self.max_positions
)
)
return causal_mask[:, :, key_length - query_length : key_length, :key_length]
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
# q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
# compute causal mask from causal mask buffer
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
key_length = key.size(-2)
causal_mask = self._create_causal_mask(key_length, query_length)
query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
attn_scores = torch.zeros(
batch_size * num_attention_heads,
query_length,
key_length,
dtype=query.dtype,
device=key.device,
)
attn_scores = torch.baddbmm(
attn_scores,
query,
key.transpose(1, 2),
beta=1.0,
alpha=(torch.tensor(1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device) / self.norm_factor),
)
attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
mask_value = torch.finfo(attn_scores.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device)
causal_mask = causal_mask.to(attn_scores.device)
attn_scores = torch.where(causal_mask, attn_scores, mask_value)
if attention_mask is not None:
# Apply the attention mask
attn_scores = attn_scores + attention_mask
attn_weights = nn.functional.softmax(attn_scores, dim=-1)
attn_weights = self.attention_dropout(attn_weights)
attn_weights = attn_weights.to(value.dtype)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
# Copied from transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXRotaryEmbedding with GPTNeoXRotaryEmbedding->RotaryEmbedding
class RotaryEmbedding(nn.Module):
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding.__init__
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos(), persistent=False)
self.register_buffer("sin_cached", emb.sin(), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len],
self.sin_cached[:seq_len],
)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
cos = cos[..., offset : q.shape[-2] + offset, :]
sin = sin[..., offset : q.shape[-2] + offset, :]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def bias_dropout_add(x: Tensor, bias: Tensor, residual: Optional[Tensor], prob: float, training: bool) -> Tensor:
"""add bias to x, apply dropout and residual connection
Args:
x (Tensor): main path of output
bias (Tensor): None or attn_bias of the last attention layer
residual (Optional[Tensor]): residual value
prob (float): dropout probability
training (bool): whether in training mode or not
Returns:
Tensor: dropout(x + bias) + residual
"""
if bias is not None:
x = x + bias
out = torch.nn.functional.dropout(x, p=prob, training=training)
if residual is not None:
out = residual + out
return out
class GPTNeoXJapaneseMLP(nn.Module):
def __init__(self, config):
super().__init__()
intermediate_size = int(config.hidden_size * config.intermediate_multiple_size)
self.dense_h_to_4h = nn.Linear(config.hidden_size, intermediate_size, bias=False)
# Project back to h.
self.dense_4h_to_h = nn.Linear(intermediate_size, config.hidden_size, bias=False)
self.act = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
intermediate = self.dense_h_to_4h(hidden_states)
intermediate = self.act(intermediate)
output = self.dense_4h_to_h(intermediate)
return output
class GPTNeoXJapaneseLayer(nn.Module):
def __init__(self, config, layer_number):
super().__init__()
self.layer_number = layer_number
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# activate bias only last layer
self.attention = GPTNeoXJapaneseAttention(config=config, use_bias=layer_number == config.num_hidden_layers - 1)
self.mlp = GPTNeoXJapaneseMLP(config)
self.hidden_dropout = config.hidden_dropout
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
use_cache=False,
layer_past=None,
output_attentions=False,
):
residual = hidden_states
ln_out = self.input_layernorm(hidden_states)
attention_layer_outputs, attn_bias = self.attention(
ln_out,
attention_mask=attention_mask,
layer_past=layer_past,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attention_layer_outputs[0] # output_attn: a, present, (attentions)
outputs = attention_layer_outputs[1:]
# attn_output = (atten_output + bias) + residual
attn_output = bias_dropout_add(
attn_output,
bias=attn_bias.expand_as(residual) if attn_bias is not None else attn_bias,
residual=residual,
prob=self.hidden_dropout,
training=self.training,
)
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
# attn_output = (mlp_output + mlp_bias) + atten_output
attn_output = bias_dropout_add(
mlp_output, bias=None, residual=attn_output, prob=self.hidden_dropout, training=self.training
)
if use_cache:
outputs = (attn_output,) + outputs
else:
outputs = (attn_output,) + outputs[1:]
return outputs # hidden_states, present, (attentions)
GPT_NEOX_JAPANESE_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`~GPTNeoXJapaneseConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GPT_NEOX_JAPANESE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`].
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare GPTNeoXJapanese Model transformer outputting raw hidden-states without any specific head on top.",
GPT_NEOX_JAPANESE_START_DOCSTRING,
)
class GPTNeoXJapaneseModel(GPTNeoXJapanesePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList(
[GPTNeoXJapaneseLayer(config=config, layer_number=i) for i in range(config.num_hidden_layers)]
)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_in
def set_input_embeddings(self, value):
self.embed_in = value
@add_start_docstrings_to_model_forward(GPT_NEOX_JAPANESE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GPTNeoXJapaneseModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
>>> model = GPTNeoXJapaneseModel.from_pretrained("abeja/gpt-neox-japanese-2.7b")
>>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
if past_key_values is None:
past_key_values = tuple([None] * self.config.num_hidden_layers)
# Attention mask.
if attention_mask is not None:
if not batch_size > 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
if inputs_embeds is None:
inputs_embeds = self.embed_in(input_ids)
hidden_states = inputs_embeds
presents = () if use_cache else None
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = layer(
hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[i],
layer_past=layer_past,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.final_layer_norm(hidden_states)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
@add_start_docstrings(
"""GPTNeoXJapanese Model with a `language modeling` head on top for Classifier Model fine-tuning.""",
GPT_NEOX_JAPANESE_START_DOCSTRING,
)
class GPTNeoXJapaneseForCausalLM(GPTNeoXJapanesePreTrainedModel):
_tied_weights_keys = ["embed_out.weight"]
def __init__(self, config):
super().__init__(config)
self.config = config
self.gpt_neox_japanese = GPTNeoXJapaneseModel(config)
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.embed_out
def set_output_embeddings(self, new_embeddings):
self.embed_out = new_embeddings
@add_start_docstrings_to_model_forward(GPT_NEOX_JAPANESE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
`past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
>>> config = GPTNeoXJapaneseConfig.from_pretrained("abeja/gpt-neox-japanese-2.7b")
>>> config.is_decoder = True
>>> model = GPTNeoXJapaneseForCausalLM.from_pretrained("abeja/gpt-neox-japanese-2.7b", config=config)
>>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.gpt_neox_japanese(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
lm_logits = self.embed_out(hidden_states)
lm_loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# we are doing next-token prediction; shift prediction scores and input ids by one
shift_logits = lm_logits[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithPast(
loss=lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past is used
if past_key_values and past_key_values[0] is not None:
input_ids = input_ids[:, -1:]
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
| transformers/src/transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py/0 | {
"file_path": "transformers/src/transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py",
"repo_id": "transformers",
"token_count": 13899
} | 101 |
# Copyright (c) Microsoft Corporation and HuggingFace
# Licensed under the MIT License.
import cython
cimport numpy
from cython.parallel cimport parallel, prange
import numpy as np
# Reduce this number if matrices are too big for large graphs
UNREACHABLE_NODE_DISTANCE = 510
def floyd_warshall(adjacency_matrix):
"""
Applies the Floyd-Warshall algorithm to the adjacency matrix, to compute the
shortest paths distance between all nodes, up to UNREACHABLE_NODE_DISTANCE.
"""
(nrows, ncols) = adjacency_matrix.shape
assert nrows == ncols
cdef unsigned int n = nrows
adj_mat_copy = adjacency_matrix.astype(np.int32, order='C', casting='safe', copy=True)
assert adj_mat_copy.flags['C_CONTIGUOUS']
cdef numpy.ndarray[numpy.int32_t, ndim=2, mode='c'] M = adj_mat_copy
cdef numpy.ndarray[numpy.int32_t, ndim=2, mode='c'] path = -1 * np.ones([n, n], dtype=np.int32)
cdef unsigned int i, j, k
cdef numpy.int32_t M_ij, M_ik, cost_ikkj
cdef numpy.int32_t* M_ptr = &M[0,0]
cdef numpy.int32_t* M_i_ptr
cdef numpy.int32_t* M_k_ptr
# set unreachable nodes distance to UNREACHABLE_NODE_DISTANCE
for i in range(n):
for j in range(n):
if i == j:
M[i][j] = 0
elif M[i][j] == 0:
M[i][j] = UNREACHABLE_NODE_DISTANCE
# floyed algo
for k in range(n):
M_k_ptr = M_ptr + n*k
for i in range(n):
M_i_ptr = M_ptr + n*i
M_ik = M_i_ptr[k]
for j in range(n):
cost_ikkj = M_ik + M_k_ptr[j]
M_ij = M_i_ptr[j]
if M_ij > cost_ikkj:
M_i_ptr[j] = cost_ikkj
path[i][j] = k
# set unreachable path to UNREACHABLE_NODE_DISTANCE
for i in range(n):
for j in range(n):
if M[i][j] >= UNREACHABLE_NODE_DISTANCE:
path[i][j] = UNREACHABLE_NODE_DISTANCE
M[i][j] = UNREACHABLE_NODE_DISTANCE
return M, path
def get_all_edges(path, i, j):
"""
Recursive function to compute all possible paths between two nodes from the graph adjacency matrix.
"""
cdef int k = path[i][j]
if k == -1:
return []
else:
return get_all_edges(path, i, k) + [k] + get_all_edges(path, k, j)
def gen_edge_input(max_dist, path, edge_feat):
"""
Generates the full edge feature and adjacency matrix.
Shape: num_nodes * num_nodes * max_distance_between_nodes * num_edge_features
Dim 1 is the input node, dim 2 the output node of the edge, dim 3 the depth of the edge, dim 4 the feature
"""
(nrows, ncols) = path.shape
assert nrows == ncols
cdef unsigned int n = nrows
cdef unsigned int max_dist_copy = max_dist
path_copy = path.astype(long, order='C', casting='safe', copy=True)
edge_feat_copy = edge_feat.astype(long, order='C', casting='safe', copy=True)
assert path_copy.flags['C_CONTIGUOUS']
assert edge_feat_copy.flags['C_CONTIGUOUS']
cdef numpy.ndarray[numpy.int32_t, ndim=4, mode='c'] edge_fea_all = -1 * np.ones([n, n, max_dist_copy, edge_feat.shape[-1]], dtype=np.int32)
cdef unsigned int i, j, k, num_path, cur
for i in range(n):
for j in range(n):
if i == j:
continue
if path_copy[i][j] == UNREACHABLE_NODE_DISTANCE:
continue
path = [i] + get_all_edges(path_copy, i, j) + [j]
num_path = len(path) - 1
for k in range(num_path):
edge_fea_all[i, j, k, :] = edge_feat_copy[path[k], path[k+1], :]
return edge_fea_all
| transformers/src/transformers/models/graphormer/algos_graphormer.pyx/0 | {
"file_path": "transformers/src/transformers/models/graphormer/algos_graphormer.pyx",
"repo_id": "transformers",
"token_count": 1752
} | 102 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Hubert checkpoint."""
import argparse
import torch
from transformers import HubertConfig, HubertForSequenceClassification, Wav2Vec2FeatureExtractor, logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
SUPPORTED_MODELS = ["UtteranceLevel"]
@torch.no_grad()
def convert_s3prl_checkpoint(base_model_name, config_path, checkpoint_path, model_dump_path):
"""
Copy/paste/tweak model's weights to transformers design.
"""
checkpoint = torch.load(checkpoint_path, map_location="cpu")
if checkpoint["Config"]["downstream_expert"]["modelrc"]["select"] not in SUPPORTED_MODELS:
raise NotImplementedError(f"The supported s3prl models are {SUPPORTED_MODELS}")
downstream_dict = checkpoint["Downstream"]
hf_congfig = HubertConfig.from_pretrained(config_path)
hf_model = HubertForSequenceClassification.from_pretrained(base_model_name, config=hf_congfig)
hf_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
base_model_name, return_attention_mask=True, do_normalize=False
)
if hf_congfig.use_weighted_layer_sum:
hf_model.layer_weights.data = checkpoint["Featurizer"]["weights"]
hf_model.projector.weight.data = downstream_dict["projector.weight"]
hf_model.projector.bias.data = downstream_dict["projector.bias"]
hf_model.classifier.weight.data = downstream_dict["model.post_net.linear.weight"]
hf_model.classifier.bias.data = downstream_dict["model.post_net.linear.bias"]
hf_feature_extractor.save_pretrained(model_dump_path)
hf_model.save_pretrained(model_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
args = parser.parse_args()
convert_s3prl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| transformers/src/transformers/models/hubert/convert_hubert_original_s3prl_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/hubert/convert_hubert_original_s3prl_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 982
} | 103 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert OpenAI Image GPT checkpoints."""
import argparse
import torch
from transformers import ImageGPTConfig, ImageGPTForCausalLM, load_tf_weights_in_imagegpt
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def convert_imagegpt_checkpoint_to_pytorch(imagegpt_checkpoint_path, model_size, pytorch_dump_folder_path):
# Construct configuration depending on size
MODELS = {"small": (512, 8, 24), "medium": (1024, 8, 36), "large": (1536, 16, 48)}
n_embd, n_head, n_layer = MODELS[model_size] # set model hyperparameters
config = ImageGPTConfig(n_embd=n_embd, n_layer=n_layer, n_head=n_head)
model = ImageGPTForCausalLM(config)
# Load weights from numpy
load_tf_weights_in_imagegpt(model, config, imagegpt_checkpoint_path)
# Save pytorch-model
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(f"Save PyTorch model to {pytorch_weights_dump_path}")
torch.save(model.state_dict(), pytorch_weights_dump_path)
print(f"Save configuration file to {pytorch_config_dump_path}")
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
f.write(config.to_json_string())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--imagegpt_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the TensorFlow checkpoint path.",
)
parser.add_argument(
"--model_size",
default=None,
type=str,
required=True,
help="Size of the model (can be either 'small', 'medium' or 'large').",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_imagegpt_checkpoint_to_pytorch(
args.imagegpt_checkpoint_path, args.model_size, args.pytorch_dump_folder_path
)
| transformers/src/transformers/models/imagegpt/convert_imagegpt_original_tf2_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/imagegpt/convert_imagegpt_original_tf2_to_pytorch.py",
"repo_id": "transformers",
"token_count": 993
} | 104 |
# coding=utf-8
# Copyright 2022 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI Jukebox."""
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"artists_file": "artists.json",
"lyrics_file": "lyrics.json",
"genres_file": "genres.json",
}
PRETRAINED_VOCAB_FILES_MAP = {
"artists_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json",
},
"genres_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json",
},
"lyrics_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json",
},
}
PRETRAINED_LYRIC_TOKENS_SIZES = {
"jukebox": 512,
}
class JukeboxTokenizer(PreTrainedTokenizer):
"""
Constructs a Jukebox tokenizer. Jukebox can be conditioned on 3 different inputs :
- Artists, unique ids are associated to each artist from the provided dictionary.
- Genres, unique ids are associated to each genre from the provided dictionary.
- Lyrics, character based tokenization. Must be initialized with the list of characters that are inside the
vocabulary.
This tokenizer does not require training. It should be able to process a different number of inputs:
as the conditioning of the model can be done on the three different queries. If None is provided, defaults values will be used.:
Depending on the number of genres on which the model should be conditioned (`n_genres`).
```python
>>> from transformers import JukeboxTokenizer
>>> tokenizer = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics")
>>> tokenizer("Alan Jackson", "Country Rock", "old town road")["input_ids"]
[tensor([[ 0, 0, 0, 6785, 546, 41, 38, 30, 76, 46, 41, 49,
40, 76, 44, 41, 27, 30]]), tensor([[ 0, 0, 0, 145, 0]]), tensor([[ 0, 0, 0, 145, 0]])]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
If nothing is provided, the genres and the artist will either be selected randomly or set to None
</Tip>
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to:
this superclass for more information regarding those methods.
However the code does not allow that and only supports composing from various genres.
Args:
artists_file (`str`):
Path to the vocabulary file which contains a mapping between artists and ids. The default file supports
both "v2" and "v3"
genres_file (`str`):
Path to the vocabulary file which contain a mapping between genres and ids.
lyrics_file (`str`):
Path to the vocabulary file which contains the accepted characters for the lyrics tokenization.
version (`List[str]`, `optional`, default to `["v3", "v2", "v2"]`) :
List of the tokenizer versions. The `5b-lyrics`'s top level prior model was trained using `v3` instead of
`v2`.
n_genres (`int`, `optional`, defaults to 1):
Maximum number of genres to use for composition.
max_n_lyric_tokens (`int`, `optional`, defaults to 512):
Maximum number of lyric tokens to keep.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_lyric_input_size = PRETRAINED_LYRIC_TOKENS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
artists_file,
genres_file,
lyrics_file,
version=["v3", "v2", "v2"],
max_n_lyric_tokens=512,
n_genres=5,
unk_token="<|endoftext|>",
**kwargs,
):
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
self.version = version
self.max_n_lyric_tokens = max_n_lyric_tokens
self.n_genres = n_genres
self._added_tokens_decoder = {0: unk_token}
with open(artists_file, encoding="utf-8") as vocab_handle:
self.artists_encoder = json.load(vocab_handle)
with open(genres_file, encoding="utf-8") as vocab_handle:
self.genres_encoder = json.load(vocab_handle)
with open(lyrics_file, encoding="utf-8") as vocab_handle:
self.lyrics_encoder = json.load(vocab_handle)
oov = r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+"
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder) == 79:
oov = oov.replace(r"\-'", r"\-+'")
self.out_of_vocab = regex.compile(oov)
self.artists_decoder = {v: k for k, v in self.artists_encoder.items()}
self.genres_decoder = {v: k for k, v in self.genres_encoder.items()}
self.lyrics_decoder = {v: k for k, v in self.lyrics_encoder.items()}
super().__init__(
unk_token=unk_token,
n_genres=n_genres,
version=version,
max_n_lyric_tokens=max_n_lyric_tokens,
**kwargs,
)
@property
def vocab_size(self):
return len(self.artists_encoder) + len(self.genres_encoder) + len(self.lyrics_encoder)
def get_vocab(self):
return {
"artists_encoder": self.artists_encoder,
"genres_encoder": self.genres_encoder,
"lyrics_encoder": self.lyrics_encoder,
}
def _convert_token_to_id(self, list_artists, list_genres, list_lyrics):
"""Converts the artist, genre and lyrics tokens to their index using the vocabulary.
The total_length, offset and duration have to be provided in order to select relevant lyrics and add padding to
the lyrics token sequence.
"""
artists_id = [self.artists_encoder.get(artist, 0) for artist in list_artists]
for genres in range(len(list_genres)):
list_genres[genres] = [self.genres_encoder.get(genre, 0) for genre in list_genres[genres]]
list_genres[genres] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres]))
lyric_ids = [[self.lyrics_encoder.get(character, 0) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def _tokenize(self, lyrics):
"""
Converts a string into a sequence of tokens (string), using the tokenizer. Split in words for word-based
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
Do NOT take care of added tokens. Only the lyrics are split into character for the character-based vocabulary.
"""
# only lyrics are not tokenized, but character based is easily handled
return list(lyrics)
def tokenize(self, artist, genre, lyrics, **kwargs):
"""
Converts three strings in a 3 sequence of tokens using the tokenizer
"""
artist, genre, lyrics = self.prepare_for_tokenization(artist, genre, lyrics)
lyrics = self._tokenize(lyrics)
return artist, genre, lyrics
def prepare_for_tokenization(
self, artists: str, genres: str, lyrics: str, is_split_into_words: bool = False
) -> Tuple[str, str, str, Dict[str, Any]]:
"""
Performs any necessary transformations before tokenization.
Args:
artist (`str`):
The artist name to prepare. This will mostly lower the string
genres (`str`):
The genre name to prepare. This will mostly lower the string.
lyrics (`str`):
The lyrics to prepare.
is_split_into_words (`bool`, *optional*, defaults to `False`):
Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize. This is useful for NER or token classification.
"""
for idx in range(len(self.version)):
if self.version[idx] == "v3":
artists[idx] = artists[idx].lower()
genres[idx] = [genres[idx].lower()]
else:
artists[idx] = self._normalize(artists[idx]) + ".v2"
genres[idx] = [
self._normalize(genre) + ".v2" for genre in genres[idx].split("_")
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
self.out_of_vocab = regex.compile(r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+")
vocab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n"
self.vocab = {vocab[index]: index + 1 for index in range(len(vocab))}
self.vocab["<unk>"] = 0
self.n_vocab = len(vocab) + 1
self.lyrics_encoder = self.vocab
self.lyrics_decoder = {v: k for k, v in self.vocab.items()}
self.lyrics_decoder[0] = ""
else:
self.out_of_vocab = regex.compile(r"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+")
lyrics = self._run_strip_accents(lyrics)
lyrics = lyrics.replace("\\", "\n")
lyrics = self.out_of_vocab.sub("", lyrics), [], []
return artists, genres, lyrics
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _normalize(self, text: str) -> str:
"""
Normalizes the input text. This process is for the genres and the artist
Args:
text (`str`):
Artist or Genre string to normalize
"""
accepted = (
[chr(i) for i in range(ord("a"), ord("z") + 1)]
+ [chr(i) for i in range(ord("A"), ord("Z") + 1)]
+ [chr(i) for i in range(ord("0"), ord("9") + 1)]
+ ["."]
)
accepted = frozenset(accepted)
pattern = re.compile(r"_+")
text = "".join([c if c in accepted else "_" for c in text.lower()])
text = pattern.sub("_", text).strip("_")
return text
def convert_lyric_tokens_to_string(self, lyrics: List[str]) -> str:
return " ".join(lyrics)
def convert_to_tensors(
self, inputs, tensor_type: Optional[Union[str, TensorType]] = None, prepend_batch_axis: bool = False
):
"""
Convert the inner content to tensors.
Args:
tensor_type (`str` or [`~utils.TensorType`], *optional*):
The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If
unset, no modification is done.
prepend_batch_axis (`int`, *optional*, defaults to `False`):
Whether or not to add the batch dimension during the conversion.
"""
# Convert to TensorType
if not isinstance(tensor_type, TensorType):
tensor_type = TensorType(tensor_type)
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
"Unable to convert output to TensorFlow tensors format, TensorFlow is not installed."
)
import tensorflow as tf
as_tensor = tf.constant
is_tensor = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.")
import torch
as_tensor = torch.tensor
is_tensor = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.")
import jax.numpy as jnp # noqa: F811
as_tensor = jnp.array
is_tensor = _is_jax
else:
as_tensor = np.asarray
is_tensor = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
inputs = [inputs]
if not is_tensor(inputs):
inputs = as_tensor(inputs)
except: # noqa E722
raise ValueError(
"Unable to create tensor, you should probably activate truncation and/or padding "
"with 'padding=True' 'truncation=True' to have batched tensors with the same length."
)
return inputs
def __call__(self, artist, genres, lyrics="", return_tensors="pt") -> BatchEncoding:
"""Convert the raw string to a list of token ids
Args:
artist (`str`):
Name of the artist.
genres (`str`):
List of genres that will be mixed to condition the audio
lyrics (`str`, *optional*, defaults to `""`):
Lyrics used to condition the generation
"""
input_ids = [0, 0, 0]
artist = [artist] * len(self.version)
genres = [genres] * len(self.version)
artists_tokens, genres_tokens, lyrics_tokens = self.tokenize(artist, genres, lyrics)
artists_id, genres_ids, full_tokens = self._convert_token_to_id(artists_tokens, genres_tokens, lyrics_tokens)
attention_masks = [-INFINITY] * len(full_tokens[-1])
input_ids = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]], tensor_type=return_tensors
)
for i in range(len(self.version))
]
return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks})
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Saves the tokenizer's vocabulary dictionary to the provided save_directory.
Args:
save_directory (`str`):
A path to the directory where to saved. It will be created if it doesn't exist.
filename_prefix (`Optional[str]`, *optional*):
A prefix to add to the names of the files saved by the tokenizer.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
artists_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"]
)
with open(artists_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.artists_encoder, ensure_ascii=False))
genres_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"]
)
with open(genres_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.genres_encoder, ensure_ascii=False))
lyrics_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"]
)
with open(lyrics_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.lyrics_encoder, ensure_ascii=False))
return (artists_file, genres_file, lyrics_file)
def _convert_id_to_token(self, artists_index, genres_index, lyric_index):
"""
Converts an index (integer) in a token (str) using the vocab.
Args:
artists_index (`int`):
Index of the artist in its corresponding dictionary.
genres_index (`Union[List[int], int]`):
Index of the genre in its corresponding dictionary.
lyric_index (`List[int]`):
List of character indices, which each correspond to a character.
"""
artist = self.artists_decoder.get(artists_index)
genres = [self.genres_decoder.get(genre) for genre in genres_index]
lyrics = [self.lyrics_decoder.get(character) for character in lyric_index]
return artist, genres, lyrics
| transformers/src/transformers/models/jukebox/tokenization_jukebox.py/0 | {
"file_path": "transformers/src/transformers/models/jukebox/tokenization_jukebox.py",
"repo_id": "transformers",
"token_count": 7768
} | 105 |
# coding=utf-8
# Copyright 2021 Microsoft Research The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LayoutLMv2 model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_detectron2_available,
logging,
replace_return_docstrings,
requires_backends,
)
from .configuration_layoutlmv2 import LayoutLMv2Config
# soft dependency
if is_detectron2_available():
import detectron2
from detectron2.modeling import META_ARCH_REGISTRY
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/layoutlmv2-base-uncased"
_CONFIG_FOR_DOC = "LayoutLMv2Config"
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/layoutlmv2-base-uncased",
"microsoft/layoutlmv2-large-uncased",
# See all LayoutLMv2 models at https://huggingface.co/models?filter=layoutlmv2
]
class LayoutLMv2Embeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super(LayoutLMv2Embeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size)
self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size)
self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size)
self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def _calc_spatial_position_embeddings(self, bbox):
try:
left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
except IndexError as e:
raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e
h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1])
w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0])
spatial_position_embeddings = torch.cat(
[
left_position_embeddings,
upper_position_embeddings,
right_position_embeddings,
lower_position_embeddings,
h_position_embeddings,
w_position_embeddings,
],
dim=-1,
)
return spatial_position_embeddings
class LayoutLMv2SelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.fast_qkv = config.fast_qkv
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.has_relative_attention_bias = config.has_relative_attention_bias
self.has_spatial_attention_bias = config.has_spatial_attention_bias
if config.fast_qkv:
self.qkv_linear = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=False)
self.q_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size))
self.v_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size))
else:
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def compute_qkv(self, hidden_states):
if self.fast_qkv:
qkv = self.qkv_linear(hidden_states)
q, k, v = torch.chunk(qkv, 3, dim=-1)
if q.ndimension() == self.q_bias.ndimension():
q = q + self.q_bias
v = v + self.v_bias
else:
_sz = (1,) * (q.ndimension() - 1) + (-1,)
q = q + self.q_bias.view(*_sz)
v = v + self.v_bias.view(*_sz)
else:
q = self.query(hidden_states)
k = self.key(hidden_states)
v = self.value(hidden_states)
return q, k, v
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
rel_pos=None,
rel_2d_pos=None,
):
q, k, v = self.compute_qkv(hidden_states)
# (B, L, H*D) -> (B, H, L, D)
query_layer = self.transpose_for_scores(q)
key_layer = self.transpose_for_scores(k)
value_layer = self.transpose_for_scores(v)
query_layer = query_layer / math.sqrt(self.attention_head_size)
# [BSZ, NAT, L, L]
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.has_relative_attention_bias:
attention_scores += rel_pos
if self.has_spatial_attention_bias:
attention_scores += rel_2d_pos
attention_scores = attention_scores.float().masked_fill_(
attention_mask.to(torch.bool), torch.finfo(attention_scores.dtype).min
)
attention_probs = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).type_as(value_layer)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class LayoutLMv2Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = LayoutLMv2SelfAttention(config)
self.output = LayoutLMv2SelfOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
rel_pos=None,
rel_2d_pos=None,
):
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
output_attentions,
rel_pos=rel_pos,
rel_2d_pos=rel_2d_pos,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class LayoutLMv2SelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->LayoutLMv2
class LayoutLMv2Intermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->LayoutLM
class LayoutLMv2Output(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class LayoutLMv2Layer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = LayoutLMv2Attention(config)
self.intermediate = LayoutLMv2Intermediate(config)
self.output = LayoutLMv2Output(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
rel_pos=None,
rel_2d_pos=None,
):
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
rel_pos=rel_pos,
rel_2d_pos=rel_2d_pos,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
def relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small
absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions
>=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should
allow for more graceful generalization to longer sequences than the model has been trained on.
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
ret = 0
if bidirectional:
num_buckets //= 2
ret += (relative_position > 0).long() * num_buckets
n = torch.abs(relative_position)
else:
n = torch.max(-relative_position, torch.zeros_like(relative_position))
# now n is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = n < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
val_if_large = max_exact + (
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
).to(torch.long)
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
ret += torch.where(is_small, n, val_if_large)
return ret
class LayoutLMv2Encoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([LayoutLMv2Layer(config) for _ in range(config.num_hidden_layers)])
self.has_relative_attention_bias = config.has_relative_attention_bias
self.has_spatial_attention_bias = config.has_spatial_attention_bias
if self.has_relative_attention_bias:
self.rel_pos_bins = config.rel_pos_bins
self.max_rel_pos = config.max_rel_pos
self.rel_pos_bias = nn.Linear(self.rel_pos_bins, config.num_attention_heads, bias=False)
if self.has_spatial_attention_bias:
self.max_rel_2d_pos = config.max_rel_2d_pos
self.rel_2d_pos_bins = config.rel_2d_pos_bins
self.rel_pos_x_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False)
self.rel_pos_y_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False)
self.gradient_checkpointing = False
def _calculate_1d_position_embeddings(self, position_ids):
rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1)
rel_pos = relative_position_bucket(
rel_pos_mat,
num_buckets=self.rel_pos_bins,
max_distance=self.max_rel_pos,
)
rel_pos = self.rel_pos_bias.weight.t()[rel_pos].permute(0, 3, 1, 2)
rel_pos = rel_pos.contiguous()
return rel_pos
def _calculate_2d_position_embeddings(self, bbox):
position_coord_x = bbox[:, :, 0]
position_coord_y = bbox[:, :, 3]
rel_pos_x_2d_mat = position_coord_x.unsqueeze(-2) - position_coord_x.unsqueeze(-1)
rel_pos_y_2d_mat = position_coord_y.unsqueeze(-2) - position_coord_y.unsqueeze(-1)
rel_pos_x = relative_position_bucket(
rel_pos_x_2d_mat,
num_buckets=self.rel_2d_pos_bins,
max_distance=self.max_rel_2d_pos,
)
rel_pos_y = relative_position_bucket(
rel_pos_y_2d_mat,
num_buckets=self.rel_2d_pos_bins,
max_distance=self.max_rel_2d_pos,
)
rel_pos_x = self.rel_pos_x_bias.weight.t()[rel_pos_x].permute(0, 3, 1, 2)
rel_pos_y = self.rel_pos_y_bias.weight.t()[rel_pos_y].permute(0, 3, 1, 2)
rel_pos_x = rel_pos_x.contiguous()
rel_pos_y = rel_pos_y.contiguous()
rel_2d_pos = rel_pos_x + rel_pos_y
return rel_2d_pos
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
bbox=None,
position_ids=None,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
rel_pos = self._calculate_1d_position_embeddings(position_ids) if self.has_relative_attention_bias else None
rel_2d_pos = self._calculate_2d_position_embeddings(bbox) if self.has_spatial_attention_bias else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
rel_pos=rel_pos,
rel_2d_pos=rel_2d_pos,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
rel_pos=rel_pos,
rel_2d_pos=rel_2d_pos,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
all_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class LayoutLMv2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LayoutLMv2Config
pretrained_model_archive_map = LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST
base_model_prefix = "layoutlmv2"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def my_convert_sync_batchnorm(module, process_group=None):
# same as `nn.modules.SyncBatchNorm.convert_sync_batchnorm` but allowing converting from `detectron2.layers.FrozenBatchNorm2d`
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
return nn.modules.SyncBatchNorm.convert_sync_batchnorm(module, process_group)
module_output = module
if isinstance(module, detectron2.layers.FrozenBatchNorm2d):
module_output = torch.nn.SyncBatchNorm(
num_features=module.num_features,
eps=module.eps,
affine=True,
track_running_stats=True,
process_group=process_group,
)
module_output.weight = torch.nn.Parameter(module.weight)
module_output.bias = torch.nn.Parameter(module.bias)
module_output.running_mean = module.running_mean
module_output.running_var = module.running_var
module_output.num_batches_tracked = torch.tensor(0, dtype=torch.long, device=module.running_mean.device)
for name, child in module.named_children():
module_output.add_module(name, my_convert_sync_batchnorm(child, process_group))
del module
return module_output
class LayoutLMv2VisualBackbone(nn.Module):
def __init__(self, config):
super().__init__()
self.cfg = config.get_detectron2_config()
meta_arch = self.cfg.MODEL.META_ARCHITECTURE
model = META_ARCH_REGISTRY.get(meta_arch)(self.cfg)
assert isinstance(model.backbone, detectron2.modeling.backbone.FPN)
self.backbone = model.backbone
assert len(self.cfg.MODEL.PIXEL_MEAN) == len(self.cfg.MODEL.PIXEL_STD)
num_channels = len(self.cfg.MODEL.PIXEL_MEAN)
self.register_buffer(
"pixel_mean",
torch.Tensor(self.cfg.MODEL.PIXEL_MEAN).view(num_channels, 1, 1),
persistent=False,
)
self.register_buffer(
"pixel_std", torch.Tensor(self.cfg.MODEL.PIXEL_STD).view(num_channels, 1, 1), persistent=False
)
self.out_feature_key = "p2"
if torch.are_deterministic_algorithms_enabled():
logger.warning("using `AvgPool2d` instead of `AdaptiveAvgPool2d`")
input_shape = (224, 224)
backbone_stride = self.backbone.output_shape()[self.out_feature_key].stride
self.pool = nn.AvgPool2d(
(
math.ceil(math.ceil(input_shape[0] / backbone_stride) / config.image_feature_pool_shape[0]),
math.ceil(math.ceil(input_shape[1] / backbone_stride) / config.image_feature_pool_shape[1]),
)
)
else:
self.pool = nn.AdaptiveAvgPool2d(config.image_feature_pool_shape[:2])
if len(config.image_feature_pool_shape) == 2:
config.image_feature_pool_shape.append(self.backbone.output_shape()[self.out_feature_key].channels)
assert self.backbone.output_shape()[self.out_feature_key].channels == config.image_feature_pool_shape[2]
def forward(self, images):
images_input = ((images if torch.is_tensor(images) else images.tensor) - self.pixel_mean) / self.pixel_std
features = self.backbone(images_input)
features = features[self.out_feature_key]
features = self.pool(features).flatten(start_dim=2).transpose(1, 2).contiguous()
return features
def synchronize_batch_norm(self):
if not (
torch.distributed.is_available()
and torch.distributed.is_initialized()
and torch.distributed.get_rank() > -1
):
raise RuntimeError("Make sure torch.distributed is set up properly.")
self_rank = torch.distributed.get_rank()
node_size = torch.cuda.device_count()
world_size = torch.distributed.get_world_size()
if not (world_size % node_size == 0):
raise RuntimeError("Make sure the number of processes can be divided by the number of nodes")
node_global_ranks = [list(range(i * node_size, (i + 1) * node_size)) for i in range(world_size // node_size)]
sync_bn_groups = [
torch.distributed.new_group(ranks=node_global_ranks[i]) for i in range(world_size // node_size)
]
node_rank = self_rank // node_size
self.backbone = my_convert_sync_batchnorm(self.backbone, process_group=sync_bn_groups[node_rank])
LAYOUTLMV2_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`LayoutLMv2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
LAYOUTLMV2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `{0}`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*):
Bounding boxes of each input sequence tokens. Selected in the range `[0,
config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1)
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1,
y1) represents the position of the lower right corner.
image (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `detectron.structures.ImageList` whose `tensors` is of shape `(batch_size, num_channels, height, width)`):
Batch of document images.
attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `{0}`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `{0}`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class LayoutLMv2Pooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
@add_start_docstrings(
"The bare LayoutLMv2 Model transformer outputting raw hidden-states without any specific head on top.",
LAYOUTLMV2_START_DOCSTRING,
)
class LayoutLMv2Model(LayoutLMv2PreTrainedModel):
def __init__(self, config):
requires_backends(self, "detectron2")
super().__init__(config)
self.config = config
self.has_visual_segment_embedding = config.has_visual_segment_embedding
self.embeddings = LayoutLMv2Embeddings(config)
self.visual = LayoutLMv2VisualBackbone(config)
self.visual_proj = nn.Linear(config.image_feature_pool_shape[-1], config.hidden_size)
if self.has_visual_segment_embedding:
self.visual_segment_embedding = nn.Parameter(nn.Embedding(1, config.hidden_size).weight[0])
self.visual_LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.visual_dropout = nn.Dropout(config.hidden_dropout_prob)
self.encoder = LayoutLMv2Encoder(config)
self.pooler = LayoutLMv2Pooler(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _calc_text_embeddings(self, input_ids, bbox, position_ids, token_type_ids, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
if inputs_embeds is None:
inputs_embeds = self.embeddings.word_embeddings(input_ids)
position_embeddings = self.embeddings.position_embeddings(position_ids)
spatial_position_embeddings = self.embeddings._calc_spatial_position_embeddings(bbox)
token_type_embeddings = self.embeddings.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + spatial_position_embeddings + token_type_embeddings
embeddings = self.embeddings.LayerNorm(embeddings)
embeddings = self.embeddings.dropout(embeddings)
return embeddings
def _calc_img_embeddings(self, image, bbox, position_ids):
visual_embeddings = self.visual_proj(self.visual(image))
position_embeddings = self.embeddings.position_embeddings(position_ids)
spatial_position_embeddings = self.embeddings._calc_spatial_position_embeddings(bbox)
embeddings = visual_embeddings + position_embeddings + spatial_position_embeddings
if self.has_visual_segment_embedding:
embeddings += self.visual_segment_embedding
embeddings = self.visual_LayerNorm(embeddings)
embeddings = self.visual_dropout(embeddings)
return embeddings
def _calc_visual_bbox(self, image_feature_pool_shape, bbox, device, final_shape):
visual_bbox_x = torch.div(
torch.arange(
0,
1000 * (image_feature_pool_shape[1] + 1),
1000,
device=device,
dtype=bbox.dtype,
),
self.config.image_feature_pool_shape[1],
rounding_mode="floor",
)
visual_bbox_y = torch.div(
torch.arange(
0,
1000 * (self.config.image_feature_pool_shape[0] + 1),
1000,
device=device,
dtype=bbox.dtype,
),
self.config.image_feature_pool_shape[0],
rounding_mode="floor",
)
visual_bbox = torch.stack(
[
visual_bbox_x[:-1].repeat(image_feature_pool_shape[0], 1),
visual_bbox_y[:-1].repeat(image_feature_pool_shape[1], 1).transpose(0, 1),
visual_bbox_x[1:].repeat(image_feature_pool_shape[0], 1),
visual_bbox_y[1:].repeat(image_feature_pool_shape[1], 1).transpose(0, 1),
],
dim=-1,
).view(-1, bbox.size(-1))
visual_bbox = visual_bbox.repeat(final_shape[0], 1, 1)
return visual_bbox
def _get_input_shape(self, input_ids=None, inputs_embeds=None):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
return input_ids.size()
elif inputs_embeds is not None:
return inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
@add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
bbox: Optional[torch.LongTensor] = None,
image: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Return:
Examples:
```python
>>> from transformers import AutoProcessor, LayoutLMv2Model, set_seed
>>> from PIL import Image
>>> import torch
>>> from datasets import load_dataset
>>> set_seed(88)
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
>>> model = LayoutLMv2Model.from_pretrained("microsoft/layoutlmv2-base-uncased")
>>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa")
>>> image_path = dataset["test"][0]["file"]
>>> image = Image.open(image_path).convert("RGB")
>>> encoding = processor(image, return_tensors="pt")
>>> outputs = model(**encoding)
>>> last_hidden_states = outputs.last_hidden_state
>>> last_hidden_states.shape
torch.Size([1, 342, 768])
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_shape = self._get_input_shape(input_ids, inputs_embeds)
device = input_ids.device if input_ids is not None else inputs_embeds.device
visual_shape = list(input_shape)
visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1]
visual_shape = torch.Size(visual_shape)
# needs a new copy of input_shape for tracing. Otherwise wrong dimensions will occur
final_shape = list(self._get_input_shape(input_ids, inputs_embeds))
final_shape[1] += visual_shape[1]
final_shape = torch.Size(final_shape)
visual_bbox = self._calc_visual_bbox(self.config.image_feature_pool_shape, bbox, device, final_shape)
final_bbox = torch.cat([bbox, visual_bbox], dim=1)
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
visual_attention_mask = torch.ones(visual_shape, device=device)
final_attention_mask = torch.cat([attention_mask, visual_attention_mask], dim=1)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
if position_ids is None:
seq_length = input_shape[1]
position_ids = self.embeddings.position_ids[:, :seq_length]
position_ids = position_ids.expand(input_shape)
visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat(
input_shape[0], 1
)
final_position_ids = torch.cat([position_ids, visual_position_ids], dim=1)
if bbox is None:
bbox = torch.zeros(tuple(list(input_shape) + [4]), dtype=torch.long, device=device)
text_layout_emb = self._calc_text_embeddings(
input_ids=input_ids,
bbox=bbox,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
)
visual_emb = self._calc_img_embeddings(
image=image,
bbox=visual_bbox,
position_ids=visual_position_ids,
)
final_emb = torch.cat([text_layout_emb, visual_emb], dim=1)
extended_attention_mask = final_attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.to(dtype=next(self.parameters()).dtype)
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
final_emb,
extended_attention_mask,
bbox=final_bbox,
position_ids=final_position_ids,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""
LayoutLMv2 Model with a sequence classification head on top (a linear layer on top of the concatenation of the
final hidden state of the [CLS] token, average-pooled initial visual embeddings and average-pooled final visual
embeddings, e.g. for document image classification tasks such as the
[RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset.
""",
LAYOUTLMV2_START_DOCSTRING,
)
class LayoutLMv2ForSequenceClassification(LayoutLMv2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.layoutlmv2 = LayoutLMv2Model(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.layoutlmv2.embeddings.word_embeddings
@add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
bbox: Optional[torch.LongTensor] = None,
image: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Example:
```python
>>> from transformers import AutoProcessor, LayoutLMv2ForSequenceClassification, set_seed
>>> from PIL import Image
>>> import torch
>>> from datasets import load_dataset
>>> set_seed(88)
>>> dataset = load_dataset("rvl_cdip", split="train", streaming=True)
>>> data = next(iter(dataset))
>>> image = data["image"].convert("RGB")
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
>>> model = LayoutLMv2ForSequenceClassification.from_pretrained(
... "microsoft/layoutlmv2-base-uncased", num_labels=dataset.info.features["label"].num_classes
... )
>>> encoding = processor(image, return_tensors="pt")
>>> sequence_label = torch.tensor([data["label"]])
>>> outputs = model(**encoding, labels=sequence_label)
>>> loss, logits = outputs.loss, outputs.logits
>>> predicted_idx = logits.argmax(dim=-1).item()
>>> predicted_answer = dataset.info.features["label"].names[4]
>>> predicted_idx, predicted_answer
(4, 'advertisement')
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
visual_shape = list(input_shape)
visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1]
visual_shape = torch.Size(visual_shape)
final_shape = list(input_shape)
final_shape[1] += visual_shape[1]
final_shape = torch.Size(final_shape)
visual_bbox = self.layoutlmv2._calc_visual_bbox(
self.config.image_feature_pool_shape, bbox, device, final_shape
)
visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat(
input_shape[0], 1
)
initial_image_embeddings = self.layoutlmv2._calc_img_embeddings(
image=image,
bbox=visual_bbox,
position_ids=visual_position_ids,
)
outputs = self.layoutlmv2(
input_ids=input_ids,
bbox=bbox,
image=image,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
sequence_output, final_image_embeddings = outputs[0][:, :seq_length], outputs[0][:, seq_length:]
cls_final_output = sequence_output[:, 0, :]
# average-pool the visual embeddings
pooled_initial_image_embeddings = initial_image_embeddings.mean(dim=1)
pooled_final_image_embeddings = final_image_embeddings.mean(dim=1)
# concatenate with cls_final_output
sequence_output = torch.cat(
[cls_final_output, pooled_initial_image_embeddings, pooled_final_image_embeddings], dim=1
)
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
LayoutLMv2 Model with a token classification head on top (a linear layer on top of the text part of the hidden
states) e.g. for sequence labeling (information extraction) tasks such as
[FUNSD](https://guillaumejaume.github.io/FUNSD/), [SROIE](https://rrc.cvc.uab.es/?ch=13),
[CORD](https://github.com/clovaai/cord) and [Kleister-NDA](https://github.com/applicaai/kleister-nda).
""",
LAYOUTLMV2_START_DOCSTRING,
)
class LayoutLMv2ForTokenClassification(LayoutLMv2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.layoutlmv2 = LayoutLMv2Model(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.layoutlmv2.embeddings.word_embeddings
@add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
bbox: Optional[torch.LongTensor] = None,
image: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Returns:
Example:
```python
>>> from transformers import AutoProcessor, LayoutLMv2ForTokenClassification, set_seed
>>> from PIL import Image
>>> from datasets import load_dataset
>>> set_seed(88)
>>> datasets = load_dataset("nielsr/funsd", split="test")
>>> labels = datasets.features["ner_tags"].feature.names
>>> id2label = {v: k for v, k in enumerate(labels)}
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr")
>>> model = LayoutLMv2ForTokenClassification.from_pretrained(
... "microsoft/layoutlmv2-base-uncased", num_labels=len(labels)
... )
>>> data = datasets[0]
>>> image = Image.open(data["image_path"]).convert("RGB")
>>> words = data["words"]
>>> boxes = data["bboxes"] # make sure to normalize your bounding boxes
>>> word_labels = data["ner_tags"]
>>> encoding = processor(
... image,
... words,
... boxes=boxes,
... word_labels=word_labels,
... padding="max_length",
... truncation=True,
... return_tensors="pt",
... )
>>> outputs = model(**encoding)
>>> logits, loss = outputs.logits, outputs.loss
>>> predicted_token_class_ids = logits.argmax(-1)
>>> predicted_tokens_classes = [id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes[:5]
['B-ANSWER', 'B-HEADER', 'B-HEADER', 'B-HEADER', 'B-HEADER']
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.layoutlmv2(
input_ids=input_ids,
bbox=bbox,
image=image,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
# only take the text part of the output representations
sequence_output = outputs[0][:, :seq_length]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
LayoutLMv2 Model with a span classification head on top for extractive question-answering tasks such as
[DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the text part of the hidden-states output to
compute `span start logits` and `span end logits`).
""",
LAYOUTLMV2_START_DOCSTRING,
)
class LayoutLMv2ForQuestionAnswering(LayoutLMv2PreTrainedModel):
def __init__(self, config, has_visual_segment_embedding=True):
super().__init__(config)
self.num_labels = config.num_labels
config.has_visual_segment_embedding = has_visual_segment_embedding
self.layoutlmv2 = LayoutLMv2Model(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.layoutlmv2.embeddings.word_embeddings
@add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
bbox: Optional[torch.LongTensor] = None,
image: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
Returns:
Example:
In this example below, we give the LayoutLMv2 model an image (of texts) and ask it a question. It will give us
a prediction of what it thinks the answer is (the span of the answer within the texts parsed from the image).
```python
>>> from transformers import AutoProcessor, LayoutLMv2ForQuestionAnswering, set_seed
>>> import torch
>>> from PIL import Image
>>> from datasets import load_dataset
>>> set_seed(88)
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
>>> model = LayoutLMv2ForQuestionAnswering.from_pretrained("microsoft/layoutlmv2-base-uncased")
>>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa")
>>> image_path = dataset["test"][0]["file"]
>>> image = Image.open(image_path).convert("RGB")
>>> question = "When is coffee break?"
>>> encoding = processor(image, question, return_tensors="pt")
>>> outputs = model(**encoding)
>>> predicted_start_idx = outputs.start_logits.argmax(-1).item()
>>> predicted_end_idx = outputs.end_logits.argmax(-1).item()
>>> predicted_start_idx, predicted_end_idx
(154, 287)
>>> predicted_answer_tokens = encoding.input_ids.squeeze()[predicted_start_idx : predicted_end_idx + 1]
>>> predicted_answer = processor.tokenizer.decode(predicted_answer_tokens)
>>> predicted_answer # results are not very good without further fine-tuning
'council mem - bers conducted by trrf treasurer philip g. kuehn to get answers which the public ...
```
```python
>>> target_start_index = torch.tensor([7])
>>> target_end_index = torch.tensor([14])
>>> outputs = model(**encoding, start_positions=target_start_index, end_positions=target_end_index)
>>> predicted_answer_span_start = outputs.start_logits.argmax(-1).item()
>>> predicted_answer_span_end = outputs.end_logits.argmax(-1).item()
>>> predicted_answer_span_start, predicted_answer_span_end
(154, 287)
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.layoutlmv2(
input_ids=input_ids,
bbox=bbox,
image=image,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
# only take the text part of the output representations
sequence_output = outputs[0][:, :seq_length]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py/0 | {
"file_path": "transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py",
"repo_id": "transformers",
"token_count": 26677
} | 106 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
""" Tokenization classes for LayoutXLM model."""
import os
from shutil import copyfile
from typing import Dict, List, Optional, Tuple, Union
from ...tokenization_utils import AddedToken
from ...tokenization_utils_base import (
BatchEncoding,
EncodedInput,
PreTokenizedInput,
TextInput,
TextInputPair,
TruncationStrategy,
)
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, TensorType, add_end_docstrings, is_sentencepiece_available, logging
from ..xlm_roberta.tokenization_xlm_roberta_fast import (
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES,
PRETRAINED_VOCAB_FILES_MAP,
VOCAB_FILES_NAMES,
)
if is_sentencepiece_available():
from .tokenization_layoutxlm import LayoutXLMTokenizer
else:
LayoutXLMTokenizer = None
logger = logging.get_logger(__name__)
LAYOUTXLM_ENCODE_KWARGS_DOCSTRING = r"""
add_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to encode the sequences with the special tokens relative to their model.
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
stride (`int`, *optional*, defaults to 0):
If set to a number along with `max_length`, the overflowing tokens returned when
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
returned to provide some overlap between truncated and overflowing sequences. The value of this
argument defines the number of overlapping tokens.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_token_type_ids (`bool`, *optional*):
Whether to return token type IDs. If left to the default, will return the token type IDs according to
the specific tokenizer's default, defined by the `return_outputs` attribute.
[What are token type IDs?](../glossary#token-type-ids)
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
of returning overflowing tokens.
return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
Whether or not to return special tokens mask information.
return_offsets_mapping (`bool`, *optional*, defaults to `False`):
Whether or not to return `(char_start, char_end)` for each token.
This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
Python's tokenizer, this method will raise `NotImplementedError`.
return_length (`bool`, *optional*, defaults to `False`):
Whether or not to return the lengths of the encoded inputs.
verbose (`bool`, *optional*, defaults to `True`):
Whether or not to print more information and warnings.
**kwargs: passed to the `self.tokenize()` method
Return:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
[What are input IDs?](../glossary#input-ids)
- **bbox** -- List of bounding boxes to be fed to a model.
- **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
if *"token_type_ids"* is in `self.model_input_names`).
[What are token type IDs?](../glossary#token-type-ids)
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
[What are attention masks?](../glossary#attention-mask)
- **labels** -- List of labels to be fed to a model. (when `word_labels` is specified).
- **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
`return_overflowing_tokens=True`).
- **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
`return_overflowing_tokens=True`).
- **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
- **length** -- The length of the inputs (when `return_length=True`).
"""
class LayoutXLMTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" LayoutXLM tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from
[`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
[BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
The bounding box to use for the special [CLS] token.
sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`):
The bounding box to use for the special [SEP] token.
pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
The bounding box to use for the special [PAD] token.
pad_token_label (`int`, *optional*, defaults to -100):
The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
CrossEntropyLoss.
only_label_first_subword (`bool`, *optional*, defaults to `True`):
Whether or not to only label the first subword, in case word labels are provided.
additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
Additional special tokens used by the tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = LayoutXLMTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
cls_token_box=[0, 0, 0, 0],
sep_token_box=[1000, 1000, 1000, 1000],
pad_token_box=[0, 0, 0, 0],
pad_token_label=-100,
only_label_first_subword=True,
**kwargs,
):
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
unk_token=unk_token,
pad_token=pad_token,
mask_token=mask_token,
cls_token_box=cls_token_box,
sep_token_box=sep_token_box,
pad_token_box=pad_token_box,
pad_token_label=pad_token_label,
only_label_first_subword=only_label_first_subword,
**kwargs,
)
self.vocab_file = vocab_file
# additional properties
self.cls_token_box = cls_token_box
self.sep_token_box = sep_token_box
self.pad_token_box = pad_token_box
self.pad_token_label = pad_token_label
self.only_label_first_subword = only_label_first_subword
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
@add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
sequences with word-level normalized bounding boxes and optional labels.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
words).
text_pair (`List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
(pretokenized string).
boxes (`List[List[int]]`, `List[List[List[int]]]`):
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
word_labels (`List[int]`, `List[List[int]]`, *optional*):
Word-level integer labels (for token classification tasks such as FUNSD, CORD).
"""
# Input type checking for clearer error
def _is_valid_text_input(t):
if isinstance(t, str):
# Strings are fine
return True
elif isinstance(t, (list, tuple)):
# List are fine as long as they are...
if len(t) == 0:
# ... empty
return True
elif isinstance(t[0], str):
# ... list of strings
return True
elif isinstance(t[0], (list, tuple)):
# ... list with an empty list or with a list of strings
return len(t[0]) == 0 or isinstance(t[0][0], str)
else:
return False
else:
return False
if text_pair is not None:
# in case text + text_pair are provided, text = questions, text_pair = words
if not _is_valid_text_input(text):
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
if not isinstance(text_pair, (list, tuple)):
raise ValueError(
"words must of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
else:
# in case only text is provided => must be words
if not isinstance(text, (list, tuple)):
raise ValueError(
"Words must of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
if text_pair is not None:
is_batched = isinstance(text, (list, tuple))
else:
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
words = text if text_pair is None else text_pair
if boxes is None:
raise ValueError("You must provide corresponding bounding boxes")
if is_batched:
if len(words) != len(boxes):
raise ValueError("You must provide words and boxes for an equal amount of examples")
for words_example, boxes_example in zip(words, boxes):
if len(words_example) != len(boxes_example):
raise ValueError("You must provide as many words as there are bounding boxes")
else:
if len(words) != len(boxes):
raise ValueError("You must provide as many words as there are bounding boxes")
if is_batched:
if text_pair is not None and len(text) != len(text_pair):
raise ValueError(
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
f" {len(text_pair)}."
)
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
is_pair = bool(text_pair is not None)
return self.batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
else:
return self.encode_plus(
text=text,
text_pair=text_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
batched_input = [(text, pair)] if pair else [text]
encodings = self._tokenizer.encode_batch(
batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs
)
return encodings[0].tokens
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
boxes: Optional[List[List[List[int]]]] = None,
word_labels: Optional[List[List[int]]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
if not isinstance(batch_text_or_text_pairs, list):
raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})")
# Set the truncation and padding strategy and restore the initial configuration
self.set_truncation_and_padding(
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
)
if is_pair:
batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs]
encodings = self._tokenizer.encode_batch(
batch_text_or_text_pairs,
add_special_tokens=add_special_tokens,
is_pretokenized=True, # we set this to True as LayoutLMv2 always expects pretokenized inputs
)
# Convert encoding to dict
# `Tokens` has type: Tuple[
# List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]],
# List[EncodingFast]
# ]
# with nested dimensions corresponding to batch, overflows, sequence length
tokens_and_encodings = [
self._convert_encoding(
encoding=encoding,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=True
if word_labels is not None
else return_offsets_mapping, # we use offsets to create the labels
return_length=return_length,
verbose=verbose,
)
for encoding in encodings
]
# Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension
# From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length)
# (we say ~ because the number of overflow varies with the example in the batch)
#
# To match each overflowing sample with the original sample in the batch
# we add an overflow_to_sample_mapping array (see below)
sanitized_tokens = {}
for key in tokens_and_encodings[0][0].keys():
stack = [e for item, _ in tokens_and_encodings for e in item[key]]
sanitized_tokens[key] = stack
sanitized_encodings = [e for _, item in tokens_and_encodings for e in item]
# If returning overflowing tokens, we need to return a mapping
# from the batch idx to the original sample
if return_overflowing_tokens:
overflow_to_sample_mapping = []
for i, (toks, _) in enumerate(tokens_and_encodings):
overflow_to_sample_mapping += [i] * len(toks["input_ids"])
sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping
for input_ids in sanitized_tokens["input_ids"]:
self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose)
# create the token boxes
token_boxes = []
for batch_index in range(len(sanitized_tokens["input_ids"])):
if return_overflowing_tokens:
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
else:
original_index = batch_index
token_boxes_example = []
for id, sequence_id, word_id in zip(
sanitized_tokens["input_ids"][batch_index],
sanitized_encodings[batch_index].sequence_ids,
sanitized_encodings[batch_index].word_ids,
):
if word_id is not None:
if is_pair and sequence_id == 0:
token_boxes_example.append(self.pad_token_box)
else:
token_boxes_example.append(boxes[original_index][word_id])
else:
if id == self.cls_token_id:
token_boxes_example.append(self.cls_token_box)
elif id == self.sep_token_id:
token_boxes_example.append(self.sep_token_box)
elif id == self.pad_token_id:
token_boxes_example.append(self.pad_token_box)
else:
raise ValueError("Id not recognized")
token_boxes.append(token_boxes_example)
sanitized_tokens["bbox"] = token_boxes
# optionally, create the labels
if word_labels is not None:
labels = []
for batch_index in range(len(sanitized_tokens["input_ids"])):
if return_overflowing_tokens:
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
else:
original_index = batch_index
labels_example = []
for id, offset, word_id in zip(
sanitized_tokens["input_ids"][batch_index],
sanitized_tokens["offset_mapping"][batch_index],
sanitized_encodings[batch_index].word_ids,
):
if word_id is not None:
if self.only_label_first_subword:
if offset[0] == 0:
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
labels_example.append(word_labels[original_index][word_id])
else:
labels_example.append(self.pad_token_label)
else:
labels_example.append(word_labels[original_index][word_id])
else:
labels_example.append(self.pad_token_label)
labels.append(labels_example)
sanitized_tokens["labels"] = labels
# finally, remove offsets if the user didn't want them
if not return_offsets_mapping:
del sanitized_tokens["offset_mapping"]
return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors)
def _encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[bool] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
# make it a batched input
# 2 options:
# 1) only text, in case text must be a list of str
# 2) text + text_pair, in which case text = str and text_pair a list of str
batched_input = [(text, text_pair)] if text_pair else [text]
batched_boxes = [boxes]
batched_word_labels = [word_labels] if word_labels is not None else None
batched_output = self._batch_encode_plus(
batched_input,
is_pair=bool(text_pair is not None),
boxes=batched_boxes,
word_labels=batched_word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
# Return tensor is None, then we can remove the leading batch axis
# Overflowing tokens are returned as a batch of output so we keep them in this case
if return_tensors is None and not return_overflowing_tokens:
batched_output = BatchEncoding(
{
key: value[0] if len(value) > 0 and isinstance(value[0], list) else value
for key, value in batched_output.items()
},
batched_output.encodings,
)
self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose)
return batched_output
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
required_input = encoded_inputs[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if return_attention_mask and "attention_mask" not in encoded_inputs:
encoded_inputs["attention_mask"] = [1] * len(required_input)
if needs_to_be_padded:
difference = max_length - len(required_input)
if self.padding_side == "right":
if return_attention_mask:
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
)
if "bbox" in encoded_inputs:
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
if "labels" in encoded_inputs:
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
elif self.padding_side == "left":
if return_attention_mask:
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
"token_type_ids"
]
if "bbox" in encoded_inputs:
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
if "labels" in encoded_inputs:
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
return encoded_inputs
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An XLM-RoBERTa sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
not make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
| transformers/src/transformers/models/layoutxlm/tokenization_layoutxlm_fast.py/0 | {
"file_path": "transformers/src/transformers/models/layoutxlm/tokenization_layoutxlm_fast.py",
"repo_id": "transformers",
"token_count": 17923
} | 107 |
# coding=utf-8
# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tensorflow Longformer model."""
from __future__ import annotations
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_longformer import LongformerConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "allenai/longformer-base-4096"
_CONFIG_FOR_DOC = "LongformerConfig"
LARGE_NEGATIVE = -1e8
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"allenai/longformer-base-4096",
"allenai/longformer-large-4096",
"allenai/longformer-large-4096-finetuned-triviaqa",
"allenai/longformer-base-4096-extra.pos.embd.only",
"allenai/longformer-large-4096-extra.pos.embd.only",
# See all Longformer models at https://huggingface.co/models?filter=longformer
]
@dataclass
class TFLongformerBaseModelOutput(ModelOutput):
"""
Base class for Longformer's outputs, with potential hidden states, local and global attentions.
Args:
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x`
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
last_hidden_state: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
global_attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass
class TFLongformerBaseModelOutputWithPooling(ModelOutput):
"""
Base class for Longformer's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token) further processed by a
Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence
prediction (classification) objective during pretraining.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x`
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
last_hidden_state: tf.Tensor = None
pooler_output: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
global_attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass
class TFLongformerMaskedLMOutput(ModelOutput):
"""
Base class for masked language models outputs.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Masked language modeling (MLM) loss.
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x`
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
global_attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass
class TFLongformerQuestionAnsweringModelOutput(ModelOutput):
"""
Base class for outputs of question answering Longformer models.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x`
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
loss: tf.Tensor | None = None
start_logits: tf.Tensor = None
end_logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
global_attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass
class TFLongformerSequenceClassifierOutput(ModelOutput):
"""
Base class for outputs of sentence classification models.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x`
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
global_attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass
class TFLongformerMultipleChoiceModelOutput(ModelOutput):
"""
Base class for outputs of multiple choice models.
Args:
loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided):
Classification loss.
logits (`tf.Tensor` of shape `(batch_size, num_choices)`):
*num_choices* is the second dimension of the input tensors. (see *input_ids* above).
Classification scores (before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x`
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
global_attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass
class TFLongformerTokenClassifierOutput(ModelOutput):
"""
Base class for outputs of token classification models.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
Classification loss.
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x`
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
global_attentions: Tuple[tf.Tensor, ...] | None = None
def _compute_global_attention_mask(input_ids_shape, sep_token_indices, before_sep_token=True):
"""
Computes global attention mask by putting attention on all tokens before `sep_token_id` if `before_sep_token is
True` else after `sep_token_id`.
"""
assert shape_list(sep_token_indices)[1] == 2, "`input_ids` should have two dimensions"
question_end_index = tf.reshape(sep_token_indices, (input_ids_shape[0], 3, 2))[:, 0, 1][:, None]
# bool attention mask with True in locations of global attention
attention_mask = tf.expand_dims(tf.range(input_ids_shape[1], dtype=tf.int64), axis=0)
attention_mask = tf.tile(attention_mask, (input_ids_shape[0], 1))
if before_sep_token is True:
question_end_index = tf.tile(question_end_index, (1, input_ids_shape[1]))
attention_mask = tf.cast(attention_mask < question_end_index, dtype=question_end_index.dtype)
else:
# last token is separation token and should not be counted and in the middle are two separation tokens
question_end_index = tf.tile(question_end_index + 1, (1, input_ids_shape[1]))
attention_mask = tf.cast(
attention_mask > question_end_index,
dtype=question_end_index.dtype,
) * tf.cast(attention_mask < input_ids_shape[-1], dtype=question_end_index.dtype)
return attention_mask
# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->Longformer
class TFLongformerLMHead(keras.layers.Layer):
"""Longformer Head for masked language modeling."""
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.dense = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.act = get_tf_activation("gelu")
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = input_embeddings
def build(self, input_shape=None):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
def get_output_embeddings(self):
return self.decoder
def set_output_embeddings(self, value):
self.decoder.weight = value
self.decoder.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.layer_norm(hidden_states)
# project back to size of vocabulary with bias
seq_length = shape_list(tensor=hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
class TFLongformerEmbeddings(keras.layers.Layer):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing and some extra casting.
"""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.padding_idx = 1
self.config = config
self.hidden_size = config.hidden_size
self.max_position_embeddings = config.max_position_embeddings
self.initializer_range = config.initializer_range
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("token_type_embeddings"):
self.token_type_embeddings = self.add_weight(
name="embeddings",
shape=[self.config.type_vocab_size, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
symbols are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
input_ids: tf.Tensor
Returns: tf.Tensor
"""
mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype)
incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask
return incremental_indices + self.padding_idx
def call(
self,
input_ids=None,
position_ids=None,
token_type_ids=None,
inputs_embeds=None,
past_key_values_length=0,
training=False,
):
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
assert not (input_ids is None and inputs_embeds is None)
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if token_type_ids is None:
token_type_ids = tf.cast(tf.fill(dims=input_shape, value=0), tf.int64)
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = self.create_position_ids_from_input_ids(
input_ids=input_ids, past_key_values_length=past_key_values_length
)
else:
position_ids = tf.expand_dims(
tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1, dtype=tf.int64),
axis=0,
)
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
final_embeddings = inputs_embeds + position_embeds + token_type_embeds
final_embeddings = self.LayerNorm(inputs=final_embeddings)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Longformer
class TFLongformerIntermediate(keras.layers.Layer):
def __init__(self, config: LongformerConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Longformer
class TFLongformerOutput(keras.layers.Layer):
def __init__(self, config: LongformerConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Longformer
class TFLongformerPooler(keras.layers.Layer):
def __init__(self, config: LongformerConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Longformer
class TFLongformerSelfOutput(keras.layers.Layer):
def __init__(self, config: LongformerConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
class TFLongformerSelfAttention(keras.layers.Layer):
def __init__(self, config, layer_id, **kwargs):
super().__init__(**kwargs)
self.config = config
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads}"
)
self.num_heads = config.num_attention_heads
self.head_dim = int(config.hidden_size / config.num_attention_heads)
self.embed_dim = config.hidden_size
self.query = keras.layers.Dense(
self.embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
name="query",
)
self.key = keras.layers.Dense(
self.embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
name="key",
)
self.value = keras.layers.Dense(
self.embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
name="value",
)
# separate projection layers for tokens with global attention
self.query_global = keras.layers.Dense(
self.embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
name="query_global",
)
self.key_global = keras.layers.Dense(
self.embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
name="key_global",
)
self.value_global = keras.layers.Dense(
self.embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
name="value_global",
)
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
self.global_dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
self.layer_id = layer_id
attention_window = config.attention_window[self.layer_id]
assert (
attention_window % 2 == 0
), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
assert (
attention_window > 0
), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"
self.one_sided_attn_window_size = attention_window // 2
def build(self, input_shape=None):
if not self.built:
with tf.name_scope("query_global"):
self.query_global.build((self.config.hidden_size,))
with tf.name_scope("key_global"):
self.key_global.build((self.config.hidden_size,))
with tf.name_scope("value_global"):
self.value_global.build((self.config.hidden_size,))
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.hidden_size])
if getattr(self, "query_global", None) is not None:
with tf.name_scope(self.query_global.name):
self.query_global.build([None, None, self.config.hidden_size])
if getattr(self, "key_global", None) is not None:
with tf.name_scope(self.key_global.name):
self.key_global.build([None, None, self.config.hidden_size])
if getattr(self, "value_global", None) is not None:
with tf.name_scope(self.value_global.name):
self.value_global.build([None, None, self.config.hidden_size])
def call(
self,
inputs,
training=False,
):
"""
LongformerSelfAttention expects *len(hidden_states)* to be multiple of *attention_window*. Padding to
*attention_window* happens in LongformerModel.forward to avoid redoing the padding on each layer.
The *attention_mask* is changed in [`LongformerModel.forward`] from 0, 1, 2 to:
- -10000: no attention
- 0: local attention
- +10000: global attention
"""
# retrieve input args
(
hidden_states,
attention_mask,
layer_head_mask,
is_index_masked,
is_index_global_attn,
is_global_attn,
) = inputs
# project hidden states
query_vectors = self.query(hidden_states)
key_vectors = self.key(hidden_states)
value_vectors = self.value(hidden_states)
batch_size, seq_len, embed_dim = shape_list(hidden_states)
tf.debugging.assert_equal(
embed_dim,
self.embed_dim,
message=f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}",
)
# normalize query
query_vectors /= tf.math.sqrt(tf.cast(self.head_dim, dtype=query_vectors.dtype))
query_vectors = tf.reshape(query_vectors, (batch_size, seq_len, self.num_heads, self.head_dim))
key_vectors = tf.reshape(key_vectors, (batch_size, seq_len, self.num_heads, self.head_dim))
# attn_probs = (batch_size, seq_len, num_heads, window*2+1)
attn_scores = self._sliding_chunks_query_key_matmul(
query_vectors, key_vectors, self.one_sided_attn_window_size
)
# values to pad for attention probs
remove_from_windowed_attention_mask = attention_mask != 0
# cast to fp32/fp16 then replace 1's with -inf
float_mask = tf.cast(remove_from_windowed_attention_mask, dtype=query_vectors.dtype) * LARGE_NEGATIVE
# diagonal mask with zeros everywhere and -inf inplace of padding
diagonal_mask = self._sliding_chunks_query_key_matmul(
tf.ones(shape_list(attention_mask)),
float_mask,
self.one_sided_attn_window_size,
)
# pad local attention probs
attn_scores += diagonal_mask
tf.debugging.assert_equal(
shape_list(attn_scores),
[batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1],
message=(
f"attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads},"
f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {shape_list(attn_scores)}"
),
)
# compute global attn indices required through out forward fn
(
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
) = self._get_global_attn_indices(is_index_global_attn)
# this function is only relevant for global attention
if is_global_attn:
attn_scores = self._concat_with_global_key_attn_probs(
attn_scores=attn_scores,
query_vectors=query_vectors,
key_vectors=key_vectors,
max_num_global_attn_indices=max_num_global_attn_indices,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
)
attn_probs = stable_softmax(attn_scores, axis=-1)
# softmax sometimes inserts NaN if all positions are masked, replace them with 0
# Make sure to create a mask with the proper shape:
# if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1]
# if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1]
if is_global_attn:
masked_index = tf.tile(
is_index_masked[:, :, None, None],
(1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1),
)
else:
masked_index = tf.tile(
is_index_masked[:, :, None, None],
(1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1),
)
attn_probs = tf.where(
masked_index,
tf.zeros(shape_list(masked_index), dtype=attn_probs.dtype),
attn_probs,
)
if layer_head_mask is not None:
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
attn_probs = tf.reshape(layer_head_mask, (1, 1, -1, 1)) * attn_probs
# apply dropout
attn_probs = self.dropout(attn_probs, training=training)
value_vectors = tf.reshape(value_vectors, (batch_size, seq_len, self.num_heads, self.head_dim))
# if global attention, compute sum of global and local attn
if is_global_attn:
attn_output = self._compute_attn_output_with_global_indices(
value_vectors=value_vectors,
attn_probs=attn_probs,
max_num_global_attn_indices=max_num_global_attn_indices,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
)
else:
attn_output = self._sliding_chunks_matmul_attn_probs_value(
attn_probs, value_vectors, self.one_sided_attn_window_size
)
tf.debugging.assert_equal(
shape_list(attn_output), [batch_size, seq_len, self.num_heads, self.head_dim], message="Unexpected size"
)
attn_output = tf.reshape(attn_output, (batch_size, seq_len, embed_dim))
# compute value for global attention and overwrite to attention output
if is_global_attn:
attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden(
attn_output=attn_output,
hidden_states=hidden_states,
max_num_global_attn_indices=max_num_global_attn_indices,
layer_head_mask=layer_head_mask,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
is_index_masked=is_index_masked,
training=training,
)
else:
# Leave attn_output unchanged
global_attn_probs = tf.zeros((batch_size, self.num_heads, max_num_global_attn_indices, seq_len))
# make sure that local attention probabilities are set to 0 for indices of global attn
# Make sure to create a mask with the proper shape:
# if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1]
# if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1]
if is_global_attn:
masked_global_attn_index = tf.tile(
is_index_global_attn[:, :, None, None],
(1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1),
)
else:
masked_global_attn_index = tf.tile(
is_index_global_attn[:, :, None, None],
(1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1),
)
attn_probs = tf.where(
masked_global_attn_index,
tf.zeros(shape_list(masked_global_attn_index), dtype=attn_probs.dtype),
attn_probs,
)
outputs = (attn_output, attn_probs, global_attn_probs)
return outputs
def _sliding_chunks_query_key_matmul(self, query, key, window_overlap):
"""
Matrix multiplication of query and key tensors using with a sliding window attention pattern. This
implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an
overlap of size window_overlap
"""
batch_size, seq_len, num_heads, head_dim = shape_list(query)
tf.debugging.assert_equal(
seq_len % (window_overlap * 2),
0,
message=f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}",
)
tf.debugging.assert_equal(
shape_list(query),
shape_list(key),
message=(
f"Shape of query and key should be equal, but got query: {shape_list(query)} and key:"
f" {shape_list(key)}"
),
)
chunks_count = seq_len // window_overlap - 1
# group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2
query = tf.reshape(
tf.transpose(query, (0, 2, 1, 3)),
(batch_size * num_heads, seq_len, head_dim),
)
key = tf.reshape(tf.transpose(key, (0, 2, 1, 3)), (batch_size * num_heads, seq_len, head_dim))
chunked_query = self._chunk(query, window_overlap)
chunked_key = self._chunk(key, window_overlap)
# matrix multiplication
# bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim
# bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim
# bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap
chunked_query = tf.cast(chunked_query, dtype=chunked_key.dtype)
chunked_attention_scores = tf.einsum("bcxd,bcyd->bcxy", chunked_query, chunked_key) # multiply
# convert diagonals into columns
paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 1], [0, 0]])
diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims(chunked_attention_scores, paddings)
# allocate space for the overall attention matrix where the chunks are combined. The last dimension
# has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to
# window_overlap previous words). The following column is attention score from each word to itself, then
# followed by window_overlap columns for the upper triangle.
# copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions
# - copying the main diagonal and the upper triangle
# TODO: This code is most likely not very efficient and should be improved
diagonal_attn_scores_up_triang = tf.concat(
[
diagonal_chunked_attention_scores[:, :, :window_overlap, : window_overlap + 1],
diagonal_chunked_attention_scores[:, -1:, window_overlap:, : window_overlap + 1],
],
axis=1,
)
# - copying the lower triangle
diagonal_attn_scores_low_triang = tf.concat(
[
tf.zeros(
(batch_size * num_heads, 1, window_overlap, window_overlap),
dtype=diagonal_chunked_attention_scores.dtype,
),
diagonal_chunked_attention_scores[:, :, -(window_overlap + 1) : -1, window_overlap + 1 :],
],
axis=1,
)
diagonal_attn_scores_first_chunk = tf.concat(
[
tf.roll(
diagonal_chunked_attention_scores,
shift=[1, window_overlap],
axis=[2, 3],
)[:, :, :window_overlap, :window_overlap],
tf.zeros(
(batch_size * num_heads, 1, window_overlap, window_overlap),
dtype=diagonal_chunked_attention_scores.dtype,
),
],
axis=1,
)
first_chunk_mask = (
tf.tile(
tf.range(chunks_count + 1, dtype=tf.int64)[None, :, None, None],
(batch_size * num_heads, 1, window_overlap, window_overlap),
)
< 1
)
diagonal_attn_scores_low_triang = tf.where(
first_chunk_mask,
diagonal_attn_scores_first_chunk,
diagonal_attn_scores_low_triang,
)
# merging upper and lower triangle
diagonal_attention_scores = tf.concat(
[diagonal_attn_scores_low_triang, diagonal_attn_scores_up_triang], axis=-1
)
# separate batch_size and num_heads dimensions again
diagonal_attention_scores = tf.transpose(
tf.reshape(
diagonal_attention_scores,
(batch_size, num_heads, seq_len, 2 * window_overlap + 1),
),
(0, 2, 1, 3),
)
diagonal_attention_scores = self._mask_invalid_locations(diagonal_attention_scores, window_overlap)
return diagonal_attention_scores
@staticmethod
def _mask_invalid_locations(input_tensor, window_overlap):
# create correct upper triangle bool mask
mask_2d_upper = tf.reverse(
tf.linalg.band_part(tf.ones(shape=(window_overlap, window_overlap + 1)), -1, 0),
axis=[0],
)
# pad to full matrix
padding = tf.convert_to_tensor(
[[0, shape_list(input_tensor)[1] - window_overlap], [0, shape_list(input_tensor)[3] - window_overlap - 1]]
)
# create lower mask
mask_2d = tf.pad(mask_2d_upper, padding)
# combine with upper mask
mask_2d = mask_2d + tf.reverse(mask_2d, axis=[0, 1])
# broadcast to full matrix
mask_4d = tf.tile(mask_2d[None, :, None, :], (shape_list(input_tensor)[0], 1, 1, 1))
# inf tensor used for masking
inf_tensor = -float("inf") * tf.ones_like(input_tensor)
# mask
input_tensor = tf.where(tf.math.greater(mask_4d, 0), inf_tensor, input_tensor)
return input_tensor
def _sliding_chunks_matmul_attn_probs_value(self, attn_probs, value, window_overlap):
"""
Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the
same shape as `attn_probs`
"""
batch_size, seq_len, num_heads, head_dim = shape_list(value)
tf.debugging.assert_equal(
seq_len % (window_overlap * 2), 0, message="Seq_len has to be multiple of 2 * window_overlap"
)
tf.debugging.assert_equal(
shape_list(attn_probs)[:3],
shape_list(value)[:3],
message="value and attn_probs must have same dims (except head_dim)",
)
tf.debugging.assert_equal(
shape_list(attn_probs)[3],
2 * window_overlap + 1,
message="attn_probs last dim has to be 2 * window_overlap + 1",
)
chunks_count = seq_len // window_overlap - 1
# group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap
chunked_attn_probs = tf.reshape(
tf.transpose(attn_probs, (0, 2, 1, 3)),
(
batch_size * num_heads,
seq_len // window_overlap,
window_overlap,
2 * window_overlap + 1,
),
)
# group batch_size and num_heads dimensions into one
value = tf.reshape(
tf.transpose(value, (0, 2, 1, 3)),
(batch_size * num_heads, seq_len, head_dim),
)
# pad seq_len with w at the beginning of the sequence and another window overlap at the end
paddings = tf.convert_to_tensor([[0, 0], [window_overlap, window_overlap], [0, 0]])
padded_value = tf.pad(value, paddings, constant_values=-1)
# chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap
frame_size = 3 * window_overlap * head_dim
frame_hop_size = (shape_list(padded_value)[1] * head_dim - frame_size) // chunks_count
chunked_value = tf.signal.frame(
tf.reshape(padded_value, (batch_size * num_heads, -1)),
frame_size,
frame_hop_size,
)
chunked_value = tf.reshape(
chunked_value,
(batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim),
)
tf.debugging.assert_equal(
shape_list(chunked_value),
[batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim],
message="Chunked value has the wrong shape",
)
chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs)
context = tf.einsum("bcwd,bcdh->bcwh", chunked_attn_probs, chunked_value)
context = tf.transpose(
tf.reshape(context, (batch_size, num_heads, seq_len, head_dim)),
(0, 2, 1, 3),
)
return context
@staticmethod
def _pad_and_transpose_last_two_dims(hidden_states_padded, paddings):
"""pads rows and then flips rows and columns"""
hidden_states_padded = tf.pad(
hidden_states_padded, paddings
) # padding value is not important because it will be overwritten
batch_size, chunk_size, seq_length, hidden_dim = shape_list(hidden_states_padded)
hidden_states_padded = tf.reshape(hidden_states_padded, (batch_size, chunk_size, hidden_dim, seq_length))
return hidden_states_padded
@staticmethod
def _pad_and_diagonalize(chunked_hidden_states):
"""
shift every row 1 step right, converting columns into diagonals.
Example:
```python
chunked_hidden_states: [
0.4983,
2.6918,
-0.0071,
1.0492,
-1.8348,
0.7672,
0.2986,
0.0285,
-0.7584,
0.4206,
-0.0405,
0.1599,
2.0514,
-1.1600,
0.5372,
0.2629,
]
window_overlap = num_rows = 4
```
(pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000
0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206,
-0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ]
"""
total_num_heads, num_chunks, window_overlap, hidden_dim = shape_list(chunked_hidden_states)
paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 0], [0, window_overlap + 1]])
chunked_hidden_states = tf.pad(
chunked_hidden_states, paddings
) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten
chunked_hidden_states = tf.reshape(
chunked_hidden_states, (total_num_heads, num_chunks, -1)
) # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap+window_overlap
chunked_hidden_states = chunked_hidden_states[
:, :, :-window_overlap
] # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap
chunked_hidden_states = tf.reshape(
chunked_hidden_states,
(total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim),
) # total_num_heads x num_chunks, window_overlap x hidden_dim+window_overlap
chunked_hidden_states = chunked_hidden_states[:, :, :, :-1]
return chunked_hidden_states
@staticmethod
def _chunk(hidden_states, window_overlap):
"""convert into overlapping chunks. Chunk size = 2w, overlap size = w"""
batch_size, seq_length, hidden_dim = shape_list(hidden_states)
num_output_chunks = 2 * (seq_length // (2 * window_overlap)) - 1
# define frame size and frame stride (similar to convolution)
frame_hop_size = window_overlap * hidden_dim
frame_size = 2 * frame_hop_size
hidden_states = tf.reshape(hidden_states, (batch_size, seq_length * hidden_dim))
# chunk with overlap
chunked_hidden_states = tf.signal.frame(hidden_states, frame_size, frame_hop_size)
tf.debugging.assert_equal(
shape_list(chunked_hidden_states),
[batch_size, num_output_chunks, frame_size],
message=(
"Make sure chunking is correctly applied. `Chunked hidden states should have output dimension"
f" {[batch_size, frame_size, num_output_chunks]}, but got {shape_list(chunked_hidden_states)}."
),
)
chunked_hidden_states = tf.reshape(
chunked_hidden_states,
(batch_size, num_output_chunks, 2 * window_overlap, hidden_dim),
)
return chunked_hidden_states
@staticmethod
def _get_global_attn_indices(is_index_global_attn):
"""compute global attn indices required throughout forward pass"""
# helper variable
num_global_attn_indices = tf.math.count_nonzero(is_index_global_attn, axis=1)
num_global_attn_indices = tf.cast(num_global_attn_indices, dtype=tf.constant(1).dtype)
# max number of global attn indices in batch
max_num_global_attn_indices = tf.reduce_max(num_global_attn_indices)
# indices of global attn
is_index_global_attn_nonzero = tf.where(is_index_global_attn)
# helper variable
is_local_index_global_attn = tf.range(max_num_global_attn_indices) < tf.expand_dims(
num_global_attn_indices, axis=-1
)
# location of the non-padding values within global attention indices
is_local_index_global_attn_nonzero = tf.where(is_local_index_global_attn)
# location of the padding values within global attention indices
is_local_index_no_global_attn_nonzero = tf.where(tf.math.logical_not(is_local_index_global_attn))
return (
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
)
def _concat_with_global_key_attn_probs(
self,
attn_scores,
key_vectors,
query_vectors,
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
):
batch_size = shape_list(key_vectors)[0]
# select global key vectors
global_key_vectors = tf.gather_nd(key_vectors, is_index_global_attn_nonzero)
# create only global key vectors
key_vectors_only_global = tf.scatter_nd(
is_local_index_global_attn_nonzero,
global_key_vectors,
shape=(
batch_size,
max_num_global_attn_indices,
self.num_heads,
self.head_dim,
),
)
# (batch_size, seq_len, num_heads, max_num_global_attn_indices)
attn_probs_from_global_key = tf.einsum("blhd,bshd->blhs", query_vectors, key_vectors_only_global)
# (batch_size, max_num_global_attn_indices, seq_len, num_heads)
attn_probs_from_global_key_trans = tf.transpose(attn_probs_from_global_key, (0, 3, 1, 2))
mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple(
shape_list(attn_probs_from_global_key_trans)[-2:]
)
mask = tf.ones(mask_shape) * -10000.0
mask = tf.cast(mask, dtype=attn_probs_from_global_key_trans.dtype)
# scatter mask
attn_probs_from_global_key_trans = tf.tensor_scatter_nd_update(
attn_probs_from_global_key_trans,
is_local_index_no_global_attn_nonzero,
mask,
)
# (batch_size, seq_len, num_heads, max_num_global_attn_indices)
attn_probs_from_global_key = tf.transpose(attn_probs_from_global_key_trans, (0, 2, 3, 1))
# concat to attn_probs
# (batch_size, seq_len, num_heads, extra attention count + 2*window+1)
attn_scores = tf.concat((attn_probs_from_global_key, attn_scores), axis=-1)
return attn_scores
def _compute_attn_output_with_global_indices(
self,
value_vectors,
attn_probs,
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
):
batch_size = shape_list(attn_probs)[0]
# cut local attn probs to global only
attn_probs_only_global = attn_probs[:, :, :, :max_num_global_attn_indices]
# select global value vectors
global_value_vectors = tf.gather_nd(value_vectors, is_index_global_attn_nonzero)
# create only global value vectors
value_vectors_only_global = tf.scatter_nd(
is_local_index_global_attn_nonzero,
global_value_vectors,
shape=(
batch_size,
max_num_global_attn_indices,
self.num_heads,
self.head_dim,
),
)
# compute attn output only global
attn_output_only_global = tf.einsum("blhs,bshd->blhd", attn_probs_only_global, value_vectors_only_global)
# reshape attn probs
attn_probs_without_global = attn_probs[:, :, :, max_num_global_attn_indices:]
# compute attn output with global
attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value(
attn_probs_without_global, value_vectors, self.one_sided_attn_window_size
)
return attn_output_only_global + attn_output_without_global
def _compute_global_attn_output_from_hidden(
self,
attn_output,
hidden_states,
max_num_global_attn_indices,
layer_head_mask,
is_local_index_global_attn_nonzero,
is_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
is_index_masked,
training,
):
batch_size, seq_len = shape_list(hidden_states)[:2]
# prepare global hidden states
global_attn_hidden_states = tf.gather_nd(hidden_states, is_index_global_attn_nonzero)
global_attn_hidden_states = tf.scatter_nd(
is_local_index_global_attn_nonzero,
global_attn_hidden_states,
shape=(batch_size, max_num_global_attn_indices, self.embed_dim),
)
# global key, query, value
global_query_vectors_only_global = self.query_global(global_attn_hidden_states)
global_key_vectors = self.key_global(hidden_states)
global_value_vectors = self.value_global(hidden_states)
# normalize
global_query_vectors_only_global /= tf.math.sqrt(
tf.cast(self.head_dim, dtype=global_query_vectors_only_global.dtype)
)
global_query_vectors_only_global = self.reshape_and_transpose(global_query_vectors_only_global, batch_size)
global_key_vectors = self.reshape_and_transpose(global_key_vectors, batch_size)
global_value_vectors = self.reshape_and_transpose(global_value_vectors, batch_size)
# compute attn scores
global_attn_scores = tf.matmul(global_query_vectors_only_global, global_key_vectors, transpose_b=True)
tf.debugging.assert_equal(
shape_list(global_attn_scores),
[batch_size * self.num_heads, max_num_global_attn_indices, seq_len],
message=(
"global_attn_scores have the wrong size. Size should be"
f" {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is"
f" {shape_list(global_attn_scores)}."
),
)
global_attn_scores = tf.reshape(
global_attn_scores,
(batch_size, self.num_heads, max_num_global_attn_indices, seq_len),
)
global_attn_scores_trans = tf.transpose(global_attn_scores, (0, 2, 1, 3))
mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple(
shape_list(global_attn_scores_trans)[-2:]
)
global_attn_mask = tf.ones(mask_shape) * -10000.0
global_attn_mask = tf.cast(global_attn_mask, dtype=global_attn_scores_trans.dtype)
# scatter mask
global_attn_scores_trans = tf.tensor_scatter_nd_update(
global_attn_scores_trans,
is_local_index_no_global_attn_nonzero,
global_attn_mask,
)
global_attn_scores = tf.transpose(global_attn_scores_trans, (0, 2, 1, 3))
# mask global attn scores
attn_mask = tf.tile(is_index_masked[:, None, None, :], (1, shape_list(global_attn_scores)[1], 1, 1))
global_attn_scores = tf.where(attn_mask, -10000.0, global_attn_scores)
global_attn_scores = tf.reshape(
global_attn_scores,
(batch_size * self.num_heads, max_num_global_attn_indices, seq_len),
)
# compute global attn probs
global_attn_probs_float = stable_softmax(global_attn_scores, axis=-1)
# apply layer head masking
if layer_head_mask is not None:
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
global_attn_probs_float = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
global_attn_probs_float, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len)
)
global_attn_probs_float = tf.reshape(
global_attn_probs_float, (batch_size * self.num_heads, max_num_global_attn_indices, seq_len)
)
# dropout
global_attn_probs = self.global_dropout(global_attn_probs_float, training=training)
# global attn output
global_attn_output = tf.matmul(global_attn_probs, global_value_vectors)
tf.debugging.assert_equal(
shape_list(global_attn_output),
[batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim],
message=(
"global_attn_output tensor has the wrong size. Size should be"
f" {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is"
f" {shape_list(global_attn_output)}."
),
)
global_attn_output = tf.reshape(
global_attn_output,
(batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim),
)
# get only non zero global attn output
nonzero_global_attn_output = tf.gather_nd(
tf.transpose(global_attn_output, (0, 2, 1, 3)),
is_local_index_global_attn_nonzero,
)
nonzero_global_attn_output = tf.reshape(
nonzero_global_attn_output,
(shape_list(is_local_index_global_attn_nonzero)[0], -1),
)
# overwrite values with global attention
attn_output = tf.tensor_scatter_nd_update(
attn_output, is_index_global_attn_nonzero, nonzero_global_attn_output
)
global_attn_probs = tf.reshape(
global_attn_probs, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len)
)
return attn_output, global_attn_probs
def reshape_and_transpose(self, vector, batch_size):
return tf.reshape(
tf.transpose(
tf.reshape(vector, (batch_size, -1, self.num_heads, self.head_dim)),
(0, 2, 1, 3),
),
(batch_size * self.num_heads, -1, self.head_dim),
)
class TFLongformerAttention(keras.layers.Layer):
def __init__(self, config, layer_id=0, **kwargs):
super().__init__(**kwargs)
self.self_attention = TFLongformerSelfAttention(config, layer_id, name="self")
self.dense_output = TFLongformerSelfOutput(config, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(self, inputs, training=False):
(
hidden_states,
attention_mask,
layer_head_mask,
is_index_masked,
is_index_global_attn,
is_global_attn,
) = inputs
self_outputs = self.self_attention(
[hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn],
training=training,
)
attention_output = self.dense_output(self_outputs[0], hidden_states, training=training)
outputs = (attention_output,) + self_outputs[1:]
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attention", None) is not None:
with tf.name_scope(self.self_attention.name):
self.self_attention.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
class TFLongformerLayer(keras.layers.Layer):
def __init__(self, config, layer_id=0, **kwargs):
super().__init__(**kwargs)
self.attention = TFLongformerAttention(config, layer_id, name="attention")
self.intermediate = TFLongformerIntermediate(config, name="intermediate")
self.longformer_output = TFLongformerOutput(config, name="output")
def call(self, inputs, training=False):
(
hidden_states,
attention_mask,
layer_head_mask,
is_index_masked,
is_index_global_attn,
is_global_attn,
) = inputs
attention_outputs = self.attention(
[hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn],
training=training,
)
attention_output = attention_outputs[0]
intermediate_output = self.intermediate(attention_output)
layer_output = self.longformer_output(intermediate_output, attention_output, training=training)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "longformer_output", None) is not None:
with tf.name_scope(self.longformer_output.name):
self.longformer_output.build(None)
class TFLongformerEncoder(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.layer = [TFLongformerLayer(config, i, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states,
attention_mask=None,
head_mask=None,
padding_len=0,
is_index_masked=None,
is_index_global_attn=None,
is_global_attn=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
all_hidden_states = () if output_hidden_states else None
all_attentions = all_global_attentions = () if output_attentions else None
for idx, layer_module in enumerate(self.layer):
if output_hidden_states:
hidden_states_to_add = hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states
all_hidden_states = all_hidden_states + (hidden_states_to_add,)
layer_outputs = layer_module(
[
hidden_states,
attention_mask,
head_mask[idx] if head_mask is not None else None,
is_index_masked,
is_index_global_attn,
is_global_attn,
],
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
# bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1)
all_attentions = all_attentions + (tf.transpose(layer_outputs[1], (0, 2, 1, 3)),)
# bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn
all_global_attentions = all_global_attentions + (tf.transpose(layer_outputs[2], (0, 1, 3, 2)),)
# Add last layer
if output_hidden_states:
hidden_states_to_add = hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states
all_hidden_states = all_hidden_states + (hidden_states_to_add,)
# undo padding
# unpad `hidden_states` because the calling function is expecting a length == input_ids.size(1)
hidden_states = hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states
if output_attentions:
all_attentions = (
tuple([state[:, :, :-padding_len, :] for state in all_attentions])
if padding_len > 0
else all_attentions
)
if not return_dict:
return tuple(
v for v in [hidden_states, all_hidden_states, all_attentions, all_global_attentions] if v is not None
)
return TFLongformerBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
global_attentions=all_global_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFLongformerMainLayer(keras.layers.Layer):
config_class = LongformerConfig
def __init__(self, config, add_pooling_layer=True, **kwargs):
super().__init__(**kwargs)
if isinstance(config.attention_window, int):
assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value"
assert config.attention_window > 0, "`config.attention_window` has to be positive"
config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer
else:
assert len(config.attention_window) == config.num_hidden_layers, (
"`len(config.attention_window)` should equal `config.num_hidden_layers`. "
f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}"
)
self.config = config
self.num_hidden_layers = config.num_hidden_layers
self.initializer_range = config.initializer_range
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.pad_token_id = config.pad_token_id
self.attention_window = config.attention_window
self.embeddings = TFLongformerEmbeddings(config, name="embeddings")
self.encoder = TFLongformerEncoder(config, name="encoder")
self.pooler = TFLongformerPooler(config, name="pooler") if add_pooling_layer else None
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
global_attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
if input_ids is not None and not isinstance(input_ids, tf.Tensor):
input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int64)
elif input_ids is not None:
input_ids = tf.cast(input_ids, tf.int64)
if attention_mask is not None and not isinstance(attention_mask, tf.Tensor):
attention_mask = tf.convert_to_tensor(attention_mask, dtype=tf.int64)
elif attention_mask is not None:
attention_mask = tf.cast(attention_mask, tf.int64)
if global_attention_mask is not None and not isinstance(global_attention_mask, tf.Tensor):
global_attention_mask = tf.convert_to_tensor(global_attention_mask, dtype=tf.int64)
elif global_attention_mask is not None:
global_attention_mask = tf.cast(global_attention_mask, tf.int64)
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.cast(tf.fill(input_shape, 1), tf.int64)
if token_type_ids is None:
token_type_ids = tf.cast(tf.fill(input_shape, 0), tf.int64)
# merge `global_attention_mask` and `attention_mask`
if global_attention_mask is not None:
attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask)
(
padding_len,
input_ids,
attention_mask,
token_type_ids,
position_ids,
inputs_embeds,
) = self._pad_to_window_size(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
pad_token_id=self.pad_token_id,
)
# is index masked or global attention
is_index_masked = tf.math.less(attention_mask, 1)
is_index_global_attn = tf.math.greater(attention_mask, 1)
is_global_attn = tf.math.reduce_any(is_index_global_attn)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, to_seq_length, 1, 1]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask_shape = shape_list(attention_mask)
extended_attention_mask = tf.reshape(attention_mask, (attention_mask_shape[0], attention_mask_shape[1], 1, 1))
# Since attention_mask is 1.0 for positions we want to attend locally and 0.0 for
# masked and global attn positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(tf.math.abs(1 - extended_attention_mask), tf.dtypes.float32) * -10000.0
embedding_output = self.embeddings(
input_ids,
position_ids,
token_type_ids,
inputs_embeds,
training=training,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
padding_len=padding_len,
is_index_masked=is_index_masked,
is_index_global_attn=is_index_global_attn,
is_global_attn=is_global_attn,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return TFLongformerBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
global_attentions=encoder_outputs.global_attentions,
)
def _pad_to_window_size(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
inputs_embeds,
pad_token_id,
):
"""A helper function to pad tokens and mask to work with implementation of Longformer selfattention."""
# padding
attention_window = (
self.attention_window if isinstance(self.attention_window, int) else max(self.attention_window)
)
assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}"
input_shape = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)
batch_size, seq_len = input_shape[:2]
padding_len = (attention_window - seq_len % attention_window) % attention_window
paddings = tf.convert_to_tensor([[0, 0], [0, padding_len]])
if input_ids is not None:
input_ids = tf.pad(input_ids, paddings, constant_values=pad_token_id)
if position_ids is not None:
# pad with position_id = pad_token_id as in modeling_roberta.RobertaEmbeddings
position_ids = tf.pad(position_ids, paddings, constant_values=pad_token_id)
if inputs_embeds is not None:
if padding_len > 0:
input_ids_padding = tf.cast(tf.fill((batch_size, padding_len), self.pad_token_id), tf.int64)
inputs_embeds_padding = self.embeddings(input_ids_padding)
inputs_embeds = tf.concat([inputs_embeds, inputs_embeds_padding], axis=-2)
attention_mask = tf.pad(attention_mask, paddings, constant_values=False) # no attention on the padding tokens
token_type_ids = tf.pad(token_type_ids, paddings, constant_values=0) # pad with token_type_id = 0
return (
padding_len,
input_ids,
attention_mask,
token_type_ids,
position_ids,
inputs_embeds,
)
@staticmethod
def _merge_to_attention_mask(attention_mask: tf.Tensor, global_attention_mask: tf.Tensor):
# longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn)
# (global_attention_mask + 1) => 1 for local attention, 2 for global attention
# => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention
if attention_mask is not None:
attention_mask = attention_mask * (global_attention_mask + 1)
else:
# simply use `global_attention_mask` as `attention_mask`
# if no `attention_mask` is given
attention_mask = global_attention_mask + 1
return attention_mask
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
class TFLongformerPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LongformerConfig
base_model_prefix = "longformer"
@property
def input_signature(self):
sig = super().input_signature
sig["global_attention_mask"] = tf.TensorSpec((None, None), tf.int32, name="global_attention_mask")
return sig
LONGFORMER_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`LongformerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
LONGFORMER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`np.ndarray` or `tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
global_attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to decide the attention given on each token, local attention or global attention. Tokens with global
attention attends to all other tokens, and all other tokens attend to them. This is important for
task-specific finetuning because it makes the model more flexible at representing the task. For example,
for classification, the <s> token should be given global attention. For QA, all question tokens should also
have global attention. Please refer to the [Longformer paper](https://arxiv.org/abs/2004.05150) for more
details. Mask values selected in `[0, 1]`:
- 0 for local attention (a sliding window attention),
- 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them).
token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare Longformer Model outputting raw hidden-states without any specific head on top.",
LONGFORMER_START_DOCSTRING,
)
class TFLongformerModel(TFLongformerPreTrainedModel):
"""
This class copies code from [`TFRobertaModel`] and overwrites standard self-attention with longformer
self-attention to provide the ability to process long sequences following the self-attention approach described in
[Longformer: the Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, and
Arman Cohan. Longformer self-attention combines a local (sliding window) and global attention to extend to long
documents without the O(n^2) increase in memory and compute.
The self-attention module `TFLongformerSelfAttention` implemented here supports the combination of local and global
attention but it lacks support for autoregressive attention and dilated attention. Autoregressive and dilated
attention are more relevant for autoregressive language modeling than finetuning on downstream tasks. Future
release will add support for autoregressive attention, but the support for dilated attention requires a custom CUDA
kernel to be memory and compute efficient.
"""
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.longformer = TFLongformerMainLayer(config, name="longformer")
@unpack_inputs
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
global_attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFLongformerBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
outputs = self.longformer(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
global_attention_mask=global_attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "longformer", None) is not None:
with tf.name_scope(self.longformer.name):
self.longformer.build(None)
@add_start_docstrings(
"""Longformer Model with a `language modeling` head on top.""",
LONGFORMER_START_DOCSTRING,
)
class TFLongformerForMaskedLM(TFLongformerPreTrainedModel, TFMaskedLanguageModelingLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer")
self.lm_head = TFLongformerLMHead(config, self.longformer.embeddings, name="lm_head")
def get_lm_head(self):
return self.lm_head
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.lm_head.name
@unpack_inputs
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="allenai/longformer-base-4096",
output_type=TFLongformerMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
expected_output="' Paris'",
expected_loss=0.44,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
global_attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFLongformerMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
outputs = self.longformer(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
global_attention_mask=global_attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFLongformerMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
global_attentions=outputs.global_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "longformer", None) is not None:
with tf.name_scope(self.longformer.name):
self.longformer.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build(None)
@add_start_docstrings(
"""
Longformer Model with a span classification head on top for extractive question-answering tasks like SQuAD /
TriviaQA (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
LONGFORMER_START_DOCSTRING,
)
class TFLongformerForQuestionAnswering(TFLongformerPreTrainedModel, TFQuestionAnsweringLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer")
self.qa_outputs = keras.layers.Dense(
config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="qa_outputs",
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="allenai/longformer-large-4096-finetuned-triviaqa",
output_type=TFLongformerQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="' puppet'",
expected_loss=0.96,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
global_attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFLongformerQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
"""
if input_ids is not None and not isinstance(input_ids, tf.Tensor):
input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int64)
elif input_ids is not None:
input_ids = tf.cast(input_ids, tf.int64)
if attention_mask is not None and not isinstance(attention_mask, tf.Tensor):
attention_mask = tf.convert_to_tensor(attention_mask, dtype=tf.int64)
elif attention_mask is not None:
attention_mask = tf.cast(attention_mask, tf.int64)
if global_attention_mask is not None and not isinstance(global_attention_mask, tf.Tensor):
global_attention_mask = tf.convert_to_tensor(global_attention_mask, dtype=tf.int64)
elif global_attention_mask is not None:
global_attention_mask = tf.cast(global_attention_mask, tf.int64)
# set global attention on question tokens
if global_attention_mask is None and input_ids is not None:
if shape_list(tf.where(input_ids == self.config.sep_token_id))[0] != 3 * shape_list(input_ids)[0]:
logger.warning(
f"There should be exactly three separator tokens: {self.config.sep_token_id} in every sample for"
" questions answering. You might also consider to set `global_attention_mask` manually in the"
" forward function to avoid this. This is most likely an error. The global attention is disabled"
" for this forward pass."
)
global_attention_mask = tf.cast(tf.fill(shape_list(input_ids), value=0), tf.int64)
else:
logger.warning_once("Initializing global attention on question tokens...")
# put global attention on all tokens until `config.sep_token_id` is reached
sep_token_indices = tf.where(input_ids == self.config.sep_token_id)
sep_token_indices = tf.cast(sep_token_indices, dtype=tf.int64)
global_attention_mask = _compute_global_attention_mask(shape_list(input_ids), sep_token_indices)
outputs = self.longformer(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
global_attention_mask=global_attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFLongformerQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
global_attentions=outputs.global_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "longformer", None) is not None:
with tf.name_scope(self.longformer.name):
self.longformer.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
class TFLongformerClassificationHead(keras.layers.Layer):
"""Head for sentence-level classification tasks."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.out_proj = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
)
self.config = config
def call(self, hidden_states, training=False):
hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS])
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
output = self.out_proj(hidden_states)
return output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Longformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
LONGFORMER_START_DOCSTRING,
)
class TFLongformerForSequenceClassification(TFLongformerPreTrainedModel, TFSequenceClassificationLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer")
self.classifier = TFLongformerClassificationHead(config, name="classifier")
@unpack_inputs
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFLongformerSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
global_attention_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFLongformerSequenceClassifierOutput, Tuple[tf.Tensor]]:
if input_ids is not None and not isinstance(input_ids, tf.Tensor):
input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int64)
elif input_ids is not None:
input_ids = tf.cast(input_ids, tf.int64)
if attention_mask is not None and not isinstance(attention_mask, tf.Tensor):
attention_mask = tf.convert_to_tensor(attention_mask, dtype=tf.int64)
elif attention_mask is not None:
attention_mask = tf.cast(attention_mask, tf.int64)
if global_attention_mask is not None and not isinstance(global_attention_mask, tf.Tensor):
global_attention_mask = tf.convert_to_tensor(global_attention_mask, dtype=tf.int64)
elif global_attention_mask is not None:
global_attention_mask = tf.cast(global_attention_mask, tf.int64)
if global_attention_mask is None and input_ids is not None:
logger.warning_once("Initializing global attention on CLS token...")
# global attention on cls token
global_attention_mask = tf.zeros_like(input_ids)
updates = tf.ones(shape_list(input_ids)[0], dtype=tf.int64)
indices = tf.pad(
tensor=tf.expand_dims(tf.range(shape_list(input_ids)[0], dtype=tf.int64), axis=1),
paddings=[[0, 0], [0, 1]],
constant_values=0,
)
global_attention_mask = tf.tensor_scatter_nd_update(
global_attention_mask,
indices,
updates,
)
outputs = self.longformer(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
global_attention_mask=global_attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFLongformerSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
global_attentions=outputs.global_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "longformer", None) is not None:
with tf.name_scope(self.longformer.name):
self.longformer.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
@add_start_docstrings(
"""
Longformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
a softmax) e.g. for RocStories/SWAG tasks.
""",
LONGFORMER_START_DOCSTRING,
)
class TFLongformerForMultipleChoice(TFLongformerPreTrainedModel, TFMultipleChoiceLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_missing = [r"dropout"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.longformer = TFLongformerMainLayer(config, name="longformer")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = keras.layers.Dense(
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@property
def input_signature(self):
return {
"input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"),
"global_attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="global_attention_mask"),
}
@unpack_inputs
@add_start_docstrings_to_model_forward(
LONGFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFLongformerMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
global_attention_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFLongformerMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_global_attention_mask = (
tf.reshape(global_attention_mask, (-1, shape_list(global_attention_mask)[-1]))
if global_attention_mask is not None
else None
)
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
outputs = self.longformer(
flat_input_ids,
position_ids=flat_position_ids,
token_type_ids=flat_token_type_ids,
attention_mask=flat_attention_mask,
head_mask=head_mask,
global_attention_mask=flat_global_attention_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFLongformerMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
global_attentions=outputs.global_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "longformer", None) is not None:
with tf.name_scope(self.longformer.name):
self.longformer.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Longformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
for Named-Entity-Recognition (NER) tasks.
""",
LONGFORMER_START_DOCSTRING,
)
class TFLongformerForTokenClassification(TFLongformerPreTrainedModel, TFTokenClassificationLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"dropout"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.longformer = TFLongformerMainLayer(config=config, add_pooling_layer=False, name="longformer")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFLongformerTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
global_attention_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[Union[np.array, tf.Tensor]] = None,
training: Optional[bool] = False,
) -> Union[TFLongformerTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
outputs = self.longformer(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
global_attention_mask=global_attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFLongformerTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
global_attentions=outputs.global_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "longformer", None) is not None:
with tf.name_scope(self.longformer.name):
self.longformer.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
| transformers/src/transformers/models/longformer/modeling_tf_longformer.py/0 | {
"file_path": "transformers/src/transformers/models/longformer/modeling_tf_longformer.py",
"repo_id": "transformers",
"token_count": 55431
} | 108 |
# coding=utf-8
# Copyright 2018 Hao Tan, Mohit Bansal, and the HuggingFace team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LXMERT model."""
import math
import os
import warnings
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, SmoothL1Loss
from ...activations import ACT2FN, gelu
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_lxmert import LxmertConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "unc-nlp/lxmert-base-uncased"
_CONFIG_FOR_DOC = "LxmertConfig"
LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"unc-nlp/lxmert-base-uncased",
]
class GeLU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return gelu(x)
@dataclass
class LxmertModelOutput(ModelOutput):
"""
Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language,
visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship"
encoder")
Args:
language_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the language encoder.
vision_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the visual encoder.
pooled_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed
by a Linear layer and a Tanh activation function. The Linear
language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
shape `(batch_size, sequence_length, hidden_size)`.
vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
shape `(batch_size, sequence_length, hidden_size)`.
language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
language_output: Optional[torch.FloatTensor] = None
vision_output: Optional[torch.FloatTensor] = None
pooled_output: Optional[torch.FloatTensor] = None
language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
language_attentions: Optional[Tuple[torch.FloatTensor]] = None
vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class LxmertForQuestionAnsweringOutput(ModelOutput):
"""
Output type of [`LxmertForQuestionAnswering`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.k.
question_answering_score (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`, *optional*):
Prediction scores of question answering objective (classification).
language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
shape `(batch_size, sequence_length, hidden_size)`.
vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
shape `(batch_size, sequence_length, hidden_size)`.
language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
question_answering_score: Optional[torch.FloatTensor] = None
language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
language_attentions: Optional[Tuple[torch.FloatTensor]] = None
vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class LxmertForPreTrainingOutput(ModelOutput):
"""
Output type of [`LxmertForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
cross_relationship_score (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the textual matching objective (classification) head (scores of True/False
continuation before SoftMax).
question_answering_score (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`):
Prediction scores of question answering objective (classification).
language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
shape `(batch_size, sequence_length, hidden_size)`.
vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
shape `(batch_size, sequence_length, hidden_size)`.
language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
prediction_logits: Optional[torch.FloatTensor] = None
cross_relationship_score: Optional[torch.FloatTensor] = None
question_answering_score: Optional[torch.FloatTensor] = None
language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
language_attentions: Optional[Tuple[torch.FloatTensor]] = None
vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
def load_tf_weights_in_lxmert(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n
in [
"adam_v",
"adam_m",
"AdamWeightDecayOptimizer",
"AdamWeightDecayOptimizer_1",
"global_step",
]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
class LxmertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size, padding_idx=0)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
device = input_ids.device
else:
input_shape = inputs_embeds.size()[:-1]
device = inputs_embeds.device
seq_length = input_shape[1]
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).expand(input_shape)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class LxmertAttention(nn.Module):
def __init__(self, config, ctx_dim=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.head_size = self.num_attention_heads * self.attention_head_size
# visual_dim = 2048
if ctx_dim is None:
ctx_dim = config.hidden_size
self.query = nn.Linear(config.hidden_size, self.head_size)
self.key = nn.Linear(ctx_dim, self.head_size)
self.value = nn.Linear(ctx_dim, self.head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, context, attention_mask=None, output_attentions=False):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(context)
mixed_value_layer = self.value(context)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class LxmertAttentionOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class LxmertCrossAttentionLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.att = LxmertAttention(config)
self.output = LxmertAttentionOutput(config)
def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None, output_attentions=False):
output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions=output_attentions)
if output_attentions:
attention_probs = output[1]
attention_output = self.output(output[0], input_tensor)
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
return outputs
class LxmertSelfAttentionLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.self = LxmertAttention(config)
self.output = LxmertAttentionOutput(config)
def forward(self, input_tensor, attention_mask, output_attentions=False):
# Self attention attends to itself, thus keys and queries are the same (input_tensor).
output = self.self(
input_tensor,
input_tensor,
attention_mask,
output_attentions=output_attentions,
)
if output_attentions:
attention_probs = output[1]
attention_output = self.output(output[0], input_tensor)
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
return outputs
class LxmertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.intermediate_act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class LxmertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class LxmertLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = LxmertSelfAttentionLayer(config)
self.intermediate = LxmertIntermediate(config)
self.output = LxmertOutput(config)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions)
attention_output = outputs[0]
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output,) + outputs[1:] # add attentions if we output them
return outputs
class LxmertXLayer(nn.Module):
def __init__(self, config):
super().__init__()
# The cross-attention Layer
self.visual_attention = LxmertCrossAttentionLayer(config)
# Self-attention Layers
self.lang_self_att = LxmertSelfAttentionLayer(config)
self.visn_self_att = LxmertSelfAttentionLayer(config)
# Intermediate and Output Layers (FFNs)
self.lang_inter = LxmertIntermediate(config)
self.lang_output = LxmertOutput(config)
self.visn_inter = LxmertIntermediate(config)
self.visn_output = LxmertOutput(config)
def cross_att(
self,
lang_input,
lang_attention_mask,
visual_input,
visual_attention_mask,
output_x_attentions=False,
):
# Cross Attention
lang_att_output = self.visual_attention(
lang_input,
visual_input,
ctx_att_mask=visual_attention_mask,
output_attentions=output_x_attentions,
)
visual_att_output = self.visual_attention(
visual_input,
lang_input,
ctx_att_mask=lang_attention_mask,
output_attentions=False,
)
return lang_att_output, visual_att_output
def self_att(self, lang_input, lang_attention_mask, visual_input, visual_attention_mask):
# Self Attention
lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions=False)
visual_att_output = self.visn_self_att(visual_input, visual_attention_mask, output_attentions=False)
return lang_att_output[0], visual_att_output[0]
def output_fc(self, lang_input, visual_input):
# FC layers
lang_inter_output = self.lang_inter(lang_input)
visual_inter_output = self.visn_inter(visual_input)
# Layer output
lang_output = self.lang_output(lang_inter_output, lang_input)
visual_output = self.visn_output(visual_inter_output, visual_input)
return lang_output, visual_output
def forward(
self,
lang_feats,
lang_attention_mask,
visual_feats,
visual_attention_mask,
output_attentions=False,
):
lang_att_output, visual_att_output = self.cross_att(
lang_input=lang_feats,
lang_attention_mask=lang_attention_mask,
visual_input=visual_feats,
visual_attention_mask=visual_attention_mask,
output_x_attentions=output_attentions,
)
attention_probs = lang_att_output[1:]
lang_att_output, visual_att_output = self.self_att(
lang_att_output[0],
lang_attention_mask,
visual_att_output[0],
visual_attention_mask,
)
lang_output, visual_output = self.output_fc(lang_att_output, visual_att_output)
return (
(
lang_output,
visual_output,
attention_probs[0],
)
if output_attentions
else (lang_output, visual_output)
)
class LxmertVisualFeatureEncoder(nn.Module):
def __init__(self, config):
super().__init__()
feat_dim = config.visual_feat_dim
pos_dim = config.visual_pos_dim
# Object feature encoding
self.visn_fc = nn.Linear(feat_dim, config.hidden_size)
self.visn_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12)
# Box position encoding
self.box_fc = nn.Linear(pos_dim, config.hidden_size)
self.box_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, visual_feats, visual_pos):
x = self.visn_fc(visual_feats)
x = self.visn_layer_norm(x)
y = self.box_fc(visual_pos)
y = self.box_layer_norm(y)
output = (x + y) / 2
output = self.dropout(output)
return output
class LxmertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
# Obj-level image embedding layer
self.visn_fc = LxmertVisualFeatureEncoder(config)
self.config = config
# Number of layers
self.num_l_layers = config.l_layers
self.num_x_layers = config.x_layers
self.num_r_layers = config.r_layers
# Layers
# Using self.layer instead of self.l_layer to support loading BERT weights.
self.layer = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_l_layers)])
self.x_layers = nn.ModuleList([LxmertXLayer(config) for _ in range(self.num_x_layers)])
self.r_layers = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_r_layers)])
def forward(
self,
lang_feats,
lang_attention_mask,
visual_feats,
visual_pos,
visual_attention_mask=None,
output_attentions=None,
):
vision_hidden_states = ()
language_hidden_states = ()
vision_attentions = () if output_attentions or self.config.output_attentions else None
language_attentions = () if output_attentions or self.config.output_attentions else None
cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None
visual_feats = self.visn_fc(visual_feats, visual_pos)
# Run language layers
for layer_module in self.layer:
l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions=output_attentions)
lang_feats = l_outputs[0]
language_hidden_states = language_hidden_states + (lang_feats,)
if language_attentions is not None:
language_attentions = language_attentions + (l_outputs[1],)
# Run relational layers
for layer_module in self.r_layers:
v_outputs = layer_module(visual_feats, visual_attention_mask, output_attentions=output_attentions)
visual_feats = v_outputs[0]
vision_hidden_states = vision_hidden_states + (visual_feats,)
if vision_attentions is not None:
vision_attentions = vision_attentions + (v_outputs[1],)
# Run cross-modality layers
for layer_module in self.x_layers:
x_outputs = layer_module(
lang_feats,
lang_attention_mask,
visual_feats,
visual_attention_mask,
output_attentions=output_attentions,
)
lang_feats, visual_feats = x_outputs[:2]
vision_hidden_states = vision_hidden_states + (visual_feats,)
language_hidden_states = language_hidden_states + (lang_feats,)
if cross_encoder_attentions is not None:
cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],)
visual_encoder_outputs = (
vision_hidden_states,
vision_attentions if output_attentions else None,
)
lang_encoder_outputs = (
language_hidden_states,
language_attentions if output_attentions else None,
)
return (
visual_encoder_outputs,
lang_encoder_outputs,
cross_encoder_attentions if output_attentions else None,
)
class LxmertPooler(nn.Module):
def __init__(self, config):
super(LxmertPooler, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class LxmertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super(LxmertPredictionHeadTransform, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.transform_act_fn = ACT2FN[config.hidden_act]
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class LxmertLMPredictionHead(nn.Module):
def __init__(self, config, lxmert_model_embedding_weights):
super(LxmertLMPredictionHead, self).__init__()
self.transform = LxmertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(
lxmert_model_embedding_weights.size(1),
lxmert_model_embedding_weights.size(0),
bias=False,
)
self.decoder.weight = lxmert_model_embedding_weights
self.bias = nn.Parameter(torch.zeros(lxmert_model_embedding_weights.size(0)))
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states) + self.bias
return hidden_states
class LxmertVisualAnswerHead(nn.Module):
def __init__(self, config, num_labels):
super().__init__()
hid_dim = config.hidden_size
self.logit_fc = nn.Sequential(
nn.Linear(hid_dim, hid_dim * 2),
GeLU(),
nn.LayerNorm(hid_dim * 2, eps=1e-12),
nn.Linear(hid_dim * 2, num_labels),
)
def forward(self, hidden_states):
return self.logit_fc(hidden_states)
class LxmertVisualObjHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = LxmertPredictionHeadTransform(config)
# Decide the use of visual losses
visual_losses = {}
if config.visual_obj_loss:
visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels}
if config.visual_attr_loss:
visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels}
if config.visual_feat_loss:
visual_losses["feat"] = {
"shape": (-1, config.visual_feat_dim),
"num": config.visual_feat_dim,
}
self.visual_losses = visual_losses
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder_dict = nn.ModuleDict(
{key: nn.Linear(config.hidden_size, self.visual_losses[key]["num"]) for key in self.visual_losses}
)
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
output = {}
for key in self.visual_losses:
output[key] = self.decoder_dict[key](hidden_states)
return output
class LxmertPreTrainingHeads(nn.Module):
def __init__(self, config, lxmert_model_embedding_weights):
super(LxmertPreTrainingHeads, self).__init__()
self.predictions = LxmertLMPredictionHead(config, lxmert_model_embedding_weights)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class LxmertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LxmertConfig
load_tf_weights = load_tf_weights_in_lxmert
base_model_prefix = "lxmert"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
LXMERT_START_DOCSTRING = r"""
The LXMERT model was proposed in [LXMERT: Learning Cross-Modality Encoder Representations from
Transformers](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. It's a vision and language transformer
model, pretrained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MSCOCO captions, and Visual
genome, using a combination of masked language modeling, region of interest feature regression, cross entropy loss
for question answering attribute prediction, and object tag prediction.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LxmertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
LXMERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
visual_feats (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`):
This input represents visual features. They ROI pooled object features from bounding boxes using a
faster-RCNN model)
These are currently not provided by the transformers library.
visual_pos (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_pos_dim)`):
This input represents spacial features corresponding to their relative (via index) visual features. The
pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to
1.
These are currently not provided by the transformers library.
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
visual_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Lxmert Model transformer outputting raw hidden-states without any specific head on top.",
LXMERT_START_DOCSTRING,
)
class LxmertModel(LxmertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = LxmertEmbeddings(config)
self.encoder = LxmertEncoder(config)
self.pooler = LxmertPooler(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings.word_embeddings = new_embeddings
@add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=LxmertModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
visual_feats: Optional[torch.FloatTensor] = None,
visual_pos: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
visual_attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[LxmertModelOutput, Tuple[torch.FloatTensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if visual_feats is None:
raise ValueError("`visual_feats` cannot be `None`")
if visual_pos is None:
raise ValueError("`visual_pos` cannot be `None`")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
# Process the visual attention mask
if visual_attention_mask is not None:
extended_visual_attention_mask = visual_attention_mask.unsqueeze(1).unsqueeze(2)
extended_visual_attention_mask = extended_visual_attention_mask.to(dtype=self.dtype)
extended_visual_attention_mask = (1.0 - extended_visual_attention_mask) * torch.finfo(self.dtype).min
else:
extended_visual_attention_mask = None
# Positional Word Embeddings
embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds)
# Run Lxmert encoder
encoder_outputs = self.encoder(
embedding_output,
extended_attention_mask,
visual_feats=visual_feats,
visual_pos=visual_pos,
visual_attention_mask=extended_visual_attention_mask,
output_attentions=output_attentions,
)
visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2]
vision_hidden_states = visual_encoder_outputs[0]
language_hidden_states = lang_encoder_outputs[0]
all_attentions = ()
if output_attentions:
language_attentions = lang_encoder_outputs[1]
vision_attentions = visual_encoder_outputs[1]
cross_encoder_attentions = encoder_outputs[2]
all_attentions = (
language_attentions,
vision_attentions,
cross_encoder_attentions,
)
hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else ()
visual_output = vision_hidden_states[-1]
lang_output = language_hidden_states[-1]
pooled_output = self.pooler(lang_output)
if not return_dict:
return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions
return LxmertModelOutput(
pooled_output=pooled_output,
language_output=lang_output,
vision_output=visual_output,
language_hidden_states=language_hidden_states if output_hidden_states else None,
vision_hidden_states=vision_hidden_states if output_hidden_states else None,
language_attentions=language_attentions if output_attentions else None,
vision_attentions=vision_attentions if output_attentions else None,
cross_encoder_attentions=cross_encoder_attentions if output_attentions else None,
)
@add_start_docstrings(
"""Lxmert Model with a specified pretraining head on top.""",
LXMERT_START_DOCSTRING,
)
class LxmertForPreTraining(LxmertPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
# Configuration
self.config = config
self.num_qa_labels = config.num_qa_labels
self.visual_loss_normalizer = config.visual_loss_normalizer
# Use of pretraining tasks
self.task_mask_lm = config.task_mask_lm
self.task_obj_predict = config.task_obj_predict
self.task_matched = config.task_matched
self.task_qa = config.task_qa
# Lxmert backbone
self.lxmert = LxmertModel(config)
# Pre-training heads
self.cls = LxmertPreTrainingHeads(config, self.lxmert.embeddings.word_embeddings.weight)
if self.task_obj_predict:
self.obj_predict_head = LxmertVisualObjHead(config)
if self.task_qa:
self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels)
# Weight initialization
# Initialize weights and apply final processing
self.post_init()
# Loss functions
self.loss_fcts = {
"l2": SmoothL1Loss(reduction="none"),
"visual_ce": CrossEntropyLoss(reduction="none"),
"ce": CrossEntropyLoss(),
}
visual_losses = {}
if config.visual_obj_loss:
visual_losses["obj"] = {
"shape": (-1,),
"num": config.num_object_labels,
"loss": "visual_ce",
}
if config.visual_attr_loss:
visual_losses["attr"] = {
"shape": (-1,),
"num": config.num_attr_labels,
"loss": "visual_ce",
}
if config.visual_feat_loss:
visual_losses["feat"] = {
"shape": (-1, config.visual_feat_dim),
"num": config.visual_feat_dim,
"loss": "l2",
}
self.visual_losses = visual_losses
def resize_num_qa_labels(self, num_labels):
"""
Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size
will add newly initialized weights. Reducing the size will remove weights from the end
Args:
num_labels (`int`, *optional*):
New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized
weights at the end. Reducing the size will remove weights from the end. If not provided or `None`, just
returns a pointer to the qa labels ``torch.nn.Linear``` module of the model without doing anything.
Return:
`torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer
"""
cur_qa_logit_layer = self.get_qa_logit_layer()
if num_labels is None or cur_qa_logit_layer is None:
return
new_qa_logit_layer = self._resize_qa_labels(num_labels)
self.config.num_qa_labels = num_labels
self.num_qa_labels = num_labels
return new_qa_logit_layer
def _resize_qa_labels(self, num_labels):
cur_qa_logit_layer = self.get_qa_logit_layer()
new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels)
self._set_qa_logit_layer(new_qa_logit_layer)
return self.get_qa_logit_layer()
def get_qa_logit_layer(self) -> nn.Module:
"""
Returns the linear layer that produces question answering logits.
Returns:
`nn.Module`: A torch module mapping the question answering prediction hidden states or `None` if LXMERT
does not have a visual answering head.
"""
if hasattr(self, "answer_head"):
return self.answer_head.logit_fc[-1]
def _set_qa_logit_layer(self, qa_logit_layer):
self.answer_head.logit_fc[-1] = qa_logit_layer
def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels):
if num_labels is None:
return cur_qa_logit_layer
cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size()
if cur_qa_labels == num_labels:
return cur_qa_logit_layer
# Build new linear output
if getattr(cur_qa_logit_layer, "bias", None) is not None:
new_qa_logit_layer = nn.Linear(hidden_dim, num_labels)
else:
new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False)
new_qa_logit_layer.to(cur_qa_logit_layer.weight.device)
# initialize all new labels
self._init_weights(new_qa_logit_layer)
# Copy labels from the previous weights
num_labels_to_copy = min(cur_qa_labels, num_labels)
new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :]
if getattr(cur_qa_logit_layer, "bias", None) is not None:
new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy]
return new_qa_logit_layer
@add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=LxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
visual_feats: Optional[torch.FloatTensor] = None,
visual_pos: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
visual_attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
obj_labels: Optional[Dict[str, Tuple[torch.FloatTensor, torch.FloatTensor]]] = None,
matched_label: Optional[torch.LongTensor] = None,
ans: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[LxmertForPreTrainingOutput, Tuple[torch.FloatTensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
obj_labels (`Dict[Str: Tuple[Torch.FloatTensor, Torch.FloatTensor]]`, *optional*):
each key is named after each one of the visual losses and each element of the tuple is of the shape
`(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and
the label score respectively
matched_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the whether or not the text input matches the image (classification) loss. Input
should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
- 0 indicates that the sentence does not match the image,
- 1 indicates that the sentence does match the image.
ans (`Torch.Tensor` of shape `(batch_size)`, *optional*):
a one hot representation hof the correct answer *optional*
Returns:
"""
if "masked_lm_labels" in kwargs:
warnings.warn(
"The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels`"
" instead.",
FutureWarning,
)
labels = kwargs.pop("masked_lm_labels")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
device = input_ids.device if input_ids is not None else inputs_embeds.device
lxmert_output = self.lxmert(
input_ids=input_ids,
visual_feats=visual_feats,
visual_pos=visual_pos,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
visual_attention_mask=visual_attention_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
lang_output, visual_output, pooled_output = (
lxmert_output[0],
lxmert_output[1],
lxmert_output[2],
)
lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output)
if self.task_qa:
answer_score = self.answer_head(pooled_output)
else:
answer_score = pooled_output[0][0]
total_loss = (
None
if (labels is None and matched_label is None and obj_labels is None and ans is None)
else torch.tensor(0.0, device=device)
)
if labels is not None and self.task_mask_lm:
masked_lm_loss = self.loss_fcts["ce"](
lang_prediction_scores.view(-1, self.config.vocab_size),
labels.view(-1),
)
total_loss += masked_lm_loss
if matched_label is not None and self.task_matched:
matched_loss = self.loss_fcts["ce"](cross_relationship_score.view(-1, 2), matched_label.view(-1))
total_loss += matched_loss
if obj_labels is not None and self.task_obj_predict:
total_visual_loss = torch.tensor(0.0, device=input_ids.device)
visual_prediction_scores_dict = self.obj_predict_head(visual_output)
for key, key_info in self.visual_losses.items():
label, mask_conf = obj_labels[key]
output_dim = key_info["num"]
loss_fct_name = key_info["loss"]
label_shape = key_info["shape"]
weight = self.visual_loss_normalizer
visual_loss_fct = self.loss_fcts[loss_fct_name]
visual_prediction_scores = visual_prediction_scores_dict[key]
visual_loss = visual_loss_fct(
visual_prediction_scores.view(-1, output_dim),
label.view(label_shape),
)
if visual_loss.dim() > 1: # Regression Losses
visual_loss = visual_loss.mean(1)
visual_loss = (visual_loss * mask_conf.view(-1)).mean() * weight
total_visual_loss += visual_loss
total_loss += total_visual_loss
if ans is not None and self.task_qa:
answer_loss = self.loss_fcts["ce"](answer_score.view(-1, self.num_qa_labels), ans.view(-1))
total_loss += answer_loss
if not return_dict:
output = (
lang_prediction_scores,
cross_relationship_score,
answer_score,
) + lxmert_output[3:]
return ((total_loss,) + output) if total_loss is not None else output
return LxmertForPreTrainingOutput(
loss=total_loss,
prediction_logits=lang_prediction_scores,
cross_relationship_score=cross_relationship_score,
question_answering_score=answer_score,
language_hidden_states=lxmert_output.language_hidden_states,
vision_hidden_states=lxmert_output.vision_hidden_states,
language_attentions=lxmert_output.language_attentions,
vision_attentions=lxmert_output.vision_attentions,
cross_encoder_attentions=lxmert_output.cross_encoder_attentions,
)
@add_start_docstrings(
"""Lxmert Model with a visual-answering head on top for downstream QA tasks""",
LXMERT_START_DOCSTRING,
)
class LxmertForQuestionAnswering(LxmertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
# Configuration
self.config = config
self.num_qa_labels = config.num_qa_labels
self.visual_loss_normalizer = config.visual_loss_normalizer
# Lxmert backbone
self.lxmert = LxmertModel(config)
self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels)
# Weight initialization
# Initialize weights and apply final processing
self.post_init()
# Loss function
self.loss = CrossEntropyLoss()
def resize_num_qa_labels(self, num_labels):
"""
Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size
will add newly initialized weights. Reducing the size will remove weights from the end
Args:
num_labels (`int`, *optional*):
New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized
weights at the end. Reducing the size will remove weights from the end. If not provided or `None`, just
returns a pointer to the qa labels ``torch.nn.Linear``` module of the model without doing anything.
Return:
`torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer
"""
cur_qa_logit_layer = self.get_qa_logit_layer()
if num_labels is None or cur_qa_logit_layer is None:
return
new_qa_logit_layer = self._resize_qa_labels(num_labels)
self.config.num_qa_labels = num_labels
self.num_qa_labels = num_labels
return new_qa_logit_layer
def _resize_qa_labels(self, num_labels):
cur_qa_logit_layer = self.get_qa_logit_layer()
new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels)
self._set_qa_logit_layer(new_qa_logit_layer)
return self.get_qa_logit_layer()
def get_qa_logit_layer(self) -> nn.Module:
"""
Returns the linear layer that produces question answering logits
Returns:
`nn.Module`: A torch module mapping the question answering prediction hidden states. `None`: A NoneType
object if Lxmert does not have the visual answering head.
"""
if hasattr(self, "answer_head"):
return self.answer_head.logit_fc[-1]
def _set_qa_logit_layer(self, qa_logit_layer):
self.answer_head.logit_fc[-1] = qa_logit_layer
def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels):
if num_labels is None:
return cur_qa_logit_layer
cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size()
if cur_qa_labels == num_labels:
return cur_qa_logit_layer
# Build new linear output
if getattr(cur_qa_logit_layer, "bias", None) is not None:
new_qa_logit_layer = nn.Linear(hidden_dim, num_labels)
else:
new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False)
new_qa_logit_layer.to(cur_qa_logit_layer.weight.device)
# initialize all new labels
self._init_weights(new_qa_logit_layer)
# Copy labels from the previous weights
num_labels_to_copy = min(cur_qa_labels, num_labels)
new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :]
if getattr(cur_qa_logit_layer, "bias", None) is not None:
new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy]
return new_qa_logit_layer
@add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=LxmertForQuestionAnsweringOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
visual_feats: Optional[torch.FloatTensor] = None,
visual_pos: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
visual_attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[LxmertForQuestionAnsweringOutput, Tuple[torch.FloatTensor]]:
r"""
labels (`Torch.Tensor` of shape `(batch_size)`, *optional*):
A one-hot representation of the correct answer
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
lxmert_output = self.lxmert(
input_ids=input_ids,
visual_feats=visual_feats,
visual_pos=visual_pos,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
visual_attention_mask=visual_attention_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
pooled_output = lxmert_output[2]
answer_score = self.answer_head(pooled_output)
loss = None
if labels is not None:
loss = self.loss(answer_score.view(-1, self.num_qa_labels), labels.view(-1))
if not return_dict:
output = (answer_score,) + lxmert_output[3:]
return (loss,) + output if loss is not None else output
return LxmertForQuestionAnsweringOutput(
loss=loss,
question_answering_score=answer_score,
language_hidden_states=lxmert_output.language_hidden_states,
vision_hidden_states=lxmert_output.vision_hidden_states,
language_attentions=lxmert_output.language_attentions,
vision_attentions=lxmert_output.vision_attentions,
cross_encoder_attentions=lxmert_output.cross_encoder_attentions,
)
| transformers/src/transformers/models/lxmert/modeling_lxmert.py/0 | {
"file_path": "transformers/src/transformers/models/lxmert/modeling_lxmert.py",
"repo_id": "transformers",
"token_count": 27624
} | 109 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import re
import warnings
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"source_spm": "source.spm",
"target_spm": "target.spm",
"vocab": "vocab.json",
"target_vocab_file": "target_vocab.json",
"tokenizer_config_file": "tokenizer_config.json",
}
PRETRAINED_VOCAB_FILES_MAP = {
"source_spm": {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/source.spm"
},
"target_spm": {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/target.spm"
},
"vocab": {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/vocab.json"
},
"tokenizer_config_file": {
"Helsinki-NLP/opus-mt-en-de": (
"https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/tokenizer_config.json"
)
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"Helsinki-NLP/opus-mt-en-de": 512}
PRETRAINED_INIT_CONFIGURATION = {}
SPIECE_UNDERLINE = "▁"
# Example URL https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/vocab.json
class MarianTokenizer(PreTrainedTokenizer):
r"""
Construct a Marian tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
source_spm (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
contains the vocabulary for the source language.
target_spm (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
contains the vocabulary for the target language.
source_lang (`str`, *optional*):
A string representing the source language.
target_lang (`str`, *optional*):
A string representing the target language.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
model_max_length (`int`, *optional*, defaults to 512):
The maximum sentence length the model accepts.
additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`):
Additional special tokens used by the tokenizer.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Examples:
```python
>>> from transformers import MarianForCausalLM, MarianTokenizer
>>> model = MarianForCausalLM.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> src_texts = ["I am a small frog.", "Tom asked his teacher for advice."]
>>> tgt_texts = ["Ich bin ein kleiner Frosch.", "Tom bat seinen Lehrer um Rat."] # optional
>>> inputs = tokenizer(src_texts, text_target=tgt_texts, return_tensors="pt", padding=True)
>>> outputs = model(**inputs) # should work
```"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
language_code_re = re.compile(">>.+<<") # type: re.Pattern
def __init__(
self,
source_spm,
target_spm,
vocab,
target_vocab_file=None,
source_lang=None,
target_lang=None,
unk_token="<unk>",
eos_token="</s>",
pad_token="<pad>",
model_max_length=512,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
separate_vocabs=False,
**kwargs,
) -> None:
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
assert Path(source_spm).exists(), f"cannot find spm source {source_spm}"
self.separate_vocabs = separate_vocabs
self.encoder = load_json(vocab)
if str(unk_token) not in self.encoder:
raise KeyError("<unk> token must be in the vocab")
assert str(pad_token) in self.encoder
if separate_vocabs:
self.target_encoder = load_json(target_vocab_file)
self.decoder = {v: k for k, v in self.target_encoder.items()}
self.supported_language_codes = []
else:
self.decoder = {v: k for k, v in self.encoder.items()}
self.supported_language_codes: list = [k for k in self.encoder if k.startswith(">>") and k.endswith("<<")]
self.source_lang = source_lang
self.target_lang = target_lang
self.spm_files = [source_spm, target_spm]
# load SentencePiece model for pre-processing
self.spm_source = load_spm(source_spm, self.sp_model_kwargs)
self.spm_target = load_spm(target_spm, self.sp_model_kwargs)
self.current_spm = self.spm_source
self.current_encoder = self.encoder
# Multilingual target side: default to using first supported language code.
self._setup_normalizer()
super().__init__(
# bos_token=bos_token, unused. Start decoding with config.decoder_start_token_id
source_lang=source_lang,
target_lang=target_lang,
unk_token=unk_token,
eos_token=eos_token,
pad_token=pad_token,
model_max_length=model_max_length,
sp_model_kwargs=self.sp_model_kwargs,
target_vocab_file=target_vocab_file,
separate_vocabs=separate_vocabs,
**kwargs,
)
def _setup_normalizer(self):
try:
from sacremoses import MosesPunctNormalizer
self.punc_normalizer = MosesPunctNormalizer(self.source_lang).normalize
except (ImportError, FileNotFoundError):
warnings.warn("Recommended: pip install sacremoses.")
self.punc_normalizer = lambda x: x
def normalize(self, x: str) -> str:
"""Cover moses empty string edge case. They return empty list for '' input!"""
return self.punc_normalizer(x) if x else ""
def _convert_token_to_id(self, token):
return self.current_encoder.get(token, self.current_encoder[self.unk_token])
def remove_language_code(self, text: str):
"""Remove language codes like >>fr<< before sentencepiece"""
match = self.language_code_re.match(text)
code: list = [match.group(0)] if match else []
return code, self.language_code_re.sub("", text)
def _tokenize(self, text: str) -> List[str]:
code, text = self.remove_language_code(text)
pieces = self.current_spm.encode(text, out_type=str)
return code + pieces
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) in a token (str) using the decoder."""
return self.decoder.get(index, self.unk_token)
def batch_decode(self, sequences, **kwargs):
"""
Convert a list of lists of token ids into a list of strings by calling decode.
Args:
sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (`bool`, *optional*):
Whether or not to clean up the tokenization spaces. If `None`, will default to
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
use_source_tokenizer (`bool`, *optional*, defaults to `False`):
Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence
problems).
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`List[str]`: The list of decoded sentences.
"""
return super().batch_decode(sequences, **kwargs)
def decode(self, token_ids, **kwargs):
"""
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
tokens and clean up tokenization spaces.
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
Args:
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (`bool`, *optional*):
Whether or not to clean up the tokenization spaces. If `None`, will default to
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
use_source_tokenizer (`bool`, *optional*, defaults to `False`):
Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence
problems).
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`str`: The decoded sentence.
"""
return super().decode(token_ids, **kwargs)
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""Uses source spm if _decode_use_source_tokenizer is True, and target spm otherwise"""
sp_model = self.spm_source if self._decode_use_source_tokenizer else self.spm_target
current_sub_tokens = []
out_string = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += sp_model.decode_pieces(current_sub_tokens) + token + " "
current_sub_tokens = []
else:
current_sub_tokens.append(token)
out_string += sp_model.decode_pieces(current_sub_tokens)
out_string = out_string.replace(SPIECE_UNDERLINE, " ")
return out_string.strip()
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
"""Build model inputs from a sequence by appending eos_token_id."""
if token_ids_1 is None:
return token_ids_0 + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_0 + token_ids_1 + [self.eos_token_id]
def _switch_to_input_mode(self):
self.current_spm = self.spm_source
self.current_encoder = self.encoder
def _switch_to_target_mode(self):
self.current_spm = self.spm_target
if self.separate_vocabs:
self.current_encoder = self.target_encoder
@property
def vocab_size(self) -> int:
return len(self.encoder)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
saved_files = []
if self.separate_vocabs:
out_src_vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"],
)
out_tgt_vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["target_vocab_file"],
)
save_json(self.encoder, out_src_vocab_file)
save_json(self.target_encoder, out_tgt_vocab_file)
saved_files.append(out_src_vocab_file)
saved_files.append(out_tgt_vocab_file)
else:
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"]
)
save_json(self.encoder, out_vocab_file)
saved_files.append(out_vocab_file)
for spm_save_filename, spm_orig_path, spm_model in zip(
[VOCAB_FILES_NAMES["source_spm"], VOCAB_FILES_NAMES["target_spm"]],
self.spm_files,
[self.spm_source, self.spm_target],
):
spm_save_path = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + spm_save_filename
)
if os.path.abspath(spm_orig_path) != os.path.abspath(spm_save_path) and os.path.isfile(spm_orig_path):
copyfile(spm_orig_path, spm_save_path)
saved_files.append(spm_save_path)
elif not os.path.isfile(spm_orig_path):
with open(spm_save_path, "wb") as fi:
content_spiece_model = spm_model.serialized_model_proto()
fi.write(content_spiece_model)
saved_files.append(spm_save_path)
return tuple(saved_files)
def get_vocab(self) -> Dict:
return self.get_src_vocab()
def get_src_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def get_tgt_vocab(self):
return dict(self.target_encoder, **self.added_tokens_decoder)
def __getstate__(self) -> Dict:
state = self.__dict__.copy()
state.update(
{k: None for k in ["spm_source", "spm_target", "current_spm", "punc_normalizer", "target_vocab_file"]}
)
return state
def __setstate__(self, d: Dict) -> None:
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.spm_source, self.spm_target = (load_spm(f, self.sp_model_kwargs) for f in self.spm_files)
self.current_spm = self.spm_source
self._setup_normalizer()
def num_special_tokens_to_add(self, *args, **kwargs):
"""Just EOS"""
return 1
def _special_token_mask(self, seq):
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""Get list where entries are [1] if a token is [eos] or [pad] else 0."""
if already_has_special_tokens:
return self._special_token_mask(token_ids_0)
elif token_ids_1 is None:
return self._special_token_mask(token_ids_0) + [1]
else:
return self._special_token_mask(token_ids_0 + token_ids_1) + [1]
def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor:
spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs)
spm.Load(path)
return spm
def save_json(data, path: str) -> None:
with open(path, "w") as f:
json.dump(data, f, indent=2)
def load_json(path: str) -> Union[Dict, List]:
with open(path, "r") as f:
return json.load(f)
| transformers/src/transformers/models/marian/tokenization_marian.py/0 | {
"file_path": "transformers/src/transformers/models/marian/tokenization_marian.py",
"repo_id": "transformers",
"token_count": 7701
} | 110 |
# coding=utf-8
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from argparse import ArgumentParser
from dataclasses import dataclass
from pathlib import Path
from pprint import pformat
from typing import Any, Dict, Iterator, List, Set, Tuple
import requests
import torch
import torchvision.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog
from detectron2.projects.deeplab import add_deeplab_config
from PIL import Image
from torch import Tensor, nn
from transformers.models.maskformer.feature_extraction_maskformer import MaskFormerImageProcessor
from transformers.models.maskformer.modeling_maskformer import (
MaskFormerConfig,
MaskFormerForInstanceSegmentation,
MaskFormerForInstanceSegmentationOutput,
MaskFormerModel,
MaskFormerModelOutput,
)
from transformers.utils import logging
StateDict = Dict[str, Tensor]
logging.set_verbosity_info()
logger = logging.get_logger()
torch.manual_seed(0)
class TrackedStateDict:
def __init__(self, to_track: Dict):
"""This class "tracks" a python dictionary by keeping track of which item is accessed.
Args:
to_track (Dict): The dictionary we wish to track
"""
self.to_track = to_track
self._seen: Set[str] = set()
def __getitem__(self, key: str) -> Any:
return self.to_track[key]
def __setitem__(self, key: str, item: Any):
self._seen.add(key)
self.to_track[key] = item
def diff(self) -> List[str]:
"""This method returns a set difference between the keys in the tracked state dict and the one we have access so far.
This is an effective method to check if we have update all the keys
Returns:
List[str]: List of keys not yet updated
"""
return set(self.to_track.keys()) - self._seen
def copy(self) -> Dict:
# proxy the call to the internal dictionary
return self.to_track.copy()
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
img_data = requests.get(url, stream=True).raw
im = Image.open(img_data)
return im
@dataclass
class Args:
"""Fake command line arguments needed by maskformer/detectron implementation"""
config_file: str
def setup_cfg(args: Args):
# load config from file and command-line arguments
cfg = get_cfg()
add_deeplab_config(cfg)
add_mask_former_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.freeze()
return cfg
class OriginalMaskFormerConfigToOursConverter:
def __call__(self, original_config: object) -> MaskFormerConfig:
model = original_config.MODEL
mask_former = model.MASK_FORMER
swin = model.SWIN
dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST[0])
id2label = dict(enumerate(dataset_catalog.stuff_classes))
label2id = {label: idx for idx, label in id2label.items()}
config: MaskFormerConfig = MaskFormerConfig(
fpn_feature_size=model.SEM_SEG_HEAD.CONVS_DIM,
mask_feature_size=model.SEM_SEG_HEAD.MASK_DIM,
num_labels=model.SEM_SEG_HEAD.NUM_CLASSES,
no_object_weight=mask_former.NO_OBJECT_WEIGHT,
num_queries=mask_former.NUM_OBJECT_QUERIES,
backbone_config={
"pretrain_img_size": swin.PRETRAIN_IMG_SIZE,
"image_size": swin.PRETRAIN_IMG_SIZE,
"in_channels": 3,
"patch_size": swin.PATCH_SIZE,
"embed_dim": swin.EMBED_DIM,
"depths": swin.DEPTHS,
"num_heads": swin.NUM_HEADS,
"window_size": swin.WINDOW_SIZE,
"drop_path_rate": swin.DROP_PATH_RATE,
"model_type": "swin",
},
dice_weight=mask_former.DICE_WEIGHT,
ce_weight=1.0,
mask_weight=mask_former.MASK_WEIGHT,
decoder_config={
"model_type": "detr",
"max_position_embeddings": 1024,
"encoder_layers": 6,
"encoder_ffn_dim": 2048,
"encoder_attention_heads": 8,
"decoder_layers": mask_former.DEC_LAYERS,
"decoder_ffn_dim": mask_former.DIM_FEEDFORWARD,
"decoder_attention_heads": mask_former.NHEADS,
"encoder_layerdrop": 0.0,
"decoder_layerdrop": 0.0,
"d_model": mask_former.HIDDEN_DIM,
"dropout": mask_former.DROPOUT,
"attention_dropout": 0.0,
"activation_dropout": 0.0,
"init_std": 0.02,
"init_xavier_std": 1.0,
"scale_embedding": False,
"auxiliary_loss": False,
"dilation": False,
# default pretrained config values
},
id2label=id2label,
label2id=label2id,
)
return config
class OriginalMaskFormerConfigToImageProcessorConverter:
def __call__(self, original_config: object) -> MaskFormerImageProcessor:
model = original_config.MODEL
model_input = original_config.INPUT
dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST[0])
return MaskFormerImageProcessor(
image_mean=(torch.tensor(model.PIXEL_MEAN) / 255).tolist(),
image_std=(torch.tensor(model.PIXEL_STD) / 255).tolist(),
size=model_input.MIN_SIZE_TEST,
max_size=model_input.MAX_SIZE_TEST,
num_labels=model.SEM_SEG_HEAD.NUM_CLASSES,
ignore_index=dataset_catalog.ignore_label,
size_divisibility=32, # 32 is required by swin
)
class OriginalMaskFormerCheckpointToOursConverter:
def __init__(self, original_model: nn.Module, config: MaskFormerConfig):
self.original_model = original_model
self.config = config
def pop_all(self, renamed_keys: List[Tuple[str, str]], dst_state_dict: StateDict, src_state_dict: StateDict):
for src_key, dst_key in renamed_keys:
dst_state_dict[dst_key] = src_state_dict.pop(src_key)
def replace_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: MaskFormerConfig):
dst_prefix: str = "pixel_level_module.encoder"
src_prefix: str = "backbone"
renamed_keys = [
(
f"{src_prefix}.patch_embed.proj.weight",
f"{dst_prefix}.model.embeddings.patch_embeddings.projection.weight",
),
(f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.model.embeddings.patch_embeddings.projection.bias"),
(f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.model.embeddings.norm.weight"),
(f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.model.embeddings.norm.bias"),
]
num_layers = len(config.backbone_config.depths)
for layer_idx in range(num_layers):
for block_idx in range(config.backbone_config.depths[layer_idx]):
renamed_keys.extend(
[ # src, dst
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table",
),
]
)
# now we need to handle the attentions
# read in weights + bias of input projection layer of cross-attention
src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"]
src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"]
size = src_att_weight.shape[0]
offset = size // 3
dst_state_dict[
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight"
] = src_att_weight[:offset, :]
dst_state_dict[
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias"
] = src_att_bias[:offset]
dst_state_dict[
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight"
] = src_att_weight[offset : offset * 2, :]
dst_state_dict[
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias"
] = src_att_bias[offset : offset * 2]
dst_state_dict[
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight"
] = src_att_weight[-offset:, :]
dst_state_dict[
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias"
] = src_att_bias[-offset:]
# let's pop them
src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight")
src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias")
# proj
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias",
),
]
)
# second norm
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias",
),
]
)
# mlp
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias",
),
]
)
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index",
)
]
)
if layer_idx < num_layers - 1:
# patch merging
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.reduction.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.norm.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.norm.bias",
),
]
)
# hidden states norms
renamed_keys.extend(
[
(
f"{src_prefix}.norm{layer_idx}.weight",
f"{dst_prefix}.hidden_states_norms.{layer_idx}.weight",
),
(
f"{src_prefix}.norm{layer_idx}.bias",
f"{dst_prefix}.hidden_states_norms.{layer_idx}.bias",
),
]
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
def replace_pixel_module(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "pixel_level_module.decoder"
src_prefix: str = "sem_seg_head.pixel_decoder"
self.replace_backbone(dst_state_dict, src_state_dict, self.config)
def rename_keys_for_conv(detectron_conv: str, mine_conv: str):
return [
(f"{detectron_conv}.weight", f"{mine_conv}.0.weight"),
# 2 cuz the have act in the middle -> rename it
(f"{detectron_conv}.norm.weight", f"{mine_conv}.1.weight"),
(f"{detectron_conv}.norm.bias", f"{mine_conv}.1.bias"),
]
renamed_keys = [
(f"{src_prefix}.mask_features.weight", f"{dst_prefix}.mask_projection.weight"),
(f"{src_prefix}.mask_features.bias", f"{dst_prefix}.mask_projection.bias"),
# the layers in the original one are in reverse order, stem is the last one!
]
renamed_keys.extend(rename_keys_for_conv(f"{src_prefix}.layer_4", f"{dst_prefix}.fpn.stem"))
# add all the fpn layers (here we need some config parameters to know the size in advance)
for src_i, dst_i in zip(range(3, 0, -1), range(0, 3)):
renamed_keys.extend(
rename_keys_for_conv(f"{src_prefix}.adapter_{src_i}", f"{dst_prefix}.fpn.layers.{dst_i}.proj")
)
renamed_keys.extend(
rename_keys_for_conv(f"{src_prefix}.layer_{src_i}", f"{dst_prefix}.fpn.layers.{dst_i}.block")
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
def rename_keys_in_detr_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "transformer_module.decoder"
src_prefix: str = "sem_seg_head.predictor.transformer.decoder"
# not sure why we are not popping direcetly here!
# here we list all keys to be renamed (original name on the left, our name on the right)
rename_keys = []
for i in range(self.config.decoder_config.decoder_layers):
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(
f"{src_prefix}.layers.{i}.self_attn.out_proj.weight",
f"{dst_prefix}.layers.{i}.self_attn.out_proj.weight",
)
)
rename_keys.append(
(
f"{src_prefix}.layers.{i}.self_attn.out_proj.bias",
f"{dst_prefix}.layers.{i}.self_attn.out_proj.bias",
)
)
rename_keys.append(
(
f"{src_prefix}.layers.{i}.multihead_attn.out_proj.weight",
f"{dst_prefix}.layers.{i}.encoder_attn.out_proj.weight",
)
)
rename_keys.append(
(
f"{src_prefix}.layers.{i}.multihead_attn.out_proj.bias",
f"{dst_prefix}.layers.{i}.encoder_attn.out_proj.bias",
)
)
rename_keys.append((f"{src_prefix}.layers.{i}.linear1.weight", f"{dst_prefix}.layers.{i}.fc1.weight"))
rename_keys.append((f"{src_prefix}.layers.{i}.linear1.bias", f"{dst_prefix}.layers.{i}.fc1.bias"))
rename_keys.append((f"{src_prefix}.layers.{i}.linear2.weight", f"{dst_prefix}.layers.{i}.fc2.weight"))
rename_keys.append((f"{src_prefix}.layers.{i}.linear2.bias", f"{dst_prefix}.layers.{i}.fc2.bias"))
rename_keys.append(
(f"{src_prefix}.layers.{i}.norm1.weight", f"{dst_prefix}.layers.{i}.self_attn_layer_norm.weight")
)
rename_keys.append(
(f"{src_prefix}.layers.{i}.norm1.bias", f"{dst_prefix}.layers.{i}.self_attn_layer_norm.bias")
)
rename_keys.append(
(f"{src_prefix}.layers.{i}.norm2.weight", f"{dst_prefix}.layers.{i}.encoder_attn_layer_norm.weight")
)
rename_keys.append(
(f"{src_prefix}.layers.{i}.norm2.bias", f"{dst_prefix}.layers.{i}.encoder_attn_layer_norm.bias")
)
rename_keys.append(
(f"{src_prefix}.layers.{i}.norm3.weight", f"{dst_prefix}.layers.{i}.final_layer_norm.weight")
)
rename_keys.append(
(f"{src_prefix}.layers.{i}.norm3.bias", f"{dst_prefix}.layers.{i}.final_layer_norm.bias")
)
return rename_keys
def replace_q_k_v_in_detr_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "transformer_module.decoder"
src_prefix: str = "sem_seg_head.predictor.transformer.decoder"
for i in range(self.config.decoder_config.decoder_layers):
# read in weights + bias of input projection layer of self-attention
in_proj_weight = src_state_dict.pop(f"{src_prefix}.layers.{i}.self_attn.in_proj_weight")
in_proj_bias = src_state_dict.pop(f"{src_prefix}.layers.{i}.self_attn.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
in_proj_weight_cross_attn = src_state_dict.pop(f"{src_prefix}.layers.{i}.multihead_attn.in_proj_weight")
in_proj_bias_cross_attn = src_state_dict.pop(f"{src_prefix}.layers.{i}.multihead_attn.in_proj_bias")
# next, add query, keys and values (in that order) of cross-attention to the state dict
dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :]
dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256]
dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[
256:512, :
]
dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512]
dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :]
dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:]
def replace_detr_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "transformer_module.decoder"
src_prefix: str = "sem_seg_head.predictor.transformer.decoder"
renamed_keys = self.rename_keys_in_detr_decoder(dst_state_dict, src_state_dict)
# add more
renamed_keys.extend(
[
(f"{src_prefix}.norm.weight", f"{dst_prefix}.layernorm.weight"),
(f"{src_prefix}.norm.bias", f"{dst_prefix}.layernorm.bias"),
]
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
self.replace_q_k_v_in_detr_decoder(dst_state_dict, src_state_dict)
def replace_transformer_module(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "transformer_module"
src_prefix: str = "sem_seg_head.predictor"
self.replace_detr_decoder(dst_state_dict, src_state_dict)
renamed_keys = [
(f"{src_prefix}.query_embed.weight", f"{dst_prefix}.queries_embedder.weight"),
(f"{src_prefix}.input_proj.weight", f"{dst_prefix}.input_projection.weight"),
(f"{src_prefix}.input_proj.bias", f"{dst_prefix}.input_projection.bias"),
]
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
def replace_instance_segmentation_module(self, dst_state_dict: StateDict, src_state_dict: StateDict):
# NOTE in our case we don't have a prefix, thus we removed the "." from the keys later on!
dst_prefix: str = ""
src_prefix: str = "sem_seg_head.predictor"
renamed_keys = [
(f"{src_prefix}.class_embed.weight", f"{dst_prefix}class_predictor.weight"),
(f"{src_prefix}.class_embed.bias", f"{dst_prefix}class_predictor.bias"),
]
mlp_len = 3
for i in range(mlp_len):
renamed_keys.extend(
[
(f"{src_prefix}.mask_embed.layers.{i}.weight", f"{dst_prefix}mask_embedder.{i}.0.weight"),
(f"{src_prefix}.mask_embed.layers.{i}.bias", f"{dst_prefix}mask_embedder.{i}.0.bias"),
]
)
logger.info(f"Replacing keys {pformat(renamed_keys)}")
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
def convert(self, mask_former: MaskFormerModel) -> MaskFormerModel:
dst_state_dict = TrackedStateDict(mask_former.state_dict())
src_state_dict = self.original_model.state_dict()
self.replace_pixel_module(dst_state_dict, src_state_dict)
self.replace_transformer_module(dst_state_dict, src_state_dict)
logger.info(f"Missed keys are {pformat(dst_state_dict.diff())}")
logger.info(f"Not copied keys are {pformat(src_state_dict.keys())}")
logger.info("🙌 Done")
mask_former.load_state_dict(dst_state_dict)
return mask_former
def convert_instance_segmentation(
self, mask_former: MaskFormerForInstanceSegmentation
) -> MaskFormerForInstanceSegmentation:
dst_state_dict = TrackedStateDict(mask_former.state_dict())
src_state_dict = self.original_model.state_dict()
self.replace_instance_segmentation_module(dst_state_dict, src_state_dict)
mask_former.load_state_dict(dst_state_dict)
return mask_former
@staticmethod
def using_dirs(checkpoints_dir: Path, config_dir: Path) -> Iterator[Tuple[object, Path, Path]]:
checkpoints: List[Path] = checkpoints_dir.glob("**/*.pkl")
for checkpoint in checkpoints:
logger.info(f"💪 Converting {checkpoint.stem}")
# find associated config file
config: Path = config_dir / checkpoint.parents[0].stem / "swin" / f"{checkpoint.stem}.yaml"
yield config, checkpoint
def test(original_model, our_model: MaskFormerForInstanceSegmentation, image_processor: MaskFormerImageProcessor):
with torch.no_grad():
original_model = original_model.eval()
our_model = our_model.eval()
im = prepare_img()
tr = T.Compose(
[
T.Resize((384, 384)),
T.ToTensor(),
T.Normalize(
mean=torch.tensor([123.675, 116.280, 103.530]) / 255.0,
std=torch.tensor([58.395, 57.120, 57.375]) / 255.0,
),
],
)
x = tr(im).unsqueeze(0)
original_model_backbone_features = original_model.backbone(x.clone())
our_model_output: MaskFormerModelOutput = our_model.model(x.clone(), output_hidden_states=True)
for original_model_feature, our_model_feature in zip(
original_model_backbone_features.values(), our_model_output.encoder_hidden_states
):
assert torch.allclose(
original_model_feature, our_model_feature, atol=1e-3
), "The backbone features are not the same."
original_model_pixel_out = original_model.sem_seg_head.pixel_decoder.forward_features(
original_model_backbone_features
)
assert torch.allclose(
original_model_pixel_out[0], our_model_output.pixel_decoder_last_hidden_state, atol=1e-4
), "The pixel decoder feature are not the same"
# let's test the full model
original_model_out = original_model([{"image": x.squeeze(0)}])
original_segmentation = original_model_out[0]["sem_seg"]
our_model_out: MaskFormerForInstanceSegmentationOutput = our_model(x)
our_segmentation = image_processor.post_process_segmentation(our_model_out, target_size=(384, 384))
assert torch.allclose(
original_segmentation, our_segmentation, atol=1e-3
), "The segmentation image is not the same."
logger.info("✅ Test passed!")
def get_name(checkpoint_file: Path):
model_name_raw: str = checkpoint_file.stem
# model_name_raw is something like maskformer_panoptic_swin_base_IN21k_384_bs64_554k
parent_name: str = checkpoint_file.parents[0].stem
backbone = "swin"
dataset = ""
if "coco" in parent_name:
dataset = "coco"
elif "ade" in parent_name:
dataset = "ade"
else:
raise ValueError(f"{parent_name} must be wrong since we didn't find 'coco' or 'ade' in it ")
backbone_types = ["tiny", "small", "base", "large"]
backbone_type = list(filter(lambda x: x in model_name_raw, backbone_types))[0]
model_name = f"maskformer-{backbone}-{backbone_type}-{dataset}"
return model_name
if __name__ == "__main__":
parser = ArgumentParser(
description="Command line to convert the original maskformers (with swin backbone) to our implementations."
)
parser.add_argument(
"--checkpoints_dir",
type=Path,
help=(
"A directory containing the model's checkpoints. The directory has to have the following structure:"
" <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.pkl"
),
)
parser.add_argument(
"--configs_dir",
type=Path,
help=(
"A directory containing the model's configs, see detectron2 doc. The directory has to have the following"
" structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.yaml"
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
required=True,
type=Path,
help="Path to the folder to output PyTorch models.",
)
parser.add_argument(
"--maskformer_dir",
required=True,
type=Path,
help=(
"A path to MaskFormer's original implementation directory. You can download from here:"
" https://github.com/facebookresearch/MaskFormer"
),
)
args = parser.parse_args()
checkpoints_dir: Path = args.checkpoints_dir
config_dir: Path = args.configs_dir
save_directory: Path = args.pytorch_dump_folder_path
maskformer_dir: Path = args.maskformer_dir
# append the path to the parents to maskformer dir
sys.path.append(str(maskformer_dir.parent))
# and import what's needed
from MaskFormer.mask_former import add_mask_former_config
from MaskFormer.mask_former.mask_former_model import MaskFormer as OriginalMaskFormer
if not save_directory.exists():
save_directory.mkdir(parents=True)
for config_file, checkpoint_file in OriginalMaskFormerCheckpointToOursConverter.using_dirs(
checkpoints_dir, config_dir
):
image_processor = OriginalMaskFormerConfigToImageProcessorConverter()(setup_cfg(Args(config_file=config_file)))
original_config = setup_cfg(Args(config_file=config_file))
mask_former_kwargs = OriginalMaskFormer.from_config(original_config)
original_model = OriginalMaskFormer(**mask_former_kwargs).eval()
DetectionCheckpointer(original_model).load(str(checkpoint_file))
config: MaskFormerConfig = OriginalMaskFormerConfigToOursConverter()(original_config)
mask_former = MaskFormerModel(config=config).eval()
converter = OriginalMaskFormerCheckpointToOursConverter(original_model, config)
maskformer = converter.convert(mask_former)
mask_former_for_instance_segmentation = MaskFormerForInstanceSegmentation(config=config).eval()
mask_former_for_instance_segmentation.model = mask_former
mask_former_for_instance_segmentation = converter.convert_instance_segmentation(
mask_former_for_instance_segmentation
)
test(original_model, mask_former_for_instance_segmentation, image_processor)
model_name = get_name(checkpoint_file)
logger.info(f"🪄 Saving {model_name}")
image_processor.save_pretrained(save_directory / model_name)
mask_former_for_instance_segmentation.save_pretrained(save_directory / model_name)
image_processor.push_to_hub(
repo_path_or_name=save_directory / model_name,
commit_message="Add model",
use_temp_dir=True,
)
mask_former_for_instance_segmentation.push_to_hub(
repo_path_or_name=save_directory / model_name,
commit_message="Add model",
use_temp_dir=True,
)
| transformers/src/transformers/models/maskformer/convert_maskformer_original_pytorch_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/maskformer/convert_maskformer_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 16104
} | 111 |
# coding=utf-8
# Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/mbart-large-50-one-to-many-mmt": (
"https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model"
),
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/mbart-large-50-one-to-many-mmt": 1024,
}
FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: skip
class MBart50Tokenizer(PreTrainedTokenizer):
"""
Construct a MBart50 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
src_lang (`str`, *optional*):
A string representing the source language.
tgt_lang (`str`, *optional*):
A string representing the target language.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Examples:
```python
>>> from transformers import MBart50Tokenizer
>>> tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
>>> # model(**model_inputs) should work
```"""
vocab_files_names = VOCAB_FILES_NAMES
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
model_input_names = ["input_ids", "attention_mask"]
prefix_tokens: List[int] = []
suffix_tokens: List[int] = []
def __init__(
self,
vocab_file,
src_lang=None,
tgt_lang=None,
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or []
kwargs["additional_special_tokens"] += [
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
]
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(vocab_file))
self.vocab_file = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
self.fairseq_offset = 1
self.sp_model_size = len(self.sp_model)
self.lang_code_to_id = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES)
}
self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()}
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id)
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
super().__init__(
src_lang=src_lang,
tgt_lang=tgt_lang,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
self._src_lang = src_lang if src_lang is not None else "en_XX"
self.cur_lang_code_id = self.lang_code_to_id[self._src_lang]
self.tgt_lang = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def vocab_size(self) -> int:
return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def src_lang(self) -> str:
return self._src_lang
@src_lang.setter
def src_lang(self, new_src_lang: str) -> None:
self._src_lang = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def __getstate__(self) -> Dict:
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d: Dict) -> None:
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def get_vocab(self) -> Dict:
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text: str) -> List[str]:
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token: str) -> int:
"""Converts a token (str) in an id using the vocab."""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
spm_id = self.sp_model.PieceToId(token)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) in a token (str) using the vocab."""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
prefix_ones = [1] * len(self.prefix_tokens)
suffix_ones = [1] * len(self.suffix_tokens)
if token_ids_1 is None:
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An MBART-50 sequence has the following format, where `X` represents the sequence:
- `input_ids` (for encoder) `[src_lang_code] X [eos]`
- `labels`: (for decoder) `[tgt_lang_code] X [eos]`
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
separator.
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
def _build_translation_inputs(
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
):
"""Used by translation pipeline, to prepare inputs for the generate function"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
self.src_lang = src_lang
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
inputs["forced_bos_token_id"] = tgt_lang_id
return inputs
def prepare_seq2seq_batch(
self,
src_texts: List[str],
src_lang: str = "en_XX",
tgt_texts: Optional[List[str]] = None,
tgt_lang: str = "ro_RO",
**kwargs,
) -> BatchEncoding:
self.src_lang = src_lang
self.tgt_lang = tgt_lang
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
def _switch_to_input_mode(self):
return self.set_src_lang_special_tokens(self.src_lang)
def _switch_to_target_mode(self):
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def set_src_lang_special_tokens(self, src_lang: str) -> None:
"""Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos]."""
self.cur_lang_code_id = self.lang_code_to_id[src_lang]
self.prefix_tokens = [self.cur_lang_code_id]
self.suffix_tokens = [self.eos_token_id]
def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None:
"""Reset the special tokens to the target language setting. prefix=[tgt_lang_code] and suffix=[eos]."""
self.cur_lang_code_id = self.lang_code_to_id[tgt_lang]
self.prefix_tokens = [self.cur_lang_code_id]
self.suffix_tokens = [self.eos_token_id]
| transformers/src/transformers/models/mbart50/tokenization_mbart50.py/0 | {
"file_path": "transformers/src/transformers/models/mbart50/tokenization_mbart50.py",
"repo_id": "transformers",
"token_count": 7343
} | 112 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processor class for MGP-STR."""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class DecodeType(ExplicitEnum):
CHARACTER = "char"
BPE = "bpe"
WORDPIECE = "wp"
SUPPORTED_ANNOTATION_FORMATS = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class MgpstrProcessor(ProcessorMixin):
r"""
Constructs a MGP-STR processor which wraps an image processor and MGP-STR tokenizers into a single
[`MgpstrProcessor`] offers all the functionalities of `ViTImageProcessor`] and [`MgpstrTokenizer`]. See the
[`~MgpstrProcessor.__call__`] and [`~MgpstrProcessor.batch_decode`] for more information.
Args:
image_processor (`ViTImageProcessor`, *optional*):
An instance of `ViTImageProcessor`. The image processor is a required input.
tokenizer ([`MgpstrTokenizer`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "char_tokenizer"]
image_processor_class = "ViTImageProcessor"
char_tokenizer_class = "MgpstrTokenizer"
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
self.char_tokenizer = tokenizer
self.bpe_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
self.wp_tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
super().__init__(image_processor, tokenizer)
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
"""
When used in normal mode, this method forwards all its arguments to ViTImageProcessor's
[`~ViTImageProcessor.__call__`] and returns its output. This method also forwards the `text` and `kwargs`
arguments to MgpstrTokenizer's [`~MgpstrTokenizer.__call__`] if `text` is not `None` to encode the text. Please
refer to the doctsring of the above methods for more information.
"""
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process.")
if images is not None:
inputs = self.image_processor(images, return_tensors=return_tensors, **kwargs)
if text is not None:
encodings = self.char_tokenizer(text, return_tensors=return_tensors, **kwargs)
if text is None:
return inputs
elif images is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, sequences):
"""
Convert a list of lists of token ids into a list of strings by calling decode.
Args:
sequences (`torch.Tensor`):
List of tokenized input ids.
Returns:
`Dict[str, any]`: Dictionary of all the outputs of the decoded results.
generated_text (`List[str]`): The final results after fusion of char, bpe, and wp. scores
(`List[float]`): The final scores after fusion of char, bpe, and wp. char_preds (`List[str]`): The list
of character decoded sentences. bpe_preds (`List[str]`): The list of bpe decoded sentences. wp_preds
(`List[str]`): The list of wp decoded sentences.
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
char_preds, bpe_preds, wp_preds = sequences
batch_size = char_preds.size(0)
char_strs, char_scores = self._decode_helper(char_preds, "char")
bpe_strs, bpe_scores = self._decode_helper(bpe_preds, "bpe")
wp_strs, wp_scores = self._decode_helper(wp_preds, "wp")
final_strs = []
final_scores = []
for i in range(batch_size):
scores = [char_scores[i], bpe_scores[i], wp_scores[i]]
strs = [char_strs[i], bpe_strs[i], wp_strs[i]]
max_score_index = scores.index(max(scores))
final_strs.append(strs[max_score_index])
final_scores.append(scores[max_score_index])
out = {}
out["generated_text"] = final_strs
out["scores"] = final_scores
out["char_preds"] = char_strs
out["bpe_preds"] = bpe_strs
out["wp_preds"] = wp_strs
return out
def _decode_helper(self, pred_logits, format):
"""
Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer.
Args:
pred_logits (`torch.Tensor`):
List of model prediction logits.
format (`Union[DecoderType, str]`):
Type of model prediction. Must be one of ['char', 'bpe', 'wp'].
Returns:
`tuple`:
dec_strs(`str`): The decode strings of model prediction. conf_scores(`List[float]`): The confidence
score of model prediction.
"""
if format == DecodeType.CHARACTER:
decoder = self.char_decode
eos_token = 1
eos_str = "[s]"
elif format == DecodeType.BPE:
decoder = self.bpe_decode
eos_token = 2
eos_str = "#"
elif format == DecodeType.WORDPIECE:
decoder = self.wp_decode
eos_token = 102
eos_str = "[SEP]"
else:
raise ValueError(f"Format {format} is not supported.")
dec_strs, conf_scores = [], []
batch_size = pred_logits.size(0)
batch_max_length = pred_logits.size(1)
_, preds_index = pred_logits.topk(1, dim=-1, largest=True, sorted=True)
preds_index = preds_index.view(-1, batch_max_length)[:, 1:]
preds_str = decoder(preds_index)
preds_max_prob, _ = torch.nn.functional.softmax(pred_logits, dim=2).max(dim=2)
preds_max_prob = preds_max_prob[:, 1:]
for index in range(batch_size):
pred_eos = preds_str[index].find(eos_str)
pred = preds_str[index][:pred_eos]
pred_index = preds_index[index].cpu().tolist()
pred_eos_index = pred_index.index(eos_token) if eos_token in pred_index else -1
pred_max_prob = preds_max_prob[index][: pred_eos_index + 1]
confidence_score = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(pred)
conf_scores.append(confidence_score)
return dec_strs, conf_scores
def char_decode(self, sequences):
"""
Convert a list of lists of char token ids into a list of strings by calling char tokenizer.
Args:
sequences (`torch.Tensor`):
List of tokenized input ids.
Returns:
`List[str]`: The list of char decoded sentences.
"""
decode_strs = [seq.replace(" ", "") for seq in self.char_tokenizer.batch_decode(sequences)]
return decode_strs
def bpe_decode(self, sequences):
"""
Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer.
Args:
sequences (`torch.Tensor`):
List of tokenized input ids.
Returns:
`List[str]`: The list of bpe decoded sentences.
"""
return self.bpe_tokenizer.batch_decode(sequences)
def wp_decode(self, sequences):
"""
Convert a list of lists of word piece token ids into a list of strings by calling word piece tokenizer.
Args:
sequences (`torch.Tensor`):
List of tokenized input ids.
Returns:
`List[str]`: The list of wp decoded sentences.
"""
decode_strs = [seq.replace(" ", "") for seq in self.wp_tokenizer.batch_decode(sequences)]
return decode_strs
| transformers/src/transformers/models/mgp_str/processing_mgp_str.py/0 | {
"file_path": "transformers/src/transformers/models/mgp_str/processing_mgp_str.py",
"repo_id": "transformers",
"token_count": 4028
} | 113 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, mobilebert_config_file, pytorch_dump_path):
# Initialise PyTorch model
config = MobileBertConfig.from_json_file(mobilebert_config_file)
print(f"Building PyTorch model from configuration: {config}")
model = MobileBertForPreTraining(config)
# Load weights from tf checkpoint
model = load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path)
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}")
torch.save(model.state_dict(), pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| transformers/src/transformers/models/mobilebert/convert_mobilebert_original_tf_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/mobilebert/convert_mobilebert_original_tf_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 753
} | 114 |
# coding=utf-8
# Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch MobileNetV2 model."""
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
SemanticSegmenterOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_mobilenet_v2 import MobileNetV2Config
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "MobileNetV2Config"
# Base docstring
_CHECKPOINT_FOR_DOC = "google/mobilenet_v2_1.0_224"
_EXPECTED_OUTPUT_SHAPE = [1, 1280, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "google/mobilenet_v2_1.0_224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/mobilenet_v2_1.4_224",
"google/mobilenet_v2_1.0_224",
"google/mobilenet_v2_0.37_160",
"google/mobilenet_v2_0.35_96",
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
]
def _build_tf_to_pytorch_map(model, config, tf_weights=None):
"""
A map of modules from TF to PyTorch.
"""
tf_to_pt_map = {}
if isinstance(model, (MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation)):
backbone = model.mobilenet_v2
else:
backbone = model
# Use the EMA weights if available
def ema(x):
return x + "/ExponentialMovingAverage" if x + "/ExponentialMovingAverage" in tf_weights else x
prefix = "MobilenetV2/Conv/"
tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_stem.first_conv.convolution.weight
tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.first_conv.normalization.bias
tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.first_conv.normalization.weight
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.first_conv.normalization.running_mean
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.first_conv.normalization.running_var
prefix = "MobilenetV2/expanded_conv/depthwise/"
tf_to_pt_map[ema(prefix + "depthwise_weights")] = backbone.conv_stem.conv_3x3.convolution.weight
tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.conv_3x3.normalization.bias
tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.conv_3x3.normalization.weight
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.conv_3x3.normalization.running_mean
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.conv_3x3.normalization.running_var
prefix = "MobilenetV2/expanded_conv/project/"
tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_stem.reduce_1x1.convolution.weight
tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.reduce_1x1.normalization.bias
tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.reduce_1x1.normalization.weight
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.reduce_1x1.normalization.running_mean
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.reduce_1x1.normalization.running_var
for i in range(16):
tf_index = i + 1
pt_index = i
pointer = backbone.layer[pt_index]
prefix = f"MobilenetV2/expanded_conv_{tf_index}/expand/"
tf_to_pt_map[ema(prefix + "weights")] = pointer.expand_1x1.convolution.weight
tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.expand_1x1.normalization.bias
tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.expand_1x1.normalization.weight
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.expand_1x1.normalization.running_mean
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.expand_1x1.normalization.running_var
prefix = f"MobilenetV2/expanded_conv_{tf_index}/depthwise/"
tf_to_pt_map[ema(prefix + "depthwise_weights")] = pointer.conv_3x3.convolution.weight
tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.conv_3x3.normalization.bias
tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.conv_3x3.normalization.weight
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.conv_3x3.normalization.running_mean
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.conv_3x3.normalization.running_var
prefix = f"MobilenetV2/expanded_conv_{tf_index}/project/"
tf_to_pt_map[ema(prefix + "weights")] = pointer.reduce_1x1.convolution.weight
tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.reduce_1x1.normalization.bias
tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.reduce_1x1.normalization.weight
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.reduce_1x1.normalization.running_mean
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.reduce_1x1.normalization.running_var
prefix = "MobilenetV2/Conv_1/"
tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_1x1.convolution.weight
tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_1x1.normalization.bias
tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_1x1.normalization.weight
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_1x1.normalization.running_mean
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_1x1.normalization.running_var
if isinstance(model, MobileNetV2ForImageClassification):
prefix = "MobilenetV2/Logits/Conv2d_1c_1x1/"
tf_to_pt_map[ema(prefix + "weights")] = model.classifier.weight
tf_to_pt_map[ema(prefix + "biases")] = model.classifier.bias
if isinstance(model, MobileNetV2ForSemanticSegmentation):
prefix = "image_pooling/"
tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_pool.convolution.weight
tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_pool.normalization.bias
tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_pool.normalization.weight
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = model.segmentation_head.conv_pool.normalization.running_mean
tf_to_pt_map[
prefix + "BatchNorm/moving_variance"
] = model.segmentation_head.conv_pool.normalization.running_var
prefix = "aspp0/"
tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_aspp.convolution.weight
tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_aspp.normalization.bias
tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_aspp.normalization.weight
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = model.segmentation_head.conv_aspp.normalization.running_mean
tf_to_pt_map[
prefix + "BatchNorm/moving_variance"
] = model.segmentation_head.conv_aspp.normalization.running_var
prefix = "concat_projection/"
tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_projection.convolution.weight
tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_projection.normalization.bias
tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_projection.normalization.weight
tf_to_pt_map[
prefix + "BatchNorm/moving_mean"
] = model.segmentation_head.conv_projection.normalization.running_mean
tf_to_pt_map[
prefix + "BatchNorm/moving_variance"
] = model.segmentation_head.conv_projection.normalization.running_var
prefix = "logits/semantic/"
tf_to_pt_map[ema(prefix + "weights")] = model.segmentation_head.classifier.convolution.weight
tf_to_pt_map[ema(prefix + "biases")] = model.segmentation_head.classifier.convolution.bias
return tf_to_pt_map
def load_tf_weights_in_mobilenet_v2(model, config, tf_checkpoint_path):
"""Load TensorFlow checkpoints in a PyTorch model."""
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
# Load weights from TF model
init_vars = tf.train.list_variables(tf_checkpoint_path)
tf_weights = {}
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_checkpoint_path, name)
tf_weights[name] = array
# Build TF to PyTorch weights loading map
tf_to_pt_map = _build_tf_to_pytorch_map(model, config, tf_weights)
for name, pointer in tf_to_pt_map.items():
logger.info(f"Importing {name}")
if name not in tf_weights:
logger.info(f"{name} not in tf pre-trained weights, skipping")
continue
array = tf_weights[name]
if "depthwise_weights" in name:
logger.info("Transposing depthwise")
array = np.transpose(array, (2, 3, 0, 1))
elif "weights" in name:
logger.info("Transposing")
if len(pointer.shape) == 2: # copying into linear layer
array = array.squeeze().transpose()
else:
array = np.transpose(array, (3, 2, 0, 1))
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
logger.info(f"Initialize PyTorch weight {name} {array.shape}")
pointer.data = torch.from_numpy(array)
tf_weights.pop(name, None)
tf_weights.pop(name + "/RMSProp", None)
tf_weights.pop(name + "/RMSProp_1", None)
tf_weights.pop(name + "/ExponentialMovingAverage", None)
tf_weights.pop(name + "/Momentum", None)
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}")
return model
def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int:
"""
Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the
original TensorFlow repo. It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_value is None:
min_value = divisor
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_value < 0.9 * value:
new_value += divisor
return int(new_value)
def apply_depth_multiplier(config: MobileNetV2Config, channels: int) -> int:
return make_divisible(int(round(channels * config.depth_multiplier)), config.depth_divisible_by, config.min_depth)
def apply_tf_padding(features: torch.Tensor, conv_layer: nn.Conv2d) -> torch.Tensor:
"""
Apply TensorFlow-style "SAME" padding to a convolution layer. See the notes at:
https://www.tensorflow.org/api_docs/python/tf/nn#notes_on_padding_2
"""
in_height = int(features.shape[-2])
in_width = int(features.shape[-1])
stride_height, stride_width = conv_layer.stride
kernel_height, kernel_width = conv_layer.kernel_size
dilation_height, dilation_width = conv_layer.dilation
if in_height % stride_height == 0:
pad_along_height = max(kernel_height - stride_height, 0)
else:
pad_along_height = max(kernel_height - (in_height % stride_height), 0)
if in_width % stride_width == 0:
pad_along_width = max(kernel_width - stride_width, 0)
else:
pad_along_width = max(kernel_width - (in_width % stride_width), 0)
pad_left = pad_along_width // 2
pad_right = pad_along_width - pad_left
pad_top = pad_along_height // 2
pad_bottom = pad_along_height - pad_top
padding = (
pad_left * dilation_width,
pad_right * dilation_width,
pad_top * dilation_height,
pad_bottom * dilation_height,
)
return nn.functional.pad(features, padding, "constant", 0.0)
class MobileNetV2ConvLayer(nn.Module):
def __init__(
self,
config: MobileNetV2Config,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
groups: int = 1,
bias: bool = False,
dilation: int = 1,
use_normalization: bool = True,
use_activation: Union[bool, str] = True,
layer_norm_eps: Optional[float] = None,
) -> None:
super().__init__()
self.config = config
if in_channels % groups != 0:
raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.")
if out_channels % groups != 0:
raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.")
padding = 0 if config.tf_padding else int((kernel_size - 1) / 2) * dilation
self.convolution = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode="zeros",
)
if use_normalization:
self.normalization = nn.BatchNorm2d(
num_features=out_channels,
eps=config.layer_norm_eps if layer_norm_eps is None else layer_norm_eps,
momentum=0.997,
affine=True,
track_running_stats=True,
)
else:
self.normalization = None
if use_activation:
if isinstance(use_activation, str):
self.activation = ACT2FN[use_activation]
elif isinstance(config.hidden_act, str):
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = config.hidden_act
else:
self.activation = None
def forward(self, features: torch.Tensor) -> torch.Tensor:
if self.config.tf_padding:
features = apply_tf_padding(features, self.convolution)
features = self.convolution(features)
if self.normalization is not None:
features = self.normalization(features)
if self.activation is not None:
features = self.activation(features)
return features
class MobileNetV2InvertedResidual(nn.Module):
def __init__(
self, config: MobileNetV2Config, in_channels: int, out_channels: int, stride: int, dilation: int = 1
) -> None:
super().__init__()
expanded_channels = make_divisible(
int(round(in_channels * config.expand_ratio)), config.depth_divisible_by, config.min_depth
)
if stride not in [1, 2]:
raise ValueError(f"Invalid stride {stride}.")
self.use_residual = (stride == 1) and (in_channels == out_channels)
self.expand_1x1 = MobileNetV2ConvLayer(
config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1
)
self.conv_3x3 = MobileNetV2ConvLayer(
config,
in_channels=expanded_channels,
out_channels=expanded_channels,
kernel_size=3,
stride=stride,
groups=expanded_channels,
dilation=dilation,
)
self.reduce_1x1 = MobileNetV2ConvLayer(
config,
in_channels=expanded_channels,
out_channels=out_channels,
kernel_size=1,
use_activation=False,
)
def forward(self, features: torch.Tensor) -> torch.Tensor:
residual = features
features = self.expand_1x1(features)
features = self.conv_3x3(features)
features = self.reduce_1x1(features)
return residual + features if self.use_residual else features
class MobileNetV2Stem(nn.Module):
def __init__(self, config: MobileNetV2Config, in_channels: int, expanded_channels: int, out_channels: int) -> None:
super().__init__()
# The very first layer is a regular 3x3 convolution with stride 2 that expands to 32 channels.
# All other expansion layers use the expansion factor to compute the number of output channels.
self.first_conv = MobileNetV2ConvLayer(
config,
in_channels=in_channels,
out_channels=expanded_channels,
kernel_size=3,
stride=2,
)
if config.first_layer_is_expansion:
self.expand_1x1 = None
else:
self.expand_1x1 = MobileNetV2ConvLayer(
config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=1
)
self.conv_3x3 = MobileNetV2ConvLayer(
config,
in_channels=expanded_channels,
out_channels=expanded_channels,
kernel_size=3,
stride=1,
groups=expanded_channels,
)
self.reduce_1x1 = MobileNetV2ConvLayer(
config,
in_channels=expanded_channels,
out_channels=out_channels,
kernel_size=1,
use_activation=False,
)
def forward(self, features: torch.Tensor) -> torch.Tensor:
features = self.first_conv(features)
if self.expand_1x1 is not None:
features = self.expand_1x1(features)
features = self.conv_3x3(features)
features = self.reduce_1x1(features)
return features
class MobileNetV2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MobileNetV2Config
load_tf_weights = load_tf_weights_in_mobilenet_v2
base_model_prefix = "mobilenet_v2"
main_input_name = "pixel_values"
supports_gradient_checkpointing = False
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.BatchNorm2d):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
MOBILENET_V2_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileNetV2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MOBILENET_V2_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileNetV2ImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MobileNetV2 model outputting raw hidden-states without any specific head on top.",
MOBILENET_V2_START_DOCSTRING,
)
class MobileNetV2Model(MobileNetV2PreTrainedModel):
def __init__(self, config: MobileNetV2Config, add_pooling_layer: bool = True):
super().__init__(config)
self.config = config
# Output channels for the projection layers
channels = [16, 24, 24, 32, 32, 32, 64, 64, 64, 64, 96, 96, 96, 160, 160, 160, 320]
channels = [apply_depth_multiplier(config, x) for x in channels]
# Strides for the depthwise layers
strides = [2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1]
self.conv_stem = MobileNetV2Stem(
config,
in_channels=config.num_channels,
expanded_channels=apply_depth_multiplier(config, 32),
out_channels=channels[0],
)
current_stride = 2 # first conv layer has stride 2
dilation = 1
self.layer = nn.ModuleList()
for i in range(16):
# Keep making the feature maps smaller or use dilated convolution?
if current_stride == config.output_stride:
layer_stride = 1
layer_dilation = dilation
dilation *= strides[i] # larger dilation starts in next block
else:
layer_stride = strides[i]
layer_dilation = 1
current_stride *= layer_stride
self.layer.append(
MobileNetV2InvertedResidual(
config,
in_channels=channels[i],
out_channels=channels[i + 1],
stride=layer_stride,
dilation=layer_dilation,
)
)
if config.finegrained_output and config.depth_multiplier < 1.0:
output_channels = 1280
else:
output_channels = apply_depth_multiplier(config, 1280)
self.conv_1x1 = MobileNetV2ConvLayer(
config,
in_channels=channels[-1],
out_channels=output_channels,
kernel_size=1,
)
self.pooler = nn.AdaptiveAvgPool2d((1, 1)) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def _prune_heads(self, heads_to_prune):
raise NotImplementedError
@add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.conv_stem(pixel_values)
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
hidden_states = layer_module(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
last_hidden_state = self.conv_1x1(hidden_states)
if self.pooler is not None:
pooled_output = torch.flatten(self.pooler(last_hidden_state), start_dim=1)
else:
pooled_output = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None)
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=all_hidden_states,
)
@add_start_docstrings(
"""
MobileNetV2 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
MOBILENET_V2_START_DOCSTRING,
)
class MobileNetV2ForImageClassification(MobileNetV2PreTrainedModel):
def __init__(self, config: MobileNetV2Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.mobilenet_v2 = MobileNetV2Model(config)
last_hidden_size = self.mobilenet_v2.conv_1x1.convolution.out_channels
# Classifier head
self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True)
self.classifier = nn.Linear(last_hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mobilenet_v2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(self.dropout(pooled_output))
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
class MobileNetV2DeepLabV3Plus(nn.Module):
"""
The neural network from the paper "Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation" https://arxiv.org/abs/1802.02611
"""
def __init__(self, config: MobileNetV2Config) -> None:
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(output_size=1)
self.conv_pool = MobileNetV2ConvLayer(
config,
in_channels=apply_depth_multiplier(config, 320),
out_channels=256,
kernel_size=1,
stride=1,
use_normalization=True,
use_activation="relu",
layer_norm_eps=1e-5,
)
self.conv_aspp = MobileNetV2ConvLayer(
config,
in_channels=apply_depth_multiplier(config, 320),
out_channels=256,
kernel_size=1,
stride=1,
use_normalization=True,
use_activation="relu",
layer_norm_eps=1e-5,
)
self.conv_projection = MobileNetV2ConvLayer(
config,
in_channels=512,
out_channels=256,
kernel_size=1,
stride=1,
use_normalization=True,
use_activation="relu",
layer_norm_eps=1e-5,
)
self.dropout = nn.Dropout2d(config.classifier_dropout_prob)
self.classifier = MobileNetV2ConvLayer(
config,
in_channels=256,
out_channels=config.num_labels,
kernel_size=1,
use_normalization=False,
use_activation=False,
bias=True,
)
def forward(self, features: torch.Tensor) -> torch.Tensor:
spatial_size = features.shape[-2:]
features_pool = self.avg_pool(features)
features_pool = self.conv_pool(features_pool)
features_pool = nn.functional.interpolate(
features_pool, size=spatial_size, mode="bilinear", align_corners=True
)
features_aspp = self.conv_aspp(features)
features = torch.cat([features_pool, features_aspp], dim=1)
features = self.conv_projection(features)
features = self.dropout(features)
features = self.classifier(features)
return features
@add_start_docstrings(
"""
MobileNetV2 model with a semantic segmentation head on top, e.g. for Pascal VOC.
""",
MOBILENET_V2_START_DOCSTRING,
)
class MobileNetV2ForSemanticSegmentation(MobileNetV2PreTrainedModel):
def __init__(self, config: MobileNetV2Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.mobilenet_v2 = MobileNetV2Model(config, add_pooling_layer=False)
self.segmentation_head = MobileNetV2DeepLabV3Plus(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, SemanticSegmenterOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, MobileNetV2ForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513")
>>> model = MobileNetV2ForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # logits are of shape (batch_size, num_labels, height, width)
>>> logits = outputs.logits
```"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mobilenet_v2(
pixel_values,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
logits = self.segmentation_head(encoder_hidden_states[-1])
loss = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError("The number of labels should be greater than one")
else:
# upsample logits to the images' original size
upsampled_logits = nn.functional.interpolate(
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
loss = loss_fct(upsampled_logits, labels)
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[1:]
else:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=None,
)
| transformers/src/transformers/models/mobilenet_v2/modeling_mobilenet_v2.py/0 | {
"file_path": "transformers/src/transformers/models/mobilenet_v2/modeling_mobilenet_v2.py",
"repo_id": "transformers",
"token_count": 15255
} | 115 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for MPNet."""
import collections
import os
import unicodedata
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/vocab.txt",
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"microsoft/mpnet-base": 512,
}
PRETRAINED_INIT_CONFIGURATION = {
"microsoft/mpnet-base": {"do_lower_case": True},
}
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class MPNetTokenizer(PreTrainedTokenizer):
"""
This tokenizer inherits from [`BertTokenizer`] which contains most of the methods. Users should refer to the
superclass for more information regarding methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="[UNK]",
pad_token="<pad>",
mask_token="<mask>",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
# "<mask>" is part of the vocab, but was wrongfully added at a wrong index in the fast saved version
vocab = self.added_tokens_encoder.copy()
vocab.update(self.vocab)
return vocab
def _tokenize(self, text):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A MPNet sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` methods.
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Set to True if the token list is already formatted with special tokens for the model
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. MPNet does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer(object):
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer(object):
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
| transformers/src/transformers/models/mpnet/tokenization_mpnet.py/0 | {
"file_path": "transformers/src/transformers/models/mpnet/tokenization_mpnet.py",
"repo_id": "transformers",
"token_count": 9997
} | 116 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert MusicGen checkpoints from the original repository."""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
T5EncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
EXPECTED_MISSING_KEYS = ["model.decoder.embed_positions.weights"]
def rename_keys(name):
if "emb" in name:
name = name.replace("emb", "model.decoder.embed_tokens")
if "transformer" in name:
name = name.replace("transformer", "model.decoder")
if "cross_attention" in name:
name = name.replace("cross_attention", "encoder_attn")
if "linear1" in name:
name = name.replace("linear1", "fc1")
if "linear2" in name:
name = name.replace("linear2", "fc2")
if "norm1" in name:
name = name.replace("norm1", "self_attn_layer_norm")
if "norm_cross" in name:
name = name.replace("norm_cross", "encoder_attn_layer_norm")
if "norm2" in name:
name = name.replace("norm2", "final_layer_norm")
if "out_norm" in name:
name = name.replace("out_norm", "model.decoder.layer_norm")
if "linears" in name:
name = name.replace("linears", "lm_heads")
if "condition_provider.conditioners.description.output_proj" in name:
name = name.replace("condition_provider.conditioners.description.output_proj", "enc_to_dec_proj")
return name
def rename_state_dict(state_dict: OrderedDict, hidden_size: int) -> Tuple[Dict, Dict]:
"""Function that takes the fairseq Musicgen state dict and renames it according to the HF
module names. It further partitions the state dict into the decoder (LM) state dict, and that for the
encoder-decoder projection."""
keys = list(state_dict.keys())
enc_dec_proj_state_dict = {}
for key in keys:
val = state_dict.pop(key)
key = rename_keys(key)
if "in_proj_weight" in key:
# split fused qkv proj
state_dict[key.replace("in_proj_weight", "q_proj.weight")] = val[:hidden_size, :]
state_dict[key.replace("in_proj_weight", "k_proj.weight")] = val[hidden_size : 2 * hidden_size, :]
state_dict[key.replace("in_proj_weight", "v_proj.weight")] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
enc_dec_proj_state_dict[key[len("enc_to_dec_proj.") :]] = val
else:
state_dict[key] = val
return state_dict, enc_dec_proj_state_dict
def decoder_config_from_checkpoint(checkpoint: str) -> MusicgenDecoderConfig:
if checkpoint == "small" or checkpoint == "facebook/musicgen-stereo-small":
# default config values
hidden_size = 1024
num_hidden_layers = 24
num_attention_heads = 16
elif checkpoint == "medium" or checkpoint == "facebook/musicgen-stereo-medium":
hidden_size = 1536
num_hidden_layers = 48
num_attention_heads = 24
elif checkpoint == "large" or checkpoint == "facebook/musicgen-stereo-large":
hidden_size = 2048
num_hidden_layers = 48
num_attention_heads = 32
else:
raise ValueError(
"Checkpoint should be one of `['small', 'medium', 'large']` for the mono checkpoints, "
"or `['facebook/musicgen-stereo-small', 'facebook/musicgen-stereo-medium', 'facebook/musicgen-stereo-large']` "
f"for the stereo checkpoints, got {checkpoint}."
)
if "stereo" in checkpoint:
audio_channels = 2
num_codebooks = 8
else:
audio_channels = 1
num_codebooks = 4
config = MusicgenDecoderConfig(
hidden_size=hidden_size,
ffn_dim=hidden_size * 4,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
num_codebooks=num_codebooks,
audio_channels=audio_channels,
)
return config
@torch.no_grad()
def convert_musicgen_checkpoint(
checkpoint, pytorch_dump_folder=None, repo_id=None, device="cpu", safe_serialization=False
):
fairseq_model = MusicGen.get_pretrained(checkpoint, device=device)
decoder_config = decoder_config_from_checkpoint(checkpoint)
decoder_state_dict = fairseq_model.lm.state_dict()
decoder_state_dict, enc_dec_proj_state_dict = rename_state_dict(
decoder_state_dict, hidden_size=decoder_config.hidden_size
)
text_encoder = T5EncoderModel.from_pretrained("google-t5/t5-base")
audio_encoder = EncodecModel.from_pretrained("facebook/encodec_32khz")
decoder = MusicgenForCausalLM(decoder_config).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
missing_keys, unexpected_keys = decoder.load_state_dict(decoder_state_dict, strict=False)
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder")) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(key)
if len(missing_keys) > 0:
raise ValueError(f"Missing key(s) in state_dict: {missing_keys}")
if len(unexpected_keys) > 0:
raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}")
# init the composite model
model = MusicgenForConditionalGeneration(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder)
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(enc_dec_proj_state_dict)
# check we can do a forward pass
input_ids = torch.arange(0, 2 * decoder_config.num_codebooks, dtype=torch.long).reshape(2, -1)
decoder_input_ids = input_ids.reshape(2 * decoder_config.num_codebooks, -1)
with torch.no_grad():
logits = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids).logits
if logits.shape != (2 * decoder_config.num_codebooks, 1, 2048):
raise ValueError("Incorrect shape for logits")
# now construct the processor
tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
feature_extractor = AutoFeatureExtractor.from_pretrained(
"facebook/encodec_32khz", padding_side="left", feature_size=decoder_config.audio_channels
)
processor = MusicgenProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
# set the appropriate bos/pad token ids
model.generation_config.decoder_start_token_id = 2048
model.generation_config.pad_token_id = 2048
# set other default generation config params
model.generation_config.max_length = int(30 * audio_encoder.config.frame_rate)
model.generation_config.do_sample = True
model.generation_config.guidance_scale = 3.0
if pytorch_dump_folder is not None:
Path(pytorch_dump_folder).mkdir(exist_ok=True)
logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}")
model.save_pretrained(pytorch_dump_folder, safe_serialization=safe_serialization)
processor.save_pretrained(pytorch_dump_folder)
if repo_id:
logger.info(f"Pushing model {checkpoint} to {repo_id}")
model.push_to_hub(repo_id, safe_serialization=safe_serialization)
processor.push_to_hub(repo_id)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: "
"`['small', 'medium', 'large']` for the mono checkpoints, or "
"`['facebook/musicgen-stereo-small', 'facebook/musicgen-stereo-medium', 'facebook/musicgen-stereo-large']` "
"for the stereo checkpoints.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
parser.add_argument(
"--safe_serialization",
action="store_true",
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).",
)
args = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| transformers/src/transformers/models/musicgen/convert_musicgen_transformers.py/0 | {
"file_path": "transformers/src/transformers/models/musicgen/convert_musicgen_transformers.py",
"repo_id": "transformers",
"token_count": 3651
} | 117 |
# coding=utf-8
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert OneFormer checkpoints from the original repository. URL: https://github.com/SHI-Labs/OneFormer"""
import os
import sys
from argparse import ArgumentParser
from dataclasses import dataclass
from pathlib import Path
from pprint import pformat
from typing import Any, Dict, Iterator, List, Set, Tuple
import requests
import torch
import torchvision.transforms as T
from PIL import Image
from torch import Tensor, nn
try:
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog
from detectron2.projects.deeplab import add_deeplab_config
except ImportError:
pass
from transformers import CLIPTokenizer, DinatConfig, SwinConfig
from transformers.models.oneformer.image_processing_oneformer import OneFormerImageProcessor
from transformers.models.oneformer.modeling_oneformer import (
OneFormerConfig,
OneFormerForUniversalSegmentation,
OneFormerForUniversalSegmentationOutput,
OneFormerModel,
OneFormerModelOutput,
)
from transformers.models.oneformer.processing_oneformer import OneFormerProcessor
from transformers.utils import logging
StateDict = Dict[str, Tensor]
logging.set_verbosity_info()
logger = logging.get_logger()
torch.manual_seed(0)
class TrackedStateDict:
def __init__(self, to_track: Dict):
"""This class "tracks" a python dictionary by keeping track of which item is accessed.
Args:
to_track (Dict): The dictionary we wish to track
"""
self.to_track = to_track
self._seen: Set[str] = set()
def __getitem__(self, key: str) -> Any:
return self.to_track[key]
def __setitem__(self, key: str, item: Any):
self._seen.add(key)
self.to_track[key] = item
def diff(self) -> List[str]:
"""This method returns a set difference between the keys in the tracked state dict and the one we have access so far.
This is an effective method to check if we have update all the keys
Returns:
List[str]: List of keys not yet updated
"""
return set(self.to_track.keys()) - self._seen
def copy(self) -> Dict:
# proxy the call to the internal dictionary
return self.to_track.copy()
# Image to verify the result
def prepare_img():
url = "https://praeclarumjj3.github.io/files/coco.jpeg"
img_data = requests.get(url, stream=True).raw
im = Image.open(img_data)
return im
@dataclass
class Args:
"""Fake command line arguments needed by oneformer/detectron2 implementation"""
config_file: str
def setup_cfg(args: Args):
# load config from file and command-line arguments
cfg = get_cfg()
add_deeplab_config(cfg)
add_common_config(cfg)
add_oneformer_config(cfg)
add_swin_config(cfg)
add_dinat_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.freeze()
return cfg
class OriginalOneFormerConfigToOursConverter:
def __call__(self, original_config: object, is_swin: bool) -> OneFormerConfig:
model = original_config.MODEL
dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST_PANOPTIC[0])
id2label = dict(enumerate(dataset_catalog.stuff_classes))
label2id = {label: idx for idx, label in id2label.items()}
if is_swin:
if model.SWIN.EMBED_DIM == 96:
backbone_config = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224",
drop_path_rate=model.SWIN.DROP_PATH_RATE,
out_features=["stage1", "stage2", "stage3", "stage4"],
)
elif model.SWIN.EMBED_DIM == 192:
backbone_config = SwinConfig.from_pretrained(
"microsoft/swin-large-patch4-window12-384",
drop_path_rate=model.SWIN.DROP_PATH_RATE,
out_features=["stage1", "stage2", "stage3", "stage4"],
)
else:
raise ValueError(f"embed dim {model.SWIN.EMBED_DIM} not supported for Swin!")
else:
backbone_config = DinatConfig.from_pretrained(
"shi-labs/dinat-large-11x11-in22k-in1k-384",
dilations=model.DiNAT.DILATIONS,
kernel_size=model.DiNAT.KERNEL_SIZE,
out_features=["stage1", "stage2", "stage3", "stage4"],
)
config: OneFormerConfig = OneFormerConfig(
backbone_config=backbone_config,
output_attentions=True,
output_hidden_states=True,
return_dict=True,
ignore_value=model.SEM_SEG_HEAD.IGNORE_VALUE,
num_classes=model.SEM_SEG_HEAD.NUM_CLASSES,
num_queries=model.ONE_FORMER.NUM_OBJECT_QUERIES,
no_object_weight=model.ONE_FORMER.NO_OBJECT_WEIGHT,
class_weight=model.ONE_FORMER.CLASS_WEIGHT,
mask_weight=model.ONE_FORMER.MASK_WEIGHT,
dice_weight=model.ONE_FORMER.DICE_WEIGHT,
contrastive_weight=model.ONE_FORMER.CONTRASTIVE_WEIGHT,
contrastive_temperature=model.ONE_FORMER.CONTRASTIVE_TEMPERATURE,
train_num_points=model.ONE_FORMER.TRAIN_NUM_POINTS,
oversample_ratio=model.ONE_FORMER.OVERSAMPLE_RATIO,
importance_sample_ratio=model.ONE_FORMER.IMPORTANCE_SAMPLE_RATIO,
init_std=0.02,
init_xavier_std=1.0,
layer_norm_eps=1e-05,
is_training=False,
use_auxiliary_loss=model.ONE_FORMER.DEEP_SUPERVISION,
output_auxiliary_logits=True,
strides=[4, 8, 16, 32],
task_seq_len=original_config.INPUT.TASK_SEQ_LEN,
max_seq_len=original_config.INPUT.MAX_SEQ_LEN,
text_encoder_width=model.TEXT_ENCODER.WIDTH,
text_encoder_context_length=model.TEXT_ENCODER.CONTEXT_LENGTH,
text_encoder_num_layers=model.TEXT_ENCODER.NUM_LAYERS,
text_encoder_vocab_size=model.TEXT_ENCODER.VOCAB_SIZE,
text_encoder_proj_layers=model.TEXT_ENCODER.PROJ_NUM_LAYERS,
text_encoder_n_ctx=model.TEXT_ENCODER.N_CTX,
conv_dim=model.SEM_SEG_HEAD.CONVS_DIM,
mask_dim=model.SEM_SEG_HEAD.MASK_DIM,
hidden_dim=model.ONE_FORMER.HIDDEN_DIM,
norm=model.SEM_SEG_HEAD.NORM,
encoder_layers=model.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS,
encoder_feedforward_dim=1024,
decoder_layers=model.ONE_FORMER.DEC_LAYERS,
use_task_norm=model.ONE_FORMER.USE_TASK_NORM,
num_attention_heads=model.ONE_FORMER.NHEADS,
dropout=model.ONE_FORMER.DROPOUT,
dim_feedforward=model.ONE_FORMER.DIM_FEEDFORWARD,
pre_norm=model.ONE_FORMER.PRE_NORM,
enforce_input_proj=model.ONE_FORMER.ENFORCE_INPUT_PROJ,
query_dec_layers=model.ONE_FORMER.CLASS_DEC_LAYERS,
common_stride=model.SEM_SEG_HEAD.COMMON_STRIDE,
id2label=id2label,
label2id=label2id,
)
return config
class OriginalOneFormerConfigToProcessorConverter:
def __call__(self, original_config: object, model_repo: str) -> OneFormerProcessor:
model = original_config.MODEL
model_input = original_config.INPUT
dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST_PANOPTIC[0])
if "ade20k" in model_repo:
class_info_file = "ade20k_panoptic.json"
elif "coco" in model_repo:
class_info_file = "coco_panoptic.json"
elif "cityscapes" in model_repo:
class_info_file = "cityscapes_panoptic.json"
else:
raise ValueError("Invalid Dataset!")
image_processor = OneFormerImageProcessor(
image_mean=(torch.tensor(model.PIXEL_MEAN) / 255).tolist(),
image_std=(torch.tensor(model.PIXEL_STD) / 255).tolist(),
size=model_input.MIN_SIZE_TEST,
max_size=model_input.MAX_SIZE_TEST,
num_labels=model.SEM_SEG_HEAD.NUM_CLASSES,
ignore_index=dataset_catalog.ignore_label,
class_info_file=class_info_file,
)
tokenizer = CLIPTokenizer.from_pretrained(model_repo)
return OneFormerProcessor(
image_processor=image_processor,
tokenizer=tokenizer,
task_seq_length=original_config.INPUT.TASK_SEQ_LEN,
max_seq_length=original_config.INPUT.MAX_SEQ_LEN,
)
class OriginalOneFormerCheckpointToOursConverter:
def __init__(self, original_model: nn.Module, config: OneFormerConfig):
self.original_model = original_model
self.config = config
def pop_all(self, renamed_keys: List[Tuple[str, str]], dst_state_dict: StateDict, src_state_dict: StateDict):
for src_key, dst_key in renamed_keys:
dst_state_dict[dst_key] = src_state_dict.pop(src_key)
# Swin Backbone
def replace_swin_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: OneFormerConfig):
dst_prefix: str = "pixel_level_module.encoder"
src_prefix: str = "backbone"
renamed_keys = [
(
f"{src_prefix}.patch_embed.proj.weight",
f"{dst_prefix}.embeddings.patch_embeddings.projection.weight",
),
(f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.embeddings.patch_embeddings.projection.bias"),
(f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.embeddings.norm.weight"),
(f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.embeddings.norm.bias"),
]
num_layers = len(config.backbone_config.depths)
for layer_idx in range(num_layers):
for block_idx in range(config.backbone_config.depths[layer_idx]):
renamed_keys.extend(
[ # src, dst
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table",
),
]
)
# now we need to handle the attentions
# read in weights + bias of input projection layer of cross-attention
src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"]
src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"]
size = src_att_weight.shape[0]
offset = size // 3
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight"
] = src_att_weight[:offset, :]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias"
] = src_att_bias[:offset]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight"
] = src_att_weight[offset : offset * 2, :]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias"
] = src_att_bias[offset : offset * 2]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight"
] = src_att_weight[-offset:, :]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias"
] = src_att_bias[-offset:]
# let's pop them
src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight")
src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias")
# proj
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias",
),
]
)
# second norm
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias",
),
]
)
# mlp
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias",
),
]
)
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index",
)
]
)
if layer_idx < num_layers - 1:
# patch merging
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.reduction.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.bias",
),
]
)
# hidden states norms
renamed_keys.extend(
[
(
f"{src_prefix}.norm{layer_idx}.weight",
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight",
),
(
f"{src_prefix}.norm{layer_idx}.bias",
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias",
),
]
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
# Dinat Backbone
def replace_dinat_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: OneFormerConfig):
dst_prefix: str = "pixel_level_module.encoder"
src_prefix: str = "backbone"
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
return [
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
]
renamed_keys = rename_keys_for_weight_bias(f"{src_prefix}.patch_embed.norm", f"{dst_prefix}.embeddings.norm")
for i in range(2):
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.patch_embed.proj.{i}",
f"{dst_prefix}.embeddings.patch_embeddings.projection.{i}",
)
)
num_layers = len(config.backbone_config.depths)
for layer_idx in range(num_layers):
for block_idx in range(config.backbone_config.depths[layer_idx]):
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.norm1",
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.layernorm_before",
)
)
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.norm2",
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.layernorm_after",
)
)
renamed_keys.extend(
[ # src, dst
(
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.rpb",
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.rpb",
),
]
)
# now we need to handle the attentions
# read in weights + bias of input projection layer of cross-attention
src_att_weight = src_state_dict[f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"]
src_att_bias = src_state_dict[f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"]
size = src_att_weight.shape[0]
offset = size // 3
dst_state_dict[
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.query.weight"
] = src_att_weight[:offset, :]
dst_state_dict[
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.query.bias"
] = src_att_bias[:offset]
dst_state_dict[
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.key.weight"
] = src_att_weight[offset : offset * 2, :]
dst_state_dict[
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.key.bias"
] = src_att_bias[offset : offset * 2]
dst_state_dict[
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.value.weight"
] = src_att_weight[-offset:, :]
dst_state_dict[
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.value.bias"
] = src_att_bias[-offset:]
# let's pop them
src_state_dict.pop(f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.weight")
src_state_dict.pop(f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.bias")
# proj
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.proj",
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.output.dense",
)
)
# mlp
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.mlp.fc1",
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.intermediate.dense",
)
)
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.mlp.fc2",
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.output.dense",
)
)
if layer_idx < num_layers - 1:
# patch merging
renamed_keys.extend(
[
(
f"{src_prefix}.levels.{layer_idx}.downsample.reduction.weight",
f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.reduction.weight",
),
(
f"{src_prefix}.levels.{layer_idx}.downsample.norm.weight",
f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.norm.weight",
),
(
f"{src_prefix}.levels.{layer_idx}.downsample.norm.bias",
f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.norm.bias",
),
]
)
# hidden states norms
renamed_keys.extend(
[
(
f"{src_prefix}.norm{layer_idx}.weight",
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight",
),
(
f"{src_prefix}.norm{layer_idx}.bias",
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias",
),
]
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
# Backbone + Pixel Decoder
def replace_pixel_module(self, dst_state_dict: StateDict, src_state_dict: StateDict, is_swin: bool):
dst_prefix: str = "pixel_level_module.decoder"
src_prefix: str = "sem_seg_head.pixel_decoder"
if is_swin:
self.replace_swin_backbone(dst_state_dict, src_state_dict, self.config)
else:
self.replace_dinat_backbone(dst_state_dict, src_state_dict, self.config)
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
return [
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
]
def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str):
self_attn_keys = []
self_attn_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.attention_weights", f"{dst_prefix}.attention_weights")
)
self_attn_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.output_proj", f"{dst_prefix}.output_proj")
)
self_attn_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.sampling_offsets", f"{dst_prefix}.sampling_offsets")
)
self_attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.value_proj", f"{dst_prefix}.value_proj"))
return self_attn_keys
def rename_keys_for_encoder_layer(src_prefix: str, dst_prefix: str):
encoder_keys = []
encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.fc1"))
encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.fc2"))
encoder_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.self_attn_layer_norm")
)
encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.final_layer_norm"))
encoder_keys.extend(rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn"))
return encoder_keys
# convolution layer for final features
renamed_keys = [
(f"{src_prefix}.adapter_1.weight", f"{dst_prefix}.adapter_1.0.weight"),
(f"{src_prefix}.adapter_1.norm.weight", f"{dst_prefix}.adapter_1.1.weight"),
(f"{src_prefix}.adapter_1.norm.bias", f"{dst_prefix}.adapter_1.1.bias"),
]
renamed_keys.extend(
[
(f"{src_prefix}.layer_1.weight", f"{dst_prefix}.layer_1.0.weight"),
(f"{src_prefix}.layer_1.norm.weight", f"{dst_prefix}.layer_1.1.weight"),
(f"{src_prefix}.layer_1.norm.bias", f"{dst_prefix}.layer_1.1.bias"),
]
)
# proj layers
for i in range(3):
for j in range(2):
renamed_keys.extend(
[
(f"{src_prefix}.input_proj.{i}.{j}.weight", f"{dst_prefix}.input_projections.{i}.{j}.weight"),
(f"{src_prefix}.input_proj.{i}.{j}.bias", f"{dst_prefix}.input_projections.{i}.{j}.bias"),
]
)
renamed_keys.extend([(f"{src_prefix}.transformer.level_embed", f"{dst_prefix}.level_embed")])
# layers
for layer_idx in range(self.config.encoder_layers):
renamed_keys.extend(
rename_keys_for_encoder_layer(
f"{src_prefix}.transformer.encoder.layers.{layer_idx}", f"{dst_prefix}.encoder.layers.{layer_idx}"
)
)
# proj
renamed_keys.extend(
[
(f"{src_prefix}.mask_features.weight", f"{dst_prefix}.mask_projection.weight"),
(f"{src_prefix}.mask_features.bias", f"{dst_prefix}.mask_projection.bias"),
]
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
# Transformer Decoder
def replace_keys_qkv_transformer_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "transformer_module.decoder.layers"
src_prefix: str = "sem_seg_head.predictor"
for i in range(self.config.decoder_layers - 1):
# read in weights + bias of input projection layer of self-attention
in_proj_weight = src_state_dict.pop(
f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_weight"
)
in_proj_bias = src_state_dict.pop(
f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_bias"
)
# next, add query, keys and values (in that order) to the state dict
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.q_proj.bias"] = in_proj_bias[:256]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.k_proj.bias"] = in_proj_bias[256:512]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.v_proj.bias"] = in_proj_bias[-256:]
def replace_transformer_module(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "transformer_module"
src_prefix: str = "sem_seg_head.predictor"
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
return [
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
]
def rename_keys_for_attn(src_prefix: str, dst_prefix: str):
attn_keys = [
(f"{src_prefix}.in_proj_bias", f"{dst_prefix}.in_proj_bias"),
(f"{src_prefix}.in_proj_weight", f"{dst_prefix}.in_proj_weight"),
]
attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj"))
return attn_keys
def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str):
attn_keys = []
attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj"))
return attn_keys
def rename_keys_for_query_transformer_layer(src_prefix: str, dst_prefix: str):
query_transformer_layer_keys = []
query_transformer_layer_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.linear1")
)
query_transformer_layer_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.linear2")
)
query_transformer_layer_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.norm1")
)
query_transformer_layer_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.norm2")
)
query_transformer_layer_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.norm3", f"{dst_prefix}.norm3")
)
query_transformer_layer_keys.extend(
rename_keys_for_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn")
)
query_transformer_layer_keys.extend(
rename_keys_for_attn(f"{src_prefix}.multihead_attn", f"{dst_prefix}.multihead_attn")
)
return query_transformer_layer_keys
def rename_keys_for_cross_attn_layer(src_prefix: str, dst_prefix: str):
cross_attn_layer_keys = []
cross_attn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm"))
cross_attn_layer_keys.extend(
rename_keys_for_attn(f"{src_prefix}.multihead_attn", f"{dst_prefix}.multihead_attn")
)
return cross_attn_layer_keys
def rename_keys_for_self_attn_layer(src_prefix: str, dst_prefix: str):
self_attn_layer_keys = []
self_attn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm"))
self_attn_layer_keys.extend(
rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn")
)
return self_attn_layer_keys
def rename_keys_for_ffn_layer(src_prefix: str, dst_prefix: str):
ffn_layer_keys = []
ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.linear1"))
ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.linear2"))
ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm"))
return ffn_layer_keys
def rename_keys_for_transformer_decoder_layer(src_prefix: str, dst_prefix: str, idx: int):
transformer_decoder_layer_keys = []
transformer_decoder_layer_keys.extend(
rename_keys_for_cross_attn_layer(
f"{src_prefix}.transformer_cross_attention_layers.{idx}", f"{dst_prefix}.{idx}.cross_attn"
)
)
transformer_decoder_layer_keys.extend(
rename_keys_for_self_attn_layer(
f"{src_prefix}.transformer_self_attention_layers.{idx}", f"{dst_prefix}.{idx}.self_attn"
)
)
transformer_decoder_layer_keys.extend(
rename_keys_for_ffn_layer(f"{src_prefix}.transformer_ffn_layers.{idx}", f"{dst_prefix}.{idx}.ffn")
)
return transformer_decoder_layer_keys
# positional embedding for object queries
renamed_keys = [
(f"{src_prefix}.query_embed.weight", f"{dst_prefix}.queries_embedder.weight"),
(f"{src_prefix}.level_embed.weight", f"{dst_prefix}.level_embed.weight"),
]
# norm
renamed_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.decoder_norm", f"{dst_prefix}.decoder.decoder_norm")
)
# proj
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.class_input_proj", f"{dst_prefix}.decoder.query_input_projection"
)
)
renamed_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.class_embed", f"{dst_prefix}.decoder.class_embed")
)
for i in range(3):
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.mask_embed.layers.{i}", f"{dst_prefix}.decoder.mask_embed.layers.{i}.0"
)
)
# norm
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.class_transformer.decoder.norm", f"{dst_prefix}.decoder.query_transformer.decoder.norm"
)
)
# transformer to update queries with task tokens
for i in range(self.config.query_dec_layers):
renamed_keys.extend(
rename_keys_for_query_transformer_layer(
f"{src_prefix}.class_transformer.decoder.layers.{i}",
f"{dst_prefix}.decoder.query_transformer.decoder.layers.{i}",
)
)
# decoder layers
for i in range(self.config.decoder_layers - 1):
renamed_keys.extend(
rename_keys_for_transformer_decoder_layer(
f"{src_prefix}",
f"{dst_prefix}.decoder.layers",
i,
)
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
self.replace_keys_qkv_transformer_decoder(dst_state_dict, src_state_dict)
def replace_task_mlp(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "task_encoder"
src_prefix: str = "task_mlp"
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
return [
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
]
renamed_keys = []
for i in range(2):
renamed_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.layers.{i}", f"{dst_prefix}.task_mlp.layers.{i}.0")
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
def replace_text_projector(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "text_mapper.text_projector"
src_prefix: str = "text_projector"
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
return [
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
]
renamed_keys = []
for i in range(self.config.text_encoder_config["text_encoder_proj_layers"]):
renamed_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.layers.{i}", f"{dst_prefix}.{i}.0"))
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
def replace_text_mapper(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "text_mapper.text_encoder"
src_prefix: str = "text_encoder"
self.replace_text_projector(dst_state_dict, src_state_dict)
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
return [
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
]
def rename_keys_for_attn(src_prefix: str, dst_prefix: str):
attn_keys = [
(f"{src_prefix}.in_proj_bias", f"{dst_prefix}.in_proj_bias"),
(f"{src_prefix}.in_proj_weight", f"{dst_prefix}.in_proj_weight"),
]
attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj"))
return attn_keys
def rename_keys_for_layer(src_prefix: str, dst_prefix: str):
resblock_keys = []
resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.mlp.c_fc", f"{dst_prefix}.mlp.fc1"))
resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.mlp.c_proj", f"{dst_prefix}.mlp.fc2"))
resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_1", f"{dst_prefix}.layer_norm1"))
resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_2", f"{dst_prefix}.layer_norm2"))
resblock_keys.extend(rename_keys_for_attn(f"{src_prefix}.attn", f"{dst_prefix}.self_attn"))
return resblock_keys
renamed_keys = [
("prompt_ctx.weight", "text_mapper.prompt_ctx.weight"),
]
renamed_keys.extend(
[
(f"{src_prefix}.positional_embedding", f"{dst_prefix}.positional_embedding"),
(f"{src_prefix}.token_embedding.weight", f"{dst_prefix}.token_embedding.weight"),
]
)
renamed_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_final", f"{dst_prefix}.ln_final"))
for i in range(self.config.text_encoder_config["text_encoder_num_layers"]):
renamed_keys.extend(
rename_keys_for_layer(
f"{src_prefix}.transformer.resblocks.{i}", f"{dst_prefix}.transformer.layers.{i}"
)
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
def convert(self, oneformer: OneFormerModel, is_swin: bool) -> OneFormerModel:
dst_state_dict = TrackedStateDict(oneformer.state_dict())
src_state_dict = self.original_model.state_dict()
self.replace_pixel_module(dst_state_dict, src_state_dict, is_swin)
self.replace_transformer_module(dst_state_dict, src_state_dict)
self.replace_task_mlp(dst_state_dict, src_state_dict)
if self.config.is_training:
self.replace_text_mapper(dst_state_dict, src_state_dict)
logger.info(f"Missed keys are {pformat(dst_state_dict.diff())}")
logger.info(f"Not copied keys are {pformat(src_state_dict.keys())}")
logger.info("🙌 Done")
oneformer.load_state_dict(dst_state_dict)
return oneformer
@staticmethod
def using_dirs(checkpoints_dir: Path, config_dir: Path) -> Iterator[Tuple[object, Path, Path]]:
checkpoints: List[Path] = checkpoints_dir.glob("**/*.pth")
for checkpoint in checkpoints:
logger.info(f"💪 Converting {checkpoint.stem}")
# find associated config file
config: Path = config_dir / f"{checkpoint.stem}.yaml"
yield config, checkpoint
def post_process_sem_seg_output(outputs: OneFormerForUniversalSegmentationOutput, target_size: Tuple[int, int]):
# class_queries_logits has shape [BATCH, QUERIES, CLASSES + 1]
class_queries_logits = outputs.class_queries_logits
# masks_queries_logits has shape [BATCH, QUERIES, HEIGHT, WIDTH]
masks_queries_logits = outputs.masks_queries_logits
if target_size is not None:
masks_queries_logits = torch.nn.functional.interpolate(
masks_queries_logits,
size=target_size,
mode="bilinear",
align_corners=False,
)
# remove the null class `[..., :-1]`
masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1]
# mask probs has shape [BATCH, QUERIES, HEIGHT, WIDTH]
masks_probs = masks_queries_logits.sigmoid()
# now we want to sum over the queries,
# $ out_{c,h,w} = \sum_q p_{q,c} * m_{q,h,w} $
# where $ softmax(p) \in R^{q, c} $ is the mask classes
# and $ sigmoid(m) \in R^{q, h, w}$ is the mask probabilities
# b(atch)q(uery)c(lasses), b(atch)q(uery)h(eight)w(idth)
segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs)
return segmentation
def test(
original_model,
our_model: OneFormerForUniversalSegmentation,
processor: OneFormerProcessor,
model_repo: str,
):
def _preprocess_text(text_list=None, max_length=77):
if text_list is None:
raise ValueError("tokens cannot be None.")
tokens = tokenizer(text_list, padding="max_length", max_length=max_length, truncation=True)
attention_masks, input_ids = tokens["attention_mask"], tokens["input_ids"]
token_inputs = []
for attn_mask, input_id in zip(attention_masks, input_ids):
token = torch.tensor(attn_mask) * torch.tensor(input_id)
token_inputs.append(token.unsqueeze(0))
token_inputs = torch.cat(token_inputs, dim=0)
return token_inputs
with torch.no_grad():
tokenizer = CLIPTokenizer.from_pretrained(model_repo)
original_model = original_model.eval()
our_model = our_model.eval()
im = prepare_img()
tr = T.Compose(
[
T.Resize((640, 640)),
T.ToTensor(),
T.Normalize(
mean=torch.tensor([123.675, 116.280, 103.530]) / 255.0,
std=torch.tensor([58.395, 57.120, 57.375]) / 255.0,
),
],
)
x = tr(im).unsqueeze(0)
task_input = ["the task is semantic"]
task_token = _preprocess_text(task_input, max_length=processor.task_seq_length)
original_model_backbone_features = original_model.backbone(x.clone())
our_model_output: OneFormerModelOutput = our_model.model(x.clone(), task_token, output_hidden_states=True)
for original_model_feature, our_model_feature in zip(
original_model_backbone_features.values(), our_model_output.encoder_hidden_states
):
assert torch.allclose(
original_model_feature, our_model_feature, atol=3e-3
), "The backbone features are not the same."
mask_features, _, multi_scale_features, _, _ = original_model.sem_seg_head.pixel_decoder.forward_features(
original_model_backbone_features
)
original_pixel_decoder_features = []
original_pixel_decoder_features.append(mask_features)
for i in range(len(multi_scale_features)):
original_pixel_decoder_features.append(multi_scale_features[i])
for original_model_feature, our_model_feature in zip(
original_pixel_decoder_features, our_model_output.pixel_decoder_hidden_states
):
assert torch.allclose(
original_model_feature, our_model_feature, atol=3e-4
), "The pixel decoder feature are not the same"
tr_complete = T.Compose(
[
T.Resize((640, 640)),
T.ToTensor(),
],
)
y = (tr_complete(im) * 255.0).to(torch.int).float()
# let's test the full model
original_model_out = original_model([{"image": y.clone(), "task": "The task is semantic"}])
original_segmentation = original_model_out[0]["sem_seg"]
our_model_out: OneFormerForUniversalSegmentationOutput = our_model(
x.clone(), task_token, output_hidden_states=True
)
our_segmentation = post_process_sem_seg_output(our_model_out, target_size=(640, 640))[0]
assert torch.allclose(
original_segmentation, our_segmentation, atol=1e-3
), "The segmentation image is not the same."
logger.info("✅ Test passed!")
def get_name(checkpoint_file: Path):
model_name_raw: str = checkpoint_file.stem
backbone = "swin" if "swin" in model_name_raw else "dinat"
dataset = ""
if "coco" in model_name_raw:
dataset = "coco"
elif "ade20k" in model_name_raw:
dataset = "ade20k"
elif "cityscapes" in model_name_raw:
dataset = "cityscapes"
else:
raise ValueError(
f"{model_name_raw} must be wrong since we didn't find 'coco' or 'ade20k' or 'cityscapes' in it "
)
backbone_types = ["tiny", "large"]
backbone_type = list(filter(lambda x: x in model_name_raw, backbone_types))[0]
model_name = f"oneformer_{dataset}_{backbone}_{backbone_type}"
return model_name
if __name__ == "__main__":
parser = ArgumentParser(
description=(
"Command line to convert the original oneformer models (with swin backbone) to transformers"
" implementation."
)
)
parser.add_argument(
"--checkpoints_dir",
type=Path,
help=(
"A directory containing the model's checkpoints. The directory has to have the following structure:"
" structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.pth; where <CONFIG_NAME> name must follow the"
" following nomenclature nomenclature: oneformer_<DATASET_NAME>_<BACKBONE>_<BACKBONE_TYPE>"
),
)
parser.add_argument(
"--configs_dir",
type=Path,
help=(
"A directory containing the model's configs, see detectron2 doc. The directory has to have the following"
" structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.yaml; where <CONFIG_NAME> name must follow the"
" following nomenclature nomenclature: oneformer_<DATASET_NAME>_<BACKBONE>_<BACKBONE_TYPE>"
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
required=True,
type=Path,
help="Path to the folder to output PyTorch models.",
)
parser.add_argument(
"--oneformer_dir",
required=True,
type=Path,
help=(
"A path to OneFormer's original implementation directory. You can download from here: "
"https://github.com/SHI-Labs/OneFormer"
),
)
args = parser.parse_args()
checkpoints_dir: Path = args.checkpoints_dir
config_dir: Path = args.configs_dir
save_directory: Path = args.pytorch_dump_folder_path
oneformer_dir: Path = args.oneformer_dir
# append the path to the parents to oneformer dir
sys.path.append(str(oneformer_dir.parent))
# and import what's needed
from OneFormer.oneformer import add_common_config, add_dinat_config, add_oneformer_config, add_swin_config
from OneFormer.oneformer.oneformer_model import OneFormer as OriginalOneFormer
if not save_directory.exists():
save_directory.mkdir(parents=True)
for config_file, checkpoint_file in OriginalOneFormerCheckpointToOursConverter.using_dirs(
checkpoints_dir, config_dir
):
processor = OriginalOneFormerConfigToProcessorConverter()(
setup_cfg(Args(config_file=config_file)), os.path.join("shi-labs", config_file.stem)
)
original_config = setup_cfg(Args(config_file=config_file))
oneformer_kwargs = OriginalOneFormer.from_config(original_config)
original_model = OriginalOneFormer(**oneformer_kwargs).eval()
DetectionCheckpointer(original_model).load(str(checkpoint_file))
is_swin = "swin" in config_file.stem
config: OneFormerConfig = OriginalOneFormerConfigToOursConverter()(original_config, is_swin)
oneformer = OneFormerModel(config=config).eval()
converter = OriginalOneFormerCheckpointToOursConverter(original_model, config)
oneformer = converter.convert(oneformer, is_swin)
oneformer_for_universal_segmentation = OneFormerForUniversalSegmentation(config=config).eval()
oneformer_for_universal_segmentation.model = oneformer
test(
original_model,
oneformer_for_universal_segmentation,
processor,
os.path.join("shi-labs", config_file.stem),
)
model_name = get_name(checkpoint_file)
logger.info(f"🪄 Saving {model_name}")
processor.save_pretrained(save_directory / model_name)
oneformer_for_universal_segmentation.save_pretrained(save_directory / model_name)
processor.push_to_hub(
repo_id=os.path.join("shi-labs", config_file.stem),
commit_message="Add configs",
use_temp_dir=True,
)
oneformer_for_universal_segmentation.push_to_hub(
repo_id=os.path.join("shi-labs", config_file.stem),
commit_message="Add model",
use_temp_dir=True,
)
| transformers/src/transformers/models/oneformer/convert_to_hf_oneformer.py/0 | {
"file_path": "transformers/src/transformers/models/oneformer/convert_to_hf_oneformer.py",
"repo_id": "transformers",
"token_count": 26214
} | 118 |
# coding=utf-8
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 OPT model."""
from __future__ import annotations
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutputWithPast, TFCausalLMOutputWithPast
# Public API
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
TFSharedEmbeddings,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_opt import OPTConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/opt-350m"
_CONFIG_FOR_DOC = "OPTConfig"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
# Causal LM output
_CAUSAL_LM_EXPECTED_OUTPUT = (
"Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
)
LARGE_NEGATIVE = -1e8
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz = input_ids_shape[0]
tgt_len = input_ids_shape[1]
# We need triu with k = 1 but TF expects known compile-time dims for that, so we hack around it
mask = tf.fill((tgt_len, tgt_len), tf.cast(LARGE_NEGATIVE, tf.float32))
mask = tf.linalg.band_part(mask, 0, -1) - tf.linalg.band_part(mask, 0, 0)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
class TFOPTLearnedPositionalEmbedding(keras.layers.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs)
def call(self, attention_mask, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
attention_mask = tf.cast(attention_mask, tf.int64)
# create positions depending on attention_mask
positions = tf.math.cumsum(attention_mask, axis=1) * attention_mask - 1
# cut positions if `past_key_values_length` is > 0
positions = positions[:, past_key_values_length:]
return super().call(positions + self.offset)
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->OPT
class TFOPTAttention(keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
key_value_states: tf.Tensor | None = None,
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
attention_mask: tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor | None]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {shape_list(attn_weights)}"
),
)
if attention_mask is not None:
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {shape_list(attention_mask)}"
),
)
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {shape_list(attn_output)}"
),
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.embed_dim])
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.embed_dim])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.embed_dim])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.embed_dim])
class TFOPTDecoderLayer(keras.layers.Layer):
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(**kwargs)
self.do_layer_norm_before = config.do_layer_norm_before
self.embed_dim = config.hidden_size
self.self_attn = TFOPTAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
name="self_attn",
is_decoder=True,
)
self.dropout = keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.fc1 = keras.layers.Dense(config.ffn_dim, name="fc1")
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: np.ndarray | tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
training: Optional[bool] = False,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`, *optional*): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
past_key_value (`Tuple(tf.Tensor)`, *optional*): cached past key and value projection states
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
return (hidden_states, self_attn_weights, present_key_value)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "self_attn_layer_norm", None) is not None:
with tf.name_scope(self.self_attn_layer_norm.name):
self.self_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.embed_dim])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.config.ffn_dim])
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.embed_dim])
OPT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`OPTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare OPT Model outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
class TFOPTPreTrainedModel(TFPreTrainedModel):
"""
TFOPT Pretrained Model that inheritates from transformers.TFPreTrainedModel
Args:
config: OPTConfig
"""
config_class = OPTConfig
base_model_prefix = "model"
OPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@keras_serializable
class TFOPTDecoder(keras.layers.Layer):
config_class = OPTConfig
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.padding_idx = config.pad_token_id
self.layerdrop = config.layerdrop
num_embeddings = config.max_position_embeddings
self.embed_tokens = TFSharedEmbeddings(
config.vocab_size, config.word_embed_proj_dim, config.pad_token_id, name="embed_tokens"
)
self.embed_positions = TFOPTLearnedPositionalEmbedding(
num_embeddings,
config.hidden_size,
name="embed_positions",
)
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if config.do_layer_norm_before and not config._remove_final_layer_norm:
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
else:
self.final_layer_norm = None
if config.word_embed_proj_dim != config.hidden_size:
self.project_out = keras.layers.Dense(config.word_embed_proj_dim, name="project_out", use_bias=False)
self.project_in = keras.layers.Dense(config.hidden_size, name="project_in", use_bias=False)
else:
self.project_in = None
self.project_out = None
self.layers = [TFOPTDecoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)]
self.dropout = keras.layers.Dropout(config.dropout)
def get_embed_tokens(self):
return self.embed_tokens
def set_embed_tokens(self, embed_tokens):
self.embed_tokens = embed_tokens
def set_input_embeddings(self, new_embeddings):
self.embed_tokens.vocab_size = new_embeddings.shape[0]
self.embed_tokens.weight = new_embeddings
def get_input_embeddings(self):
return self.embed_tokens
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, past_key_values_length):
# create causal mask
# # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
_, seq_length = input_shape
tf.debugging.assert_equal(
seq_length + past_key_values_length,
shape_list(attention_mask)[1],
message="Attention mask shape should be (batch_size, seq_length + past_key_values_length)"
f" but is {shape_list(attention_mask)[1]} with input_ids shape {input_shape} and past length"
f" {past_key_values_length}.",
)
expanded_attn_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1])
if seq_length > 1:
combined_attention_mask = (
_make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + expanded_attn_mask
)
else:
combined_attention_mask = expanded_attn_mask
return combined_attention_mask
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`tf.Tensor` of
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
control over how to convert `input_ids` indices into associated vectors than the model's internal
embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size)
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is None:
attention_mask = tf.ones((input_shape[0], input_shape[1] + past_key_values_length), dtype=tf.bool)
else:
tf.debugging.assert_equal(
shape_list(attention_mask)[1],
past_key_values_length + input_shape[1],
message=(
f"The provided attention mask has length {tf.shape(attention_mask)[1]}, but its length should be "
f"{past_key_values_length + input_shape[1]} (sum of the lengths of current and past inputs)"
),
)
pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length)
if self.project_in is not None:
inputs_embeds = self.project_in(inputs_embeds)
hidden_states = inputs_embeds + pos_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
for attn_mask_name, attn_mask in [("head_mask", head_mask)]:
if attn_mask is not None:
tf.debugging.assert_equal(
shape_list(attn_mask)[0],
len(self.layers),
message=(
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
f" {shape_list(attn_mask)[0]}."
),
)
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
hidden_states, layer_self_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=head_mask[idx] if head_mask is not None else None,
past_key_value=past_key_value,
)
if use_cache:
present_key_values += (present_key_value,)
if output_attentions:
all_self_attns += (layer_self_attn,)
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
if self.project_out is not None:
hidden_states = self.project_out(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, present_key_values, all_hidden_states, all_self_attns] if v is not None
)
else:
return TFBaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embed_tokens", None) is not None:
with tf.name_scope(self.embed_tokens.name):
self.embed_tokens.build(None)
if getattr(self, "embed_positions", None) is not None:
with tf.name_scope(self.embed_positions.name):
self.embed_positions.build(None)
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.config.hidden_size])
if getattr(self, "project_out", None) is not None:
with tf.name_scope(self.project_out.name):
self.project_out.build([None, None, self.config.hidden_size])
if getattr(self, "project_in", None) is not None:
with tf.name_scope(self.project_in.name):
self.project_in.build([None, None, self.config.word_embed_proj_dim])
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFOPTMainLayer(keras.layers.Layer):
config_class = OPTConfig
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.decoder = TFOPTDecoder(config, name="decoder")
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.decoder.set_input_embeddings(new_embeddings)
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.decoder(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return outputs
return TFBaseModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
@add_start_docstrings(
"The bare TF OPT Model outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
@keras_serializable
class TFOPTModel(TFOPTPreTrainedModel):
config_class = OPTConfig
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(config, **kwargs)
self.config = config
self.model = TFOPTMainLayer(config, name="model")
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.model.set_input_embeddings(new_embeddings)
@unpack_inputs
@add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return outputs
return TFBaseModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFBaseModelOutputWithPast(
last_hidden_state=output.last_hidden_state,
past_key_values=pkv,
hidden_states=hs,
attentions=attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
@add_start_docstrings(
"""
The OPT Model transformer with a language modeling head on top.
""",
OPT_START_DOCSTRING,
)
@keras_serializable
class TFOPTForCausalLM(TFOPTPreTrainedModel, TFCausalLanguageModelingLoss):
config_class = OPTConfig
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(config, **kwargs)
self.config = config
self.model = TFOPTMainLayer(config, name="model")
def get_output_embeddings(self):
return self.model.get_input_embeddings()
def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs):
attention_mask = kwargs.get("attention_mask", None)
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
inputs = tf.expand_dims(inputs[:, -1], -1)
return {
"input_ids": inputs,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"use_cache": use_cache,
}
@unpack_inputs
@replace_return_docstrings(output_type=TFCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFCausalLMOutputWithPast,
config_class=_CONFIG_FOR_DOC,
expected_output=_CAUSAL_LM_EXPECTED_OUTPUT,
)
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
labels: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutputWithPast, Tuple[tf.Tensor]]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
logits = self.model.decoder.embed_tokens(outputs[0], mode="linear")
loss = None
if labels is not None:
# shift labels to the left and cut last logit token
shifted_logits = logits[:, :-1]
labels = labels[:, 1:]
loss = self.hf_compute_loss(labels, shifted_logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFCausalLMOutputWithPast(
past_key_values=pkv,
hidden_states=hs,
attentions=attns,
loss=output.loss,
logits=output.logits,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
| transformers/src/transformers/models/opt/modeling_tf_opt.py/0 | {
"file_path": "transformers/src/transformers/models/opt/modeling_tf_opt.py",
"repo_id": "transformers",
"token_count": 21486
} | 119 |
# coding=utf-8
# Copyright 2023 IBM and HuggingFace Inc. team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch PatchTSMixer model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput
from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_patchtsmixer import PatchTSMixerConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "PatchTSMixerConfig"
PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"ibm/patchtsmixer-etth1-pretrain",
# See all PatchTSMixer models at https://huggingface.co/models?filter=patchtsmixer
]
PATCHTSMIXER_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`PatchTSMixerConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
mask_input (`bool`, *optional*, defaults to `False`):
If True, Masking will be enabled. False otherwise.
"""
PATCHTSMIXER_INPUTS_DOCSTRING = r"""
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, seq_length, num_input_channels)`):
Context values of the time series. For a pretraining task, this denotes the input time series to predict
the masked portion. For a forecasting task, this denotes the history/past time series values. Similarly,
for classification or regression tasks, it denotes the appropriate context values of the time series.
For univariate time series, `num_input_channels` dimension should be 1. For multivariate time series, it is
greater than 1.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class PatchTSMixerGatedAttention(nn.Module):
"""
Module that applies gated attention to input data.
Args:
in_size (`int`): The input size.
out_size (`int`): The output size.
"""
def __init__(self, in_size: int, out_size: int):
super().__init__()
self.attn_layer = nn.Linear(in_size, out_size)
self.attn_softmax = nn.Softmax(dim=-1)
def forward(self, inputs):
attn_weight = self.attn_softmax(self.attn_layer(inputs))
inputs = inputs * attn_weight
return inputs
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTBatchNorm with PatchTST->PatchTSMixer
class PatchTSMixerBatchNorm(nn.Module):
"""
Compute batch normalization over the sequence length (time) dimension.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.batchnorm = nn.BatchNorm1d(config.d_model, eps=config.norm_eps)
def forward(self, inputs: torch.Tensor):
"""
Parameters:
inputs (`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`):
input for Batch norm calculation
Returns:
`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`
"""
output = inputs.transpose(1, 2) # output: (batch_size, d_model, sequence_length)
output = self.batchnorm(output)
return output.transpose(1, 2)
class PatchTSMixerPositionalEncoding(nn.Module):
"""
Class for positional encoding
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
# positional encoding: [num_patches x d_model]
if config.use_positional_encoding:
self.position_enc = self._init_pe(config)
else:
self.position_enc = nn.Parameter(torch.zeros(config.num_patches, config.d_model))
@staticmethod
def _init_pe(config: PatchTSMixerConfig) -> nn.Parameter:
# Positional encoding
if config.positional_encoding_type == "random":
position_enc = nn.Parameter(torch.randn(config.num_patches, config.d_model), requires_grad=True)
elif config.positional_encoding_type == "sincos":
position_enc = torch.zeros(config.num_patches, config.d_model)
position = torch.arange(0, config.num_patches).unsqueeze(1)
div_term = torch.exp(torch.arange(0, config.d_model, 2) * -(math.log(10000.0) / config.d_model))
position_enc[:, 0::2] = torch.sin(position * div_term)
position_enc[:, 1::2] = torch.cos(position * div_term)
position_enc = position_enc - position_enc.mean()
position_enc = position_enc / (position_enc.std() * 10)
position_enc = nn.Parameter(position_enc, requires_grad=False)
else:
raise ValueError(
f"{config.positional_encoding_type} is not a valid positional encoder. Available types are 'random' and 'sincos'."
)
return position_enc
def forward(self, patch_input: torch.Tensor):
# hidden_state: [bs x num_channels x num_patches x d_model]
hidden_state = patch_input + self.position_enc
return hidden_state
class PatchTSMixerNormLayer(nn.Module):
"""Normalization block
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.norm_mlp = config.norm_mlp
if "batch" in config.norm_mlp.lower():
self.norm = PatchTSMixerBatchNorm(config)
else:
self.norm = nn.LayerNorm(config.d_model, eps=config.norm_eps)
def forward(self, inputs: torch.Tensor):
"""
Args:
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`):
Input to the normalization layer.
Returns:
`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`
"""
if "batch" in self.norm_mlp.lower():
# reshape the data
inputs_reshaped = torch.reshape(
inputs,
(
inputs.shape[0] * inputs.shape[1],
inputs.shape[2],
inputs.shape[3],
),
) # inputs_reshaped: [batch_size*num_channels, num_patches, d_model]
# inputs_reshaped: [batch_size*num_channels, num_patches, d_model]
inputs_reshaped = self.norm(inputs_reshaped)
# put back data to the original shape
inputs = torch.reshape(inputs_reshaped, inputs.shape)
else:
inputs = self.norm(inputs)
return inputs
class PatchTSMixerMLP(nn.Module):
def __init__(self, in_features, out_features, config):
super().__init__()
num_hidden = in_features * config.expansion_factor
self.fc1 = nn.Linear(in_features, num_hidden)
self.dropout1 = nn.Dropout(config.dropout)
self.fc2 = nn.Linear(num_hidden, out_features)
self.dropout2 = nn.Dropout(config.dropout)
def forward(self, inputs: torch.Tensor):
"""
Args:
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`):
Input to the MLP layer.
Returns:
`torch.Tensor` of the same shape as `inputs`
"""
inputs = self.dropout1(nn.functional.gelu(self.fc1(inputs)))
inputs = self.fc2(inputs)
inputs = self.dropout2(inputs)
return inputs
class PatchTSMixerChannelFeatureMixerBlock(nn.Module):
"""This module mixes the features in the channel dimension.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.norm = PatchTSMixerNormLayer(config)
self.gated_attn = config.gated_attn
self.mlp = PatchTSMixerMLP(
in_features=config.num_input_channels,
out_features=config.num_input_channels,
config=config,
)
if config.gated_attn:
self.gating_block = PatchTSMixerGatedAttention(
in_size=config.num_input_channels, out_size=config.num_input_channels
)
def forward(self, inputs: torch.Tensor):
"""
Args:
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`):
input to the MLP layer
Returns:
`torch.Tensor` of the same shape as `inputs`
"""
residual = inputs
inputs = self.norm(inputs)
inputs = inputs.permute(0, 3, 2, 1)
if self.gated_attn:
inputs = self.gating_block(inputs)
inputs = self.mlp(inputs)
inputs = inputs.permute(0, 3, 2, 1)
out = inputs + residual
return out
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PatchTSMixer
class PatchTSMixerAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[PatchTSMixerConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class PatchMixerBlock(nn.Module):
"""This module mixes the patch dimension.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.norm = PatchTSMixerNormLayer(config)
self.self_attn = config.self_attn
self.gated_attn = config.gated_attn
self.mlp = PatchTSMixerMLP(
in_features=config.num_patches,
out_features=config.num_patches,
config=config,
)
if config.gated_attn:
self.gating_block = PatchTSMixerGatedAttention(in_size=config.num_patches, out_size=config.num_patches)
if config.self_attn:
self.self_attn_layer = PatchTSMixerAttention(
embed_dim=config.d_model,
num_heads=config.self_attn_heads,
dropout=config.dropout,
)
self.norm_attn = PatchTSMixerNormLayer(config)
def forward(self, hidden_state):
"""
Args:
hidden_state (`torch.Tensor`): Input tensor.
Returns:
`torch.Tensor`: Transformed tensor.
"""
residual = hidden_state
hidden_state = self.norm(hidden_state)
if self.self_attn:
batch_size, n_vars, num_patches, d_model = hidden_state.shape
hidden_state_reshaped = hidden_state.reshape(batch_size * n_vars, num_patches, d_model)
x_attn, _, _ = self.self_attn_layer(hidden_state_reshaped, output_attentions=False)
x_attn = x_attn.reshape(batch_size, n_vars, num_patches, d_model)
# Transpose so that num_patches is the last dimension
hidden_state = hidden_state.transpose(2, 3)
hidden_state = self.mlp(hidden_state)
if self.gated_attn:
hidden_state = self.gating_block(hidden_state)
# Transpose back
hidden_state = hidden_state.transpose(2, 3)
if self.self_attn:
hidden_state = self.norm_attn(hidden_state + x_attn)
out = hidden_state + residual
return out
class FeatureMixerBlock(nn.Module):
"""This module mixes the hidden feature dimension.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.norm = PatchTSMixerNormLayer(config)
self.gated_attn = config.gated_attn
self.mlp = PatchTSMixerMLP(
in_features=config.d_model,
out_features=config.d_model,
config=config,
)
if config.gated_attn:
self.gating_block = PatchTSMixerGatedAttention(in_size=config.d_model, out_size=config.d_model)
def forward(self, hidden: torch.Tensor):
"""
Args:
hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`):
Input tensor to the layer.
Returns:
`torch.Tensor`: Transformed tensor.
"""
residual = hidden
hidden = self.norm(hidden)
hidden = self.mlp(hidden)
if self.gated_attn:
hidden = self.gating_block(hidden)
out = hidden + residual
return out
class PatchTSMixerLayer(nn.Module):
"""
The `PatchTSMixer` layer that does all three kinds of mixing.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.patch_mixer = PatchMixerBlock(config=config)
self.feature_mixer = FeatureMixerBlock(config=config)
self.mode = config.mode
if config.mode == "mix_channel":
self.channel_feature_mixer = PatchTSMixerChannelFeatureMixerBlock(config=config)
def forward(self, hidden: torch.Tensor):
"""
Args:
hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`):
Input tensor to the layer.
Returns:
`torch.Tensor`: Transformed tensor.
"""
if self.mode == "mix_channel":
hidden = self.channel_feature_mixer(hidden)
hidden = self.patch_mixer(hidden)
hidden = self.feature_mixer(hidden) # hidden: (batch_size x num_patches x d_model)
return hidden
class PatchTSMixerBlock(nn.Module):
"""The main computing framework of the `PatchTSMixer` model.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
num_layers = config.num_layers
self.mixers = nn.ModuleList([PatchTSMixerLayer(config=config) for _ in range(num_layers)])
def forward(self, hidden_state, output_hidden_states: bool = False):
"""
Args:
hidden_state (`torch.Tensor`): The input tensor.
output_hidden_states (`bool`, *optional*, defaults to False.):
Whether to output the hidden states as well.
Returns:
`torch.Tensor`: The embedding. `list`: List of all hidden states if `output_hidden_states` is set to
`True`.
"""
all_hidden_states = []
embedding = hidden_state
for mod in self.mixers:
embedding = mod(embedding)
if output_hidden_states:
all_hidden_states.append(embedding)
if output_hidden_states:
return embedding, all_hidden_states
else:
return embedding, None
class PatchTSMixerForPredictionHead(nn.Module):
"""Prediction Head for Forecasting
Args:
config (`PatchTSMixerConfig`, *required*): Configuration.
"""
def __init__(self, config: PatchTSMixerConfig, distribution_output=None):
super().__init__()
self.prediction_channel_indices = config.prediction_channel_indices
if self.prediction_channel_indices is not None:
self.prediction_channel_indices.sort()
self.dropout_layer = nn.Dropout(config.head_dropout)
if distribution_output is None:
self.base_forecast_block = nn.Linear((config.num_patches * config.d_model), config.prediction_length)
else:
self.base_forecast_block = distribution_output.get_parameter_projection(
config.num_patches * config.d_model
)
self.flatten = nn.Flatten(start_dim=-2)
def forward(self, hidden_features):
"""
Args:
hidden_features (`torch.Tensor` of shape `(batch_size, num_patch, d_model)` in `flatten` mode
or `(batch_size, n_vars, num_patch, d_model)` in `common_channel`/`mix_channel` mode.): Input hidden
features.
Returns:
`torch.Tensor` of shape `(batch_size, prediction_length, nvars)`.
"""
hidden_features = self.flatten(hidden_features) # [batch_size x n_vars x num_patch * d_model]
hidden_features = self.dropout_layer(hidden_features) # [batch_size x n_vars x num_patch * d_model]
forecast = self.base_forecast_block(hidden_features) # [batch_size x n_vars x prediction_length]
if isinstance(forecast, tuple):
forecast = tuple(z.transpose(-1, -2) for z in forecast)
else:
forecast = forecast.transpose(-1, -2) # [batch_size x prediction_length x n_vars]
if self.prediction_channel_indices is not None:
if isinstance(forecast, tuple):
forecast = tuple(z[..., self.prediction_channel_indices] for z in forecast)
else:
forecast = forecast[..., self.prediction_channel_indices] # [batch_size x prediction_length x n_vars]
return forecast
class PatchTSMixerLinearHead(nn.Module):
"""Linear head for Classification and Regression.
Args:
config (`PatchTSMixerConfig`, *required*):
"""
def __init__(self, config: PatchTSMixerConfig, distribution_output=None):
super().__init__()
self.head_aggregation = config.head_aggregation
self.output_range = config.output_range
if config.head_aggregation is None:
mul_factor = config.num_patches
else:
mul_factor = 1
self.distribution_output = distribution_output
if distribution_output is None:
self.projection = nn.Linear(
config.d_model * config.num_input_channels * mul_factor,
config.num_targets,
)
else:
self.projection = distribution_output.get_parameter_projection(
config.d_model * config.num_input_channels * mul_factor
)
if config.head_aggregation is None:
self.flatten = nn.Flatten(start_dim=-3)
else:
self.flatten = nn.Flatten(start_dim=-2)
self.dropout = nn.Dropout(config.head_dropout)
def forward(self, hidden_features):
"""
Args:
hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode
or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden
features.
Returns:
`torch.Tensor` of shape `(batch_size x num_targets)`.
"""
# batch_size x d_model x num_patch or batch_size x n_vars x d_model x num_patch
hidden_features = hidden_features.transpose(-1, -2)
if self.head_aggregation == "use_last":
# batch_size x d_model (flatten) or # batch_size x n_vars x d_model (common_channel)
hidden_features = hidden_features[..., -1]
elif self.head_aggregation == "max_pool":
# batch_size x n_vars x d_model or batch_size x d_model
hidden_features = hidden_features.max(dim=-1).values
elif self.head_aggregation == "avg_pool":
# batch_size x n_vars x d_model or batch_size x d_model
hidden_features = hidden_features.mean(dim=-1)
if self.flatten:
hidden_features = self.flatten(hidden_features)
hidden_features = self.dropout(hidden_features)
hidden_features = self.projection(hidden_features) # batch_size x num_targets
if (self.distribution_output is None) and (self.output_range is not None):
hidden_features = (
torch.sigmoid(hidden_features) * (self.output_range[1] - self.output_range[0]) + self.output_range[0]
)
return hidden_features
class PatchTSMixerPreTrainedModel(PreTrainedModel):
# Weight initialization
config_class = PatchTSMixerConfig
base_model_prefix = "model"
main_input_name = "past_values"
supports_gradient_checkpointing = False
def _init_weights(self, module):
"""Initialize weights"""
if isinstance(module, PatchTSMixerPositionalEncoding):
# initialize positional encoding
if self.config.positional_encoding_type == "random":
nn.init.normal_(module.position_enc, mean=0.0, std=0.1)
elif isinstance(module, (nn.LayerNorm, nn.BatchNorm1d)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, PatchTSMixerBatchNorm):
module.batchnorm.bias.data.zero_()
module.batchnorm.weight.data.fill_(1.0)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
if module.bias is not None:
module.bias.data.zero_()
class PatchTSMixerPretrainHead(nn.Module):
"""Pretraining head.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.dropout_layer = nn.Dropout(config.head_dropout)
self.base_pt_block = nn.Linear(config.d_model, config.patch_length)
def forward(self, hidden_features):
"""
Args:
hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode
or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden
features.
Returns:
`torch.Tensor` of shape `(batch_size x n_vars x num_patch x patch_length)`.
"""
hidden_features = self.dropout_layer(hidden_features)
forecast = self.base_pt_block(hidden_features) # [batch_size x n_vars x num_patch x patch_length]
return forecast
# Copied from transformers.models.patchtst.modeling_patchtst.random_masking
def random_masking(
inputs: torch.Tensor,
mask_ratio: float,
unmasked_channel_indices: list = None,
channel_consistent_masking: bool = False,
mask_value: int = 0,
):
"""random_masking: Mask the input considering the control variables.
Args:
inputs (`torch.Tensor` of shape `(batch_size, num_channels, sequence_length, num_features)`):
The input tensor to mask.
mask_ratio (`float`):
Masking ratio applied to mask the input data during random pretraining. It is the number between 0 and 1.
unmasked_channel_indices (list, *optional*):
Indices of channels that will not be masked.
channel_consistent_masking (bool, *optional*, defaults to `False`):
When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary
across channels.
mask_value (int, *optional*, defaults to 0):
Define the value of masked patches for pretraining.
Returns:
`tuple(torch.Tensor)`: inputs_mask, masked input, same shape as input Tensor and mask tensor of shape [bs x c x
n]
"""
if mask_ratio < 0 or mask_ratio >= 1:
raise ValueError(f"Mask ratio {mask_ratio} has to be between 0 and 1.")
batch_size, num_channels, sequence_length, num_features = inputs.shape
device = inputs.device
len_keep = int(sequence_length * (1 - mask_ratio))
if channel_consistent_masking:
noise = torch.rand(batch_size, 1, sequence_length, device=device) # noise in [0, 1], bs x 1 x L
noise = noise.repeat(1, num_channels, 1) # bs x num_channels x time
else:
# noise in [0, 1], bs x num_channels x L
noise = torch.rand(batch_size, num_channels, sequence_length, device=device)
# mask: [bs x num_channels x num_patch]
mask = torch.ones(batch_size, num_channels, sequence_length, device=device)
mask[:, :, :len_keep] = 0
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=-1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=-1) # ids_restore: [bs x num_channels x L]
mask = torch.gather(mask, dim=-1, index=ids_restore)
mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patches x patch_length]
if unmasked_channel_indices is not None:
mask[:, unmasked_channel_indices, :, :] = 0
inputs_mask = inputs.masked_fill(mask.bool(), mask_value)
return inputs_mask, mask[..., 0]
# Copied from transformers.models.patchtst.modeling_patchtst.forecast_masking
def forecast_masking(
inputs: torch.Tensor,
num_forecast_mask_patches: Union[list, int],
unmasked_channel_indices: list = None,
mask_value: int = 0,
):
"""Forecast masking that masks the last K patches where K is from the num_forecast_mask_patches.
If num_forecast_mask_patches is a list, samples in the batch will be randomly masked by numbers defined in the list.
Parameters:
inputs (`torch.Tensor`):
Input of shape `(bs, num_channels, num_patch, patch_length)`
num_forecast_mask_patches (`list`):
Number of patches to be masked at the end of each batch sample. e.g. 4 or [3, 5].
unmasked_channel_indices (`list`, *optional*):
Indices of channels that are not masked.
mask_value (`int`, *optional*, defaults to 0):
Values in the masked patches will be filled by `mask_value`.
Returns:
`tuple(torch.Tensor)`: inputs_mask, masked input, same shape as inputs Tensor and Mask tensor of shape `(bs,
num_channels , num_patch)` or `(bs, tsg1, tsg2, num_channels, num_patch)`
"""
if isinstance(num_forecast_mask_patches, int):
num_forecast_mask_patches = [num_forecast_mask_patches]
forecast_mask_ratios = [1 for _ in num_forecast_mask_patches]
batch_size, num_channels, sequence_length, num_features = inputs.shape
mask = torch.zeros(batch_size, num_channels, sequence_length, device=inputs.device)
t_list = []
total_length = 0
total_ratio = sum(forecast_mask_ratios)
for patch_length, ratio in zip(num_forecast_mask_patches, forecast_mask_ratios):
if patch_length <= 0 or patch_length >= sequence_length:
raise ValueError(
f"num_forecast_mask_patches {patch_length} should be greater than 0 and less than total patches."
)
temp_len = int(batch_size * ratio / total_ratio)
t_list.append([patch_length, ratio, temp_len])
total_length += temp_len
t_list = sorted(t_list, key=lambda x: x[2])
if total_length < batch_size:
t_list[0][2] = t_list[0][2] + (batch_size - total_length)
elif total_length > batch_size:
t_list[-1][2] = t_list[-1][2] + (total_length - batch_size)
batch1 = 0
for patch_len, _, temp_len in t_list:
batch2 = batch1 + temp_len
mask[batch1:batch2, :, -patch_len:] = 1
batch1 = batch2
perm = torch.randperm(mask.shape[0])
mask = mask[perm]
mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patch x patch_len]
if unmasked_channel_indices is not None:
mask[:, unmasked_channel_indices, :, :] = 0
inputs_mask = inputs.masked_fill(mask.bool(), mask_value)
return inputs_mask, mask[..., 0]
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTPatchify with PatchTST->PatchTSMixer
class PatchTSMixerPatchify(nn.Module):
"""
A class to patchify the time series sequence into different patches
Returns:
`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.sequence_length = config.context_length
self.patch_length = config.patch_length
self.patch_stride = config.patch_stride
if self.sequence_length <= self.patch_length:
raise ValueError(
f"Sequence length ({self.sequence_length}) has to be greater than the patch length ({self.patch_length})"
)
# get the number of patches
self.num_patches = (max(self.sequence_length, self.patch_length) - self.patch_length) // self.patch_stride + 1
new_sequence_length = self.patch_length + self.patch_stride * (self.num_patches - 1)
self.sequence_start = self.sequence_length - new_sequence_length
def forward(self, past_values: torch.Tensor):
"""
Parameters:
past_values (`torch.Tensor` of shape `(batch_size, sequence_length, num_channels)`, *required*):
Input for patchification
Returns:
`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`
"""
sequence_length = past_values.shape[-2]
if sequence_length != self.sequence_length:
raise ValueError(
f"Input sequence length ({sequence_length}) doesn't match model configuration ({self.sequence_length})."
)
# output: [bs x new_sequence_length x num_channels]
output = past_values[:, self.sequence_start :, :]
# output: [bs x num_patches x num_input_channels x patch_length]
output = output.unfold(dimension=-2, size=self.patch_length, step=self.patch_stride)
# output: [bs x num_input_channels x num_patches x patch_length]
output = output.transpose(-2, -3).contiguous()
return output
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTMasking with PatchTST->PatchTSMixer
class PatchTSMixerMasking(nn.Module):
"""
Class to perform random or forecast masking.
Parameters:
config (`PatchTSMixerConfig`): model config
Returns:
x_mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`)
Masked patched input
mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`)
Bool tensor indicating True on masked points
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.random_mask_ratio = config.random_mask_ratio
self.channel_consistent_masking = config.channel_consistent_masking
self.mask_type = config.mask_type
self.num_forecast_mask_patches = config.num_forecast_mask_patches
self.unmasked_channel_indices = config.unmasked_channel_indices
self.mask_value = config.mask_value
if self.unmasked_channel_indices is not None:
self.unmasked_channel_indices = sorted(self.unmasked_channel_indices)
def forward(self, patch_input: torch.Tensor):
"""
Parameters:
patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*):
Patch input
Return:
masked_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`)
Masked patched input
mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`)
Bool tensor indicating True on masked points
"""
if self.mask_type == "random":
masked_input, mask = random_masking(
inputs=patch_input,
mask_ratio=self.random_mask_ratio,
unmasked_channel_indices=self.unmasked_channel_indices,
channel_consistent_masking=self.channel_consistent_masking,
mask_value=self.mask_value,
)
elif self.mask_type == "forecast":
masked_input, mask = forecast_masking(
inputs=patch_input,
num_forecast_mask_patches=self.num_forecast_mask_patches,
unmasked_channel_indices=self.unmasked_channel_indices,
mask_value=self.mask_value,
)
else:
raise ValueError(f"Invalid mask type {self.mask_type}.")
# mask: [bs x num_input_channels x num_patch]
mask = mask.bool()
return masked_input, mask
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTStdScaler with PatchTST->PatchTSMixer
class PatchTSMixerStdScaler(nn.Module):
"""
Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by
subtracting from the mean and dividing by the standard deviation.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim)
denominator = denominator.clamp_min(1.0)
loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator
variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
scale = torch.sqrt(variance + self.minimum_scale)
return (data - loc) / scale, loc, scale
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTMeanScaler with PatchTST->PatchTSMixer
class PatchTSMixerMeanScaler(nn.Module):
"""
Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data
accordingly.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
self.default_scale = config.default_scale if hasattr(config, "default_scale") else None
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True)
num_observed = observed_indicator.sum(self.dim, keepdim=True)
scale = ts_sum / torch.clamp(num_observed, min=1)
# If `default_scale` is provided, we use it, otherwise we use the scale
# of the batch.
if self.default_scale is None:
batch_sum = ts_sum.sum(dim=0)
batch_observations = torch.clamp(num_observed.sum(0), min=1)
default_scale = torch.squeeze(batch_sum / batch_observations)
else:
default_scale = self.default_scale * torch.ones_like(scale)
# apply default scale where there are no observations
scale = torch.where(num_observed > 0, scale, default_scale)
# ensure the scale is at least `self.minimum_scale`
scale = torch.clamp(scale, min=self.minimum_scale)
scaled_data = data / scale
if not self.keepdim:
scale = scale.squeeze(dim=self.dim)
return scaled_data, torch.zeros_like(scale), scale
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTNOPScaler with PatchTST->PatchTSMixer
class PatchTSMixerNOPScaler(nn.Module):
"""
Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
return data, loc, scale
@dataclass
class PatchTSMixerEncoderOutput(ModelOutput):
"""
Base class for `PatchTSMixerEncoderOutput`, with potential hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, d_model)`):
Hidden-state at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class PatchTSMixerEncoder(PatchTSMixerPreTrainedModel):
"""
Encoder for PatchTSMixer which inputs patched time-series and outputs patched embeddings.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.use_return_dict = config.use_return_dict
self.patcher = nn.Linear(config.patch_length, config.d_model)
if config.use_positional_encoding:
self.positional_encoder = PatchTSMixerPositionalEncoding(config=config)
else:
self.positional_encoder = None
self.mlp_mixer_encoder = PatchTSMixerBlock(config=config)
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@replace_return_docstrings(output_type=PatchTSMixerEncoderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PatchTSMixerEncoderOutput]:
r"""
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, seq_length, num_input_channels)`):
Context values of the time series. For a pretraining task, this denotes the input time series to
predict the masked portion. For a forecasting task, this denotes the history/past time series values.
Similarly, for classification or regression tasks, it denotes the appropriate context values of the
time series.
For univariate time series, `num_input_channels` dimension should be 1. For multivariate time series,
it is greater than 1.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
`torch.FloatTensor` of shape `(batch_size, n_vars, num_patches, d_model)`
"""
return_dict = return_dict if return_dict is not None else self.use_return_dict
# flatten [bs x num_patch x d_model]. common_channel/mix_channel: [bs x n_vars x num_patch x d_model]
patches = self.patcher(past_values)
# add positional encoder
if self.positional_encoder is not None:
patches = self.positional_encoder(patches)
last_hidden_state, hidden_states = self.mlp_mixer_encoder(patches, output_hidden_states=output_hidden_states)
if not return_dict:
return tuple(
v
for v in [
last_hidden_state,
hidden_states,
]
)
return PatchTSMixerEncoderOutput(last_hidden_state=last_hidden_state, hidden_states=hidden_states)
@dataclass
class PatchTSMixerModelOutput(ModelOutput):
"""
Base class for model's outputs, with potential hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, d_model)`):
Hidden-state at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer.
patch_input (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, patch_length)`):
Patched input data to the model.
mask: (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches)`,*optional*):
Bool Tensor indicating True in masked patches and False otherwise.
loc: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`,*optional*):
Gives the mean of the context window per channel. Used for revin denorm outside the model, if revin
enabled.
scale: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`,*optional*):
Gives the std dev of the context window per channel. Used for revin denorm outside the model, if revin
enabled.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
patch_input: torch.FloatTensor = None
mask: Optional[torch.FloatTensor] = None
loc: Optional[torch.FloatTensor] = None
scale: Optional[torch.FloatTensor] = None
@add_start_docstrings(
"The PatchTSMixer Model for time-series forecasting.",
PATCHTSMIXER_START_DOCSTRING,
)
class PatchTSMixerModel(PatchTSMixerPreTrainedModel):
def __init__(self, config: PatchTSMixerConfig, mask_input: bool = False):
super().__init__(config)
self.use_return_dict = config.use_return_dict
self.encoder = PatchTSMixerEncoder(config)
self.patching = PatchTSMixerPatchify(config)
if mask_input is True:
self.masking = PatchTSMixerMasking(config)
else:
self.masking = None
if config.scaling == "mean":
self.scaler = PatchTSMixerMeanScaler(config)
elif config.scaling == "std" or config.scaling is True:
self.scaler = PatchTSMixerStdScaler(config)
else:
self.scaler = PatchTSMixerNOPScaler(config)
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=PatchTSMixerModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
observed_mask: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = None,
) -> PatchTSMixerModelOutput:
r"""
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
Returns:
"""
return_dict = return_dict if return_dict is not None else self.use_return_dict
mask = None
if observed_mask is None:
observed_mask = torch.ones_like(past_values)
scaled_past_values, loc, scale = self.scaler(past_values, observed_mask)
patched_x = self.patching(scaled_past_values) # [batch_size x num_input_channels x num_patch x patch_length
enc_input = patched_x
if self.masking is not None:
enc_input, mask = self.masking(patched_x)
# enc_input: [batch_size x num_input_channels x num_patch x patch_length]
# mask: [batch_size x num_input_channels x num_patch]
encoder_output = self.encoder(
enc_input,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if isinstance(encoder_output, tuple):
encoder_output = PatchTSMixerEncoderOutput(*encoder_output)
if not return_dict:
return tuple(
v
for v in [
encoder_output.last_hidden_state,
encoder_output.hidden_states,
patched_x,
mask,
loc,
scale,
]
)
return PatchTSMixerModelOutput(
last_hidden_state=encoder_output.last_hidden_state,
hidden_states=encoder_output.hidden_states,
patch_input=patched_x,
mask=mask,
loc=loc,
scale=scale,
)
@dataclass
class PatchTSMixerForPreTrainingOutput(ModelOutput):
"""
Output type of [`PatchTSMixerForPreTrainingOutput`].
Args:
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, patch_length)`):
Prediction output from the pretrain head.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
Backbone embeddings before passing through the head.
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
Total loss
"""
loss: Optional[torch.FloatTensor] = None
prediction_outputs: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class PatchTSMixerForPretraining(PatchTSMixerPreTrainedModel):
r"""
`PatchTSMixer` for mask pretraining.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
Returns:
`None`.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.model = PatchTSMixerModel(config, mask_input=True)
self.head = PatchTSMixerPretrainHead(config=config)
self.masked_loss = config.masked_loss
self.use_return_dict = config.use_return_dict
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=PatchTSMixerForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
observed_mask: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = False,
return_loss: bool = True,
return_dict: Optional[bool] = None,
) -> PatchTSMixerForPreTrainingOutput:
r"""
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
return_loss (`bool`, *optional*):
Whether to return the loss in the `forward` call.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.use_return_dict
if self.masked_loss is True:
loss = torch.nn.MSELoss(reduction="none")
else:
loss = torch.nn.MSELoss(reduction="mean")
# past_values: tensor [batch_size x context_length x num_input_channels]
model_output = self.model(
past_values,
observed_mask=observed_mask,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
) # x.last_hidden_state: [batch_size x nvars x num_patch x d_model]
if isinstance(model_output, tuple):
model_output = PatchTSMixerModelOutput(*model_output)
x_hat = self.head(model_output.last_hidden_state) # tensor [batch_size x nvars x num_patch x patch_length]
if return_loss is True:
loss_val = loss(x_hat, model_output.patch_input)
else:
loss_val = None
# calculate masked_loss
if self.masked_loss is True and loss_val is not None:
loss_val = (loss_val.mean(dim=-1) * model_output.mask).sum() / (model_output.mask.sum() + 1e-10)
if not return_dict:
return tuple(
v
for v in [
loss_val,
x_hat,
model_output.last_hidden_state,
model_output.hidden_states,
]
)
return PatchTSMixerForPreTrainingOutput(
loss=loss_val,
prediction_outputs=x_hat, # tensor [batch_size x nvars x num_patch x patch_length]
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model]
hidden_states=model_output.hidden_states,
)
@dataclass
class PatchTSMixerForPredictionOutput(ModelOutput):
"""
Output type of [`PatchTSMixerForPredictionOutput`].
Args:
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_input_channels)`):
Prediction output from the forecast head.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
Backbone embeddings before passing through the head.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
Total loss.
loc (`torch.FloatTensor`, *optional* of shape `(batch_size, 1, num_input_channels)`):
Input mean
scale (`torch.FloatTensor`, *optional* of shape `(batch_size, 1, num_input_channels)`):
Input std dev
"""
loss: Optional[torch.FloatTensor] = None
prediction_outputs: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
loc: torch.FloatTensor = None
scale: torch.FloatTensor = None
@dataclass
class SamplePatchTSMixerPredictionOutput(ModelOutput):
"""
Base class for time series model's predictions outputs that contains the sampled values from the chosen
distribution.
Args:
sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, prediction_length, number_channels)`):
Sampled values from the chosen distribution.
"""
sequences: torch.FloatTensor = None
@dataclass
class SamplePatchTSMixerRegressionOutput(ModelOutput):
"""
Base class for time series model's predictions outputs that contains the sampled values from the chosen
distribution.
Args:
sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, num_targets)`
Sampled values from the chosen distribution.
"""
sequences: torch.FloatTensor = None
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll
def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor:
"""
Computes the negative log likelihood loss from input distribution with respect to target.
"""
return -input.log_prob(target)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average
def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor:
"""
Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero,
meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`.
Args:
input_tensor (`torch.FloatTensor`):
Input tensor, of which the average must be computed.
weights (`torch.FloatTensor`, *optional*):
Weights tensor, of the same shape as `input_tensor`.
dim (`int`, *optional*):
The dim along which to average `input_tensor`.
Returns:
`torch.FloatTensor`: The tensor with values averaged along the specified `dim`.
"""
if weights is not None:
weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor))
sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0)
return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights
else:
return input_tensor.mean(dim=dim)
class PatchTSMixerForPrediction(PatchTSMixerPreTrainedModel):
r"""
`PatchTSMixer` for forecasting application.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
Returns:
`None`.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.loss = config.loss
self.use_return_dict = config.use_return_dict
self.prediction_channel_indices = config.prediction_channel_indices
self.num_parallel_samples = config.num_parallel_samples
if config.loss == "mse":
self.distribution_output = None
else:
dim = config.prediction_length
distribution_output_map = {
"student_t": StudentTOutput,
"normal": NormalOutput,
"negative_binomial": NegativeBinomialOutput,
}
output_class = distribution_output_map.get(config.distribution_output, None)
if output_class is not None:
self.distribution_output = output_class(dim=dim)
else:
raise ValueError(f"Unknown distribution output {config.distribution_output}")
self.model = PatchTSMixerModel(config)
self.head = PatchTSMixerForPredictionHead(
config=config,
distribution_output=self.distribution_output,
)
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=PatchTSMixerForPredictionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
observed_mask: Optional[torch.Tensor] = None,
future_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = False,
return_loss: bool = True,
return_dict: Optional[bool] = None,
) -> PatchTSMixerForPredictionOutput:
r"""
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
future_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,:
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target
values of the time series, that serve as labels for the model. The `future_values` is what the
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT
required for a pretraining task.
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter,
pass the target data with all channels, as channel Filtering for both prediction and target will be
manually applied before the loss computation.
return_loss (`bool`, *optional*):
Whether to return the loss in the `forward` call.
Returns:
"""
if self.loss == "mse":
loss = nn.MSELoss(reduction="mean")
elif self.loss == "nll":
loss = nll
else:
raise ValueError("Invalid loss function: Allowed values: mse and nll")
return_dict = return_dict if return_dict is not None else self.use_return_dict
# past_values: tensor [batch_size x context_length x num_input_channels]
model_output = self.model(
past_values,
observed_mask=observed_mask,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
) # model_output: [batch_size x nvars x num_patch x d_model]
if isinstance(model_output, tuple):
model_output = PatchTSMixerModelOutput(*model_output)
# tensor [batch_size x prediction_length x num_input_channels]
y_hat = self.head(model_output.last_hidden_state)
loss_val = None
if self.prediction_channel_indices is not None:
if self.distribution_output:
distribution = self.distribution_output.distribution(
y_hat,
loc=model_output.loc[..., self.prediction_channel_indices],
scale=model_output.scale[..., self.prediction_channel_indices],
)
if future_values is not None and return_loss is True:
loss_val = loss(
distribution,
future_values[..., self.prediction_channel_indices],
)
# take average of the loss
loss_val = weighted_average(loss_val)
else:
y_hat = (
y_hat * model_output.scale[..., self.prediction_channel_indices]
+ model_output.loc[..., self.prediction_channel_indices]
)
if future_values is not None and return_loss is True:
loss_val = loss(y_hat, future_values[..., self.prediction_channel_indices])
else:
if self.distribution_output:
distribution = self.distribution_output.distribution(
y_hat, loc=model_output.loc, scale=model_output.scale
)
if future_values is not None and return_loss is True:
loss_val = loss(distribution, future_values)
loss_val = weighted_average(loss_val)
else:
y_hat = y_hat * model_output.scale + model_output.loc
if future_values is not None and return_loss is True:
loss_val = loss(y_hat, future_values)
if self.prediction_channel_indices is not None:
loc = model_output.loc[..., self.prediction_channel_indices]
scale = model_output.scale[..., self.prediction_channel_indices]
else:
loc = model_output.loc
scale = model_output.scale
if not return_dict:
return tuple(
v
for v in [
loss_val,
y_hat,
model_output.last_hidden_state,
model_output.hidden_states,
loc,
scale,
]
)
return PatchTSMixerForPredictionOutput(
loss=loss_val,
prediction_outputs=y_hat, # tensor [batch_size x prediction_length x num_input_channels]
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model]
hidden_states=model_output.hidden_states,
loc=loc,
scale=scale,
)
def generate(
self,
past_values: torch.Tensor,
observed_mask: Optional[torch.Tensor] = None,
) -> SamplePatchTSMixerPredictionOutput:
"""
Generate sequences of sample predictions from a model with a probability distribution head.
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Past values of the time series that serves as context in order to predict the future.
observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
Return:
[`SamplePatchTSMixerPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size,
number of samples, prediction_length, num_input_channels)`.
"""
# get number of samples
num_parallel_samples = self.num_parallel_samples
# get model output
outputs = self(
past_values=past_values,
future_values=None,
observed_mask=observed_mask,
output_hidden_states=False,
)
# get distribution
distribution = self.distribution_output.distribution(
outputs.prediction_outputs, loc=outputs.loc, scale=outputs.scale
)
# get samples: list of [batch_size x prediction_length x num_channels]
samples = [distribution.sample() for _ in range(num_parallel_samples)]
# stack tensors
samples = torch.stack(samples, dim=1) # [batch_size x num_samples x prediction_length x num_channels]
return SamplePatchTSMixerPredictionOutput(sequences=samples)
@dataclass
class PatchTSMixerForTimeSeriesClassificationOutput(ModelOutput):
"""
Output type of [`PatchTSMixerForTimeSeriesClassificationOutput`].
Args:
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
Prediction output from the classfication head.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
Backbone embeddings before passing through the head.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
Total loss.
"""
loss: Optional[torch.FloatTensor] = None
prediction_outputs: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class PatchTSMixerForTimeSeriesClassification(PatchTSMixerPreTrainedModel):
r"""
`PatchTSMixer` for classification application.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
Returns:
`None`.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.model = PatchTSMixerModel(config)
self.head = PatchTSMixerLinearHead(
config=config,
)
self.use_return_dict = config.use_return_dict
if config.scaling in ["std", "mean", True]:
self.inject_scale = InjectScalerStatistics4D(d_model=config.d_model, num_patches=config.num_patches)
else:
self.inject_scale = None
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=PatchTSMixerForTimeSeriesClassificationOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
past_values: torch.Tensor,
target_values: torch.Tensor = None,
output_hidden_states: Optional[bool] = False,
return_loss: bool = True,
return_dict: Optional[bool] = None,
) -> PatchTSMixerForTimeSeriesClassificationOutput:
r"""
target_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target
values of the time series, that serve as labels for the model. The `target_values` is what the
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT
required for a pretraining task.
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter,
pass the target data with all channels, as channel Filtering for both prediction and target will be
manually applied before the loss computation.
For a classification task, it has a shape of `(batch_size,)`.
For a regression task, it has a shape of `(batch_size, num_targets)`.
return_loss (`bool`, *optional*):
Whether to return the loss in the `forward` call.
Returns:
"""
loss = torch.nn.CrossEntropyLoss()
return_dict = return_dict if return_dict is not None else self.use_return_dict
model_output = self.model(
past_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
) # x: [batch_size x nvars x num_patch x d_model]
if isinstance(model_output, tuple):
model_output = PatchTSMixerModelOutput(*model_output)
if self.inject_scale is not None:
model_output.last_hidden_state = self.inject_scale(
model_output.last_hidden_state,
loc=model_output.loc,
scale=model_output.scale,
) # x: [batch_size x nvars x num_patch x d_model]
y_hat = self.head(model_output.last_hidden_state) # tensor [batch_size x n_labels]
if target_values is not None and return_loss is True:
loss_val = loss(y_hat, target_values)
else:
loss_val = None
if not return_dict:
return tuple(
v
for v in [
loss_val,
y_hat,
model_output.last_hidden_state,
model_output.hidden_states,
]
)
return PatchTSMixerForTimeSeriesClassificationOutput(
loss=loss_val,
prediction_outputs=y_hat, # tensor [batch_size x n_labels]
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model]
hidden_states=model_output.hidden_states,
)
@dataclass
class PatchTSMixerForRegressionOutput(ModelOutput):
"""
Output type of [`PatchTSMixerForRegressionOutput`].
Args:
regression_outputs (`torch.FloatTensor` of shape `(batch_size, num_targets)`):
Prediction output from the regression head.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
Backbone embeddings before passing through the head.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
Total loss.
"""
loss: Optional[torch.FloatTensor] = None
regression_outputs: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class InjectScalerStatistics4D(nn.Module):
def __init__(self, d_model: int, num_patches: int, expansion: int = 2):
super().__init__()
self.inverse_trans_expansion = nn.Linear(d_model + 2, expansion * d_model)
self.inverse_trans_compression = nn.Linear(expansion * d_model, d_model)
self.map_scale_expansion = nn.Linear(2, 2 * expansion)
self.map_scale_compression = nn.Linear(2 * expansion, 2)
self.num_patches = num_patches
def forward(self, inputs: torch.Tensor, loc: torch.Tensor, scale: torch.Tensor):
"""
Args:
inputs (`torch.Tensor` of shape `(batch_size, num_input_channels, num_patch, d_model)`)
loc (`torch.Tensor` of shape `(batch_size, 1, num_input_channels)`)
scale (`torch.Tensor` of shape `(batch_size, 1, num_input_channels)`)
Returns:
`torch.Tensor` of shape `(batch_size, num_input_channels, num_patch, d_model)`
"""
mean = loc.transpose(-1, -2) # [batch_size x n_channels x 1 ]
mean = mean.unsqueeze(-2) # [batch_size x n_channels x 1 x 1]
mean = mean.repeat(1, 1, self.num_patches, 1) # [batch_size x n_channels x num_patch x 1]
stdev = scale.transpose(-1, -2) # [batch_size x n_channels x 1 ]
stdev = stdev.unsqueeze(-2) # [batch_size x n_channels x 1 x 1]
stdev = stdev.repeat(1, 1, self.num_patches, 1) # [batch_size x n_channels x num_patch x 1]
concat_stats = torch.cat([mean, stdev], dim=-1) # [batch_size x n_channels x num_patch x 2]
concat_stats = self.map_scale_expansion(concat_stats) # [batch_size x n_channels x num_patch x (2*expansion)]
concat_stats = self.map_scale_compression(concat_stats) # [batch_size x n_channels x num_patch x 2]
inputs = torch.cat([inputs, concat_stats], dim=-1) # [batch_size x channels x num_patch x d_model+2]
inputs = self.inverse_trans_expansion(inputs) # [batch_size x channels x num_patch x (expansion*d_model)]
inputs = self.inverse_trans_compression(inputs) # [batch_size x channels x num_patch x d_model]
return inputs
class PatchTSMixerForRegression(PatchTSMixerPreTrainedModel):
r"""
`PatchTSMixer` for regression application.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
Returns:
`None`.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.model = PatchTSMixerModel(config)
self.loss = config.loss
self.distribution_output = config.distribution_output
self.use_return_dict = config.use_return_dict
self.num_parallel_samples = config.num_parallel_samples
if config.loss == "mse":
self.distribution_output = None
else:
distribution_output_map = {
"student_t": StudentTOutput,
"normal": NormalOutput,
"negative_binomial": NegativeBinomialOutput,
}
output_class = distribution_output_map.get(config.distribution_output)
if output_class is not None:
self.distribution_output = output_class(dim=config.num_targets)
else:
raise ValueError(f"Unknown distribution output {config.distribution_output}")
if config.scaling in ["std", "mean", True]:
self.inject_scale = InjectScalerStatistics4D(d_model=config.d_model, num_patches=config.num_patches)
else:
self.inject_scale = None
self.head = PatchTSMixerLinearHead(
config=config,
distribution_output=self.distribution_output,
)
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=PatchTSMixerForRegressionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
target_values: torch.Tensor = None,
output_hidden_states: Optional[bool] = False,
return_loss: bool = True,
return_dict: Optional[bool] = None,
) -> PatchTSMixerForRegressionOutput:
r"""
target_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target
values of the time series, that serve as labels for the model. The `target_values` is what the
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT
required for a pretraining task.
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter,
pass the target data with all channels, as channel Filtering for both prediction and target will be
manually applied before the loss computation.
For a classification task, it has a shape of `(batch_size,)`.
For a regression task, it has a shape of `(batch_size, num_targets)`.
return_loss (`bool`, *optional*):
Whether to return the loss in the `forward` call.
Returns:
"""
if self.loss == "mse":
loss = nn.MSELoss(reduction="mean")
elif self.loss == "nll":
loss = nll
else:
raise ValueError("Invalid loss function: Allowed values: mse and nll")
return_dict = return_dict if return_dict is not None else self.use_return_dict
model_output = self.model(
past_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
) # model_output: [batch_size x nvars x num_patch x d_model]
if isinstance(model_output, tuple):
model_output = PatchTSMixerModelOutput(*model_output)
if self.inject_scale is not None:
model_output.last_hidden_state = self.inject_scale(
model_output.last_hidden_state,
loc=model_output.loc,
scale=model_output.scale,
) # x: [batch_size x nvars x num_patch x d_model]
y_hat = self.head(model_output.last_hidden_state) # [batch_size x num_targets]
if target_values is not None and return_loss is True:
if self.distribution_output:
if self.distribution_output == "negative_binomial" and torch.any(target_values < 0):
raise Exception("target_values cannot be negative for negative_binomial distribution.")
distribution = self.distribution_output.distribution(y_hat)
# y_hat should be a 2-tuple, each with dimension [bs, num_targets]
y_hat = tuple([item.view(-1, self.config.num_targets) for item in y_hat])
loss_val = loss(distribution, target_values)
# take average of the loss
loss_val = weighted_average(loss_val)
else:
loss_val = loss(y_hat, target_values)
else:
loss_val = None
if not return_dict:
return tuple(
v
for v in [
loss_val,
y_hat,
model_output.last_hidden_state,
model_output.hidden_states,
]
)
return PatchTSMixerForRegressionOutput(
loss=loss_val,
regression_outputs=y_hat, # tensor [batch_size x num_targets]
last_hidden_state=model_output.last_hidden_state, # [batch_size x nvars x num_patch x d_model]
hidden_states=model_output.hidden_states,
)
def generate(
self,
past_values: torch.Tensor,
) -> SamplePatchTSMixerRegressionOutput:
"""
Generate sequences of sample predictions from a model with a probability distribution head.
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Past values of the time series that serves as context in order to predict the target values.
Return:
[`SamplePatchTSMixerRegressionOutput`] where the outputs `sequences` tensor will have shape `(batch_size,
number of samples, num_targets)`.
"""
# get number of samples
num_parallel_samples = self.num_parallel_samples
# get model output
outputs = self(
past_values=past_values,
target_values=None,
output_hidden_states=False,
)
# get distribution
distribution = self.distribution_output.distribution(outputs.regression_outputs)
# get samples
samples = [
distribution.sample() for _ in range(num_parallel_samples)
] # samples: list of [batch_size x num_targets]
# stack tensors
# [batch_size x num_samples x num_targets]
samples = torch.stack(samples, dim=1).view(-1, num_parallel_samples, self.config.num_targets)
return SamplePatchTSMixerRegressionOutput(sequences=samples)
| transformers/src/transformers/models/patchtsmixer/modeling_patchtsmixer.py/0 | {
"file_path": "transformers/src/transformers/models/patchtsmixer/modeling_patchtsmixer.py",
"repo_id": "transformers",
"token_count": 38159
} | 120 |
# coding=utf-8
# Copyright Deepmind and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Perceiver model configuration"""
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json",
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class PerceiverConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PerceiverModel`]. It is used to instantiate an
Perceiver model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Perceiver
[deepmind/language-perceiver](https://huggingface.co/deepmind/language-perceiver) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_latents (`int`, *optional*, defaults to 256):
The number of latents.
d_latents (`int`, *optional*, defaults to 1280):
Dimension of the latent embeddings.
d_model (`int`, *optional*, defaults to 768):
Dimension of the inputs. Should only be provided in case [*PerceiverTextPreprocessor*] is used or no
preprocessor is provided.
num_blocks (`int`, *optional*, defaults to 1):
Number of blocks in the Transformer encoder.
num_self_attends_per_block (`int`, *optional*, defaults to 26):
The number of self-attention layers per block.
num_self_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each self-attention layer in the Transformer encoder.
num_cross_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each cross-attention layer in the Transformer encoder.
qk_channels (`int`, *optional*):
Dimension to project the queries + keys before applying attention in the cross-attention and self-attention
layers of the encoder. Will default to preserving the dimension of the queries if not specified.
v_channels (`int`, *optional*):
Dimension to project the values before applying attention in the cross-attention and self-attention layers
of the encoder. Will default to preserving the dimension of the queries if not specified.
cross_attention_shape_for_attention (`str`, *optional*, defaults to `"kv"`):
Dimension to use when downsampling the queries and keys in the cross-attention layer of the encoder.
self_attention_widening_factor (`int`, *optional*, defaults to 1):
Dimension of the feed-forward layer in the cross-attention layer of the Transformer encoder.
cross_attention_widening_factor (`int`, *optional*, defaults to 1):
Dimension of the feed-forward layer in the self-attention layers of the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
use_query_residual (`float`, *optional*, defaults to `True`):
Whether to add a query residual in the cross-attention layer of the encoder.
vocab_size (`int`, *optional*, defaults to 262):
Vocabulary size for the masked language modeling model.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that the masked language modeling model might ever be used with. Typically set
this to something large just in case (e.g., 512 or 1024 or 2048).
image_size (`int`, *optional*, defaults to 56):
Size of the images after preprocessing, for [`PerceiverForImageClassificationLearned`].
train_size (`List[int]`, *optional*, defaults to `[368, 496]`):
Training size of the images for the optical flow model.
num_frames (`int`, *optional*, defaults to 16):
Number of video frames used for the multimodal autoencoding model.
audio_samples_per_frame (`int`, *optional*, defaults to 1920):
Number of audio samples per frame for the multimodal autoencoding model.
samples_per_patch (`int`, *optional*, defaults to 16):
Number of audio samples per patch when preprocessing the audio for the multimodal autoencoding model.
output_shape (`List[int]`, *optional*, defaults to `[1, 16, 224, 224]`):
Shape of the output (batch_size, num_frames, height, width) for the video decoder queries of the multimodal
autoencoding model. This excludes the channel dimension.
output_num_channels (`int`, *optional*, defaults to 512):
Number of output channels for each modalitiy decoder.
Example:
```python
>>> from transformers import PerceiverModel, PerceiverConfig
>>> # Initializing a Perceiver deepmind/language-perceiver style configuration
>>> configuration = PerceiverConfig()
>>> # Initializing a model from the deepmind/language-perceiver style configuration
>>> model = PerceiverModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "perceiver"
def __init__(
self,
num_latents=256,
d_latents=1280,
d_model=768,
num_blocks=1,
num_self_attends_per_block=26,
num_self_attention_heads=8,
num_cross_attention_heads=8,
qk_channels=None,
v_channels=None,
cross_attention_shape_for_attention="kv",
self_attention_widening_factor=1,
cross_attention_widening_factor=1,
hidden_act="gelu",
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_query_residual=True,
vocab_size=262,
max_position_embeddings=2048,
image_size=56,
train_size=[368, 496],
num_frames=16,
audio_samples_per_frame=1920,
samples_per_patch=16,
output_shape=[1, 16, 224, 224],
output_num_channels=512,
_label_trainable_num_channels=1024,
**kwargs,
):
super().__init__(**kwargs)
self.num_latents = num_latents
self.d_latents = d_latents
self.d_model = d_model
self.num_blocks = num_blocks
self.num_self_attends_per_block = num_self_attends_per_block
self.num_self_attention_heads = num_self_attention_heads
self.num_cross_attention_heads = num_cross_attention_heads
self.qk_channels = qk_channels
self.v_channels = v_channels
self.cross_attention_shape_for_attention = cross_attention_shape_for_attention
self.self_attention_widening_factor = self_attention_widening_factor
self.cross_attention_widening_factor = cross_attention_widening_factor
self.hidden_act = hidden_act
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_query_residual = use_query_residual
# masked language modeling attributes
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
# image classification attributes
self.image_size = image_size
# flow attributes
self.train_size = train_size
# multimodal autoencoding attributes
self.num_frames = num_frames
self.audio_samples_per_frame = audio_samples_per_frame
self.samples_per_patch = samples_per_patch
self.output_shape = output_shape
self.output_num_channels = output_num_channels
self._label_trainable_num_channels = _label_trainable_num_channels
class PerceiverOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("inputs", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
def generate_dummy_inputs(
self,
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
batch_size: int = -1,
seq_length: int = -1,
num_choices: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
num_channels: int = 3,
image_width: int = 40,
image_height: int = 40,
) -> Mapping[str, Any]:
# copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified
if isinstance(preprocessor, PreTrainedTokenizerBase):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = preprocessor.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join(["a"]) * seq_length] * batch_size
inputs = dict(preprocessor(dummy_input, return_tensors=framework))
inputs["inputs"] = inputs.pop("input_ids")
return inputs
elif isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width)
inputs = dict(preprocessor(images=dummy_input, return_tensors=framework))
inputs["inputs"] = inputs.pop("pixel_values")
return inputs
else:
raise ValueError(
"Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor."
)
| transformers/src/transformers/models/perceiver/configuration_perceiver.py/0 | {
"file_path": "transformers/src/transformers/models/perceiver/configuration_perceiver.py",
"repo_id": "transformers",
"token_count": 4729
} | 121 |
# coding=utf-8
# Copyright 2022 Sea AI Lab and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch PoolFormer model."""
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "PoolFormerConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "sail/poolformer_s12"
_EXPECTED_OUTPUT_SHAPE = [1, 512, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "sail/poolformer_s12"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"sail/poolformer_s12",
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->PoolFormer
class PoolFormerDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class PoolFormerEmbeddings(nn.Module):
"""
Construct Patch Embeddings.
"""
def __init__(self, hidden_size, num_channels, patch_size, stride, padding, norm_layer=None):
super().__init__()
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride)
padding = padding if isinstance(padding, collections.abc.Iterable) else (padding, padding)
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=padding)
self.norm = norm_layer(hidden_size) if norm_layer else nn.Identity()
def forward(self, pixel_values):
embeddings = self.projection(pixel_values)
embeddings = self.norm(embeddings)
return embeddings
class PoolFormerGroupNorm(nn.GroupNorm):
"""
Group Normalization with 1 group. Input: tensor in shape [B, C, H, W]
"""
def __init__(self, num_channels, **kwargs):
super().__init__(1, num_channels, **kwargs)
class PoolFormerPooling(nn.Module):
def __init__(self, pool_size):
super().__init__()
self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False)
def forward(self, hidden_states):
return self.pool(hidden_states) - hidden_states
class PoolFormerOutput(nn.Module):
def __init__(self, config, dropout_prob, hidden_size, intermediate_size):
super().__init__()
self.conv1 = nn.Conv2d(hidden_size, intermediate_size, 1)
self.conv2 = nn.Conv2d(intermediate_size, hidden_size, 1)
self.drop = PoolFormerDropPath(dropout_prob)
if isinstance(config.hidden_act, str):
self.act_fn = ACT2FN[config.hidden_act]
else:
self.act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.conv1(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states = self.drop(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.drop(hidden_states)
return hidden_states
class PoolFormerLayer(nn.Module):
"""This corresponds to the 'PoolFormerBlock' class in the original implementation."""
def __init__(self, config, num_channels, pool_size, hidden_size, intermediate_size, drop_path):
super().__init__()
self.pooling = PoolFormerPooling(pool_size)
self.output = PoolFormerOutput(config, drop_path, hidden_size, intermediate_size)
self.before_norm = PoolFormerGroupNorm(num_channels)
self.after_norm = PoolFormerGroupNorm(num_channels)
# Useful for training neural nets
self.drop_path = PoolFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.use_layer_scale = config.use_layer_scale
if config.use_layer_scale:
self.layer_scale_1 = nn.Parameter(
config.layer_scale_init_value * torch.ones((num_channels)), requires_grad=True
)
self.layer_scale_2 = nn.Parameter(
config.layer_scale_init_value * torch.ones((num_channels)), requires_grad=True
)
def forward(self, hidden_states):
if self.use_layer_scale:
pooling_output = self.pooling(self.before_norm(hidden_states))
scaled_op = self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * pooling_output
# First residual connection
hidden_states = hidden_states + self.drop_path(scaled_op)
outputs = ()
layer_output = self.output(self.after_norm(hidden_states))
scaled_op = self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * layer_output
# Second residual connection
output = hidden_states + self.drop_path(scaled_op)
outputs = (output,) + outputs
return outputs
else:
pooling_output = self.drop_path(self.pooling(self.before_norm(hidden_states)))
# First residual connection
hidden_states = pooling_output + hidden_states
outputs = ()
# Second residual connection inside the PoolFormerOutput block
layer_output = self.drop_path(self.output(self.after_norm(hidden_states)))
output = hidden_states + layer_output
outputs = (output,) + outputs
return outputs
class PoolFormerEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
# patch embeddings
embeddings = []
for i in range(config.num_encoder_blocks):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i],
stride=config.strides[i],
padding=config.padding[i],
num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1],
hidden_size=config.hidden_sizes[i],
)
)
self.patch_embeddings = nn.ModuleList(embeddings)
# Transformer blocks
blocks = []
cur = 0
for i in range(config.num_encoder_blocks):
# each block consists of layers
layers = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i]):
layers.append(
PoolFormerLayer(
config,
num_channels=config.hidden_sizes[i],
pool_size=config.pool_size,
hidden_size=config.hidden_sizes[i],
intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio),
drop_path=dpr[cur + j],
)
)
blocks.append(nn.ModuleList(layers))
self.block = nn.ModuleList(blocks)
def forward(self, pixel_values, output_hidden_states=False, return_dict=True):
all_hidden_states = () if output_hidden_states else None
hidden_states = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings, self.block)):
embedding_layer, block_layer = layers
# Get patch embeddings from hidden_states
hidden_states = embedding_layer(hidden_states)
# Send the embeddings through the blocks
for _, blk in enumerate(block_layer):
layer_outputs = blk(hidden_states)
hidden_states = layer_outputs[0]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
class PoolFormerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = PoolFormerConfig
base_model_prefix = "poolformer"
main_input_name = "pixel_values"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
POOLFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
POOLFORMER_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`PoolFormerImageProcessor.__call__`] for details.
"""
@add_start_docstrings(
"The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.",
POOLFORMER_START_DOCSTRING,
)
class PoolFormerModel(PoolFormerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.encoder = PoolFormerEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(POOLFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
)
class PoolFormerFinalPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
def forward(self, hidden_states):
output = self.dense(hidden_states)
return output
@add_start_docstrings(
"""
PoolFormer Model transformer with an image classification head on top
""",
POOLFORMER_START_DOCSTRING,
)
class PoolFormerForImageClassification(PoolFormerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.poolformer = PoolFormerModel(config)
# Final norm
self.norm = PoolFormerGroupNorm(config.hidden_sizes[-1])
# Classifier head
self.classifier = (
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(POOLFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.poolformer(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(self.norm(sequence_output).mean([-2, -1]))
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
| transformers/src/transformers/models/poolformer/modeling_poolformer.py/0 | {
"file_path": "transformers/src/transformers/models/poolformer/modeling_poolformer.py",
"repo_id": "transformers",
"token_count": 7408
} | 122 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_realm": ["REALM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RealmConfig"],
"tokenization_realm": ["RealmTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_realm_fast"] = ["RealmTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_realm"] = [
"REALM_PRETRAINED_MODEL_ARCHIVE_LIST",
"RealmEmbedder",
"RealmForOpenQA",
"RealmKnowledgeAugEncoder",
"RealmPreTrainedModel",
"RealmReader",
"RealmScorer",
"load_tf_weights_in_realm",
]
_import_structure["retrieval_realm"] = ["RealmRetriever"]
if TYPE_CHECKING:
from .configuration_realm import REALM_PRETRAINED_CONFIG_ARCHIVE_MAP, RealmConfig
from .tokenization_realm import RealmTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_realm import RealmTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_realm import (
REALM_PRETRAINED_MODEL_ARCHIVE_LIST,
RealmEmbedder,
RealmForOpenQA,
RealmKnowledgeAugEncoder,
RealmPreTrainedModel,
RealmReader,
RealmScorer,
load_tf_weights_in_realm,
)
from .retrieval_realm import RealmRetriever
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/realm/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/realm/__init__.py",
"repo_id": "transformers",
"token_count": 1040
} | 123 |
# coding=utf-8
# Copyright 2023 The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.traverse_util import flatten_dict, unflatten_dict
from transformers import RegNetConfig
from transformers.modeling_flax_outputs import (
FlaxBaseModelOutputWithNoAttention,
FlaxBaseModelOutputWithPooling,
FlaxBaseModelOutputWithPoolingAndNoAttention,
FlaxImageClassifierOutputWithNoAttention,
)
from transformers.modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
)
REGNET_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
REGNET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`RegNetImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.resnet.modeling_flax_resnet.Identity
class Identity(nn.Module):
"""Identity function."""
@nn.compact
def __call__(self, x, **kwargs):
return x
class FlaxRegNetConvLayer(nn.Module):
out_channels: int
kernel_size: int = 3
stride: int = 1
groups: int = 1
activation: Optional[str] = "relu"
dtype: jnp.dtype = jnp.float32
def setup(self):
self.convolution = nn.Conv(
self.out_channels,
kernel_size=(self.kernel_size, self.kernel_size),
strides=self.stride,
padding=self.kernel_size // 2,
feature_group_count=self.groups,
use_bias=False,
kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"),
dtype=self.dtype,
)
self.normalization = nn.BatchNorm(momentum=0.9, epsilon=1e-05, dtype=self.dtype)
self.activation_func = ACT2FN[self.activation] if self.activation is not None else Identity()
def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
hidden_state = self.convolution(hidden_state)
hidden_state = self.normalization(hidden_state, use_running_average=deterministic)
hidden_state = self.activation_func(hidden_state)
return hidden_state
class FlaxRegNetEmbeddings(nn.Module):
config: RegNetConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.embedder = FlaxRegNetConvLayer(
self.config.embedding_size,
kernel_size=3,
stride=2,
activation=self.config.hidden_act,
dtype=self.dtype,
)
def __call__(self, pixel_values: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
num_channels = pixel_values.shape[-1]
if num_channels != self.config.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
hidden_state = self.embedder(pixel_values, deterministic=deterministic)
return hidden_state
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetShortCut with ResNet->RegNet
class FlaxRegNetShortCut(nn.Module):
"""
RegNet shortcut, used to project the residual features to the correct size. If needed, it is also used to
downsample the input using `stride=2`.
"""
out_channels: int
stride: int = 2
dtype: jnp.dtype = jnp.float32
def setup(self):
self.convolution = nn.Conv(
self.out_channels,
kernel_size=(1, 1),
strides=self.stride,
use_bias=False,
kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"),
dtype=self.dtype,
)
self.normalization = nn.BatchNorm(momentum=0.9, epsilon=1e-05, dtype=self.dtype)
def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
hidden_state = self.convolution(x)
hidden_state = self.normalization(hidden_state, use_running_average=deterministic)
return hidden_state
class FlaxRegNetSELayerCollection(nn.Module):
in_channels: int
reduced_channels: int
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv_1 = nn.Conv(
self.reduced_channels,
kernel_size=(1, 1),
kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"),
dtype=self.dtype,
name="0",
) # 0 is the name used in corresponding pytorch implementation
self.conv_2 = nn.Conv(
self.in_channels,
kernel_size=(1, 1),
kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"),
dtype=self.dtype,
name="2",
) # 2 is the name used in corresponding pytorch implementation
def __call__(self, hidden_state: jnp.ndarray) -> jnp.ndarray:
hidden_state = self.conv_1(hidden_state)
hidden_state = nn.relu(hidden_state)
hidden_state = self.conv_2(hidden_state)
attention = nn.sigmoid(hidden_state)
return attention
class FlaxRegNetSELayer(nn.Module):
"""
Squeeze and Excitation layer (SE) proposed in [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507).
"""
in_channels: int
reduced_channels: int
dtype: jnp.dtype = jnp.float32
def setup(self):
self.pooler = partial(nn.avg_pool, padding=((0, 0), (0, 0)))
self.attention = FlaxRegNetSELayerCollection(self.in_channels, self.reduced_channels, dtype=self.dtype)
def __call__(self, hidden_state: jnp.ndarray) -> jnp.ndarray:
pooled = self.pooler(
hidden_state,
window_shape=(hidden_state.shape[1], hidden_state.shape[2]),
strides=(hidden_state.shape[1], hidden_state.shape[2]),
)
attention = self.attention(pooled)
hidden_state = hidden_state * attention
return hidden_state
class FlaxRegNetXLayerCollection(nn.Module):
config: RegNetConfig
out_channels: int
stride: int = 1
dtype: jnp.dtype = jnp.float32
def setup(self):
groups = max(1, self.out_channels // self.config.groups_width)
self.layer = [
FlaxRegNetConvLayer(
self.out_channels,
kernel_size=1,
activation=self.config.hidden_act,
dtype=self.dtype,
name="0",
),
FlaxRegNetConvLayer(
self.out_channels,
stride=self.stride,
groups=groups,
activation=self.config.hidden_act,
dtype=self.dtype,
name="1",
),
FlaxRegNetConvLayer(
self.out_channels,
kernel_size=1,
activation=None,
dtype=self.dtype,
name="2",
),
]
def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
for layer in self.layer:
hidden_state = layer(hidden_state, deterministic=deterministic)
return hidden_state
class FlaxRegNetXLayer(nn.Module):
"""
RegNet's layer composed by three `3x3` convolutions, same as a ResNet bottleneck layer with reduction = 1.
"""
config: RegNetConfig
in_channels: int
out_channels: int
stride: int = 1
dtype: jnp.dtype = jnp.float32
def setup(self):
should_apply_shortcut = self.in_channels != self.out_channels or self.stride != 1
self.shortcut = (
FlaxRegNetShortCut(
self.out_channels,
stride=self.stride,
dtype=self.dtype,
)
if should_apply_shortcut
else Identity()
)
self.layer = FlaxRegNetXLayerCollection(
self.config,
in_channels=self.in_channels,
out_channels=self.out_channels,
stride=self.stride,
dtype=self.dtype,
)
self.activation_func = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
residual = hidden_state
hidden_state = self.layer(hidden_state)
residual = self.shortcut(residual, deterministic=deterministic)
hidden_state += residual
hidden_state = self.activation_func(hidden_state)
return hidden_state
class FlaxRegNetYLayerCollection(nn.Module):
config: RegNetConfig
in_channels: int
out_channels: int
stride: int = 1
dtype: jnp.dtype = jnp.float32
def setup(self):
groups = max(1, self.out_channels // self.config.groups_width)
self.layer = [
FlaxRegNetConvLayer(
self.out_channels,
kernel_size=1,
activation=self.config.hidden_act,
dtype=self.dtype,
name="0",
),
FlaxRegNetConvLayer(
self.out_channels,
stride=self.stride,
groups=groups,
activation=self.config.hidden_act,
dtype=self.dtype,
name="1",
),
FlaxRegNetSELayer(
self.out_channels,
reduced_channels=int(round(self.in_channels / 4)),
dtype=self.dtype,
name="2",
),
FlaxRegNetConvLayer(
self.out_channels,
kernel_size=1,
activation=None,
dtype=self.dtype,
name="3",
),
]
def __call__(self, hidden_state: jnp.ndarray) -> jnp.ndarray:
for layer in self.layer:
hidden_state = layer(hidden_state)
return hidden_state
class FlaxRegNetYLayer(nn.Module):
"""
RegNet's Y layer: an X layer with Squeeze and Excitation.
"""
config: RegNetConfig
in_channels: int
out_channels: int
stride: int = 1
dtype: jnp.dtype = jnp.float32
def setup(self):
should_apply_shortcut = self.in_channels != self.out_channels or self.stride != 1
self.shortcut = (
FlaxRegNetShortCut(
self.out_channels,
stride=self.stride,
dtype=self.dtype,
)
if should_apply_shortcut
else Identity()
)
self.layer = FlaxRegNetYLayerCollection(
self.config,
in_channels=self.in_channels,
out_channels=self.out_channels,
stride=self.stride,
dtype=self.dtype,
)
self.activation_func = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
residual = hidden_state
hidden_state = self.layer(hidden_state)
residual = self.shortcut(residual, deterministic=deterministic)
hidden_state += residual
hidden_state = self.activation_func(hidden_state)
return hidden_state
class FlaxRegNetStageLayersCollection(nn.Module):
"""
A RegNet stage composed by stacked layers.
"""
config: RegNetConfig
in_channels: int
out_channels: int
stride: int = 2
depth: int = 2
dtype: jnp.dtype = jnp.float32
def setup(self):
layer = FlaxRegNetXLayer if self.config.layer_type == "x" else FlaxRegNetYLayer
layers = [
# downsampling is done in the first layer with stride of 2
layer(
self.config,
self.in_channels,
self.out_channels,
stride=self.stride,
dtype=self.dtype,
name="0",
)
]
for i in range(self.depth - 1):
layers.append(
layer(
self.config,
self.out_channels,
self.out_channels,
dtype=self.dtype,
name=str(i + 1),
)
)
self.layers = layers
def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
hidden_state = x
for layer in self.layers:
hidden_state = layer(hidden_state, deterministic=deterministic)
return hidden_state
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetStage with ResNet->RegNet
class FlaxRegNetStage(nn.Module):
"""
A RegNet stage composed by stacked layers.
"""
config: RegNetConfig
in_channels: int
out_channels: int
stride: int = 2
depth: int = 2
dtype: jnp.dtype = jnp.float32
def setup(self):
self.layers = FlaxRegNetStageLayersCollection(
self.config,
in_channels=self.in_channels,
out_channels=self.out_channels,
stride=self.stride,
depth=self.depth,
dtype=self.dtype,
)
def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
return self.layers(x, deterministic=deterministic)
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetStageCollection with ResNet->RegNet
class FlaxRegNetStageCollection(nn.Module):
config: RegNetConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
in_out_channels = zip(self.config.hidden_sizes, self.config.hidden_sizes[1:])
stages = [
FlaxRegNetStage(
self.config,
self.config.embedding_size,
self.config.hidden_sizes[0],
stride=2 if self.config.downsample_in_first_stage else 1,
depth=self.config.depths[0],
dtype=self.dtype,
name="0",
)
]
for i, ((in_channels, out_channels), depth) in enumerate(zip(in_out_channels, self.config.depths[1:])):
stages.append(
FlaxRegNetStage(self.config, in_channels, out_channels, depth=depth, dtype=self.dtype, name=str(i + 1))
)
self.stages = stages
def __call__(
self,
hidden_state: jnp.ndarray,
output_hidden_states: bool = False,
deterministic: bool = True,
) -> FlaxBaseModelOutputWithNoAttention:
hidden_states = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
hidden_states = hidden_states + (hidden_state.transpose(0, 3, 1, 2),)
hidden_state = stage_module(hidden_state, deterministic=deterministic)
return hidden_state, hidden_states
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetEncoder with ResNet->RegNet
class FlaxRegNetEncoder(nn.Module):
config: RegNetConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.stages = FlaxRegNetStageCollection(self.config, dtype=self.dtype)
def __call__(
self,
hidden_state: jnp.ndarray,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
) -> FlaxBaseModelOutputWithNoAttention:
hidden_state, hidden_states = self.stages(
hidden_state, output_hidden_states=output_hidden_states, deterministic=deterministic
)
if output_hidden_states:
hidden_states = hidden_states + (hidden_state.transpose(0, 3, 1, 2),)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return FlaxBaseModelOutputWithNoAttention(
last_hidden_state=hidden_state,
hidden_states=hidden_states,
)
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetPreTrainedModel with ResNet->RegNet,resnet->regnet,RESNET->REGNET
class FlaxRegNetPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = RegNetConfig
base_model_prefix = "regnet"
main_input_name = "pixel_values"
module_class: nn.Module = None
def __init__(
self,
config: RegNetConfig,
input_shape=(1, 224, 224, 3),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
if input_shape is None:
input_shape = (1, config.image_size, config.image_size, config.num_channels)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
pixel_values = jnp.zeros(input_shape, dtype=self.dtype)
rngs = {"params": rng}
random_params = self.module.init(rngs, pixel_values, return_dict=False)
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING)
def __call__(
self,
pixel_values,
params: dict = None,
train: bool = False,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
# Handle any PRNG if needed
rngs = {}
return self.module.apply(
{
"params": params["params"] if params is not None else self.params["params"],
"batch_stats": params["batch_stats"] if params is not None else self.params["batch_stats"],
},
jnp.array(pixel_values, dtype=jnp.float32),
not train,
output_hidden_states,
return_dict,
rngs=rngs,
mutable=["batch_stats"] if train else False, # Returing tuple with batch_stats only when train is True
)
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetModule with ResNet->RegNet
class FlaxRegNetModule(nn.Module):
config: RegNetConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.embedder = FlaxRegNetEmbeddings(self.config, dtype=self.dtype)
self.encoder = FlaxRegNetEncoder(self.config, dtype=self.dtype)
# Adaptive average pooling used in resnet
self.pooler = partial(
nn.avg_pool,
padding=((0, 0), (0, 0)),
)
def __call__(
self,
pixel_values,
deterministic: bool = True,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> FlaxBaseModelOutputWithPoolingAndNoAttention:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
embedding_output = self.embedder(pixel_values, deterministic=deterministic)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
last_hidden_state = encoder_outputs[0]
pooled_output = self.pooler(
last_hidden_state,
window_shape=(last_hidden_state.shape[1], last_hidden_state.shape[2]),
strides=(last_hidden_state.shape[1], last_hidden_state.shape[2]),
).transpose(0, 3, 1, 2)
last_hidden_state = last_hidden_state.transpose(0, 3, 1, 2)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return FlaxBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top.",
REGNET_START_DOCSTRING,
)
class FlaxRegNetModel(FlaxRegNetPreTrainedModel):
module_class = FlaxRegNetModule
FLAX_VISION_MODEL_DOCSTRING = """
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, FlaxRegNetModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = FlaxRegNetModel.from_pretrained("facebook/regnet-y-040")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```
"""
overwrite_call_docstring(FlaxRegNetModel, FLAX_VISION_MODEL_DOCSTRING)
append_replace_return_docstrings(
FlaxRegNetModel,
output_type=FlaxBaseModelOutputWithPooling,
config_class=RegNetConfig,
)
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetClassifierCollection with ResNet->RegNet
class FlaxRegNetClassifierCollection(nn.Module):
config: RegNetConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype, name="1")
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
return self.classifier(x)
# Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetForImageClassificationModule with ResNet->RegNet,resnet->regnet,RESNET->REGNET
class FlaxRegNetForImageClassificationModule(nn.Module):
config: RegNetConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.regnet = FlaxRegNetModule(config=self.config, dtype=self.dtype)
if self.config.num_labels > 0:
self.classifier = FlaxRegNetClassifierCollection(self.config, dtype=self.dtype)
else:
self.classifier = Identity()
def __call__(
self,
pixel_values=None,
deterministic: bool = True,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.regnet(
pixel_values,
deterministic=deterministic,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output[:, :, 0, 0])
if not return_dict:
output = (logits,) + outputs[2:]
return output
return FlaxImageClassifierOutputWithNoAttention(logits=logits, hidden_states=outputs.hidden_states)
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
REGNET_START_DOCSTRING,
)
class FlaxRegNetForImageClassification(FlaxRegNetPreTrainedModel):
module_class = FlaxRegNetForImageClassificationModule
FLAX_VISION_CLASSIF_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoImageProcessor, FlaxRegNetForImageClassification
>>> from PIL import Image
>>> import jax
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1)
>>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()])
```
"""
overwrite_call_docstring(FlaxRegNetForImageClassification, FLAX_VISION_CLASSIF_DOCSTRING)
append_replace_return_docstrings(
FlaxRegNetForImageClassification,
output_type=FlaxImageClassifierOutputWithNoAttention,
config_class=RegNetConfig,
)
| transformers/src/transformers/models/regnet/modeling_flax_regnet.py/0 | {
"file_path": "transformers/src/transformers/models/regnet/modeling_flax_regnet.py",
"repo_id": "transformers",
"token_count": 12467
} | 124 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" SAM model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
SAM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/sam-vit-huge": "https://huggingface.co/facebook/sam-vit-huge/resolve/main/config.json",
"facebook/sam-vit-large": "https://huggingface.co/facebook/sam-vit-large/resolve/main/config.json",
"facebook/sam-vit-base": "https://huggingface.co/facebook/sam-vit-base/resolve/main/config.json",
}
class SamPromptEncoderConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SamPromptEncoder`]. The [`SamPromptEncoder`]
module is used to encode the input 2D points and bounding boxes. Instantiating a configuration defaults will yield
a similar configuration to that of the SAM-vit-h
[facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 256):
Dimensionality of the hidden states.
image_size (`int`, *optional*, defaults to 1024):
The expected output resolution of the image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
mask_input_channels (`int`, *optional*, defaults to 16):
The number of channels to be fed to the `MaskDecoder` module.
num_point_embeddings (`int`, *optional*, defaults to 4):
The number of point embeddings to be used.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function in the encoder and pooler.
"""
def __init__(
self,
hidden_size=256,
image_size=1024,
patch_size=16,
mask_input_channels=16,
num_point_embeddings=4,
hidden_act="gelu",
layer_norm_eps=1e-6,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.image_size = image_size
self.patch_size = patch_size
self.image_embedding_size = image_size // patch_size
self.mask_input_channels = mask_input_channels
self.num_point_embeddings = num_point_embeddings
self.hidden_act = hidden_act
self.layer_norm_eps = layer_norm_eps
class SamMaskDecoderConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SamMaskDecoder`]. It is used to instantiate a SAM
mask decoder to the specified arguments, defining the model architecture. Instantiating a configuration defaults
will yield a similar configuration to that of the SAM-vit-h
[facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 256):
Dimensionality of the hidden states.
hidden_act (`str`, *optional*, defaults to `"relu"`):
The non-linear activation function used inside the `SamMaskDecoder` module.
mlp_dim (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 2):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
attention_downsample_rate (`int`, *optional*, defaults to 2):
The downsampling rate of the attention layer.
num_multimask_outputs (`int`, *optional*, defaults to 3):
The number of outputs from the `SamMaskDecoder` module. In the Segment Anything paper, this is set to 3.
iou_head_depth (`int`, *optional*, defaults to 3):
The number of layers in the IoU head module.
iou_head_hidden_dim (`int`, *optional*, defaults to 256):
The dimensionality of the hidden states in the IoU head module.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
"""
def __init__(
self,
hidden_size=256,
hidden_act="relu",
mlp_dim=2048,
num_hidden_layers=2,
num_attention_heads=8,
attention_downsample_rate=2,
num_multimask_outputs=3,
iou_head_depth=3,
iou_head_hidden_dim=256,
layer_norm_eps=1e-6,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.mlp_dim = mlp_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.attention_downsample_rate = attention_downsample_rate
self.num_multimask_outputs = num_multimask_outputs
self.iou_head_depth = iou_head_depth
self.iou_head_hidden_dim = iou_head_hidden_dim
self.layer_norm_eps = layer_norm_eps
class SamVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SamVisionModel`]. It is used to instantiate a SAM
vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
defaults will yield a similar configuration to that of the SAM ViT-h
[facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
output_channels (`int`, *optional*, defaults to 256):
Dimensionality of the output channels in the Patch Encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input image.
image_size (`int`, *optional*, defaults to 1024):
Expected resolution. Target size of the resized input image.
patch_size (`int`, *optional*, defaults to 16):
Size of the patches to be extracted from the input image.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string)
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 1e-10):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to query, key, value projections.
mlp_ratio (`float`, *optional*, defaults to 4.0):
Ratio of mlp hidden dim to embedding dim.
use_abs_pos (`bool`, *optional*, defaults to `True`):
Whether to use absolute position embedding.
use_rel_pos (`bool`, *optional*, defaults to `True`):
Whether to use relative position embedding.
window_size (`int`, *optional*, defaults to 14):
Window size for relative position.
global_attn_indexes (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`):
The indexes of the global attention layers.
num_pos_feats (`int`, *optional*, defaults to 128):
The dimensionality of the position embedding.
mlp_dim (`int`, *optional*):
The dimensionality of the MLP layer in the Transformer encoder. If `None`, defaults to `mlp_ratio *
hidden_size`.
"""
def __init__(
self,
hidden_size=768,
output_channels=256,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=1024,
patch_size=16,
hidden_act="gelu",
layer_norm_eps=1e-06,
attention_dropout=0.0,
initializer_range=1e-10,
qkv_bias=True,
mlp_ratio=4.0,
use_abs_pos=True,
use_rel_pos=True,
window_size=14,
global_attn_indexes=[2, 5, 8, 11],
num_pos_feats=128,
mlp_dim=None,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.output_channels = output_channels
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.hidden_act = hidden_act
self.layer_norm_eps = layer_norm_eps
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.qkv_bias = qkv_bias
self.mlp_ratio = mlp_ratio
self.use_abs_pos = use_abs_pos
self.use_rel_pos = use_rel_pos
self.window_size = window_size
self.global_attn_indexes = global_attn_indexes
self.num_pos_feats = num_pos_feats
self.mlp_dim = int(hidden_size * mlp_ratio) if mlp_dim is None else mlp_dim
class SamConfig(PretrainedConfig):
r"""
[`SamConfig`] is the configuration class to store the configuration of a [`SamModel`]. It is used to instantiate a
SAM model according to the specified arguments, defining the vision model, prompt-encoder model and mask decoder
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the
SAM-ViT-H [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (Union[`dict`, `SamVisionConfig`], *optional*):
Dictionary of configuration options used to initialize [`SamVisionConfig`].
prompt_encoder_config (Union[`dict`, `SamPromptEncoderConfig`], *optional*):
Dictionary of configuration options used to initialize [`SamPromptEncoderConfig`].
mask_decoder_config (Union[`dict`, `SamMaskDecoderConfig`], *optional*):
Dictionary of configuration options used to initialize [`SamMaskDecoderConfig`].
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import (
... SamVisionConfig,
... SamPromptEncoderConfig,
... SamMaskDecoderConfig,
... SamModel,
... )
>>> # Initializing a SamConfig with `"facebook/sam-vit-huge"` style configuration
>>> configuration = SamConfig()
>>> # Initializing a SamModel (with random weights) from the `"facebook/sam-vit-huge"` style configuration
>>> model = SamModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a SamConfig from a SamVisionConfig, SamPromptEncoderConfig, and SamMaskDecoderConfig
>>> # Initializing SAM vision, SAM Q-Former and language model configurations
>>> vision_config = SamVisionConfig()
>>> prompt_encoder_config = SamPromptEncoderConfig()
>>> mask_decoder_config = SamMaskDecoderConfig()
>>> config = SamConfig(vision_config, prompt_encoder_config, mask_decoder_config)
```"""
model_type = "sam"
def __init__(
self,
vision_config=None,
prompt_encoder_config=None,
mask_decoder_config=None,
initializer_range=0.02,
**kwargs,
):
super().__init__(**kwargs)
vision_config = vision_config if vision_config is not None else {}
prompt_encoder_config = prompt_encoder_config if prompt_encoder_config is not None else {}
mask_decoder_config = mask_decoder_config if mask_decoder_config is not None else {}
if isinstance(vision_config, SamVisionConfig):
vision_config = vision_config.to_dict()
if isinstance(prompt_encoder_config, SamPromptEncoderConfig):
prompt_encoder_config = prompt_encoder_config.to_dict()
if isinstance(mask_decoder_config, SamMaskDecoderConfig):
mask_decoder_config = mask_decoder_config.to_dict()
self.vision_config = SamVisionConfig(**vision_config)
self.prompt_encoder_config = SamPromptEncoderConfig(**prompt_encoder_config)
self.mask_decoder_config = SamMaskDecoderConfig(**mask_decoder_config)
self.initializer_range = initializer_range
| transformers/src/transformers/models/sam/configuration_sam.py/0 | {
"file_path": "transformers/src/transformers/models/sam/configuration_sam.py",
"repo_id": "transformers",
"token_count": 5408
} | 125 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Converting Meta SeamlessM4Tv2 checkpoints from seamless_communication to HF."""
import argparse
import os
from pathlib import Path
import torch
from accelerate.utils.modeling import find_tied_parameters
from seamless_communication.inference import Translator
from transformers import (
SeamlessM4TFeatureExtractor,
SeamlessM4TProcessor,
SeamlessM4TTokenizer,
SeamlessM4Tv2Config,
SeamlessM4Tv2Model,
)
from transformers.utils import logging
# fmt: off
UNIT_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kan__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tam__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__", ]
# fmt: on
# fmt: off
VOCODER_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__",]
# fmt: on
# fmt: off
LARGE_SUPPORTED_LANGUAGES = ["afr","amh","arb","ary","arz","asm","azj","bel","ben","bos","bul","cat","ceb","ces","ckb","cmn","cmn_Hant","cym","dan","deu","ell","eng","est","eus","fin","fra","fuv","gaz","gle","glg","guj","heb","hin","hrv","hun","hye","ibo","ind","isl","ita","jav","jpn","kan","kat","kaz","khk","khm","kir","kor","lao","lit","lug","luo","lvs","mai","mal","mar","mkd","mlt","mni","mya","nld","nno","nob","npi","nya","ory","pan","pbt","pes","pol","por","ron","rus","sat","slk","slv","sna","snd","som","spa","srp","swe","swh","tam","tel","tgk","tgl","tha","tur","ukr","urd","uzn","vie","yor","yue","zlm","zul",]
# fmt: on
def assert_param_count(model_1, model_2):
count_1 = sum(p[1].numel() for p in model_1.named_parameters() if "final_proj" not in p[0])
count_2 = sum(p[1].numel() for p in model_2.named_parameters() if "final_proj" not in p[0])
assert count_1 == count_2, f"{model_1.__class__}: {count_1} != {model_2.__class__}: {count_2}"
def param_count(model):
return sum(p[1].numel() for p in model.named_parameters() if "final_proj" not in p[0])
def _grab_best_device(use_gpu=True):
if torch.cuda.device_count() > 0 and use_gpu:
device = "cuda"
else:
device = "cpu"
return torch.device(device)
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
vocoder_convert_list = [
("ups", "hifi_gan.upsampler"),
("conv_pre", "hifi_gan.conv_pre"),
("resblocks", "hifi_gan.resblocks"),
("conv_post", "hifi_gan.conv_post"),
("lang", "language_embedding"),
("spkr", "speaker_embedding"),
("dict.", "unit_embedding."),
("dur_predictor.conv1.0", "dur_predictor.conv1"),
("dur_predictor.conv2.0", "dur_predictor.conv2"),
]
# order is important
wav2vec_convert_list = [
("speech_encoder_frontend.model_dim_proj", "feature_projection.projection"),
("speech_encoder_frontend.post_extract_layer_norm", "feature_projection.layer_norm"),
("speech_encoder_frontend.pos_encoder.conv", "encoder.pos_conv_embed.conv"),
("speech_encoder.inner.layers", "encoder.layers"),
("speech_encoder.inner_layer_norm", "encoder.layer_norm"),
("speech_encoder.adaptor_layers", "adapter.layers"),
("inner_proj", "intermediate_dense"),
("self_attn.output_proj", "self_attn.linear_out"),
("output_proj", "output_dense"),
("self_attn.k_proj", "self_attn.linear_k"),
("self_attn.v_proj", "self_attn.linear_v"),
("self_attn.q_proj", "self_attn.linear_q"),
("self_attn.sdpa.u_bias", "self_attn.pos_bias_u"),
("self_attn.sdpa.v_bias", "self_attn.pos_bias_v"),
("self_attn.sdpa.rel_k_embed", "self_attn.distance_embedding"),
("self_attn.sdpa.r_proj", "self_attn.linear_pos"),
("conv.pointwise_conv1", "conv_module.pointwise_conv1"),
("conv.pointwise_conv2", "conv_module.pointwise_conv2"),
("conv.depthwise_conv", "conv_module.depthwise_conv"),
("conv.batch_norm", "conv_module.batch_norm"),
("conv.layer_norm", "conv_module.depthwise_layer_norm"),
("conv_layer_norm", "conv_module.layer_norm"),
("speech_encoder.proj1", "intermediate_ffn.intermediate_dense"),
("speech_encoder.proj2", "intermediate_ffn.output_dense"),
("speech_encoder.layer_norm", "inner_layer_norm"),
]
t2u_convert_list = [
("t2u_model.final_proj", "lm_head"),
("t2u_model.", "model."),
("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"),
("encoder_decoder_attn", "cross_attention"),
("linear_k", "k_proj"),
("linear_v", "v_proj"),
("linear_q", "q_proj"),
("ffn.inner_proj", "ffn.fc1"),
("ffn.output_proj", "ffn.fc2"),
("output_proj", "out_proj"),
("decoder_frontend.embed_char", "decoder.embed_char"),
("decoder_frontend.pos_emb_alpha_char", "decoder.pos_emb_alpha_char"),
("decoder_frontend.embed", "decoder.embed_tokens"),
("decoder_frontend.pos_emb_alpha", "decoder.pos_emb_alpha"),
("conv1d.conv", "conv"),
("conv1d_layer_norm", "conv_layer_norm"),
("decoder_frontend.variance_adaptor", "decoder"),
("duration_predictor.conv1.0", "duration_predictor.conv1"),
("duration_predictor.conv2.0", "duration_predictor.conv2"),
]
text_convert_list = [
("text_encoder.", ""),
("text_decoder.", ""),
("text_encoder_frontend.embed", "embed_tokens"),
("text_decoder_frontend.embed", "embed_tokens"),
("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"),
("encoder_decoder_attn", "cross_attention"),
("linear_k", "k_proj"),
("linear_v", "v_proj"),
("linear_q", "q_proj"),
("ffn.inner_proj", "ffn.fc1"),
("ffn.output_proj", "ffn.fc2"),
("output_proj", "out_proj"),
("final_proj", "lm_head"),
]
CUR_PATH = os.path.dirname(os.path.abspath(__file__))
default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache")
CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "huggingface", "hub")
def _load_hf_config():
return SeamlessM4Tv2Config()
def _convert_model(
original_model,
hf_model,
convert_list,
device,
unwanted_prefix="model.",
filter_state_dict="speech",
exclude_state_dict=None,
):
state_dict = original_model.state_dict()
# filter func
if isinstance(filter_state_dict, str):
def filter_func(x):
return filter_state_dict in x[0]
else:
def filter_func(item):
if exclude_state_dict is not None and exclude_state_dict in item[0]:
return False
for filter_el in filter_state_dict:
if filter_el in item[0]:
return True
return False
state_dict = dict(filter(filter_func, state_dict.items()))
for k, v in list(state_dict.items()):
new_k = k[len(unwanted_prefix) :]
for old_layer_name, new_layer_name in convert_list:
if old_layer_name in new_k:
new_k = new_k.replace(old_layer_name, new_layer_name)
# must do it by hand
if ".layer_norm" in new_k and new_k.split(".layer_norm")[0][-1].isnumeric():
new_k = new_k.replace("layer_norm", "final_layer_norm")
state_dict[new_k] = state_dict.pop(k)
extra_keys = set(state_dict.keys()) - set(hf_model.state_dict().keys())
extra_keys = set(extra_keys)
missing_keys = set(hf_model.state_dict().keys()) - set(state_dict.keys())
missing_keys = set({k for k in missing_keys if "final_logits_bias" not in k})
if len(extra_keys) != 0:
raise ValueError(f"extra keys found: {extra_keys}")
if len(missing_keys) != 0:
raise ValueError(f"missing keys: {missing_keys}")
hf_model.load_state_dict(state_dict, strict=False)
n_params = param_count(hf_model)
logger.info(f"model loaded: {round(n_params/1e6,1)}M params")
hf_model.eval()
hf_model.to(device)
del state_dict
return hf_model
def load_model(save_dir, model_type, repo_id):
"""
Meta SeamlessM4Tv2 is made of 8 main components:
- speech_encoder (#1) and speech_encoder_frontend (#2)
- t2u_model (#3)
- text_encoder (#4) and text_encoder_frontend (#5)
- text_decoder (#6) [and text_decoder_frontend (#5) = equals to text_encoder_frontend]
- final_proj (#7)
- vocoder (#8)
"""
device = _grab_best_device()
name = "seamlessM4T_v2_large"
original_model = Translator(name, "vocoder_v2", device, dtype=torch.float32)
######### TOKENIZER
langs = LARGE_SUPPORTED_LANGUAGES
langs = [f"__{lang}__" for lang in langs]
vocab_file = os.path.join(os.path.expanduser("~"), "tokenizer", model_type, "tokenizer.model")
save_dir = os.path.join(save_dir, name)
Path(save_dir).mkdir(exist_ok=True)
tokenizer = SeamlessM4TTokenizer(vocab_file, additional_special_tokens=langs)
sanity_check_lang_id = tokenizer.convert_tokens_to_ids("__fra__")
tokenizer.save_pretrained(save_dir)
tokenizer = SeamlessM4TTokenizer.from_pretrained(save_dir)
if sanity_check_lang_id != tokenizer.convert_tokens_to_ids("__fra__"):
raise ValueError(
f"Error in tokenizer saving/loading - __fra__ lang id is not coherent: {sanity_check_lang_id} vs {tokenizer.convert_tokens_to_ids('__fra__')}"
)
####### get language to ids dict
text_decoder_lang_code_to_id = {lang.replace("__", ""): tokenizer.convert_tokens_to_ids(lang) for lang in langs}
# offset: vocoder unit vocab size + 5 (for EOS/PAD/BOS/UNK/MSK) + len(supported_languages)
t2u_lang_code_to_id = {
code.replace("__", ""): i + 10005 + len(UNIT_SUPPORTED_LANGUAGES)
for i, code in enumerate(UNIT_SUPPORTED_LANGUAGES)
}
vocoder_lang_code_to_id = {code.replace("__", ""): i for i, code in enumerate(VOCODER_SUPPORTED_LANGUAGES)}
######### FE
fe = SeamlessM4TFeatureExtractor(language_code=langs)
fe.save_pretrained(save_dir)
fe = SeamlessM4TFeatureExtractor.from_pretrained(save_dir)
processor = SeamlessM4TProcessor(feature_extractor=fe, tokenizer=tokenizer)
processor.save_pretrained(save_dir)
processor.push_to_hub(repo_id=repo_id, create_pr=True)
processor = SeamlessM4TProcessor.from_pretrained(save_dir)
######## Model
# init config
hf_config = _load_hf_config()
######## get id_to_text and char_to_id from original model tokenizers
id_to_text = {i: original_model.text_tokenizer.model.index_to_token(i) for i in range(hf_config.vocab_size)}
char_to_id = {
original_model.model.t2u_model.decoder_frontend.char_tokenizer.model.index_to_token(i): i for i in range(10904)
}
# init model
hf_model = SeamlessM4Tv2Model(hf_config)
hf_model.generation_config.__setattr__("text_decoder_lang_to_code_id", text_decoder_lang_code_to_id)
hf_model.generation_config.__setattr__("t2u_lang_code_to_id", t2u_lang_code_to_id)
hf_model.generation_config.__setattr__("vocoder_lang_code_to_id", vocoder_lang_code_to_id)
hf_model.generation_config.__setattr__("id_to_text", id_to_text)
hf_model.generation_config.__setattr__("char_to_id", char_to_id)
# -1. take care of vocoder
# similarly to speech T5 must apply and remove weight norm
hf_model.vocoder.apply_weight_norm()
hf_model.vocoder = _convert_model(
original_model,
hf_model.vocoder,
vocoder_convert_list,
device,
unwanted_prefix="vocoder.code_generator.",
filter_state_dict="vocoder",
)
hf_model.vocoder.remove_weight_norm()
# 1. take care of speech encoder
wav2vec = hf_model.speech_encoder
hf_model.speech_encoder = _convert_model(
original_model, wav2vec, wav2vec_convert_list, device, unwanted_prefix="model.", filter_state_dict="speech"
)
# 2. take care of t2u
hf_model.t2u_model = _convert_model(
original_model,
hf_model.t2u_model,
t2u_convert_list,
device,
unwanted_prefix="model.",
filter_state_dict="t2u_model",
)
# 3. take care of text encoder
hf_model.text_encoder = _convert_model(
original_model,
hf_model.text_encoder,
text_convert_list,
device,
unwanted_prefix="model.",
filter_state_dict=["model.text_encoder"],
exclude_state_dict="t2u_model",
)
# 4. take care of text decoder
hf_model.text_decoder = _convert_model(
original_model,
hf_model.text_decoder,
text_convert_list,
device,
unwanted_prefix="model.",
filter_state_dict=["model.text_decoder"],
exclude_state_dict="t2u_model",
)
# 5. take care of final proj
hf_model.lm_head = _convert_model(
original_model,
hf_model.lm_head,
[("final_proj.", "")],
device,
unwanted_prefix="model.",
filter_state_dict=["model.final_proj"],
exclude_state_dict="t2u_model",
)
# sanity check
print(find_tied_parameters(hf_model))
count_1 = param_count(hf_model)
count_2 = param_count(original_model)
print(f"HF MODEL:{count_1}, ORIGINAL_MODEL: {count_2}, diff:{count_1 - count_2}")
print(f"HF MODEL excluding embeddings:{hf_model.num_parameters(exclude_embeddings=True)}")
del original_model
hf_model.generation_config._from_model_config = False
hf_model.save_pretrained(save_dir)
hf_model.push_to_hub(repo_id=repo_id, create_pr=True)
hf_model = SeamlessM4Tv2Model.from_pretrained(save_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_type",
default="large",
type=str,
help="Model type.",
)
parser.add_argument(
"--save_dir",
default="/home/ubuntu/weights_v2",
type=str,
help="Path to the output PyTorch model.",
)
parser.add_argument(
"--repo_id",
default="facebook/seamless-m4t-v2-large",
type=str,
help="Repo ID.",
)
args = parser.parse_args()
load_model(args.save_dir, args.model_type, args.repo_id)
| transformers/src/transformers/models/seamless_m4t_v2/convert_fairseq2_to_hf.py/0 | {
"file_path": "transformers/src/transformers/models/seamless_m4t_v2/convert_fairseq2_to_hf.py",
"repo_id": "transformers",
"token_count": 6572
} | 126 |
# coding=utf-8
# Copyright 2021 ASAPP Inc. and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch SEW model."""
import math
import warnings
from collections.abc import Sequence
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, LayerNorm
from ...activations import ACT2FN
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import softmax_backward_data
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_sew_d import SEWDConfig
logger = logging.get_logger(__name__)
_HIDDEN_STATES_START_POSITION = 1
# General docstring
_CONFIG_FOR_DOC = "SEWDConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "asapp/sew-d-tiny-100k-ft-ls100h"
_EXPECTED_OUTPUT_SHAPE = [1, 292, 384]
# CTC docstring
_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTIL OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'"
_CTC_EXPECTED_LOSS = 0.21
# Audio class docstring
_SEQ_CLASS_CHECKPOINT = "anton-l/sew-d-mid-400k-ft-keyword-spotting"
_SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'"
_SEQ_CLASS_EXPECTED_LOSS = 3.16
SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST = [
"asapp/sew-d-tiny-100k",
"asapp/sew-d-small-100k",
"asapp/sew-d-mid-100k",
"asapp/sew-d-mid-k127-100k",
"asapp/sew-d-base-100k",
"asapp/sew-d-base-plus-100k",
"asapp/sew-d-mid-400k",
"asapp/sew-d-mid-k127-400k",
"asapp/sew-d-base-plus-400k",
# See all SEW models at https://huggingface.co/models?filter=sew-d
]
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
attention_mask: Optional[torch.LongTensor] = None,
min_masks: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.
Args:
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
the first element is the batch size and the second element is the length of the axis to span.
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
independently generated mask spans of length `mask_length` is computed by
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
actual percentage will be smaller.
mask_length: size of the mask
min_masks: minimum number of masked spans
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
each batch dimension.
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
f" and `sequence_length`: {sequence_length}`"
)
# epsilon is used for probabilistic rounding
epsilon = np.random.rand(1).item()
def compute_num_masked_span(input_length):
"""Given input length, compute how many spans should be masked"""
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
num_masked_span = max(num_masked_span, min_masks)
# make sure num masked span <= sequence_length
if num_masked_span * mask_length > sequence_length:
num_masked_span = sequence_length // mask_length
# make sure num_masked span is also <= input_length - (mask_length - 1)
if input_length - (mask_length - 1) < num_masked_span:
num_masked_span = max(input_length - (mask_length - 1), 0)
return num_masked_span
# compute number of masked spans in batch
input_lengths = (
attention_mask.sum(-1).detach().tolist()
if attention_mask is not None
else [sequence_length for _ in range(batch_size)]
)
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
spec_aug_mask_idxs = []
max_num_masked_span = compute_num_masked_span(sequence_length)
if max_num_masked_span == 0:
return spec_aug_mask
for input_length in input_lengths:
# compute num of masked spans for this input
num_masked_span = compute_num_masked_span(input_length)
# get random indices to mask
spec_aug_mask_idx = np.random.choice(
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
)
# pick first sampled index that will serve as a dummy index to pad vector
# to ensure same dimension for all batches due to probabilistic rounding
# Picking first sample just pads those vectors twice.
if len(spec_aug_mask_idx) == 0:
# this case can only happen if `input_length` is strictly smaller then
# `sequence_length` in which case the last token has to be a padding
# token which we can use as a dummy mask id
dummy_mask_idx = sequence_length - 1
else:
dummy_mask_idx = spec_aug_mask_idx[0]
spec_aug_mask_idx = np.concatenate(
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
)
spec_aug_mask_idxs.append(spec_aug_mask_idx)
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
# expand masked indices to masked spans
spec_aug_mask_idxs = np.broadcast_to(
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
)
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
# add offset to the starting indexes so that indexes now create a span
offsets = np.arange(mask_length)[None, None, :]
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
batch_size, max_num_masked_span * mask_length
)
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# ensure that we cannot have indices larger than sequence_length
if spec_aug_mask_idxs.max() > sequence_length - 1:
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
# scatter indices to mask
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
return spec_aug_mask
# Copied from transformers.models.deberta_v2.modeling_deberta_v2.make_log_bucket_position
def make_log_bucket_position(relative_pos, bucket_size, max_position):
sign = torch.sign(relative_pos)
mid = bucket_size // 2
abs_pos = torch.where(
(relative_pos < mid) & (relative_pos > -mid),
torch.tensor(mid - 1).type_as(relative_pos),
torch.abs(relative_pos),
)
log_pos = (
torch.ceil(torch.log(abs_pos / mid) / torch.log(torch.tensor((max_position - 1) / mid)) * (mid - 1)) + mid
)
bucket_pos = torch.where(abs_pos <= mid, relative_pos.type_as(log_pos), log_pos * sign)
return bucket_pos
# Copied from transformers.models.deberta_v2.modeling_deberta_v2.build_relative_position
def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1, device=None):
"""
Build relative position according to the query and key
We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
\\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
P_k\\)
Args:
query_size (int): the length of query
key_size (int): the length of key
bucket_size (int): the size of position bucket
max_position (int): the maximum allowed absolute position
device (`torch.device`): the device on which tensors will be created.
Return:
`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
"""
q_ids = torch.arange(0, query_size, device=device)
k_ids = torch.arange(0, key_size, device=device)
rel_pos_ids = q_ids[:, None] - k_ids[None, :]
if bucket_size > 0 and max_position > 0:
rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
rel_pos_ids = rel_pos_ids.to(torch.long)
rel_pos_ids = rel_pos_ids[:query_size, :]
rel_pos_ids = rel_pos_ids.unsqueeze(0)
return rel_pos_ids
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
# Copied from transformers.models.deberta.modeling_deberta.get_mask
def get_mask(input, local_context):
if not isinstance(local_context, DropoutContext):
dropout = local_context
mask = None
else:
dropout = local_context.dropout
dropout *= local_context.scale
mask = local_context.mask if local_context.reuse_mask else None
if dropout > 0 and mask is None:
mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool)
if isinstance(local_context, DropoutContext):
if local_context.mask is None:
local_context.mask = mask
return mask, dropout
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SEWD
class SEWDNoLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SEWD
class SEWDLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SEWD
class SEWDGroupNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.sew.modeling_sew.SEWPositionalConvEmbedding with SEW->SEWD
class SEWDPositionalConvEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
padding=config.num_conv_pos_embeddings // 2,
groups=config.num_conv_pos_embedding_groups,
stride=config.squeeze_factor,
)
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
else:
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
self.padding = SEWDSamePadLayer(config.num_conv_pos_embeddings)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SEW
class SEWDSamePadLayer(nn.Module):
def __init__(self, num_conv_pos_embeddings):
super().__init__()
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def forward(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
return hidden_states
# Copied from transformers.models.sew.modeling_sew.SEWUpsampling with SEW->SEWD
class SEWDUpsampling(nn.Module):
def __init__(self, config):
super().__init__()
self.projection = nn.Linear(config.hidden_size, config.hidden_size * config.squeeze_factor)
self.activation = ACT2FN[config.feat_extract_activation]
self.squeeze_factor = config.squeeze_factor
def forward(self, hidden_states):
hidden_states = self.projection(hidden_states)
hidden_states = self.activation(hidden_states)
if self.squeeze_factor > 1:
# transform embedding channels to sequence length
bsz, src_len, src_embed_dim = hidden_states.size()
tgt_len = src_len * self.squeeze_factor
tgt_embed_dim = src_embed_dim // self.squeeze_factor
hidden_states = hidden_states.reshape(bsz, src_len, self.squeeze_factor, tgt_embed_dim)
hidden_states = hidden_states.reshape(bsz, tgt_len, tgt_embed_dim)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SEWD
class SEWDFeatureEncoder(nn.Module):
"""Construct the features from raw audio waveform"""
def __init__(self, config):
super().__init__()
if config.feat_extract_norm == "group":
conv_layers = [SEWDGroupNormConvLayer(config, layer_id=0)] + [
SEWDNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1)
]
elif config.feat_extract_norm == "layer":
conv_layers = [SEWDLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)]
else:
raise ValueError(
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
)
self.conv_layers = nn.ModuleList(conv_layers)
self.gradient_checkpointing = False
self._requires_grad = True
def _freeze_parameters(self):
for param in self.parameters():
param.requires_grad = False
self._requires_grad = False
def forward(self, input_values):
hidden_states = input_values[:, None]
# make sure hidden_states require grad for gradient_checkpointing
if self._requires_grad and self.training:
hidden_states.requires_grad = True
for conv_layer in self.conv_layers:
if self._requires_grad and self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
conv_layer.__call__,
hidden_states,
)
else:
hidden_states = conv_layer(hidden_states)
return hidden_states
class SEWDFeatureExtractor(SEWDFeatureEncoder):
def __init__(self, config):
super().__init__(config)
warnings.warn(
f"The class `{self.__class__.__name__}` has been depreciated "
"and will be removed in Transformers v5. "
f"Use `{self.__class__.__bases__[0].__name__}` instead.",
FutureWarning,
)
# Copied from transformers.models.deberta.modeling_deberta.ContextPooler
class ContextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
self.dropout = StableDropout(config.pooler_dropout)
self.config = config
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
context_token = hidden_states[:, 0]
context_token = self.dropout(context_token)
pooled_output = self.dense(context_token)
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
return pooled_output
@property
def output_dim(self):
return self.config.hidden_size
# Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2
class XSoftmax(torch.autograd.Function):
"""
Masked Softmax which is optimized for saving memory
Args:
input (`torch.tensor`): The input tensor that will apply softmax.
mask (`torch.IntTensor`):
The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
dim (int): The dimension that will apply softmax
Example:
```python
>>> import torch
>>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
>>> # Make a tensor
>>> x = torch.randn([4, 20, 100])
>>> # Create a mask
>>> mask = (x > 0).int()
>>> # Specify the dimension to apply softmax
>>> dim = -1
>>> y = XSoftmax.apply(x, mask, dim)
```"""
@staticmethod
def forward(self, input, mask, dim):
self.dim = dim
rmask = ~(mask.to(torch.bool))
output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
output = torch.softmax(output, self.dim)
output.masked_fill_(rmask, 0)
self.save_for_backward(output)
return output
@staticmethod
def backward(self, grad_output):
(output,) = self.saved_tensors
inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output)
return inputGrad, None, None
@staticmethod
def symbolic(g, self, mask, dim):
import torch.onnx.symbolic_helper as sym_help
from torch.onnx.symbolic_opset9 import masked_fill, softmax
mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
r_mask = g.op(
"Cast",
g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
to_i=sym_help.cast_pytorch_to_onnx["Bool"],
)
output = masked_fill(
g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min))
)
output = softmax(g, output, dim)
return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool)))
# Copied from transformers.models.deberta.modeling_deberta.DropoutContext
class DropoutContext(object):
def __init__(self):
self.dropout = 0
self.mask = None
self.scale = 1
self.reuse_mask = True
# Copied from transformers.models.deberta.modeling_deberta.XDropout
class XDropout(torch.autograd.Function):
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
@staticmethod
def forward(ctx, input, local_ctx):
mask, dropout = get_mask(input, local_ctx)
ctx.scale = 1.0 / (1 - dropout)
if dropout > 0:
ctx.save_for_backward(mask)
return input.masked_fill(mask, 0) * ctx.scale
else:
return input
@staticmethod
def backward(ctx, grad_output):
if ctx.scale > 1:
(mask,) = ctx.saved_tensors
return grad_output.masked_fill(mask, 0) * ctx.scale, None
else:
return grad_output, None
@staticmethod
def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value:
from torch.onnx import symbolic_opset12
dropout_p = local_ctx
if isinstance(local_ctx, DropoutContext):
dropout_p = local_ctx.dropout
# StableDropout only calls this function when training.
train = True
# TODO: We should check if the opset_version being used to export
# is > 12 here, but there's no good way to do that. As-is, if the
# opset_version < 12, export will fail with a CheckerError.
# Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like:
# if opset_version < 12:
# return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train)
return symbolic_opset12.dropout(g, input, dropout_p, train)
# Copied from transformers.models.deberta.modeling_deberta.StableDropout
class StableDropout(nn.Module):
"""
Optimized dropout module for stabilizing the training
Args:
drop_prob (float): the dropout probabilities
"""
def __init__(self, drop_prob):
super().__init__()
self.drop_prob = drop_prob
self.count = 0
self.context_stack = None
def forward(self, x):
"""
Call the module
Args:
x (`torch.tensor`): The input tensor to apply dropout
"""
if self.training and self.drop_prob > 0:
return XDropout.apply(x, self.get_context())
return x
def clear_context(self):
self.count = 0
self.context_stack = None
def init_context(self, reuse_mask=True, scale=1):
if self.context_stack is None:
self.context_stack = []
self.count = 0
for c in self.context_stack:
c.reuse_mask = reuse_mask
c.scale = scale
def get_context(self):
if self.context_stack is not None:
if self.count >= len(self.context_stack):
self.context_stack.append(DropoutContext())
ctx = self.context_stack[self.count]
ctx.dropout = self.drop_prob
self.count += 1
return ctx
else:
return self.drop_prob
# Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaV2->SEWD, DebertaLayerNorm->LayerNorm, hidden_dropout_prob->activation_dropout
class SEWDSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.activation_dropout)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.deberta_v2.modeling_deberta_v2.DisentangledSelfAttention with attention_probs_dropout_prob->attention_dropout, hidden_dropout_prob->activation_dropout
class DisentangledSelfAttention(nn.Module):
"""
Disentangled self-attention module
Parameters:
config (`DebertaV2Config`):
A model config class instance with the configuration to build a new model. The schema is similar to
*BertConfig*, for more details, please refer [`DebertaV2Config`]
"""
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
_attention_head_size = config.hidden_size // config.num_attention_heads
self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.share_att_key = getattr(config, "share_att_key", False)
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
self.relative_attention = getattr(config, "relative_attention", False)
if self.relative_attention:
self.position_buckets = getattr(config, "position_buckets", -1)
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.pos_ebd_size = self.max_relative_positions
if self.position_buckets > 0:
self.pos_ebd_size = self.position_buckets
self.pos_dropout = StableDropout(config.activation_dropout)
if not self.share_att_key:
if "c2p" in self.pos_att_type:
self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
if "p2c" in self.pos_att_type:
self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = StableDropout(config.attention_dropout)
def transpose_for_scores(self, x, attention_heads):
new_x_shape = x.size()[:-1] + (attention_heads, -1)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
def forward(
self,
hidden_states,
attention_mask,
output_attentions=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
):
"""
Call the module
Args:
hidden_states (`torch.FloatTensor`):
Input states to the module usually the output from previous layer, it will be the Q,K and V in
*Attention(Q,K,V)*
attention_mask (`torch.BoolTensor`):
An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
th token.
output_attentions (`bool`, optional):
Whether return the attention matrix.
query_states (`torch.FloatTensor`, optional):
The *Q* state in *Attention(Q,K,V)*.
relative_pos (`torch.LongTensor`):
The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
values ranging in [*-max_relative_positions*, *max_relative_positions*].
rel_embeddings (`torch.FloatTensor`):
The embedding of relative distances. It's a tensor of shape [\\(2 \\times
\\text{max_relative_positions}\\), *hidden_size*].
"""
if query_states is None:
query_states = hidden_states
query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads)
rel_att = None
# Take the dot product between "query" and "key" to get the raw attention scores.
scale_factor = 1
if "c2p" in self.pos_att_type:
scale_factor += 1
if "p2c" in self.pos_att_type:
scale_factor += 1
scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor)
attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2) / scale.to(dtype=query_layer.dtype))
if self.relative_attention:
rel_embeddings = self.pos_dropout(rel_embeddings)
rel_att = self.disentangled_attention_bias(
query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
)
if rel_att is not None:
attention_scores = attention_scores + rel_att
attention_scores = attention_scores
attention_scores = attention_scores.view(
-1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1)
)
# bsz x height x length x dimension
attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
attention_probs = self.dropout(attention_probs)
context_layer = torch.bmm(
attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer
)
context_layer = (
context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1))
.permute(0, 2, 1, 3)
.contiguous()
)
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
context_layer = context_layer.view(new_context_layer_shape)
if output_attentions:
return (context_layer, attention_probs)
else:
return context_layer
def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
if relative_pos is None:
q = query_layer.size(-2)
relative_pos = build_relative_position(
q,
key_layer.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
device=query_layer.device,
)
if relative_pos.dim() == 2:
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
elif relative_pos.dim() == 3:
relative_pos = relative_pos.unsqueeze(1)
# bsz x height x query x key
elif relative_pos.dim() != 4:
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
att_span = self.pos_ebd_size
relative_pos = relative_pos.long().to(query_layer.device)
rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0)
if self.share_att_key:
pos_query_layer = self.transpose_for_scores(
self.query_proj(rel_embeddings), self.num_attention_heads
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat(
query_layer.size(0) // self.num_attention_heads, 1, 1
)
else:
if "c2p" in self.pos_att_type:
pos_key_layer = self.transpose_for_scores(
self.pos_key_proj(rel_embeddings), self.num_attention_heads
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1)
if "p2c" in self.pos_att_type:
pos_query_layer = self.transpose_for_scores(
self.pos_query_proj(rel_embeddings), self.num_attention_heads
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1)
score = 0
# content->position
if "c2p" in self.pos_att_type:
scale = torch.sqrt(torch.tensor(pos_key_layer.size(-1), dtype=torch.float) * scale_factor)
c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
c2p_att = torch.gather(
c2p_att,
dim=-1,
index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]),
)
score += c2p_att / scale.to(dtype=c2p_att.dtype)
# position->content
if "p2c" in self.pos_att_type:
scale = torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor)
if key_layer.size(-2) != query_layer.size(-2):
r_pos = build_relative_position(
key_layer.size(-2),
key_layer.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
device=query_layer.device,
)
r_pos = r_pos.unsqueeze(0)
else:
r_pos = relative_pos
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
p2c_att = torch.gather(
p2c_att,
dim=-1,
index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]),
).transpose(-1, -2)
score += p2c_att / scale.to(dtype=p2c_att.dtype)
return score
# Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->SEWD
class SEWDAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = DisentangledSelfAttention(config)
self.output = SEWDSelfOutput(config)
self.config = config
def forward(
self,
hidden_states,
attention_mask,
output_attentions=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
):
self_output = self.self(
hidden_states,
attention_mask,
output_attentions,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
)
if output_attentions:
self_output, att_matrix = self_output
if query_states is None:
query_states = hidden_states
attention_output = self.output(self_output, query_states)
if output_attentions:
return (attention_output, att_matrix)
else:
return attention_output
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->SEWD
class SEWDIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm, hidden_dropout_prob->activation_dropout
class SEWDOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.activation_dropout)
self.config = config
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->SEWD
class SEWDLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = SEWDAttention(config)
self.intermediate = SEWDIntermediate(config)
self.output = SEWDOutput(config)
def forward(
self,
hidden_states,
attention_mask,
query_states=None,
relative_pos=None,
rel_embeddings=None,
output_attentions=False,
):
attention_output = self.attention(
hidden_states,
attention_mask,
output_attentions=output_attentions,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
)
if output_attentions:
attention_output, att_matrix = attention_output
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
if output_attentions:
return (layer_output, att_matrix)
else:
return layer_output
# Copied from transformers.models.deberta_v2.modeling_deberta_v2.ConvLayer
class ConvLayer(nn.Module):
def __init__(self, config):
super().__init__()
kernel_size = getattr(config, "conv_kernel_size", 3)
groups = getattr(config, "conv_groups", 1)
self.conv_act = getattr(config, "conv_act", "tanh")
self.conv = nn.Conv1d(
config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups
)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.config = config
def forward(self, hidden_states, residual_states, input_mask):
out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous()
rmask = (1 - input_mask).bool()
out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
out = ACT2FN[self.conv_act](self.dropout(out))
layer_norm_input = residual_states + out
output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
if input_mask is None:
output_states = output
else:
if input_mask.dim() != layer_norm_input.dim():
if input_mask.dim() == 4:
input_mask = input_mask.squeeze(1).squeeze(1)
input_mask = input_mask.unsqueeze(2)
input_mask = input_mask.to(output.dtype)
output_states = output * input_mask
return output_states
# Copied from transformers.models.deberta_v2.modeling_deberta_v2.DebertaV2Encoder with DebertaV2->SEWD
class SEWDTransformerEncoder(nn.Module):
"""Modified BertEncoder with relative position bias support"""
def __init__(self, config):
super().__init__()
self.layer = nn.ModuleList([SEWDLayer(config) for _ in range(config.num_hidden_layers)])
self.relative_attention = getattr(config, "relative_attention", False)
if self.relative_attention:
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.position_buckets = getattr(config, "position_buckets", -1)
pos_ebd_size = self.max_relative_positions * 2
if self.position_buckets > 0:
pos_ebd_size = self.position_buckets * 2
self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]
if "layer_norm" in self.norm_rel_ebd:
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
self.gradient_checkpointing = False
def get_rel_embedding(self):
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
rel_embeddings = self.LayerNorm(rel_embeddings)
return rel_embeddings
def get_attention_mask(self, attention_mask):
if attention_mask.dim() <= 2:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
elif attention_mask.dim() == 3:
attention_mask = attention_mask.unsqueeze(1)
return attention_mask
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
if self.relative_attention and relative_pos is None:
q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
relative_pos = build_relative_position(
q,
hidden_states.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
device=hidden_states.device,
)
return relative_pos
def forward(
self,
hidden_states,
attention_mask,
output_hidden_states=True,
output_attentions=False,
query_states=None,
relative_pos=None,
return_dict=True,
):
if attention_mask.dim() <= 2:
input_mask = attention_mask
else:
input_mask = attention_mask.sum(-2) > 0
attention_mask = self.get_attention_mask(attention_mask)
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[0]
else:
next_kv = hidden_states
rel_embeddings = self.get_rel_embedding()
output_states = next_kv
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (output_states,)
if self.gradient_checkpointing and self.training:
output_states = self._gradient_checkpointing_func(
layer_module.__call__,
next_kv,
attention_mask,
query_states,
relative_pos,
rel_embeddings,
output_attentions,
)
else:
output_states = layer_module(
next_kv,
attention_mask,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
output_attentions=output_attentions,
)
if output_attentions:
output_states, att_m = output_states
if i == 0 and self.conv is not None:
output_states = self.conv(hidden_states, output_states, input_mask)
if query_states is not None:
query_states = output_states
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
else:
next_kv = output_states
if output_attentions:
all_attentions = all_attentions + (att_m,)
if output_hidden_states:
all_hidden_states = all_hidden_states + (output_states,)
if not return_dict:
return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class SEWDEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = SEWDPositionalConvEmbedding(config)
self.pool = nn.AvgPool1d(config.squeeze_factor, config.squeeze_factor)
self.encoder = SEWDTransformerEncoder(config)
self.upsample = SEWDUpsampling(config)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
max_encoder_length = hidden_states.shape[1] // self.config.squeeze_factor
if attention_mask is None:
attention_mask = torch.ones(
(hidden_states.shape[0], max_encoder_length), dtype=torch.long, device=hidden_states.device
)
else:
# make sure padded tokens output 0
hidden_states[~attention_mask.bool()] = 0.0
input_lengths = (attention_mask.long()).sum(-1)
# apply pooling formula to get real output_lengths
output_lengths = input_lengths // self.config.squeeze_factor
attention_ids = (
torch.arange(0, max_encoder_length, device=output_lengths.device)
.view(1, -1)
.expand(output_lengths.shape[0], -1)
)
attention_mask = (attention_ids < output_lengths.view(-1, 1)).long()
n_input_timesteps = hidden_states.shape[1]
hidden_states = hidden_states.transpose(1, 2)
position_embeddings = self.pos_conv_embed(hidden_states)
pooled_hidden_states = self.pool(hidden_states)
min_length = min(position_embeddings.size(-1), pooled_hidden_states.size(-1))
hidden_states = pooled_hidden_states[..., :min_length] + position_embeddings[..., :min_length]
hidden_states = hidden_states.transpose(1, 2)
encoder_outputs = self.encoder(hidden_states, attention_mask, output_hidden_states, output_attentions)
hidden_states = self.upsample(encoder_outputs.last_hidden_state)
if hidden_states.shape[1] < n_input_timesteps:
hidden_states = nn.functional.pad(hidden_states, (0, 0, 0, n_input_timesteps - hidden_states.shape[1]))
if not return_dict:
return tuple(
v for v in [hidden_states, encoder_outputs.hidden_states, encoder_outputs.attentions] if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class SEWDPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SEWDConfig
base_model_prefix = "sew-d"
main_input_name = "input_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, SEWDPositionalConvEmbedding):
nn.init.normal_(
module.conv.weight,
mean=0,
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
)
nn.init.constant_(module.conv.bias, 0)
elif isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
if is_deepspeed_zero3_enabled():
import deepspeed
if hasattr(module, "weight_v") and hasattr(module, "weight_g"):
with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0):
nn.init.kaiming_normal_(module.weight.data)
else:
with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0):
nn.init.kaiming_normal_(module.weight.data)
else:
nn.init.kaiming_normal_(module.weight.data)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None:
module.bias.data.zero_()
def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
return input_lengths
def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor):
output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
batch_size = attention_mask.shape[0]
attention_mask = torch.zeros(
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values before the output lengths idxs are attended to
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
return attention_mask
SEWD_START_DOCSTRING = r"""
SEW-D was proposed in [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech
Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger,
Yoav Artzi.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving etc.).
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`SEWDConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SEWD_INPUTS_DOCSTRING = r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare SEW-D Model transformer outputting raw hidden-states without any specific head on top.",
SEWD_START_DOCSTRING,
)
# Copied from transformers.models.sew.modeling_sew.SEWModel with SEW->SEWD, layer_norm_eps->feature_layer_norm_eps
class SEWDModel(SEWDPreTrainedModel):
def __init__(self, config: SEWDConfig):
super().__init__(config)
self.config = config
self.feature_extractor = SEWDFeatureEncoder(config)
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.feature_layer_norm_eps)
self.project_features = config.conv_dim[-1] != config.hidden_size
if self.project_features:
self.feature_projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
self.feature_dropout = nn.Dropout(config.feat_proj_dropout)
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
self.encoder = SEWDEncoder(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
def _mask_hidden_states(
self,
hidden_states: torch.FloatTensor,
mask_time_indices: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return hidden_states
# generate indices & apply SpecAugment along time axis
batch_size, sequence_length, hidden_size = hidden_states.size()
if mask_time_indices is not None:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
elif self.config.mask_time_prob > 0 and self.training:
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks,
)
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks,
)
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
hidden_states[mask_feature_indices] = 0
return hidden_states
@add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose(1, 2)
extract_features = self.layer_norm(extract_features)
if self.project_features:
extract_features = self.feature_projection(extract_features)
hidden_states = self.feature_dropout(extract_features)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if not return_dict:
return (hidden_states,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""SEW-D Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
SEWD_START_DOCSTRING,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->SEWD, wav2vec2->sew_d, WAV_2_VEC_2->SEWD
class SEWDForCTC(SEWDPreTrainedModel):
def __init__(self, config, target_lang: Optional[str] = None):
super().__init__(config)
self.sew_d = SEWDModel(config)
self.dropout = nn.Dropout(config.final_dropout)
self.target_lang = target_lang
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that "
"does not define the vocabulary size of the language model head. Please "
"instantiate the model as follows: `SEWDForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
"or define `vocab_size` of your model's configuration."
)
output_hidden_size = (
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
)
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def tie_weights(self):
"""
This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
passing `target_lang=...` to `from_pretrained(...)`.
This method is **not** supposed to be called by the user and is prone to be changed in the future.
"""
# Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
# correctly load adapter layers for SEWD so that we do not have to introduce a new API to
# [`PreTrainedModel`]. While slightly hacky, SEWD never has to tie input and output embeddings, so that it is
# ok to repurpose this function here.
target_lang = self.target_lang
if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
logger.info("By default `target_lang` is set to 'eng'.")
elif target_lang is not None:
self.load_adapter(target_lang, force_load=True)
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.sew_d.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.sew_d.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_CTC_EXPECTED_OUTPUT,
expected_loss=_CTC_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
config.vocab_size - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.sew_d(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if labels.max() >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
# retrieve loss input_lengths from attention_mask
attention_mask = (
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
)
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = nn.functional.ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
blank=self.config.pad_token_id,
reduction=self.config.ctc_loss_reduction,
zero_infinity=self.config.ctc_zero_infinity,
)
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"""
SEWD Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB
Keyword Spotting.
""",
SEWD_START_DOCSTRING,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification with Wav2Vec2->SEWD, wav2vec2->sew_d, WAV_2_VEC_2->SEWD
class SEWDForSequenceClassification(SEWDPreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Sequence classification does not support the use of SEWD adapters (config.add_adapter=True)"
)
self.sew_d = SEWDModel(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.sew_d.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.sew_d.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_SEQ_CLASS_CHECKPOINT,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.sew_d(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
if attention_mask is None:
pooled_output = hidden_states.mean(dim=1)
else:
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
hidden_states[~padding_mask] = 0.0
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/sew_d/modeling_sew_d.py/0 | {
"file_path": "transformers/src/transformers/models/sew_d/modeling_sew_d.py",
"repo_id": "transformers",
"token_count": 32314
} | 127 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
from torch import nn
from transformers import Speech2TextConfig, Speech2TextForConditionalGeneration
def remove_ignore_keys_(state_dict):
ignore_keys = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(k, None)
def rename_keys(s_dict):
keys = list(s_dict.keys())
for key in keys:
if "transformer_layers" in key:
s_dict[key.replace("transformer_layers", "layers")] = s_dict.pop(key)
elif "subsample" in key:
s_dict[key.replace("subsample", "conv")] = s_dict.pop(key)
def make_linear_from_emb(emb):
vocab_size, emb_size = emb.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = emb.weight.data
return lin_layer
def convert_fairseq_s2t_checkpoint_to_tfms(checkpoint_path, pytorch_dump_folder_path):
m2m_100 = torch.load(checkpoint_path, map_location="cpu")
args = m2m_100["args"]
state_dict = m2m_100["model"]
lm_head_weights = state_dict["decoder.output_projection.weight"]
remove_ignore_keys_(state_dict)
rename_keys(state_dict)
vocab_size = state_dict["decoder.embed_tokens.weight"].shape[0]
tie_embeds = args.share_decoder_input_output_embed
conv_kernel_sizes = [int(i) for i in args.conv_kernel_sizes.split(",")]
config = Speech2TextConfig(
vocab_size=vocab_size,
max_source_positions=args.max_source_positions,
max_target_positions=args.max_target_positions,
encoder_layers=args.encoder_layers,
decoder_layers=args.decoder_layers,
encoder_attention_heads=args.encoder_attention_heads,
decoder_attention_heads=args.decoder_attention_heads,
encoder_ffn_dim=args.encoder_ffn_embed_dim,
decoder_ffn_dim=args.decoder_ffn_embed_dim,
d_model=args.encoder_embed_dim,
dropout=args.dropout,
attention_dropout=args.attention_dropout,
activation_dropout=args.activation_dropout,
activation_function="relu",
num_conv_layers=len(conv_kernel_sizes),
conv_channels=args.conv_channels,
conv_kernel_sizes=conv_kernel_sizes,
input_feat_per_channel=args.input_feat_per_channel,
input_channels=args.input_channels,
tie_word_embeddings=tie_embeds,
num_beams=5,
max_length=200,
use_cache=True,
decoder_start_token_id=2,
early_stopping=True,
)
model = Speech2TextForConditionalGeneration(config)
missing, unexpected = model.model.load_state_dict(state_dict, strict=False)
if len(missing) > 0 and not set(missing) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
"Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"
f" but all the following weights are missing {missing}"
)
if tie_embeds:
model.lm_head = make_linear_from_emb(model.model.decoder.embed_tokens)
else:
model.lm_head.weight.data = lm_head_weights
model.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.")
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
args = parser.parse_args()
convert_fairseq_s2t_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| transformers/src/transformers/models/speech_to_text/convert_s2t_fairseq_to_tfms.py/0 | {
"file_path": "transformers/src/transformers/models/speech_to_text/convert_s2t_fairseq_to_tfms.py",
"repo_id": "transformers",
"token_count": 1824
} | 128 |
# coding=utf-8
# Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch SpeechT5 model."""
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, L1Loss
from ...activations import ACT2FN
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqSpectrogramOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_speecht5 import SpeechT5Config, SpeechT5HifiGanConfig
logger = logging.get_logger(__name__)
_HIDDEN_STATES_START_POSITION = 1
# General docstring
_CONFIG_FOR_DOC = "SpeechT5Config"
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/speecht5_asr",
"microsoft/speecht5_tts",
"microsoft/speecht5_vc",
# See all SpeechT5 models at https://huggingface.co/models?filter=speecht5
]
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def shift_spectrograms_right(input_values: torch.Tensor, reduction_factor: int = 1):
"""
Shift input spectrograms one timestep to the right. Also applies the reduction factor to the sequence length.
"""
# thin out frames for reduction factor
if reduction_factor > 1:
input_values = input_values[:, reduction_factor - 1 :: reduction_factor]
shifted_input_values = input_values.new_zeros(input_values.shape)
shifted_input_values[:, 1:] = input_values[:, :-1].clone()
# replace possible -100 values in labels by zeros
shifted_input_values.masked_fill_(shifted_input_values == -100.0, 0.0)
return shifted_input_values
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
attention_mask: Optional[torch.LongTensor] = None,
min_masks: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.
Args:
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
the first element is the batch size and the second element is the length of the axis to span.
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
independently generated mask spans of length `mask_length` is computed by
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
actual percentage will be smaller.
mask_length: size of the mask
min_masks: minimum number of masked spans
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
each batch dimension.
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
f" and `sequence_length`: {sequence_length}`"
)
# epsilon is used for probabilistic rounding
epsilon = np.random.rand(1).item()
def compute_num_masked_span(input_length):
"""Given input length, compute how many spans should be masked"""
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
num_masked_span = max(num_masked_span, min_masks)
# make sure num masked span <= sequence_length
if num_masked_span * mask_length > sequence_length:
num_masked_span = sequence_length // mask_length
# make sure num_masked span is also <= input_length - (mask_length - 1)
if input_length - (mask_length - 1) < num_masked_span:
num_masked_span = max(input_length - (mask_length - 1), 0)
return num_masked_span
# compute number of masked spans in batch
input_lengths = (
attention_mask.sum(-1).detach().tolist()
if attention_mask is not None
else [sequence_length for _ in range(batch_size)]
)
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
spec_aug_mask_idxs = []
max_num_masked_span = compute_num_masked_span(sequence_length)
if max_num_masked_span == 0:
return spec_aug_mask
for input_length in input_lengths:
# compute num of masked spans for this input
num_masked_span = compute_num_masked_span(input_length)
# get random indices to mask
spec_aug_mask_idx = np.random.choice(
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
)
# pick first sampled index that will serve as a dummy index to pad vector
# to ensure same dimension for all batches due to probabilistic rounding
# Picking first sample just pads those vectors twice.
if len(spec_aug_mask_idx) == 0:
# this case can only happen if `input_length` is strictly smaller then
# `sequence_length` in which case the last token has to be a padding
# token which we can use as a dummy mask id
dummy_mask_idx = sequence_length - 1
else:
dummy_mask_idx = spec_aug_mask_idx[0]
spec_aug_mask_idx = np.concatenate(
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
)
spec_aug_mask_idxs.append(spec_aug_mask_idx)
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
# expand masked indices to masked spans
spec_aug_mask_idxs = np.broadcast_to(
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
)
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
# add offset to the starting indexes so that indexes now create a span
offsets = np.arange(mask_length)[None, None, :]
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
batch_size, max_num_masked_span * mask_length
)
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# ensure that we cannot have indices larger than sequence_length
if spec_aug_mask_idxs.max() > sequence_length - 1:
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
# scatter indices to mask
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
return spec_aug_mask
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SpeechT5
class SpeechT5NoLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SpeechT5
class SpeechT5LayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SpeechT5
class SpeechT5GroupNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextSinusoidalPositionalEmbedding with Speech2Text->SpeechT5
class SpeechT5SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__()
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.weights = nn.Parameter(emb_weights)
self.weights.requires_grad = False
self.weights.detach_()
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the
description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
bsz, seq_len = input_ids.size()
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
input_ids.device
)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach()
def create_position_ids_from_input_ids(
self, input_ids: torch.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0
):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
symbols are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->SpeechT5
class SpeechT5PositionalConvEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
padding=config.num_conv_pos_embeddings // 2,
groups=config.num_conv_pos_embedding_groups,
)
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
self.conv = weight_norm(self.conv, name="weight", dim=2)
deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
else:
self.conv = weight_norm(self.conv, name="weight", dim=2)
self.padding = SpeechT5SamePadLayer(config.num_conv_pos_embeddings)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
class SpeechT5ScaledPositionalEncoding(nn.Module):
"""
Scaled positional encoding, see §3.2 in https://arxiv.org/abs/1809.08895
"""
def __init__(self, dropout, dim, max_len=5000):
pe = torch.zeros(max_len, dim)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.int64).float() * -(math.log(10000.0) / dim)))
pe[:, 0::2] = torch.sin(position.float() * div_term)
pe[:, 1::2] = torch.cos(position.float() * div_term)
pe = pe.unsqueeze(0)
super().__init__()
self.register_buffer("pe", pe, persistent=False)
self.dropout = nn.Dropout(p=dropout)
self.dim = dim
self.alpha = torch.nn.Parameter(torch.tensor(1.0))
def forward(self, emb):
emb = emb + self.alpha * self.pe[:, : emb.size(1)]
emb = self.dropout(emb)
return emb
class SpeechT5RelativePositionalEncoding(torch.nn.Module):
def __init__(self, dim, max_length=1000):
super().__init__()
self.dim = dim
self.max_length = max_length
self.pe_k = torch.nn.Embedding(2 * max_length, dim)
def forward(self, hidden_states):
seq_len = hidden_states.shape[1]
pos_seq = torch.arange(0, seq_len).long().to(hidden_states.device)
pos_seq = pos_seq[:, None] - pos_seq[None, :]
pos_seq[pos_seq < -self.max_length] = -self.max_length
pos_seq[pos_seq >= self.max_length] = self.max_length - 1
pos_seq = pos_seq + self.max_length
return self.pe_k(pos_seq)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SpeechT5
class SpeechT5SamePadLayer(nn.Module):
def __init__(self, num_conv_pos_embeddings):
super().__init__()
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def forward(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SpeechT5
class SpeechT5FeatureEncoder(nn.Module):
"""Construct the features from raw audio waveform"""
def __init__(self, config):
super().__init__()
if config.feat_extract_norm == "group":
conv_layers = [SpeechT5GroupNormConvLayer(config, layer_id=0)] + [
SpeechT5NoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1)
]
elif config.feat_extract_norm == "layer":
conv_layers = [
SpeechT5LayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)
]
else:
raise ValueError(
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
)
self.conv_layers = nn.ModuleList(conv_layers)
self.gradient_checkpointing = False
self._requires_grad = True
def _freeze_parameters(self):
for param in self.parameters():
param.requires_grad = False
self._requires_grad = False
def forward(self, input_values):
hidden_states = input_values[:, None]
# make sure hidden_states require grad for gradient_checkpointing
if self._requires_grad and self.training:
hidden_states.requires_grad = True
for conv_layer in self.conv_layers:
if self._requires_grad and self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
conv_layer.__call__,
hidden_states,
)
else:
hidden_states = conv_layer(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->SpeechT5
class SpeechT5FeatureProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
self.dropout = nn.Dropout(config.feat_proj_dropout)
def forward(self, hidden_states):
# non-projected hidden states are needed for quantization
norm_hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states, norm_hidden_states
class SpeechT5SpeechEncoderPrenet(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.feature_encoder = SpeechT5FeatureEncoder(config)
self.feature_projection = SpeechT5FeatureProjection(config)
# model only needs masking vector if mask prob is > 0.0
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
self.pos_conv_embed = SpeechT5PositionalConvEmbedding(config)
self.pos_sinusoidal_embed = SpeechT5SinusoidalPositionalEmbedding(
config.max_speech_positions + config.pad_token_id + 1,
config.hidden_size,
config.pad_token_id,
)
def freeze_feature_encoder(self):
self.feature_encoder._freeze_parameters()
def forward(
self,
input_values: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
):
extract_features = self.feature_encoder(input_values)
extract_features = extract_features.transpose(1, 2)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
extract_features.shape[1],
attention_mask,
)
hidden_states, extract_features = self.feature_projection(extract_features)
hidden_states = self._mask_hidden_states(
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
)
positional_conv_embedding = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + positional_conv_embedding
if attention_mask is not None:
padding_mask = attention_mask.ne(1).long()
else:
padding_mask = torch.zeros(hidden_states.shape[:2], dtype=torch.long, device=hidden_states.device)
positional_sinusoidal_embeddings = self.pos_sinusoidal_embed(padding_mask)
hidden_states = hidden_states + positional_sinusoidal_embeddings
return hidden_states, attention_mask
# Copied from transformers.models.unispeech.modeling_unispeech.UniSpeechPreTrainedModel._get_feature_vector_attention_mask
def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor):
# Effectively attention_mask.sum(-1), but not inplace to be able to run
# on inference mode.
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long)
batch_size = attention_mask.shape[0]
attention_mask = torch.zeros(
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values before the output lengths idxs are attended to
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
return attention_mask
# Copied from transformers.models.unispeech.modeling_unispeech.UniSpeechPreTrainedModel._get_feat_extract_output_lengths
def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
return input_lengths
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
def _mask_hidden_states(
self,
hidden_states: torch.FloatTensor,
mask_time_indices: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return hidden_states
# generate indices & apply SpecAugment along time axis
batch_size, sequence_length, hidden_size = hidden_states.size()
if mask_time_indices is not None:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
elif self.config.mask_time_prob > 0 and self.training:
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks,
)
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks,
)
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
hidden_states[mask_feature_indices] = 0
return hidden_states
class SpeechT5SpeechDecoderPrenet(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layers = nn.ModuleList(
[
nn.Linear(
config.num_mel_bins if i == 0 else config.speech_decoder_prenet_units,
config.speech_decoder_prenet_units,
)
for i in range(config.speech_decoder_prenet_layers)
]
)
self.final_layer = nn.Linear(config.speech_decoder_prenet_units, config.hidden_size)
self.encode_positions = SpeechT5ScaledPositionalEncoding(
config.positional_dropout,
config.hidden_size,
config.max_speech_positions,
)
self.speaker_embeds_layer = nn.Linear(config.speaker_embedding_dim + config.hidden_size, config.hidden_size)
def _consistent_dropout(self, inputs_embeds, p):
mask = torch.bernoulli(inputs_embeds[0], p=p)
all_masks = mask.unsqueeze(0).repeat(inputs_embeds.size(0), 1, 1)
return torch.where(all_masks == 1, inputs_embeds, 0) * 1 / (1 - p)
def forward(
self,
input_values: torch.Tensor,
speaker_embeddings: Optional[torch.Tensor] = None,
):
# Dropout is always applied, even when evaluating. See §2.2 in https://arxiv.org/abs/1712.05884.
inputs_embeds = input_values
for layer in self.layers:
inputs_embeds = nn.functional.relu(layer(inputs_embeds))
inputs_embeds = self._consistent_dropout(inputs_embeds, self.config.speech_decoder_prenet_dropout)
inputs_embeds = self.final_layer(inputs_embeds)
inputs_embeds = self.encode_positions(inputs_embeds)
if speaker_embeddings is not None:
speaker_embeddings = nn.functional.normalize(speaker_embeddings)
speaker_embeddings = speaker_embeddings.unsqueeze(1).expand(-1, inputs_embeds.size(1), -1)
inputs_embeds = torch.cat([inputs_embeds, speaker_embeddings], dim=-1)
inputs_embeds = nn.functional.relu(self.speaker_embeds_layer(inputs_embeds))
return inputs_embeds
class SpeechT5BatchNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
if layer_id == 0:
in_conv_dim = config.num_mel_bins
else:
in_conv_dim = config.speech_decoder_postnet_units
if layer_id == config.speech_decoder_postnet_layers - 1:
out_conv_dim = config.num_mel_bins
else:
out_conv_dim = config.speech_decoder_postnet_units
self.conv = nn.Conv1d(
in_conv_dim,
out_conv_dim,
kernel_size=config.speech_decoder_postnet_kernel,
stride=1,
padding=(config.speech_decoder_postnet_kernel - 1) // 2,
bias=False,
)
self.batch_norm = nn.BatchNorm1d(out_conv_dim)
if layer_id < config.speech_decoder_postnet_layers - 1:
self.activation = nn.Tanh()
else:
self.activation = None
self.dropout = nn.Dropout(config.speech_decoder_postnet_dropout)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.batch_norm(hidden_states)
if self.activation is not None:
hidden_states = self.activation(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class SpeechT5SpeechDecoderPostnet(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.feat_out = nn.Linear(config.hidden_size, config.num_mel_bins * config.reduction_factor)
self.prob_out = nn.Linear(config.hidden_size, config.reduction_factor)
self.layers = nn.ModuleList(
[SpeechT5BatchNormConvLayer(config, i) for i in range(config.speech_decoder_postnet_layers)]
)
def forward(self, hidden_states: torch.Tensor):
outputs_before_postnet = self.feat_out(hidden_states).view(hidden_states.size(0), -1, self.config.num_mel_bins)
outputs_after_postnet = self.postnet(outputs_before_postnet)
logits = self.prob_out(hidden_states).view(hidden_states.size(0), -1)
return outputs_before_postnet, outputs_after_postnet, logits
def postnet(self, hidden_states: torch.Tensor):
layer_output = hidden_states.transpose(1, 2)
for layer in self.layers:
layer_output = layer(layer_output)
return hidden_states + layer_output.transpose(1, 2)
class SpeechT5TextEncoderPrenet(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.encode_positions = SpeechT5ScaledPositionalEncoding(
config.positional_dropout,
config.hidden_size,
config.max_text_positions,
)
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(self, input_ids: torch.Tensor):
inputs_embeds = self.embed_tokens(input_ids)
inputs_embeds = self.encode_positions(inputs_embeds)
return inputs_embeds
class SpeechT5TextDecoderPrenet(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.dropout = nn.Dropout(config.positional_dropout)
self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.embed_positions = SpeechT5SinusoidalPositionalEmbedding(
config.max_text_positions + config.pad_token_id + 1,
config.hidden_size,
config.pad_token_id,
)
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
):
if input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
else:
raise ValueError("You have to specify `decoder_input_ids`")
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
positions = self.embed_positions(input_ids, past_key_values_length)
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
inputs_embeds += positions
inputs_embeds = self.dropout(inputs_embeds)
return inputs_embeds, attention_mask
class SpeechT5TextDecoderPostnet(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
def forward(self, hidden_states: torch.Tensor):
return self.lm_head(hidden_states)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
class SpeechT5Attention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper with relative position bias (see
https://aclanthology.org/N18-2074.pdf)
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
position_bias: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# relative attention bias
if position_bias is not None:
reshape_q = query_states.contiguous().view(bsz * self.num_heads, -1, self.head_dim).transpose(0, 1)
rel_pos_bias = torch.matmul(reshape_q, position_bias.transpose(-2, -1))
rel_pos_bias = rel_pos_bias.transpose(0, 1).view(
bsz * self.num_heads, position_bias.size(0), position_bias.size(1)
)
attn_weights += rel_pos_bias
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class SpeechT5FeedForward(nn.Module):
def __init__(self, config, intermediate_size):
super().__init__()
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
self.intermediate_dense = nn.Linear(config.hidden_size, intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.output_dense = nn.Linear(intermediate_size, config.hidden_size)
self.output_dropout = nn.Dropout(config.hidden_dropout)
def forward(self, hidden_states):
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states)
return hidden_states
class SpeechT5EncoderLayer(nn.Module):
def __init__(self, config: SpeechT5Config):
super().__init__()
self.attention = SpeechT5Attention(
embed_dim=config.hidden_size,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = SpeechT5FeedForward(config, config.encoder_ffn_dim)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
position_bias: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, hidden_size)`
attention_mask (`torch.FloatTensor`):
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(config.encoder_attention_heads,)`.
position_bias (`torch.FloatTensor`):
relative position embeddings of size `(seq_len, seq_len, hidden_size // encoder_attention_heads)`
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights, _ = self.attention(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
position_bias=position_bias,
output_attentions=output_attentions,
)
hidden_states = self.dropout(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states + self.feed_forward(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class SpeechT5DecoderLayer(nn.Module):
def __init__(self, config: SpeechT5Config):
super().__init__()
self.self_attn = SpeechT5Attention(
embed_dim=config.hidden_size,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.encoder_attn = SpeechT5Attention(
config.hidden_size,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.encoder_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = SpeechT5FeedForward(config, config.decoder_ffn_dim)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, hidden_size)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, hidden_size)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = self.dropout(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = self.dropout(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
hidden_states = hidden_states + self.feed_forward(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class SpeechT5PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SpeechT5Config
base_model_prefix = "speecht5"
main_input_name = "input_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, SpeechT5PositionalConvEmbedding):
nn.init.normal_(
module.conv.weight,
mean=0,
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
)
nn.init.constant_(module.conv.bias, 0)
elif isinstance(module, SpeechT5FeatureProjection):
k = math.sqrt(1 / module.projection.in_features)
nn.init.uniform_(module.projection.weight, a=-k, b=k)
nn.init.uniform_(module.projection.bias, a=-k, b=k)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class SpeechT5Encoder(SpeechT5PreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* layers. Each layer is a [`SpeechT5EncoderLayer`].
"""
def __init__(self, config: SpeechT5Config):
super().__init__(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layerdrop = config.encoder_layerdrop
self.layers = nn.ModuleList([SpeechT5EncoderLayer(config) for _ in range(config.encoder_layers)])
self.embed_positions = SpeechT5RelativePositionalEncoding(
config.hidden_size // config.encoder_attention_heads, config.encoder_max_relative_position
)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`):
Features extracted from the speech or text input by the encoder prenet.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
`[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
position_bias = self.embed_positions(hidden_states)
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
skip_the_layer = False
if self.training:
dropout_probability = torch.rand([])
skip_the_layer = dropout_probability < self.layerdrop
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
position_bias,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class SpeechT5EncoderWithSpeechPrenet(SpeechT5PreTrainedModel):
"""
Wrapper around SpeechT5Encoder that applies SpeechT5SpeechEncoderPrenet to convert the audio waveform data to
hidden features.
"""
def __init__(self, config: SpeechT5Config):
super().__init__(config)
self.prenet = SpeechT5SpeechEncoderPrenet(config)
self.wrapped_encoder = SpeechT5Encoder(config)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_values: torch.FloatTensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
hidden_states, attention_mask = self.prenet(input_values, attention_mask)
outputs = self.wrapped_encoder(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return outputs
class SpeechT5EncoderWithTextPrenet(SpeechT5PreTrainedModel):
"""
Wrapper around SpeechT5Encoder that applies SpeechT5TextEncoderPrenet to convert the input_ids to hidden features.
"""
def __init__(self, config: SpeechT5Config):
super().__init__(config)
self.prenet = SpeechT5TextEncoderPrenet(config)
self.wrapped_encoder = SpeechT5Encoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.prenet.get_input_embeddings()
def set_input_embeddings(self, value):
self.prenet.set_input_embeddings(value)
def forward(
self,
input_values: torch.FloatTensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
hidden_states = self.prenet(input_values)
outputs = self.wrapped_encoder(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return outputs
class SpeechT5EncoderWithoutPrenet(SpeechT5PreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when used in combination with
[`SpeechT5Model`].
"""
def __init__(self, config: SpeechT5Config):
super().__init__(config)
self.wrapped_encoder = SpeechT5Encoder(config)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_values: torch.FloatTensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
return self.wrapped_encoder(
hidden_states=input_values,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class SpeechT5Decoder(SpeechT5PreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SpeechT5DecoderLayer`]
"""
def __init__(self, config: SpeechT5Config):
super().__init__(config)
self.layerdrop = config.decoder_layerdrop
self.layers = nn.ModuleList([SpeechT5DecoderLayer(config) for _ in range(config.decoder_layers)])
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`):
Features extracted from the speech or text input by the decoder prenet.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_shape = hidden_states.size()[:-1]
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, hidden_states, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, hidden_states.dtype, tgt_len=input_shape[-1]
)
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
skip_the_layer = False
if self.training:
dropout_probability = torch.rand([])
skip_the_layer = dropout_probability < self.layerdrop
if skip_the_layer and not deepspeed_zero3_is_enabled:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class SpeechT5DecoderWithSpeechPrenet(SpeechT5PreTrainedModel):
"""
Wrapper around SpeechT5Decoder that applies SpeechT5SpeechDecoderPrenet to convert log-mel filterbanks to hidden
features.
"""
def __init__(self, config: SpeechT5Config):
super().__init__(config)
self.prenet = SpeechT5SpeechDecoderPrenet(config)
self.wrapped_decoder = SpeechT5Decoder(config)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
speaker_embeddings: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
decoder_hidden_states = self.prenet(input_values, speaker_embeddings)
outputs = self.wrapped_decoder(
hidden_states=decoder_hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return outputs
class SpeechT5DecoderWithTextPrenet(SpeechT5PreTrainedModel):
"""
Wrapper around SpeechT5Decoder that applies SpeechT5TextDecoderPrenet to convert input tokens to hidden features.
"""
def __init__(self, config: SpeechT5Config):
super().__init__(config)
self.prenet = SpeechT5TextDecoderPrenet(config)
self.wrapped_decoder = SpeechT5Decoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.prenet.get_input_embeddings()
def set_input_embeddings(self, value):
self.prenet.set_input_embeddings(value)
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
decoder_hidden_states, attention_mask = self.prenet(input_values, attention_mask, past_key_values)
outputs = self.wrapped_decoder(
hidden_states=decoder_hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return outputs
class SpeechT5DecoderWithoutPrenet(SpeechT5PreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when used in combination with
[`SpeechT5Model`].
"""
def __init__(self, config: SpeechT5Config):
super().__init__(config)
self.wrapped_decoder = SpeechT5Decoder(config)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
outputs = self.wrapped_decoder(
hidden_states=input_values,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return outputs
class SpeechT5GuidedMultiheadAttentionLoss(nn.Module):
"""
Guided attention loss from the paper [Efficiently Trainable Text-to-Speech System Based on Deep Convolutional
Networks with Guided Attention](https://arxiv.org/abs/1710.08969), adapted for multi-head attention.
"""
def __init__(self, config: SpeechT5Config):
super().__init__()
self.sigma = config.guided_attention_loss_sigma
self.scale = config.guided_attention_loss_scale
def forward(
self, attentions: torch.FloatTensor, input_masks: torch.BoolTensor, output_masks: torch.BoolTensor
) -> torch.Tensor:
"""
Compute the attention loss.
Args:
attentions (`torch.FloatTensor` of shape `(batch_size, layers * heads, output_sequence_length, input_sequence_length)`):
Batch of multi-head attention weights
input_masks (`torch.BoolTensor` of shape `(batch_size, input_sequence_length)`):
Input attention mask as booleans.
output_masks (`torch.BoolTensor` of shape `(batch_size, output_sequence_length)`):
Target attention mask as booleans.
Returns:
`torch.Tensor` with the loss value
"""
guided_attn_masks = self._make_guided_attention_masks(input_masks, output_masks, attentions.device)
masks = output_masks.unsqueeze(-1) & input_masks.unsqueeze(-2)
masks = masks.to(attentions.device).unsqueeze(1)
losses = guided_attn_masks * attentions
loss = torch.mean(losses.masked_select(masks))
return self.scale * loss
def _make_guided_attention_masks(self, input_masks, output_masks, device):
input_lengths = input_masks.sum(-1)
output_lengths = output_masks.sum(-1)
guided_attn_masks = torch.zeros((len(input_masks), output_masks.shape[1], input_masks.shape[1]), device=device)
for idx, (ilen, olen) in enumerate(zip(input_lengths, output_lengths)):
guided_attn_masks[idx, :olen, :ilen] = self._make_guided_attention_mask(ilen, olen, self.sigma, device)
return guided_attn_masks.unsqueeze(1)
@staticmethod
def _make_guided_attention_mask(input_length, output_length, sigma, device):
grid_y, grid_x = torch.meshgrid(
torch.arange(input_length, device=device),
torch.arange(output_length, device=device),
indexing="xy",
)
grid_x = grid_x.float() / output_length
grid_y = grid_y.float() / input_length
return 1.0 - torch.exp(-((grid_y - grid_x) ** 2) / (2 * (sigma**2)))
class SpeechT5SpectrogramLoss(nn.Module):
"""
Loss computation used by SpeechT5ForTextToSpeech.
"""
def __init__(self, config: SpeechT5Config):
super().__init__()
self.use_guided_attention_loss = config.use_guided_attention_loss
self.guided_attention_loss_num_heads = config.guided_attention_loss_num_heads
self.reduction_factor = config.reduction_factor
self.l1_criterion = L1Loss()
self.bce_criterion = BCEWithLogitsLoss(pos_weight=torch.tensor(5.0))
if self.use_guided_attention_loss:
self.attn_criterion = SpeechT5GuidedMultiheadAttentionLoss(config)
def forward(
self,
attention_mask: torch.LongTensor,
outputs_before_postnet: torch.FloatTensor,
outputs_after_postnet: torch.FloatTensor,
logits: torch.FloatTensor,
labels: torch.FloatTensor,
cross_attentions: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
padding_mask = labels != -100.0
# mask out the padded portions
labels = labels.masked_select(padding_mask)
outputs_before_postnet = outputs_before_postnet.masked_select(padding_mask)
outputs_after_postnet = outputs_after_postnet.masked_select(padding_mask)
# spectrogram loss
l1_loss = self.l1_criterion(outputs_after_postnet, labels) + self.l1_criterion(outputs_before_postnet, labels)
# construct stop labels from the padding mask
masks = padding_mask[:, :, 0]
stop_labels = torch.cat([~masks * 1.0, torch.ones(masks.size(0), 1).to(masks.device)], dim=1)
stop_labels = stop_labels[:, 1:].masked_select(masks)
logits = logits.masked_select(masks)
# stop token loss
bce_loss = self.bce_criterion(logits, stop_labels)
# combined loss
loss = l1_loss + bce_loss
# guided attention loss
if self.use_guided_attention_loss:
attn = torch.cat([x[:, : self.guided_attention_loss_num_heads] for x in cross_attentions], dim=1)
input_masks = attention_mask == 1
output_masks = padding_mask[:, :, 0]
if self.reduction_factor > 1:
output_masks = output_masks[:, self.reduction_factor - 1 :: self.reduction_factor]
attn_loss = self.attn_criterion(attn, input_masks, output_masks)
loss += attn_loss
return loss
SPEECHT5_BASE_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`SpeechT5Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
encoder ([`SpeechT5EncoderWithSpeechPrenet`] or [`SpeechT5EncoderWithTextPrenet`] or `None`):
The Transformer encoder module that applies the appropiate speech or text encoder prenet. If `None`,
[`SpeechT5EncoderWithoutPrenet`] will be used and the `input_values` are assumed to be hidden states.
decoder ([`SpeechT5DecoderWithSpeechPrenet`] or [`SpeechT5DecoderWithTextPrenet`] or `None`):
The Transformer decoder module that applies the appropiate speech or text decoder prenet. If `None`,
[`SpeechT5DecoderWithoutPrenet`] will be used and the `decoder_input_values` are assumed to be hidden
states.
"""
SPEECHT5_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`SpeechT5Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SPEECHT5_INPUTS_DOCSTRING = r"""
Args:
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
<Tip warning={true}>
`attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==
True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should
**not** be passed to avoid degraded performance when doing batched inference. For such models
`input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these
models also yield slightly different results depending on whether `input_values` is padded or not.
</Tip>
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_values`. Causal mask will
also be used by default.
If you want to change padding behavior, you should read [`SpeechT5Decoder._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
head_mask (`torch.FloatTensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_values` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_values` of shape `(batch_size, sequence_length)`. decoder_inputs_embeds (`torch.FloatTensor`
of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
`decoder_input_values` you can choose to directly pass an embedded representation. If `past_key_values` is
used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is
useful if you want more control over how to convert `decoder_input_values` indices into associated vectors
than the model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare SpeechT5 Encoder-Decoder Model outputting raw hidden-states without any specific pre- or post-nets.",
SPEECHT5_BASE_START_DOCSTRING,
)
class SpeechT5Model(SpeechT5PreTrainedModel):
def __init__(
self,
config: SpeechT5Config,
encoder: Optional[nn.Module] = None,
decoder: Optional[nn.Module] = None,
):
super().__init__(config)
self.config = config
self.encoder = SpeechT5EncoderWithoutPrenet(config) if encoder is None else encoder
self.decoder = SpeechT5DecoderWithoutPrenet(config) if decoder is None else decoder
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
if isinstance(self.encoder, SpeechT5EncoderWithTextPrenet):
return self.encoder.get_input_embeddings()
if isinstance(self.decoder, SpeechT5DecoderWithTextPrenet):
return self.decoder.get_input_embeddings()
return None
def set_input_embeddings(self, value):
if isinstance(self.encoder, SpeechT5EncoderWithTextPrenet):
self.encoder.set_input_embeddings(value)
if isinstance(self.decoder, SpeechT5DecoderWithTextPrenet):
self.decoder.set_input_embeddings(value)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
if isinstance(self.encoder, SpeechT5EncoderWithSpeechPrenet):
self.encoder.prenet.freeze_feature_encoder()
@add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_values: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
speaker_embeddings: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
input_values (`torch.Tensor` of shape `(batch_size, sequence_length)`):
Depending on which encoder is being used, the `input_values` are either: float values of the input raw
speech waveform, or indices of input sequence tokens in the vocabulary, or hidden states.
decoder_input_values (`torch.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Depending on which decoder is being used, the `decoder_input_values` are either: float values of log-mel
filterbank features extracted from the raw speech waveform, or indices of decoder input sequence tokens in
the vocabulary, or hidden states.
speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*):
Tensor containing the speaker embeddings.
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_values=input_values,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# downsample encoder attention mask (only for encoders with speech input)
if attention_mask is not None and isinstance(self.encoder, SpeechT5EncoderWithSpeechPrenet):
encoder_attention_mask = self.encoder.prenet._get_feature_vector_attention_mask(
encoder_outputs[0].shape[1], attention_mask
)
else:
encoder_attention_mask = attention_mask
if isinstance(self.decoder, SpeechT5DecoderWithSpeechPrenet):
decoder_args = {"speaker_embeddings": speaker_embeddings}
else:
decoder_args = {}
decoder_outputs = self.decoder(
input_values=decoder_input_values,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**decoder_args,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""SpeechT5 Model with a speech encoder and a text decoder.""",
SPEECHT5_START_DOCSTRING,
)
class SpeechT5ForSpeechToText(SpeechT5PreTrainedModel):
_tied_weights_keys = ["text_decoder_postnet.lm_head.weight"]
def __init__(self, config: SpeechT5Config):
super().__init__(config)
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that does not define the"
" vocabulary size of the language model head. Please instantiate the model as follows:"
" `SpeechT5ForSpeechToText.from_pretrained(..., vocab_size=vocab_size)`. or define `vocab_size` of"
" your model's configuration."
)
speech_encoder = SpeechT5EncoderWithSpeechPrenet(config)
text_decoder = SpeechT5DecoderWithTextPrenet(config)
self.speecht5 = SpeechT5Model(config, speech_encoder, text_decoder)
self.text_decoder_postnet = SpeechT5TextDecoderPostnet(config)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.speecht5.get_encoder()
def get_decoder(self):
return self.speecht5.get_decoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.get_encoder().prenet.freeze_feature_encoder()
def get_output_embeddings(self):
return self.text_decoder_postnet.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.text_decoder_postnet.set_output_embeddings(new_embeddings)
@add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
) -> Union[Tuple, Seq2SeqLMOutput]:
r"""
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install
soundfile*). To prepare the array into `input_values`, the [`SpeechT5Processor`] should be used for padding
and conversion into a tensor of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details.
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`SpeechT5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
SpeechT5 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Label indices can be obtained using [`SpeechT5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
Returns:
Example:
```python
>>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToText
>>> from datasets import load_dataset
>>> dataset = load_dataset(
... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation"
... ) # doctest: +IGNORE_RESULT
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate
>>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_asr")
>>> model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr")
>>> # audio file is decoded on the fly
>>> inputs = processor(audio=dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
>>> predicted_ids = model.generate(**inputs, max_length=100)
>>> # transcribe speech
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
>>> transcription[0]
'mister quilter is the apostle of the middle classes and we are glad to welcome his gospel'
```
```python
>>> inputs["labels"] = processor(text_target=dataset[0]["text"], return_tensors="pt").input_ids
>>> # compute loss
>>> loss = model(**inputs).loss
>>> round(loss.item(), 2)
19.68
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.speecht5(
input_values=input_values,
attention_mask=attention_mask,
decoder_input_values=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
logits = self.text_decoder_postnet(outputs[0])
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if decoder_input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = decoder_input_ids.shape[1] - 1
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
return {
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
def _generate_speech(
model: SpeechT5PreTrainedModel,
input_values: torch.FloatTensor,
speaker_embeddings: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
threshold: float = 0.5,
minlenratio: float = 0.0,
maxlenratio: float = 20.0,
vocoder: Optional[nn.Module] = None,
output_cross_attentions: bool = False,
return_output_lengths: bool = False,
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]:
if speaker_embeddings is None:
raise ValueError(
"""`speaker_embeddings` must be specified. For example, you can use a speaker embeddings by following
the code snippet provided in this link:
https://huggingface.co/datasets/Matthijs/cmu-arctic-xvectors
"""
)
if attention_mask is None:
encoder_attention_mask = 1 - (input_values == model.config.pad_token_id).int()
else:
encoder_attention_mask = attention_mask
bsz = input_values.size(0)
encoder_out = model.speecht5.encoder(
input_values=input_values,
attention_mask=encoder_attention_mask,
return_dict=True,
)
encoder_last_hidden_state = encoder_out.last_hidden_state
# downsample encoder attention mask
if isinstance(model.speecht5.encoder, SpeechT5EncoderWithSpeechPrenet):
encoder_attention_mask = model.speecht5.encoder.prenet._get_feature_vector_attention_mask(
encoder_out[0].shape[1], encoder_attention_mask
)
maxlen = int(encoder_last_hidden_state.size(1) * maxlenratio / model.config.reduction_factor)
minlen = int(encoder_last_hidden_state.size(1) * minlenratio / model.config.reduction_factor)
# Start the output sequence with a mel spectrum that is all zeros.
output_sequence = encoder_last_hidden_state.new_zeros(bsz, 1, model.config.num_mel_bins)
spectrogram = []
cross_attentions = []
past_key_values = None
idx = 0
result_spectrogram = {}
while True:
idx += 1
# Run the decoder prenet on the entire output sequence.
decoder_hidden_states = model.speecht5.decoder.prenet(output_sequence, speaker_embeddings)
# Run the decoder layers on the last element of the prenet output.
decoder_out = model.speecht5.decoder.wrapped_decoder(
hidden_states=decoder_hidden_states[:, -1:],
attention_mask=None,
encoder_hidden_states=encoder_last_hidden_state,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=True,
output_attentions=output_cross_attentions,
return_dict=True,
)
if output_cross_attentions:
cross_attentions.append(torch.cat(decoder_out.cross_attentions, dim=0))
last_decoder_output = decoder_out.last_hidden_state.squeeze(1)
past_key_values = decoder_out.past_key_values
# Predict the new mel spectrum for this step in the sequence.
spectrum = model.speech_decoder_postnet.feat_out(last_decoder_output)
spectrum = spectrum.view(bsz, model.config.reduction_factor, model.config.num_mel_bins)
spectrogram.append(spectrum)
# Extend the output sequence with the new mel spectrum.
new_spectrogram = spectrum[:, -1, :].view(bsz, 1, model.config.num_mel_bins)
output_sequence = torch.cat((output_sequence, new_spectrogram), dim=1)
# Predict the probability that this is the stop token.
prob = torch.sigmoid(model.speech_decoder_postnet.prob_out(last_decoder_output))
if idx < minlen:
continue
else:
# If the generation loop is less than maximum length time, check the ones in the batch that have met
# the prob threshold. Otherwise, assume all have met thresholds and fill other spectrograms for the batch.
if idx < maxlen:
meet_thresholds = torch.sum(prob, dim=-1) >= threshold
meet_indexes = torch.where(meet_thresholds)[0].tolist()
else:
meet_indexes = range(len(prob))
meet_indexes = [i for i in meet_indexes if i not in result_spectrogram]
if len(meet_indexes) > 0:
spectrograms = torch.stack(spectrogram)
spectrograms = spectrograms.transpose(0, 1).flatten(1, 2)
spectrograms = model.speech_decoder_postnet.postnet(spectrograms)
for meet_index in meet_indexes:
result_spectrogram[meet_index] = spectrograms[meet_index]
if len(result_spectrogram) >= bsz:
break
spectrograms = [result_spectrogram[i] for i in range(len(result_spectrogram))]
if not return_output_lengths:
spectrogram = spectrograms[0] if bsz == 1 else torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True)
if vocoder is not None:
outputs = vocoder(spectrogram)
else:
outputs = spectrogram
if output_cross_attentions:
cross_attentions = torch.cat(cross_attentions, dim=2)
if bsz > 1:
cross_attentions = cross_attentions.view(
bsz, int(cross_attentions.size(0) / bsz), *cross_attentions.size()[-3:]
)
outputs = (outputs, cross_attentions)
else:
# batched return values should also include the spectrogram/waveform lengths
spectrogram_lengths = []
for i in range(bsz):
spectrogram_lengths.append(spectrograms[i].size(0))
if vocoder is None:
spectrograms = torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True)
outputs = (spectrograms, spectrogram_lengths)
else:
waveforms = []
spectrograms = torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True)
waveforms = vocoder(spectrograms)
waveform_lengths = [int(waveforms.size(1) / max(spectrogram_lengths)) * i for i in spectrogram_lengths]
outputs = (waveforms, waveform_lengths)
if output_cross_attentions:
cross_attentions = torch.cat(cross_attentions, dim=2)
cross_attentions = cross_attentions.view(
bsz, int(cross_attentions.size(0) / bsz), *cross_attentions.size()[-3:]
)
outputs = (*outputs, cross_attentions)
return outputs
@add_start_docstrings(
"""SpeechT5 Model with a text encoder and a speech decoder.""",
SPEECHT5_START_DOCSTRING,
)
class SpeechT5ForTextToSpeech(SpeechT5PreTrainedModel):
main_input_name = "input_ids"
def __init__(self, config: SpeechT5Config):
super().__init__(config)
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that does not define the"
" vocabulary size of the language model head. Please instantiate the model as follows:"
" `SpeechT5ForTextToSpeech.from_pretrained(..., vocab_size=vocab_size)`. or define `vocab_size` of"
" your model's configuration."
)
text_encoder = SpeechT5EncoderWithTextPrenet(config)
speech_decoder = SpeechT5DecoderWithSpeechPrenet(config)
self.speecht5 = SpeechT5Model(config, text_encoder, speech_decoder)
self.speech_decoder_postnet = SpeechT5SpeechDecoderPostnet(config)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.speecht5.get_encoder()
def get_decoder(self):
return self.speecht5.get_decoder()
@add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqSpectrogramOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_values: Optional[torch.FloatTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
speaker_embeddings: Optional[torch.FloatTensor] = None,
labels: Optional[torch.FloatTensor] = None,
stop_labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, Seq2SeqSpectrogramOutput]:
r"""
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and
[`~PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
decoder_input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`):
Float values of input mel spectrogram.
SpeechT5 uses an all-zero spectrum as the starting token for `decoder_input_values` generation. If
`past_key_values` is used, optionally only the last `decoder_input_values` have to be input (see
`past_key_values`).
speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*):
Tensor containing the speaker embeddings.
labels (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`, *optional*):
Float values of target mel spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss
computation. Spectrograms can be obtained using [`SpeechT5Processor`]. See [`SpeechT5Processor.__call__`]
for details.
Returns:
Example:
```python
>>> from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, set_seed
>>> import torch
>>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
>>> model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
>>> vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
>>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt")
>>> speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file
>>> set_seed(555) # make deterministic
>>> # generate speech
>>> speech = model.generate(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
>>> speech.shape
torch.Size([15872])
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_values is None:
decoder_input_values = shift_spectrograms_right(labels, self.config.reduction_factor)
if self.config.use_guided_attention_loss:
output_attentions = True
outputs = self.speecht5(
input_values=input_ids,
attention_mask=attention_mask,
decoder_input_values=decoder_input_values,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
use_cache=use_cache,
speaker_embeddings=speaker_embeddings,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
outputs_before_postnet, outputs_after_postnet, logits = self.speech_decoder_postnet(outputs[0])
loss = None
if labels is not None:
criterion = SpeechT5SpectrogramLoss(self.config)
loss = criterion(
attention_mask,
outputs_before_postnet,
outputs_after_postnet,
logits,
labels,
outputs.cross_attentions,
)
if not return_dict:
output = (outputs_after_postnet,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSpectrogramOutput(
loss=loss,
spectrogram=outputs_after_postnet,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@torch.no_grad()
def generate(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.LongTensor] = None,
speaker_embeddings: Optional[torch.FloatTensor] = None,
threshold: float = 0.5,
minlenratio: float = 0.0,
maxlenratio: float = 20.0,
vocoder: Optional[nn.Module] = None,
output_cross_attentions: bool = False,
return_output_lengths: bool = False,
**kwargs,
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]:
r"""
Converts a sequence of input tokens into a sequence of mel spectrograms, which are subsequently turned into a
speech waveform using a vocoder.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and
[`~PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Attention mask from the tokenizer, required for batched inference to signal to the model where to
ignore padded tokens from the input_ids.
speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*):
Tensor containing the speaker embeddings.
threshold (`float`, *optional*, defaults to 0.5):
The generated sequence ends when the predicted stop token probability exceeds this value.
minlenratio (`float`, *optional*, defaults to 0.0):
Used to calculate the minimum required length for the output sequence.
maxlenratio (`float`, *optional*, defaults to 20.0):
Used to calculate the maximum allowed length for the output sequence.
vocoder (`nn.Module`, *optional*):
The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel
spectrogram.
output_cross_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of the decoder's cross-attention layers.
return_output_lengths (`bool`, *optional*, defaults to `False`):
Whether or not to return the concrete spectrogram/waveform lengths.
Returns:
`tuple(torch.FloatTensor)` comprising various elements depending on the inputs:
- when `return_output_lengths` is False
- **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape
`(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram.
- **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape
`(num_frames,)` -- The predicted speech waveform.
- **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`)
`torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads,
output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers.
- when `return_output_lengths` is True
- **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape
`(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that
are padded to the maximum length.
- **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of
all the concrete lengths for each spectrogram.
- **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape
`(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length.
- **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all
the concrete lengths for each waveform.
- **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`)
`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads,
output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers.
"""
if speaker_embeddings is not None:
batch_size = input_ids.size(0)
if speaker_embeddings.size(0) != batch_size:
if speaker_embeddings.size(0) == 1:
speaker_embeddings = speaker_embeddings.repeat(batch_size, 1)
else:
raise ValueError(
"The first dimension of speaker_embeddings must be either 1 or the same as batch_size."
)
return _generate_speech(
self,
input_ids,
speaker_embeddings,
attention_mask,
threshold,
minlenratio,
maxlenratio,
vocoder,
output_cross_attentions,
return_output_lengths,
)
@torch.no_grad()
def generate_speech(
self,
input_ids: torch.LongTensor,
speaker_embeddings: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
threshold: float = 0.5,
minlenratio: float = 0.0,
maxlenratio: float = 20.0,
vocoder: Optional[nn.Module] = None,
output_cross_attentions: bool = False,
return_output_lengths: bool = False,
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]:
r"""
Converts a sequence of input tokens into a sequence of mel spectrograms, which are subsequently turned into a
speech waveform using a vocoder.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and
[`~PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*):
Tensor containing the speaker embeddings.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
`[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
threshold (`float`, *optional*, defaults to 0.5):
The generated sequence ends when the predicted stop token probability exceeds this value.
minlenratio (`float`, *optional*, defaults to 0.0):
Used to calculate the minimum required length for the output sequence.
maxlenratio (`float`, *optional*, defaults to 20.0):
Used to calculate the maximum allowed length for the output sequence.
vocoder (`nn.Module`, *optional*, defaults to `None`):
The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel
spectrogram.
output_cross_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of the decoder's cross-attention layers.
return_output_lengths (`bool`, *optional*, defaults to `False`):
Whether or not to return the concrete spectrogram/waveform lengths.
Returns:
`tuple(torch.FloatTensor)` comprising various elements depending on the inputs:
- when `return_output_lengths` is False
- **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape
`(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram.
- **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape
`(num_frames,)` -- The predicted speech waveform.
- **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`)
`torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads,
output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers.
- when `return_output_lengths` is True
- **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape
`(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that
are padded to the maximum length.
- **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of
all the concrete lengths for each spectrogram.
- **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape
`(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length.
- **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all
the concrete lengths for each waveform.
- **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`)
`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads,
output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers.
"""
if speaker_embeddings is not None:
batch_size = input_ids.size(0)
if speaker_embeddings.size(0) != batch_size:
if speaker_embeddings.size(0) == 1:
speaker_embeddings = speaker_embeddings.repeat(batch_size, 1)
else:
raise ValueError(
"The first dimension of speaker_embeddings must be either 1 or the same as batch size."
)
return _generate_speech(
self,
input_ids,
speaker_embeddings,
attention_mask,
threshold,
minlenratio,
maxlenratio,
vocoder,
output_cross_attentions,
return_output_lengths,
)
@add_start_docstrings(
"""SpeechT5 Model with a speech encoder and a speech decoder.""",
SPEECHT5_START_DOCSTRING,
)
class SpeechT5ForSpeechToSpeech(SpeechT5PreTrainedModel):
def __init__(self, config: SpeechT5Config):
super().__init__(config)
speech_encoder = SpeechT5EncoderWithSpeechPrenet(config)
speech_decoder = SpeechT5DecoderWithSpeechPrenet(config)
self.speecht5 = SpeechT5Model(config, speech_encoder, speech_decoder)
self.speech_decoder_postnet = SpeechT5SpeechDecoderPostnet(config)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.speecht5.get_encoder()
def get_decoder(self):
return self.speecht5.get_decoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.get_encoder().prenet.freeze_feature_encoder()
@add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqSpectrogramOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_values: Optional[torch.FloatTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
speaker_embeddings: Optional[torch.FloatTensor] = None,
labels: Optional[torch.FloatTensor] = None,
stop_labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, Seq2SeqSpectrogramOutput]:
r"""
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install
soundfile*). To prepare the array into `input_values`, the [`SpeechT5Processor`] should be used for padding
and conversion into a tensor of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details.
decoder_input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`):
Float values of input mel spectrogram.
SpeechT5 uses an all-zero spectrum as the starting token for `decoder_input_values` generation. If
`past_key_values` is used, optionally only the last `decoder_input_values` have to be input (see
`past_key_values`).
speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*):
Tensor containing the speaker embeddings.
labels (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`, *optional*):
Float values of target mel spectrogram. Spectrograms can be obtained using [`SpeechT5Processor`]. See
[`SpeechT5Processor.__call__`] for details.
Returns:
Example:
```python
>>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan, set_seed
>>> from datasets import load_dataset
>>> import torch
>>> dataset = load_dataset(
... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation"
... ) # doctest: +IGNORE_RESULT
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate
>>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_vc")
>>> model = SpeechT5ForSpeechToSpeech.from_pretrained("microsoft/speecht5_vc")
>>> vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
>>> # audio file is decoded on the fly
>>> inputs = processor(audio=dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
>>> speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file
>>> set_seed(555) # make deterministic
>>> # generate speech
>>> speech = model.generate_speech(inputs["input_values"], speaker_embeddings, vocoder=vocoder)
>>> speech.shape
torch.Size([77824])
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_values is None:
decoder_input_values = shift_spectrograms_right(labels, self.config.reduction_factor)
outputs = self.speecht5(
input_values=input_values,
attention_mask=attention_mask,
decoder_input_values=decoder_input_values,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
use_cache=use_cache,
speaker_embeddings=speaker_embeddings,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
_, spectrogram, logits = self.speech_decoder_postnet(outputs[0])
loss = None
if not return_dict:
output = (spectrogram,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSpectrogramOutput(
loss=loss,
spectrogram=spectrogram,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@torch.no_grad()
def generate_speech(
self,
input_values: torch.FloatTensor,
speaker_embeddings: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
threshold: float = 0.5,
minlenratio: float = 0.0,
maxlenratio: float = 20.0,
vocoder: Optional[nn.Module] = None,
output_cross_attentions: bool = False,
return_output_lengths: bool = False,
) -> torch.FloatTensor:
r"""
Converts a raw speech waveform into a sequence of mel spectrograms, which are subsequently turned back into a
speech waveform using a vocoder.
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Float values of input raw speech waveform.
Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type `List[float]` or
a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array
into `input_values`, the [`SpeechT5Processor`] should be used for padding and conversion into a tensor
of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details.
speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*):
Tensor containing the speaker embeddings.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
`[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
threshold (`float`, *optional*, defaults to 0.5):
The generated sequence ends when the predicted stop token probability exceeds this value.
minlenratio (`float`, *optional*, defaults to 0.0):
Used to calculate the minimum required length for the output sequence.
maxlenratio (`float`, *optional*, defaults to 20.0):
Used to calculate the maximum allowed length for the output sequence.
vocoder (`nn.Module`, *optional*, defaults to `None`):
The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel
spectrogram.
output_cross_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of the decoder's cross-attention layers.
return_output_lengths (`bool`, *optional*, defaults to `False`):
Whether or not to return the concrete spectrogram/waveform lengths.
Returns:
`tuple(torch.FloatTensor)` comprising various elements depending on the inputs:
- when `return_output_lengths` is False
- **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape
`(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram.
- **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape
`(num_frames,)` -- The predicted speech waveform.
- **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`)
`torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads,
output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers.
- when `return_output_lengths` is True
- **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape
`(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that
are padded to the maximum length.
- **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of
all the concrete lengths for each spectrogram.
- **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape
`(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length.
- **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all
the concrete lengths for each waveform.
- **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`)
`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads,
output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers.
"""
if speaker_embeddings is None:
speaker_embeddings = torch.zeros((1, 512), device=input_values.device)
return _generate_speech(
self,
input_values,
speaker_embeddings,
attention_mask,
threshold,
minlenratio,
maxlenratio,
vocoder,
output_cross_attentions,
return_output_lengths,
)
HIFIGAN_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`SpeechT5HifiGanConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
class HifiGanResidualBlock(nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
super().__init__()
self.leaky_relu_slope = leaky_relu_slope
self.convs1 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=dilation[i],
padding=self.get_padding(kernel_size, dilation[i]),
)
for i in range(len(dilation))
]
)
self.convs2 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
for _ in range(len(dilation))
]
)
def get_padding(self, kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
def apply_weight_norm(self):
for layer in self.convs1:
nn.utils.weight_norm(layer)
for layer in self.convs2:
nn.utils.weight_norm(layer)
def remove_weight_norm(self):
for layer in self.convs1:
nn.utils.remove_weight_norm(layer)
for layer in self.convs2:
nn.utils.remove_weight_norm(layer)
def forward(self, hidden_states):
for conv1, conv2 in zip(self.convs1, self.convs2):
residual = hidden_states
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv1(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv2(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
@add_start_docstrings(
"""HiFi-GAN vocoder.""",
HIFIGAN_START_DOCSTRING,
)
class SpeechT5HifiGan(PreTrainedModel):
config_class = SpeechT5HifiGanConfig
main_input_name = "spectrogram"
def __init__(self, config: SpeechT5HifiGanConfig):
super().__init__(config)
self.num_kernels = len(config.resblock_kernel_sizes)
self.num_upsamples = len(config.upsample_rates)
self.conv_pre = nn.Conv1d(
config.model_in_dim,
config.upsample_initial_channel,
kernel_size=7,
stride=1,
padding=3,
)
self.upsampler = nn.ModuleList()
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
self.upsampler.append(
nn.ConvTranspose1d(
config.upsample_initial_channel // (2**i),
config.upsample_initial_channel // (2 ** (i + 1)),
kernel_size=kernel_size,
stride=upsample_rate,
padding=(kernel_size - upsample_rate) // 2,
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.upsampler)):
channels = config.upsample_initial_channel // (2 ** (i + 1))
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3)
self.register_buffer("mean", torch.zeros(config.model_in_dim))
self.register_buffer("scale", torch.ones(config.model_in_dim))
# Initialize weights and apply final processing
self.post_init()
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
def apply_weight_norm(self):
nn.utils.weight_norm(self.conv_pre)
for layer in self.upsampler:
nn.utils.weight_norm(layer)
for layer in self.resblocks:
layer.apply_weight_norm()
nn.utils.weight_norm(self.conv_post)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv_pre)
for layer in self.upsampler:
nn.utils.remove_weight_norm(layer)
for layer in self.resblocks:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.conv_post)
def forward(self, spectrogram: torch.FloatTensor) -> torch.FloatTensor:
r"""
Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch
of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech
waveform.
Args:
spectrogram (`torch.FloatTensor`):
Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length,
config.model_in_dim)`, or un-batched and of shape `(sequence_length, config.model_in_dim)`.
Returns:
`torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of
shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`.
"""
if self.config.normalize_before:
spectrogram = (spectrogram - self.mean) / self.scale
is_batched = spectrogram.dim() == 3
if not is_batched:
spectrogram = spectrogram.unsqueeze(0)
hidden_states = spectrogram.transpose(2, 1)
hidden_states = self.conv_pre(hidden_states)
for i in range(self.num_upsamples):
hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope)
hidden_states = self.upsampler[i](hidden_states)
res_state = self.resblocks[i * self.num_kernels](hidden_states)
for j in range(1, self.num_kernels):
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
hidden_states = res_state / self.num_kernels
hidden_states = nn.functional.leaky_relu(hidden_states)
hidden_states = self.conv_post(hidden_states)
hidden_states = torch.tanh(hidden_states)
if not is_batched:
# remove batch dim and collapse tensor to 1-d audio waveform
waveform = hidden_states.squeeze(0).transpose(1, 0).view(-1)
else:
# remove seq-len dim since this collapses to 1
waveform = hidden_states.squeeze(1)
return waveform
| transformers/src/transformers/models/speecht5/modeling_speecht5.py/0 | {
"file_path": "transformers/src/transformers/models/speecht5/modeling_speecht5.py",
"repo_id": "transformers",
"token_count": 66586
} | 129 |
# coding=utf-8
# Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch StableLM model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from .configuration_stablelm import StableLmConfig
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "StableLmConfig"
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->StableLm
class StableLmRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
# Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->StableLm
class StableLmLinearScalingRotaryEmbedding(StableLmRotaryEmbedding):
"""StableLmRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
t = t / self.scaling_factor
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
# Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->StableLm
class StableLmDynamicNTKScalingRotaryEmbedding(StableLmRotaryEmbedding):
"""StableLmRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->StableLm
class StableLmMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class StableLmAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: StableLmConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.partial_rotary_factor = config.partial_rotary_factor
self.is_causal = True
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.use_qkv_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.attention_dropout = nn.Dropout(config.attention_dropout)
self._init_rope()
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonAttention._init_rope with Persimmon->StableLm
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = StableLmRotaryEmbedding(
int(self.partial_rotary_factor * self.head_dim),
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = StableLmLinearScalingRotaryEmbedding(
int(self.partial_rotary_factor * self.head_dim),
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
elif scaling_type == "dynamic":
self.rotary_emb = StableLmDynamicNTKScalingRotaryEmbedding(
int(self.partial_rotary_factor * self.head_dim),
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
# Partial rotary embedding
query_rot, query_pass = (
query_states[..., : self.rotary_emb.dim],
query_states[..., self.rotary_emb.dim :],
)
key_rot, key_pass = (
key_states[..., : self.rotary_emb.dim],
key_states[..., self.rotary_emb.dim :],
)
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
# [batch_size, seq_length, num_heads, head_dim]
query_states = torch.cat((query_rot, query_pass), dim=-1)
key_states = torch.cat((key_rot, key_pass), dim=-1)
if past_key_value is not None:
# Specific to RoPE models with partial rotation
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# Repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query_states.dtype)
attn_weights = self.attention_dropout(attn_weights)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class StableLmSdpaAttention(StableLmAttention):
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"StableLmModel is using StableLmSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
# Partial rotary embedding
query_rot, query_pass = (
query_states[..., : self.rotary_emb.dim],
query_states[..., self.rotary_emb.dim :],
)
key_rot, key_pass = (
key_states[..., : self.rotary_emb.dim],
key_states[..., self.rotary_emb.dim :],
)
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
# [batch_size, seq_length, num_heads, head_dim]
query_states = torch.cat((query_rot, query_pass), dim=-1)
key_states = torch.cat((key_rot, key_pass), dim=-1)
if past_key_value is not None:
# Specific to RoPE models with partial rotation
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# Repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout.p if self.training else 0.0,
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal=self.is_causal and attention_mask is None and q_len > 1,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
class StableLmFlashAttention2(StableLmAttention):
"""
StableLM flash attention module. This module inherits from `StableLmAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# StableLmFlashAttention2 attention does not support output_attentions
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
# Partial rotary embedding
query_rot, query_pass = (
query_states[..., : self.rotary_emb.dim],
query_states[..., self.rotary_emb.dim :],
)
key_rot, key_pass = (
key_states[..., : self.rotary_emb.dim],
key_states[..., self.rotary_emb.dim :],
)
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
# [batch_size, seq_length, num_heads, head_dim]
query_states = torch.cat((query_rot, query_pass), dim=-1)
key_states = torch.cat((key_rot, key_pass), dim=-1)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
def _flash_attention_forward(
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
)
return attn_output
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
ATTENTION_CLASSES = {
"eager": StableLmAttention,
"sdpa": StableLmSdpaAttention,
"flash_attention_2": StableLmFlashAttention2,
}
class StableLmDecoderLayer(nn.Module):
def __init__(self, config: StableLmConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
self.mlp = StableLmMLP(config)
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
`[0, config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + residual
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
STABLELM_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`StableLmConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare StableLm Model outputting raw hidden-states without any specific head on top.",
STABLELM_START_DOCSTRING,
)
class StableLmPreTrainedModel(PreTrainedModel):
config_class = StableLmConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["StableLmDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_cache_class = True
_supports_sdpa = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
STABLELM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance;
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare StableLm Model outputting raw hidden-states without any specific head on top.",
STABLELM_START_DOCSTRING,
)
class StableLmModel(StableLmPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`StableLmDecoderLayer`]
Args:
config: StableLmConfig
"""
def __init__(self, config: StableLmConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[StableLmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self._attn_implementation = config._attn_implementation
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if self._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
# for output_attentions case used fallback to eager attention realization
elif self._attn_implementation == "sdpa" and not output_attentions:
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM with PERSIMMON->STABLELM,Persimmon->StableLm
class StableLmForCausalLM(StableLmPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with LLAMA->STABLELM,Llama->StableLm
def __init__(self, config):
super().__init__(config)
self.model = StableLmModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
def get_input_embeddings(self):
return self.model.embed_tokens
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
def set_input_embeddings(self, value):
self.model.embed_tokens = value
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
def set_decoder(self, decoder):
self.model = decoder
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
# Ignore copy
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, StableLmForCausalLM
>>> model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t")
>>> tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
>>> prompt = "The weather is always wonderful in"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'The weather is always wonderful in the summer in the city of San Diego. The city is located on the coast of the Pacific Ocean and is surrounded by'
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@add_start_docstrings(
"""
The StableLm transformer with a sequence classification head on top (linear layer).
[`StableLmForSequenceClassification`] uses the last token in order to do the classification, as other causal
models (e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
STABLELM_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->STABLELM,Llama->StableLm
class StableLmForSequenceClassification(StableLmPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = StableLmModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
| transformers/src/transformers/models/stablelm/modeling_stablelm.py/0 | {
"file_path": "transformers/src/transformers/models/stablelm/modeling_stablelm.py",
"repo_id": "transformers",
"token_count": 27455
} | 130 |
# coding=utf-8
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch T5 model."""
import copy
import math
import os
import warnings
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
DUMMY_INPUTS,
DUMMY_MASK,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_fx_proxy,
logging,
replace_return_docstrings,
)
from ...utils.model_parallel_utils import assert_device_map, get_device_map
from .configuration_t5 import T5Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "T5Config"
_CHECKPOINT_FOR_DOC = "google-t5/t5-small"
####################################################
# This dict contains ids and associated url
# for the pretrained weights provided with the models
####################################################
T5_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google-t5/t5-small",
"google-t5/t5-base",
"google-t5/t5-large",
"google-t5/t5-3b",
"google-t5/t5-11b",
# See all T5 models at https://huggingface.co/models?filter=t5
]
####################################################
# This is a conversion method from TF 1.0 to PyTorch
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
####################################################
def load_tf_weights_in_t5(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
tf_weights = {}
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
tf_weights[name] = array
for txt_name in names:
name = txt_name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
tf_weights.pop(txt_name, None)
continue
if "_slot_" in name[-1]:
logger.info(f"Skipping {'/'.join(name)}")
tf_weights.pop(txt_name, None)
continue
pointer = model
array = tf_weights[txt_name]
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] in ["kernel", "scale", "embedding"]:
pointer = getattr(pointer, "weight")
elif scope_names[0] == "self_attention":
pointer = getattr(pointer, "layer")
pointer = pointer[0]
elif scope_names[0] == "enc_dec_attention":
pointer = getattr(pointer, "layer")
pointer = pointer[1]
elif scope_names[0] == "dense_relu_dense":
pointer = getattr(pointer, "layer")
pointer = pointer[2]
elif scope_names[0] == "rms_norm":
if hasattr(pointer, "layer_norm"):
pointer = getattr(pointer, "layer_norm")
elif hasattr(pointer, "final_layer_norm"):
pointer = getattr(pointer, "final_layer_norm")
elif scope_names[0] == "scale":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
elif scope_names[0] == "decoder" and name[1] == "logits":
continue
elif scope_names[0] == "logits":
pointer = getattr(pointer, "lm_head")
elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit():
pointer = getattr(pointer, f"wi_{scope_names[1]}")
continue
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if scope_names[0] not in ["kernel", "scale", "embedding"]:
pointer = getattr(pointer, "weight")
if scope_names[0] != "embedding":
logger.info(f"Transposing numpy weight of shape {array.shape} for {name}")
array = np.transpose(array)
try:
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array.astype(np.float32))
tf_weights.pop(txt_name, None)
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.")
return model
####################################################
# PyTorch Models are constructed by sub-classing
# - torch.nn.Module for the layers and
# - PreTrainedModel for the models (it-self a sub-class of nn.Module)
####################################################
PARALLELIZE_DOCSTRING = r"""
This is an experimental feature and is a subject to change at a moment's notice.
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
it will evenly distribute blocks across all devices.
Args:
device_map (`Dict[int, list]`, optional, defaults to None):
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
automatically mapped to the first device (for esoteric reasons). That means that the first device should
have fewer attention modules mapped to it than other devices. For reference, the t5 models have the
following number of attention modules:
- google-t5/t5-small: 6
- google-t5/t5-base: 12
- google-t5/t5-large: 24
- google-t5/t5-3b: 24
- google-t5/t5-11b: 24
Example:
```python
# Here is an example of a device map on a machine with 4 GPUs using google-t5/t5-3b, which has a total of 24 attention modules:
model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b")
device_map = {
0: [0, 1, 2],
1: [3, 4, 5, 6, 7, 8, 9],
2: [10, 11, 12, 13, 14, 15, 16],
3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map)
```
"""
DEPARALLELIZE_DOCSTRING = r"""
Moves the model to cpu from a model parallel state.
Example:
```python
# On a 4 GPU machine with google-t5/t5-3b:
model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b")
device_map = {
0: [0, 1, 2],
1: [3, 4, 5, 6, 7, 8, 9],
2: [10, 11, 12, 13, 14, 15, 16],
3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map) # Splits the model across several devices
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
```
"""
class T5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
try:
from apex.normalization import FusedRMSNorm
T5LayerNorm = FusedRMSNorm # noqa
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm")
except ImportError:
# using the normal T5LayerNorm
pass
except Exception:
logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm")
pass
ALL_LAYERNORM_LAYERS.append(T5LayerNorm)
class T5DenseActDense(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
class T5DenseGatedActDense(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
# See https://github.com/huggingface/transformers/issues/20287
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
class T5LayerFF(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
if config.is_gated_act:
self.DenseReluDense = T5DenseGatedActDense(config)
else:
self.DenseReluDense = T5DenseActDense(config)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
class T5Attention(nn.Module):
def __init__(self, config: T5Config, has_relative_attention_bias=False):
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
batch_size, seq_length = hidden_states.shape[:2]
real_seq_length = seq_length
if past_key_value is not None:
if len(past_key_value) != 2:
raise ValueError(
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
)
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
def shape(states):
"""projection"""
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
def unshape(states):
"""reshape"""
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
def project(hidden_states, proj_layer, key_value_states, past_key_value):
"""projects hidden states correctly to key/query states"""
if key_value_states is None:
# self-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(hidden_states))
elif past_key_value is None:
# cross-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(key_value_states))
if past_key_value is not None:
if key_value_states is None:
# self-attn
# (batch_size, n_heads, key_length, dim_per_head)
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
elif past_key_value.shape[2] != key_value_states.shape[1]:
# checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
# cross-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(key_value_states))
else:
# cross-attn
hidden_states = past_key_value
return hidden_states
# get query states
query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head)
# get key/value states
key_states = project(
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
)
value_states = project(
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
)
# compute scores
scores = torch.matmul(
query_states, key_states.transpose(3, 2)
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
if position_bias is None:
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device)
# if key and values are already calculated
# we want only the last query position bias
if past_key_value is not None:
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
if mask is not None:
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
scores += position_bias_masked
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
scores
) # (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
) # (batch_size, n_heads, seq_length, key_length)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim)
attn_output = self.o(attn_output)
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class T5LayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class T5LayerCrossAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
class T5Block(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.is_decoder = config.is_decoder
self.layer = nn.ModuleList()
self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
if self.is_decoder:
self.layer.append(T5LayerCrossAttention(config))
self.layer.append(T5LayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
):
if past_key_value is not None:
if not self.is_decoder:
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
if len(past_key_value) != expected_num_past_key_values:
raise ValueError(
f"There should be {expected_num_past_key_values} past states. "
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
f"Got {len(past_key_value)} past key / value states"
)
self_attn_past_key_value = past_key_value[:2]
cross_attn_past_key_value = past_key_value[2:]
else:
self_attn_past_key_value, cross_attn_past_key_value = None, None
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=self_attn_past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states, present_key_value_state = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
# the actual query length is unknown for cross attention
# if using past key value states. Need to inject it here
if present_key_value_state is not None:
query_length = present_key_value_state[0].shape[2]
else:
query_length = None
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
query_length=query_length,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = cross_attention_outputs[0]
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Combine self attn and cross attn key value states
if present_key_value_state is not None:
present_key_value_state = present_key_value_state + cross_attention_outputs[1]
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (present_key_value_state,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
class T5ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config: T5Config):
super().__init__()
self.dense = nn.Linear(config.d_model, config.d_model)
self.dropout = nn.Dropout(p=config.classifier_dropout)
self.out_proj = nn.Linear(config.d_model, config.num_labels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class T5PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = T5Config
load_tf_weights = load_tf_weights_in_t5
base_model_prefix = "transformer"
is_parallelizable = True
supports_gradient_checkpointing = True
_no_split_modules = ["T5Block"]
_keep_in_fp32_modules = ["wo"]
@property
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, T5LayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(
module,
(T5Model, T5ForConditionalGeneration, T5EncoderModel, T5ForQuestionAnswering),
):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "qa_outputs"):
module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
module.qa_outputs.bias.data.zero_()
elif isinstance(module, T5ForTokenClassification):
if hasattr(module, "classifier"):
module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0)
module.classifier.bias.data.zero_()
elif isinstance(module, T5ClassificationHead):
module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.dense, "bias") and module.dense.bias is not None:
module.dense.bias.data.zero_()
module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None:
module.out_proj.bias.data.zero_()
elif isinstance(module, T5DenseActDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi, "bias") and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, T5DenseGatedActDense):
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, T5Attention):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
if decoder_start_token_id is None:
raise ValueError(
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. "
"See T5 docs for more information."
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class T5Stack(T5PreTrainedModel):
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.block = nn.ModuleList(
[T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
)
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
warnings.warn(
"`T5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
" 'block.1': 1, ...}",
FutureWarning,
)
# Check validity of device_map
self.device_map = (
get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map
)
assert_device_map(self.device_map, len(self.block))
self.model_parallel = True
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
self.last_device = "cuda:" + str(max(self.device_map.keys()))
# Load onto devices
for k, v in self.device_map.items():
for layer in v:
cuda_device = "cuda:" + str(k)
self.block[layer] = self.block[layer].to(cuda_device)
# Set embed_tokens to first layer
self.embed_tokens = self.embed_tokens.to(self.first_device)
# Set final layer norm to last device
self.final_layer_norm = self.final_layer_norm.to(self.last_device)
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.model_parallel = False
self.device_map = None
self.first_device = "cpu"
self.last_device = "cpu"
for i in range(len(self.block)):
self.block[i] = self.block[i].to("cpu")
self.embed_tokens = self.embed_tokens.to("cpu")
self.final_layer_norm = self.final_layer_norm.to("cpu")
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(self.first_device)
self.embed_tokens = self.embed_tokens.to(self.first_device)
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
if inputs_embeds is None:
if self.embed_tokens is None:
raise ValueError("You have to initialize the model with valid token embeddings")
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
# required mask seq length can be calculated via length of past
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
if use_cache is True:
if not self.is_decoder:
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
# initialize past_key_values with `None` if past does not exist
if past_key_values is None:
past_key_values = [None] * len(self.block)
if attention_mask is None:
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(
encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long
)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if position_bias is not None:
position_bias = position_bias.to(hidden_states.device)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
if encoder_extended_attention_mask is not None:
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
if encoder_decoder_position_bias is not None:
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
if layer_head_mask is not None:
layer_head_mask = layer_head_mask.to(hidden_states.device)
if cross_attn_layer_head_mask is not None:
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.forward,
hidden_states,
extended_attention_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, present_key_value_state = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
# append next layer key value states
if use_cache:
present_key_value_states = present_key_value_states + (present_key_value_state,)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
T5_START_DOCSTRING = r"""
The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a
text-to-text denoising generative setting.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`T5Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
T5_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5
Training](./t5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
T5_ENCODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
__HEAD_MASK_WARNING_MSG = """
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
num_heads)`.
"""
@add_start_docstrings(
"The bare T5 Model transformer outputting raw hidden-states without any specific head on top.",
T5_START_DOCSTRING,
)
class T5Model(T5PreTrainedModel):
_keys_to_ignore_on_load_unexpected = [
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: T5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = T5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = T5Stack(decoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
warnings.warn(
"`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':"
" 0, 'encoder.block.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.decoder.parallelize(self.device_map)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.encoder.deparallelize()
self.decoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.decoder = self.decoder.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, T5Model
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
>>> model = T5Model.from_pretrained("google-t5/t5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model.
>>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg.
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
hidden_states = hidden_states.to(self.decoder.first_device)
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING)
class T5ForConditionalGeneration(T5PreTrainedModel):
_keys_to_ignore_on_load_unexpected = [
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: T5Config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = T5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = T5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
warnings.warn(
"`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you"
" should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also"
" provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance"
" {'encoder.block.0': 0, 'encoder.block.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.decoder.parallelize(self.device_map)
self.lm_head = self.lm_head.to(self.decoder.first_device)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.encoder.deparallelize()
self.decoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.decoder = self.decoder.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, T5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
>>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
>>> # training
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
>>> # inference
>>> input_ids = tokenizer(
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
>>> # studies have shown that owning a dog is good for you.
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
hidden_states = hidden_states.to(self.decoder.first_device)
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.encoder.first_device)
self.lm_head = self.lm_head.to(self.encoder.first_device)
sequence_output = sequence_output.to(self.lm_head.weight.device)
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
# move labels to correct device to enable PP
labels = labels.to(lm_logits.device)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
decoder_attention_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
return {
"decoder_input_ids": input_ids,
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"decoder_attention_mask": decoder_attention_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
def _reorder_cache(self, past_key_values, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past_key_values is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past_key_values
reordered_decoder_past = ()
for layer_past_states in past_key_values:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
raise ValueError(
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
)
if len(reordered_layer_past_states) != len(layer_past_states):
raise ValueError(
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past
@add_start_docstrings(
"The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
T5_START_DOCSTRING,
)
class T5EncoderModel(T5PreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight"]
_keys_to_ignore_on_load_unexpected = [r"decoder"]
def __init__(self, config: T5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = T5Stack(encoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
warnings.warn(
"`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
" 'block.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.encoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
@add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, T5EncoderModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
>>> model = T5EncoderModel.from_pretrained("google-t5/t5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return encoder_outputs
@add_start_docstrings(
"""
T5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
T5_START_DOCSTRING,
)
class T5ForSequenceClassification(T5PreTrainedModel):
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: T5Config):
super().__init__(config)
self.transformer = T5Model(config)
self.classification_head = T5ClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
self.model_parallel = False
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
# Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates
# decoder_input_ids from input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = self._shift_right(input_ids)
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
batch_size, _, hidden_size = sequence_output.shape
sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
T5 Encoder Model with a token classification head on top (a linear layer on top of the hidden-states output)
e.g. for Named-Entity-Recognition (NER) tasks.
""",
T5_START_DOCSTRING,
)
class T5ForTokenClassification(T5PreTrainedModel):
_tied_weights_keys = ["transformer.encoder.embed_tokens.weight"]
def __init__(self, config: T5Config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = T5EncoderModel(config)
self.dropout = nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits, outputs[2:-1])
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
T5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers
on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
T5_START_DOCSTRING,
)
class T5ForQuestionAnswering(T5PreTrainedModel):
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: T5Config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = T5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = T5Stack(decoder_config, self.shared)
self.num_labels = config.num_labels
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
self.model_parallel = False
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
if start_positions is not None and end_positions is not None:
use_cache = False
# Copied from models.bart.modeling_bart.BartModel.forward
# different to other models, T5 automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = self._shift_right(input_ids)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=None,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1).to(start_logits.device)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1).to(end_logits.device)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
| transformers/src/transformers/models/t5/modeling_t5.py/0 | {
"file_path": "transformers/src/transformers/models/t5/modeling_t5.py",
"repo_id": "transformers",
"token_count": 48176
} | 131 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Time Series Transformer model configuration"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"huggingface/time-series-transformer-tourism-monthly": (
"https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json"
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class TimeSeriesTransformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TimeSeriesTransformerModel`]. It is used to
instantiate a Time Series Transformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Time Series
Transformer
[huggingface/time-series-transformer-tourism-monthly](https://huggingface.co/huggingface/time-series-transformer-tourism-monthly)
architecture.
Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
prediction_length (`int`):
The prediction length for the decoder. In other words, the prediction horizon of the model. This value is
typically dictated by the dataset and we recommend to set it appropriately.
context_length (`int`, *optional*, defaults to `prediction_length`):
The context length for the encoder. If `None`, the context length will be the same as the
`prediction_length`.
distribution_output (`string`, *optional*, defaults to `"student_t"`):
The distribution emission head for the model. Could be either "student_t", "normal" or "negative_binomial".
loss (`string`, *optional*, defaults to `"nll"`):
The loss function for the model corresponding to the `distribution_output` head. For parametric
distributions it is the negative log likelihood (nll) - which currently is the only supported one.
input_size (`int`, *optional*, defaults to 1):
The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of
multivariate targets.
scaling (`string` or `bool`, *optional* defaults to `"mean"`):
Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the
scaler is set to "mean".
lags_sequence (`list[int]`, *optional*, defaults to `[1, 2, 3, 4, 5, 6, 7]`):
The lags of the input time series as covariates often dictated by the frequency of the data. Default is
`[1, 2, 3, 4, 5, 6, 7]` but we recommend to change it based on the dataset appropriately.
num_time_features (`int`, *optional*, defaults to 0):
The number of time features in the input time series.
num_dynamic_real_features (`int`, *optional*, defaults to 0):
The number of dynamic real valued features.
num_static_categorical_features (`int`, *optional*, defaults to 0):
The number of static categorical features.
num_static_real_features (`int`, *optional*, defaults to 0):
The number of static real valued features.
cardinality (`list[int]`, *optional*):
The cardinality (number of different values) for each of the static categorical features. Should be a list
of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if
`num_static_categorical_features` is > 0.
embedding_dimension (`list[int]`, *optional*):
The dimension of the embedding for each of the static categorical features. Should be a list of integers,
having the same length as `num_static_categorical_features`. Cannot be `None` if
`num_static_categorical_features` is > 0.
d_model (`int`, *optional*, defaults to 64):
Dimensionality of the transformer layers.
encoder_layers (`int`, *optional*, defaults to 2):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 2):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 2):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 2):
Number of attention heads for each attention layer in the Transformer decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 32):
Dimension of the "intermediate" (often named feed-forward) layer in encoder.
decoder_ffn_dim (`int`, *optional*, defaults to 32):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and decoder. If string, `"gelu"` and
`"relu"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the encoder, and decoder.
encoder_layerdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention and fully connected layers for each encoder layer.
decoder_layerdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention and fully connected layers for each decoder layer.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability used between the two layers of the feed-forward networks.
num_parallel_samples (`int`, *optional*, defaults to 100):
The number of samples to generate in parallel for each time step of inference.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal weight initialization distribution.
use_cache (`bool`, *optional*, defaults to `True`):
Whether to use the past key/values attentions (if applicable to the model) to speed up decoding.
Example:
```python
>>> from transformers import TimeSeriesTransformerConfig, TimeSeriesTransformerModel
>>> # Initializing a Time Series Transformer configuration with 12 time steps for prediction
>>> configuration = TimeSeriesTransformerConfig(prediction_length=12)
>>> # Randomly initializing a model (with random weights) from the configuration
>>> model = TimeSeriesTransformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "time_series_transformer"
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__(
self,
prediction_length: Optional[int] = None,
context_length: Optional[int] = None,
distribution_output: str = "student_t",
loss: str = "nll",
input_size: int = 1,
lags_sequence: List[int] = [1, 2, 3, 4, 5, 6, 7],
scaling: Optional[Union[str, bool]] = "mean",
num_dynamic_real_features: int = 0,
num_static_categorical_features: int = 0,
num_static_real_features: int = 0,
num_time_features: int = 0,
cardinality: Optional[List[int]] = None,
embedding_dimension: Optional[List[int]] = None,
encoder_ffn_dim: int = 32,
decoder_ffn_dim: int = 32,
encoder_attention_heads: int = 2,
decoder_attention_heads: int = 2,
encoder_layers: int = 2,
decoder_layers: int = 2,
is_encoder_decoder: bool = True,
activation_function: str = "gelu",
d_model: int = 64,
dropout: float = 0.1,
encoder_layerdrop: float = 0.1,
decoder_layerdrop: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
num_parallel_samples: int = 100,
init_std: float = 0.02,
use_cache=True,
**kwargs,
):
# time series specific configuration
self.prediction_length = prediction_length
self.context_length = context_length or prediction_length
self.distribution_output = distribution_output
self.loss = loss
self.input_size = input_size
self.num_time_features = num_time_features
self.lags_sequence = lags_sequence
self.scaling = scaling
self.num_dynamic_real_features = num_dynamic_real_features
self.num_static_real_features = num_static_real_features
self.num_static_categorical_features = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(cardinality) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`"
)
self.cardinality = cardinality
else:
self.cardinality = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(embedding_dimension) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`"
)
self.embedding_dimension = embedding_dimension
else:
self.embedding_dimension = [min(50, (cat + 1) // 2) for cat in self.cardinality]
self.num_parallel_samples = num_parallel_samples
# Transformer architecture configuration
self.feature_size = input_size * len(lags_sequence) + self._number_of_features
self.d_model = d_model
self.encoder_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.encoder_ffn_dim = encoder_ffn_dim
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_layers = encoder_layers
self.decoder_layers = decoder_layers
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.activation_function = activation_function
self.init_std = init_std
self.use_cache = use_cache
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
@property
def _number_of_features(self) -> int:
return (
sum(self.embedding_dimension)
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| transformers/src/transformers/models/time_series_transformer/configuration_time_series_transformer.py/0 | {
"file_path": "transformers/src/transformers/models/time_series_transformer/configuration_time_series_transformer.py",
"repo_id": "transformers",
"token_count": 4507
} | 132 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for TVLT."""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
class TvltFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a TVLT audio feature extractor. This feature extractor can be used to prepare audios for the model.
This feature extractor inherits from [`FeatureExtractionMixin`] which contains most of the main methods. Users
should refer to this superclass for more information regarding those methods.
Args:
spectrogram_length (`Dict[str, int]` *optional*, defaults to 2048):
The time length of each audio spectrogram.
num_channels (`int` *optional*, defaults to 1):
Number of audio channels.
patch_size (`List[int]` *optional*, defaults to `[16, 16]`):
The patch size of audio patch embedding.
feature_size (`int`, *optional*, defaults to 128):
The frequency length of audio spectrogram.
sampling_rate (`int`, *optional*, defaults to 44100):
The sampling rate at which the audio files should be digitalized expressed in Hertz (Hz).
hop_length_to_sampling_rate (`int`, *optional*, defaults to 86):
Hop length is length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
For example, with sampling rate 44100, the hop length is 512, with 44100 / 512 = 86
n_fft (`int`, *optional*, defaults to 2048):
Size of the Fourier transform.
padding_value (`float`, *optional*, defaults to 0.0):
Padding value used to pad the audio. Should correspond to silences.
"""
model_input_names = ["audio_values", "audio_mask"]
def __init__(
self,
spectrogram_length=2048,
num_channels=1,
patch_size=[16, 16],
feature_size=128,
sampling_rate=44100,
hop_length_to_sampling_rate=86,
n_fft=2048,
padding_value=0.0,
**kwargs,
):
super().__init__(
feature_size=feature_size,
sampling_rate=sampling_rate,
padding_value=padding_value,
**kwargs,
)
self.spectrogram_length = spectrogram_length
self.num_channels = num_channels
self.patch_size = patch_size
self.freq_len = feature_size // self.patch_size[1]
self.n_fft = n_fft
self.hop_length = sampling_rate // hop_length_to_sampling_rate
self.sampling_rate = sampling_rate
self.padding_value = padding_value
self.mel_filters = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2,
num_mel_filters=feature_size,
min_frequency=0.0,
max_frequency=22050.0,
sampling_rate=sampling_rate,
norm="slaney",
mel_scale="slaney",
).T
def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
"""
Compute the log-mel spectrogram of the provided audio, gives similar results to Whisper's original torch
implementation with 1e-5 tolerance.
"""
log_spec = spectrogram(
waveform,
window_function(self.n_fft, "hann"),
frame_length=self.n_fft,
hop_length=self.hop_length,
power=2.0,
mel_filters=self.mel_filters.T,
log_mel="dB",
db_range=80.0,
)
log_spec = log_spec[:, :-1]
log_spec = log_spec - 20.0
log_spec = np.clip(log_spec / 40.0, -2.0, 0.0) + 1.0
return log_spec
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = True,
sampling_rate: Optional[int] = None,
resample: bool = False,
mask_audio: bool = False,
**kwargs,
) -> BatchFeature:
"""
Main method to prepare one or several audio(s) for the model.
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*, default to `True`):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask)
<Tip>
For TvltTransformer models, `attention_mask` should alwys be passed for batched inference, to avoid
subtle bugs.
</Tip>
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
pipeline. Current model supports sampling rate 16000 and 44100.
resample (`bool`, *optional*, defaults to `False`):
If the sampling rate is not matched, resample the input audio to match.
mask_audio (`bool`, *optional*, defaults to `False`):
Whether or not to mask input audio for MAE task.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **audio_values** -- Audio values to be fed to a model, of shape (batch_size, num_channels, height,
width).
- **audio_mask** -- Audio masks to be fed to a model, of shape (batch_size, num_audio_patches).
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"This feature extractor is set to support sampling rate"
f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"
f" with {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [np.asarray([raw_speech]).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
audio_features = [
self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], List):
audio_features = [np.asarray(feature, dtype=np.float32) for feature in audio_features]
# Create audio attention mask
max_patch_len = max(
[ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features]
) # The maximum number of audio patches in a batch
if return_attention_mask:
audio_mask = [
(ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0]
for feature in audio_features
]
audio_mask = np.array(audio_mask).astype(np.float32)
# convert into correct format for padding
max_time_len = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
padded_audio_features = np.ones([len(audio_features), 1, max_time_len, self.feature_size]).astype(np.float32)
padded_audio_features = padded_audio_features * self.padding_value
for i in range(len(audio_features)):
feature = audio_features[i]
padded_audio_features[i, :, : feature.shape[0], :] = feature
# return as BatchFeature
if return_attention_mask:
data = {"audio_values": padded_audio_features, "audio_mask": audio_mask}
else:
data = {"audio_values": padded_audio_features}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
return encoded_inputs
| transformers/src/transformers/models/tvlt/feature_extraction_tvlt.py/0 | {
"file_path": "transformers/src/transformers/models/tvlt/feature_extraction_tvlt.py",
"repo_id": "transformers",
"token_count": 4436
} | 133 |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch UniSpeech model."""
import math
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, Wav2Vec2BaseModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_unispeech import UniSpeechConfig
logger = logging.get_logger(__name__)
_HIDDEN_STATES_START_POSITION = 2
# General docstring
_CONFIG_FOR_DOC = "UniSpeechConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "patrickvonplaten/unispeech-large-1500h-cv-timit"
_EXPECTED_OUTPUT_SHAPE = [1, 292, 1024]
# CTC docstring
_CTC_EXPECTED_OUTPUT = "'mister quilter is the apposl of the midle classes and weare glad to welcom his gosepl'"
_CTC_EXPECTED_LOSS = 17.17
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/unispeech-large-1500h-cv",
"microsoft/unispeech-large-multi-lingual-1500h-cv",
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
]
@dataclass
class UniSpeechForPreTrainingOutput(ModelOutput):
"""
Output type of [`UniSpeechForPreTrainingOutput`], with potential hidden states and attentions.
Args:
loss (*optional*, returned when model is in train mode, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official
paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss.
projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked
projected quantized states.
projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive
target vectors for contrastive loss.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
projected_states: torch.FloatTensor = None
projected_quantized_states: torch.FloatTensor = None
codevector_perplexity: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
attention_mask: Optional[torch.LongTensor] = None,
min_masks: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.
Args:
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
the first element is the batch size and the second element is the length of the axis to span.
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
independently generated mask spans of length `mask_length` is computed by
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
actual percentage will be smaller.
mask_length: size of the mask
min_masks: minimum number of masked spans
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
each batch dimension.
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
f" and `sequence_length`: {sequence_length}`"
)
# epsilon is used for probabilistic rounding
epsilon = np.random.rand(1).item()
def compute_num_masked_span(input_length):
"""Given input length, compute how many spans should be masked"""
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
num_masked_span = max(num_masked_span, min_masks)
# make sure num masked span <= sequence_length
if num_masked_span * mask_length > sequence_length:
num_masked_span = sequence_length // mask_length
# make sure num_masked span is also <= input_length - (mask_length - 1)
if input_length - (mask_length - 1) < num_masked_span:
num_masked_span = max(input_length - (mask_length - 1), 0)
return num_masked_span
# compute number of masked spans in batch
input_lengths = (
attention_mask.sum(-1).detach().tolist()
if attention_mask is not None
else [sequence_length for _ in range(batch_size)]
)
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
spec_aug_mask_idxs = []
max_num_masked_span = compute_num_masked_span(sequence_length)
if max_num_masked_span == 0:
return spec_aug_mask
for input_length in input_lengths:
# compute num of masked spans for this input
num_masked_span = compute_num_masked_span(input_length)
# get random indices to mask
spec_aug_mask_idx = np.random.choice(
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
)
# pick first sampled index that will serve as a dummy index to pad vector
# to ensure same dimension for all batches due to probabilistic rounding
# Picking first sample just pads those vectors twice.
if len(spec_aug_mask_idx) == 0:
# this case can only happen if `input_length` is strictly smaller then
# `sequence_length` in which case the last token has to be a padding
# token which we can use as a dummy mask id
dummy_mask_idx = sequence_length - 1
else:
dummy_mask_idx = spec_aug_mask_idx[0]
spec_aug_mask_idx = np.concatenate(
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
)
spec_aug_mask_idxs.append(spec_aug_mask_idx)
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
# expand masked indices to masked spans
spec_aug_mask_idxs = np.broadcast_to(
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
)
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
# add offset to the starting indexes so that indexes now create a span
offsets = np.arange(mask_length)[None, None, :]
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
batch_size, max_num_masked_span * mask_length
)
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# ensure that we cannot have indices larger than sequence_length
if spec_aug_mask_idxs.max() > sequence_length - 1:
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
# scatter indices to mask
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
return spec_aug_mask
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->UniSpeech
class UniSpeechNoLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->UniSpeech
class UniSpeechLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->UniSpeech
class UniSpeechGroupNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->UniSpeech
class UniSpeechPositionalConvEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
padding=config.num_conv_pos_embeddings // 2,
groups=config.num_conv_pos_embedding_groups,
)
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
self.conv = weight_norm(self.conv, name="weight", dim=2)
deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
else:
self.conv = weight_norm(self.conv, name="weight", dim=2)
self.padding = UniSpeechSamePadLayer(config.num_conv_pos_embeddings)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->UniSpeech
class UniSpeechSamePadLayer(nn.Module):
def __init__(self, num_conv_pos_embeddings):
super().__init__()
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def forward(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->UniSpeech
class UniSpeechFeatureEncoder(nn.Module):
"""Construct the features from raw audio waveform"""
def __init__(self, config):
super().__init__()
if config.feat_extract_norm == "group":
conv_layers = [UniSpeechGroupNormConvLayer(config, layer_id=0)] + [
UniSpeechNoLayerNormConvLayer(config, layer_id=i + 1)
for i in range(config.num_feat_extract_layers - 1)
]
elif config.feat_extract_norm == "layer":
conv_layers = [
UniSpeechLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)
]
else:
raise ValueError(
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
)
self.conv_layers = nn.ModuleList(conv_layers)
self.gradient_checkpointing = False
self._requires_grad = True
def _freeze_parameters(self):
for param in self.parameters():
param.requires_grad = False
self._requires_grad = False
def forward(self, input_values):
hidden_states = input_values[:, None]
# make sure hidden_states require grad for gradient_checkpointing
if self._requires_grad and self.training:
hidden_states.requires_grad = True
for conv_layer in self.conv_layers:
if self._requires_grad and self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
conv_layer.__call__,
hidden_states,
)
else:
hidden_states = conv_layer(hidden_states)
return hidden_states
class UniSpeechFeatureExtractor(UniSpeechFeatureEncoder):
def __init__(self, config):
super().__init__(config)
warnings.warn(
f"The class `{self.__class__.__name__}` has been depreciated "
"and will be removed in Transformers v5. "
f"Use `{self.__class__.__bases__[0].__name__}` instead.",
FutureWarning,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->UniSpeech
class UniSpeechFeatureProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
self.dropout = nn.Dropout(config.feat_proj_dropout)
def forward(self, hidden_states):
# non-projected hidden states are needed for quantization
norm_hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states, norm_hidden_states
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->UniSpeech
class UniSpeechAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[UniSpeechConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->UniSpeech
class UniSpeechFeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.output_dropout = nn.Dropout(config.hidden_dropout)
def forward(self, hidden_states):
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->UniSpeech
class UniSpeechEncoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = UniSpeechAttention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = UniSpeechFeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
attn_residual = hidden_states
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states + self.feed_forward(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AttnAdapterLayer with Wav2Vec2->UniSpeech
class UniSpeechAttnAdapterLayer(nn.Module):
def __init__(self, config):
"""
Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed
up training throughput.
"""
super().__init__()
self.input_dim = config.adapter_attn_dim
self.hidden_dim = config.hidden_size
self.norm = nn.LayerNorm(self.hidden_dim)
self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim)
self.act_fn = nn.ReLU()
self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim)
def forward(self, hidden_states: torch.FloatTensor):
hidden_states = self.norm(hidden_states)
hidden_states = self.linear_1(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->UniSpeech
class UniSpeechEncoderLayerStableLayerNorm(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = UniSpeechAttention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = UniSpeechFeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
if getattr(config, "adapter_attn_dim", None) is not None:
self.adapter_layer = UniSpeechAttnAdapterLayer(config)
else:
self.adapter_layer = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
attn_residual = hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
if self.adapter_layer is not None:
hidden_states = hidden_states + self.adapter_layer(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->UniSpeech
class UniSpeechEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList([UniSpeechEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
# make sure padded tokens output 0
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_attention_mask] = 0
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderStableLayerNorm with Wav2Vec2->UniSpeech
class UniSpeechEncoderStableLayerNorm(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList(
[UniSpeechEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
# make sure padded tokens are not attended to
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_attention_mask] = 0
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.dropout(hidden_states)
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
# XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class UniSpeechGumbelVectorQuantizer(nn.Module):
"""
Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
"""
def __init__(self, config):
super().__init__()
self.num_groups = config.num_codevector_groups
self.num_vars = config.num_codevectors_per_group
if config.codevector_dim % self.num_groups != 0:
raise ValueError(
f"`config.codevector_dim {config.codevector_dim} must be divisible by `config.num_codevector_groups`"
f" {self.num_groups} for concatenation"
)
# storage for codebook variables (codewords)
self.codevectors = nn.Parameter(
torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups)
)
self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars)
# can be decayed for training
self.temperature = 2
@staticmethod
def _compute_perplexity(probs):
marginal_probs = probs.mean(dim=0)
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
return perplexity
def forward(self, hidden_states):
batch_size, sequence_length, hidden_size = hidden_states.shape
# project to codevector dim
hidden_states = self.weight_proj(hidden_states)
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
if self.training:
# sample code vector probs via gumbel in differentiateable way
codevector_probs = nn.functional.gumbel_softmax(
hidden_states.float(), tau=self.temperature, hard=True
).type_as(hidden_states)
# compute perplexity
codevector_soft_dist = torch.softmax(
hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1
)
perplexity = self._compute_perplexity(codevector_soft_dist)
else:
# take argmax in non-differentiable way
# comptute hard codevector distribution (one hot)
codevector_idx = hidden_states.argmax(dim=-1)
codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_(
-1, codevector_idx.view(-1, 1), 1.0
)
codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1)
perplexity = self._compute_perplexity(codevector_probs)
codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
# use probs to retrieve codevectors
codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1)
return codevectors, perplexity
class UniSpeechPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = UniSpeechConfig
base_model_prefix = "unispeech"
main_input_name = "input_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
# gumbel softmax requires special init
if isinstance(module, UniSpeechGumbelVectorQuantizer):
module.weight_proj.weight.data.normal_(mean=0.0, std=1)
module.weight_proj.bias.data.zero_()
nn.init.uniform_(module.codevectors)
elif isinstance(module, UniSpeechPositionalConvEmbedding):
nn.init.normal_(
module.conv.weight,
mean=0,
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
)
nn.init.constant_(module.conv.bias, 0)
elif isinstance(module, UniSpeechFeatureProjection):
k = math.sqrt(1 / module.projection.in_features)
nn.init.uniform_(module.projection.weight, a=-k, b=k)
nn.init.uniform_(module.projection.bias, a=-k, b=k)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
return input_lengths
def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor):
# Effectively attention_mask.sum(-1), but not inplace to be able to run
# on inference mode.
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long)
batch_size = attention_mask.shape[0]
attention_mask = torch.zeros(
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values before the output lengths idxs are attended to
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
return attention_mask
UNISPEECH_START_DOCSTRING = r"""
UniSpeech was proposed in [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled
Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei,
Michael Zeng, Xuedong Huang.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving etc.).
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`UniSpeechConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
UNISPEECH_INPUTS_DOCSTRING = r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
<Tip warning={true}>
`attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==
True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should
**not** be passed to avoid degraded performance when doing batched inference. For such models
`input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these
models also yield slightly different results depending on whether `input_values` is padded or not.
</Tip>
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare UniSpeech Model transformer outputting raw hidden-states without any specific head on top.",
UNISPEECH_START_DOCSTRING,
)
class UniSpeechModel(UniSpeechPreTrainedModel):
def __init__(self, config: UniSpeechConfig):
super().__init__(config)
self.config = config
self.feature_extractor = UniSpeechFeatureEncoder(config)
self.feature_projection = UniSpeechFeatureProjection(config)
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
if config.do_stable_layer_norm:
self.encoder = UniSpeechEncoderStableLayerNorm(config)
else:
self.encoder = UniSpeechEncoder(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
def _mask_hidden_states(
self,
hidden_states: torch.FloatTensor,
mask_time_indices: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return hidden_states
# generate indices & apply SpecAugment along time axis
batch_size, sequence_length, hidden_size = hidden_states.size()
if mask_time_indices is not None:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
elif self.config.mask_time_prob > 0 and self.training:
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks,
)
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks,
)
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
hidden_states[mask_feature_indices] = 0
return hidden_states
@add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Wav2Vec2BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose(1, 2)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask)
hidden_states, extract_features = self.feature_projection(extract_features)
hidden_states = self._mask_hidden_states(
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if not return_dict:
return (hidden_states, extract_features) + encoder_outputs[1:]
return Wav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
extract_features=extract_features,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""UniSpeech Model with a vector-quantization module and ctc loss for pre-training.""", UNISPEECH_START_DOCSTRING
)
class UniSpeechForPreTraining(UniSpeechPreTrainedModel):
def __init__(self, config: UniSpeechConfig):
super().__init__(config)
self.unispeech = UniSpeechModel(config)
self.dropout_features = nn.Dropout(config.feat_quantizer_dropout)
self.quantizer = UniSpeechGumbelVectorQuantizer(config)
self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim)
self.project_hid = nn.Linear(config.proj_codevector_dim, config.hidden_size)
self.ctc_proj = nn.Linear(config.hidden_size, config.num_ctc_classes)
self.dropout = nn.Dropout(config.final_dropout)
# Initialize weights and apply final processing
self.post_init()
def set_gumbel_temperature(self, temperature: int):
"""
Set the Gumbel softmax temperature to a given value. Only necessary for training
"""
self.quantizer.temperature = temperature
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.unispeech.feature_extractor._freeze_parameters()
@staticmethod
def compute_contrastive_logits(
target_features: torch.FloatTensor,
negative_features: torch.FloatTensor,
predicted_features: torch.FloatTensor,
temperature: int = 1,
):
"""
Compute logits for contrastive loss based using cosine similarity as the distance measure between
`[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied.
"""
target_features = torch.cat([target_features, negative_features], dim=0)
logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1)
logits = logits.type_as(target_features)
# apply temperature
logits = logits / temperature
return logits
@add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=UniSpeechForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, UniSpeechForPreTrainingOutput]:
r"""
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
masked extracted features in *config.proj_codevector_dim* space.
sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*):
Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss.
Required input for pre-training.
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoFeatureExtractor, UniSpeechForPreTraining
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/unispeech-large-1500h-cv")
>>> model = UniSpeechForPreTraining.from_pretrained("microsoft/unispeech-large-1500h-cv")
>>> # TODO: Add full pretraining example
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.unispeech(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
transformer_features = outputs[0]
# quantize all (unmasked) extracted features and project to final vq dim
extract_features = self.dropout_features(outputs[1])
quantized_features, codevector_perplexity = self.quantizer(extract_features)
# project quantized features twice
quantized_features = self.project_q(quantized_features)
quantized_features = self.project_hid(quantized_features)
prob_replace_matrix = torch.empty(transformer_features.size(0), transformer_features.size(1)).fill_(
self.config.replace_prob
)
prob_replace_matrix = prob_replace_matrix.transpose(0, 1)
sampled_replace_matrix = torch.bernoulli(prob_replace_matrix).bool().to(transformer_features.device)
sampled_replace_matrix = sampled_replace_matrix.transpose(0, 1)
sampled_replace_matrix = sampled_replace_matrix.unsqueeze(-1)
logits = transformer_features.masked_fill(sampled_replace_matrix, 0.0) + (
quantized_features.masked_fill(~sampled_replace_matrix, 0.0)
)
# project to ctc units
logits = self.dropout(logits)
logits = self.ctc_proj(logits)
# TODO(PVP) - add negative sampling & loss computation
loss = None
if not return_dict:
if loss is not None:
return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return UniSpeechForPreTrainingOutput(
loss=loss,
projected_states=transformer_features,
projected_quantized_states=quantized_features,
codevector_perplexity=codevector_perplexity,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""UniSpeech Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
UNISPEECH_START_DOCSTRING,
"""
target_lang (`str`, *optional*):
Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or
adapter.<lang>.bin. Only relevant when using an instance of [`UniSpeechForCTC`] with adapters. Uses 'eng'
by default.
""",
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->UniSpeech, wav2vec2->unispeech, WAV_2_VEC_2->UNISPEECH
class UniSpeechForCTC(UniSpeechPreTrainedModel):
def __init__(self, config, target_lang: Optional[str] = None):
super().__init__(config)
self.unispeech = UniSpeechModel(config)
self.dropout = nn.Dropout(config.final_dropout)
self.target_lang = target_lang
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that "
"does not define the vocabulary size of the language model head. Please "
"instantiate the model as follows: `UniSpeechForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
"or define `vocab_size` of your model's configuration."
)
output_hidden_size = (
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
)
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def tie_weights(self):
"""
This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
passing `target_lang=...` to `from_pretrained(...)`.
This method is **not** supposed to be called by the user and is prone to be changed in the future.
"""
# Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
# correctly load adapter layers for UniSpeech so that we do not have to introduce a new API to
# [`PreTrainedModel`]. While slightly hacky, UniSpeech never has to tie input and output embeddings, so that it is
# ok to repurpose this function here.
target_lang = self.target_lang
if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
logger.info("By default `target_lang` is set to 'eng'.")
elif target_lang is not None:
self.load_adapter(target_lang, force_load=True)
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.unispeech.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.unispeech.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_CTC_EXPECTED_OUTPUT,
expected_loss=_CTC_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
config.vocab_size - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.unispeech(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if labels.max() >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
# retrieve loss input_lengths from attention_mask
attention_mask = (
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
)
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = nn.functional.ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
blank=self.config.pad_token_id,
reduction=self.config.ctc_loss_reduction,
zero_infinity=self.config.ctc_zero_infinity,
)
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"""
UniSpeech Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like
SUPERB Keyword Spotting.
""",
UNISPEECH_START_DOCSTRING,
)
class UniSpeechForSequenceClassification(UniSpeechPreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Sequence classification does not support the use of UniSpeech adapters (config.add_adapter=True)"
)
self.unispeech = UniSpeechModel(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->unispeech
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.unispeech.feature_extractor._freeze_parameters()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->unispeech
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.unispeech.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->UniSpeech, wav2vec2->unispeech
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.unispeech(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
if attention_mask is None:
pooled_output = hidden_states.mean(dim=1)
else:
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
hidden_states[~padding_mask] = 0.0
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/unispeech/modeling_unispeech.py/0 | {
"file_path": "transformers/src/transformers/models/unispeech/modeling_unispeech.py",
"repo_id": "transformers",
"token_count": 30778
} | 134 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {
"configuration_videomae": ["VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "VideoMAEConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_videomae"] = [
"VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST",
"VideoMAEForPreTraining",
"VideoMAEModel",
"VideoMAEPreTrainedModel",
"VideoMAEForVideoClassification",
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_videomae"] = ["VideoMAEFeatureExtractor"]
_import_structure["image_processing_videomae"] = ["VideoMAEImageProcessor"]
if TYPE_CHECKING:
from .configuration_videomae import VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP, VideoMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_videomae import (
VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEModel,
VideoMAEPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_videomae import VideoMAEFeatureExtractor
from .image_processing_videomae import VideoMAEImageProcessor
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/videomae/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/videomae/__init__.py",
"repo_id": "transformers",
"token_count": 943
} | 135 |
# coding=utf-8
# Copyright 2023 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch VipLlava model."""
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ... import PreTrainedModel
from ...activations import ACT2FN
from ...cache_utils import Cache
from ...modeling_outputs import ModelOutput
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..auto import AutoModel, AutoModelForCausalLM
from .configuration_vipllava import VipLlavaConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "VipLlavaConfig"
VIPLLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = [
"llava-hf/vip-llava-7b-hf",
# See all VipLlava models at https://huggingface.co/models?filter=vipllava
]
@dataclass
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->VipLlava
class VipLlavaCausalLMOutputWithPast(ModelOutput):
"""
Base class for VipLlava causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class VipLlavaMultiModalProjector(nn.Module):
def __init__(self, config: VipLlavaConfig):
super().__init__()
self.projector_layernorm = nn.LayerNorm(
len(config.vision_feature_layers) * config.vision_config.hidden_size, eps=config.projector_layernorm_eps
)
self.linear_1 = nn.Linear(
len(config.vision_feature_layers) * config.vision_config.hidden_size,
config.text_config.hidden_size,
bias=True,
)
self.act = ACT2FN[config.projector_hidden_act]
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
def forward(self, hidden_states):
hidden_states = self.projector_layernorm(hidden_states)
hidden_states = self.linear_1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
VIPLLAVA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`VipLlavaConfig`] or [`VipLlavaVisionConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare VipLlava Model outputting raw hidden-states without any specific head on top.",
VIPLLAVA_START_DOCSTRING,
)
# Copied from transformers.models.llava.modeling_llava.LlavaPreTrainedModel with Llava->VipLlava,llava->vipllava
class VipLlavaPreTrainedModel(PreTrainedModel):
config_class = VipLlavaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["VipLlavaVisionAttention"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
def _init_weights(self, module):
# important: this ported version of VipLlava isn't meant for training from scratch - only
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
# https://github.com/haotian-liu/LLaVA/tree/main/vipllava should serve for that purpose
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def _supports_sdpa(self):
"""
Retrieve language_model's attribute to check whether the model supports
SDPA or not.
"""
return self.language_model._supports_sdpa
VIPLLAVA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses
[`CLIPImageProcessor`] for processing images).
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""The VIPLLAVA model which consists of a vision backbone and a language model.""",
VIPLLAVA_START_DOCSTRING,
)
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration with LLAVA->VIPLLAVA,Llava->VipLlava
class VipLlavaForConditionalGeneration(VipLlavaPreTrainedModel):
def __init__(self, config: VipLlavaConfig):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config.vision_config)
self.multi_modal_projector = VipLlavaMultiModalProjector(config)
self.vocab_size = config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(
config.text_config, attn_implementation=config._attn_implementation
)
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def tie_weights(self):
return self.language_model.tie_weights()
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels):
num_images, num_image_patches, embed_dim = image_features.shape
batch_size, sequence_length = input_ids.shape
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
# 1. Create a mask to know where special image tokens are
special_image_token_mask = input_ids == self.config.image_token_index
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
# Compute the maximum embed dimension
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)
# 2. Compute the positions where text should be written
# Calculate new positions for text tokens in merged image-text sequence.
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
if left_padding:
new_token_positions += nb_image_pad[:, None] # offset for left padding
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
# 3. Create the full embedding, already padded to the maximum position
final_embedding = torch.zeros(
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
)
final_attention_mask = torch.zeros(
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
)
if labels is not None:
final_labels = torch.full(
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
)
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
# set the corresponding tensors into their correct target device.
target_device = inputs_embeds.device
batch_indices, non_image_indices, text_to_overwrite = (
batch_indices.to(target_device),
non_image_indices.to(target_device),
text_to_overwrite.to(target_device),
)
attention_mask = attention_mask.to(target_device)
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
if labels is not None:
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
# 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling
image_to_overwrite = torch.all(final_embedding == 0, dim=-1)
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
raise ValueError(
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
)
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
final_attention_mask |= image_to_overwrite
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
if labels is None:
final_labels = None
return final_embedding, final_attention_mask, final_labels, position_ids
@add_start_docstrings_to_model_forward(VIPLLAVA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=VipLlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
# Ignore copy
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layers: Optional[List[int]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, VipLlavaCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, VipLlavaForConditionalGeneration
>>> model = VipLlavaForConditionalGeneration.from_pretrained("llava-hf/vip-llava-7b-hf", device_map="auto", torch_dtype=torch.float16)
>>> processor = AutoProcessor.from_pretrained("llava-hf/vip-llava-7b-hf")
>>> prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.###Human: <image>\n{}###Assistant:"
>>> question = "Can you please describe this image?"
>>> prompt = prompt.format(question)
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-neg.png"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=text, images=image, return_tensors="pt").to(0, torch.float16)
>>> # Generate
>>> generate_ids = model.generate(**inputs, max_new_tokens=20)
>>> processor.decode(generate_ids[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)
The image features a brown and white cat sitting on a green surface, with a red ball in its
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_feature_layers = (
vision_feature_layers if vision_feature_layers is not None else self.config.vision_feature_layers
)
if inputs_embeds is None:
# 1. Extra the input embeddings
inputs_embeds = self.get_input_embeddings()(input_ids)
# 2. Merge text and images
if pixel_values is not None and input_ids.shape[1] != 1:
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
# For VIP-llava, the image features are computed this way
# We select the features from index 1: for the layers -2, -5, -8, -11 and 6
image_features = [image_outputs.hidden_states[index][:, 1:] for index in vision_feature_layers]
image_features = torch.cat(image_features, dim=-1)
image_features = self.multi_modal_projector(image_features)
inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
image_features, inputs_embeds, input_ids, attention_mask, labels
)
if labels is None:
labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long)
else:
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
# generation with cache
if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
# Retrieve the first layer to inspect the logits and mask out the hidden states
# that are set to 0
first_layer_past_key_value = past_key_values[0][0][:, 0, :, :]
# Sum all dimensions of head_dim (-1) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-1) == 0)
# Get the target length
target_seqlen = first_layer_past_key_value.shape[-2] + 1
extended_attention_mask = torch.ones(
(attention_mask.shape[0], target_seqlen - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
# Filter out only the tokens that can be un-attended, this can happen
# in the case one uses Llava + Fused modules where the cache on the
# first iteration is already big enough, or if one passes custom cache
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
new_batch_index = batch_index[valid_indices]
new_non_attended_tokens = non_attended_tokens[valid_indices]
# Zero-out the places where we don't need to attend
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs[0]
loss = None
if labels is not None:
# Shift so that tokens < n predict n
if attention_mask is not None:
shift_attention_mask = attention_mask[..., 1:]
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return VipLlavaCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, **kwargs
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
else:
cache_length = past_length = past_key_values[0][0].shape[2]
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
elif self.config.image_token_index in input_ids:
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
# older attention values, as their corresponding values are not part of the input.
if cache_length < past_length and attention_mask is not None:
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"pixel_values": pixel_values,
}
)
return model_inputs
def _reorder_cache(self, *args, **kwargs):
return self.language_model._reorder_cache(*args, **kwargs)
| transformers/src/transformers/models/vipllava/modeling_vipllava.py/0 | {
"file_path": "transformers/src/transformers/models/vipllava/modeling_vipllava.py",
"repo_id": "transformers",
"token_count": 12096
} | 136 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
_import_structure = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_vit"] = ["ViTFeatureExtractor"]
_import_structure["image_processing_vit"] = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_vit"] = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_vit"] = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_vit"] = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/vit/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/vit/__init__.py",
"repo_id": "transformers",
"token_count": 1429
} | 137 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert ViT MAE checkpoints from the original repository: https://github.com/facebookresearch/mae"""
import argparse
import requests
import torch
from PIL import Image
from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor
def rename_key(name):
if "cls_token" in name:
name = name.replace("cls_token", "vit.embeddings.cls_token")
if "mask_token" in name:
name = name.replace("mask_token", "decoder.mask_token")
if "decoder_pos_embed" in name:
name = name.replace("decoder_pos_embed", "decoder.decoder_pos_embed")
if "pos_embed" in name and "decoder" not in name:
name = name.replace("pos_embed", "vit.embeddings.position_embeddings")
if "patch_embed.proj" in name:
name = name.replace("patch_embed.proj", "vit.embeddings.patch_embeddings.projection")
if "patch_embed.norm" in name:
name = name.replace("patch_embed.norm", "vit.embeddings.norm")
if "decoder_blocks" in name:
name = name.replace("decoder_blocks", "decoder.decoder_layers")
if "blocks" in name:
name = name.replace("blocks", "vit.encoder.layer")
if "attn.proj" in name:
name = name.replace("attn.proj", "attention.output.dense")
if "attn" in name:
name = name.replace("attn", "attention.self")
if "norm1" in name:
name = name.replace("norm1", "layernorm_before")
if "norm2" in name:
name = name.replace("norm2", "layernorm_after")
if "mlp.fc1" in name:
name = name.replace("mlp.fc1", "intermediate.dense")
if "mlp.fc2" in name:
name = name.replace("mlp.fc2", "output.dense")
if "decoder_embed" in name:
name = name.replace("decoder_embed", "decoder.decoder_embed")
if "decoder_norm" in name:
name = name.replace("decoder_norm", "decoder.decoder_norm")
if "decoder_pred" in name:
name = name.replace("decoder_pred", "decoder.decoder_pred")
if "norm.weight" in name and "decoder" not in name:
name = name.replace("norm.weight", "vit.layernorm.weight")
if "norm.bias" in name and "decoder" not in name:
name = name.replace("norm.bias", "vit.layernorm.bias")
return name
def convert_state_dict(orig_state_dict, config):
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if "qkv" in key:
key_split = key.split(".")
layer_num = int(key_split[1])
if "decoder_blocks" in key:
dim = config.decoder_hidden_size
prefix = "decoder.decoder_layers."
if "weight" in key:
orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.weight"] = val[:dim, :]
orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.weight"] = val[dim : dim * 2, :]
orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.weight"] = val[-dim:, :]
elif "bias" in key:
orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.bias"] = val[:dim]
orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.bias"] = val[dim : dim * 2]
orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.bias"] = val[-dim:]
else:
dim = config.hidden_size
prefix = "vit.encoder.layer."
if "weight" in key:
orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.weight"] = val[:dim, :]
orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.weight"] = val[dim : dim * 2, :]
orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.weight"] = val[-dim:, :]
elif "bias" in key:
orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.bias"] = val[:dim]
orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.bias"] = val[dim : dim * 2]
orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.bias"] = val[-dim:]
else:
orig_state_dict[rename_key(key)] = val
return orig_state_dict
def convert_vit_mae_checkpoint(checkpoint_url, pytorch_dump_folder_path):
config = ViTMAEConfig()
if "large" in checkpoint_url:
config.hidden_size = 1024
config.intermediate_size = 4096
config.num_hidden_layers = 24
config.num_attention_heads = 16
elif "huge" in checkpoint_url:
config.patch_size = 14
config.hidden_size = 1280
config.intermediate_size = 5120
config.num_hidden_layers = 32
config.num_attention_heads = 16
model = ViTMAEForPreTraining(config)
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"]
image_processor = ViTMAEImageProcessor(size=config.image_size)
new_state_dict = convert_state_dict(state_dict, config)
model.load_state_dict(new_state_dict)
model.eval()
url = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image_processor = ViTMAEImageProcessor(size=config.image_size)
inputs = image_processor(images=image, return_tensors="pt")
# forward pass
torch.manual_seed(2)
outputs = model(**inputs)
logits = outputs.logits
if "large" in checkpoint_url:
expected_slice = torch.tensor(
[[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]]
)
elif "huge" in checkpoint_url:
expected_slice = torch.tensor(
[[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]]
)
else:
expected_slice = torch.tensor(
[[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]]
)
# verify logits
assert torch.allclose(logits[0, :3, :3], expected_slice, atol=1e-4)
print(f"Saving model to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
args = parser.parse_args()
convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| transformers/src/transformers/models/vit_mae/convert_vit_mae_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/vit_mae/convert_vit_mae_to_pytorch.py",
"repo_id": "transformers",
"token_count": 3304
} | 138 |
# coding=utf-8
# Copyright 2023 The Kakao Enterprise Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" VITS model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
VITS_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/mms-tts-eng": "https://huggingface.co/facebook/mms-tts-eng/resolve/main/config.json",
}
class VitsConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`VitsModel`]. It is used to instantiate a VITS
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the VITS
[facebook/mms-tts-eng](https://huggingface.co/facebook/mms-tts-eng) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 38):
Vocabulary size of the VITS model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed to the forward method of [`VitsModel`].
hidden_size (`int`, *optional*, defaults to 192):
Dimensionality of the text encoder layers.
num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 2):
Number of attention heads for each attention layer in the Transformer encoder.
window_size (`int`, *optional*, defaults to 4):
Window size for the relative positional embeddings in the attention layers of the Transformer encoder.
use_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in the key, query, value projection layers in the Transformer encoder.
ffn_dim (`int`, *optional*, defaults to 768):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
ffn_kernel_size (`int`, *optional*, defaults to 3):
Kernel size of the 1D convolution layers used by the feed-forward network in the Transformer encoder.
flow_size (`int`, *optional*, defaults to 192):
Dimensionality of the flow layers.
spectrogram_bins (`int`, *optional*, defaults to 513):
Number of frequency bins in the target spectrogram.
hidden_act (`str` or `function`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings and encoder.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
use_stochastic_duration_prediction (`bool`, *optional*, defaults to `True`):
Whether to use the stochastic duration prediction module or the regular duration predictor.
num_speakers (`int`, *optional*, defaults to 1):
Number of speakers if this is a multi-speaker model.
speaker_embedding_size (`int`, *optional*, defaults to 0):
Number of channels used by the speaker embeddings. Is zero for single-speaker models.
upsample_initial_channel (`int`, *optional*, defaults to 512):
The number of input channels into the HiFi-GAN upsampling network.
upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 2, 2]`):
A tuple of integers defining the stride of each 1D convolutional layer in the HiFi-GAN upsampling network.
The length of `upsample_rates` defines the number of convolutional layers and has to match the length of
`upsample_kernel_sizes`.
upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[16, 16, 4, 4]`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the HiFi-GAN upsampling
network. The length of `upsample_kernel_sizes` defines the number of convolutional layers and has to match
the length of `upsample_rates`.
resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`):
A tuple of integers defining the kernel sizes of the 1D convolutional layers in the HiFi-GAN
multi-receptive field fusion (MRF) module.
resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`):
A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the
HiFi-GAN multi-receptive field fusion (MRF) module.
leaky_relu_slope (`float`, *optional*, defaults to 0.1):
The angle of the negative slope used by the leaky ReLU activation.
depth_separable_channels (`int`, *optional*, defaults to 2):
Number of channels to use in each depth-separable block.
depth_separable_num_layers (`int`, *optional*, defaults to 3):
Number of convolutional layers to use in each depth-separable block.
duration_predictor_flow_bins (`int`, *optional*, defaults to 10):
Number of channels to map using the unonstrained rational spline in the duration predictor model.
duration_predictor_tail_bound (`float`, *optional*, defaults to 5.0):
Value of the tail bin boundary when computing the unconstrained rational spline in the duration predictor
model.
duration_predictor_kernel_size (`int`, *optional*, defaults to 3):
Kernel size of the 1D convolution layers used in the duration predictor model.
duration_predictor_dropout (`float`, *optional*, defaults to 0.5):
The dropout ratio for the duration predictor model.
duration_predictor_num_flows (`int`, *optional*, defaults to 4):
Number of flow stages used by the duration predictor model.
duration_predictor_filter_channels (`int`, *optional*, defaults to 256):
Number of channels for the convolution layers used in the duration predictor model.
prior_encoder_num_flows (`int`, *optional*, defaults to 4):
Number of flow stages used by the prior encoder flow model.
prior_encoder_num_wavenet_layers (`int`, *optional*, defaults to 4):
Number of WaveNet layers used by the prior encoder flow model.
posterior_encoder_num_wavenet_layers (`int`, *optional*, defaults to 16):
Number of WaveNet layers used by the posterior encoder model.
wavenet_kernel_size (`int`, *optional*, defaults to 5):
Kernel size of the 1D convolution layers used in the WaveNet model.
wavenet_dilation_rate (`int`, *optional*, defaults to 1):
Dilation rates of the dilated 1D convolutional layers used in the WaveNet model.
wavenet_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the WaveNet layers.
speaking_rate (`float`, *optional*, defaults to 1.0):
Speaking rate. Larger values give faster synthesised speech.
noise_scale (`float`, *optional*, defaults to 0.667):
How random the speech prediction is. Larger values create more variation in the predicted speech.
noise_scale_duration (`float`, *optional*, defaults to 0.8):
How random the duration prediction is. Larger values create more variation in the predicted durations.
sampling_rate (`int`, *optional*, defaults to 16000):
The sampling rate at which the output audio waveform is digitalized expressed in hertz (Hz).
Example:
```python
>>> from transformers import VitsModel, VitsConfig
>>> # Initializing a "facebook/mms-tts-eng" style configuration
>>> configuration = VitsConfig()
>>> # Initializing a model (with random weights) from the "facebook/mms-tts-eng" style configuration
>>> model = VitsModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "vits"
def __init__(
self,
vocab_size=38,
hidden_size=192,
num_hidden_layers=6,
num_attention_heads=2,
window_size=4,
use_bias=True,
ffn_dim=768,
layerdrop=0.1,
ffn_kernel_size=3,
flow_size=192,
spectrogram_bins=513,
hidden_act="relu",
hidden_dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_stochastic_duration_prediction=True,
num_speakers=1,
speaker_embedding_size=0,
upsample_initial_channel=512,
upsample_rates=[8, 8, 2, 2],
upsample_kernel_sizes=[16, 16, 4, 4],
resblock_kernel_sizes=[3, 7, 11],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
leaky_relu_slope=0.1,
depth_separable_channels=2,
depth_separable_num_layers=3,
duration_predictor_flow_bins=10,
duration_predictor_tail_bound=5.0,
duration_predictor_kernel_size=3,
duration_predictor_dropout=0.5,
duration_predictor_num_flows=4,
duration_predictor_filter_channels=256,
prior_encoder_num_flows=4,
prior_encoder_num_wavenet_layers=4,
posterior_encoder_num_wavenet_layers=16,
wavenet_kernel_size=5,
wavenet_dilation_rate=1,
wavenet_dropout=0.0,
speaking_rate=1.0,
noise_scale=0.667,
noise_scale_duration=0.8,
sampling_rate=16_000,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.window_size = window_size
self.use_bias = use_bias
self.ffn_dim = ffn_dim
self.layerdrop = layerdrop
self.ffn_kernel_size = ffn_kernel_size
self.flow_size = flow_size
self.spectrogram_bins = spectrogram_bins
self.hidden_act = hidden_act
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_stochastic_duration_prediction = use_stochastic_duration_prediction
self.num_speakers = num_speakers
self.speaker_embedding_size = speaker_embedding_size
self.upsample_initial_channel = upsample_initial_channel
self.upsample_rates = upsample_rates
self.upsample_kernel_sizes = upsample_kernel_sizes
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.leaky_relu_slope = leaky_relu_slope
self.depth_separable_channels = depth_separable_channels
self.depth_separable_num_layers = depth_separable_num_layers
self.duration_predictor_flow_bins = duration_predictor_flow_bins
self.duration_predictor_tail_bound = duration_predictor_tail_bound
self.duration_predictor_kernel_size = duration_predictor_kernel_size
self.duration_predictor_dropout = duration_predictor_dropout
self.duration_predictor_num_flows = duration_predictor_num_flows
self.duration_predictor_filter_channels = duration_predictor_filter_channels
self.prior_encoder_num_flows = prior_encoder_num_flows
self.prior_encoder_num_wavenet_layers = prior_encoder_num_wavenet_layers
self.posterior_encoder_num_wavenet_layers = posterior_encoder_num_wavenet_layers
self.wavenet_kernel_size = wavenet_kernel_size
self.wavenet_dilation_rate = wavenet_dilation_rate
self.wavenet_dropout = wavenet_dropout
self.speaking_rate = speaking_rate
self.noise_scale = noise_scale
self.noise_scale_duration = noise_scale_duration
self.sampling_rate = sampling_rate
if len(upsample_kernel_sizes) != len(upsample_rates):
raise ValueError(
f"The length of `upsample_kernel_sizes` ({len(upsample_kernel_sizes)}) must match the length of "
f"`upsample_rates` ({len(upsample_rates)})"
)
super().__init__(**kwargs)
| transformers/src/transformers/models/vits/configuration_vits.py/0 | {
"file_path": "transformers/src/transformers/models/vits/configuration_vits.py",
"repo_id": "transformers",
"token_count": 5431
} | 139 |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Wav2Vec2 model."""
import math
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_outputs import (
BaseModelOutput,
CausalLMOutput,
MaskedLMOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
Wav2Vec2BaseModelOutput,
XVectorOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import is_torch_greater_or_equal_than_1_13
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_file,
is_peft_available,
is_safetensors_available,
logging,
replace_return_docstrings,
)
from .configuration_wav2vec2 import Wav2Vec2Config
WAV2VEC2_ADAPTER_PT_FILE = "adapter.{}.bin"
WAV2VEC2_ADAPTER_SAFE_FILE = "adapter.{}.safetensors"
if is_safetensors_available():
from safetensors.torch import load_file as safe_load_file
logger = logging.get_logger(__name__)
_HIDDEN_STATES_START_POSITION = 2
# General docstring
_CONFIG_FOR_DOC = "Wav2Vec2Config"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/wav2vec2-base-960h"
_EXPECTED_OUTPUT_SHAPE = [1, 292, 768]
# CTC docstring
_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'"
_CTC_EXPECTED_LOSS = 53.48
# Audio class docstring
_SEQ_CLASS_CHECKPOINT = "superb/wav2vec2-base-superb-ks"
_SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'"
_SEQ_CLASS_EXPECTED_LOSS = 6.54
# Frame class docstring
_FRAME_CLASS_CHECKPOINT = "anton-l/wav2vec2-base-superb-sd"
_FRAME_EXPECTED_OUTPUT = [0, 0]
# Speaker Verification docstring
_XVECTOR_CHECKPOINT = "anton-l/wav2vec2-base-superb-sv"
_XVECTOR_EXPECTED_OUTPUT = 0.98
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/wav2vec2-base-960h",
"facebook/wav2vec2-large-960h",
"facebook/wav2vec2-large-960h-lv60",
"facebook/wav2vec2-large-960h-lv60-self",
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
]
@dataclass
class Wav2Vec2ForPreTrainingOutput(ModelOutput):
"""
Output type of [`Wav2Vec2ForPreTraining`], with potential hidden states and attentions.
Args:
loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official
paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss.
projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked
projected quantized states.
projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive
target vectors for contrastive loss.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
contrastive_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`):
The contrastive loss (L_m) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) .
diversity_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`):
The diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) .
"""
loss: Optional[torch.FloatTensor] = None
projected_states: torch.FloatTensor = None
projected_quantized_states: torch.FloatTensor = None
codevector_perplexity: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
contrastive_loss: Optional[torch.FloatTensor] = None
diversity_loss: Optional[torch.FloatTensor] = None
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
attention_mask: Optional[torch.LongTensor] = None,
min_masks: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.
Args:
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
the first element is the batch size and the second element is the length of the axis to span.
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
independently generated mask spans of length `mask_length` is computed by
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
actual percentage will be smaller.
mask_length: size of the mask
min_masks: minimum number of masked spans
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
each batch dimension.
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
f" and `sequence_length`: {sequence_length}`"
)
# epsilon is used for probabilistic rounding
epsilon = np.random.rand(1).item()
def compute_num_masked_span(input_length):
"""Given input length, compute how many spans should be masked"""
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
num_masked_span = max(num_masked_span, min_masks)
# make sure num masked span <= sequence_length
if num_masked_span * mask_length > sequence_length:
num_masked_span = sequence_length // mask_length
# make sure num_masked span is also <= input_length - (mask_length - 1)
if input_length - (mask_length - 1) < num_masked_span:
num_masked_span = max(input_length - (mask_length - 1), 0)
return num_masked_span
# compute number of masked spans in batch
input_lengths = (
attention_mask.sum(-1).detach().tolist()
if attention_mask is not None
else [sequence_length for _ in range(batch_size)]
)
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
spec_aug_mask_idxs = []
max_num_masked_span = compute_num_masked_span(sequence_length)
if max_num_masked_span == 0:
return spec_aug_mask
for input_length in input_lengths:
# compute num of masked spans for this input
num_masked_span = compute_num_masked_span(input_length)
# get random indices to mask
spec_aug_mask_idx = np.random.choice(
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
)
# pick first sampled index that will serve as a dummy index to pad vector
# to ensure same dimension for all batches due to probabilistic rounding
# Picking first sample just pads those vectors twice.
if len(spec_aug_mask_idx) == 0:
# this case can only happen if `input_length` is strictly smaller then
# `sequence_length` in which case the last token has to be a padding
# token which we can use as a dummy mask id
dummy_mask_idx = sequence_length - 1
else:
dummy_mask_idx = spec_aug_mask_idx[0]
spec_aug_mask_idx = np.concatenate(
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
)
spec_aug_mask_idxs.append(spec_aug_mask_idx)
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
# expand masked indices to masked spans
spec_aug_mask_idxs = np.broadcast_to(
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
)
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
# add offset to the starting indexes so that indexes now create a span
offsets = np.arange(mask_length)[None, None, :]
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
batch_size, max_num_masked_span * mask_length
)
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# ensure that we cannot have indices larger than sequence_length
if spec_aug_mask_idxs.max() > sequence_length - 1:
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
# scatter indices to mask
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
return spec_aug_mask
def _sample_negative_indices(
features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None
):
"""
Sample `num_negatives` vectors from feature vectors.
"""
batch_size, sequence_length = features_shape
# generate indices of the positive vectors themselves, repeat them `num_negatives` times
sequence_length_range = np.arange(sequence_length)
# get `num_negatives` random vector indices from the same utterance
sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32)
mask_time_indices = (
mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool)
)
for batch_idx in range(batch_size):
high = mask_time_indices[batch_idx].sum() - 1
mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]]
feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives))
sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives))
# avoid sampling the same positive vector, but keep the distribution uniform
sampled_indices[sampled_indices >= feature_indices] += 1
# remap to actual indices
sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices]
# correct for batch size
sampled_negative_indices[batch_idx] += batch_idx * sequence_length
return sampled_negative_indices
class Wav2Vec2NoLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
class Wav2Vec2LayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.activation(hidden_states)
return hidden_states
class Wav2Vec2GroupNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
class Wav2Vec2PositionalConvEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
padding=config.num_conv_pos_embeddings // 2,
groups=config.num_conv_pos_embedding_groups,
)
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
self.conv = weight_norm(self.conv, name="weight", dim=2)
deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
else:
self.conv = weight_norm(self.conv, name="weight", dim=2)
self.padding = Wav2Vec2SamePadLayer(config.num_conv_pos_embeddings)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
class Wav2Vec2SamePadLayer(nn.Module):
def __init__(self, num_conv_pos_embeddings):
super().__init__()
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def forward(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
return hidden_states
class Wav2Vec2FeatureEncoder(nn.Module):
"""Construct the features from raw audio waveform"""
def __init__(self, config):
super().__init__()
if config.feat_extract_norm == "group":
conv_layers = [Wav2Vec2GroupNormConvLayer(config, layer_id=0)] + [
Wav2Vec2NoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1)
]
elif config.feat_extract_norm == "layer":
conv_layers = [
Wav2Vec2LayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)
]
else:
raise ValueError(
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
)
self.conv_layers = nn.ModuleList(conv_layers)
self.gradient_checkpointing = False
self._requires_grad = True
def _freeze_parameters(self):
for param in self.parameters():
param.requires_grad = False
self._requires_grad = False
def forward(self, input_values):
hidden_states = input_values[:, None]
# make sure hidden_states require grad for gradient_checkpointing
if self._requires_grad and self.training:
hidden_states.requires_grad = True
for conv_layer in self.conv_layers:
if self._requires_grad and self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
conv_layer.__call__,
hidden_states,
)
else:
hidden_states = conv_layer(hidden_states)
return hidden_states
class Wav2Vec2FeatureExtractor(Wav2Vec2FeatureEncoder):
def __init__(self, config):
super().__init__(config)
warnings.warn(
f"The class `{self.__class__.__name__}` has been depreciated "
"and will be removed in Transformers v5. "
f"Use `{self.__class__.__bases__[0].__name__}` instead.",
FutureWarning,
)
class Wav2Vec2FeatureProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
self.dropout = nn.Dropout(config.feat_proj_dropout)
def forward(self, hidden_states):
# non-projected hidden states are needed for quantization
norm_hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states, norm_hidden_states
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Wav2Vec2
class Wav2Vec2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[Wav2Vec2Config] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class Wav2Vec2FeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.output_dropout = nn.Dropout(config.hidden_dropout)
def forward(self, hidden_states):
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states)
return hidden_states
class Wav2Vec2EncoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = Wav2Vec2Attention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = Wav2Vec2FeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
attn_residual = hidden_states
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states + self.feed_forward(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class Wav2Vec2EncoderLayerStableLayerNorm(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = Wav2Vec2Attention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = Wav2Vec2FeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
if getattr(config, "adapter_attn_dim", None) is not None:
self.adapter_layer = Wav2Vec2AttnAdapterLayer(config)
else:
self.adapter_layer = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
attn_residual = hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
if self.adapter_layer is not None:
hidden_states = hidden_states + self.adapter_layer(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class Wav2Vec2Encoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList([Wav2Vec2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
# make sure padded tokens output 0
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_attention_mask] = 0
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class Wav2Vec2EncoderStableLayerNorm(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList(
[Wav2Vec2EncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
# make sure padded tokens are not attended to
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_attention_mask] = 0
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.dropout(hidden_states)
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
# XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class Wav2Vec2GumbelVectorQuantizer(nn.Module):
"""
Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
"""
def __init__(self, config):
super().__init__()
self.num_groups = config.num_codevector_groups
self.num_vars = config.num_codevectors_per_group
if config.codevector_dim % self.num_groups != 0:
raise ValueError(
f"`config.codevector_dim {config.codevector_dim} must be divisible "
f"by `config.num_codevector_groups` {self.num_groups} for concatenation"
)
# storage for codebook variables (codewords)
self.codevectors = nn.Parameter(
torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups)
)
self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars)
# can be decayed for training
self.temperature = 2
@staticmethod
def _compute_perplexity(probs, mask=None):
if mask is not None:
mask_extended = mask.flatten()[:, None, None].expand(probs.shape)
probs = torch.where(mask_extended, probs, torch.zeros_like(probs))
marginal_probs = probs.sum(dim=0) / mask.sum()
else:
marginal_probs = probs.mean(dim=0)
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
return perplexity
def forward(self, hidden_states, mask_time_indices=None):
batch_size, sequence_length, hidden_size = hidden_states.shape
# project to codevector dim
hidden_states = self.weight_proj(hidden_states)
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
if self.training:
# sample code vector probs via gumbel in differentiateable way
codevector_probs = nn.functional.gumbel_softmax(
hidden_states.float(), tau=self.temperature, hard=True
).type_as(hidden_states)
# compute perplexity
codevector_soft_dist = torch.softmax(
hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1
)
perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices)
else:
# take argmax in non-differentiable way
# comptute hard codevector distribution (one hot)
codevector_idx = hidden_states.argmax(dim=-1)
codevector_probs = hidden_states.new_zeros(hidden_states.shape).scatter_(
-1, codevector_idx.view(-1, 1), 1.0
)
codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1)
perplexity = self._compute_perplexity(codevector_probs, mask_time_indices)
codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
# use probs to retrieve codevectors
codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1)
return codevectors, perplexity
class Wav2Vec2Adapter(nn.Module):
def __init__(self, config):
super().__init__()
# feature dim might need to be down-projected
if config.output_hidden_size != config.hidden_size:
self.proj = nn.Linear(config.hidden_size, config.output_hidden_size)
self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size)
else:
self.proj = self.proj_layer_norm = None
self.layers = nn.ModuleList(Wav2Vec2AdapterLayer(config) for _ in range(config.num_adapter_layers))
self.layerdrop = config.layerdrop
def forward(self, hidden_states):
# down project hidden_states if necessary
if self.proj is not None and self.proj_layer_norm is not None:
hidden_states = self.proj(hidden_states)
hidden_states = self.proj_layer_norm(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
for layer in self.layers:
layerdrop_prob = np.random.random()
if not self.training or (layerdrop_prob > self.layerdrop):
hidden_states = layer(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
class Wav2Vec2AdapterLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.output_hidden_size,
2 * config.output_hidden_size,
config.adapter_kernel_size,
stride=config.adapter_stride,
padding=1,
)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = nn.functional.glu(hidden_states, dim=1)
return hidden_states
class Wav2Vec2AttnAdapterLayer(nn.Module):
def __init__(self, config):
"""
Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed
up training throughput.
"""
super().__init__()
self.input_dim = config.adapter_attn_dim
self.hidden_dim = config.hidden_size
self.norm = nn.LayerNorm(self.hidden_dim)
self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim)
self.act_fn = nn.ReLU()
self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim)
def forward(self, hidden_states: torch.FloatTensor):
hidden_states = self.norm(hidden_states)
hidden_states = self.linear_1(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class Wav2Vec2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Wav2Vec2Config
base_model_prefix = "wav2vec2"
main_input_name = "input_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
# Wav2Vec2ForPreTraining last 2 linear layers need standard Linear init.
if isinstance(module, Wav2Vec2ForPreTraining):
module.project_hid.reset_parameters()
module.project_q.reset_parameters()
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
# gumbel softmax requires special init
elif isinstance(module, Wav2Vec2GumbelVectorQuantizer):
module.weight_proj.weight.data.normal_(mean=0.0, std=1)
module.weight_proj.bias.data.zero_()
nn.init.uniform_(module.codevectors)
elif isinstance(module, Wav2Vec2PositionalConvEmbedding):
nn.init.normal_(
module.conv.weight,
mean=0,
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
)
nn.init.constant_(module.conv.bias, 0)
elif isinstance(module, Wav2Vec2FeatureProjection):
k = math.sqrt(1 / module.projection.in_features)
nn.init.uniform_(module.projection.weight, a=-k, b=k)
nn.init.uniform_(module.projection.bias, a=-k, b=k)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
def _get_feat_extract_output_lengths(
self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None
):
"""
Computes the output length of the convolutional layers
"""
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
if add_adapter:
for _ in range(self.config.num_adapter_layers):
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
return input_lengths
def _get_feature_vector_attention_mask(
self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None
):
# Effectively attention_mask.sum(-1), but not inplace to be able to run
# on inference mode.
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
output_lengths = output_lengths.to(torch.long)
batch_size = attention_mask.shape[0]
attention_mask = torch.zeros(
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values before the output lengths idxs are attended to
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
return attention_mask
def _get_adapters(self):
if self.config.adapter_attn_dim is None:
raise ValueError(f"{self.__class__} has no adapter layers. Make sure to define `config.adapter_attn_dim`.")
adapter_weights = {}
for name, module in self.named_modules():
if isinstance(module, Wav2Vec2AttnAdapterLayer):
for param_name, param in module.named_parameters():
adapter_weights[".".join([name, param_name])] = param
if isinstance(self, Wav2Vec2ForCTC):
for name, param in self.lm_head.named_parameters():
adapter_weights[".".join(["lm_head", name])] = param
return adapter_weights
def init_adapter_layers(self):
"""
(Re-)initialize attention adapter layers and lm head for adapter-only fine-tuning
"""
# init attention adapters
for module in self.modules():
if isinstance(module, Wav2Vec2AttnAdapterLayer):
self._init_weights(module)
# init lm head
if isinstance(self, Wav2Vec2ForCTC):
self._init_weights(self.lm_head)
def load_adapter(self, target_lang: str, force_load=True, **kwargs):
r"""
Load a language adapter model from a pre-trained adapter model.
Parameters:
target_lang (`str`):
Has to be a language id of an existing adapter weight. Adapter weights are stored in the format
adapter.<lang>.safetensors or adapter.<lang>.bin
force_load (`bool`, defaults to `True`):
Whether the weights shall be loaded even if `target_lang` matches `self.target_lang`.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether or not to only look at local files (i.e., do not try to download the model).
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
<Tip>
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
</Tip>
mirror (`str`, *optional*):
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
Please refer to the mirror site for more information.
<Tip>
Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
use this method in a firewalled environment.
</Tip>
Examples:
```python
>>> from transformers import Wav2Vec2ForCTC, AutoProcessor
>>> ckpt = "facebook/mms-1b-all"
>>> processor = AutoProcessor.from_pretrained(ckpt)
>>> model = Wav2Vec2ForCTC.from_pretrained(ckpt, target_lang="eng")
>>> # set specific language
>>> processor.tokenizer.set_target_lang("spa")
>>> model.load_adapter("spa")
```
"""
if self.config.adapter_attn_dim is None:
raise ValueError(f"Cannot load_adapter for {target_lang} if `config.adapter_attn_dim` is not defined.")
if target_lang == self.target_lang and not force_load:
logger.warning(f"Adapter weights are already set to {target_lang}.")
return
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
token = kwargs.pop("token", None)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
model_path_or_id = self.config._name_or_path
state_dict = None
# 1. Let's first try loading a safetensors adapter weight
if use_safetensors is not False:
filepath = WAV2VEC2_ADAPTER_SAFE_FILE.format(target_lang)
try:
weight_path = cached_file(
model_path_or_id,
filename=filepath,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
cache_dir=cache_dir,
)
state_dict = safe_load_file(weight_path)
except EnvironmentError:
if use_safetensors:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
# to the original exception.
raise
except Exception:
# For any other exception, we throw a generic error.
if use_safetensors:
raise EnvironmentError(
f"Can't load the model for '{model_path_or_id}'. If you were trying to load it"
" from 'https://huggingface.co/models', make sure you don't have a local directory with the"
f" same name. Otherwise, make sure '{model_path_or_id}' is the correct path to a"
f" directory containing a file named {filepath}."
)
# 2. If this didn't work let's try loading a PyTorch adapter weight
if state_dict is None:
filepath = WAV2VEC2_ADAPTER_PT_FILE.format(target_lang)
try:
weight_path = cached_file(
model_path_or_id,
filename=filepath,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
cache_dir=cache_dir,
)
weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
state_dict = torch.load(
weight_path,
map_location="cpu",
**weights_only_kwarg,
)
except EnvironmentError:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
# to the original exception.
raise
except Exception:
# For any other exception, we throw a generic error.
raise EnvironmentError(
f"Can't load the model for '{model_path_or_id}'. If you were trying to load it"
" from 'https://huggingface.co/models', make sure you don't have a local directory with the"
f" same name. Otherwise, make sure '{model_path_or_id}' is the correct path to a"
f" directory containing a file named {filepath}."
)
adapter_weights = self._get_adapters()
unexpected_keys = set(state_dict.keys()) - set(adapter_weights.keys())
missing_keys = set(adapter_weights.keys()) - set(state_dict.keys())
if len(unexpected_keys) > 0:
raise ValueError(f"The adapter weights {weight_path} has unexpected keys: {', '.join(unexpected_keys)}.")
elif len(missing_keys) > 0:
raise ValueError(f"The adapter weights {weight_path} has missing keys: {', '.join(missing_keys)}.")
# make sure now vocab size is correct
target_vocab_size = state_dict["lm_head.weight"].shape[0]
if target_vocab_size != self.config.vocab_size:
self.lm_head = nn.Linear(
self.config.output_hidden_size, target_vocab_size, device=self.device, dtype=self.dtype
)
self.config.vocab_size = target_vocab_size
# make sure that adapter weights are put in exactly the same precision and device placement and overwritten adapter weights
state_dict = {k: v.to(adapter_weights[k]) for k, v in state_dict.items()}
self.load_state_dict(state_dict, strict=False)
# set target language corectly
self.target_lang = target_lang
WAV_2_VEC_2_START_DOCSTRING = r"""
Wav2Vec2 was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael
Auli.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving etc.).
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`Wav2Vec2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
WAV_2_VEC_2_INPUTS_DOCSTRING = r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
<Tip warning={true}>
`attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==
True`. For all models whose processor has `config.return_attention_mask == False`, such as
[wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), `attention_mask` should **not** be
passed to avoid degraded performance when doing batched inference. For such models `input_values` should
simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly
different results depending on whether `input_values` is padded or not.
</Tip>
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Wav2Vec2 Model transformer outputting raw hidden-states without any specific head on top.",
WAV_2_VEC_2_START_DOCSTRING,
)
class Wav2Vec2Model(Wav2Vec2PreTrainedModel):
def __init__(self, config: Wav2Vec2Config):
super().__init__(config)
self.config = config
self.feature_extractor = Wav2Vec2FeatureEncoder(config)
self.feature_projection = Wav2Vec2FeatureProjection(config)
# model only needs masking vector if mask prob is > 0.0
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
if config.do_stable_layer_norm:
self.encoder = Wav2Vec2EncoderStableLayerNorm(config)
else:
self.encoder = Wav2Vec2Encoder(config)
self.adapter = Wav2Vec2Adapter(config) if config.add_adapter else None
# Initialize weights and apply final processing
self.post_init()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.feature_extractor._freeze_parameters()
def _mask_hidden_states(
self,
hidden_states: torch.FloatTensor,
mask_time_indices: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return hidden_states
# generate indices & apply SpecAugment along time axis
batch_size, sequence_length, hidden_size = hidden_states.size()
if mask_time_indices is not None:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
elif self.config.mask_time_prob > 0 and self.training:
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks,
)
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks,
)
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
hidden_states[mask_feature_indices] = 0
return hidden_states
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Wav2Vec2BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose(1, 2)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
extract_features.shape[1], attention_mask, add_adapter=False
)
hidden_states, extract_features = self.feature_projection(extract_features)
hidden_states = self._mask_hidden_states(
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if self.adapter is not None:
hidden_states = self.adapter(hidden_states)
if not return_dict:
return (hidden_states, extract_features) + encoder_outputs[1:]
return Wav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
extract_features=extract_features,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings("""Wav2Vec2 Model with a quantizer and `VQ` head on top.""", WAV_2_VEC_2_START_DOCSTRING)
class Wav2Vec2ForPreTraining(Wav2Vec2PreTrainedModel):
def __init__(self, config: Wav2Vec2Config):
super().__init__(config)
self.wav2vec2 = Wav2Vec2Model(config)
self.dropout_features = nn.Dropout(config.feat_quantizer_dropout)
self.quantizer = Wav2Vec2GumbelVectorQuantizer(config)
self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim)
self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim)
# Initialize weights and apply final processing
self.post_init()
def set_gumbel_temperature(self, temperature: int):
"""
Set the Gumbel softmax temperature to a given value. Only necessary for training
"""
self.quantizer.temperature = temperature
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.wav2vec2.feature_extractor._freeze_parameters()
@staticmethod
def compute_contrastive_logits(
target_features: torch.FloatTensor,
negative_features: torch.FloatTensor,
predicted_features: torch.FloatTensor,
temperature: int = 0.1,
):
"""
Compute logits for contrastive loss based using cosine similarity as the distance measure between
`[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied.
"""
target_features = torch.cat([target_features, negative_features], dim=0)
logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1).type_as(
target_features
)
# apply temperature
logits = logits / temperature
return logits
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Wav2Vec2ForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.BoolTensor] = None,
sampled_negative_indices: Optional[torch.BoolTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Wav2Vec2ForPreTrainingOutput]:
r"""
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
masked extracted features in *config.proj_codevector_dim* space.
sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*):
Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss.
Required input for pre-training.
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoFeatureExtractor, Wav2Vec2ForPreTraining
>>> from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices, _sample_negative_indices
>>> from datasets import load_dataset
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
>>> model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1
>>> # compute masked indices
>>> batch_size, raw_sequence_length = input_values.shape
>>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item()
>>> mask_time_indices = _compute_mask_indices(
... shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2
... )
>>> sampled_negative_indices = _sample_negative_indices(
... features_shape=(batch_size, sequence_length),
... num_negatives=model.config.num_negatives,
... mask_time_indices=mask_time_indices,
... )
>>> mask_time_indices = torch.tensor(data=mask_time_indices, device=input_values.device, dtype=torch.long)
>>> sampled_negative_indices = torch.tensor(
... data=sampled_negative_indices, device=input_values.device, dtype=torch.long
... )
>>> with torch.no_grad():
... outputs = model(input_values, mask_time_indices=mask_time_indices)
>>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states)
>>> cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)
>>> # show that cosine similarity is much higher than random
>>> cosine_sim[mask_time_indices.to(torch.bool)].mean() > 0.5
tensor(True)
>>> # for contrastive loss training model should be put into train mode
>>> model = model.train()
>>> loss = model(
... input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices
... ).loss
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if mask_time_indices is not None:
mask_time_indices = mask_time_indices.to(torch.bool)
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
mask_time_indices=mask_time_indices,
return_dict=return_dict,
)
# 1. project all transformed features (including masked) to final vq dim
transformer_features = self.project_hid(outputs[0])
# 2. quantize all (unmasked) extracted features and project to final vq dim
extract_features = self.dropout_features(outputs[1])
if attention_mask is not None:
# compute reduced attention_mask correponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
extract_features.shape[1], attention_mask, add_adapter=False
)
quantized_features, codevector_perplexity = self.quantizer(
extract_features, mask_time_indices=mask_time_indices
)
quantized_features = self.project_q(quantized_features)
loss = contrastive_loss = diversity_loss = None
if sampled_negative_indices is not None:
batch_size, sequence_length, hidden_size = quantized_features.shape
# for training, we sample negatives
# 3. sample K negatives (distractors) quantized states for contrastive loss
# if attention_mask is passed, make sure that padded feature vectors cannot be sampled
# sample negative quantized vectors BTC => (BxT)C
negative_quantized_features = quantized_features.view(-1, hidden_size)[
sampled_negative_indices.long().view(-1)
]
negative_quantized_features = negative_quantized_features.view(
batch_size, sequence_length, -1, hidden_size
).permute(2, 0, 1, 3)
# 4. compute logits, corresponding to `logs = sim(c_t, [q_t, \sim{q}_t]) / \kappa`
# of equation (3) in https://arxiv.org/pdf/2006.11477.pdf
logits = self.compute_contrastive_logits(
quantized_features[None, :],
negative_quantized_features,
transformer_features,
self.config.contrastive_logits_temperature,
)
# 5. if a negative vector is identical to the positive (i.e. when codebook utilization is low),
# its cosine similarity will be masked
neg_is_pos = (quantized_features == negative_quantized_features).all(-1)
if neg_is_pos.any():
logits[1:][neg_is_pos] = float("-inf")
# 6. compute contrastive loss \mathbf{L}_m = cross_entropy(logs) =
# -log(exp(sim(c_t, q_t)/\kappa) / \sum_{\sim{q}} exp(sim(c_t, \sim{q})/\kappa))
logits = logits.transpose(0, 2).reshape(-1, logits.size(0))
target = ((1 - mask_time_indices.long()) * -100).transpose(0, 1).flatten()
contrastive_loss = nn.functional.cross_entropy(logits.float(), target, reduction="sum")
# 7. compute diversity loss: \mathbf{L}_d
num_codevectors = self.config.num_codevectors_per_group * self.config.num_codevector_groups
diversity_loss = ((num_codevectors - codevector_perplexity) / num_codevectors) * mask_time_indices.sum()
# 8. \mathbf{L} = \mathbf{L}_m + \alpha * \mathbf{L}_d
loss = contrastive_loss + self.config.diversity_loss_weight * diversity_loss
if not return_dict:
if loss is not None:
return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return Wav2Vec2ForPreTrainingOutput(
loss=loss,
projected_states=transformer_features,
projected_quantized_states=quantized_features,
codevector_perplexity=codevector_perplexity,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
contrastive_loss=contrastive_loss,
diversity_loss=diversity_loss,
)
@add_start_docstrings("""Wav2Vec2 Model with a `language modeling` head on top.""", WAV_2_VEC_2_START_DOCSTRING)
class Wav2Vec2ForMaskedLM(Wav2Vec2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
warnings.warn(
"The class `Wav2Vec2ForMaskedLM` is deprecated. Please use `Wav2Vec2ForCTC` instead.", FutureWarning
)
self.wav2vec2 = Wav2Vec2Model(config)
self.dropout = nn.Dropout(config.final_dropout)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
def forward(
self,
input_values: torch.FloatTensor,
attention_mask: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, MaskedLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.wav2vec2(
input_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
if not return_dict:
output = (logits,) + outputs[2:]
return output
return MaskedLMOutput(logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
@add_start_docstrings(
"""Wav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
WAV_2_VEC_2_START_DOCSTRING,
"""
target_lang (`str`, *optional*):
Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or
adapter.<lang>.bin. Only relevant when using an instance of [`Wav2Vec2ForCTC`] with adapters. Uses 'eng' by
default.
""",
)
class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel):
def __init__(self, config, target_lang: Optional[str] = None):
super().__init__(config)
self.wav2vec2 = Wav2Vec2Model(config)
self.dropout = nn.Dropout(config.final_dropout)
self.target_lang = target_lang
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that "
"does not define the vocabulary size of the language model head. Please "
"instantiate the model as follows: `Wav2Vec2ForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
"or define `vocab_size` of your model's configuration."
)
output_hidden_size = (
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
)
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def tie_weights(self):
"""
This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
passing `target_lang=...` to `from_pretrained(...)`.
This method is **not** supposed to be called by the user and is prone to be changed in the future.
"""
# Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
# correctly load adapter layers for Wav2Vec2 so that we do not have to introduce a new API to
# [`PreTrainedModel`]. While slightly hacky, Wav2Vec2 never has to tie input and output embeddings, so that it is
# ok to repurpose this function here.
target_lang = self.target_lang
if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
logger.info("By default `target_lang` is set to 'eng'.")
elif target_lang is not None:
self.load_adapter(target_lang, force_load=True)
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.wav2vec2.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.wav2vec2.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_CTC_EXPECTED_OUTPUT,
expected_loss=_CTC_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
config.vocab_size - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if labels.max() >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
# retrieve loss input_lengths from attention_mask
attention_mask = (
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
)
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = nn.functional.ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
blank=self.config.pad_token_id,
reduction=self.config.ctc_loss_reduction,
zero_infinity=self.config.ctc_zero_infinity,
)
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"""
Wav2Vec2 Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like
SUPERB Keyword Spotting.
""",
WAV_2_VEC_2_START_DOCSTRING,
)
class Wav2Vec2ForSequenceClassification(Wav2Vec2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Sequence classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)"
)
self.wav2vec2 = Wav2Vec2Model(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.wav2vec2.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.wav2vec2.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_SEQ_CLASS_CHECKPOINT,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
if attention_mask is None:
pooled_output = hidden_states.mean(dim=1)
else:
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
hidden_states[~padding_mask] = 0.0
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Wav2Vec2 Model with a frame classification head on top for tasks like Speaker Diarization.
""",
WAV_2_VEC_2_START_DOCSTRING,
)
class Wav2Vec2ForAudioFrameClassification(Wav2Vec2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Audio frame classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)"
)
self.wav2vec2 = Wav2Vec2Model(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.num_labels = config.num_labels
self.init_weights()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.wav2vec2.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.wav2vec2.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_FRAME_CLASS_CHECKPOINT,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_FRAME_EXPECTED_OUTPUT,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class AMSoftmaxLoss(nn.Module):
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
super(AMSoftmaxLoss, self).__init__()
self.scale = scale
self.margin = margin
self.num_labels = num_labels
self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True)
self.loss = nn.CrossEntropyLoss()
def forward(self, hidden_states, labels):
labels = labels.flatten()
weight = nn.functional.normalize(self.weight, dim=0)
hidden_states = nn.functional.normalize(hidden_states, dim=1)
cos_theta = torch.mm(hidden_states, weight)
psi = cos_theta - self.margin
onehot = nn.functional.one_hot(labels, self.num_labels)
logits = self.scale * torch.where(onehot.bool(), psi, cos_theta)
loss = self.loss(logits, labels)
return loss
class TDNNLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id]
self.out_conv_dim = config.tdnn_dim[layer_id]
self.kernel_size = config.tdnn_kernel[layer_id]
self.dilation = config.tdnn_dilation[layer_id]
self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim)
self.activation = nn.ReLU()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if is_peft_available():
from peft.tuners.lora import LoraLayer
if isinstance(self.kernel, LoraLayer):
warnings.warn(
"Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. "
"You should exclude TDNNLayer from LoRA's target modules.",
)
# for backward compatibility, we keep nn.Linear but call F.conv1d for speed up
hidden_states = hidden_states.transpose(1, 2)
weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2)
hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation)
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.activation(hidden_states)
return hidden_states
@add_start_docstrings(
"""
Wav2Vec2 Model with an XVector feature extraction head on top for tasks like Speaker Verification.
""",
WAV_2_VEC_2_START_DOCSTRING,
)
class Wav2Vec2ForXVector(Wav2Vec2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.wav2vec2 = Wav2Vec2Model(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0])
tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))]
self.tdnn = nn.ModuleList(tdnn_layers)
self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim)
self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim)
self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels)
self.init_weights()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.wav2vec2.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.wav2vec2.parameters():
param.requires_grad = False
def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the TDNN layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size in self.config.tdnn_kernel:
input_lengths = _conv_out_length(input_lengths, kernel_size, 1)
return input_lengths
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_XVECTOR_CHECKPOINT,
output_type=XVectorOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_XVECTOR_EXPECTED_OUTPUT,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, XVectorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
for tdnn_layer in self.tdnn:
hidden_states = tdnn_layer(hidden_states)
# Statistic Pooling
if attention_mask is None:
mean_features = hidden_states.mean(dim=1)
std_features = hidden_states.std(dim=1)
else:
feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1))
tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths)
mean_features = []
std_features = []
for i, length in enumerate(tdnn_output_lengths):
mean_features.append(hidden_states[i, :length].mean(dim=0))
std_features.append(hidden_states[i, :length].std(dim=0))
mean_features = torch.stack(mean_features)
std_features = torch.stack(std_features)
statistic_pooling = torch.cat([mean_features, std_features], dim=-1)
output_embeddings = self.feature_extractor(statistic_pooling)
logits = self.classifier(output_embeddings)
loss = None
if labels is not None:
loss = self.objective(logits, labels)
if not return_dict:
output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return XVectorOutput(
loss=loss,
logits=logits,
embeddings=output_embeddings,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/wav2vec2/modeling_wav2vec2.py/0 | {
"file_path": "transformers/src/transformers/models/wav2vec2/modeling_wav2vec2.py",
"repo_id": "transformers",
"token_count": 46050
} | 140 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Whisper."""
import json
import os
import re
import warnings
from functools import lru_cache
from typing import List, Optional, Tuple
import numpy as np
from tokenizers import AddedToken, pre_tokenizers, processors
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .english_normalizer import BasicTextNormalizer, EnglishTextNormalizer
from .tokenization_whisper import LANGUAGES, TASK_IDS, TO_LANGUAGE_CODE, WhisperTokenizer, _decode_asr
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"tokenizer_file": "tokenizer.json",
"merges_file": "merges.txt",
"normalizer_file": "normalizer.json",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"openai/whisper-tiny": "https://huggingface.co/openai/whisper-tiny/resolve/main/vocab.json",
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/vocab.json",
"openai/whisper-small": "https://huggingface.co/openai/whisper-small/resolve/main/vocab.json",
"openai/whisper-medium": "https://huggingface.co/openai/whisper-medium/resolve/main/vocab.json",
"openai/whisper-large": "https://huggingface.co/openai/whisper-large/resolve/main/vocab.json",
"openai/whisper-tiny.en": "https://huggingface.co/openai/whisper-tiny.en/resolve/main/vocab.json",
"openai/whisper-base.en": "https://huggingface.co/openai/whisper-base.en/resolve/main/vocab.json",
"openai/whisper-small.en": "https://huggingface.co/openai/whisper-small.en/resolve/main/vocab.json",
"openai/whisper-medium.en": "https://huggingface.co/openai/whisper-medium.en/resolve/main/vocab.json",
},
"merges_file": {
"openai/whisper-tiny": "https://huggingface.co/openai/whisper-tiny/resolve/main/merges.txt",
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/merges.txt",
"openai/whisper-small": "https://huggingface.co/openai/whisper-small/resolve/main/merges.txt",
"openai/whisper-medium": "https://huggingface.co/openai/whisper-medium/resolve/main/merges.txt",
"openai/whisper-large": "https://huggingface.co/openai/whisper-large/resolve/main/merges.txt",
"openai/whisper-tiny.en": "https://huggingface.co/openai/whisper-tiny.en/resolve/main/merges.txt",
"openai/whisper-base.en": "https://huggingface.co/openai/whisper-base.en/resolve/main/merges.txt",
"openai/whisper-small.en": "https://huggingface.co/openai/whisper-small.en/resolve/main/merges.txt",
"openai/whisper-medium.en": "https://huggingface.co/openai/whisper-medium.en/resolve/main/merges.txt",
},
"tokenizer_file": {
"openai/whisper-tiny": "https://huggingface.co/openai/whisper-tiny/resolve/main/tokenizer.json",
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/tokenizer.json",
"openai/whisper-small": "https://huggingface.co/openai/whisper-small/resolve/main/tokenizer.json",
"openai/whisper-medium": "https://huggingface.co/openai/whisper-medium/resolve/main/tokenizer.json",
"openai/whisper-large": "https://huggingface.co/openai/whisper-large/resolve/main/tokenizer.json",
"openai/whisper-tiny.en": "https://huggingface.co/openai/whisper-tiny.en/resolve/main/tokenizer.json",
"openai/whisper-base.en": "https://huggingface.co/openai/whisper-base.en/resolve/main/tokenizer.json",
"openai/whisper-small.en": "https://huggingface.co/openai/whisper-small.en/resolve/main/tokenizer.json",
"openai/whisper-medium.en": "https://huggingface.co/openai/whisper-medium.en/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"openai/whisper-tiny": 1500,
"openai/whisper-base": 1500,
"openai/whisper-small": 1500,
"openai/whisper-medium": 1500,
"openai/whisper-large": 1500,
"openai/whisper-tiny.en": 1500,
"openai/whisper-base.en": 1500,
"openai/whisper-small.en": 1500,
"openai/whisper-medium.en": 1500,
}
class WhisperTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" Whisper tokenizer (backed by HuggingFace's *tokenizers* library).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`, *optional*):
Path to the vocabulary file.
merges_file (`str`, *optional*):
Path to the merges file.
normalizer_file (`str`, *optional*):
Path to the normalizer_file file.
tokenizer_file (`str`, *optional*):
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The beginning of sequence token. The `decoder_start_token_id` is used to set the first token as
`"<|startoftranscript|>"` when generating.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (Whisper tokenizer detect beginning of words by the preceding space).
language (`str`, *optional*):
The language of the transcription text. The corresponding language id token is appended to the start of the
sequence for multilingual speech recognition and speech translation tasks, e.g. for Spanish the token
`"<|es|>"` is appended to the start of sequence. This should be used for multilingual fine-tuning only.
task (`str`, *optional*):
Task identifier to append at the start of sequence (if any). This should be used for mulitlingual
fine-tuning, with `"transcribe"` for speech recognition and `"translate"` for speech translation.
predict_timestamps (`bool`, *optional*, defaults to `False`):
Whether to omit the `<|notimestamps|>` token at the start of the sequence.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = WhisperTokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
normalizer_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
add_prefix_space=False,
language=None,
task=None,
predict_timestamps=False,
**kwargs,
):
bos_token = (
AddedToken(bos_token, lstrip=False, rstrip=False, normalized=False, special=True)
if isinstance(bos_token, str)
else bos_token
)
eos_token = (
AddedToken(eos_token, lstrip=False, rstrip=False, normalized=False, special=True)
if isinstance(eos_token, str)
else eos_token
)
unk_token = (
AddedToken(unk_token, lstrip=False, rstrip=False, normalized=False, special=True)
if isinstance(unk_token, str)
else unk_token
)
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
self.add_bos_token = kwargs.pop("add_bos_token", False)
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
pre_tok_state["add_prefix_space"] = add_prefix_space
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
if normalizer_file is not None:
with open(normalizer_file, encoding="utf-8") as vocab_handle:
self.english_spelling_normalizer = json.load(vocab_handle)
else:
self.english_spelling_normalizer = None
self.add_prefix_space = add_prefix_space
self.timestamp_pat = re.compile(r"<\|(\d+\.\d+)\|>")
self.language = language
self.task = task
self.predict_timestamps = predict_timestamps
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._batch_encode_plus
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*args, **kwargs)
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._encode_plus
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*args, **kwargs)
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._decode_with_timestamps
def _decode_with_timestamps(self, token_ids, skip_special_tokens=False, time_precision=0.02) -> str:
"""
Timestamp tokens are above the special tokens' id range and are ignored by `decode()`. This method decodes
given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
"""
timestamp_begin = self.all_special_ids[-1] + 1
outputs = [[]]
cur_max_timestamp = 0.0
prev_segments_len = 0.0
for token in token_ids:
if token >= timestamp_begin:
timestamp = float((token - timestamp_begin) * time_precision)
if timestamp < cur_max_timestamp:
# next segment has started
prev_segments_len += cur_max_timestamp
cur_max_timestamp = timestamp
outputs.append(f"<|{(timestamp + prev_segments_len):.2f}|>")
outputs.append([])
else:
outputs[-1].append(token)
outputs = [
s if isinstance(s, str) else self.decode(s, skip_special_tokens=skip_special_tokens) for s in outputs
]
return "".join(outputs)
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._compute_offsets
def _compute_offsets(self, token_ids, time_precision=0.02):
"""
Compute offsets for a given tokenized input
Args:
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
time_precision (`float`, `optional`, defaults to 0.02):
The time ratio to convert from token to time.
"""
offsets = []
# ensure torch tensor of token ids is placed on cpu
if "torch" in str(type(token_ids)) and (hasattr(token_ids, "cpu") and callable(token_ids.cpu)):
token_ids = token_ids.cpu()
token_ids = np.array(token_ids)
if token_ids.shape[0] > 1 and len(token_ids.shape) > 1:
raise ValueError("Can only process a single input at a time")
timestamp_begin = self.all_special_ids[-1] + 1
timestamp_tokens = token_ids >= timestamp_begin
consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1
if consecutive.shape[0] == 0 and timestamp_tokens.sum() <= 1:
# either there are no timestamps or there are no consecutive ones
return []
elif np.where(timestamp_tokens)[0][-1] + 1 not in consecutive:
# we add the final timestamp if it is not already in the list
consecutive = np.append(consecutive, np.where(timestamp_tokens)[0][-1] + 1)
last_slice = np.where(timestamp_tokens)[0][0]
for current_slice in consecutive:
sliced_tokens = token_ids[last_slice:current_slice]
if len(sliced_tokens) > 1:
start_timestamp_position = sliced_tokens[0].item() - timestamp_begin
end_timestamp_position = sliced_tokens[-1].item() - timestamp_begin
# strip timestamp tokens from the text output
sliced_tokens = self._preprocess_token_ids(sliced_tokens)
text = self._decode(sliced_tokens)
text = self._filter_timestamp_ids(text)
offsets.append(
{
"text": text,
"timestamp": (
start_timestamp_position * time_precision,
end_timestamp_position * time_precision,
),
}
)
last_slice = current_slice
return offsets
@lru_cache
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.timestamp_ids
def timestamp_ids(self, time_precision=0.02):
"""
Compute the timestamp token ids for a given precision and save to least-recently used (LRU) cache.
Args:
time_precision (`float`, `optional`, defaults to 0.02):
The time ratio to convert from token to time.
"""
return self.convert_tokens_to_ids([("<|%.2f|>" % (i * time_precision)) for i in range(1500 + 1)])
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._preprocess_token_ids
def _preprocess_token_ids(self, token_ids, skip_special_tokens: bool = False):
"""
Pre-process the token ids for decoding by removing the prompt tokens ids and timestamp token ids.
Args:
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Typically, obtained using the `__call__` method of the tokenizer.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens from the token ids. If `True`, the prompt token ids will be
removed.
"""
if skip_special_tokens:
prompt_token_id = self.convert_tokens_to_ids("<|startofprev|>")
decoder_start_token_id = self.convert_tokens_to_ids("<|startoftranscript|>")
token_ids = self._strip_prompt(token_ids, prompt_token_id, decoder_start_token_id)
return token_ids
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._filter_timestamp_ids
def _filter_timestamp_ids(self, token_ids):
return re.sub(self.timestamp_pat, "", token_ids)
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.decode
def decode(
self,
token_ids,
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = None,
output_offsets: bool = False,
time_precision: float = 0.02,
decode_with_timestamps: bool = False,
normalize: bool = False,
basic_normalize: bool = False,
remove_diacritics: bool = False,
**kwargs,
) -> str:
"""
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
tokens and clean up tokenization spaces.
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
Args:
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (`bool`, *optional*):
Whether or not to clean up the tokenization spaces. If `None`, will default to
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
output_offsets (`bool`, *optional*, defaults to `False`):
Whether or not to output the offsets of the tokens. This should only be set if the model predicted
timestamps.
time_precision (`float`, `optional`, defaults to 0.02):
The time ratio to convert from token to time.
decode_with_timestamps (`bool`, *optional*, defaults to `False`):
Whether or not to decode with timestamps included in the raw text.
normalize (`bool`, *optional*, defaults to `False`):
Whether or not to apply the English text normalizer to the decoded text. Only applicable when the
target text is in English. Otherwise, the basic text normalizer should be applied.
basic_normalize (`bool`, *optional*, defaults to `False`):
Whether or not to apply the Basic text normalizer to the decoded text. Applicable to multilingual
target text.
remove_diacritics (`bool`, *optional*, defaults to `False`):
Whether or not to remove diacritics when applying the Basic text normalizer. Removing diacritics may
destroy information in the decoded text, hence it should be used with caution.
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`str`: The decoded sentence.
"""
filtered_ids = self._preprocess_token_ids(
token_ids,
skip_special_tokens=skip_special_tokens,
)
text = super().decode(
filtered_ids,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
normalize=normalize,
basic_normalize=basic_normalize,
remove_diacritics=remove_diacritics,
**kwargs,
)
if decode_with_timestamps:
# legacy method to decode timestamps when not included in the tokenizer vocabulary
text = self._decode_with_timestamps(
filtered_ids, time_precision=time_precision, skip_special_tokens=skip_special_tokens
)
else:
text = self._filter_timestamp_ids(text)
# retrieve offsets
if output_offsets:
offsets = self._compute_offsets(token_ids, time_precision=time_precision)
return {"text": text, "offsets": offsets}
return text
def _decode(
self, *args, normalize: bool = False, basic_normalize: bool = False, remove_diacritics: bool = False, **kwargs
) -> str:
text = super()._decode(*args, **kwargs)
if normalize:
clean_text = self._normalize(text)
return clean_text
elif basic_normalize:
clean_text = self._basic_normalize(text, remove_diacritics=remove_diacritics)
return clean_text
else:
return text
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._normalize
def _normalize(self, text):
warnings.warn(
"The private method `_normalize` is deprecated and will be removed in v5 of Transformers."
"You can normalize an input string using the Whisper English normalizer using the `normalize` method."
)
return self.normalize(text)
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._basic_normalize
def _basic_normalize(self, text, remove_diacritics=False):
warnings.warn(
"The private method `_basic_normalize` is deprecated and will be removed in v5 of Transformers."
"You can normalize an input string using the Whisper basic normalizer using the `basic_normalize` method."
)
return self.basic_normalize(text, remove_diacritics=remove_diacritics)
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.normalize
def normalize(self, text):
"""
Normalize a given string using the `EnglishTextNormalizer` class, which preforms commons transformation on
english text.
"""
normalizer = EnglishTextNormalizer(self.english_spelling_normalizer)
return normalizer(text)
@staticmethod
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.basic_normalize
def basic_normalize(text, remove_diacritics=False):
"""
Normalize a given string using the `BasicTextNormalizer` class, which preforms commons transformation on
multilingual text.
"""
normalizer = BasicTextNormalizer(remove_diacritics=remove_diacritics)
return normalizer(text)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
normalizer_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["normalizer_file"]
)
if self.english_spelling_normalizer is not None:
with open(normalizer_file, "w", encoding="utf-8") as f:
f.write(
json.dumps(self.english_spelling_normalizer, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
)
return tuple(files) + (normalizer_file,)
def set_prefix_tokens(self, language: str = None, task: str = None, predict_timestamps: bool = None):
"""
Override the prefix tokens appended to the start of the label sequence. This method can be used standalone to
update the prefix tokens as required when fine-tuning. Example:
```python
>>> # instantiate the tokenizer and set the prefix token to Spanish
>>> tokenizer = WhisperTokenizerFast.from_pretrained("openai/whisper-tiny", language="spanish")
>>> # now switch the prefix token from Spanish to French
>>> tokenizer.set_prefix_tokens(language="french")
```
Args:
language (`str`, *optional*, defaults to `None`):
The language of the transcription text.
task (`str`, *optional*, defaults to `None`):
Task identifier to append at the start of sequence (if any).
predict_timestamps (`bool`, *optional*, defaults to `None`):
Whether to omit the `<|notimestamps|>` token at the start of the sequence.
"""
self.language = language if language is not None else self.language
self.task = task if task is not None else self.task
self.predict_timestamps = predict_timestamps if predict_timestamps is not None else self.predict_timestamps
prefix_token_ids = self.prefix_tokens
prefixes = self.convert_ids_to_tokens(prefix_token_ids)
eos = self.eos_token
eos_token_id = self.eos_token_id
prefix_template = " ".join([f"{token}:0" for token in prefixes])
self.backend_tokenizer.post_processor = processors.TemplateProcessing(
single=f"{prefix_template} $A:0 {eos}:0",
pair=f"{prefix_template} $A:0 $B:1 {eos}:1",
special_tokens=[
(eos, eos_token_id),
*zip(prefixes, prefix_token_ids),
],
)
@property
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.prefix_tokens
def prefix_tokens(self) -> List[int]:
bos_token_id = self.convert_tokens_to_ids("<|startoftranscript|>")
translate_token_id = self.convert_tokens_to_ids("<|translate|>")
transcribe_token_id = self.convert_tokens_to_ids("<|transcribe|>")
notimestamps_token_id = self.convert_tokens_to_ids("<|notimestamps|>")
langs = tuple(LANGUAGES.keys())
if self.language is not None:
self.language = self.language.lower()
if self.language in TO_LANGUAGE_CODE:
language_id = TO_LANGUAGE_CODE[self.language]
elif self.language in TO_LANGUAGE_CODE.values():
language_id = self.language
else:
is_language_code = len(self.language) == 2
raise ValueError(
f"Unsupported language: {self.language}. Language should be one of:"
f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}."
)
if self.task is not None:
if self.task not in TASK_IDS:
raise ValueError(f"Unsupported task: {self.task}. Task should be in: {TASK_IDS}")
bos_sequence = [bos_token_id]
if self.language is not None:
bos_sequence.append(bos_token_id + 1 + langs.index(language_id))
if self.task is not None:
bos_sequence.append(transcribe_token_id if self.task == "transcribe" else translate_token_id)
if not self.predict_timestamps:
bos_sequence.append(notimestamps_token_id)
return bos_sequence
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
"""Build model inputs from a sequence by appending eos_token_id."""
if token_ids_1 is None:
return self.prefix_tokens + token_ids_0 + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_0 + token_ids_1 + [self.eos_token_id]
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
prefix_ones = [1] * len(self.prefix_tokens)
suffix_ones = [1]
if token_ids_1 is None:
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
@property
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template
def default_chat_template(self):
"""
A simple chat template that ignores role information and just concatenates messages with EOS tokens.
"""
logger.warning_once(
"\nNo chat template is defined for this tokenizer - using the default template "
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
"your model, please set `tokenizer.chat_template` to an appropriate template. "
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
)
return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_decoder_prompt_ids
def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
self.set_prefix_tokens(task=task, language=language, predict_timestamps=not no_timestamps)
# prefix tokens are of the form: <|startoftranscript|> <|lang_id|> <|task|> <|notimestamps|>
# we don't want to force the bos token at position 1, as this is the starting token
# when we generate, so we slice the prefix tokens to: <|lang_id|> <|task|> <|notimestamps|>
# to get the forced tokens
forced_tokens = self.prefix_tokens[1:]
forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_tokens)]
return forced_decoder_ids
def _decode_asr(self, model_outputs, *, return_timestamps, return_language, time_precision):
return _decode_asr(
self,
model_outputs,
return_timestamps=return_timestamps,
return_language=return_language,
time_precision=time_precision,
)
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_prompt_ids
def get_prompt_ids(self, text: str, return_tensors="np"):
"""Converts prompt text to IDs that can be passed to [`~WhisperForConditionalGeneration.generate`]."""
batch_encoding = self("<|startofprev|>", " " + text.strip(), add_special_tokens=False)
# Check for special tokens
prompt_text_ids = batch_encoding["input_ids"][1:]
special_token_id = next((x for x in prompt_text_ids if x >= self.all_special_ids[0]), None)
if special_token_id is not None:
token = self.convert_ids_to_tokens(special_token_id)
raise ValueError(f"Encountered text in the prompt corresponding to disallowed special token: {token}.")
batch_encoding.convert_to_tensors(tensor_type=return_tensors)
return batch_encoding["input_ids"]
@staticmethod
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._strip_prompt
def _strip_prompt(token_ids: List[int], prompt_token_id: int, decoder_start_token_id: int):
has_prompt = isinstance(token_ids, list) and token_ids and token_ids[0] == prompt_token_id
if has_prompt:
if decoder_start_token_id in token_ids:
return token_ids[token_ids.index(decoder_start_token_id) :]
else:
return []
return token_ids
| transformers/src/transformers/models/whisper/tokenization_whisper_fast.py/0 | {
"file_path": "transformers/src/transformers/models/whisper/tokenization_whisper_fast.py",
"repo_id": "transformers",
"token_count": 13837
} | 141 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert OpenAI GPT checkpoint."""
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def convert_xlm_checkpoint_to_pytorch(xlm_checkpoint_path, pytorch_dump_folder_path):
# Load checkpoint
chkpt = torch.load(xlm_checkpoint_path, map_location="cpu")
state_dict = chkpt["model"]
# We have the base model one level deeper than the original XLM repository
two_levels_state_dict = {}
for k, v in state_dict.items():
if "pred_layer" in k:
two_levels_state_dict[k] = v
else:
two_levels_state_dict["transformer." + k] = v
config = chkpt["params"]
config = {n: v for n, v in config.items() if not isinstance(v, (torch.FloatTensor, numpy.ndarray))}
vocab = chkpt["dico_word2id"]
vocab = {s + "</w>" if s.find("@@") == -1 and i > 13 else s.replace("@@", ""): i for s, i in vocab.items()}
# Save pytorch-model
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
pytorch_vocab_dump_path = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"]
print(f"Save PyTorch model to {pytorch_weights_dump_path}")
torch.save(two_levels_state_dict, pytorch_weights_dump_path)
print(f"Save configuration file to {pytorch_config_dump_path}")
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
f.write(json.dumps(config, indent=2) + "\n")
print(f"Save vocab file to {pytorch_config_dump_path}")
with open(pytorch_vocab_dump_path, "w", encoding="utf-8") as f:
f.write(json.dumps(vocab, indent=2) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| transformers/src/transformers/models/xlm/convert_xlm_original_pytorch_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/xlm/convert_xlm_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 1106
} | 142 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XLM_ROBERTa_XL configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json",
"facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json",
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class XLMRobertaXLConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`XLMRobertaXLModel`] or a [`TFXLMRobertaXLModel`].
It is used to instantiate a XLM_ROBERTA_XL model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the
XLM_ROBERTA_XL [facebook/xlm-roberta-xl](https://huggingface.co/facebook/xlm-roberta-xl) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 250880):
Vocabulary size of the XLM_ROBERTA_XL model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`XLMRobertaXLModel`].
hidden_size (`int`, *optional*, defaults to 2560):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 36):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 10240):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 514):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 1):
The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaXLModel`] or
[`TFXLMRobertaXLModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
Examples:
```python
>>> from transformers import XLMRobertaXLConfig, XLMRobertaXLModel
>>> # Initializing a XLM_ROBERTA_XL google-bert/bert-base-uncased style configuration
>>> configuration = XLMRobertaXLConfig()
>>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
>>> model = XLMRobertaXLModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "xlm-roberta-xl"
def __init__(
self,
vocab_size=250880,
hidden_size=2560,
num_hidden_layers=36,
num_attention_heads=32,
intermediate_size=10240,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=514,
type_vocab_size=1,
initializer_range=0.02,
layer_norm_eps=1e-05,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
# Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->XLMRobertaXL
class XLMRobertaXLOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
| transformers/src/transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py/0 | {
"file_path": "transformers/src/transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py",
"repo_id": "transformers",
"token_count": 2941
} | 143 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert YOLOS checkpoints from the original repository. URL: https://github.com/hustvl/YOLOS"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def get_yolos_config(yolos_name: str) -> YolosConfig:
config = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
config.hidden_size = 192
config.intermediate_size = 768
config.num_hidden_layers = 12
config.num_attention_heads = 3
config.image_size = [800, 1333]
config.use_mid_position_embeddings = False
elif yolos_name == "yolos_s_dWr":
config.hidden_size = 330
config.num_hidden_layers = 14
config.num_attention_heads = 6
config.intermediate_size = 1320
elif "yolos_s" in yolos_name:
config.hidden_size = 384
config.intermediate_size = 1536
config.num_hidden_layers = 12
config.num_attention_heads = 6
elif "yolos_b" in yolos_name:
config.image_size = [800, 1344]
config.num_labels = 91
repo_id = "huggingface/label-files"
filename = "coco-detection-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
return config
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_q_k_v(state_dict: dict, config: YolosConfig, base_model: bool = False):
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :]
state_dict[f"encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
state_dict[f"encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
state_dict[f"encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
state_dict[f"encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-config.hidden_size :, :]
state_dict[f"encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
def rename_key(name: str) -> str:
if "backbone" in name:
name = name.replace("backbone", "vit")
if "cls_token" in name:
name = name.replace("cls_token", "embeddings.cls_token")
if "det_token" in name:
name = name.replace("det_token", "embeddings.detection_tokens")
if "mid_pos_embed" in name:
name = name.replace("mid_pos_embed", "encoder.mid_position_embeddings")
if "pos_embed" in name:
name = name.replace("pos_embed", "embeddings.position_embeddings")
if "patch_embed.proj" in name:
name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection")
if "blocks" in name:
name = name.replace("blocks", "encoder.layer")
if "attn.proj" in name:
name = name.replace("attn.proj", "attention.output.dense")
if "attn" in name:
name = name.replace("attn", "attention.self")
if "norm1" in name:
name = name.replace("norm1", "layernorm_before")
if "norm2" in name:
name = name.replace("norm2", "layernorm_after")
if "mlp.fc1" in name:
name = name.replace("mlp.fc1", "intermediate.dense")
if "mlp.fc2" in name:
name = name.replace("mlp.fc2", "output.dense")
if "class_embed" in name:
name = name.replace("class_embed", "class_labels_classifier")
if "bbox_embed" in name:
name = name.replace("bbox_embed", "bbox_predictor")
if "vit.norm" in name:
name = name.replace("vit.norm", "vit.layernorm")
return name
def convert_state_dict(orig_state_dict: dict, model: YolosForObjectDetection) -> dict:
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if "qkv" in key:
key_split = key.split(".")
layer_num = int(key_split[2])
dim = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.query.weight"] = val[:dim, :]
orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.key.weight"] = val[
dim : dim * 2, :
]
orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.value.weight"] = val[-dim:, :]
else:
orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.query.bias"] = val[:dim]
orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.key.bias"] = val[dim : dim * 2]
orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.value.bias"] = val[-dim:]
else:
orig_state_dict[rename_key(key)] = val
return orig_state_dict
# We will verify our results on an image of cute cats
def prepare_img() -> torch.Tensor:
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_yolos_checkpoint(
yolos_name: str, checkpoint_path: str, pytorch_dump_folder_path: str, push_to_hub: bool = False
):
"""
Copy/paste/tweak model's weights to our YOLOS structure.
"""
config = get_yolos_config(yolos_name)
# load original state_dict
state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
# load 🤗 model
model = YolosForObjectDetection(config)
model.eval()
new_state_dict = convert_state_dict(state_dict, model)
model.load_state_dict(new_state_dict)
# Check outputs on an image, prepared by YolosImageProcessor
size = 800 if yolos_name != "yolos_ti" else 512
image_processor = YolosImageProcessor(format="coco_detection", size=size)
encoding = image_processor(images=prepare_img(), return_tensors="pt")
outputs = model(**encoding)
logits, pred_boxes = outputs.logits, outputs.pred_boxes
expected_slice_logits, expected_slice_boxes = None, None
if yolos_name == "yolos_ti":
expected_slice_logits = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]]
)
expected_slice_boxes = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]]
)
elif yolos_name == "yolos_s_200_pre":
expected_slice_logits = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]]
)
expected_slice_boxes = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]]
)
elif yolos_name == "yolos_s_300_pre":
expected_slice_logits = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]]
)
expected_slice_boxes = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]]
)
elif yolos_name == "yolos_s_dWr":
expected_slice_logits = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]]
)
expected_slice_boxes = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]]
)
elif yolos_name == "yolos_base":
expected_slice_logits = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]]
)
expected_slice_boxes = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]]
)
else:
raise ValueError(f"Unknown yolos_name: {yolos_name}")
assert torch.allclose(logits[0, :3, :3], expected_slice_logits, atol=1e-4)
assert torch.allclose(pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4)
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
model_mapping = {
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub...")
model_name = model_mapping[yolos_name]
image_processor.push_to_hub(model_name, organization="hustvl")
model.push_to_hub(model_name, organization="hustvl")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| transformers/src/transformers/models/yolos/convert_yolos_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/yolos/convert_yolos_to_pytorch.py",
"repo_id": "transformers",
"token_count": 5081
} | 144 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import warnings
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
from huggingface_hub import model_info
from ..configuration_utils import PretrainedConfig
from ..dynamic_module_utils import get_class_from_dynamic_module
from ..feature_extraction_utils import PreTrainedFeatureExtractor
from ..image_processing_utils import BaseImageProcessor
from ..models.auto.configuration_auto import AutoConfig
from ..models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor
from ..models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor
from ..models.auto.modeling_auto import AutoModelForDepthEstimation, AutoModelForImageToImage
from ..models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer
from ..tokenization_utils import PreTrainedTokenizer
from ..utils import (
CONFIG_NAME,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
cached_file,
extract_commit_hash,
find_adapter_config_file,
is_kenlm_available,
is_offline_mode,
is_peft_available,
is_pyctcdecode_available,
is_tf_available,
is_torch_available,
logging,
)
from .audio_classification import AudioClassificationPipeline
from .automatic_speech_recognition import AutomaticSpeechRecognitionPipeline
from .base import (
ArgumentHandler,
CsvPipelineDataFormat,
JsonPipelineDataFormat,
PipedPipelineDataFormat,
Pipeline,
PipelineDataFormat,
PipelineException,
PipelineRegistry,
get_default_model_and_revision,
infer_framework_load_model,
)
from .conversational import Conversation, ConversationalPipeline
from .depth_estimation import DepthEstimationPipeline
from .document_question_answering import DocumentQuestionAnsweringPipeline
from .feature_extraction import FeatureExtractionPipeline
from .fill_mask import FillMaskPipeline
from .image_classification import ImageClassificationPipeline
from .image_feature_extraction import ImageFeatureExtractionPipeline
from .image_segmentation import ImageSegmentationPipeline
from .image_to_image import ImageToImagePipeline
from .image_to_text import ImageToTextPipeline
from .mask_generation import MaskGenerationPipeline
from .object_detection import ObjectDetectionPipeline
from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline
from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline
from .text2text_generation import SummarizationPipeline, Text2TextGenerationPipeline, TranslationPipeline
from .text_classification import TextClassificationPipeline
from .text_generation import TextGenerationPipeline
from .text_to_audio import TextToAudioPipeline
from .token_classification import (
AggregationStrategy,
NerPipeline,
TokenClassificationArgumentHandler,
TokenClassificationPipeline,
)
from .video_classification import VideoClassificationPipeline
from .visual_question_answering import VisualQuestionAnsweringPipeline
from .zero_shot_audio_classification import ZeroShotAudioClassificationPipeline
from .zero_shot_classification import ZeroShotClassificationArgumentHandler, ZeroShotClassificationPipeline
from .zero_shot_image_classification import ZeroShotImageClassificationPipeline
from .zero_shot_object_detection import ZeroShotObjectDetectionPipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForImageClassification,
TFAutoModelForMaskedLM,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeq2SeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelForVision2Seq,
TFAutoModelForZeroShotImageClassification,
)
if is_torch_available():
import torch
from ..models.auto.modeling_auto import (
AutoModel,
AutoModelForAudioClassification,
AutoModelForCausalLM,
AutoModelForCTC,
AutoModelForDocumentQuestionAnswering,
AutoModelForImageClassification,
AutoModelForImageSegmentation,
AutoModelForMaskedLM,
AutoModelForMaskGeneration,
AutoModelForObjectDetection,
AutoModelForQuestionAnswering,
AutoModelForSemanticSegmentation,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoModelForSpeechSeq2Seq,
AutoModelForTableQuestionAnswering,
AutoModelForTextToSpectrogram,
AutoModelForTextToWaveform,
AutoModelForTokenClassification,
AutoModelForVideoClassification,
AutoModelForVision2Seq,
AutoModelForVisualQuestionAnswering,
AutoModelForZeroShotImageClassification,
AutoModelForZeroShotObjectDetection,
)
if TYPE_CHECKING:
from ..modeling_tf_utils import TFPreTrainedModel
from ..modeling_utils import PreTrainedModel
from ..tokenization_utils_fast import PreTrainedTokenizerFast
logger = logging.get_logger(__name__)
# Register all the supported tasks here
TASK_ALIASES = {
"sentiment-analysis": "text-classification",
"ner": "token-classification",
"vqa": "visual-question-answering",
"text-to-speech": "text-to-audio",
}
SUPPORTED_TASKS = {
"audio-classification": {
"impl": AudioClassificationPipeline,
"tf": (),
"pt": (AutoModelForAudioClassification,) if is_torch_available() else (),
"default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}},
"type": "audio",
},
"automatic-speech-recognition": {
"impl": AutomaticSpeechRecognitionPipeline,
"tf": (),
"pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (),
"default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "55bb623")}},
"type": "multimodal",
},
"text-to-audio": {
"impl": TextToAudioPipeline,
"tf": (),
"pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (),
"default": {"model": {"pt": ("suno/bark-small", "645cfba")}},
"type": "text",
},
"feature-extraction": {
"impl": FeatureExtractionPipeline,
"tf": (TFAutoModel,) if is_tf_available() else (),
"pt": (AutoModel,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("distilbert/distilbert-base-cased", "935ac13"),
"tf": ("distilbert/distilbert-base-cased", "935ac13"),
}
},
"type": "multimodal",
},
"text-classification": {
"impl": TextClassificationPipeline,
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
"tf": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
},
},
"type": "text",
},
"token-classification": {
"impl": TokenClassificationPipeline,
"tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (),
"pt": (AutoModelForTokenClassification,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
"tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
},
},
"type": "text",
},
"question-answering": {
"impl": QuestionAnsweringPipeline,
"tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (),
"pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
"tf": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
},
},
"type": "text",
},
"table-question-answering": {
"impl": TableQuestionAnsweringPipeline,
"pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (),
"tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (),
"default": {
"model": {
"pt": ("google/tapas-base-finetuned-wtq", "69ceee2"),
"tf": ("google/tapas-base-finetuned-wtq", "69ceee2"),
},
},
"type": "text",
},
"visual-question-answering": {
"impl": VisualQuestionAnsweringPipeline,
"pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available() else (),
"tf": (),
"default": {
"model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "4355f59")},
},
"type": "multimodal",
},
"document-question-answering": {
"impl": DocumentQuestionAnsweringPipeline,
"pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (),
"tf": (),
"default": {
"model": {"pt": ("impira/layoutlm-document-qa", "52e01b3")},
},
"type": "multimodal",
},
"fill-mask": {
"impl": FillMaskPipeline,
"tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (),
"pt": (AutoModelForMaskedLM,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("distilbert/distilroberta-base", "ec58a5b"),
"tf": ("distilbert/distilroberta-base", "ec58a5b"),
}
},
"type": "text",
},
"summarization": {
"impl": SummarizationPipeline,
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
"default": {
"model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("google-t5/t5-small", "d769bba")}
},
"type": "text",
},
# This task is a special case as it's parametrized by SRC, TGT languages.
"translation": {
"impl": TranslationPipeline,
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
"default": {
("en", "fr"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
("en", "de"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
("en", "ro"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
},
"type": "text",
},
"text2text-generation": {
"impl": Text2TextGenerationPipeline,
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
"default": {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
"type": "text",
},
"text-generation": {
"impl": TextGenerationPipeline,
"tf": (TFAutoModelForCausalLM,) if is_tf_available() else (),
"pt": (AutoModelForCausalLM,) if is_torch_available() else (),
"default": {"model": {"pt": ("openai-community/gpt2", "6c0e608"), "tf": ("openai-community/gpt2", "6c0e608")}},
"type": "text",
},
"zero-shot-classification": {
"impl": ZeroShotClassificationPipeline,
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("facebook/bart-large-mnli", "c626438"),
"tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
},
"config": {
"pt": ("facebook/bart-large-mnli", "c626438"),
"tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
},
},
"type": "text",
},
"zero-shot-image-classification": {
"impl": ZeroShotImageClassificationPipeline,
"tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (),
"pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("openai/clip-vit-base-patch32", "f4881ba"),
"tf": ("openai/clip-vit-base-patch32", "f4881ba"),
}
},
"type": "multimodal",
},
"zero-shot-audio-classification": {
"impl": ZeroShotAudioClassificationPipeline,
"tf": (),
"pt": (AutoModel,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("laion/clap-htsat-fused", "973b6e5"),
}
},
"type": "multimodal",
},
"conversational": {
"impl": ConversationalPipeline,
"tf": (TFAutoModelForSeq2SeqLM, TFAutoModelForCausalLM) if is_tf_available() else (),
"pt": (AutoModelForSeq2SeqLM, AutoModelForCausalLM) if is_torch_available() else (),
"default": {
"model": {"pt": ("microsoft/DialoGPT-medium", "8bada3b"), "tf": ("microsoft/DialoGPT-medium", "8bada3b")}
},
"type": "text",
},
"image-classification": {
"impl": ImageClassificationPipeline,
"tf": (TFAutoModelForImageClassification,) if is_tf_available() else (),
"pt": (AutoModelForImageClassification,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("google/vit-base-patch16-224", "5dca96d"),
"tf": ("google/vit-base-patch16-224", "5dca96d"),
}
},
"type": "image",
},
"image-feature-extraction": {
"impl": ImageFeatureExtractionPipeline,
"tf": (TFAutoModel,) if is_tf_available() else (),
"pt": (AutoModel,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("google/vit-base-patch16-224", "29e7a1e183"),
"tf": ("google/vit-base-patch16-224", "29e7a1e183"),
}
},
"type": "image",
},
"image-segmentation": {
"impl": ImageSegmentationPipeline,
"tf": (),
"pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (),
"default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}},
"type": "multimodal",
},
"image-to-text": {
"impl": ImageToTextPipeline,
"tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (),
"pt": (AutoModelForVision2Seq,) if is_torch_available() else (),
"default": {
"model": {
"pt": ("ydshieh/vit-gpt2-coco-en", "65636df"),
"tf": ("ydshieh/vit-gpt2-coco-en", "65636df"),
}
},
"type": "multimodal",
},
"object-detection": {
"impl": ObjectDetectionPipeline,
"tf": (),
"pt": (AutoModelForObjectDetection,) if is_torch_available() else (),
"default": {"model": {"pt": ("facebook/detr-resnet-50", "2729413")}},
"type": "multimodal",
},
"zero-shot-object-detection": {
"impl": ZeroShotObjectDetectionPipeline,
"tf": (),
"pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (),
"default": {"model": {"pt": ("google/owlvit-base-patch32", "17740e1")}},
"type": "multimodal",
},
"depth-estimation": {
"impl": DepthEstimationPipeline,
"tf": (),
"pt": (AutoModelForDepthEstimation,) if is_torch_available() else (),
"default": {"model": {"pt": ("Intel/dpt-large", "e93beec")}},
"type": "image",
},
"video-classification": {
"impl": VideoClassificationPipeline,
"tf": (),
"pt": (AutoModelForVideoClassification,) if is_torch_available() else (),
"default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "4800870")}},
"type": "video",
},
"mask-generation": {
"impl": MaskGenerationPipeline,
"tf": (),
"pt": (AutoModelForMaskGeneration,) if is_torch_available() else (),
"default": {"model": {"pt": ("facebook/sam-vit-huge", "997b15")}},
"type": "multimodal",
},
"image-to-image": {
"impl": ImageToImagePipeline,
"tf": (),
"pt": (AutoModelForImageToImage,) if is_torch_available() else (),
"default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "4aaedcb")}},
"type": "image",
},
}
NO_FEATURE_EXTRACTOR_TASKS = set()
NO_IMAGE_PROCESSOR_TASKS = set()
NO_TOKENIZER_TASKS = set()
# Those model configs are special, they are generic over their task, meaning
# any tokenizer/feature_extractor might be use for a given model so we cannot
# use the statically defined TOKENIZER_MAPPING and FEATURE_EXTRACTOR_MAPPING to
# see if the model defines such objects or not.
MULTI_MODEL_AUDIO_CONFIGS = {"SpeechEncoderDecoderConfig"}
MULTI_MODEL_VISION_CONFIGS = {"VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig"}
for task, values in SUPPORTED_TASKS.items():
if values["type"] == "text":
NO_FEATURE_EXTRACTOR_TASKS.add(task)
NO_IMAGE_PROCESSOR_TASKS.add(task)
elif values["type"] in {"image", "video"}:
NO_TOKENIZER_TASKS.add(task)
elif values["type"] in {"audio"}:
NO_TOKENIZER_TASKS.add(task)
NO_IMAGE_PROCESSOR_TASKS.add(task)
elif values["type"] != "multimodal":
raise ValueError(f"SUPPORTED_TASK {task} contains invalid type {values['type']}")
PIPELINE_REGISTRY = PipelineRegistry(supported_tasks=SUPPORTED_TASKS, task_aliases=TASK_ALIASES)
def get_supported_tasks() -> List[str]:
"""
Returns a list of supported task strings.
"""
return PIPELINE_REGISTRY.get_supported_tasks()
def get_task(model: str, token: Optional[str] = None, **deprecated_kwargs) -> str:
use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
token = use_auth_token
if is_offline_mode():
raise RuntimeError("You cannot infer task automatically within `pipeline` when using offline mode")
try:
info = model_info(model, token=token)
except Exception as e:
raise RuntimeError(f"Instantiating a pipeline without a task set raised an error: {e}")
if not info.pipeline_tag:
raise RuntimeError(
f"The model {model} does not seem to have a correct `pipeline_tag` set to infer the task automatically"
)
if getattr(info, "library_name", "transformers") != "transformers":
raise RuntimeError(f"This model is meant to be used with {info.library_name} not with transformers")
task = info.pipeline_tag
return task
def check_task(task: str) -> Tuple[str, Dict, Any]:
"""
Checks an incoming task string, to validate it's correct and return the default Pipeline and Model classes, and
default models if they exist.
Args:
task (`str`):
The task defining which pipeline will be returned. Currently accepted tasks are:
- `"audio-classification"`
- `"automatic-speech-recognition"`
- `"conversational"`
- `"depth-estimation"`
- `"document-question-answering"`
- `"feature-extraction"`
- `"fill-mask"`
- `"image-classification"`
- `"image-feature-extraction"`
- `"image-segmentation"`
- `"image-to-text"`
- `"image-to-image"`
- `"object-detection"`
- `"question-answering"`
- `"summarization"`
- `"table-question-answering"`
- `"text2text-generation"`
- `"text-classification"` (alias `"sentiment-analysis"` available)
- `"text-generation"`
- `"text-to-audio"` (alias `"text-to-speech"` available)
- `"token-classification"` (alias `"ner"` available)
- `"translation"`
- `"translation_xx_to_yy"`
- `"video-classification"`
- `"visual-question-answering"` (alias `"vqa"` available)
- `"zero-shot-classification"`
- `"zero-shot-image-classification"`
- `"zero-shot-object-detection"`
Returns:
(normalized_task: `str`, task_defaults: `dict`, task_options: (`tuple`, None)) The normalized task name
(removed alias and options). The actual dictionary required to initialize the pipeline and some extra task
options for parametrized tasks like "translation_XX_to_YY"
"""
return PIPELINE_REGISTRY.check_task(task)
def clean_custom_task(task_info):
import transformers
if "impl" not in task_info:
raise RuntimeError("This model introduces a custom pipeline without specifying its implementation.")
pt_class_names = task_info.get("pt", ())
if isinstance(pt_class_names, str):
pt_class_names = [pt_class_names]
task_info["pt"] = tuple(getattr(transformers, c) for c in pt_class_names)
tf_class_names = task_info.get("tf", ())
if isinstance(tf_class_names, str):
tf_class_names = [tf_class_names]
task_info["tf"] = tuple(getattr(transformers, c) for c in tf_class_names)
return task_info, None
def pipeline(
task: str = None,
model: Optional[Union[str, "PreTrainedModel", "TFPreTrainedModel"]] = None,
config: Optional[Union[str, PretrainedConfig]] = None,
tokenizer: Optional[Union[str, PreTrainedTokenizer, "PreTrainedTokenizerFast"]] = None,
feature_extractor: Optional[Union[str, PreTrainedFeatureExtractor]] = None,
image_processor: Optional[Union[str, BaseImageProcessor]] = None,
framework: Optional[str] = None,
revision: Optional[str] = None,
use_fast: bool = True,
token: Optional[Union[str, bool]] = None,
device: Optional[Union[int, str, "torch.device"]] = None,
device_map=None,
torch_dtype=None,
trust_remote_code: Optional[bool] = None,
model_kwargs: Dict[str, Any] = None,
pipeline_class: Optional[Any] = None,
**kwargs,
) -> Pipeline:
"""
Utility factory method to build a [`Pipeline`].
Pipelines are made of:
- A [tokenizer](tokenizer) in charge of mapping raw textual input to token.
- A [model](model) to make predictions from the inputs.
- Some (optional) post processing for enhancing model's output.
Args:
task (`str`):
The task defining which pipeline will be returned. Currently accepted tasks are:
- `"audio-classification"`: will return a [`AudioClassificationPipeline`].
- `"automatic-speech-recognition"`: will return a [`AutomaticSpeechRecognitionPipeline`].
- `"conversational"`: will return a [`ConversationalPipeline`].
- `"depth-estimation"`: will return a [`DepthEstimationPipeline`].
- `"document-question-answering"`: will return a [`DocumentQuestionAnsweringPipeline`].
- `"feature-extraction"`: will return a [`FeatureExtractionPipeline`].
- `"fill-mask"`: will return a [`FillMaskPipeline`]:.
- `"image-classification"`: will return a [`ImageClassificationPipeline`].
- `"image-feature-extraction"`: will return an [`ImageFeatureExtractionPipeline`].
- `"image-segmentation"`: will return a [`ImageSegmentationPipeline`].
- `"image-to-image"`: will return a [`ImageToImagePipeline`].
- `"image-to-text"`: will return a [`ImageToTextPipeline`].
- `"mask-generation"`: will return a [`MaskGenerationPipeline`].
- `"object-detection"`: will return a [`ObjectDetectionPipeline`].
- `"question-answering"`: will return a [`QuestionAnsweringPipeline`].
- `"summarization"`: will return a [`SummarizationPipeline`].
- `"table-question-answering"`: will return a [`TableQuestionAnsweringPipeline`].
- `"text2text-generation"`: will return a [`Text2TextGenerationPipeline`].
- `"text-classification"` (alias `"sentiment-analysis"` available): will return a
[`TextClassificationPipeline`].
- `"text-generation"`: will return a [`TextGenerationPipeline`]:.
- `"text-to-audio"` (alias `"text-to-speech"` available): will return a [`TextToAudioPipeline`]:.
- `"token-classification"` (alias `"ner"` available): will return a [`TokenClassificationPipeline`].
- `"translation"`: will return a [`TranslationPipeline`].
- `"translation_xx_to_yy"`: will return a [`TranslationPipeline`].
- `"video-classification"`: will return a [`VideoClassificationPipeline`].
- `"visual-question-answering"`: will return a [`VisualQuestionAnsweringPipeline`].
- `"zero-shot-classification"`: will return a [`ZeroShotClassificationPipeline`].
- `"zero-shot-image-classification"`: will return a [`ZeroShotImageClassificationPipeline`].
- `"zero-shot-audio-classification"`: will return a [`ZeroShotAudioClassificationPipeline`].
- `"zero-shot-object-detection"`: will return a [`ZeroShotObjectDetectionPipeline`].
model (`str` or [`PreTrainedModel`] or [`TFPreTrainedModel`], *optional*):
The model that will be used by the pipeline to make predictions. This can be a model identifier or an
actual instance of a pretrained model inheriting from [`PreTrainedModel`] (for PyTorch) or
[`TFPreTrainedModel`] (for TensorFlow).
If not provided, the default for the `task` will be loaded.
config (`str` or [`PretrainedConfig`], *optional*):
The configuration that will be used by the pipeline to instantiate the model. This can be a model
identifier or an actual pretrained model configuration inheriting from [`PretrainedConfig`].
If not provided, the default configuration file for the requested model will be used. That means that if
`model` is given, its default configuration will be used. However, if `model` is not supplied, this
`task`'s default model's config is used instead.
tokenizer (`str` or [`PreTrainedTokenizer`], *optional*):
The tokenizer that will be used by the pipeline to encode data for the model. This can be a model
identifier or an actual pretrained tokenizer inheriting from [`PreTrainedTokenizer`].
If not provided, the default tokenizer for the given `model` will be loaded (if it is a string). If `model`
is not specified or not a string, then the default tokenizer for `config` is loaded (if it is a string).
However, if `config` is also not given or not a string, then the default tokenizer for the given `task`
will be loaded.
feature_extractor (`str` or [`PreTrainedFeatureExtractor`], *optional*):
The feature extractor that will be used by the pipeline to encode data for the model. This can be a model
identifier or an actual pretrained feature extractor inheriting from [`PreTrainedFeatureExtractor`].
Feature extractors are used for non-NLP models, such as Speech or Vision models as well as multi-modal
models. Multi-modal models will also require a tokenizer to be passed.
If not provided, the default feature extractor for the given `model` will be loaded (if it is a string). If
`model` is not specified or not a string, then the default feature extractor for `config` is loaded (if it
is a string). However, if `config` is also not given or not a string, then the default feature extractor
for the given `task` will be loaded.
framework (`str`, *optional*):
The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be
installed.
If no framework is specified, will default to the one currently installed. If no framework is specified and
both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is
provided.
revision (`str`, *optional*, defaults to `"main"`):
When passing a task name or a string model identifier: The specific model version to use. It can be a
branch name, a tag name, or a commit id, since we use a git-based system for storing models and other
artifacts on huggingface.co, so `revision` can be any identifier allowed by git.
use_fast (`bool`, *optional*, defaults to `True`):
Whether or not to use a Fast tokenizer if possible (a [`PreTrainedTokenizerFast`]).
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
device (`int` or `str` or `torch.device`):
Defines the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank like `1`) on which this
pipeline will be allocated.
device_map (`str` or `Dict[str, Union[int, str, torch.device]`, *optional*):
Sent directly as `model_kwargs` (just a simpler shortcut). When `accelerate` library is present, set
`device_map="auto"` to compute the most optimized `device_map` automatically (see
[here](https://huggingface.co/docs/accelerate/main/en/package_reference/big_modeling#accelerate.cpu_offload)
for more information).
<Tip warning={true}>
Do not use `device_map` AND `device` at the same time as they will conflict
</Tip>
torch_dtype (`str` or `torch.dtype`, *optional*):
Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model
(`torch.float16`, `torch.bfloat16`, ... or `"auto"`).
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom code defined on the Hub in their own modeling, configuration,
tokenization or even pipeline files. This option should only be set to `True` for repositories you trust
and in which you have read the code, as it will execute code present on the Hub on your local machine.
model_kwargs (`Dict[str, Any]`, *optional*):
Additional dictionary of keyword arguments passed along to the model's `from_pretrained(...,
**model_kwargs)` function.
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the specific pipeline init (see the documentation for the
corresponding pipeline class for possible values).
Returns:
[`Pipeline`]: A suitable pipeline for the task.
Examples:
```python
>>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
>>> # Sentiment analysis pipeline
>>> analyzer = pipeline("sentiment-analysis")
>>> # Question answering pipeline, specifying the checkpoint identifier
>>> oracle = pipeline(
... "question-answering", model="distilbert/distilbert-base-cased-distilled-squad", tokenizer="google-bert/bert-base-cased"
... )
>>> # Named entity recognition pipeline, passing in a specific model and tokenizer
>>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> recognizer = pipeline("ner", model=model, tokenizer=tokenizer)
```"""
if model_kwargs is None:
model_kwargs = {}
# Make sure we only pass use_auth_token once as a kwarg (it used to be possible to pass it in model_kwargs,
# this is to keep BC).
use_auth_token = model_kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
token = use_auth_token
code_revision = kwargs.pop("code_revision", None)
commit_hash = kwargs.pop("_commit_hash", None)
hub_kwargs = {
"revision": revision,
"token": token,
"trust_remote_code": trust_remote_code,
"_commit_hash": commit_hash,
}
if task is None and model is None:
raise RuntimeError(
"Impossible to instantiate a pipeline without either a task or a model "
"being specified. "
"Please provide a task class or a model"
)
if model is None and tokenizer is not None:
raise RuntimeError(
"Impossible to instantiate a pipeline with tokenizer specified but not the model as the provided tokenizer"
" may not be compatible with the default model. Please provide a PreTrainedModel class or a"
" path/identifier to a pretrained model when providing tokenizer."
)
if model is None and feature_extractor is not None:
raise RuntimeError(
"Impossible to instantiate a pipeline with feature_extractor specified but not the model as the provided"
" feature_extractor may not be compatible with the default model. Please provide a PreTrainedModel class"
" or a path/identifier to a pretrained model when providing feature_extractor."
)
if isinstance(model, Path):
model = str(model)
if commit_hash is None:
pretrained_model_name_or_path = None
if isinstance(config, str):
pretrained_model_name_or_path = config
elif config is None and isinstance(model, str):
pretrained_model_name_or_path = model
if not isinstance(config, PretrainedConfig) and pretrained_model_name_or_path is not None:
# We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
resolved_config_file = cached_file(
pretrained_model_name_or_path,
CONFIG_NAME,
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
**hub_kwargs,
)
hub_kwargs["_commit_hash"] = extract_commit_hash(resolved_config_file, commit_hash)
else:
hub_kwargs["_commit_hash"] = getattr(config, "_commit_hash", None)
# Config is the primordial information item.
# Instantiate config if needed
if isinstance(config, str):
config = AutoConfig.from_pretrained(
config, _from_pipeline=task, code_revision=code_revision, **hub_kwargs, **model_kwargs
)
hub_kwargs["_commit_hash"] = config._commit_hash
elif config is None and isinstance(model, str):
# Check for an adapter file in the model path if PEFT is available
if is_peft_available():
# `find_adapter_config_file` doesn't accept `trust_remote_code`
_hub_kwargs = {k: v for k, v in hub_kwargs.items() if k != "trust_remote_code"}
maybe_adapter_path = find_adapter_config_file(
model,
token=hub_kwargs["token"],
revision=hub_kwargs["revision"],
_commit_hash=hub_kwargs["_commit_hash"],
)
if maybe_adapter_path is not None:
with open(maybe_adapter_path, "r", encoding="utf-8") as f:
adapter_config = json.load(f)
model = adapter_config["base_model_name_or_path"]
config = AutoConfig.from_pretrained(
model, _from_pipeline=task, code_revision=code_revision, **hub_kwargs, **model_kwargs
)
hub_kwargs["_commit_hash"] = config._commit_hash
custom_tasks = {}
if config is not None and len(getattr(config, "custom_pipelines", {})) > 0:
custom_tasks = config.custom_pipelines
if task is None and trust_remote_code is not False:
if len(custom_tasks) == 1:
task = list(custom_tasks.keys())[0]
else:
raise RuntimeError(
"We can't infer the task automatically for this model as there are multiple tasks available. Pick "
f"one in {', '.join(custom_tasks.keys())}"
)
if task is None and model is not None:
if not isinstance(model, str):
raise RuntimeError(
"Inferring the task automatically requires to check the hub with a model_id defined as a `str`. "
f"{model} is not a valid model_id."
)
task = get_task(model, token)
# Retrieve the task
if task in custom_tasks:
normalized_task = task
targeted_task, task_options = clean_custom_task(custom_tasks[task])
if pipeline_class is None:
if not trust_remote_code:
raise ValueError(
"Loading this pipeline requires you to execute the code in the pipeline file in that"
" repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
" set the option `trust_remote_code=True` to remove this error."
)
class_ref = targeted_task["impl"]
pipeline_class = get_class_from_dynamic_module(
class_ref,
model,
code_revision=code_revision,
**hub_kwargs,
)
else:
normalized_task, targeted_task, task_options = check_task(task)
if pipeline_class is None:
pipeline_class = targeted_task["impl"]
# Use default model/config/tokenizer for the task if no model is provided
if model is None:
# At that point framework might still be undetermined
model, default_revision = get_default_model_and_revision(targeted_task, framework, task_options)
revision = revision if revision is not None else default_revision
logger.warning(
f"No model was supplied, defaulted to {model} and revision"
f" {revision} ({HUGGINGFACE_CO_RESOLVE_ENDPOINT}/{model}).\n"
"Using a pipeline without specifying a model name and revision in production is not recommended."
)
if config is None and isinstance(model, str):
config = AutoConfig.from_pretrained(model, _from_pipeline=task, **hub_kwargs, **model_kwargs)
hub_kwargs["_commit_hash"] = config._commit_hash
if device_map is not None:
if "device_map" in model_kwargs:
raise ValueError(
'You cannot use both `pipeline(... device_map=..., model_kwargs={"device_map":...})` as those'
" arguments might conflict, use only one.)"
)
if device is not None:
logger.warning(
"Both `device` and `device_map` are specified. `device` will override `device_map`. You"
" will most likely encounter unexpected behavior. Please remove `device` and keep `device_map`."
)
model_kwargs["device_map"] = device_map
if torch_dtype is not None:
if "torch_dtype" in model_kwargs:
raise ValueError(
'You cannot use both `pipeline(... torch_dtype=..., model_kwargs={"torch_dtype":...})` as those'
" arguments might conflict, use only one.)"
)
if isinstance(torch_dtype, str) and hasattr(torch, torch_dtype):
torch_dtype = getattr(torch, torch_dtype)
model_kwargs["torch_dtype"] = torch_dtype
model_name = model if isinstance(model, str) else None
# Load the correct model if possible
# Infer the framework from the model if not already defined
if isinstance(model, str) or framework is None:
model_classes = {"tf": targeted_task["tf"], "pt": targeted_task["pt"]}
framework, model = infer_framework_load_model(
model,
model_classes=model_classes,
config=config,
framework=framework,
task=task,
**hub_kwargs,
**model_kwargs,
)
model_config = model.config
hub_kwargs["_commit_hash"] = model.config._commit_hash
load_tokenizer = type(model_config) in TOKENIZER_MAPPING or model_config.tokenizer_class is not None
load_feature_extractor = type(model_config) in FEATURE_EXTRACTOR_MAPPING or feature_extractor is not None
load_image_processor = type(model_config) in IMAGE_PROCESSOR_MAPPING or image_processor is not None
# If `model` (instance of `PretrainedModel` instead of `str`) is passed (and/or same for config), while
# `image_processor` or `feature_extractor` is `None`, the loading will fail. This happens particularly for some
# vision tasks when calling `pipeline()` with `model` and only one of the `image_processor` and `feature_extractor`.
# TODO: we need to make `NO_IMAGE_PROCESSOR_TASKS` and `NO_FEATURE_EXTRACTOR_TASKS` more robust to avoid such issue.
# This block is only temporarily to make CI green.
if load_image_processor and load_feature_extractor:
load_feature_extractor = False
if (
tokenizer is None
and not load_tokenizer
and normalized_task not in NO_TOKENIZER_TASKS
# Using class name to avoid importing the real class.
and (
model_config.__class__.__name__ in MULTI_MODEL_AUDIO_CONFIGS
or model_config.__class__.__name__ in MULTI_MODEL_VISION_CONFIGS
)
):
# This is a special category of models, that are fusions of multiple models
# so the model_config might not define a tokenizer, but it seems to be
# necessary for the task, so we're force-trying to load it.
load_tokenizer = True
if (
image_processor is None
and not load_image_processor
and normalized_task not in NO_IMAGE_PROCESSOR_TASKS
# Using class name to avoid importing the real class.
and model_config.__class__.__name__ in MULTI_MODEL_VISION_CONFIGS
):
# This is a special category of models, that are fusions of multiple models
# so the model_config might not define a tokenizer, but it seems to be
# necessary for the task, so we're force-trying to load it.
load_image_processor = True
if (
feature_extractor is None
and not load_feature_extractor
and normalized_task not in NO_FEATURE_EXTRACTOR_TASKS
# Using class name to avoid importing the real class.
and model_config.__class__.__name__ in MULTI_MODEL_AUDIO_CONFIGS
):
# This is a special category of models, that are fusions of multiple models
# so the model_config might not define a tokenizer, but it seems to be
# necessary for the task, so we're force-trying to load it.
load_feature_extractor = True
if task in NO_TOKENIZER_TASKS:
# These will never require a tokenizer.
# the model on the other hand might have a tokenizer, but
# the files could be missing from the hub, instead of failing
# on such repos, we just force to not load it.
load_tokenizer = False
if task in NO_FEATURE_EXTRACTOR_TASKS:
load_feature_extractor = False
if task in NO_IMAGE_PROCESSOR_TASKS:
load_image_processor = False
if load_tokenizer:
# Try to infer tokenizer from model or config name (if provided as str)
if tokenizer is None:
if isinstance(model_name, str):
tokenizer = model_name
elif isinstance(config, str):
tokenizer = config
else:
# Impossible to guess what is the right tokenizer here
raise Exception(
"Impossible to guess which tokenizer to use. "
"Please provide a PreTrainedTokenizer class or a path/identifier to a pretrained tokenizer."
)
# Instantiate tokenizer if needed
if isinstance(tokenizer, (str, tuple)):
if isinstance(tokenizer, tuple):
# For tuple we have (tokenizer name, {kwargs})
use_fast = tokenizer[1].pop("use_fast", use_fast)
tokenizer_identifier = tokenizer[0]
tokenizer_kwargs = tokenizer[1]
else:
tokenizer_identifier = tokenizer
tokenizer_kwargs = model_kwargs.copy()
tokenizer_kwargs.pop("torch_dtype", None)
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_identifier, use_fast=use_fast, _from_pipeline=task, **hub_kwargs, **tokenizer_kwargs
)
if load_image_processor:
# Try to infer image processor from model or config name (if provided as str)
if image_processor is None:
if isinstance(model_name, str):
image_processor = model_name
elif isinstance(config, str):
image_processor = config
# Backward compatibility, as `feature_extractor` used to be the name
# for `ImageProcessor`.
elif feature_extractor is not None and isinstance(feature_extractor, BaseImageProcessor):
image_processor = feature_extractor
else:
# Impossible to guess what is the right image_processor here
raise Exception(
"Impossible to guess which image processor to use. "
"Please provide a PreTrainedImageProcessor class or a path/identifier "
"to a pretrained image processor."
)
# Instantiate image_processor if needed
if isinstance(image_processor, (str, tuple)):
image_processor = AutoImageProcessor.from_pretrained(
image_processor, _from_pipeline=task, **hub_kwargs, **model_kwargs
)
if load_feature_extractor:
# Try to infer feature extractor from model or config name (if provided as str)
if feature_extractor is None:
if isinstance(model_name, str):
feature_extractor = model_name
elif isinstance(config, str):
feature_extractor = config
else:
# Impossible to guess what is the right feature_extractor here
raise Exception(
"Impossible to guess which feature extractor to use. "
"Please provide a PreTrainedFeatureExtractor class or a path/identifier "
"to a pretrained feature extractor."
)
# Instantiate feature_extractor if needed
if isinstance(feature_extractor, (str, tuple)):
feature_extractor = AutoFeatureExtractor.from_pretrained(
feature_extractor, _from_pipeline=task, **hub_kwargs, **model_kwargs
)
if (
feature_extractor._processor_class
and feature_extractor._processor_class.endswith("WithLM")
and isinstance(model_name, str)
):
try:
import kenlm # to trigger `ImportError` if not installed
from pyctcdecode import BeamSearchDecoderCTC
if os.path.isdir(model_name) or os.path.isfile(model_name):
decoder = BeamSearchDecoderCTC.load_from_dir(model_name)
else:
language_model_glob = os.path.join(
BeamSearchDecoderCTC._LANGUAGE_MODEL_SERIALIZED_DIRECTORY, "*"
)
alphabet_filename = BeamSearchDecoderCTC._ALPHABET_SERIALIZED_FILENAME
allow_patterns = [language_model_glob, alphabet_filename]
decoder = BeamSearchDecoderCTC.load_from_hf_hub(model_name, allow_patterns=allow_patterns)
kwargs["decoder"] = decoder
except ImportError as e:
logger.warning(f"Could not load the `decoder` for {model_name}. Defaulting to raw CTC. Error: {e}")
if not is_kenlm_available():
logger.warning("Try to install `kenlm`: `pip install kenlm")
if not is_pyctcdecode_available():
logger.warning("Try to install `pyctcdecode`: `pip install pyctcdecode")
if task == "translation" and model.config.task_specific_params:
for key in model.config.task_specific_params:
if key.startswith("translation"):
task = key
warnings.warn(
f'"translation" task was used, instead of "translation_XX_to_YY", defaulting to "{task}"',
UserWarning,
)
break
if tokenizer is not None:
kwargs["tokenizer"] = tokenizer
if feature_extractor is not None:
kwargs["feature_extractor"] = feature_extractor
if torch_dtype is not None:
kwargs["torch_dtype"] = torch_dtype
if image_processor is not None:
kwargs["image_processor"] = image_processor
if device is not None:
kwargs["device"] = device
return pipeline_class(model=model, framework=framework, task=task, **kwargs)
| transformers/src/transformers/pipelines/__init__.py/0 | {
"file_path": "transformers/src/transformers/pipelines/__init__.py",
"repo_id": "transformers",
"token_count": 21563
} | 145 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import Pipeline, build_pipeline_init_args
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import (
MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
)
logger = logging.get_logger(__name__)
Prediction = Dict[str, Any]
Predictions = List[Prediction]
@add_end_docstrings(build_pipeline_init_args(has_image_processor=True))
class ObjectDetectionPipeline(Pipeline):
"""
Object detection pipeline using any `AutoModelForObjectDetection`. This pipeline predicts bounding boxes of objects
and their classes.
Example:
```python
>>> from transformers import pipeline
>>> detector = pipeline(model="facebook/detr-resnet-50")
>>> detector("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png")
[{'score': 0.997, 'label': 'bird', 'box': {'xmin': 69, 'ymin': 171, 'xmax': 396, 'ymax': 507}}, {'score': 0.999, 'label': 'bird', 'box': {'xmin': 398, 'ymin': 105, 'xmax': 767, 'ymax': 507}}]
>>> # x, y are expressed relative to the top left hand corner.
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"object-detection"`.
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=object-detection).
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.framework == "tf":
raise ValueError(f"The {self.__class__} is only available in PyTorch.")
requires_backends(self, "vision")
mapping = MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES.copy()
mapping.update(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES)
self.check_model_type(mapping)
def _sanitize_parameters(self, **kwargs):
preprocess_params = {}
if "timeout" in kwargs:
preprocess_params["timeout"] = kwargs["timeout"]
postprocess_kwargs = {}
if "threshold" in kwargs:
postprocess_kwargs["threshold"] = kwargs["threshold"]
return preprocess_params, {}, postprocess_kwargs
def __call__(self, *args, **kwargs) -> Union[Predictions, List[Prediction]]:
"""
Detect objects (bounding boxes & classes) in the image(s) passed as inputs.
Args:
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
The pipeline handles three types of images:
- A string containing an HTTP(S) link pointing to an image
- A string containing a local path to an image
- An image loaded in PIL directly
The pipeline accepts either a single image or a batch of images. Images in a batch must all be in the
same format: all as HTTP(S) links, all as local paths, or all as PIL images.
threshold (`float`, *optional*, defaults to 0.9):
The probability necessary to make a prediction.
timeout (`float`, *optional*, defaults to None):
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
the call may block forever.
Return:
A list of dictionaries or a list of list of dictionaries containing the result. If the input is a single
image, will return a list of dictionaries, if the input is a list of several images, will return a list of
list of dictionaries corresponding to each image.
The dictionaries contain the following keys:
- **label** (`str`) -- The class label identified by the model.
- **score** (`float`) -- The score attributed by the model for that label.
- **box** (`List[Dict[str, int]]`) -- The bounding box of detected object in image's original size.
"""
return super().__call__(*args, **kwargs)
def preprocess(self, image, timeout=None):
image = load_image(image, timeout=timeout)
target_size = torch.IntTensor([[image.height, image.width]])
inputs = self.image_processor(images=[image], return_tensors="pt")
if self.tokenizer is not None:
inputs = self.tokenizer(text=inputs["words"], boxes=inputs["boxes"], return_tensors="pt")
inputs["target_size"] = target_size
return inputs
def _forward(self, model_inputs):
target_size = model_inputs.pop("target_size")
outputs = self.model(**model_inputs)
model_outputs = outputs.__class__({"target_size": target_size, **outputs})
if self.tokenizer is not None:
model_outputs["bbox"] = model_inputs["bbox"]
return model_outputs
def postprocess(self, model_outputs, threshold=0.9):
target_size = model_outputs["target_size"]
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
height, width = target_size[0].tolist()
def unnormalize(bbox):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
]
)
)
scores, classes = model_outputs["logits"].squeeze(0).softmax(dim=-1).max(dim=-1)
labels = [self.model.config.id2label[prediction] for prediction in classes.tolist()]
boxes = [unnormalize(bbox) for bbox in model_outputs["bbox"].squeeze(0)]
keys = ["score", "label", "box"]
annotation = [dict(zip(keys, vals)) for vals in zip(scores.tolist(), labels, boxes) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
raw_annotations = self.image_processor.post_process_object_detection(model_outputs, threshold, target_size)
raw_annotation = raw_annotations[0]
scores = raw_annotation["scores"]
labels = raw_annotation["labels"]
boxes = raw_annotation["boxes"]
raw_annotation["scores"] = scores.tolist()
raw_annotation["labels"] = [self.model.config.id2label[label.item()] for label in labels]
raw_annotation["boxes"] = [self._get_bounding_box(box) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
keys = ["score", "label", "box"]
annotation = [
dict(zip(keys, vals))
for vals in zip(raw_annotation["scores"], raw_annotation["labels"], raw_annotation["boxes"])
]
return annotation
def _get_bounding_box(self, box: "torch.Tensor") -> Dict[str, int]:
"""
Turns list [xmin, xmax, ymin, ymax] into dict { "xmin": xmin, ... }
Args:
box (`torch.Tensor`): Tensor containing the coordinates in corners format.
Returns:
bbox (`Dict[str, int]`): Dict containing the coordinates in corners format.
"""
if self.framework != "pt":
raise ValueError("The ObjectDetectionPipeline is only available in PyTorch.")
xmin, ymin, xmax, ymax = box.int().tolist()
bbox = {
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return bbox
| transformers/src/transformers/pipelines/object_detection.py/0 | {
"file_path": "transformers/src/transformers/pipelines/object_detection.py",
"repo_id": "transformers",
"token_count": 3401
} | 146 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Callable, List, Optional, Set, Tuple, Union
import torch
from packaging import version
from safetensors.torch import storage_ptr, storage_size
from torch import nn
from .utils import is_torch_tpu_available, logging
ALL_LAYERNORM_LAYERS = [nn.LayerNorm]
logger = logging.get_logger(__name__)
parsed_torch_version_base = version.parse(version.parse(torch.__version__).base_version)
is_torch_greater_or_equal_than_2_2 = parsed_torch_version_base >= version.parse("2.2")
is_torch_greater_or_equal_than_2_1 = parsed_torch_version_base >= version.parse("2.1")
is_torch_greater_or_equal_than_2_0 = parsed_torch_version_base >= version.parse("2.0")
is_torch_greater_or_equal_than_1_13 = parsed_torch_version_base >= version.parse("1.13")
is_torch_greater_or_equal_than_1_12 = parsed_torch_version_base >= version.parse("1.12")
def softmax_backward_data(parent, grad_output, output, dim, self):
"""
A function that calls the internal `_softmax_backward_data` PyTorch method and that adjusts the arguments according
to the torch version detected.
"""
from torch import _softmax_backward_data
return _softmax_backward_data(grad_output, output, parent.dim, self.dtype)
def prune_linear_layer(layer: nn.Linear, index: torch.LongTensor, dim: int = 0) -> nn.Linear:
"""
Prune a linear layer to keep only entries in index.
Used to remove heads.
Args:
layer (`torch.nn.Linear`): The layer to prune.
index (`torch.LongTensor`): The indices to keep in the layer.
dim (`int`, *optional*, defaults to 0): The dimension on which to keep the indices.
Returns:
`torch.nn.Linear`: The pruned layer as a new layer with `requires_grad=True`.
"""
index = index.to(layer.weight.device)
W = layer.weight.index_select(dim, index).clone().detach()
if layer.bias is not None:
if dim == 1:
b = layer.bias.clone().detach()
else:
b = layer.bias[index].clone().detach()
new_size = list(layer.weight.size())
new_size[dim] = len(index)
new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
new_layer.weight.requires_grad = False
new_layer.weight.copy_(W.contiguous())
new_layer.weight.requires_grad = True
if layer.bias is not None:
new_layer.bias.requires_grad = False
new_layer.bias.copy_(b.contiguous())
new_layer.bias.requires_grad = True
return new_layer
class Conv1D(nn.Module):
"""
1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).
Basically works like a linear layer but the weights are transposed.
Args:
nf (`int`): The number of output features.
nx (`int`): The number of input features.
"""
def __init__(self, nf, nx):
super().__init__()
self.nf = nf
self.weight = nn.Parameter(torch.empty(nx, nf))
self.bias = nn.Parameter(torch.zeros(nf))
nn.init.normal_(self.weight, std=0.02)
def forward(self, x):
size_out = x.size()[:-1] + (self.nf,)
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
x = x.view(size_out)
return x
def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D:
"""
Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights
are transposed.
Used to remove heads.
Args:
layer ([`~pytorch_utils.Conv1D`]): The layer to prune.
index (`torch.LongTensor`): The indices to keep in the layer.
dim (`int`, *optional*, defaults to 1): The dimension on which to keep the indices.
Returns:
[`~pytorch_utils.Conv1D`]: The pruned layer as a new layer with `requires_grad=True`.
"""
index = index.to(layer.weight.device)
W = layer.weight.index_select(dim, index).clone().detach()
if dim == 0:
b = layer.bias.clone().detach()
else:
b = layer.bias[index].clone().detach()
new_size = list(layer.weight.size())
new_size[dim] = len(index)
new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
new_layer.weight.requires_grad = False
new_layer.weight.copy_(W.contiguous())
new_layer.weight.requires_grad = True
new_layer.bias.requires_grad = False
new_layer.bias.copy_(b.contiguous())
new_layer.bias.requires_grad = True
return new_layer
def prune_layer(
layer: Union[nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None
) -> Union[nn.Linear, Conv1D]:
"""
Prune a Conv1D or linear layer to keep only entries in index.
Used to remove heads.
Args:
layer (`Union[torch.nn.Linear, Conv1D]`): The layer to prune.
index (`torch.LongTensor`): The indices to keep in the layer.
dim (`int`, *optional*): The dimension on which to keep the indices.
Returns:
`torch.nn.Linear` or [`~pytorch_utils.Conv1D`]: The pruned layer as a new layer with `requires_grad=True`.
"""
if isinstance(layer, nn.Linear):
return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
elif isinstance(layer, Conv1D):
return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
else:
raise ValueError(f"Can't prune layer of class {layer.__class__}")
def apply_chunking_to_forward(
forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors
) -> torch.Tensor:
"""
This function chunks the `input_tensors` into smaller input tensor parts of size `chunk_size` over the dimension
`chunk_dim`. It then applies a layer `forward_fn` to each chunk independently to save memory.
If the `forward_fn` is independent across the `chunk_dim` this function will yield the same result as directly
applying `forward_fn` to `input_tensors`.
Args:
forward_fn (`Callable[..., torch.Tensor]`):
The forward function of the model.
chunk_size (`int`):
The chunk size of a chunked tensor: `num_chunks = len(input_tensors[0]) / chunk_size`.
chunk_dim (`int`):
The dimension over which the `input_tensors` should be chunked.
input_tensors (`Tuple[torch.Tensor]`):
The input tensors of `forward_fn` which will be chunked
Returns:
`torch.Tensor`: A tensor with the same shape as the `forward_fn` would have given if applied`.
Examples:
```python
# rename the usual forward() fn to forward_chunk()
def forward_chunk(self, hidden_states):
hidden_states = self.decoder(hidden_states)
return hidden_states
# implement a chunked forward function
def forward(self, hidden_states):
return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
```"""
assert len(input_tensors) > 0, f"{input_tensors} has to be a tuple/list of tensors"
# inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility
num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
if num_args_in_forward_chunk_fn != len(input_tensors):
raise ValueError(
f"forward_chunk_fn expects {num_args_in_forward_chunk_fn} arguments, but only {len(input_tensors)} input "
"tensors are given"
)
if chunk_size > 0:
tensor_shape = input_tensors[0].shape[chunk_dim]
for input_tensor in input_tensors:
if input_tensor.shape[chunk_dim] != tensor_shape:
raise ValueError(
f"All input tenors have to be of the same shape: {tensor_shape}, "
f"found shape {input_tensor.shape[chunk_dim]}"
)
if input_tensors[0].shape[chunk_dim] % chunk_size != 0:
raise ValueError(
f"The dimension to be chunked {input_tensors[0].shape[chunk_dim]} has to be a multiple of the chunk "
f"size {chunk_size}"
)
num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size
# chunk input tensor into tuples
input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors)
# apply forward fn to every tuple
output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks))
# concatenate output at same dimension
return torch.cat(output_chunks, dim=chunk_dim)
return forward_fn(*input_tensors)
def find_pruneable_heads_and_indices(
heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int]
) -> Tuple[Set[int], torch.LongTensor]:
"""
Finds the heads and their indices taking `already_pruned_heads` into account.
Args:
heads (`List[int]`): List of the indices of heads to prune.
n_heads (`int`): The number of heads in the model.
head_size (`int`): The size of each head.
already_pruned_heads (`Set[int]`): A set of already pruned heads.
Returns:
`Tuple[Set[int], torch.LongTensor]`: A tuple with the indices of heads to prune taking `already_pruned_heads`
into account and the indices of rows/columns to keep in the layer weight.
"""
mask = torch.ones(n_heads, head_size)
heads = set(heads) - already_pruned_heads # Convert to set and remove already pruned heads
for head in heads:
# Compute how many pruned heads are before the head and move the index accordingly
head = head - sum(1 if h < head else 0 for h in already_pruned_heads)
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index: torch.LongTensor = torch.arange(len(mask))[mask].long()
return heads, index
def meshgrid(
*tensors: Union[torch.Tensor, List[torch.Tensor]], indexing: Optional[str] = None
) -> Tuple[torch.Tensor, ...]:
"""
Wrapper around torch.meshgrid to avoid warning messages about the introduced `indexing` argument.
Reference: https://pytorch.org/docs/1.13/generated/torch.meshgrid.html
"""
return torch.meshgrid(*tensors, indexing=indexing)
def id_tensor_storage(tensor: torch.Tensor) -> Tuple[torch.device, int, int]:
"""
Unique identifier to a tensor storage. Multiple different tensors can share the same underlying storage. For
example, "meta" tensors all share the same storage, and thus their identifier will all be equal. This identifier is
guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with
non-overlapping lifetimes may have the same id.
"""
if tensor.device.type == "xla" and is_torch_tpu_available():
# NOTE: xla tensors dont have storage
# use some other unique id to distinguish.
# this is a XLA tensor, it must be created using torch_xla's
# device. So the following import is safe:
import torch_xla
unique_id = torch_xla._XLAC._xla_get_tensor_id(tensor)
else:
unique_id = storage_ptr(tensor)
return tensor.device, unique_id, storage_size(tensor)
| transformers/src/transformers/pytorch_utils.py/0 | {
"file_path": "transformers/src/transformers/pytorch_utils.py",
"repo_id": "transformers",
"token_count": 4640
} | 147 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Time series distributional output classes and utilities.
"""
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class AffineTransformed(TransformedDistribution):
def __init__(self, base_distribution: Distribution, loc=None, scale=None, event_dim=0):
self.scale = 1.0 if scale is None else scale
self.loc = 0.0 if loc is None else loc
super().__init__(base_distribution, [AffineTransform(loc=self.loc, scale=self.scale, event_dim=event_dim)])
@property
def mean(self):
"""
Returns the mean of the distribution.
"""
return self.base_dist.mean * self.scale + self.loc
@property
def variance(self):
"""
Returns the variance of the distribution.
"""
return self.base_dist.variance * self.scale**2
@property
def stddev(self):
"""
Returns the standard deviation of the distribution.
"""
return self.variance.sqrt()
class ParameterProjection(nn.Module):
def __init__(
self, in_features: int, args_dim: Dict[str, int], domain_map: Callable[..., Tuple[torch.Tensor]], **kwargs
) -> None:
super().__init__(**kwargs)
self.args_dim = args_dim
self.proj = nn.ModuleList([nn.Linear(in_features, dim) for dim in args_dim.values()])
self.domain_map = domain_map
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]:
params_unbounded = [proj(x) for proj in self.proj]
return self.domain_map(*params_unbounded)
class LambdaLayer(nn.Module):
def __init__(self, function):
super().__init__()
self.function = function
def forward(self, x, *args):
return self.function(x, *args)
class DistributionOutput:
distribution_class: type
in_features: int
args_dim: Dict[str, int]
def __init__(self, dim: int = 1) -> None:
self.dim = dim
self.args_dim = {k: dim * self.args_dim[k] for k in self.args_dim}
def _base_distribution(self, distr_args):
if self.dim == 1:
return self.distribution_class(*distr_args)
else:
return Independent(self.distribution_class(*distr_args), 1)
def distribution(
self,
distr_args,
loc: Optional[torch.Tensor] = None,
scale: Optional[torch.Tensor] = None,
) -> Distribution:
distr = self._base_distribution(distr_args)
if loc is None and scale is None:
return distr
else:
return AffineTransformed(distr, loc=loc, scale=scale, event_dim=self.event_dim)
@property
def event_shape(self) -> Tuple:
r"""
Shape of each individual event contemplated by the distributions that this object constructs.
"""
return () if self.dim == 1 else (self.dim,)
@property
def event_dim(self) -> int:
r"""
Number of event dimensions, i.e., length of the `event_shape` tuple, of the distributions that this object
constructs.
"""
return len(self.event_shape)
@property
def value_in_support(self) -> float:
r"""
A float that will have a valid numeric value when computing the log-loss of the corresponding distribution. By
default 0.0. This value will be used when padding data series.
"""
return 0.0
def get_parameter_projection(self, in_features: int) -> nn.Module:
r"""
Return the parameter projection layer that maps the input to the appropriate parameters of the distribution.
"""
return ParameterProjection(
in_features=in_features,
args_dim=self.args_dim,
domain_map=LambdaLayer(self.domain_map),
)
def domain_map(self, *args: torch.Tensor):
r"""
Converts arguments to the right shape and domain. The domain depends on the type of distribution, while the
correct shape is obtained by reshaping the trailing axis in such a way that the returned tensors define a
distribution of the right event_shape.
"""
raise NotImplementedError()
@staticmethod
def squareplus(x: torch.Tensor) -> torch.Tensor:
r"""
Helper to map inputs to the positive orthant by applying the square-plus operation. Reference:
https://twitter.com/jon_barron/status/1387167648669048833
"""
return (x + torch.sqrt(torch.square(x) + 4.0)) / 2.0
class StudentTOutput(DistributionOutput):
"""
Student-T distribution output class.
"""
args_dim: Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
distribution_class: type = StudentT
@classmethod
def domain_map(cls, df: torch.Tensor, loc: torch.Tensor, scale: torch.Tensor):
scale = cls.squareplus(scale).clamp_min(torch.finfo(scale.dtype).eps)
df = 2.0 + cls.squareplus(df)
return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1)
class NormalOutput(DistributionOutput):
"""
Normal distribution output class.
"""
args_dim: Dict[str, int] = {"loc": 1, "scale": 1}
distribution_class: type = Normal
@classmethod
def domain_map(cls, loc: torch.Tensor, scale: torch.Tensor):
scale = cls.squareplus(scale).clamp_min(torch.finfo(scale.dtype).eps)
return loc.squeeze(-1), scale.squeeze(-1)
class NegativeBinomialOutput(DistributionOutput):
"""
Negative Binomial distribution output class.
"""
args_dim: Dict[str, int] = {"total_count": 1, "logits": 1}
distribution_class: type = NegativeBinomial
@classmethod
def domain_map(cls, total_count: torch.Tensor, logits: torch.Tensor):
total_count = cls.squareplus(total_count)
return total_count.squeeze(-1), logits.squeeze(-1)
def _base_distribution(self, distr_args) -> Distribution:
total_count, logits = distr_args
if self.dim == 1:
return self.distribution_class(total_count=total_count, logits=logits)
else:
return Independent(self.distribution_class(total_count=total_count, logits=logits), 1)
# Overwrites the parent class method. We cannot scale using the affine
# transformation since negative binomial should return integers. Instead
# we scale the parameters.
def distribution(
self, distr_args, loc: Optional[torch.Tensor] = None, scale: Optional[torch.Tensor] = None
) -> Distribution:
total_count, logits = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits))
| transformers/src/transformers/time_series_utils.py/0 | {
"file_path": "transformers/src/transformers/time_series_utils.py",
"repo_id": "transformers",
"token_count": 2916
} | 148 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class TextClassificationTool(PipelineTool):
"""
Example:
```py
from transformers.tools import TextClassificationTool
classifier = TextClassificationTool()
classifier("This is a super nice API!", labels=["positive", "negative"])
```
"""
default_checkpoint = "facebook/bart-large-mnli"
description = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
name = "text_classifier"
pre_processor_class = AutoTokenizer
model_class = AutoModelForSequenceClassification
inputs = ["text", ["text"]]
outputs = ["text"]
def setup(self):
super().setup()
config = self.model.config
self.entailment_id = -1
for idx, label in config.id2label.items():
if label.lower().startswith("entail"):
self.entailment_id = int(idx)
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init.")
def encode(self, text, labels):
self._labels = labels
return self.pre_processor(
[text] * len(labels),
[f"This example is {label}" for label in labels],
return_tensors="pt",
padding="max_length",
)
def decode(self, outputs):
logits = outputs.logits
label_id = torch.argmax(logits[:, 2]).item()
return self._labels[label_id]
| transformers/src/transformers/tools/text_classification.py/0 | {
"file_path": "transformers/src/transformers/tools/text_classification.py",
"repo_id": "transformers",
"token_count": 874
} | 149 |
IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406]
IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225]
IMAGENET_STANDARD_MEAN = [0.5, 0.5, 0.5]
IMAGENET_STANDARD_STD = [0.5, 0.5, 0.5]
OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073]
OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711]
| transformers/src/transformers/utils/constants.py/0 | {
"file_path": "transformers/src/transformers/utils/constants.py",
"repo_id": "transformers",
"token_count": 162
} | 150 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Generic utilities
"""
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields, is_dataclass
from enum import Enum
from functools import partial
from typing import Any, ContextManager, Iterable, List, Tuple
import numpy as np
from packaging import version
from .import_utils import get_torch_version, is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class cached_property(property):
"""
Descriptor that mimics @property but caches output in member variable.
From tensorflow_datasets
Built-in in functools from Python 3.8.
"""
def __get__(self, obj, objtype=None):
# See docs.python.org/3/howto/descriptor.html#properties
if obj is None:
return self
if self.fget is None:
raise AttributeError("unreadable attribute")
attr = "__cached_" + self.fget.__name__
cached = getattr(obj, attr, None)
if cached is None:
cached = self.fget(obj)
setattr(obj, attr, cached)
return cached
# vendored from distutils.util
def strtobool(val):
"""Convert a string representation of truth to true (1) or false (0).
True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'.
Raises ValueError if 'val' is anything else.
"""
val = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f"invalid truth value {val!r}")
def infer_framework_from_repr(x):
"""
Tries to guess the framework of an object `x` from its repr (brittle but will help in `is_tensor` to try the
frameworks in a smart order, without the need to import the frameworks).
"""
representation = str(type(x))
if representation.startswith("<class 'torch."):
return "pt"
elif representation.startswith("<class 'tensorflow."):
return "tf"
elif representation.startswith("<class 'jax"):
return "jax"
elif representation.startswith("<class 'numpy."):
return "np"
def _get_frameworks_and_test_func(x):
"""
Returns an (ordered since we are in Python 3.7+) dictionary framework to test function, which places the framework
we can guess from the repr first, then Numpy, then the others.
"""
framework_to_test = {
"pt": is_torch_tensor,
"tf": is_tf_tensor,
"jax": is_jax_tensor,
"np": is_numpy_array,
}
preferred_framework = infer_framework_from_repr(x)
# We will test this one first, then numpy, then the others.
frameworks = [] if preferred_framework is None else [preferred_framework]
if preferred_framework != "np":
frameworks.append("np")
frameworks.extend([f for f in framework_to_test if f not in [preferred_framework, "np"]])
return {f: framework_to_test[f] for f in frameworks}
def is_tensor(x):
"""
Tests if `x` is a `torch.Tensor`, `tf.Tensor`, `jaxlib.xla_extension.DeviceArray` or `np.ndarray` in the order
defined by `infer_framework_from_repr`
"""
# This gives us a smart order to test the frameworks with the corresponding tests.
framework_to_test_func = _get_frameworks_and_test_func(x)
for test_func in framework_to_test_func.values():
if test_func(x):
return True
# Tracers
if is_torch_fx_proxy(x):
return True
if is_flax_available():
from jax.core import Tracer
if isinstance(x, Tracer):
return True
return False
def _is_numpy(x):
return isinstance(x, np.ndarray)
def is_numpy_array(x):
"""
Tests if `x` is a numpy array or not.
"""
return _is_numpy(x)
def _is_torch(x):
import torch
return isinstance(x, torch.Tensor)
def is_torch_tensor(x):
"""
Tests if `x` is a torch tensor or not. Safe to call even if torch is not installed.
"""
return False if not is_torch_available() else _is_torch(x)
def _is_torch_device(x):
import torch
return isinstance(x, torch.device)
def is_torch_device(x):
"""
Tests if `x` is a torch device or not. Safe to call even if torch is not installed.
"""
return False if not is_torch_available() else _is_torch_device(x)
def _is_torch_dtype(x):
import torch
if isinstance(x, str):
if hasattr(torch, x):
x = getattr(torch, x)
else:
return False
return isinstance(x, torch.dtype)
def is_torch_dtype(x):
"""
Tests if `x` is a torch dtype or not. Safe to call even if torch is not installed.
"""
return False if not is_torch_available() else _is_torch_dtype(x)
def _is_tensorflow(x):
import tensorflow as tf
return isinstance(x, tf.Tensor)
def is_tf_tensor(x):
"""
Tests if `x` is a tensorflow tensor or not. Safe to call even if tensorflow is not installed.
"""
return False if not is_tf_available() else _is_tensorflow(x)
def _is_tf_symbolic_tensor(x):
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(tf, "is_symbolic_tensor"):
return tf.is_symbolic_tensor(x)
return type(x) == tf.Tensor
def is_tf_symbolic_tensor(x):
"""
Tests if `x` is a tensorflow symbolic tensor or not (ie. not eager). Safe to call even if tensorflow is not
installed.
"""
return False if not is_tf_available() else _is_tf_symbolic_tensor(x)
def _is_jax(x):
import jax.numpy as jnp # noqa: F811
return isinstance(x, jnp.ndarray)
def is_jax_tensor(x):
"""
Tests if `x` is a Jax tensor or not. Safe to call even if jax is not installed.
"""
return False if not is_flax_available() else _is_jax(x)
def to_py_obj(obj):
"""
Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a python list.
"""
framework_to_py_obj = {
"pt": lambda obj: obj.detach().cpu().tolist(),
"tf": lambda obj: obj.numpy().tolist(),
"jax": lambda obj: np.asarray(obj).tolist(),
"np": lambda obj: obj.tolist(),
}
if isinstance(obj, (dict, UserDict)):
return {k: to_py_obj(v) for k, v in obj.items()}
elif isinstance(obj, (list, tuple)):
return [to_py_obj(o) for o in obj]
# This gives us a smart order to test the frameworks with the corresponding tests.
framework_to_test_func = _get_frameworks_and_test_func(obj)
for framework, test_func in framework_to_test_func.items():
if test_func(obj):
return framework_to_py_obj[framework](obj)
# tolist also works on 0d np arrays
if isinstance(obj, np.number):
return obj.tolist()
else:
return obj
def to_numpy(obj):
"""
Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a Numpy array.
"""
framework_to_numpy = {
"pt": lambda obj: obj.detach().cpu().numpy(),
"tf": lambda obj: obj.numpy(),
"jax": lambda obj: np.asarray(obj),
"np": lambda obj: obj,
}
if isinstance(obj, (dict, UserDict)):
return {k: to_numpy(v) for k, v in obj.items()}
elif isinstance(obj, (list, tuple)):
return np.array(obj)
# This gives us a smart order to test the frameworks with the corresponding tests.
framework_to_test_func = _get_frameworks_and_test_func(obj)
for framework, test_func in framework_to_test_func.items():
if test_func(obj):
return framework_to_numpy[framework](obj)
return obj
class ModelOutput(OrderedDict):
"""
Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a
tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular
python dictionary.
<Tip warning={true}>
You can't unpack a `ModelOutput` directly. Use the [`~utils.ModelOutput.to_tuple`] method to convert it to a tuple
before.
</Tip>
"""
def __init_subclass__(cls) -> None:
"""Register subclasses as pytree nodes.
This is necessary to synchronize gradients when using `torch.nn.parallel.DistributedDataParallel` with
`static_graph=True` with modules that output `ModelOutput` subclasses.
"""
if is_torch_available():
if version.parse(get_torch_version()) >= version.parse("2.2"):
_torch_pytree.register_pytree_node(
cls,
_model_output_flatten,
partial(_model_output_unflatten, output_type=cls),
serialized_type_name=f"{cls.__module__}.{cls.__name__}",
)
else:
_torch_pytree._register_pytree_node(
cls,
_model_output_flatten,
partial(_model_output_unflatten, output_type=cls),
)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Subclasses of ModelOutput must use the @dataclass decorator
# This check is done in __init__ because the @dataclass decorator operates after __init_subclass__
# issubclass() would return True for issubclass(ModelOutput, ModelOutput) when False is needed
# Just need to check that the current class is not ModelOutput
is_modeloutput_subclass = self.__class__ != ModelOutput
if is_modeloutput_subclass and not is_dataclass(self):
raise TypeError(
f"{self.__module__}.{self.__class__.__name__} is not a dataclasss."
" This is a subclass of ModelOutput and so must use the @dataclass decorator."
)
def __post_init__(self):
"""Check the ModelOutput dataclass.
Only occurs if @dataclass decorator has been used.
"""
class_fields = fields(self)
# Safety and consistency checks
if not len(class_fields):
raise ValueError(f"{self.__class__.__name__} has no fields.")
if not all(field.default is None for field in class_fields[1:]):
raise ValueError(f"{self.__class__.__name__} should not have more than one required field.")
first_field = getattr(self, class_fields[0].name)
other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:])
if other_fields_are_none and not is_tensor(first_field):
if isinstance(first_field, dict):
iterator = first_field.items()
first_field_iterator = True
else:
try:
iterator = iter(first_field)
first_field_iterator = True
except TypeError:
first_field_iterator = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(iterator):
if (
not isinstance(element, (list, tuple))
or not len(element) == 2
or not isinstance(element[0], str)
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
self[class_fields[0].name] = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
f"Cannot set key/value for {element}. It needs to be a tuple (key, value)."
)
break
setattr(self, element[0], element[1])
if element[1] is not None:
self[element[0]] = element[1]
elif first_field is not None:
self[class_fields[0].name] = first_field
else:
for field in class_fields:
v = getattr(self, field.name)
if v is not None:
self[field.name] = v
def __delitem__(self, *args, **kwargs):
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
def setdefault(self, *args, **kwargs):
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
def pop(self, *args, **kwargs):
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
def update(self, *args, **kwargs):
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
def __getitem__(self, k):
if isinstance(k, str):
inner_dict = dict(self.items())
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__(self, name, value):
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(name, value)
super().__setattr__(name, value)
def __setitem__(self, key, value):
# Will raise a KeyException if needed
super().__setitem__(key, value)
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(key, value)
def __reduce__(self):
if not is_dataclass(self):
return super().__reduce__()
callable, _args, *remaining = super().__reduce__()
args = tuple(getattr(self, field.name) for field in fields(self))
return callable, args, *remaining
def to_tuple(self) -> Tuple[Any]:
"""
Convert self to a tuple containing all the attributes/keys that are not `None`.
"""
return tuple(self[k] for k in self.keys())
if is_torch_available():
import torch.utils._pytree as _torch_pytree
def _model_output_flatten(output: ModelOutput) -> Tuple[List[Any], "_torch_pytree.Context"]:
return list(output.values()), list(output.keys())
def _model_output_unflatten(
values: Iterable[Any],
context: "_torch_pytree.Context",
output_type=None,
) -> ModelOutput:
return output_type(**dict(zip(context, values)))
if version.parse(get_torch_version()) >= version.parse("2.2"):
_torch_pytree.register_pytree_node(
ModelOutput,
_model_output_flatten,
partial(_model_output_unflatten, output_type=ModelOutput),
serialized_type_name=f"{ModelOutput.__module__}.{ModelOutput.__name__}",
)
else:
_torch_pytree._register_pytree_node(
ModelOutput,
_model_output_flatten,
partial(_model_output_unflatten, output_type=ModelOutput),
)
class ExplicitEnum(str, Enum):
"""
Enum with more explicit error message for missing values.
"""
@classmethod
def _missing_(cls, value):
raise ValueError(
f"{value} is not a valid {cls.__name__}, please select one of {list(cls._value2member_map_.keys())}"
)
class PaddingStrategy(ExplicitEnum):
"""
Possible values for the `padding` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in an
IDE.
"""
LONGEST = "longest"
MAX_LENGTH = "max_length"
DO_NOT_PAD = "do_not_pad"
class TensorType(ExplicitEnum):
"""
Possible values for the `return_tensors` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for
tab-completion in an IDE.
"""
PYTORCH = "pt"
TENSORFLOW = "tf"
NUMPY = "np"
JAX = "jax"
class ContextManagers:
"""
Wrapper for `contextlib.ExitStack` which enters a collection of context managers. Adaptation of `ContextManagers`
in the `fastcore` library.
"""
def __init__(self, context_managers: List[ContextManager]):
self.context_managers = context_managers
self.stack = ExitStack()
def __enter__(self):
for context_manager in self.context_managers:
self.stack.enter_context(context_manager)
def __exit__(self, *args, **kwargs):
self.stack.__exit__(*args, **kwargs)
def can_return_loss(model_class):
"""
Check if a given model can return loss.
Args:
model_class (`type`): The class of the model.
"""
framework = infer_framework(model_class)
if framework == "tf":
signature = inspect.signature(model_class.call) # TensorFlow models
elif framework == "pt":
signature = inspect.signature(model_class.forward) # PyTorch models
else:
signature = inspect.signature(model_class.__call__) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def find_labels(model_class):
"""
Find the labels used by a given model.
Args:
model_class (`type`): The class of the model.
"""
model_name = model_class.__name__
framework = infer_framework(model_class)
if framework == "tf":
signature = inspect.signature(model_class.call) # TensorFlow models
elif framework == "pt":
signature = inspect.signature(model_class.forward) # PyTorch models
else:
signature = inspect.signature(model_class.__call__) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def flatten_dict(d: MutableMapping, parent_key: str = "", delimiter: str = "."):
"""Flatten a nested dict into a single level dict."""
def _flatten_dict(d, parent_key="", delimiter="."):
for k, v in d.items():
key = str(parent_key) + delimiter + str(k) if parent_key else k
if v and isinstance(v, MutableMapping):
yield from flatten_dict(v, key, delimiter=delimiter).items()
else:
yield key, v
return dict(_flatten_dict(d, parent_key, delimiter))
@contextmanager
def working_or_temp_dir(working_dir, use_temp_dir: bool = False):
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def transpose(array, axes=None):
"""
Framework-agnostic version of `numpy.transpose` that will work on torch/TensorFlow/Jax tensors as well as NumPy
arrays.
"""
if is_numpy_array(array):
return np.transpose(array, axes=axes)
elif is_torch_tensor(array):
return array.T if axes is None else array.permute(*axes)
elif is_tf_tensor(array):
import tensorflow as tf
return tf.transpose(array, perm=axes)
elif is_jax_tensor(array):
return jnp.transpose(array, axes=axes)
else:
raise ValueError(f"Type not supported for transpose: {type(array)}.")
def reshape(array, newshape):
"""
Framework-agnostic version of `numpy.reshape` that will work on torch/TensorFlow/Jax tensors as well as NumPy
arrays.
"""
if is_numpy_array(array):
return np.reshape(array, newshape)
elif is_torch_tensor(array):
return array.reshape(*newshape)
elif is_tf_tensor(array):
import tensorflow as tf
return tf.reshape(array, newshape)
elif is_jax_tensor(array):
return jnp.reshape(array, newshape)
else:
raise ValueError(f"Type not supported for reshape: {type(array)}.")
def squeeze(array, axis=None):
"""
Framework-agnostic version of `numpy.squeeze` that will work on torch/TensorFlow/Jax tensors as well as NumPy
arrays.
"""
if is_numpy_array(array):
return np.squeeze(array, axis=axis)
elif is_torch_tensor(array):
return array.squeeze() if axis is None else array.squeeze(dim=axis)
elif is_tf_tensor(array):
import tensorflow as tf
return tf.squeeze(array, axis=axis)
elif is_jax_tensor(array):
return jnp.squeeze(array, axis=axis)
else:
raise ValueError(f"Type not supported for squeeze: {type(array)}.")
def expand_dims(array, axis):
"""
Framework-agnostic version of `numpy.expand_dims` that will work on torch/TensorFlow/Jax tensors as well as NumPy
arrays.
"""
if is_numpy_array(array):
return np.expand_dims(array, axis)
elif is_torch_tensor(array):
return array.unsqueeze(dim=axis)
elif is_tf_tensor(array):
import tensorflow as tf
return tf.expand_dims(array, axis=axis)
elif is_jax_tensor(array):
return jnp.expand_dims(array, axis=axis)
else:
raise ValueError(f"Type not supported for expand_dims: {type(array)}.")
def tensor_size(array):
"""
Framework-agnostic version of `numpy.size` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays.
"""
if is_numpy_array(array):
return np.size(array)
elif is_torch_tensor(array):
return array.numel()
elif is_tf_tensor(array):
import tensorflow as tf
return tf.size(array)
elif is_jax_tensor(array):
return array.size
else:
raise ValueError(f"Type not supported for tensor_size: {type(array)}.")
def add_model_info_to_auto_map(auto_map, repo_id):
"""
Adds the information of the repo_id to a given auto map.
"""
for key, value in auto_map.items():
if isinstance(value, (tuple, list)):
auto_map[key] = [f"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value]
elif value is not None and "--" not in value:
auto_map[key] = f"{repo_id}--{value}"
return auto_map
def infer_framework(model_class):
"""
Infers the framework of a given model without using isinstance(), because we cannot guarantee that the relevant
classes are imported or available.
"""
for base_class in inspect.getmro(model_class):
module = base_class.__module__
name = base_class.__name__
if module.startswith("tensorflow") or module.startswith("keras") or name == "TFPreTrainedModel":
return "tf"
elif module.startswith("torch") or name == "PreTrainedModel":
return "pt"
elif module.startswith("flax") or module.startswith("jax") or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f"Could not infer framework from class {model_class}.")
| transformers/src/transformers/utils/generic.py/0 | {
"file_path": "transformers/src/transformers/utils/generic.py",
"repo_id": "transformers",
"token_count": 9888
} | 151 |
{
"example_name": "text classification",
"directory_name": "{{cookiecutter.example_name|lower|replace(' ', '-')}}",
"example_shortcut": "{{cookiecutter.directory_name}}",
"model_class": "AutoModel",
"authors": "The HuggingFace Team",
"can_train_from_scratch": ["True", "False"],
"with_trainer": ["True", "False"]
} | transformers/templates/adding_a_new_example_script/cookiecutter.json/0 | {
"file_path": "transformers/templates/adding_a_new_example_script/cookiecutter.json",
"repo_id": "transformers",
"token_count": 115
} | 152 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# {{cookiecutter.modelname}}
## Overview
The {{cookiecutter.modelname}} model was proposed in [<INSERT PAPER NAME HERE>](<INSERT PAPER LINK HERE>) by <INSERT AUTHORS HERE>. <INSERT SHORT SUMMARY HERE>
The abstract from the paper is the following:
*<INSERT PAPER ABSTRACT HERE>*
Tips:
<INSERT TIPS ABOUT MODEL HERE>
This model was contributed by [INSERT YOUR HF USERNAME HERE](<https://huggingface.co/<INSERT YOUR HF USERNAME HERE>). The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>).
## {{cookiecutter.camelcase_modelname}}Config
[[autodoc]] {{cookiecutter.camelcase_modelname}}Config
## {{cookiecutter.camelcase_modelname}}Tokenizer
[[autodoc]] {{cookiecutter.camelcase_modelname}}Tokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## {{cookiecutter.camelcase_modelname}}TokenizerFast
[[autodoc]] {{cookiecutter.camelcase_modelname}}TokenizerFast
{% if "PyTorch" in cookiecutter.generate_tensorflow_pytorch_and_flax -%}
## {{cookiecutter.camelcase_modelname}}Model
[[autodoc]] {{cookiecutter.camelcase_modelname}}Model
- forward
{% if cookiecutter.is_encoder_decoder_model == "False" %}
## {{cookiecutter.camelcase_modelname}}ForCausalLM
[[autodoc]] {{cookiecutter.camelcase_modelname}}ForCausalLM
- forward
## {{cookiecutter.camelcase_modelname}}ForMaskedLM
[[autodoc]] {{cookiecutter.camelcase_modelname}}ForMaskedLM
- forward
## {{cookiecutter.camelcase_modelname}}ForSequenceClassification
[[autodoc]] transformers.{{cookiecutter.camelcase_modelname}}ForSequenceClassification
- forward
## {{cookiecutter.camelcase_modelname}}ForMultipleChoice
[[autodoc]] transformers.{{cookiecutter.camelcase_modelname}}ForMultipleChoice
- forward
## {{cookiecutter.camelcase_modelname}}ForTokenClassification
[[autodoc]] transformers.{{cookiecutter.camelcase_modelname}}ForTokenClassification
- forward
## {{cookiecutter.camelcase_modelname}}ForQuestionAnswering
[[autodoc]] {{cookiecutter.camelcase_modelname}}ForQuestionAnswering
- forward
{%- else %}
## {{cookiecutter.camelcase_modelname}}ForConditionalGeneration
[[autodoc]] {{cookiecutter.camelcase_modelname}}ForConditionalGeneration
- forward
## {{cookiecutter.camelcase_modelname}}ForSequenceClassification
[[autodoc]] {{cookiecutter.camelcase_modelname}}ForSequenceClassification
- forward
## {{cookiecutter.camelcase_modelname}}ForQuestionAnswering
[[autodoc]] {{cookiecutter.camelcase_modelname}}ForQuestionAnswering
- forward
## {{cookiecutter.camelcase_modelname}}ForCausalLM
[[autodoc]] {{cookiecutter.camelcase_modelname}}ForCausalLM
- forward
{% endif -%}
{% endif -%}
{% if "TensorFlow" in cookiecutter.generate_tensorflow_pytorch_and_flax -%}
## TF{{cookiecutter.camelcase_modelname}}Model
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}Model
- call
{% if cookiecutter.is_encoder_decoder_model == "False" %}
## TF{{cookiecutter.camelcase_modelname}}ForMaskedLM
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForMaskedLM
- call
## TF{{cookiecutter.camelcase_modelname}}ForCausalLM
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForCausalLM
- call
## TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification
- call
## TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice
- call
## TF{{cookiecutter.camelcase_modelname}}ForTokenClassification
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForTokenClassification
- call
## TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
- call
{%- else %}
## TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
- call
{% endif -%}
{% endif -%}
{% if "Flax" in cookiecutter.generate_tensorflow_pytorch_and_flax -%}
## Flax{{cookiecutter.camelcase_modelname}}Model
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}Model
- call
{% if cookiecutter.is_encoder_decoder_model == "False" %}
## Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM
- call
## Flax{{cookiecutter.camelcase_modelname}}ForCausalLM
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForCausalLM
- call
## Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification
- call
## Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice
- call
## Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification
- call
## Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
- call
{%- else %}
## Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification
- call
## Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
- call
## Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
- call
{% endif -%}
{% endif -%}
| transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/{{cookiecutter.lowercase_modelname}}.md/0 | {
"file_path": "transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/{{cookiecutter.lowercase_modelname}}.md",
"repo_id": "transformers",
"token_count": 2170
} | 153 |
# coding=utf-8
# Copyright 2021 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class AutoImageProcessorTest(unittest.TestCase):
def setUp(self):
transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0
def test_image_processor_from_model_shortcut(self):
config = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
self.assertIsInstance(config, CLIPImageProcessor)
def test_image_processor_from_local_directory_from_key(self):
with tempfile.TemporaryDirectory() as tmpdirname:
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
config_tmpfile = Path(tmpdirname) / "config.json"
json.dump(
{"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))
config = AutoImageProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(config, CLIPImageProcessor)
def test_image_processor_from_local_directory_from_feature_extractor_key(self):
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
config_tmpfile = Path(tmpdirname) / "config.json"
json.dump(
{"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))
config = AutoImageProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(config, CLIPImageProcessor)
def test_image_processor_from_local_directory_from_config(self):
with tempfile.TemporaryDirectory() as tmpdirname:
model_config = CLIPConfig()
# Create a dummy config file with image_proceesor_type
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
config_tmpfile = Path(tmpdirname) / "config.json"
json.dump(
{"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
config_dict = AutoImageProcessor.from_pretrained(tmpdirname).to_dict()
config_dict.pop("image_processor_type")
config = CLIPImageProcessor(**config_dict)
# save in new folder
model_config.save_pretrained(tmpdirname)
config.save_pretrained(tmpdirname)
config = AutoImageProcessor.from_pretrained(tmpdirname)
# make sure private variable is not incorrectly saved
dict_as_saved = json.loads(config.to_json_string())
self.assertTrue("_processor_class" not in dict_as_saved)
self.assertIsInstance(config, CLIPImageProcessor)
def test_image_processor_from_local_file(self):
with tempfile.TemporaryDirectory() as tmpdirname:
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
json.dump(
{"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
config = AutoImageProcessor.from_pretrained(processor_tmpfile)
self.assertIsInstance(config, CLIPImageProcessor)
def test_repo_not_found(self):
with self.assertRaisesRegex(
EnvironmentError, "clip-base is not a local folder and is not a valid model identifier"
):
_ = AutoImageProcessor.from_pretrained("clip-base")
def test_revision_not_found(self):
with self.assertRaisesRegex(
EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
):
_ = AutoImageProcessor.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")
def test_image_processor_not_found(self):
with self.assertRaisesRegex(
EnvironmentError,
"hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.",
):
_ = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model")
def test_from_pretrained_dynamic_image_processor(self):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(ValueError):
image_processor = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor")
# If remote code is disabled, we can't load this config.
with self.assertRaises(ValueError):
image_processor = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor", trust_remote_code=False
)
image_processor = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True
)
self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(tmp_dir)
reloaded_image_processor = AutoImageProcessor.from_pretrained(tmp_dir, trust_remote_code=True)
self.assertEqual(reloaded_image_processor.__class__.__name__, "NewImageProcessor")
def test_new_image_processor_registration(self):
try:
AutoConfig.register("custom", CustomConfig)
AutoImageProcessor.register(CustomConfig, CustomImageProcessor)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(ValueError):
AutoImageProcessor.register(CLIPConfig, CLIPImageProcessor)
with tempfile.TemporaryDirectory() as tmpdirname:
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
config_tmpfile = Path(tmpdirname) / "config.json"
json.dump(
{"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))
image_processor = CustomImageProcessor.from_pretrained(tmpdirname)
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(tmp_dir)
new_image_processor = AutoImageProcessor.from_pretrained(tmp_dir)
self.assertIsInstance(new_image_processor, CustomImageProcessor)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def test_from_pretrained_dynamic_image_processor_conflict(self):
class NewImageProcessor(CLIPImageProcessor):
is_local = True
try:
AutoConfig.register("custom", CustomConfig)
AutoImageProcessor.register(CustomConfig, NewImageProcessor)
# If remote code is not set, the default is to use local
image_processor = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor")
self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
self.assertTrue(image_processor.is_local)
# If remote code is disabled, we load the local one.
image_processor = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor", trust_remote_code=False
)
self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
self.assertTrue(image_processor.is_local)
# If remote is enabled, we load from the Hub
image_processor = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True
)
self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
self.assertTrue(not hasattr(image_processor, "is_local"))
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| transformers/tests/models/auto/test_image_processing_auto.py/0 | {
"file_path": "transformers/tests/models/auto/test_image_processing_auto.py",
"repo_id": "transformers",
"token_count": 4164
} | 154 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import unittest
from transformers import BartTokenizer, BartTokenizerFast, BatchEncoding
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors
@require_tokenizers
class TestTokenizationBart(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = BartTokenizer
rust_tokenizer_class = BartTokenizerFast
test_rust_tokenizer = True
from_pretrained_filter = filter_roberta_detectors
# from_pretrained_kwargs = {'add_prefix_space': True}
def setUp(self):
super().setUp()
vocab = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
return "lower newer", "lower newer"
@cached_property
def default_tokenizer(self):
return BartTokenizer.from_pretrained("facebook/bart-large")
@cached_property
def default_tokenizer_fast(self):
return BartTokenizerFast.from_pretrained("facebook/bart-large")
@require_torch
def test_prepare_batch(self):
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
expected_src_tokens = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
batch = tokenizer(src_text, max_length=len(expected_src_tokens), padding=True, return_tensors="pt")
self.assertIsInstance(batch, BatchEncoding)
self.assertEqual((2, 9), batch.input_ids.shape)
self.assertEqual((2, 9), batch.attention_mask.shape)
result = batch.input_ids.tolist()[0]
self.assertListEqual(expected_src_tokens, result)
# Test that special tokens are reset
@require_torch
def test_prepare_batch_empty_target_text(self):
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
batch = tokenizer(src_text, padding=True, return_tensors="pt")
# check if input_ids are returned and no labels
self.assertIn("input_ids", batch)
self.assertIn("attention_mask", batch)
self.assertNotIn("labels", batch)
self.assertNotIn("decoder_attention_mask", batch)
@require_torch
def test_tokenizer_as_target_length(self):
tgt_text = [
"Summary of the text.",
"Another summary.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
targets = tokenizer(text_target=tgt_text, max_length=32, padding="max_length", return_tensors="pt")
self.assertEqual(32, targets["input_ids"].shape[1])
@require_torch
def test_prepare_batch_not_longer_than_maxlen(self):
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
batch = tokenizer(
["I am a small frog" * 1024, "I am a small frog"], padding=True, truncation=True, return_tensors="pt"
)
self.assertIsInstance(batch, BatchEncoding)
self.assertEqual(batch.input_ids.shape, (2, 1024))
@require_torch
def test_special_tokens(self):
src_text = ["A long paragraph for summarization."]
tgt_text = [
"Summary of the text.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
inputs = tokenizer(src_text, return_tensors="pt")
targets = tokenizer(text_target=tgt_text, return_tensors="pt")
input_ids = inputs["input_ids"]
labels = targets["input_ids"]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item())
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item())
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item())
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item())
def test_pretokenized_inputs(self):
pass
def test_embeded_special_tokens(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
sentence = "A, <mask> AllenNLP sentence."
tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
)
tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
self.assertSequenceEqual(
tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
)
self.assertSequenceEqual(
tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
)
| transformers/tests/models/bart/test_tokenization_bart.py/0 | {
"file_path": "transformers/tests/models/bart/test_tokenization_bart.py",
"repo_id": "transformers",
"token_count": 3668
} | 155 |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class BertGenerationEncoderTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=50,
initializer_range=0.02,
use_labels=True,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.use_labels = use_labels
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if self.use_labels:
token_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
return config, input_ids, input_mask, token_labels
def get_config(self):
return BertGenerationConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
input_mask,
token_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self,
config,
input_ids,
input_mask,
token_labels,
**kwargs,
):
model = BertGenerationEncoder(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
**kwargs,
):
config.add_cross_attention = True
model = BertGenerationEncoder(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
**kwargs,
):
config.is_decoder = True
config.add_cross_attention = True
model = BertGenerationDecoder(config=config).to(torch_device).eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
input_mask,
token_labels,
*args,
):
model = BertGenerationDecoder(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def prepare_config_and_inputs_for_common(self):
config, input_ids, input_mask, token_labels = self.prepare_config_and_inputs()
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class BertGenerationEncoderTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
all_generative_model_classes = (BertGenerationDecoder,) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder}
if is_torch_available()
else {}
)
def setUp(self):
self.model_tester = BertGenerationEncoderTester(self)
self.config_tester = ConfigTester(self, config_class=BertGenerationConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_as_bert(self):
config, input_ids, input_mask, token_labels = self.model_tester.prepare_config_and_inputs()
config.model_type = "bert"
self.model_tester.create_and_check_model(config, input_ids, input_mask, token_labels)
def test_model_as_decoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_model_as_decoder_with_default_input_mask(self):
# This regression test was failing with PyTorch < 1.3
(
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
input_mask = None
self.model_tester.create_and_check_model_as_decoder(
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def test_for_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
self.assertIsNotNone(model)
@require_torch
class BertGenerationEncoderIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head_absolute_embedding(self):
model = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
input_ids = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]])
with torch.no_grad():
output = model(input_ids)[0]
expected_shape = torch.Size([1, 8, 1024])
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
@require_torch
class BertGenerationDecoderIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head_absolute_embedding(self):
model = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
input_ids = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]])
with torch.no_grad():
output = model(input_ids)[0]
expected_shape = torch.Size([1, 8, 50358])
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
| transformers/tests/models/bert_generation/test_modeling_bert_generation.py/0 | {
"file_path": "transformers/tests/models/bert_generation/test_modeling_bert_generation.py",
"repo_id": "transformers",
"token_count": 5707
} | 156 |
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_vision_available():
from transformers import CLIPImageProcessor
class CLIPImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_center_crop=True,
crop_size=None,
do_normalize=True,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
do_convert_rgb=True,
):
size = size if size is not None else {"shortest_edge": 20}
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def expected_output_image_shape(self, images):
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class CLIPImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = CLIPImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = CLIPImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "center_crop"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"shortest_edge": 20})
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
self.assertEqual(image_processor.size, {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
| transformers/tests/models/clip/test_image_processing_clip.py/0 | {
"file_path": "transformers/tests/models/clip/test_image_processing_clip.py",
"repo_id": "transformers",
"token_count": 1915
} | 157 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow Data2VecVision model. """
from __future__ import annotations
import collections.abc
import inspect
import unittest
import numpy as np
from transformers import Data2VecVisionConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFData2VecVisionForImageClassification,
TFData2VecVisionForSemanticSegmentation,
TFData2VecVisionModel,
)
from transformers.modeling_tf_utils import keras
from transformers.models.data2vec.modeling_tf_data2vec_vision import (
TF_DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class TFData2VecVisionModelTester:
def __init__(
self,
parent,
vocab_size=100,
batch_size=13,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
num_labels=3,
scope=None,
out_indices=[0, 1, 2, 3],
):
self.parent = parent
self.vocab_size = 100
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.scope = scope
self.out_indices = out_indices
self.num_labels = num_labels
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
pixel_labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels, pixel_labels
def get_config(self):
return Data2VecVisionConfig(
vocab_size=self.vocab_size,
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
out_indices=self.out_indices,
)
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
model = TFData2VecVisionModel(config=config)
result = model(pixel_values, training=False)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (
self.image_size
if isinstance(self.image_size, collections.abc.Iterable)
else (self.image_size, self.image_size)
)
patch_size = (
self.patch_size
if isinstance(self.image_size, collections.abc.Iterable)
else (self.patch_size, self.patch_size)
)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.type_sequence_label_size
model = TFData2VecVisionForImageClassification(config)
result = model(pixel_values, labels=labels, training=False)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
def create_and_check_for_image_segmentation(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = TFData2VecVisionForSemanticSegmentation(config)
result = model(pixel_values, training=False)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
)
result = model(pixel_values, labels=pixel_labels)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels, pixel_labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
def prepare_config_and_inputs_for_keras_fit(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, _, _ = config_and_inputs
inputs_dict = {"pixel_values": pixel_values, "labels": tf.zeros((self.batch_size))}
return config, inputs_dict
@require_tf
class TFData2VecVisionModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Data2VecVision does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(TFData2VecVisionModel, TFData2VecVisionForImageClassification, TFData2VecVisionForSemanticSegmentation)
if is_tf_available()
else ()
)
pipeline_model_mapping = (
{"feature-extraction": TFData2VecVisionModel, "image-classification": TFData2VecVisionForImageClassification}
if is_tf_available()
else {}
)
test_pruning = False
test_onnx = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = TFData2VecVisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=Data2VecVisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="Data2VecVision does not use inputs_embeds")
def test_inputs_embeds(self):
# Data2VecVision does not use inputs_embeds
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (keras.layers.Layer))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, keras.layers.Layer))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_image_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
# in Data2VecVision, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
image_size = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
patch_size = (
self.model_tester.patch_size
if isinstance(self.model_tester.patch_size, collections.abc.Iterable)
else (self.model_tester.patch_size, self.model_tester.patch_size)
)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
seq_len = num_patches + 1
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
chunk_length = getattr(self.model_tester, "chunk_length", None)
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False)
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False)
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False)
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
# Data2VecVision has a different seq_length
image_size = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
patch_size = (
self.model_tester.patch_size
if isinstance(self.model_tester.patch_size, collections.abc.Iterable)
else (self.model_tester.patch_size, self.model_tester.patch_size)
)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
seq_length = num_patches + 1
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
# Overriding this method since the base method won't be compatible with Data2VecVision.
@slow
def test_keras_fit(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Since `TFData2VecVisionModel` cannot operate with the default `fit()` method.
if model_class.__name__ != "TFData2VecVisionModel":
model = model_class(config)
if getattr(model, "hf_compute_loss", None):
# Test that model correctly compute the loss with kwargs
_, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit()
label_names = {"labels"}
self.assertGreater(len(label_names), 0, msg="No matching label names found!")
labels = {key: val for key, val in prepared_for_class.items() if key in label_names}
inputs_minus_labels = {
key: val for key, val in prepared_for_class.items() if key not in label_names
}
self.assertGreater(len(inputs_minus_labels), 0)
model.compile(optimizer=keras.optimizers.SGD(0.0), run_eagerly=True)
# Make sure the model fits without crashing regardless of where we pass the labels
history1 = model.fit(
prepared_for_class,
validation_data=prepared_for_class,
steps_per_epoch=1,
validation_steps=1,
shuffle=False,
)
val_loss1 = history1.history["val_loss"][0]
history2 = model.fit(
inputs_minus_labels,
labels,
validation_data=(inputs_minus_labels, labels),
steps_per_epoch=1,
validation_steps=1,
shuffle=False,
)
val_loss2 = history2.history["val_loss"][0]
self.assertTrue(np.allclose(val_loss1, val_loss2, atol=1e-2, rtol=1e-3))
def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=2e-4, name="outputs", attributes=None):
# We override with a slightly higher tol value, as semseg models tend to diverge a bit more
super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes)
# Overriding this method since the base method won't be compatible with Data2VecVision.
def test_loss_computation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Since `TFData2VecVisionModel` won't have labels against which we
# could compute loss.
if model_class.__name__ != "TFData2VecVisionModel":
model = model_class(config)
if getattr(model, "hf_compute_loss", None):
# The number of elements in the loss should be the same as the number of elements in the label
_, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit()
added_label = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0]
]
loss_size = tf.size(added_label)
# Test that model correctly compute the loss with kwargs
possible_input_names = {"input_ids", "pixel_values", "input_features"}
input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
model_input = prepared_for_class.pop(input_name)
loss = model(model_input, **prepared_for_class)[0]
self.assertEqual(loss.shape, [loss_size])
# Test that model correctly compute the loss with a dict
_, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit()
loss = model(**prepared_for_class)[0]
self.assertEqual(loss.shape, [loss_size])
# Test that model correctly compute the loss with a tuple
label_keys = prepared_for_class.keys() - inputs_dict.keys()
signature = inspect.signature(model.call).parameters
signature_names = list(signature.keys())
# Create a dictionary holding the location of the tensors in the tuple
tuple_index_mapping = {0: input_name}
for label_key in label_keys:
label_key_index = signature_names.index(label_key)
tuple_index_mapping[label_key_index] = label_key
sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
# Initialize a list with their default values, update the values and convert to a tuple
list_input = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default)
for index, value in sorted_tuple_index_mapping:
list_input[index] = prepared_for_class[value]
tuple_input = tuple(list_input)
# Send to model
loss = model(tuple_input[:-1])[0]
self.assertEqual(loss.shape, [loss_size])
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in TF_DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFData2VecVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_tf
@require_vision
class TFData2VecVisionModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
BeitImageProcessor.from_pretrained("facebook/data2vec-vision-base-ft1k") if is_vision_available() else None
)
@slow
def test_inference_image_classification_head_imagenet_1k(self):
model = TFData2VecVisionForImageClassification.from_pretrained("facebook/data2vec-vision-base-ft1k")
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="tf")
# forward pass
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = tf.convert_to_tensor([1, 1000])
self.assertEqual(logits.shape, expected_shape)
expected_slice = tf.convert_to_tensor([0.3277, -0.1395, 0.0911])
tf.debugging.assert_near(logits[0, :3], expected_slice, atol=1e-4)
expected_top2 = [model.config.label2id[i] for i in ["remote control, remote", "tabby, tabby cat"]]
self.assertEqual(tf.nn.top_k(outputs.logits[0], 2).indices.numpy().tolist(), expected_top2)
| transformers/tests/models/data2vec/test_modeling_tf_data2vec_vision.py/0 | {
"file_path": "transformers/tests/models/data2vec/test_modeling_tf_data2vec_vision.py",
"repo_id": "transformers",
"token_count": 9984
} | 158 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DeiT model. """
import unittest
import warnings
from transformers import DeiTConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_accelerator,
require_torch_fp16,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
)
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class DeiTModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
num_labels=3,
scope=None,
encoder_stride=2,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.scope = scope
self.encoder_stride = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 2
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return DeiTConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
encoder_stride=self.encoder_stride,
)
def create_and_check_model(self, config, pixel_values, labels):
model = DeiTModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
model = DeiTForMaskedImageModeling(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
)
# test greyscale images
config.num_channels = 1
model = DeiTForMaskedImageModeling(config)
model.to(torch_device)
model.eval()
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
result = model(pixel_values)
self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size))
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.type_sequence_label_size
model = DeiTForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
# test greyscale images
config.num_channels = 1
model = DeiTForImageClassification(config)
model.to(torch_device)
model.eval()
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
pixel_values,
labels,
) = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class DeiTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as DeiT does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(
DeiTModel,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"image-feature-extraction": DeiTModel,
"image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = DeiTModelTester(self)
self.config_tester = ConfigTester(self, config_class=DeiTConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_image_modeling(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
# special case for DeiTForImageClassificationWithTeacher model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def test_training(self):
if not self.model_tester.is_training:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
# DeiTForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(MODEL_MAPPING)
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
config.use_cache = False
config.return_dict = True
for model_class in self.all_model_classes:
if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
continue
# DeiTForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
continue
model = model_class(config)
model.gradient_checkpointing_enable()
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_problem_types(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
problem_types = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
]
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
config.problem_type = problem_type["title"]
config.num_labels = problem_type["num_labels"]
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
if problem_type["num_labels"] > 1:
inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])
inputs["labels"] = inputs["labels"].to(problem_type["dtype"])
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=True) as warning_list:
loss = model(**inputs).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}"
)
loss.backward()
@slow
def test_model_from_pretrained(self):
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = DeiTModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class DeiTModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
if is_vision_available()
else None
)
@slow
def test_inference_image_classification_head(self):
model = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224").to(
torch_device
)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-1.0266, 0.1912, -1.2861]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
@slow
@require_accelerate
@require_torch_accelerator
@require_torch_fp16
def test_inference_fp16(self):
r"""
A small test to make sure that inference work in half precision without any problem.
"""
model = DeiTModel.from_pretrained(
"facebook/deit-base-distilled-patch16-224", torch_dtype=torch.float16, device_map="auto"
)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt")
pixel_values = inputs.pixel_values.to(torch_device)
# forward pass to make sure inference works in fp16
with torch.no_grad():
_ = model(pixel_values)
| transformers/tests/models/deit/test_modeling_deit.py/0 | {
"file_path": "transformers/tests/models/deit/test_modeling_deit.py",
"repo_id": "transformers",
"token_count": 7230
} | 159 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class FlaxDistilBertModelTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_attention_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_choices=4,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_choices = num_choices
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
config = DistilBertConfig(
vocab_size=self.vocab_size,
dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
hidden_dim=self.intermediate_size,
hidden_act=self.hidden_act,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
tie_weights_=True,
)
return config, input_ids, attention_mask
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class FlaxDistilBertModelTest(FlaxModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def setUp(self):
self.model_tester = FlaxDistilBertModelTester(self)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("distilbert-base-uncased")
outputs = model(np.ones((1, 1)))
self.assertIsNotNone(outputs)
@require_flax
class FlaxDistilBertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head_absolute_embedding(self):
model = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased")
input_ids = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
attention_mask = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
output = model(input_ids, attention_mask=attention_mask)[0]
expected_shape = (1, 11, 768)
self.assertEqual(output.shape, expected_shape)
expected_slice = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]])
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
| transformers/tests/models/distilbert/test_modeling_flax_distilbert.py/0 | {
"file_path": "transformers/tests/models/distilbert/test_modeling_flax_distilbert.py",
"repo_id": "transformers",
"token_count": 2492
} | 160 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DPT model. """
import unittest
from transformers import Dinov2Config, DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MODEL_MAPPING, DPTForDepthEstimation
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class DPTModelTester:
def __init__(
self,
parent,
batch_size=2,
num_channels=3,
image_size=32,
patch_size=16,
use_labels=True,
num_labels=3,
is_training=True,
hidden_size=4,
num_hidden_layers=2,
num_attention_heads=2,
intermediate_size=8,
out_features=["stage1", "stage2"],
apply_layernorm=False,
reshape_hidden_states=False,
neck_hidden_sizes=[2, 2],
fusion_hidden_size=6,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.out_features = out_features
self.apply_layernorm = apply_layernorm
self.reshape_hidden_states = reshape_hidden_states
self.use_labels = use_labels
self.num_labels = num_labels
self.is_training = is_training
self.neck_hidden_sizes = neck_hidden_sizes
self.fusion_hidden_size = fusion_hidden_size
# DPT's sequence length
self.seq_length = (self.image_size // self.patch_size) ** 2 + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return DPTConfig(
backbone_config=self.get_backbone_config(),
backbone=None,
neck_hidden_sizes=self.neck_hidden_sizes,
fusion_hidden_size=self.fusion_hidden_size,
)
def get_backbone_config(self):
return Dinov2Config(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
is_training=self.is_training,
out_features=self.out_features,
reshape_hidden_states=self.reshape_hidden_states,
)
def create_and_check_for_depth_estimation(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = DPTForDepthEstimation(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as DPT does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (DPTForDepthEstimation,) if is_torch_available() else ()
pipeline_model_mapping = {"depth-estimation": DPTForDepthEstimation} if is_torch_available() else {}
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = DPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=DPTConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="DPT with AutoBackbone does not have a base model and hence no input_embeddings")
def test_inputs_embeds(self):
pass
def test_for_depth_estimation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs)
def test_training(self):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
if model_class in get_values(MODEL_MAPPING):
continue
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_cache = False
config.return_dict = True
if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
continue
model = model_class(config)
model.to(torch_device)
model.gradient_checkpointing_enable()
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
# Skip the check for the backbone
backbone_params = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@unittest.skip(reason="DPT with AutoBackbone does not have a base model and hence no input_embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="DPT with AutoBackbone does not have a base model")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="DPT with AutoBackbone does not have a base model")
def test_save_load_fast_init_to_base(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = DPTForDepthEstimation.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
@slow
class DPTModelIntegrationTest(unittest.TestCase):
def test_inference_depth_estimation_dinov2(self):
image_processor = DPTImageProcessor.from_pretrained("facebook/dpt-dinov2-small-kitti")
model = DPTForDepthEstimation.from_pretrained("facebook/dpt-dinov2-small-kitti").to(torch_device)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# verify the predicted depth
expected_shape = torch.Size((1, 576, 736))
self.assertEqual(predicted_depth.shape, expected_shape)
expected_slice = torch.tensor(
[[6.0433, 7.1636, 7.4268], [6.9047, 7.2471, 7.2355], [7.9261, 8.0631, 8.0244]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))
def test_inference_depth_estimation_beit(self):
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-beit-base-384")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-beit-base-384").to(torch_device)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# verify the predicted depth
expected_shape = torch.Size((1, 384, 384))
self.assertEqual(predicted_depth.shape, expected_shape)
expected_slice = torch.tensor(
[[2669.7061, 2663.7144, 2674.9399], [2633.9326, 2650.9092, 2665.4270], [2621.8271, 2632.0129, 2637.2290]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))
def test_inference_depth_estimation_swinv2(self):
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256").to(torch_device)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# verify the predicted depth
expected_shape = torch.Size((1, 256, 256))
self.assertEqual(predicted_depth.shape, expected_shape)
expected_slice = torch.tensor(
[[1032.7719, 1025.1886, 1030.2661], [1023.7619, 1021.0075, 1024.9121], [1022.5667, 1018.8522, 1021.4145]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))
| transformers/tests/models/dpt/test_modeling_dpt_auto_backbone.py/0 | {
"file_path": "transformers/tests/models/dpt/test_modeling_dpt_auto_backbone.py",
"repo_id": "transformers",
"token_count": 5415
} | 161 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Encodec model. """
import copy
import inspect
import os
import tempfile
import unittest
from typing import Dict, List, Tuple
import numpy as np
from datasets import Audio, load_dataset
from transformers import AutoProcessor, EncodecConfig
from transformers.testing_utils import (
is_torch_available,
require_torch,
slow,
torch_device,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EncodecModel
def prepare_inputs_dict(
config,
input_ids=None,
input_values=None,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if input_ids is not None:
encoder_dict = {"input_ids": input_ids}
else:
encoder_dict = {"input_values": input_values}
decoder_dict = {"decoder_input_ids": decoder_input_ids} if decoder_input_ids is not None else {}
return {**encoder_dict, **decoder_dict}
@require_torch
class EncodecModelTester:
def __init__(
self,
parent,
# `batch_size` needs to be an even number if the model has some outputs with batch dim != 0.
batch_size=12,
num_channels=2,
is_training=False,
intermediate_size=40,
hidden_size=32,
num_filters=8,
num_residual_layers=1,
upsampling_ratios=[8, 4],
num_lstm_layers=1,
codebook_size=64,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.is_training = is_training
self.intermediate_size = intermediate_size
self.hidden_size = hidden_size
self.num_filters = num_filters
self.num_residual_layers = num_residual_layers
self.upsampling_ratios = upsampling_ratios
self.num_lstm_layers = num_lstm_layers
self.codebook_size = codebook_size
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
config = self.get_config()
inputs_dict = {"input_values": input_values}
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def get_config(self):
return EncodecConfig(
audio_channels=self.num_channels,
chunk_in_sec=None,
hidden_size=self.hidden_size,
num_filters=self.num_filters,
num_residual_layers=self.num_residual_layers,
upsampling_ratios=self.upsampling_ratios,
num_lstm_layers=self.num_lstm_layers,
codebook_size=self.codebook_size,
)
def create_and_check_model_forward(self, config, inputs_dict):
model = EncodecModel(config=config).to(torch_device).eval()
input_values = inputs_dict["input_values"]
result = model(input_values)
self.parent.assertEqual(
result.audio_values.shape, (self.batch_size, self.num_channels, self.intermediate_size)
)
@require_torch
class EncodecModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (EncodecModel,) if is_torch_available() else ()
is_encoder_decoder = True
test_pruning = False
test_headmasking = False
test_resize_embeddings = False
pipeline_model_mapping = {"feature-extraction": EncodecModel} if is_torch_available() else {}
input_name = "input_values"
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
# model does not have attention and does not support returning hidden states
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if "output_attentions" in inputs_dict:
inputs_dict.pop("output_attentions")
if "output_hidden_states" in inputs_dict:
inputs_dict.pop("output_hidden_states")
return inputs_dict
def setUp(self):
self.model_tester = EncodecModelTester(self)
self.config_tester = ConfigTester(
self, config_class=EncodecConfig, hidden_size=37, common_properties=[], has_text_modality=False
)
def test_config(self):
self.config_tester.run_common_tests()
def test_model_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_forward(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_values", "padding_mask", "bandwidth"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@unittest.skip("The EncodecModel is not transformers based, thus it does not have `inputs_embeds` logics")
def test_inputs_embeds(self):
pass
@unittest.skip("The EncodecModel is not transformers based, thus it does not have `inputs_embeds` logics")
def test_model_common_attributes(self):
pass
@unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `attention` logic")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `attention` logic")
def test_torchscript_output_attentions(self):
pass
@unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `hidden_states` logic")
def test_torchscript_output_hidden_state(self):
pass
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
main_input_name = model_class.main_input_name
try:
main_input = inputs[main_input_name]
model(main_input)
traced_model = torch.jit.trace(model, main_input)
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
@unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `attention` logic")
def test_attention_outputs(self):
pass
def test_feed_forward_chunking(self):
(original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
torch.manual_seed(0)
config = copy.deepcopy(original_config)
config.chunk_length_s = None
config.overlap = None
config.sampling_rate = 10
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
inputs["input_values"] = inputs["input_values"].repeat(1, 1, 10)
hidden_states_no_chunk = model(**inputs)[0]
torch.manual_seed(0)
config.chunk_length_s = 1
config.overlap = 0
config.sampling_rate = 10
model = model_class(config)
model.to(torch_device)
model.eval()
hidden_states_with_chunk = model(**inputs)[0]
self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))
@unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `hidden_states` logic")
def test_hidden_states_output(self):
pass
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_determinism(first, second):
# outputs are not tensors but list (since each sequence don't have the same frame_length)
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_determinism(tensor1, tensor2)
else:
check_determinism(first, second)
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs)
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = ["conv"]
ignore_init = ["lstm"]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
elif not any(x in name for x in ignore_init):
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_identity_shortcut(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
config.use_conv_shortcut = False
self.model_tester.create_and_check_model_forward(config, inputs_dict)
def normalize(arr):
norm = np.linalg.norm(arr)
normalized_arr = arr / norm
return normalized_arr
def compute_rmse(arr1, arr2):
arr1_normalized = normalize(arr1)
arr2_normalized = normalize(arr2)
return np.sqrt(((arr1_normalized - arr2_normalized) ** 2).mean())
@slow
@require_torch
class EncodecIntegrationTest(unittest.TestCase):
def test_integration_24kHz(self):
expected_rmse = {
"1.5": 0.0025,
"24.0": 0.0015,
}
expected_codesums = {
"1.5": [371955],
"24.0": [6659962],
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "facebook/encodec_24khz"
model = EncodecModel.from_pretrained(model_id).to(torch_device)
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[-1]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
for bandwidth, expected_rmse in expected_rmse.items():
with torch.no_grad():
# use max bandwith for best possible reconstruction
encoder_outputs = model.encode(inputs["input_values"], bandwidth=float(bandwidth))
audio_code_sums = [a[0].sum().cpu().item() for a in encoder_outputs[0]]
# make sure audio encoded codes are correct
self.assertListEqual(audio_code_sums, expected_codesums[bandwidth])
audio_codes, scales = encoder_outputs.to_tuple()
input_values_dec = model.decode(audio_codes, scales, inputs["padding_mask"])[0]
input_values_enc_dec = model(
inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth)
)[-1]
# make sure forward and decode gives same result
self.assertTrue(torch.allclose(input_values_dec, input_values_enc_dec, atol=1e-3))
# make sure shape matches
self.assertTrue(inputs["input_values"].shape == input_values_enc_dec.shape)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(arr, arr_enc_dec)
self.assertTrue(rmse < expected_rmse)
def test_integration_48kHz(self):
expected_rmse = {
"3.0": 0.001,
"24.0": 0.0005,
}
expected_codesums = {
"3.0": [144259, 146765, 156435, 176871, 161971],
"24.0": [1568553, 1294948, 1306190, 1464747, 1663150],
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "facebook/encodec_48khz"
model = EncodecModel.from_pretrained(model_id).to(torch_device)
model = model.eval()
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[-1]["audio"]["array"]
# transform mono to stereo
audio_sample = np.array([audio_sample, audio_sample])
inputs = processor(raw_audio=audio_sample, sampling_rate=processor.sampling_rate, return_tensors="pt").to(
torch_device
)
for bandwidth, expected_rmse in expected_rmse.items():
with torch.no_grad():
# use max bandwith for best possible reconstruction
encoder_outputs = model.encode(
inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth), return_dict=False
)
audio_code_sums = [a[0].sum().cpu().item() for a in encoder_outputs[0]]
# make sure audio encoded codes are correct
self.assertListEqual(audio_code_sums, expected_codesums[bandwidth])
audio_codes, scales = encoder_outputs
input_values_dec = model.decode(audio_codes, scales, inputs["padding_mask"])[0]
input_values_enc_dec = model(
inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth)
)[-1]
# make sure forward and decode gives same result
self.assertTrue(torch.allclose(input_values_dec, input_values_enc_dec, atol=1e-3))
# make sure shape matches
self.assertTrue(inputs["input_values"].shape == input_values_enc_dec.shape)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(arr, arr_enc_dec)
self.assertTrue(rmse < expected_rmse)
def test_batch_48kHz(self):
expected_rmse = {
"3.0": 0.001,
"24.0": 0.0005,
}
expected_codesums = {
"3.0": [
[72410, 79137, 76694, 90854, 73023, 82980, 72707, 54842],
[85561, 81870, 76953, 48967, 79315, 85442, 81479, 107241],
],
"24.0": [
[72410, 79137, 76694, 90854, 73023, 82980, 72707, 54842],
[85561, 81870, 76953, 48967, 79315, 85442, 81479, 107241],
],
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "facebook/encodec_48khz"
model = EncodecModel.from_pretrained(model_id).to(torch_device)
processor = AutoProcessor.from_pretrained(model_id, chunk_length_s=1, overlap=0.01)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_samples = [
np.array([audio_sample["array"], audio_sample["array"]])
for audio_sample in librispeech_dummy[-2:]["audio"]
]
inputs = processor(raw_audio=audio_samples, sampling_rate=processor.sampling_rate, return_tensors="pt")
input_values = inputs["input_values"].to(torch_device)
for bandwidth, expected_rmse in expected_rmse.items():
with torch.no_grad():
# use max bandwith for best possible reconstruction
encoder_outputs = model.encode(input_values, bandwidth=float(bandwidth), return_dict=False)
audio_code_sums_0 = [a[0][0].sum().cpu().item() for a in encoder_outputs[0]]
audio_code_sums_1 = [a[0][1].sum().cpu().item() for a in encoder_outputs[0]]
# make sure audio encoded codes are correct
self.assertListEqual(audio_code_sums_0, expected_codesums[bandwidth][0])
self.assertListEqual(audio_code_sums_1, expected_codesums[bandwidth][1])
audio_codes, scales = encoder_outputs
input_values_dec = model.decode(audio_codes, scales)[0]
input_values_enc_dec = model(input_values, bandwidth=float(bandwidth))[-1]
# make sure forward and decode gives same result
self.assertTrue(torch.allclose(input_values_dec, input_values_enc_dec, atol=1e-3))
# make sure shape matches
self.assertTrue(input_values.shape == input_values_enc_dec.shape)
arr = input_values[0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(arr, arr_enc_dec)
self.assertTrue(rmse < expected_rmse)
| transformers/tests/models/encodec/test_modeling_encodec.py/0 | {
"file_path": "transformers/tests/models/encodec/test_modeling_encodec.py",
"repo_id": "transformers",
"token_count": 11774
} | 162 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Falcon model. """
import tempfile
import unittest
from parameterized import parameterized
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
FalconConfig,
is_torch_available,
set_seed,
)
from transformers.testing_utils import require_bitsandbytes, require_torch, require_torch_sdpa, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
)
class FalconModelTester:
def __init__(
self,
parent,
batch_size=3,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return FalconConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=1,
new_decoder_architecture=True,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = FalconModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = FalconModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = FalconForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = FalconForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class FalconModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
FalconModel,
FalconForCausalLM,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconForQuestionAnswering,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (FalconForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": FalconModel,
"question-answering": FalconForQuestionAnswering,
"text-classification": FalconForSequenceClassification,
"text-generation": FalconForCausalLM,
"token-classification": FalconForTokenClassification,
"zero-shot": FalconForSequenceClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
return True
def setUp(self):
self.model_tester = FalconModelTester(self)
self.config_tester = ConfigTester(self, config_class=FalconConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_position_embedding_types(self):
config, *inputs = self.model_tester.prepare_config_and_inputs()
for alibi in [True, False]:
config.alibi = alibi
self.model_tester.create_and_check_model(config, *inputs)
def test_falcon_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = FalconForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_falcon_sequence_classification_model_for_single_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "single_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = FalconForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_falcon_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = FalconForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_past_key_values_format(self):
# Falcon can have different numbers of KV-heads than the number of query heads, so we need
# to override this test to use the right head counts.
for model_class in self.all_generative_model_classes:
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
# If it doesn't support cache, pass the test
if not hasattr(config, "use_cache"):
return
model = model_class(config).to(torch_device)
if "use_cache" not in inputs:
inputs["use_cache"] = True
outputs = model(**inputs)
# If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
if "past_key_values" not in outputs:
return
num_hidden_layers = (
getattr(config, "decoder_layers", None)
or getattr(config, "num_decoder_layers", None)
or config.num_hidden_layers
)
num_attention_heads = getattr(config, "num_kv_heads", config.num_attention_heads)
embed_dim = getattr(config, "d_model", config.hidden_size)
per_head_embed_dim = embed_dim // num_attention_heads
past_kv = outputs["past_key_values"]
self.assertEqual(len(past_kv), num_hidden_layers)
batch_size, seq_length = inputs["input_ids"].shape
for i in range(num_hidden_layers):
if config.new_decoder_architecture:
num_attention_heads = config.num_attention_heads
elif config.multi_query:
num_attention_heads = 1
self.assertEqual(len(past_kv[0]), 2) # K V for the decoder = 2
self.assertEqual(
past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
)
self.assertEqual(
past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
)
@parameterized.expand([("linear",), ("dynamic",)])
def test_model_rope_scaling(self, scaling_type):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
short_input = ids_tensor([1, 10], config.vocab_size)
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
original_model = FalconModel(config)
original_model.to(torch_device)
original_model.eval()
original_short_output = original_model(short_input).last_hidden_state
original_long_output = original_model(long_input).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
scaled_model = FalconModel(config)
scaled_model.to(torch_device)
scaled_model.eval()
scaled_short_output = scaled_model(short_input).last_hidden_state
scaled_long_output = scaled_model(long_input).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
else:
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
@require_torch_sdpa
@slow
def test_eager_matches_sdpa_generate(self):
max_new_tokens = 30
if len(self.all_generative_model_classes) == 0:
self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test")
for model_class in self.all_generative_model_classes:
if not model_class._supports_sdpa:
self.skipTest(f"{model_class.__name__} does not support SDPA")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
dummy_input = inputs_dict[model_class.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
dummy_input = dummy_input.to(torch.float16)
# make sure that all models have enough positions for generation
if hasattr(config, "max_position_embeddings"):
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
model_sdpa = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(torch_device)
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
model_eager = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
attn_implementation="eager",
).to(torch_device)
self.assertTrue(model_eager.config._attn_implementation == "eager")
# NOTE: This check is disabled for Falcon as the non-SDPA/SDPA implementation is in the same class (legacy reason).
# for name, submodule in model_eager.named_modules():
# if "SdpaAttention" in submodule.__class__.__name__:
# raise ValueError("The eager model should not have SDPA attention layers")
# has_sdpa = False
# for name, submodule in model_sdpa.named_modules():
# if "SdpaAttention" in submodule.__class__.__name__:
# has_sdpa = True
# break
# if not has_sdpa:
# raise ValueError("The SDPA model should have SDPA attention layers")
# Just test that a large cache works as expected
res_eager = model_eager.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
)
res_sdpa = model_sdpa.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
)
self.assertTrue(torch.allclose(res_eager, res_sdpa))
@require_torch
class FalconLanguageGenerationTest(unittest.TestCase):
@slow
def test_lm_generate_falcon(self):
tokenizer = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b")
model = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b")
model.eval()
model.to(torch_device)
inputs = tokenizer("My favorite food is", return_tensors="pt").to(torch_device)
EXPECTED_OUTPUT = (
"My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday."
)
output_ids = model.generate(**inputs, do_sample=False, max_new_tokens=19)
output_str = tokenizer.batch_decode(output_ids)[0]
self.assertEqual(output_str, EXPECTED_OUTPUT)
@slow
def test_lm_generation_big_models(self):
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]:
tokenizer = AutoTokenizer.from_pretrained(repo)
model = FalconForCausalLM.from_pretrained(repo)
model.eval()
model.to(torch_device)
inputs = tokenizer("My favorite food is", return_tensors="pt").to(torch_device)
# We just test that these run without errors - the models are randomly initialized
# and so the actual text outputs will be garbage
model.generate(**inputs, do_sample=False, max_new_tokens=4)
model.generate(**inputs, do_sample=True, max_new_tokens=4)
model.generate(**inputs, num_beams=2, max_new_tokens=4)
@slow
def test_lm_generation_use_cache(self):
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
with torch.no_grad():
for repo in [
"Rocketknight1/falcon-rw-1b",
"Rocketknight1/tiny-random-falcon-7b",
"Rocketknight1/tiny-random-falcon-40b",
]:
tokenizer = AutoTokenizer.from_pretrained(repo)
model = FalconForCausalLM.from_pretrained(repo)
model.eval()
model.to(device=torch_device)
inputs = tokenizer("My favorite food is", return_tensors="pt").to(torch_device)
# Test results are the same with and without cache
outputs_no_cache = model.generate(**inputs, do_sample=False, max_new_tokens=20, use_cache=False)
outputs_cache = model.generate(**inputs, do_sample=False, max_new_tokens=20, use_cache=True)
self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0)
@require_bitsandbytes
@slow
def test_batched_generation(self):
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b", padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
"tiiuae/falcon-7b",
device_map="auto",
load_in_4bit=True,
)
test_text = "A sequence: 1, 2" # should generate the rest of the sequence
unpadded_inputs = tokenizer([test_text], return_tensors="pt").to("cuda:0")
unpadded_gen_out = model.generate(**unpadded_inputs, max_new_tokens=20)
unpadded_gen_text = tokenizer.batch_decode(unpadded_gen_out, skip_special_tokens=True)
dummy_text = "This is a longer text " * 2 # forces left-padding on `test_text`
padded_inputs = tokenizer([test_text, dummy_text], return_tensors="pt", padding=True).to("cuda:0")
padded_gen_out = model.generate(**padded_inputs, max_new_tokens=20)
padded_gen_text = tokenizer.batch_decode(padded_gen_out, skip_special_tokens=True)
expected_output = "A sequence: 1, 2, 3, 4, 5, 6, 7, 8, "
self.assertLess(unpadded_inputs.input_ids.shape[-1], padded_inputs.input_ids.shape[-1]) # left-padding exists
self.assertEqual(unpadded_gen_text[0], expected_output)
self.assertEqual(padded_gen_text[0], expected_output)
| transformers/tests/models/falcon/test_modeling_falcon.py/0 | {
"file_path": "transformers/tests/models/falcon/test_modeling_falcon.py",
"repo_id": "transformers",
"token_count": 11320
} | 163 |
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import GitConfig, GitProcessor, GitVisionConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, GitForCausalLM, GitModel, GitVisionModel
from transformers.models.git.modeling_git import GIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class GitVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=32,
patch_size=16,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return GitVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = GitVisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class GitVisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as GIT does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (GitVisionModel,) if is_torch_available() else ()
fx_compatible = True
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = GitVisionModelTester(self)
self.config_tester = ConfigTester(self, config_class=GitVisionConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="GIT does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="GitVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="GitVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in GIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = GitVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class GitModelTester:
def __init__(
self,
parent,
num_channels=3,
image_size=32,
patch_size=16,
batch_size=13,
text_seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
initializer_range=0.02,
num_labels=3,
scope=None,
):
self.parent = parent
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.batch_size = batch_size
self.text_seq_length = text_seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
# make sure the BOS, EOS and PAD tokens are within the vocab
self.bos_token_id = vocab_size - 1
self.eos_token_id = vocab_size - 1
self.pad_token_id = vocab_size - 1
# for GIT, the sequence length is the sum of the text and patch tokens, + 1 due to the CLS token
self.seq_length = self.text_seq_length + int((self.image_size / self.patch_size) ** 2) + 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.text_seq_length])
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, input_ids, input_mask, pixel_values
def get_config(self):
"""
Returns a tiny configuration by default.
"""
return GitConfig(
vision_config={
"num_channels": self.num_channels,
"image_size": self.image_size,
"patch_size": self.patch_size,
"hidden_size": self.hidden_size,
"projection_dim": 32,
"num_hidden_layers": self.num_hidden_layers,
"num_attention_heads": self.num_attention_heads,
},
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
)
def create_and_check_model(self, config, input_ids, input_mask, pixel_values):
model = GitModel(config=config)
model.to(torch_device)
model.eval()
# inference with pixel values
result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
# inference without pixel values
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size)
)
def create_and_check_for_causal_lm(self, config, input_ids, input_mask, pixel_values):
model = GitForCausalLM(config=config)
model.to(torch_device)
model.eval()
# inference with pixel values
result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
# inference without pixel values
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.vocab_size))
# training
result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values, labels=input_ids)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertTrue(result.loss.item() > 0)
def _test_beam_search_generate(self, config, input_ids, input_mask, pixel_values):
model = GitForCausalLM(config=config)
model.to(torch_device)
model.eval()
# generate
generated_ids = model.generate(
input_ids,
attention_mask=input_mask,
pixel_values=pixel_values,
do_sample=False,
max_length=20,
num_beams=2,
num_return_sequences=2,
)
self.parent.assertEqual(generated_ids.shape, (self.batch_size * 2, 20))
def _test_batched_generate_captioning(self, config, input_ids, input_mask, pixel_values):
model = GitForCausalLM(config=config)
model.to(torch_device)
model.eval()
# generate
generated_ids = model.generate(
input_ids=None, # captioning -> no input_ids
attention_mask=None,
pixel_values=pixel_values,
do_sample=False,
max_length=20,
num_beams=2,
num_return_sequences=2,
)
self.parent.assertEqual(generated_ids.shape, (self.batch_size * 2, 20))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
pixel_values,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": input_mask,
"pixel_values": pixel_values,
}
return config, inputs_dict
@require_torch
class GitModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (GitModel, GitForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (GitForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": GitModel, "image-to-text": GitForCausalLM, "text-generation": GitForCausalLM}
if is_torch_available()
else {}
)
fx_compatible = False
test_torchscript = False
# special case for GitForCausalLM model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class in get_values(MODEL_FOR_CAUSAL_LM_MAPPING):
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length),
dtype=torch.long,
device=torch_device,
)
return inputs_dict
def setUp(self):
self.model_tester = GitModelTester(self)
self.config_tester = ConfigTester(self, config_class=GitConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
def test_beam_search_generate(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester._test_beam_search_generate(*config_and_inputs)
def test_batched_generate_captioning(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester._test_batched_generate_captioning(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in GIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = GitModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip(reason="GIT has pixel values as additional input")
def test_beam_search_generate_dict_outputs_use_cache(self):
pass
@unittest.skip(reason="GIT has pixel values as additional input")
def test_contrastive_generate(self):
pass
@unittest.skip(reason="GIT has pixel values as additional input")
def test_contrastive_generate_dict_outputs_use_cache(self):
pass
@unittest.skip(reason="GIT has pixel values as additional input")
def test_greedy_generate_dict_outputs_use_cache(self):
pass
@require_torch
@require_vision
@slow
class GitModelIntegrationTest(unittest.TestCase):
def test_forward_pass(self):
processor = GitProcessor.from_pretrained("microsoft/git-base")
model = GitForCausalLM.from_pretrained("microsoft/git-base")
model.to(torch_device)
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
inputs = processor(images=image, text="hello world", return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**inputs)
expected_shape = torch.Size((1, 201, 30522))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor(
[[-0.9514, -0.9512, -0.9507], [-0.5454, -0.5453, -0.5453], [-0.8862, -0.8857, -0.8848]],
device=torch_device,
)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4))
def test_inference_image_captioning(self):
processor = GitProcessor.from_pretrained("microsoft/git-base")
model = GitForCausalLM.from_pretrained("microsoft/git-base")
model.to(torch_device)
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
inputs = processor(images=image, return_tensors="pt")
pixel_values = inputs.pixel_values.to(torch_device)
outputs = model.generate(
pixel_values=pixel_values, max_length=20, output_scores=True, return_dict_in_generate=True
)
generated_caption = processor.batch_decode(outputs.sequences, skip_special_tokens=True)[0]
expected_shape = torch.Size((1, 9))
self.assertEqual(outputs.sequences.shape, expected_shape)
self.assertEquals(generated_caption, "two cats laying on a pink blanket")
self.assertTrue(outputs.scores[-1].shape, expected_shape)
expected_slice = torch.tensor([[-0.8805, -0.8803, -0.8799]], device=torch_device)
self.assertTrue(torch.allclose(outputs.scores[-1][0, :3], expected_slice, atol=1e-4))
def test_visual_question_answering(self):
processor = GitProcessor.from_pretrained("microsoft/git-base-textvqa")
model = GitForCausalLM.from_pretrained("microsoft/git-base-textvqa")
model.to(torch_device)
# prepare image
file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
image = Image.open(file_path).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
pixel_values = inputs.pixel_values.to(torch_device)
# prepare question
question = "what does the front of the bus say at the top?"
input_ids = processor(text=question, add_special_tokens=False).input_ids
input_ids = [processor.tokenizer.cls_token_id] + input_ids
input_ids = torch.tensor(input_ids).unsqueeze(0).to(torch_device)
generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=20)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
expected_shape = torch.Size((1, 15))
self.assertEqual(generated_ids.shape, expected_shape)
self.assertEquals(generated_caption, "what does the front of the bus say at the top? special")
def test_batched_generation(self):
processor = GitProcessor.from_pretrained("microsoft/git-base-coco")
model = GitForCausalLM.from_pretrained("microsoft/git-base-coco")
model.to(torch_device)
# create batch of size 2
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
inputs = processor(images=[image, image], return_tensors="pt")
pixel_values = inputs.pixel_values.to(torch_device)
# we have to prepare `input_ids` with the same batch size as `pixel_values`
start_token_id = model.config.bos_token_id
input_ids = torch.tensor([[start_token_id], [start_token_id]], device=torch_device)
generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
generated_captions = processor.batch_decode(generated_ids, skip_special_tokens=True)
self.assertEquals(generated_captions, ["two cats sleeping on a pink blanket next to remotes."] * 2)
| transformers/tests/models/git/test_modeling_git.py/0 | {
"file_path": "transformers/tests/models/git/test_modeling_git.py",
"repo_id": "transformers",
"token_count": 9579
} | 164 |
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
import os
import tempfile
import unittest
from transformers import ImageGPTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
ImageGPTForCausalImageModeling,
ImageGPTForImageClassification,
ImageGPTModel,
)
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class ImageGPTModelTester:
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = None
def get_large_model_config(self):
return ImageGPTConfig.from_pretrained("imagegpt")
def prepare_config_and_inputs(
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
):
pixel_values = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config(
gradient_checkpointing=gradient_checkpointing,
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
reorder_and_upcast_attn=reorder_and_upcast_attn,
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
pixel_values,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def get_config(
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
):
return ImageGPTConfig(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
n_inner=self.intermediate_size,
activation_function=self.hidden_act,
resid_pdrop=self.hidden_dropout_prob,
attn_pdrop=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
use_cache=True,
gradient_checkpointing=gradient_checkpointing,
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
reorder_and_upcast_attn=reorder_and_upcast_attn,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 513
config.max_position_embeddings = 1024
return config
def prepare_config_and_inputs_for_decoder(self):
(
config,
pixel_values,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
pixel_values,
input_mask,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_imagegpt_model(self, config, pixel_values, input_mask, head_mask, token_type_ids, *args):
model = ImageGPTModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values, token_type_ids=token_type_ids, head_mask=head_mask)
result = model(pixel_values, token_type_ids=token_type_ids)
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(len(result.past_key_values), config.n_layer)
def create_and_check_lm_head_model(self, config, pixel_values, input_mask, head_mask, token_type_ids, *args):
model = ImageGPTForCausalImageModeling(config)
model.to(torch_device)
model.eval()
labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1)
result = model(pixel_values, token_type_ids=token_type_ids, labels=labels)
self.parent.assertEqual(result.loss.shape, ())
# ImageGPTForCausalImageModeling doens't have tied input- and output embeddings
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size - 1))
def create_and_check_imagegpt_for_image_classification(
self, config, pixel_values, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
):
config.num_labels = self.num_labels
model = ImageGPTForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
pixel_values,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class ImageGPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(ImageGPTForCausalImageModeling, ImageGPTForImageClassification, ImageGPTModel) if is_torch_available() else ()
)
all_generative_model_classes = (ImageGPTForCausalImageModeling,) if is_torch_available() else ()
pipeline_model_mapping = (
{"image-feature-extraction": ImageGPTModel, "image-classification": ImageGPTForImageClassification}
if is_torch_available()
else {}
)
test_missing_keys = False
input_name = "pixel_values"
# as ImageGPTForImageClassification isn't included in any auto mapping, we add labels here
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class.__name__ == "ImageGPTForImageClassification":
inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
# we overwrite the _check_scores method of GenerationTesterMixin, as ImageGPTForCausalImageModeling doesn't have tied input- and output embeddings
def _check_scores(self, batch_size, scores, length, config):
expected_shape = (batch_size, config.vocab_size - 1)
self.assertIsInstance(scores, tuple)
self.assertEqual(len(scores), length)
self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))
def setUp(self):
self.model_tester = ImageGPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=ImageGPTConfig, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_imagegpt_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_imagegpt_model(*config_and_inputs)
def test_imagegpt_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*config_and_inputs)
def test_imagegpt_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_imagegpt_for_image_classification(*config_and_inputs)
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ImageGPTModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_ids"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_resize_tokens_embeddings(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["pixel_values"].clamp_(max=model_vocab_size - 15 - 1)
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_resize_embeddings_untied(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
original_config.tie_word_embeddings = False
# if model cannot untied embeddings -> leave test
if original_config.tie_word_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config).to(torch_device)
# if no output embeddings -> leave test
if model.get_output_embeddings() is None:
continue
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_vocab_size = config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["pixel_values"].clamp_(max=model_vocab_size - 15 - 1)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
pixel_values = inputs["pixel_values"]
del inputs["pixel_values"]
wte = model.get_input_embeddings()
inputs["inputs_embeds"] = wte(pixel_values)
with torch.no_grad():
model(**inputs)[0]
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
try:
pixel_values = inputs["pixel_values"]
traced_model = torch.jit.trace(model, pixel_values)
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
@unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :)
def test_left_padding_compatibility(self):
pass
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class ImageGPTModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small") if is_vision_available() else None
@slow
def test_inference_causal_lm_head(self):
model = ImageGPTForCausalImageModeling.from_pretrained("openai/imagegpt-small").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1024, 512))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor(
[[2.3445, 2.6889, 2.7313], [1.0530, 1.2416, 0.5699], [0.2205, 0.7749, 0.3953]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4))
| transformers/tests/models/imagegpt/test_modeling_imagegpt.py/0 | {
"file_path": "transformers/tests/models/imagegpt/test_modeling_imagegpt.py",
"repo_id": "transformers",
"token_count": 10627
} | 165 |
# coding=utf-8
# Copyright Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class TFLEDModelTester:
config_cls = LEDConfig
config_updates = {}
hidden_act = "gelu"
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
attention_window=4,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.attention_window = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
self.key_length = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
self.encoder_seq_length = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def prepare_config_and_inputs_for_common(self):
input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
input_ids = tf.concat([input_ids, eos_tensor], axis=1)
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.config_cls(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_ids=[2],
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.pad_token_id,
attention_window=self.attention_window,
**self.config_updates,
)
inputs_dict = prepare_led_inputs_dict(config, input_ids, decoder_input_ids)
global_attention_mask = tf.concat(
[tf.zeros_like(input_ids)[:, :-1], tf.ones_like(input_ids)[:, -1:]],
axis=-1,
)
inputs_dict["global_attention_mask"] = global_attention_mask
return config, inputs_dict
def check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = TFLEDModel(config=config).get_decoder()
input_ids = inputs_dict["input_ids"]
input_ids = input_ids[:1, :]
attention_mask = inputs_dict["attention_mask"][:1, :]
self.batch_size = 1
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def prepare_led_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
):
if attention_mask is None:
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
if decoder_attention_mask is None:
decoder_attention_mask = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
],
axis=-1,
)
if head_mask is None:
head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class TFLEDModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
all_generative_model_classes = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
pipeline_model_mapping = (
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
is_encoder_decoder = True
test_pruning = False
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFLEDModelTester(self)
self.config_tester = ConfigTester(self, config_class=LEDConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
inputs_dict["global_attention_mask"] = tf.zeros_like(inputs_dict["attention_mask"])
num_global_attn_indices = 2
inputs_dict["global_attention_mask"] = tf.where(
tf.range(self.model_tester.seq_length)[None, :] < num_global_attn_indices,
1,
inputs_dict["global_attention_mask"],
)
config.return_dict = True
seq_length = self.model_tester.seq_length
encoder_seq_length = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(outputs):
decoder_attentions = outputs.decoder_attentions
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_length, seq_length],
)
def check_encoder_attentions_output(outputs):
attentions = [t.numpy() for t in outputs.encoder_attentions]
global_attentions = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertEqual(len(global_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_length, seq_length],
)
self.assertListEqual(
list(global_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices],
)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["use_cache"] = False
config.output_hidden_states = False
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
out_len = len(outputs)
self.assertEqual(config.output_hidden_states, False)
check_encoder_attentions_output(outputs)
if self.is_encoder_decoder:
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(config.output_hidden_states, False)
check_decoder_attentions_output(outputs)
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(config.output_hidden_states, False)
check_encoder_attentions_output(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
config.output_hidden_states = True
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
self.assertEqual(model.config.output_hidden_states, True)
check_encoder_attentions_output(outputs)
@unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing.")
def test_saved_model_creation(self):
pass
def test_generate_with_headmasking(self):
# TODO: Head-masking not yet implement
pass
def _long_tensor(tok_lst):
return tf.constant(tok_lst, dtype=tf.int32)
TOLERANCE = 1e-4
@slow
@require_tf
class TFLEDModelIntegrationTest(unittest.TestCase):
def test_inference_no_head(self):
model = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384").led
# change to intended input here
input_ids = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
decoder_input_ids = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
inputs_dict = prepare_led_inputs_dict(model.config, input_ids, decoder_input_ids)
output = model(**inputs_dict)[0]
expected_shape = (1, 1024, 768)
self.assertEqual(output.shape, expected_shape)
# change to expected output here
expected_slice = tf.convert_to_tensor(
[[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]],
)
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-3)
def test_inference_with_head(self):
model = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384")
# change to intended input here
input_ids = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
decoder_input_ids = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
inputs_dict = prepare_led_inputs_dict(model.config, input_ids, decoder_input_ids)
output = model(**inputs_dict)[0]
expected_shape = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape, expected_shape)
# change to expected output here
expected_slice = tf.convert_to_tensor(
[[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]],
)
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-3, rtol=1e-3)
| transformers/tests/models/led/test_modeling_tf_led.py/0 | {
"file_path": "transformers/tests/models/led/test_modeling_tf_led.py",
"repo_id": "transformers",
"token_count": 6455
} | 166 |
# coding=utf-8
# Copyright 2022 Tsimur Hadeliya. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the Longformer tokenizer. """
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
# Copied from tests.models.roberta.test_tokenization_roberta.RobertaTokenizationTest with FacebookAI/roberta-base->allenai/longformer-base-4096,Roberta->Longformer,roberta->longformer,
class LongformerTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
# Ignore copy
tokenizer_class = LongformerTokenizer
test_slow_tokenizer = True
rust_tokenizer_class = LongformerTokenizerFast
test_rust_tokenizer = True
def setUp(self):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "lower newer"
output_text = "lower newer"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map)
text = "lower newer"
bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
tokens = tokenizer.tokenize(text) # , add_prefix_space=True)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
def longformer_dict_integration_testing(self):
tokenizer = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("Hello world!", add_special_tokens=False), [0, 31414, 232, 328, 2])
self.assertListEqual(
tokenizer.encode("Hello world! cécé herlolip 418", add_special_tokens=False),
[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2],
)
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096")
text = tokenizer.encode("sequence builders", add_special_tokens=False)
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
encoded_text_from_decode = tokenizer.encode(
"sequence builders", add_special_tokens=True, add_prefix_space=False
)
encoded_pair_from_decode = tokenizer.encode(
"sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False
)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def test_space_encoding(self):
tokenizer = self.get_tokenizer()
sequence = "Encode this sequence."
space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]]
# Testing encoder arguments
encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False)
first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0]
self.assertNotEqual(first_char, space_encoding)
encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0]
self.assertEqual(first_char, space_encoding)
tokenizer.add_special_tokens({"bos_token": "<s>"})
encoded = tokenizer.encode(sequence, add_special_tokens=True)
first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0]
self.assertNotEqual(first_char, space_encoding)
# Testing spaces after special tokens
mask = "<mask>"
tokenizer.add_special_tokens(
{"mask_token": AddedToken(mask, lstrip=True, rstrip=False)}
) # mask token has a left space
mask_ind = tokenizer.convert_tokens_to_ids(mask)
sequence = "Encode <mask> sequence"
sequence_nospace = "Encode <mask>sequence"
encoded = tokenizer.encode(sequence)
mask_loc = encoded.index(mask_ind)
first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
self.assertEqual(first_char, space_encoding)
encoded = tokenizer.encode(sequence_nospace)
mask_loc = encoded.index(mask_ind)
first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
self.assertNotEqual(first_char, space_encoding)
def test_pretokenized_inputs(self):
pass
def test_embeded_special_tokens(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
sentence = "A, <mask> AllenNLP sentence."
tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
)
tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
self.assertSequenceEqual(
tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
)
self.assertSequenceEqual(
tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
)
def test_change_add_prefix_space_and_trim_offsets_args(self):
for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname, use_fast=True, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets
)
pre_tokenizer_state = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__())
post_processor_state = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__())
self.assertEqual(pre_tokenizer_state["add_prefix_space"], add_prefix_space)
self.assertEqual(post_processor_state["add_prefix_space"], add_prefix_space)
self.assertEqual(post_processor_state["trim_offsets"], trim_offsets)
def test_offsets_mapping_with_different_add_prefix_space_and_trim_space_arguments(self):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
text_of_1_token = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
text = f"{text_of_1_token} {text_of_1_token}"
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=True
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=False
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(len(text_of_1_token), len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=False
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(len(text_of_1_token), len(text_of_1_token) + 1 + len(text_of_1_token)),
)
text = f" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=True
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=False
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(1 + len(text_of_1_token), 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=False
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(1 + len(text_of_1_token), 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
)
| transformers/tests/models/longformer/test_tokenization_longformer.py/0 | {
"file_path": "transformers/tests/models/longformer/test_tokenization_longformer.py",
"repo_id": "transformers",
"token_count": 7085
} | 167 |
# coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Marian model. """
import tempfile
import unittest
from huggingface_hub.hf_api import list_models
from transformers import MarianConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
require_torch_fp16,
slow,
torch_device,
)
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
MarianModel,
MarianMTModel,
TranslationPipeline,
)
from transformers.models.marian.convert_marian_to_pytorch import (
ORG_NAME,
convert_hf_name_to_opus_name,
convert_opus_name_to_hf_name,
)
from transformers.models.marian.modeling_marian import (
MarianDecoder,
MarianEncoder,
MarianForCausalLM,
shift_tokens_right,
)
def prepare_marian_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
if head_mask is None:
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
if decoder_head_mask is None:
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
if cross_attn_head_mask is None:
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class MarianModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
decoder_start_token_id=3,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.decoder_start_token_id = decoder_start_token_id
# forcing a certain token to be generated, sets all other tokens to -inf
# if however the token to be generated is already at -inf then it can lead token
# `nan` values and thus break generation
self.forced_bos_token_id = None
self.forced_eos_token_id = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
3,
)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_config(self):
return MarianConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
forced_bos_token_id=self.forced_bos_token_id,
forced_eos_token_id=self.forced_eos_token_id,
)
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = MarianModel(config=config).get_decoder().to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
head_mask = inputs_dict["head_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
model = MarianModel(config=config).to(torch_device).eval()
outputs = model(**inputs_dict)
encoder_last_hidden_state = outputs.encoder_last_hidden_state
last_hidden_state = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
encoder = model.get_encoder()
encoder.save_pretrained(tmpdirname)
encoder = MarianEncoder.from_pretrained(tmpdirname).to(torch_device)
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
0
]
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
with tempfile.TemporaryDirectory() as tmpdirname:
decoder = model.get_decoder()
decoder.save_pretrained(tmpdirname)
decoder = MarianDecoder.from_pretrained(tmpdirname).to(torch_device)
last_hidden_state_2 = decoder(
input_ids=inputs_dict["decoder_input_ids"],
attention_mask=inputs_dict["decoder_attention_mask"],
encoder_hidden_states=encoder_last_hidden_state,
encoder_attention_mask=inputs_dict["attention_mask"],
)[0]
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
@require_torch
class MarianModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (MarianModel, MarianMTModel) if is_torch_available() else ()
all_generative_model_classes = (MarianMTModel,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"conversational": MarianMTModel,
"feature-extraction": MarianModel,
"summarization": MarianMTModel,
"text-generation": MarianForCausalLM,
"text2text-generation": MarianMTModel,
"translation": MarianMTModel,
}
if is_torch_available()
else {}
)
is_encoder_decoder = True
fx_compatible = True
test_pruning = False
test_missing_keys = False
def setUp(self):
self.model_tester = MarianModelTester(self)
self.config_tester = ConfigTester(self, config_class=MarianConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_encoder_decoder_model_standalone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
@require_torch_fp16
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = MarianMTModel(config).eval().to(torch_device)
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def test_share_encoder_decoder_embeddings(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
# check if embeddings are shared by default
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIs(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens)
self.assertIs(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight)
# check if embeddings are not shared when config.share_encoder_decoder_embeddings = False
config.share_encoder_decoder_embeddings = False
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsNot(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens)
self.assertIsNot(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight)
# check if a model with shared embeddings can be saved and loaded with share_encoder_decoder_embeddings = False
config, _ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, share_encoder_decoder_embeddings=False)
self.assertIsNot(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens)
self.assertIsNot(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight)
def test_resize_decoder_token_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs()
# check if resize_decoder_token_embeddings raises an error when embeddings are shared
for model_class in self.all_model_classes:
model = model_class(config)
with self.assertRaises(ValueError):
model.resize_decoder_token_embeddings(config.vocab_size + 1)
# check if decoder embeddings are resized when config.share_encoder_decoder_embeddings = False
config.share_encoder_decoder_embeddings = False
for model_class in self.all_model_classes:
model = model_class(config)
model.resize_decoder_token_embeddings(config.vocab_size + 1)
self.assertEqual(model.get_decoder().embed_tokens.weight.shape, (config.vocab_size + 1, config.d_model))
# check if lm_head is also resized
config, _ = self.model_tester.prepare_config_and_inputs()
config.share_encoder_decoder_embeddings = False
model = MarianMTModel(config)
model.resize_decoder_token_embeddings(config.vocab_size + 1)
self.assertEqual(model.lm_head.weight.shape, (config.vocab_size + 1, config.d_model))
def test_tie_word_embeddings_decoder(self):
pass
@unittest.skip("Skipping for now, to fix @ArthurZ or @ydshieh")
def test_pipeline_conversational(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
if a.numel() > 100:
msg = f"tensor values are {pct_different:.1%} percent different."
else:
msg = f"{a} != {b}"
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
def _long_tensor(tok_lst):
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
class ModelManagementTests(unittest.TestCase):
@slow
@require_torch
def test_model_names(self):
model_list = list_models()
model_ids = [x.modelId for x in model_list if x.modelId.startswith(ORG_NAME)]
bad_model_ids = [mid for mid in model_ids if "+" in model_ids]
self.assertListEqual([], bad_model_ids)
self.assertGreater(len(model_ids), 500)
@require_torch
@require_sentencepiece
@require_tokenizers
class MarianIntegrationTest(unittest.TestCase):
src = "en"
tgt = "de"
src_text = [
"I am a small frog.",
"Now I can forget the 100 words of german that I know.",
"Tom asked his teacher for advice.",
"That's how I would do it.",
"Tom really admired Mary's courage.",
"Turn around and close your eyes.",
]
expected_text = [
"Ich bin ein kleiner Frosch.",
"Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.",
"Tom bat seinen Lehrer um Rat.",
"So würde ich das machen.",
"Tom bewunderte Marias Mut wirklich.",
"Drehen Sie sich um und schließen Sie die Augen.",
]
# ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen
@classmethod
def setUpClass(cls) -> None:
cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
return cls
@cached_property
def tokenizer(self):
return AutoTokenizer.from_pretrained(self.model_name)
@property
def eos_token_id(self) -> int:
return self.tokenizer.eos_token_id
@cached_property
def model(self):
model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device)
c = model.config
self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
self.assertEqual(c.max_length, 512)
self.assertEqual(c.decoder_start_token_id, c.pad_token_id)
if torch_device == "cuda":
return model.half()
else:
return model
def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
generated_words = self.translate_src_text(**tokenizer_kwargs)
self.assertListEqual(self.expected_text, generated_words)
def translate_src_text(self, **tokenizer_kwargs):
model_inputs = self.tokenizer(self.src_text, padding=True, return_tensors="pt", **tokenizer_kwargs).to(
torch_device
)
self.assertEqual(self.model.device, model_inputs.input_ids.device)
generated_ids = self.model.generate(
model_inputs.input_ids,
attention_mask=model_inputs.attention_mask,
num_beams=2,
max_length=128,
renormalize_logits=True, # Marian should always renormalize its logits. See #25459
)
generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
return generated_words
@require_sentencepiece
@require_tokenizers
class TestMarian_EN_DE_More(MarianIntegrationTest):
@slow
def test_forward(self):
src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."]
expected_ids = [38, 121, 14, 697, 38848, 0]
model_inputs = self.tokenizer(src, text_target=tgt, return_tensors="pt").to(torch_device)
self.assertListEqual(expected_ids, model_inputs.input_ids[0].tolist())
desired_keys = {
"input_ids",
"attention_mask",
"labels",
}
self.assertSetEqual(desired_keys, set(model_inputs.keys()))
model_inputs["decoder_input_ids"] = shift_tokens_right(
model_inputs.labels, self.tokenizer.pad_token_id, self.model.config.decoder_start_token_id
)
model_inputs["return_dict"] = True
model_inputs["use_cache"] = False
with torch.no_grad():
outputs = self.model(**model_inputs)
max_indices = outputs.logits.argmax(-1)
self.tokenizer.batch_decode(max_indices)
def test_unk_support(self):
t = self.tokenizer
ids = t(["||"], return_tensors="pt").to(torch_device).input_ids[0].tolist()
expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id]
self.assertEqual(expected, ids)
def test_pad_not_split(self):
input_ids_w_pad = self.tokenizer(["I am a small frog <pad>"], return_tensors="pt").input_ids[0].tolist()
expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0] # pad
self.assertListEqual(expected_w_pad, input_ids_w_pad)
@slow
def test_batch_generation_en_de(self):
self._assert_generated_batch_equal_expected()
def test_auto_config(self):
config = AutoConfig.from_pretrained(self.model_name)
self.assertIsInstance(config, MarianConfig)
@require_sentencepiece
@require_tokenizers
class TestMarian_EN_FR(MarianIntegrationTest):
src = "en"
tgt = "fr"
src_text = [
"I am a small frog.",
"Now I can forget the 100 words of german that I know.",
]
expected_text = [
"Je suis une petite grenouille.",
"Maintenant, je peux oublier les 100 mots d'allemand que je connais.",
]
@slow
def test_batch_generation_en_fr(self):
self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_FR_EN(MarianIntegrationTest):
src = "fr"
tgt = "en"
src_text = [
"Donnez moi le micro.",
"Tom et Mary étaient assis à une table.", # Accents
]
expected_text = [
"Give me the microphone.",
"Tom and Mary were sitting at a table.",
]
@slow
def test_batch_generation_fr_en(self):
self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_RU_FR(MarianIntegrationTest):
src = "ru"
tgt = "fr"
src_text = ["Он показал мне рукопись своей новой пьесы."]
expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."]
@slow
def test_batch_generation_ru_fr(self):
self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_MT_EN(MarianIntegrationTest):
"""Cover low resource/high perplexity setting. This breaks without adjust_logits_generation overwritten"""
src = "mt"
tgt = "en"
src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."]
expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."]
@slow
def test_batch_generation_mt_en(self):
self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_en_zh(MarianIntegrationTest):
src = "en"
tgt = "zh"
src_text = ["My name is Wolfgang and I live in Berlin"]
expected_text = ["我叫沃尔夫冈 我住在柏林"]
@slow
def test_batch_generation_eng_zho(self):
self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_en_ROMANCE(MarianIntegrationTest):
"""Multilingual on target side."""
src = "en"
tgt = "ROMANCE"
src_text = [
">>fr<< Don't spend so much time watching TV.",
">>pt<< Your message has been sent.",
">>es<< He's two years older than me.",
]
expected_text = [
"Ne passez pas autant de temps à regarder la télé.",
"A sua mensagem foi enviada.",
"Es dos años más viejo que yo.",
]
@slow
def test_batch_generation_en_ROMANCE_multi(self):
self._assert_generated_batch_equal_expected()
@slow
@require_torch
def test_pipeline(self):
pipeline = TranslationPipeline(self.model, self.tokenizer, framework="pt", device=torch_device)
output = pipeline(self.src_text)
self.assertEqual(self.expected_text, [x["translation_text"] for x in output])
@require_sentencepiece
@require_tokenizers
class TestMarian_FI_EN_V2(MarianIntegrationTest):
src = "fi"
tgt = "en"
src_text = [
"minä tykkään kirjojen lukemisesta",
"Pidän jalkapallon katsomisesta",
]
expected_text = ["I like to read books", "I like watching football"]
@classmethod
def setUpClass(cls) -> None:
cls.model_name = "hf-internal-testing/test-opus-tatoeba-fi-en-v2"
return cls
@slow
def test_batch_generation_fi_en(self):
self._assert_generated_batch_equal_expected()
@require_torch
class TestConversionUtils(unittest.TestCase):
def test_renaming_multilingual(self):
old_names = [
"opus-mt-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
"opus-mt-cmn+cn-fi", # no group
"opus-mt-en-de", # standard name
"opus-mt-en-de", # standard name
]
expected = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
self.assertListEqual(expected, [convert_opus_name_to_hf_name(x) for x in old_names])
def test_undoing_renaming(self):
hf_names = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
converted_opus_names = [convert_hf_name_to_opus_name(x) for x in hf_names]
expected_opus_names = [
"cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
"cmn+cn-fi",
"en-de", # standard name
"en-de",
]
self.assertListEqual(expected_opus_names, converted_opus_names)
class MarianStandaloneDecoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
d_model=16,
decoder_seq_length=7,
is_training=True,
is_decoder=True,
use_attention_mask=True,
use_cache=False,
use_labels=True,
decoder_start_token_id=2,
decoder_ffn_dim=32,
decoder_layers=2,
encoder_attention_heads=4,
decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.d_model = d_model
self.hidden_size = d_model
self.num_hidden_layers = decoder_layers
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.num_attention_heads = decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.max_position_embeddings = max_position_embeddings
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 2
self.decoder_attention_idx = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = MarianConfig(
vocab_size=self.vocab_size,
d_model=self.d_model,
decoder_layers=self.decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_attention_heads=self.encoder_attention_heads,
decoder_attention_heads=self.decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
max_position_embeddings=self.max_position_embeddings,
is_encoder_decoder=self.is_encoder_decoder,
)
return (
config,
input_ids,
attention_mask,
lm_labels,
)
def create_and_check_decoder_model_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
config.use_cache = True
model = MarianDecoder(config=config).to(torch_device).eval()
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def create_and_check_decoder_model_attention_mask_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
model = MarianDecoder(config=config).to(torch_device).eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class MarianStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (MarianDecoder, MarianForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (MarianForCausalLM,) if is_torch_available() else ()
test_pruning = False
is_encoder_decoder = False
def setUp(
self,
):
self.model_tester = MarianStandaloneDecoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=MarianConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
def test_decoder_model_attn_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
return
@unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :)
def test_left_padding_compatibility(self):
pass
| transformers/tests/models/marian/test_modeling_marian.py/0 | {
"file_path": "transformers/tests/models/marian/test_modeling_marian.py",
"repo_id": "transformers",
"token_count": 15231
} | 168 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import MBartConfig, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
import jax
import jax.numpy as jnp
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_flax_mbart import (
FlaxMBartForConditionalGeneration,
FlaxMBartForQuestionAnswering,
FlaxMBartForSequenceClassification,
FlaxMBartModel,
shift_tokens_right,
)
def prepare_mbart_inputs_dict(
config,
input_ids,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = np.where(input_ids != config.pad_token_id, 1, 0)
if decoder_attention_mask is None:
decoder_attention_mask = np.where(decoder_input_ids != config.pad_token_id, 1, 0)
if head_mask is None:
head_mask = np.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
decoder_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
cross_attn_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
class FlaxMBartModelTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=32,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
decoder_start_token_id=2,
initializer_range=0.02,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.decoder_start_token_id = decoder_start_token_id
self.initializer_range = initializer_range
def prepare_config_and_inputs(self):
input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size)
input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1)
decoder_input_ids = shift_tokens_right(input_ids, 1)
config = MBartConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
initializer_range=self.initializer_range,
use_cache=False,
)
inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def check_use_cache_forward(self, model_class_name, config, inputs_dict):
max_decoder_length = 20
model = model_class_name(config)
encoder_outputs = model.encode(inputs_dict["input_ids"])
decoder_input_ids, decoder_attention_mask = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs)
decoder_attention_mask = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype="i4")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :],
(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),
)
outputs_cache = model.decode(
decoder_input_ids[:, :-1],
encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
decoder_position_ids=decoder_position_ids,
)
decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model.decode(
decoder_input_ids[:, -1:],
encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=outputs_cache.past_key_values,
decoder_position_ids=decoder_position_ids,
)
outputs = model.decode(decoder_input_ids, encoder_outputs)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict):
max_decoder_length = 20
model = model_class_name(config)
encoder_outputs = model.encode(inputs_dict["input_ids"])
decoder_input_ids, decoder_attention_mask = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
decoder_attention_mask_cache = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
],
axis=-1,
)
past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs)
decoder_position_ids = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :],
(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),
)
outputs_cache = model.decode(
decoder_input_ids[:, :-1],
encoder_outputs,
decoder_attention_mask=decoder_attention_mask_cache,
past_key_values=past_key_values,
decoder_position_ids=decoder_position_ids,
)
decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model.decode(
decoder_input_ids[:, -1:],
encoder_outputs,
past_key_values=outputs_cache.past_key_values,
decoder_attention_mask=decoder_attention_mask_cache,
decoder_position_ids=decoder_position_ids,
)
outputs = model.decode(decoder_input_ids, encoder_outputs, decoder_attention_mask=decoder_attention_mask)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
@require_flax
class MBartHeadTests(unittest.TestCase):
vocab_size = 99
def _get_config_and_data(self):
input_ids = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
],
dtype=np.int64,
)
batch_size = input_ids.shape[0]
config = MBartConfig(
vocab_size=self.vocab_size,
d_model=24,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=32,
decoder_ffn_dim=32,
max_position_embeddings=48,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
)
return config, input_ids, batch_size
def test_sequence_classification_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
model = FlaxMBartForSequenceClassification(config)
outputs = model(input_ids=input_ids, decoder_input_ids=input_ids)
expected_shape = (batch_size, config.num_labels)
self.assertEqual(outputs["logits"].shape, expected_shape)
def test_question_answering_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
model = FlaxMBartForQuestionAnswering(config)
outputs = model(input_ids=input_ids)
self.assertEqual(outputs["start_logits"].shape, input_ids.shape)
self.assertEqual(outputs["end_logits"].shape, input_ids.shape)
# @timeout_decorator.timeout(1) # not working with the decorator so far
def test_lm_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
lm_model = FlaxMBartForConditionalGeneration(config)
outputs = lm_model(input_ids=input_ids)
expected_shape = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape, expected_shape)
def test_lm_uneven_forward(self):
config = MBartConfig(
vocab_size=self.vocab_size,
d_model=14,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=8,
decoder_ffn_dim=8,
max_position_embeddings=48,
)
lm_model = FlaxMBartForConditionalGeneration(config)
context = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.int64)
summary = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.int64)
outputs = lm_model(input_ids=context, decoder_input_ids=summary)
expected_shape = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape, expected_shape)
def test_shift_tokens_right(self):
input_ids = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.int64)
shifted = shift_tokens_right(input_ids, 1)
n_pad_before = np.equal(input_ids, 1).astype(np.float32).sum()
n_pad_after = np.equal(shifted, 1).astype(np.float32).sum()
self.assertEqual(shifted.shape, input_ids.shape)
self.assertEqual(n_pad_after, n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0], 2).all())
@require_flax
class FlaxMBartModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin):
is_encoder_decoder = True
all_model_classes = (
(
FlaxMBartModel,
FlaxMBartForConditionalGeneration,
FlaxMBartForSequenceClassification,
FlaxMBartForQuestionAnswering,
)
if is_flax_available()
else ()
)
all_generative_model_classes = (FlaxMBartForConditionalGeneration,) if is_flax_available() else ()
def setUp(self):
self.model_tester = FlaxMBartModelTester(self)
def test_use_cache_forward(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(model_class, config, inputs_dict)
def test_use_cache_forward_with_attn_mask(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict)
def test_encode(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@jax.jit
def encode_jitted(input_ids, attention_mask=None, **kwargs):
return model.encode(input_ids=input_ids, attention_mask=attention_mask)
with self.subTest("JIT Enabled"):
jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = encode_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
def test_decode(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
model = model_class(config)
encoder_outputs = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"])
prepared_inputs_dict = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(decoder_input_ids, decoder_attention_mask, encoder_outputs):
return model.decode(
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
)
with self.subTest("JIT Enabled"):
jitted_outputs = decode_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = decode_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("facebook/mbart-large-cc25", from_pt=True)
# FlaxMBartForSequenceClassification expects eos token in input_ids
input_ids = np.ones((1, 1)) * model.config.eos_token_id
outputs = model(input_ids)
self.assertIsNotNone(outputs)
@require_flax
@require_sentencepiece
@require_tokenizers
class FlaxMBartModelIntegrationTest(unittest.TestCase):
src_text = [
" UN Chief Says There Is No Military Solution in Syria",
]
expected_text = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
]
model_name = "facebook/mbart-large-en-ro"
@cached_property
def tokenizer(self):
return AutoTokenizer.from_pretrained(self.model_name)
@cached_property
def model(self):
model = FlaxMBartForConditionalGeneration.from_pretrained(self.model_name, from_pt=True)
return model
def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
generated_words = self.translate_src_text(**tokenizer_kwargs)
self.assertListEqual(self.expected_text, generated_words)
def translate_src_text(self, **tokenizer_kwargs):
model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, return_tensors="np")
generated_ids = self.model.generate(
model_inputs.input_ids,
attention_mask=model_inputs.attention_mask,
decoder_start_token_id=self.tokenizer.lang_code_to_id["ro_RO"],
early_stopping=True,
num_beams=2,
).sequences
generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
return generated_words
@slow
def test_batch_generation_en_ro(self):
self._assert_generated_batch_equal_expected()
| transformers/tests/models/mbart/test_modeling_flax_mbart.py/0 | {
"file_path": "transformers/tests/models/mbart/test_modeling_flax_mbart.py",
"repo_id": "transformers",
"token_count": 8921
} | 169 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch MobileNetV2 model. """
import unittest
from transformers import MobileNetV2Config
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation, MobileNetV2Model
from transformers.models.mobilenet_v2.modeling_mobilenet_v2 import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetV2ImageProcessor
class MobileNetV2ConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "tf_padding"))
self.parent.assertTrue(hasattr(config, "depth_multiplier"))
class MobileNetV2ModelTester:
def __init__(
self,
parent,
batch_size=13,
num_channels=3,
image_size=32,
depth_multiplier=0.25,
depth_divisible_by=8,
min_depth=8,
expand_ratio=6,
output_stride=32,
first_layer_is_expansion=True,
finegrained_output=True,
tf_padding=True,
hidden_act="relu6",
last_hidden_size=1280,
classifier_dropout_prob=0.1,
initializer_range=0.02,
is_training=True,
use_labels=True,
num_labels=10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.depth_multiplier = depth_multiplier
self.depth_divisible_by = depth_divisible_by
self.min_depth = min_depth
self.expand_ratio = expand_ratio
self.tf_padding = tf_padding
self.output_stride = output_stride
self.first_layer_is_expansion = first_layer_is_expansion
self.finegrained_output = finegrained_output
self.hidden_act = hidden_act
self.last_hidden_size = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier)
self.classifier_dropout_prob = classifier_dropout_prob
self.use_labels = use_labels
self.is_training = is_training
self.num_labels = num_labels
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
pixel_labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels, pixel_labels
def get_config(self):
return MobileNetV2Config(
num_channels=self.num_channels,
image_size=self.image_size,
depth_multiplier=self.depth_multiplier,
depth_divisible_by=self.depth_divisible_by,
min_depth=self.min_depth,
expand_ratio=self.expand_ratio,
output_stride=self.output_stride,
first_layer_is_expansion=self.first_layer_is_expansion,
finegrained_output=self.finegrained_output,
hidden_act=self.hidden_act,
tf_padding=self.tf_padding,
classifier_dropout_prob=self.classifier_dropout_prob,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
model = MobileNetV2Model(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape,
(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
self.parent.assertEqual(
result.pooler_output.shape,
(self.batch_size, self.last_hidden_size),
)
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = MobileNetV2ForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = MobileNetV2ForSemanticSegmentation(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.logits.shape,
(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
result = model(pixel_values, labels=pixel_labels)
self.parent.assertEqual(
result.logits.shape,
(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels, pixel_labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class MobileNetV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as MobileNetV2 does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(MobileNetV2Model, MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"image-feature-extraction": MobileNetV2Model,
"image-classification": MobileNetV2ForImageClassification,
"image-segmentation": MobileNetV2ForSemanticSegmentation,
}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
def setUp(self):
self.model_tester = MobileNetV2ModelTester(self)
self.config_tester = MobileNetV2ConfigTester(self, config_class=MobileNetV2Config, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV2 does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="MobileNetV2 does not support input and output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="MobileNetV2 does not output attentions")
def test_attention_outputs(self):
pass
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_stages = 16
self.assertEqual(len(hidden_states), expected_num_stages)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
def test_for_semantic_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = MobileNetV2Model.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class MobileNetV2ModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
MobileNetV2ImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224") if is_vision_available() else None
)
@slow
def test_inference_image_classification_head(self):
model = MobileNetV2ForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1001))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([0.2445, -1.1993, 0.1905]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
@slow
def test_inference_semantic_segmentation(self):
model = MobileNetV2ForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513")
model = model.to(torch_device)
image_processor = MobileNetV2ImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 21, 65, 65))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[
[[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]],
[[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]],
[[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]],
],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
| transformers/tests/models/mobilenet_v2/test_modeling_mobilenet_v2.py/0 | {
"file_path": "transformers/tests/models/mobilenet_v2/test_modeling_mobilenet_v2.py",
"repo_id": "transformers",
"token_count": 5513
} | 170 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMT5ForConditionalGeneration
from transformers.models.t5.modeling_flax_t5 import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class MT5IntegrationTest(unittest.TestCase):
@slow
def test_small_integration_test(self):
"""
For comparision run:
>>> import t5 # pip install t5==0.7.1
>>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary
>>> path_to_mtf_small_mt5_checkpoint = '<fill_in>'
>>> path_to_mtf_small_mt5_spm_model_path = '<fill_in>'
>>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None)
>>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path)
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
"""
model = FlaxMT5ForConditionalGeneration.from_pretrained("google/mt5-small")
tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
input_ids = tokenizer("Hello there", return_tensors="np").input_ids
labels = tokenizer("Hi I am", return_tensors="np").input_ids
decoder_input_ids = shift_tokens_right(labels, model.config.pad_token_id, model.config.decoder_start_token_id)
logits = model(input_ids, decoder_input_ids=decoder_input_ids).logits
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean()
mtf_score = -(labels.shape[-1] * loss.item())
EXPECTED_SCORE = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
| transformers/tests/models/mt5/test_modeling_flax_mt5.py/0 | {
"file_path": "transformers/tests/models/mt5/test_modeling_flax_mt5.py",
"repo_id": "transformers",
"token_count": 950
} | 171 |
# coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch OPT model. """
import copy
import tempfile
import unittest
import timeout_decorator # noqa
from transformers import OPTConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_accelerator, require_torch_fp16, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPT2Tokenizer,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
)
def prepare_opt_inputs_dict(
config,
input_ids,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
}
class OPTModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
num_labels=3,
word_embed_proj_dim=16,
type_sequence_label_size=2,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.num_labels = num_labels
self.type_sequence_label_size = type_sequence_label_size
self.word_embed_proj_dim = word_embed_proj_dim
self.is_encoder_decoder = False
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
3,
)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
inputs_dict = prepare_opt_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_config(self):
return OPTConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
is_encoder_decoder=False,
word_embed_proj_dim=self.word_embed_proj_dim,
)
def get_pipeline_config(self):
config = self.get_config()
config.max_position_embeddings = 100
return config
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = OPTModel(config=config).to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
head_mask = inputs_dict["head_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
# test no attention_mask works
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
_, past_key_values = outputs.to_tuple()
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
@require_torch
class OPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(OPTModel, OPTForCausalLM, OPTForSequenceClassification, OPTForQuestionAnswering)
if is_torch_available()
else ()
)
all_generative_model_classes = (OPTForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": OPTModel,
"question-answering": OPTForQuestionAnswering,
"text-classification": OPTForSequenceClassification,
"text-generation": OPTForCausalLM,
"zero-shot": OPTForSequenceClassification,
}
if is_torch_available()
else {}
)
is_encoder_decoder = False
fx_compatible = True
test_pruning = False
test_missing_keys = False
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast")
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def setUp(self):
self.model_tester = OPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=OPTConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (OPTModel,):
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
@require_torch_fp16
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = OPTForCausalLM(config).eval().to(torch_device)
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def test_opt_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = OPTForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_opt_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = OPTForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
@unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
def test_model_parallelism(self):
super().test_model_parallelism()
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
if a.numel() > 100:
msg = f"tensor values are {pct_different:.1%} percent different."
else:
msg = f"{a} != {b}"
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
def _long_tensor(tok_lst):
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
@require_torch
class OPTModelIntegrationTests(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = OPTModel.from_pretrained("facebook/opt-350m").to(torch_device)
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
with torch.no_grad():
output = model(input_ids=input_ids).last_hidden_state
expected_shape = torch.Size((1, 11, 512))
self.assertEqual(output.shape, expected_shape)
# expected value works for CPU, as well as GPU (with TF32 disabled)
expected_slice = torch.tensor(
[
[-0.28726277, -1.9241608, -0.3058734],
[-1.2737825, -0.13332152, -0.18766522],
[0.41159445, 0.1191957, -1.3107123],
],
device=torch_device,
)
assert_tensors_close(output[0, :3, :3], expected_slice, atol=5e-5)
@require_torch
@slow
class OPTEmbeddingsTest(unittest.TestCase):
def setUp(self):
super().setUp()
self.path_model = "facebook/opt-350m"
def test_load_model(self):
try:
_ = OPTForCausalLM.from_pretrained(self.path_model)
except BaseException:
self.fail("Failed loading model")
def test_logits(self):
model = OPTForCausalLM.from_pretrained(self.path_model)
model = model.eval()
tokenizer = GPT2Tokenizer.from_pretrained(self.path_model)
prompts = [
"Today is a beautiful day and I want to",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
inputs = tokenizer(prompts, return_tensors="pt", padding=True, add_special_tokens=False)
logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(dim=-1)
# logits_meta = torch.load(self.path_logits_meta)
logits_meta = torch.Tensor(
[
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
]
)
assert torch.allclose(logits, logits_meta, atol=1e-4)
@slow
class OPTGenerationTest(unittest.TestCase):
@property
def prompts(self):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def test_generation_pre_attn_layer_norm(self):
model_id = "facebook/opt-125m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to",
"In the city of New York, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
predicted_outputs = []
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = OPTForCausalLM.from_pretrained(model_id)
for prompt in self.prompts:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=10)
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
predicted_outputs += generated_string
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
def test_batch_generation(self):
model_id = "facebook/opt-350m"
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = OPTForCausalLM.from_pretrained(model_id)
model.to(torch_device)
tokenizer.padding_side = "left"
# use different length sentences to test batching
sentences = [
"Hello, my dog is a little",
"Today, I",
]
inputs = tokenizer(sentences, return_tensors="pt", padding=True)
input_ids = inputs["input_ids"].to(torch_device)
outputs = model.generate(
input_ids=input_ids,
attention_mask=inputs["attention_mask"].to(torch_device),
)
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
output_non_padded = model.generate(input_ids=inputs_non_padded)
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)
expected_output_sentence = [
"Hello, my dog is a little bit of a dork.\nI'm a little bit",
"Today, I was in the middle of a conversation with a friend about the",
]
self.assertListEqual(expected_output_sentence, batch_out_sentence)
self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
def test_generation_post_attn_layer_norm(self):
model_id = "facebook/opt-350m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to",
"In the city of San Francisco, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
predicted_outputs = []
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = OPTForCausalLM.from_pretrained(model_id)
for prompt in self.prompts:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=10)
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
predicted_outputs += generated_string
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
@require_torch_accelerator
@require_torch_fp16
def test_batched_nan_fp16(self):
# a bug manifested starting at models facebook/opt-1.3 and larger when running batched generations,
# therefore not using a tiny model, but the smallest model the problem was seen with which is opt-1.3b.
# please refer to this github thread: https://github.com/huggingface/transformers/pull/17437 for more details
model_name = "facebook/opt-1.3b"
tokenizer = GPT2Tokenizer.from_pretrained(model_name, use_fast=False, padding_side="left")
model = OPTForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_cache=True).to(torch_device)
model = model.eval()
batch = tokenizer(["Who are you?", "Joe Biden is the president of"], padding=True, return_tensors="pt")
input_ids = batch["input_ids"].to(torch_device)
attention_mask = batch["attention_mask"].to(torch_device)
with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
self.assertFalse(
torch.isnan(outputs.logits[0]).any().item()
) # the first logits could contain NaNs if it fails
@slow
def test_contrastive_search_opt(self):
article = (
"A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I am the "
"Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have you lived "
"there?"
)
opt_tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-1.3b")
opt_model = OPTForCausalLM.from_pretrained("facebook/opt-1.3b").to(torch_device)
input_ids = opt_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
outputs = opt_model.generate(input_ids, penalty_alpha=0.6, top_k=5, max_length=256)
generated_text = opt_tokenizer.batch_decode(outputs, skip_special_tokens=True)
self.assertListEqual(
generated_text,
[
"A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I "
"am the Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have "
"you lived there?\nStatue: A hundred years.\nHuman: And you’re from what country?\nStatue: The United "
"States of America.\nHuman: Why did you come to America?\nStatue: I came to escape the tyranny of my "
"country.\nHuman: What tyranny?\nStatue: They didn’t let me speak my mind.\nHuman: What was your "
"country?\nStatue: It was a country of immigrants.\nHuman: Who were the immigrants?\nStatue: They "
"were from all over the world.\nHuman: What language did they speak?\nStatue: French, Spanish, "
"Italian, German, English—you name it.\nHuman: And where did they come from?\nStatue: They came from "
"every country in the world.\nHuman: And you were born in what country?\nStatue: I was born in "
"France.\nHuman: And your parents were French?\nStatue"
],
)
| transformers/tests/models/opt/test_modeling_opt.py/0 | {
"file_path": "transformers/tests/models/opt/test_modeling_opt.py",
"repo_id": "transformers",
"token_count": 10425
} | 172 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
Pix2StructImageProcessor,
Pix2StructProcessor,
PreTrainedTokenizerFast,
T5Tokenizer,
)
@require_vision
@require_torch
class Pix2StructProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
image_processor = Pix2StructImageProcessor()
tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
processor = Pix2StructProcessor(image_processor, tokenizer)
processor.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_image_inputs(self):
"""
This function prepares a list of random PIL images of the same fixed size.
"""
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
return image_inputs
def test_save_load_pretrained_additional_features(self):
processor = Pix2StructProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
processor = Pix2StructProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, Pix2StructImageProcessor)
def test_image_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)
image_input = self.prepare_image_inputs()
input_feat_extract = image_processor(image_input, return_tensors="np")
input_processor = processor(images=image_input, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str, return_token_type_ids=False, add_special_tokens=True)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(
list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"]
)
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_processor_max_patches(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
max_patches = [512, 1024, 2048, 4096]
expected_hidden_size = [770, 770, 770, 770]
# with text
for i, max_patch in enumerate(max_patches):
inputs = processor(text=input_str, images=image_input, max_patches=max_patch)
self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch)
self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i])
# without text input
for i, max_patch in enumerate(max_patches):
inputs = processor(images=image_input, max_patches=max_patch)
self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch)
self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i])
def test_tokenizer_decode(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
# For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"]
self.assertListEqual(
list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"]
)
inputs = processor(text=input_str)
# For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"]
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"])
| transformers/tests/models/pix2struct/test_processor_pix2struct.py/0 | {
"file_path": "transformers/tests/models/pix2struct/test_processor_pix2struct.py",
"repo_id": "transformers",
"token_count": 2862
} | 173 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class FlaxRobertaModelTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_attention_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_choices=4,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_choices = num_choices
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
config = RobertaConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, attention_mask
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, token_type_ids, attention_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
def prepare_config_and_inputs_for_decoder(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, token_type_ids, attention_mask = config_and_inputs
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class FlaxRobertaModelTest(FlaxModelTesterMixin, unittest.TestCase):
test_head_masking = True
all_model_classes = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def setUp(self):
self.model_tester = FlaxRobertaModelTester(self)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("FacebookAI/roberta-base", from_pt=True)
outputs = model(np.ones((1, 1)))
self.assertIsNotNone(outputs)
| transformers/tests/models/roberta/test_modeling_flax_roberta.py/0 | {
"file_path": "transformers/tests/models/roberta/test_modeling_flax_roberta.py",
"repo_id": "transformers",
"token_count": 2564
} | 174 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow SegFormer model. """
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import SegformerConfig
from transformers.file_utils import is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFSegformerForImageClassification, TFSegformerForSemanticSegmentation, TFSegformerModel
from transformers.models.segformer.modeling_tf_segformer import TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import SegformerImageProcessor
class TFSegformerConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "hidden_sizes"))
self.parent.assertTrue(hasattr(config, "num_attention_heads"))
self.parent.assertTrue(hasattr(config, "num_encoder_blocks"))
class TFSegformerModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=64,
num_channels=3,
num_encoder_blocks=4,
depths=[1, 1, 1, 1],
sr_ratios=[8, 4, 2, 1],
hidden_sizes=[8, 8, 16, 16],
downsampling_rates=[1, 4, 8, 16],
num_attention_heads=[1, 1, 2, 2],
is_training=True,
use_labels=True,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
num_labels=3,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.num_encoder_blocks = num_encoder_blocks
self.sr_ratios = sr_ratios
self.depths = depths
self.hidden_sizes = hidden_sizes
self.downsampling_rates = downsampling_rates
self.num_attention_heads = num_attention_heads
self.is_training = is_training
self.use_labels = use_labels
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return SegformerConfig(
image_size=self.image_size,
num_channels=self.num_channels,
num_encoder_blocks=self.num_encoder_blocks,
depths=self.depths,
hidden_sizes=self.hidden_sizes,
num_attention_heads=self.num_attention_heads,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
num_labels=self.num_labels,
)
def create_and_check_model(self, config, pixel_values, labels):
model = TFSegformerModel(config=config)
result = model(pixel_values, training=False)
expected_height = expected_width = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)
)
def create_and_check_for_image_segmentation(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = TFSegformerForSemanticSegmentation(config)
result = model(pixel_values, training=False)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)
)
result = model(pixel_values, labels=labels, training=False)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
def prepare_config_and_inputs_for_keras_fit(self, for_segmentation: bool = False):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, seg_labels = config_and_inputs
if for_segmentation:
inputs_dict = {"pixel_values": pixel_values, "labels": seg_labels}
else:
inputs_dict = {"pixel_values": pixel_values, "labels": tf.zeros((self.batch_size))}
return config, inputs_dict
@require_tf
class TFSegformerModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(TFSegformerModel, TFSegformerForImageClassification, TFSegformerForSemanticSegmentation)
if is_tf_available()
else ()
)
pipeline_model_mapping = (
{"feature-extraction": TFSegformerModel, "image-classification": TFSegformerForImageClassification}
if is_tf_available()
else {}
)
test_head_masking = False
test_onnx = False
test_pruning = False
test_resize_embeddings = False
def setUp(self):
self.model_tester = TFSegformerModelTester(self)
self.config_tester = TFSegformerConfigTester(self, config_class=SegformerConfig, has_text_modality=False)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip("SegFormer does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods")
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
expected_num_attentions = sum(self.model_tester.depths)
self.assertEqual(len(attentions), expected_num_attentions)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), expected_num_attentions)
# verify the first attentions (first block, first layer)
expected_seq_len = (self.model_tester.image_size // 4) ** 2
expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len],
)
# verify the last attentions (last block, last layer)
expected_seq_len = (self.model_tester.image_size // 32) ** 2
expected_reduced_seq_len = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:]),
[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), expected_num_attentions)
# verify the first attentions (first block, first layer)
expected_seq_len = (self.model_tester.image_size // 4) ** 2
expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = self.model_tester.num_encoder_blocks
self.assertEqual(len(hidden_states), expected_num_layers)
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:]),
[
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(tuple_object, dict_object)),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}"
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
model = model_class(config)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
if self.has_attentions:
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
# todo: incorporate label support for semantic segmentation in `test_modeling_tf_common.py`.
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
reason="TF does not support backprop for grouped convolutions on CPU.",
)
def test_dataset_conversion(self):
super().test_dataset_conversion()
def check_keras_fit_results(self, val_loss1, val_loss2, atol=2e-1, rtol=2e-1):
self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol))
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
reason="TF does not support backprop for grouped convolutions on CPU.",
)
@slow
def test_keras_fit(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Since `TFSegformerModel` cannot operate with the default `fit()` method.
if model_class.__name__ != "TFSegformerModel":
model = model_class(config)
if getattr(model, "hf_compute_loss", None):
super().test_keras_fit()
def test_loss_computation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def apply(model):
for_segmentation = True if model_class.__name__ == "TFSegformerForSemanticSegmentation" else False
# The number of elements in the loss should be the same as the number of elements in the label
_, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit(
for_segmentation=for_segmentation
)
added_label = prepared_for_class[sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0]]
loss_size = tf.size(added_label)
# Test that model correctly compute the loss with kwargs
possible_input_names = {"input_ids", "pixel_values", "input_features"}
input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
model_input = prepared_for_class.pop(input_name)
loss = model(model_input, **prepared_for_class)[0]
if model_class.__name__ == "TFSegformerForSemanticSegmentation":
# Semantic segmentation loss is computed similarly as
# https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_utils.py#L210.
self.assertEqual(loss.shape, (1,))
else:
self.assertEqual(loss.shape, [loss_size])
# Test that model correctly compute the loss with a dict
_, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit(
for_segmentation=for_segmentation
)
loss = model(**prepared_for_class)[0]
if model_class.__name__ == "TFSegformerForSemanticSegmentation":
self.assertEqual(loss.shape, (1,))
else:
self.assertEqual(loss.shape, [loss_size])
# Test that model correctly compute the loss with a tuple
label_keys = prepared_for_class.keys() - inputs_dict.keys()
signature = inspect.signature(model.call).parameters
signature_names = list(signature.keys())
# Create a dictionary holding the location of the tensors in the tuple
tuple_index_mapping = {0: input_name}
for label_key in label_keys:
label_key_index = signature_names.index(label_key)
tuple_index_mapping[label_key_index] = label_key
sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
# Initialize a list with their default values, update the values and convert to a tuple
list_input = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default)
for index, value in sorted_tuple_index_mapping:
list_input[index] = prepared_for_class[value]
tuple_input = tuple(list_input)
# Send to model
loss = model(tuple_input[:-1])[0]
if model_class.__name__ == "TFSegformerForSemanticSegmentation":
self.assertEqual(loss.shape, (1,))
else:
self.assertEqual(loss.shape, [loss_size])
for model_class in self.all_model_classes:
# Since `TFSegformerModel` won't have labels against which we
# could compute loss.
if model_class.__name__ != "TFSegformerModel":
model = model_class(config)
apply(model)
def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=2e-4, name="outputs", attributes=None):
# We override with a slightly higher tol value, as semseg models tend to diverge a bit more
super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes)
@slow
def test_model_from_pretrained(self):
for model_name in TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFSegformerModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_tf
class TFSegformerModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_image_segmentation_ade(self):
# only resize + normalize
image_processor = SegformerImageProcessor(
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
)
model = TFSegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
image = prepare_img()
encoded_inputs = image_processor(images=image, return_tensors="tf")
pixel_values = encoded_inputs.pixel_values
outputs = model(pixel_values, training=False)
expected_shape = tf.TensorShape((1, model.config.num_labels, 128, 128))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = tf.constant(
[
[[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]],
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
]
)
tf.debugging.assert_near(outputs.logits[0, :3, :3, :3], expected_slice, atol=1e-4)
@slow
def test_inference_image_segmentation_city(self):
# only resize + normalize
image_processor = SegformerImageProcessor(
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
)
image = prepare_img()
encoded_inputs = image_processor(images=image, return_tensors="tf")
pixel_values = encoded_inputs.pixel_values
outputs = model(pixel_values, training=False)
expected_shape = tf.TensorShape((1, model.config.num_labels, 128, 128))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = tf.constant(
[
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
[[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]],
]
)
tf.debugging.assert_near(outputs.logits[0, :3, :3, :3], expected_slice, atol=1e-1)
| transformers/tests/models/segformer/test_modeling_tf_segformer.py/0 | {
"file_path": "transformers/tests/models/segformer/test_modeling_tf_segformer.py",
"repo_id": "transformers",
"token_count": 9892
} | 175 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import Speech2TextFeatureExtractor, Speech2TextProcessor, Speech2TextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, require_torchaudio
from transformers.utils import FEATURE_EXTRACTOR_NAME
from .test_feature_extraction_speech_to_text import floats_list
SAMPLE_SP = get_tests_dir("fixtures/test_sentencepiece.model")
@require_torch
@require_torchaudio
@require_sentencepiece
class Speech2TextProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
vocab = ["<s>", "<pad>", "</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
save_dir = Path(self.tmpdirname)
save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"])
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"])
tokenizer = Speech2TextTokenizer.from_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname)
feature_extractor_map = {
"feature_size": 24,
"num_mel_bins": 24,
"padding_value": 0.0,
"sampling_rate": 16000,
"return_attention_mask": False,
"do_normalize": True,
}
save_json(feature_extractor_map, save_dir / FEATURE_EXTRACTOR_NAME)
def get_tokenizer(self, **kwargs):
return Speech2TextTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_feature_extractor(self, **kwargs):
return Speech2TextFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_default(self):
tokenizer = self.get_tokenizer()
feature_extractor = self.get_feature_extractor()
processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(self.tmpdirname)
processor = Speech2TextProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, Speech2TextTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, Speech2TextFeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = Speech2TextProcessor(
tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()
)
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
processor = Speech2TextProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, Speech2TextTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, Speech2TextFeatureExtractor)
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
raw_speech = floats_list((3, 1000))
input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
input_processor = processor(raw_speech, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "This is a test string"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_tokenizer_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
self.assertListEqual(
processor.model_input_names,
feature_extractor.model_input_names,
msg="`processor` and `feature_extractor` model input names do not match",
)
| transformers/tests/models/speech_to_text/test_processor_speech_to_text.py/0 | {
"file_path": "transformers/tests/models/speech_to_text/test_processor_speech_to_text.py",
"repo_id": "transformers",
"token_count": 2448
} | 176 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch StableLm model. """
import unittest
from parameterized import parameterized
from transformers import StableLmConfig, is_torch_available, set_seed
from transformers.testing_utils import (
require_bitsandbytes,
require_flash_attn,
require_torch,
require_torch_sdpa,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
AutoTokenizer,
StableLmForCausalLM,
StableLmForSequenceClassification,
StableLmModel,
)
# Copied from transformers.tests.models.persimmon.test_modeling_persimmon.PersimmonModelTester with Persimmon -> StableLm
class StableLmModelTester:
# Ignore copy
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=64,
num_hidden_layers=2,
num_attention_heads=4,
num_key_value_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return StableLmConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = StableLmModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = StableLmModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = StableLmForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = StableLmForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
# Copied from transformers.tests.persimmon.test_modeling_persimmon.PersimmonModelTest with Persimmon -> StableLm
class StableLmModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(StableLmModel, StableLmForCausalLM, StableLmForSequenceClassification) if is_torch_available() else ()
)
pipeline_model_mapping = (
{
"feature-extraction": StableLmModel,
"text-classification": StableLmForSequenceClassification,
# TODO (ydshieh): check why these two fail. Fix them or skip them in a better way.
# "text-generation": StableLmForCausalLM,
# "zero-shot": StableLmForSequenceClassification,
}
if is_torch_available()
else {}
)
all_generative_model_classes = (StableLmForCausalLM,) if is_torch_available() else ()
test_headmasking = False
test_pruning = False
def setUp(self):
self.model_tester = StableLmModelTester(self)
self.config_tester = ConfigTester(self, config_class=StableLmConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_stablelm_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = StableLmForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_stablelm_sequence_classification_model_for_single_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "single_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = StableLmForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_stablelm_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = StableLmForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
@parameterized.expand([("linear",), ("dynamic",)])
def test_model_rope_scaling(self, scaling_type):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
short_input = ids_tensor([1, 10], config.vocab_size)
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
original_model = StableLmModel(config)
original_model.to(torch_device)
original_model.eval()
original_short_output = original_model(short_input).last_hidden_state
original_long_output = original_model(long_input).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
scaled_model = StableLmModel(config)
scaled_model.to(torch_device)
scaled_model.eval()
scaled_short_output = scaled_model(short_input).last_hidden_state
scaled_long_output = scaled_model(long_input).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
else:
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
@require_torch
class StableLmModelIntegrationTest(unittest.TestCase):
@slow
def test_model_stablelm_3b_4e1t_logits(self):
input_ids = {"input_ids": torch.tensor([[510, 8588, 310, 1900, 9386]], dtype=torch.long, device=torch_device)}
model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t").to(torch_device)
model.eval()
output = model(**input_ids).logits
# Expected mean on dim = -1
EXPECTED_MEAN = torch.tensor([[2.7146, 2.4245, 1.5616, 1.4424, 2.6790]]).to(torch_device)
self.assertTrue(torch.allclose(output.mean(dim=-1), EXPECTED_MEAN, atol=1e-4, rtol=1e-4))
# Expected logits sliced from [0, 0, 0:30]
EXPECTED_SLICE = torch.tensor([7.1030, -1.4195, 9.9206, 7.7008, 4.9891, 4.2169, 5.5426, 3.7878, 6.7593, 5.7360, 8.4691, 5.5448, 5.0544, 10.4129, 8.5573, 13.0405, 7.3265, 3.5868, 6.1106, 5.9406, 5.6376, 5.7490, 5.4850, 4.8124, 5.1991, 4.6419, 4.5719, 9.9588, 6.7222, 4.5070]).to(torch_device) # fmt: skip
self.assertTrue(torch.allclose(output[0, 0, :30], EXPECTED_SLICE, atol=1e-4, rtol=1e-4))
@slow
def test_model_stablelm_3b_4e1t_generation(self):
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t")
input_ids = tokenizer.encode(
"My favorite food has always been pizza, but lately",
return_tensors="pt",
)
outputs = model.generate(input_ids, max_new_tokens=20, temperature=0)
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
EXPECTED_TEXT_COMPLETION = """My favorite food has always been pizza, but lately I’ve been craving something different. I’ve been trying to eat healthier and I’ve"""
self.assertEqual(text, EXPECTED_TEXT_COMPLETION)
@require_bitsandbytes
@slow
@require_flash_attn
def test_model_3b_long_prompt(self):
EXPECTED_OUTPUT_TOKEN_IDS = [3, 3, 3]
input_ids = [306, 338] * 2047
model = StableLmForCausalLM.from_pretrained(
"stabilityai/stablelm-3b-4e1t",
device_map="auto",
torch_dtype="auto",
load_in_4bit=True,
attn_implementation="flash_attention_2",
)
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-3:].tolist())
# Copied from transformers.tests.models.llama.test_modeling_llama.LlamaModelTest.test_eager_matches_sdpa_generate with Llama->StableLm,saibo/llama-1B->stabilityai/stablelm-3b-4e1t
@require_torch_sdpa
@slow
def test_eager_matches_sdpa_generate(self):
"""
Overwritting the common test as the test is flaky on tiny models
"""
max_new_tokens = 30
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
model_sdpa = StableLmForCausalLM.from_pretrained(
"stabilityai/stablelm-3b-4e1t",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(torch_device)
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
model_eager = StableLmForCausalLM.from_pretrained(
"stabilityai/stablelm-3b-4e1t",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
attn_implementation="eager",
).to(torch_device)
self.assertTrue(model_eager.config._attn_implementation == "eager")
for name, submodule in model_eager.named_modules():
if "SdpaAttention" in submodule.__class__.__name__:
raise ValueError("The eager model should not have SDPA attention layers")
has_sdpa = False
for name, submodule in model_sdpa.named_modules():
if "SdpaAttention" in submodule.__class__.__name__:
has_sdpa = True
break
if not has_sdpa:
raise ValueError("The SDPA model should have SDPA attention layers")
texts = [
"hi here's a longer context, getting longer and",
"Hello this is a very long sentence my friend, very long for real",
"Today I am in Paris and",
]
for padding_side in ["left", "right"]:
tokenizer.padding_side = padding_side
tokenizer.pad_token = tokenizer.eos_token
inputs = tokenizer(texts, return_tensors="pt", padding=True).to(torch_device)
res_eager = model_eager.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
res_sdpa = model_sdpa.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
with self.subTest(f"{padding_side}"):
torch.testing.assert_close(
res_eager,
res_sdpa,
msg=f"\n{tokenizer.batch_decode(res_eager)} \nvs\n{tokenizer.batch_decode(res_sdpa)}",
)
| transformers/tests/models/stablelm/test_modeling_stablelm.py/0 | {
"file_path": "transformers/tests/models/stablelm/test_modeling_stablelm.py",
"repo_id": "transformers",
"token_count": 9254
} | 177 |
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from transformers import T5Config, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import ByT5Tokenizer, T5Tokenizer, TFT5EncoderModel, TFT5ForConditionalGeneration, TFT5Model
class TFT5ModelTester:
def __init__(
self,
parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_labels = True
self.vocab_size = 99
self.n_positions = 14
self.hidden_size = 32
self.num_hidden_layers = 2
self.num_attention_heads = 4
self.d_ff = 37
self.relative_attention_num_buckets = 8
self.dropout_rate = 0.1
self.initializer_factor = 0.002
self.eos_token_id = 1
self.pad_token_id = 0
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_labels = None
if self.use_labels:
token_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = T5Config(
vocab_size=self.vocab_size,
n_positions=self.n_positions,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.pad_token_id,
)
return (config, input_ids, input_mask, token_labels)
def create_and_check_t5_model(self, config, input_ids, input_mask, token_labels):
model = TFT5Model(config=config)
inputs = {
"input_ids": input_ids,
"decoder_input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
result = model(inputs)
result = model(input_ids, decoder_attention_mask=input_mask, decoder_input_ids=input_ids)
decoder_output = result.last_hidden_state
decoder_past = result.past_key_values
encoder_output = result.encoder_last_hidden_state
self.parent.assertListEqual(list(encoder_output.shape), [self.batch_size, self.seq_length, self.hidden_size])
self.parent.assertListEqual(list(decoder_output.shape), [self.batch_size, self.seq_length, self.hidden_size])
# There should be `num_layers` key value embeddings stored in decoder_past[1]
self.parent.assertEqual(len(decoder_past), config.num_layers)
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past[1] tuple
self.parent.assertEqual(len(decoder_past[0]), 4)
def create_and_check_t5_with_lm_head(self, config, input_ids, input_mask, token_labels):
model = TFT5ForConditionalGeneration(config=config)
inputs_dict = {
"input_ids": input_ids,
"decoder_input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
result = model(inputs_dict)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_t5_decoder_model_past(self, config, input_ids, decoder_input_ids, attention_mask):
model = TFT5Model(config=config).get_decoder()
input_ids = input_ids[:1, :]
self.batch_size = 1
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
output_from_no_past = model(next_input_ids)[0]
output_from_past = model(next_tokens, past_key_values=outputs.past_key_values)[0]
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def create_and_check_t5_decoder_model_attention_mask_past(
self, config, input_ids, decoder_input_ids, attention_mask
):
model = TFT5Model(config=config).get_decoder()
# create attention mask
half_seq_length = self.seq_length // 2
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)
# first forward pass
outputs = model(input_ids, attention_mask=attn_mask, use_cache=True)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
condition = tf.transpose(
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
)
input_ids = tf.where(condition, random_other_next_tokens, input_ids)
# append to next input_ids and attn_mask
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
attn_mask = tf.concat(
[attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)],
axis=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)[0]
output_from_past = model(next_tokens, past_key_values=outputs.past_key_values, attention_mask=attn_mask)[0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).numpy().item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def create_and_check_t5_decoder_model_past_large_inputs(
self, config, input_ids, decoder_input_ids, attention_mask
):
model = TFT5Model(config=config).get_decoder()
input_ids = input_ids[:1, :]
attention_mask = attention_mask[:1, :]
self.batch_size = 1
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
output_from_past = model(
next_tokens, attention_mask=next_attention_mask, past_key_values=outputs.past_key_values
)[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, input_mask, token_labels) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"decoder_input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return config, inputs_dict
@require_tf
class TFT5ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
is_encoder_decoder = True
all_model_classes = (TFT5Model, TFT5ForConditionalGeneration) if is_tf_available() else ()
all_generative_model_classes = (TFT5ForConditionalGeneration,) if is_tf_available() else ()
pipeline_model_mapping = (
{
"conversational": TFT5ForConditionalGeneration,
"feature-extraction": TFT5Model,
"summarization": TFT5ForConditionalGeneration,
"text2text-generation": TFT5ForConditionalGeneration,
"translation": TFT5ForConditionalGeneration,
}
if is_tf_available()
else {}
)
test_onnx = False
def setUp(self):
self.model_tester = TFT5ModelTester(self)
self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_t5_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_t5_model(*config_and_inputs)
def test_t5_model_v1_1(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
config = config_and_inputs[0]
config.tie_word_embeddings = False
config.feed_forward_proj = "gated-gelu"
self.model_tester.create_and_check_t5_model(config, *config_and_inputs[1:])
def test_with_lm_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_t5_with_lm_head(*config_and_inputs)
def test_t5_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_t5_decoder_model_past(*config_and_inputs)
def test_t5_decoder_model_past_with_attn_mask(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_t5_decoder_model_attention_mask_past(*config_and_inputs)
def test_t5_decoder_model_past_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
# `create_and_check_t5_decoder_model_past_large_inputs` has special inputs:
# (config, input_ids, decoder_input_ids, attention_mask)
# and we have to prepare it correctly here.
config, input_ids, input_mask, token_labels = config_and_inputs
config_and_inputs = (config, input_ids, None, input_mask)
self.model_tester.create_and_check_t5_decoder_model_past_large_inputs(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model = TFT5Model.from_pretrained("google-t5/t5-small")
self.assertIsNotNone(model)
def test_generate_with_headmasking(self):
# TODO: Fix head-masking according to PyTorch T5 model
pass
# This test is run in `TFT5EncoderOnlyModelTest`, where the main layer has the same inputs as the model
@unittest.skip(reason="The inputs of the Main Layer are different.")
def test_keras_save_load(self):
pass
@unittest.skip("Does not support conversations.")
def test_pipeline_conversational(self):
pass
class TFT5EncoderOnlyModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
encoder_seq_length=7,
# For common tests
use_attention_mask=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=8,
is_training=False,
dropout_rate=0.1,
initializer_factor=0.002,
is_encoder_decoder=False,
eos_token_id=1,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
# For common tests
self.seq_length = self.encoder_seq_length
self.use_attention_mask = use_attention_mask
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.is_training = is_training
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
config = T5Config(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
is_encoder_decoder=self.is_encoder_decoder,
)
return (
config,
input_ids,
attention_mask,
)
def create_and_check_model(
self,
config,
input_ids,
attention_mask,
):
model = TFT5EncoderModel(config=config)
result = model(
input_ids=input_ids,
attention_mask=attention_mask,
)
result = model(input_ids=input_ids)
encoder_output = result.last_hidden_state
self.parent.assertEqual(encoder_output.shape, (self.batch_size, self.encoder_seq_length, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
class TFT5EncoderOnlyModelTest(TFModelTesterMixin, unittest.TestCase):
is_encoder_decoder = False
all_model_classes = (TFT5EncoderModel,) if is_tf_available() else ()
test_onnx = False
def setUp(self):
self.model_tester = TFT5EncoderOnlyModelTester(self)
self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
# is not able to be part of a pipeline
def test_train_pipeline_custom_model(self):
pass
@require_tf
@require_sentencepiece
@require_tokenizers
class TFT5GenerationIntegrationTests(unittest.TestCase):
@slow
def test_greedy_xla_generate_simple(self):
model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
# two examples with different lengths to confirm that attention masks are operational in XLA
sentences = [
"Translate English to German: Today is a beautiful day.",
"Translate English to German: I have four cats, three dogs, two birds, and a horse.",
]
input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids
xla_generate = tf.function(model.generate, jit_compile=True)
output_ids = model.generate(input_ids)
output_ids_xla = xla_generate(input_ids)
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
output_strings_xla = tokenizer.batch_decode(output_ids_xla, skip_special_tokens=True)
expected_output_string = [
"Heute ist ein schöner Tag.",
"Ich habe vier Katzen, drei Hunde, zwei Vögel und ein Pferd.",
]
self.assertListEqual(expected_output_string, output_strings)
self.assertListEqual(expected_output_string, output_strings_xla)
@slow
def test_greedy_generate(self):
model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
sentences = ["Yesterday, my name was", "Today is a beautiful day and"]
input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids
generation_kwargs = {
"bad_words_ids": [tokenizer("my").input_ids, tokenizer("ein schöner").input_ids],
"no_repeat_ngram_size": 3,
"do_sample": False,
"repetition_penalty": 2.2,
}
output_ids = model.generate(input_ids, **generation_kwargs)
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
expected_output_string = ["Yesterday, my name was", "Heute ist ein schöne Tag und"]
self.assertListEqual(expected_output_string, output_strings)
@slow
def test_sample_xla_generate_simple(self):
# NOTE: due to the small numerical differences that are natural when we compile to XLA, sampling the same
# output out of the same seed is far from guaranteed. We can, however, confirm that the results are sensible
# and that we can seed both versions.
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(":/CPU:0"):
model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
sentence = "Translate English to German: I have two bananas"
input_ids = tokenizer(sentence, return_tensors="tf", padding=True).input_ids
expected_output_string = ["Ich habe zwei Bananen"]
expected_output_string_xla = ["Ich habe 2 Bananen"]
# seed set -> deterministic sampling sequence -> deterministic generation
output_ids = model.generate(input_ids, do_sample=True, seed=[42, 0])
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
self.assertListEqual(expected_output_string, output_strings)
xla_generate = tf.function(model.generate, jit_compile=True)
# seed set -> deterministic sampling sequence -> deterministic generation
output_ids_xla = xla_generate(input_ids, do_sample=True, seed=[42, 0])
output_strings_xla = tokenizer.batch_decode(output_ids_xla, skip_special_tokens=True)
self.assertListEqual(expected_output_string_xla, output_strings_xla)
@slow
def test_sample_generate(self):
model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
sentences = ["I really love my", "Translate English to German: the transformers are truly amazing"]
input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids
generation_kwargs = {
"do_sample": True,
"bad_words_ids": [tokenizer("my").input_ids, tokenizer("ein schöner").input_ids],
"no_repeat_ngram_size": 3,
"repetition_penalty": 2.2,
"temperature": 0.8,
"top_k": 500,
"top_p": 0.9,
"seed": [20, 0], # seed set -> deterministic sampling sequence -> deterministic generation
}
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(":/CPU:0"):
output_ids = model.generate(input_ids, **generation_kwargs)
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
expected_output_string = ["- I really love my way of this.", "die Transformatoren sind wirklich erstaunlich"]
self.assertListEqual(expected_output_string, output_strings)
# TODO (ydshieh): undo skip once a fix is done on TF side.
@unittest.skip("Skip for now as TF 2.13 breaks it on GPU")
@slow
def test_beam_search_xla_generate_simple(self):
model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
# tests XLA with task specific arguments
task_specific_config = getattr(model.config, "task_specific_params", {})
translation_config = task_specific_config.get("translation_en_to_fr", {})
model.config.update(translation_config)
# two examples with different lengths to confirm that attention masks are operational in XLA
sentences = [
model.config.prefix + "Today is a beautiful day.",
model.config.prefix + "I have four cats, three dogs, two birds, and a horse.",
]
input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids
xla_generate = tf.function(model.generate, jit_compile=True)
output_ids = model.generate(input_ids, num_beams=2)
output_ids_xla = xla_generate(input_ids, num_beams=2)
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
output_strings_xla = tokenizer.batch_decode(output_ids_xla, skip_special_tokens=True)
expected_output_string = [
"Aujourd'hui est une belle journée.",
"J'ai quatre chats, trois chiens, deux oiseaux et un cheval.",
]
self.assertListEqual(expected_output_string, output_strings)
self.assertListEqual(expected_output_string, output_strings_xla)
@slow
def test_beam_search_generate(self):
model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
sentences = ["I really love my", "Translate English to German: the transformers are truly amazing"]
input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids
generation_kwargs = {
"bad_words_ids": [tokenizer("my").input_ids, tokenizer("ein schöner").input_ids],
"no_repeat_ngram_size": 3,
"do_sample": False,
"repetition_penalty": 2.2,
"num_beams": 4,
}
output_ids = model.generate(input_ids, **generation_kwargs)
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
expected_output_string = ["Ich liebe es so sehr!", "die Transformatoren sind wirklich erstaunlich"]
self.assertListEqual(expected_output_string, output_strings)
@unittest.skip("Does not support conversations.")
def test_pipeline_conversational(self):
pass
@require_tf
@require_sentencepiece
@require_tokenizers
class TFT5ModelIntegrationTests(unittest.TestCase):
@cached_property
def model(self):
return TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-base")
@slow
def test_small_integration_test(self):
"""
For comparision run:
>>> import t5 # pip install t5==0.7.1
>>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary
>>> path_to_mtf_small_t5_checkpoint = '<fill_in>'
>>> path_to_mtf_small_spm_model_path = '<fill_in>'
>>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_checkpoint, batch_size=1, tpu=None)
>>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100)
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
"""
model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
input_ids = tokenizer("Hello there", return_tensors="tf").input_ids
labels = tokenizer("Hi I am", return_tensors="tf").input_ids
loss = model(input_ids, labels=labels).loss
mtf_score = -tf.math.reduce_mean(loss).numpy()
EXPECTED_SCORE = -4.771147
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
@slow
def test_small_v1_1_integration_test(self):
"""
For comparision run:
>>> import t5 # pip install t5==0.7.1
>>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary
>>> path_to_mtf_small_t5_v1.1_checkpoint = '<fill_in>'
>>> path_to_mtf_small_spm_model_path = '<fill_in>'
>>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_v1.1_checkpoint, batch_size=1, tpu=None)
>>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100)
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
"""
model = TFT5ForConditionalGeneration.from_pretrained("google/t5-v1_1-small")
tokenizer = T5Tokenizer.from_pretrained("google/t5-v1_1-small")
input_ids = tokenizer("Hello there", return_tensors="tf").input_ids
labels = tokenizer("Hi I am", return_tensors="tf").input_ids
loss = model(input_ids, labels=labels).loss
mtf_score = -tf.math.reduce_mean(loss).numpy()
EXPECTED_SCORE = -14.757326
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
@slow
def test_small_byt5_integration_test(self):
"""
For comparision run:
>>> import t5 # pip install t5==0.9.1
>>> path_to_byt5_small_checkpoint = '<fill_in>'
>>> t5_model = t5.models.MtfModel(model_dir=path_to_tf_checkpoint, batch_size=1, tpu=None)
>>> vocab = t5.data.ByteVocabulary()
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
"""
model = TFT5ForConditionalGeneration.from_pretrained("google/byt5-small")
tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")
input_ids = tokenizer("Hello there", return_tensors="tf").input_ids
labels = tokenizer("Hi I am", return_tensors="tf").input_ids
loss = model(input_ids, labels=labels).loss
mtf_score = -tf.math.reduce_mean(loss).numpy()
EXPECTED_SCORE = -7.592465
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
@slow
def test_summarization(self):
model = self.model
tok = T5Tokenizer.from_pretrained("google-t5/t5-base")
FRANCE_ARTICLE = ( # @noqa
"Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings"
" Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane."
' Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation."'
' He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s'
" comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video"
" showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French"
" Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a"
" phone at the wreckage site. The two publications described the supposed video, but did not post it on"
" their websites. The publications said that they watched the video, which was found by a source close to"
" the investigation. \"One can hear cries of 'My God' in several languages,\" Paris Match reported."
' "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the'
" cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the"
' screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt,'
" editor-in-chief of Bild online. An official with France's accident investigation agency, the BEA, said"
" the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman"
" in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the"
' reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said,'
' but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be'
" sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by"
" specialized technicians working hand-in-hand with investigators. But none of the cell phones found so"
" far have been sent to the institute, Menichini said. Asked whether staff involved in the search could"
' have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin'
' Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match'
' are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered'
' cell phones from the crash site after Bild and Paris Match published their reports. "That is something'
" we did not know before. ... Overall we can say many things of the investigation weren't revealed by the"
' investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline'
" Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the"
" controls of Germanwings Flight 9525, which he's accused of deliberately crashing last week in the"
' French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of'
' severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school'
" discovered in an internal investigation, Lufthansa said, included medical documents he submitted in"
" connection with resuming his flight training. The announcement indicates that Lufthansa, the parent"
" company of Germanwings, knew of Lubitz's battle with depression, allowed him to continue training and"
" ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100%"
' fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was'
" sharing the information and documents -- including training and medical records -- with public"
" prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the"
" past week to recover human remains and plane debris scattered across a steep mountainside. He saw the"
" crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash"
" site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late"
" Tuesday that no visible human remains were left at the site but recovery teams would keep searching."
" French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all"
" the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested."
" In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini said."
" Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew"
" on board. Check out the latest from our correspondents . The details about Lubitz's correspondence with"
" the flight school during his training were among several developments as investigators continued to"
" delve into what caused the crash and Lubitz's possible motive for downing the jet. A Lufthansa"
" spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his"
' examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in'
" Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at"
" some point before his aviation career and underwent psychotherapy before he got his pilot's license."
" Kumpa emphasized there's no evidence suggesting Lubitz was suicidal or acting aggressively before the"
" crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to"
" lose his pilot's license, a European government official briefed on the investigation told CNN on"
' Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being'
" considered. Another source, a law enforcement official briefed on the investigation, also told CNN that"
" authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would"
" not be allowed to fly because of his medical problems. Lubitz's girlfriend told investigators he had"
" seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded"
" he had psychological issues, the European government official said. But no matter what details emerge"
" about his previous mental health struggles, there's more to the story, said Brian Russell, a forensic"
' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact'
" that maybe they weren't going to keep doing their job and they're upset about that and so they're"
' suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to'
" also take that rage and turn it outward on 149 other people who had nothing to do with the person's"
' problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight'
" 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura"
" Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine"
" Amiel and Anna-Maja Rappard contributed to this report."
)
SHORTER_ARTICLE = (
"(CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The"
" formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based."
" The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its"
' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East'
' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the'
" situation in Palestinian territories, paving the way for possible war crimes investigations against"
" Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and"
" the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the"
" body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a"
' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the'
' world is also a step closer to ending a long era of impunity and injustice," he said, according to an'
' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge'
" Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the"
' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine'
" acquires all the rights as well as responsibilities that come with being a State Party to the Statute."
' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights'
' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should'
" immediately end their pressure, and countries that support universal acceptance of the court's treaty"
' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the'
" group. \"What's objectionable is the attempts to undermine international justice, not Palestine's"
' decision to join a treaty to which over 100 countries around the world are members." In January, when'
" the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an"
' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"'
" disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a"
' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in'
' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We'
' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"'
" it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the'
" court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou"
' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war'
" between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry"
" will include alleged war crimes committed since June. The International Criminal Court was set up in"
" 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder"
" and Faith Karimi contributed to this report."
)
IRAN_ARTICLE = (
"(CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran"
" in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively"
" block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger."
" Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli"
" Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a"
" letter to the Iranian leadership warning them away from a deal. The debate that has already begun since"
" the announcement of the new framework will likely result in more heat than light. It will not be helped"
" by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: ."
" The most misleading assertion, despite universal rejection by experts, is that the negotiations'"
" objective at the outset was the total elimination of any nuclear program in Iran. That is the position"
" of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it"
" had been, there would have been no Iranian team at the negotiating table. Rather, the objective has"
" always been to structure an agreement or series of agreements so that Iran could not covertly develop a"
" nuclear arsenal before the United States and its allies could respond. The new framework has exceeded"
" expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by"
" two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another"
" dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite"
" sharp accusations by some in the United States and its allies, Iran denies having such a program, and"
" U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's"
" continued cooperation with International Atomic Energy Agency inspections is further evidence on this"
" point, and we'll know even more about Iran's program in the coming months and years because of the deal."
" In fact, the inspections provisions that are part of this agreement are designed to protect against any"
" covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that"
" the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter"
" warning that a deal might be killed by Congress or a future president). This of course is not the case."
" The talks were between Iran and the five permanent members of the U.N. Security Council (United States,"
" United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has"
" played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement"
" reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran"
" and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement"
" contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the"
" case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased"
" or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes"
" Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear"
" sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going"
" forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such"
" a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the"
' agreement should be a formal treaty requiring the Senate to "advise and consent." But the issue is not'
" suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New"
" START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement"
" with Iran will not be so balanced. The restrictions and obligations in the final framework agreement"
" will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove"
" most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally"
" some insist that any agreement must address Iranian missile programs, human rights violations or support"
" for Hamas or Hezbollah. As important as these issues are, and they must indeed be addressed, they are"
" unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran. To include them in"
" the negotiations would be a poison pill. This agreement should be judged on its merits and on how it"
" affects the security of our negotiating partners and allies, including Israel. Those judgments should be"
" fact-based, not based on questionable assertions or dubious assumptions."
)
ARTICLE_SUBWAY = (
"New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A"
" year later, she got married again in Westchester County, but to a different man and without divorcing"
" her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos"
' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married'
" once more, this time in the Bronx. In an application for a marriage license, she stated it was her"
' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false'
' instrument for filing in the first degree," referring to her false statements on the 2010 marriage'
" license application, according to court documents. Prosecutors said the marriages were part of an"
" immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to"
" her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was"
" arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New"
" York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total,"
" Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All"
" occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be"
" married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors"
" said the immigration scam involved some of her husbands, who filed for permanent residence status"
" shortly after the marriages. Any divorces happened only after such filings were approved. It was"
" unclear whether any of the men will be prosecuted. The case was referred to the Bronx District"
" Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's"
' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,'
" Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his"
" native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces"
" up to four years in prison. Her next court appearance is scheduled for May 18."
)
expected_summaries = [
'prosecutor: "so far no videos were used in the crash investigation" two magazines claim to have found a'
" cell phone video of the final seconds . \"one can hear cries of 'My God' in several languages,\" one"
" magazine says .",
"the formal accession was marked by a ceremony at The Hague, in the Netherlands . the ICC opened a"
" preliminary examination into the situation in the occupied Palestinian territory . as members of the"
" court, Palestinians may be subject to counter-charges as well .",
"the u.s. and its negotiating partners reached a very strong framework agreement with Iran . aaron miller:"
" the debate that has already begun since the announcement of the new framework will likely result in more"
" heat than light . the deal would reduce Iran's low-enriched uranium stockpile, cut centrifuges and"
" implement a rigorous inspection regime .",
"prosecutors say the marriages were part of an immigration scam . if convicted, barrientos faces two"
' criminal counts of "offering a false instrument for filing in the first degree" she has been married 10'
" times, with nine of her marriages occurring between 1999 and 2002 .",
]
task_specific_config = getattr(model.config, "task_specific_params", {})
summarization_config = task_specific_config.get("summarization", {})
model.config.update(summarization_config)
dct = tok(
[model.config.prefix + x for x in [FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY]],
max_length=512,
padding="max_length",
truncation=True,
return_tensors="tf",
)
self.assertEqual(512, dct["input_ids"].shape[1])
hypotheses_batch = model.generate(
input_ids=dct["input_ids"],
attention_mask=dct["attention_mask"],
num_beams=4,
length_penalty=2.0,
max_length=142,
min_length=56,
no_repeat_ngram_size=3,
do_sample=False,
early_stopping=True,
)
decoded = [
tok.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in hypotheses_batch
]
self.assertListEqual(
expected_summaries,
decoded,
)
@slow
def test_translation_en_to_de(self):
tok = T5Tokenizer.from_pretrained("google-t5/t5-base")
model = self.model
task_specific_config = getattr(model.config, "task_specific_params", {})
translation_config = task_specific_config.get("translation_en_to_de", {})
self.model.config.update(translation_config)
original_input = '"Luigi often said to me that he never wanted the brothers to end up in court", she wrote.'
expected_translation = (
'"Luigi sagte mir oft, dass er nie wollte, dass die Brüder am Gericht sitzen", schrieb sie.'
)
input_ids = tok.encode(model.config.prefix + original_input, return_tensors="tf")
output = model.generate(
input_ids=input_ids,
num_beams=4,
length_penalty=2.0,
max_length=50,
no_repeat_ngram_size=3,
do_sample=False,
early_stopping=True,
)
translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
self.assertEqual(translation, expected_translation)
@slow
def test_translation_en_to_fr(self):
model = self.model
tok = T5Tokenizer.from_pretrained("google-t5/t5-base")
task_specific_config = getattr(model.config, "task_specific_params", {})
translation_config = task_specific_config.get("translation_en_to_fr", {})
model.config.update(translation_config)
en_text = (
' This image section from an infrared recording by the Spitzer telescope shows a "family portrait" of'
" countless generations of stars: the oldest stars are seen as blue dots. "
)
new_truncated_translation = (
"Cette section d'images provenant de l'enregistrement infrarouge effectué par le télescope Spitzer montre "
"un "
"« portrait familial » de générations innombrables d’étoiles : les plus anciennes sont observées "
"sous forme "
"de points bleus."
)
input_ids = tok(model.config.prefix + en_text, return_tensors="tf").input_ids
output = model.generate(
input_ids=input_ids,
num_beams=4,
length_penalty=2.0,
max_length=100,
no_repeat_ngram_size=3,
do_sample=False,
early_stopping=True,
)
translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
self.assertEqual(translation, new_truncated_translation)
@slow
def test_translation_en_to_ro(self):
model = self.model
tok = T5Tokenizer.from_pretrained("google-t5/t5-base")
task_specific_config = getattr(model.config, "task_specific_params", {})
translation_config = task_specific_config.get("translation_en_to_ro", {})
model.config.update(translation_config)
original_input = "Taco Bell said it plans to add 2,000 locations in the US by 2022."
expected_translation = "Taco Bell a declarat că intenţionează să adauge 2 000 de locaţii în SUA până în 2022."
input_ids = tok.encode(model.config.prefix + original_input, return_tensors="tf")
output = model.generate(
input_ids=input_ids,
num_beams=4,
length_penalty=2.0,
max_length=50,
no_repeat_ngram_size=3,
do_sample=False,
early_stopping=True,
)
translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
self.assertEqual(translation, expected_translation)
| transformers/tests/models/t5/test_modeling_tf_t5.py/0 | {
"file_path": "transformers/tests/models/t5/test_modeling_tf_t5.py",
"repo_id": "transformers",
"token_count": 21625
} | 178 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import inspect
import random
import unittest
from datasets import Audio, load_dataset
from transformers import UnivNetConfig, UnivNetFeatureExtractor
from transformers.testing_utils import (
is_torch_available,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
floats_tensor,
)
if is_torch_available():
import torch
from transformers import UnivNetModel
class UnivNetModelTester:
def __init__(
self,
parent,
batch_size=2,
seq_length=7,
in_channels=8,
hidden_channels=8,
num_mel_bins=20,
kernel_predictor_hidden_channels=8,
seed=0,
is_training=False,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.num_mel_bins = num_mel_bins
self.kernel_predictor_hidden_channels = kernel_predictor_hidden_channels
self.seed = seed
self.is_training = is_training
def prepare_noise_sequence(self):
generator = torch.manual_seed(self.seed)
noise_shape = (self.seq_length, self.in_channels)
# Create noise on CPU for reproducibility
noise_sequence = torch.randn(noise_shape, generator=generator, dtype=torch.float)
return noise_sequence
def prepare_config_and_inputs(self):
spectrogram = floats_tensor([self.seq_length, self.num_mel_bins], scale=1.0)
noise_sequence = self.prepare_noise_sequence()
noise_sequence = noise_sequence.to(spectrogram.device)
config = self.get_config()
return config, spectrogram, noise_sequence
def get_config(self):
return UnivNetConfig(
model_in_channels=self.in_channels,
model_hidden_channels=self.hidden_channels,
num_mel_bins=self.num_mel_bins,
kernel_predictor_hidden_channels=self.kernel_predictor_hidden_channels,
)
def create_and_check_model(self, config, spectrogram, noise_sequence):
model = UnivNetModel(config=config).to(torch_device).eval()
result = model(spectrogram, noise_sequence)[0]
self.parent.assertEqual(result.shape, (1, self.seq_length * 256))
def prepare_config_and_inputs_for_common(self):
config, spectrogram, noise_sequence = self.prepare_config_and_inputs()
inputs_dict = {"input_features": spectrogram, "noise_sequence": noise_sequence}
return config, inputs_dict
@require_torch
class UnivNetModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (UnivNetModel,) if is_torch_available() else ()
# UnivNetModel currently cannot be traced with torch.jit.trace.
test_torchscript = False
# The UnivNetModel is not a transformer and does not use any attention mechanisms, so skip transformer/attention
# related tests.
test_pruning = False
test_resize_embeddings = False
test_resize_position_embeddings = False
test_head_masking = False
# UnivNetModel is not a sequence classification model.
test_mismatched_shapes = False
# UnivNetModel does not have a base_model_prefix attribute.
test_missing_keys = False
# UnivNetModel does not implement a parallelize method.
test_model_parallel = False
is_encoder_decoder = False
has_attentions = False
input_name = "input_features"
def setUp(self):
self.model_tester = UnivNetModelTester(self)
self.config_tester = ConfigTester(self, config_class=UnivNetConfig)
@unittest.skip(reason="fix this once it gets more usage")
def test_multi_gpu_data_parallel_forward(self):
super().test_multi_gpu_data_parallel_forward()
def test_config(self):
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_from_and_save_pretrained_subfolder()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = [
"input_features",
]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@unittest.skip(reason="UnivNetModel does not output hidden_states.")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="UnivNetModel.forward does not accept an inputs_embeds argument.")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="UnivNetModel does not use input embeddings and thus has no get_input_embeddings method.")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="UnivNetModel does not support all arguments tested, such as output_hidden_states.")
def test_model_outputs_equivalence(self):
pass
@unittest.skip(reason="UnivNetModel does not output hidden_states.")
def test_retain_grad_hidden_states_attentions(self):
pass
def test_batched_inputs_outputs(self):
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
batched_spectrogram = inputs["input_features"].unsqueeze(0).repeat(2, 1, 1)
batched_noise_sequence = inputs["noise_sequence"].unsqueeze(0).repeat(2, 1, 1)
with torch.no_grad():
batched_outputs = model(
batched_spectrogram.to(torch_device),
batched_noise_sequence.to(torch_device),
)[0]
self.assertEqual(
batched_spectrogram.shape[0],
batched_outputs.shape[0],
msg="Got different batch dims for input and output",
)
def test_unbatched_inputs_outputs(self):
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(inputs["input_features"].to(torch_device), inputs["noise_sequence"].to(torch_device))[
0
]
self.assertTrue(outputs.shape[0] == 1, msg="Unbatched input should create batched output with bsz = 1")
def test_unbatched_batched_outputs_consistency(self):
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
unbatched_spectrogram = inputs["input_features"].detach().clone()
unbatched_noise_sequence = inputs["noise_sequence"].detach().clone()
batched_spectrogram = inputs["input_features"].unsqueeze(0)
batched_noise_sequence = inputs["noise_sequence"].unsqueeze(0)
with torch.no_grad():
unbatched_outputs = model(
unbatched_spectrogram.to(torch_device),
unbatched_noise_sequence.to(torch_device),
)[0]
batched_outputs = model(
batched_spectrogram.to(torch_device),
batched_noise_sequence.to(torch_device),
)[0]
torch.testing.assert_close(unbatched_outputs, batched_outputs)
@require_torch_gpu
@slow
class UnivNetModelIntegrationTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _load_datasamples(self, num_samples, sampling_rate=24000):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
ds = ds.cast_column("audio", Audio(sampling_rate=sampling_rate))
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples], [x["sampling_rate"] for x in speech_samples]
def get_inputs(self, device, num_samples: int = 3, noise_length: int = 10, seed: int = 0):
generator = torch.manual_seed(seed)
# Note: hardcode model_in_channels -> 64
if num_samples == 1:
noise_sequence_shape = (64, noise_length)
else:
noise_sequence_shape = (num_samples, 64, noise_length)
# Explicity generate noise_sequence on CPU for consistency.
noise_sequence = torch.randn(noise_sequence_shape, generator=generator, dtype=torch.float32, device="cpu")
# Put noise_sequence on the desired device.
noise_sequence = noise_sequence.to(device)
# Note: hardcode num_mel_channels -> 100
if num_samples == 1:
spectrogram_shape = [100, noise_length]
else:
spectrogram_shape = [num_samples, 100, noise_length]
spectrogram = floats_tensor(spectrogram_shape, scale=1.0, rng=random.Random(seed))
# Note: spectrogram should already be on torch_device
# Permute to match diffusers implementation
if num_samples == 1:
noise_sequence = noise_sequence.transpose(1, 0)
spectrogram = spectrogram.transpose(1, 0)
else:
noise_sequence = noise_sequence.transpose(2, 1)
spectrogram = spectrogram.transpose(2, 1)
inputs = {
"input_features": spectrogram,
"noise_sequence": noise_sequence,
"generator": generator,
}
return inputs
def test_model_inference_batched(self):
# Load sample checkpoint from Tortoise TTS
model = UnivNetModel.from_pretrained("dg845/univnet-dev")
model.eval().to(torch_device)
# Get batched noise and spectrogram inputs.
input_speech = self.get_inputs(torch_device, num_samples=3)
with torch.no_grad():
waveform = model(**input_speech)[0]
waveform = waveform.cpu()
waveform_mean = torch.mean(waveform)
waveform_stddev = torch.std(waveform)
waveform_slice = waveform[-1, -9:].flatten()
EXPECTED_MEAN = torch.tensor(-0.19989729)
EXPECTED_STDDEV = torch.tensor(0.35230172)
EXPECTED_SLICE = torch.tensor([-0.3408, -0.6045, -0.5052, 0.1160, -0.1556, -0.0405, -0.3024, -0.5290, -0.5019])
torch.testing.assert_close(waveform_mean, EXPECTED_MEAN, atol=1e-4, rtol=1e-5)
torch.testing.assert_close(waveform_stddev, EXPECTED_STDDEV, atol=1e-4, rtol=1e-5)
torch.testing.assert_close(waveform_slice, EXPECTED_SLICE, atol=5e-4, rtol=1e-5)
def test_model_inference_unbatched(self):
# Load sample checkpoint from Tortoise TTS
model = UnivNetModel.from_pretrained("dg845/univnet-dev")
model.eval().to(torch_device)
# Get unbatched noise and spectrogram inputs.
input_speech = self.get_inputs(torch_device, num_samples=1)
with torch.no_grad():
waveform = model(**input_speech)[0]
waveform = waveform.cpu()
waveform_mean = torch.mean(waveform)
waveform_stddev = torch.std(waveform)
waveform_slice = waveform[-1, -9:].flatten()
EXPECTED_MEAN = torch.tensor(-0.22895093)
EXPECTED_STDDEV = torch.tensor(0.33986747)
EXPECTED_SLICE = torch.tensor([-0.3276, -0.5504, -0.3484, 0.3574, -0.0373, -0.1826, -0.4880, -0.6431, -0.5162])
torch.testing.assert_close(waveform_mean, EXPECTED_MEAN, atol=1e-4, rtol=1e-5)
torch.testing.assert_close(waveform_stddev, EXPECTED_STDDEV, atol=1e-4, rtol=1e-5)
torch.testing.assert_close(waveform_slice, EXPECTED_SLICE, atol=1e-3, rtol=1e-5)
def test_integration(self):
feature_extractor = UnivNetFeatureExtractor.from_pretrained("dg845/univnet-dev")
model = UnivNetModel.from_pretrained("dg845/univnet-dev")
model.eval().to(torch_device)
audio, sr = self._load_datasamples(1, sampling_rate=feature_extractor.sampling_rate)
input_features = feature_extractor(audio, sampling_rate=sr[0], return_tensors="pt").input_features
input_features = input_features.to(device=torch_device)
input_speech = self.get_inputs(torch_device, num_samples=1, noise_length=input_features.shape[1])
input_speech["input_features"] = input_features
with torch.no_grad():
waveform = model(**input_speech)[0]
waveform = waveform.cpu()
waveform_mean = torch.mean(waveform)
waveform_stddev = torch.std(waveform)
waveform_slice = waveform[-1, -9:].flatten()
EXPECTED_MEAN = torch.tensor(0.00051374)
EXPECTED_STDDEV = torch.tensor(0.058105603)
# fmt: off
EXPECTED_SLICE = torch.tensor([-4.3934e-04, -1.8203e-04, -3.3033e-04, -3.8716e-04, -1.6125e-04, 3.5389e-06, -3.3149e-04, -3.7613e-04, -2.3331e-04])
# fmt: on
torch.testing.assert_close(waveform_mean, EXPECTED_MEAN, atol=5e-6, rtol=1e-5)
torch.testing.assert_close(waveform_stddev, EXPECTED_STDDEV, atol=1e-4, rtol=1e-5)
torch.testing.assert_close(waveform_slice, EXPECTED_SLICE, atol=5e-6, rtol=1e-5)
| transformers/tests/models/univnet/test_modeling_univnet.py/0 | {
"file_path": "transformers/tests/models/univnet/test_modeling_univnet.py",
"repo_id": "transformers",
"token_count": 6460
} | 179 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch VisionTextDualEncoder model. """
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
# Inspired by
# https://github.com/rwightman/pytorch-image-models/blob/b9bd960a032c75ca6b808ddeed76bee5f3ed4972/timm/models/layers/helpers.py
# From PyTorch internals
def to_2tuple(x):
if isinstance(x, collections.abc.Iterable):
return x
return (x, x)
@require_flax
class VisionTextDualEncoderMixin:
def get_vision_text_model(self, config, text_config):
pass
def prepare_config_and_inputs(self):
pass
def get_pretrained_model_and_inputs(self):
pass
def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
diff = np.abs((a - b)).max()
self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")
def check_model_from_pretrained_configs(
self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs
):
config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_config, text_config)
model = FlaxVisionTextDualEncoderModel(config)
output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask)
self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], config.projection_dim))
self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], config.projection_dim))
def check_vision_text_dual_encoder_from_pretrained(
self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs
):
vision_model, text_model = self.get_vision_text_model(vision_config, text_config)
kwargs = {"vision_model": vision_model, "text_model": text_model}
model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**kwargs)
output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask)
self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], model.config.projection_dim))
self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], model.config.projection_dim))
def check_save_load(self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs):
vision_model, text_model = self.get_vision_text_model(vision_config, text_config)
kwargs = {"vision_model": vision_model, "text_model": text_model}
model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**kwargs)
output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask)
out_1 = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = FlaxVisionTextDualEncoderModel.from_pretrained(tmpdirname)
after_output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask)
out_2 = after_output[0]
max_diff = np.amax(np.abs(out_2 - out_1))
self.assertLessEqual(max_diff, 1e-3)
def check_vision_text_output_attention(
self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs
):
vision_model, text_model = self.get_vision_text_model(vision_config, text_config)
kwargs = {"vision_model": vision_model, "text_model": text_model}
model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**kwargs)
output = model(
input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, output_attentions=True
)
vision_attentions = output.vision_model_output.attentions
self.assertEqual(len(vision_attentions), vision_config.num_hidden_layers)
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
image_size = to_2tuple(vision_model.config.image_size)
patch_size = to_2tuple(vision_model.config.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
seq_len = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len))
text_attentions = output.text_model_output.attentions
self.assertEqual(len(text_attentions), text_config.num_hidden_layers)
self.assertEqual(
text_attentions[0].shape[-3:],
(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]),
)
def check_pt_flax_equivalence(self, pt_model, fx_model, inputs_dict):
pt_model.to(torch_device)
pt_model.eval()
# prepare inputs
flax_inputs = inputs_dict
pt_inputs = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()}
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs).to_tuple()
fx_outputs = fx_model(**inputs_dict).to_tuple()
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]):
self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
fx_model_loaded = FlaxVisionTextDualEncoderModel.from_pretrained(tmpdirname, from_pt=True)
fx_outputs_loaded = fx_model_loaded(**inputs_dict).to_tuple()
self.assertEqual(len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]):
self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2)
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(tmpdirname)
pt_model_loaded = VisionTextDualEncoderModel.from_pretrained(tmpdirname, from_flax=True)
pt_model_loaded.to(torch_device)
pt_model_loaded.eval()
with torch.no_grad():
pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()
self.assertEqual(len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch")
for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4]):
self.assert_almost_equals(fx_output, pt_output_loaded.numpy(), 4e-2)
def check_equivalence_pt_to_flax(self, vision_config, text_config, inputs_dict):
config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_config, text_config)
pt_model = VisionTextDualEncoderModel(config)
fx_model = FlaxVisionTextDualEncoderModel(config)
fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
fx_model.params = fx_state
self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)
def check_equivalence_flax_to_pt(self, vision_config, text_config, inputs_dict):
config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_config, text_config)
pt_model = VisionTextDualEncoderModel(config)
fx_model = FlaxVisionTextDualEncoderModel(config)
pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)
self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)
def test_model_from_pretrained_configs(self):
inputs_dict = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**inputs_dict)
def test_vision_text_dual_encoder_from_pretrained(self):
inputs_dict = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**inputs_dict)
def test_save_load(self):
inputs_dict = self.prepare_config_and_inputs()
self.check_save_load(**inputs_dict)
def test_vision_text_output_attention(self):
inputs_dict = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**inputs_dict)
@is_pt_flax_cross_test
def test_pt_flax_equivalence(self):
config_inputs_dict = self.prepare_config_and_inputs()
vision_config = config_inputs_dict.pop("vision_config")
text_config = config_inputs_dict.pop("text_config")
inputs_dict = config_inputs_dict
self.check_equivalence_pt_to_flax(vision_config, text_config, inputs_dict)
self.check_equivalence_flax_to_pt(vision_config, text_config, inputs_dict)
@slow
def test_real_model_save_load_from_pretrained(self):
model_2, inputs = self.get_pretrained_model_and_inputs()
outputs = model_2(**inputs)
out_2 = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_2.save_pretrained(tmp_dirname)
model_1 = FlaxVisionTextDualEncoderModel.from_pretrained(tmp_dirname)
after_outputs = model_1(**inputs)
out_1 = after_outputs[0]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
@require_flax
class FlaxViTBertModelTest(VisionTextDualEncoderMixin, unittest.TestCase):
def get_pretrained_model_and_inputs(self):
model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"hf-internal-testing/tiny-random-vit",
"hf-internal-testing/tiny-bert",
vision_from_pt=True,
text_from_pt=True,
)
batch_size = 13
pixel_values = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
]
)
input_ids = ids_tensor([batch_size, 4], model.config.text_config.vocab_size)
attention_mask = random_attention_mask([batch_size, 4])
inputs = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def get_vision_text_model(self, vision_config, text_config):
vision_model = FlaxViTModel(vision_config)
text_model = FlaxBertModel(text_config)
return vision_model, text_model
def prepare_config_and_inputs(self):
vit_model_tester = FlaxViTModelTester(self)
bert_model_tester = FlaxBertModelTester(self)
vision_config_and_inputs = vit_model_tester.prepare_config_and_inputs()
text_config_and_inputs = bert_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = vision_config_and_inputs
text_config, input_ids, token_type_ids, attention_mask = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class FlaxCLIPVisionBertModelTest(VisionTextDualEncoderMixin, unittest.TestCase):
def get_pretrained_model_and_inputs(self):
model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"hf-internal-testing/tiny-random-clip",
"hf-internal-testing/tiny-bert",
vision_from_pt=True,
text_from_pt=True,
)
batch_size = 13
pixel_values = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
]
)
input_ids = ids_tensor([batch_size, 4], model.config.text_config.vocab_size)
attention_mask = random_attention_mask([batch_size, 4])
inputs = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def get_vision_text_model(self, vision_config, text_config):
vision_model = FlaxCLIPVisionModel(vision_config)
text_model = FlaxBertModel(text_config)
return vision_model, text_model
def prepare_config_and_inputs(self):
clip_model_tester = FlaxCLIPVisionModelTester(self)
bert_model_tester = FlaxBertModelTester(self)
vision_config_and_inputs = clip_model_tester.prepare_config_and_inputs()
text_config_and_inputs = bert_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = vision_config_and_inputs
text_config, input_ids, token_type_ids, attention_mask = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class FlaxVisionTextDualEncoderIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
model = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian", logit_scale_init_value=1.0)
processor = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian")
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
inputs = processor(
text=["una foto di un gatto", "una foto di un cane"], images=image, padding=True, return_tensors="np"
)
outputs = model(**inputs)
# verify the logits
self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]))
self.assertEqual(
outputs.logits_per_text.shape,
(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]),
)
expected_logits = np.array([[1.2284727, 0.3104122]])
self.assertTrue(np.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))
| transformers/tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py/0 | {
"file_path": "transformers/tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
"repo_id": "transformers",
"token_count": 6782
} | 180 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import copy
import gc
import glob
import inspect
import math
import multiprocessing
import os
import tempfile
import traceback
import unittest
import numpy as np
import pytest
from datasets import load_dataset
from huggingface_hub import snapshot_download
from transformers import Wav2Vec2Config, is_tf_available
from transformers.testing_utils import (
CaptureLogger,
is_flaky,
is_pt_tf_cross_test,
require_librosa,
require_pyctcdecode,
require_tf,
run_test_in_subprocess,
slow,
)
from transformers.utils import is_librosa_available, is_pyctcdecode_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoFeatureExtractor,
TFWav2Vec2ForCTC,
TFWav2Vec2ForSequenceClassification,
TFWav2Vec2Model,
Wav2Vec2Processor,
)
from transformers.models.wav2vec2.modeling_tf_wav2vec2 import _compute_mask_indices
if is_pyctcdecode_available():
import pyctcdecode.decoder
from transformers import Wav2Vec2ProcessorWithLM
from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm
if is_librosa_available():
import librosa
def _test_wav2vec2_with_lm_invalid_pool(in_queue, out_queue, timeout):
error = None
try:
_ = in_queue.get(timeout=timeout)
downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample")
file_path = glob.glob(downloaded_folder + "/*")[0]
sample = librosa.load(file_path, sr=16_000)[0]
model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(sample, return_tensors="tf").input_values
logits = model(input_values).logits
# use a spawn pool, which should trigger a warning if different than fork
with CaptureLogger(pyctcdecode.decoder.logger) as cl, multiprocessing.get_context("spawn").Pool(1) as pool:
transcription = processor.batch_decode(logits.numpy(), pool).text
unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
unittest.TestCase().assertEqual(transcription[0], "el libro ha sido escrito por cervantes")
# force batch_decode to internally create a spawn pool, which should trigger a warning if different than fork
multiprocessing.set_start_method("spawn", force=True)
with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl:
transcription = processor.batch_decode(logits.numpy()).text
unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
unittest.TestCase().assertEqual(transcription[0], "el libro ha sido escrito por cervantes")
except Exception:
error = f"{traceback.format_exc()}"
results = {"error": error}
out_queue.put(results, timeout=timeout)
out_queue.join()
@require_tf
class TFWav2Vec2ModelTester:
def __init__(
self,
parent,
batch_size=3,
seq_length=1024,
is_training=False,
hidden_size=16,
feat_extract_norm="group",
feat_extract_dropout=0.0,
feat_extract_activation="gelu",
conv_dim=(32, 32, 32),
conv_stride=(4, 4, 4),
conv_kernel=(8, 8, 8),
conv_bias=False,
num_conv_pos_embeddings=16,
num_conv_pos_embedding_groups=2,
num_hidden_layers=2,
num_attention_heads=2,
hidden_dropout_prob=0.1, # this is most likely not correctly set yet
intermediate_size=20,
layer_norm_eps=1e-5,
hidden_act="gelu",
initializer_range=0.02,
vocab_size=32,
do_stable_layer_norm=False,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_dropout = feat_extract_dropout
self.feat_extract_activation = feat_extract_activation
self.conv_dim = conv_dim
self.conv_stride = conv_stride
self.conv_kernel = conv_kernel
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.intermediate_size = intermediate_size
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.scope = scope
output_seq_length = self.seq_length
for kernel, stride in zip(self.conv_kernel, self.conv_stride):
output_seq_length = (output_seq_length - (kernel - 1)) / stride
self.output_seq_length = int(math.ceil(output_seq_length))
self.encoder_seq_length = self.output_seq_length
def prepare_config_and_inputs(self):
input_values = tf.cast(ids_tensor([self.batch_size, self.seq_length], 32768), tf.float32) / 32768.0
attention_mask = tf.ones_like(input_values)
config = Wav2Vec2Config(
hidden_size=self.hidden_size,
feat_extract_norm=self.feat_extract_norm,
feat_extract_dropout=self.feat_extract_dropout,
feat_extract_activation=self.feat_extract_activation,
conv_dim=self.conv_dim,
conv_stride=self.conv_stride,
conv_kernel=self.conv_kernel,
conv_bias=self.conv_bias,
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
hidden_dropout_prob=self.hidden_dropout_prob,
intermediate_size=self.intermediate_size,
layer_norm_eps=self.layer_norm_eps,
hidden_act=self.hidden_act,
initializer_range=self.initializer_range,
vocab_size=self.vocab_size,
do_stable_layer_norm=self.do_stable_layer_norm,
)
return config, input_values, attention_mask
def create_and_check_model(self, config, input_values, attention_mask):
model = TFWav2Vec2Model(config)
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
)
def create_and_check_batch_inference(self, config, input_values, *args):
# test does not pass for models making use of `group_norm`
# check: https://github.com/pytorch/fairseq/issues/3227
config.layerdrop = 0.0
model = TFWav2Vec2Model(config)
input_values = input_values[:3]
attention_mask = tf.ones_like(input_values)
input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32)
# convert values that are over input_lengths to padding
input_values = input_values * length_mask
attention_mask = attention_mask * length_mask
batch_outputs = model(input_values, attention_mask=attention_mask, training=False).last_hidden_state
for i in range(input_values.shape[0]):
input_slice = input_values[i : i + 1, : input_lengths[i]]
output = model(input_slice, training=False).last_hidden_state
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
self.parent.assertTrue(np.allclose(output, batch_output, atol=1e-3))
def check_ctc_loss(self, config, input_values, *args):
model = TFWav2Vec2ForCTC(config)
input_values = input_values[:3]
attention_mask = tf.ones_like(input_values)
input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)
length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32)
# convert values that are over input_lengths to padding
input_values = input_values * length_mask
attention_mask = attention_mask * length_mask
model.config.ctc_loss_reduction = "sum"
sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss
model.config.ctc_loss_reduction = "mean"
mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss
self.parent.assertTrue(abs(labels.shape[0] * mean_loss - sum_loss) < 1e-2)
def check_seq_classifier_loss(self, loss, config, input_values, *args):
model = TFWav2Vec2ForSequenceClassification(config)
input_values = input_values[:3]
attention_mask = tf.ones(input_values.shape, dtype=tf.int32)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = tf.random.uniform((input_values.shape[0],), maxval=len(model.config.id2label), dtype=tf.int32)
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
training = False
masked_loss = (
model(input_values, attention_mask=attention_mask, labels=labels, training=training).loss.numpy().item()
)
unmasked_loss = model(input_values, labels=labels, training=training).loss.numpy().item()
assert isinstance(masked_loss, float)
assert isinstance(unmasked_loss, float)
assert masked_loss != unmasked_loss
def check_training(self, config, input_values, *args):
model = TFWav2Vec2ForCTC(config)
# freeze feature encoder
model.freeze_feature_encoder()
input_values = input_values[:3]
input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)
length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32)
input_values = input_values * length_mask
pad_size = max(max_length_labels) - labels.shape[1]
labels = tf.pad(labels, ((0, 0), (0, pad_size)), constant_values=-100)
loss = model(input_values, labels=labels, training=True).loss
self.parent.assertFalse(tf.math.is_inf(loss))
def check_labels_out_of_vocab(self, config, input_values, *args):
model = TFWav2Vec2ForCTC(config)
input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size + 500)
with pytest.raises(ValueError):
model(input_values, labels=labels)
def prepare_config_and_inputs_for_common(self):
config, input_values, attention_mask = self.prepare_config_and_inputs()
inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
return config, inputs_dict
@require_tf
class TFWav2Vec2ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(TFWav2Vec2Model, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification) if is_tf_available() else ()
)
pipeline_model_mapping = (
{"audio-classification": TFWav2Vec2ForSequenceClassification, "feature-extraction": TFWav2Vec2Model}
if is_tf_available()
else {}
)
test_resize_embeddings = False
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFWav2Vec2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
# overwrite because input_values != input_ids
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
# overwrite because input_values != input_ids
def test_keyword_and_dict_args(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs_dict = model(inputs)
inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
input_values = inputs_keywords.pop("input_values", None)
outputs_keywords = model(input_values, **inputs_keywords)
output_dict = outputs_dict[0].numpy()
output_keywords = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_hidden_states_output(config, inputs_dict, model_class):
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
hidden_states = outputs.hidden_states
self.assertEqual(config.output_attentions, False)
self.assertEqual(len(hidden_states), expected_num_layers)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.output_seq_length, self.model_tester.hidden_size],
)
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(config, inputs_dict, model_class)
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(config, inputs_dict, model_class)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
@is_flaky()
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
def test_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_training(*config_and_inputs)
@unittest.skip(reason="Wav2Vec2 has no input embeddings")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Wav2Vec2 has no tokens embeddings")
def test_resize_tokens_embeddings(self):
pass
@unittest.skip(reason="Wav2Vec2 has no input embeddings")
def test_model_common_attributes(self):
pass
@slow
def test_model_from_pretrained(self):
model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
self.assertIsNotNone(model)
@unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch")
def test_dataset_conversion(self):
# TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC
pass
@unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch")
def test_keras_fit(self):
# TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC
pass
@is_pt_tf_cross_test
def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
# We override the base test here to skip loss calculation for Wav2Vec2 models because the loss is massive with
# the default labels and frequently overflows to inf or exceeds numerical tolerances between TF/PT
import torch
import transformers
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Output all for aggressive testing
config.output_hidden_states = True
config.output_attentions = self.has_attentions
# Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
# of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
# TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
self._make_attention_mask_non_null(inputs_dict)
pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning
pt_model_class = getattr(transformers, pt_model_class_name)
tf_model = model_class(config)
pt_model = pt_model_class(config)
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
# Check we can load pt model in tf and vice-versa with model => model functions
tf_model = transformers.load_pytorch_model_in_tf2_model(
tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
)
pt_model = transformers.load_tf2_model_in_pytorch_model(
pt_model, tf_model, allow_missing_keys=allow_missing_keys
)
# Original test: check without `labels`
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
# Check we can load pt model in tf and vice-versa with checkpoint => model functions
with tempfile.TemporaryDirectory() as tmpdirname:
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
torch.save(pt_model.state_dict(), pt_checkpoint_path)
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
)
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
tf_model.save_weights(tf_checkpoint_path)
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
)
# Original test: check without `labels`
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
@require_tf
class TFWav2Vec2RobustModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(TFWav2Vec2Model, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification) if is_tf_available() else ()
)
test_resize_embeddings = False
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFWav2Vec2ModelTester(
self,
conv_stride=(3, 3, 3),
feat_extract_norm="layer",
do_stable_layer_norm=True,
scope="robust",
)
self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)
# overwrite because input_values != input_ids
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
# overwrite because input_values != input_ids
def test_keyword_and_dict_args(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs_dict = model(inputs)
inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
input_values = inputs_keywords.pop("input_values", None)
outputs_keywords = model(input_values, **inputs_keywords)
output_dict = outputs_dict[0].numpy()
output_keywords = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_hidden_states_output(config, inputs_dict, model_class):
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
hidden_states = outputs.hidden_states
self.assertEqual(config.output_attentions, False)
self.assertEqual(len(hidden_states), expected_num_layers)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.output_seq_length, self.model_tester.hidden_size],
)
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(config, inputs_dict, model_class)
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(config, inputs_dict, model_class)
def test_batched_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_batch_inference(*config_and_inputs)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
# TODO (Joao): fix me
@unittest.skip("Broke with TF 2.10")
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
def test_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_training(*config_and_inputs)
@unittest.skip(reason="Wav2Vec2 has no input embeddings")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Wav2Vec2 has no tokens embeddings")
def test_resize_tokens_embeddings(self):
pass
@unittest.skip(reason="Wav2Vec2 has no input embeddings")
def test_model_common_attributes(self):
pass
@slow
def test_model_from_pretrained(self):
model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
self.assertIsNotNone(model)
@unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch")
def test_dataset_conversion(self):
# TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC
pass
@unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch")
def test_keras_fit(self):
# TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC
pass
@is_pt_tf_cross_test
def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
# We override the base test here to skip loss calculation for Wav2Vec2 models because the loss is massive with
# the default labels and frequently overflows to inf or exceeds numerical tolerances between TF/PT
import torch
import transformers
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Output all for aggressive testing
config.output_hidden_states = True
config.output_attentions = self.has_attentions
# Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
# of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
# TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
self._make_attention_mask_non_null(inputs_dict)
pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning
pt_model_class = getattr(transformers, pt_model_class_name)
tf_model = model_class(config)
pt_model = pt_model_class(config)
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
# Check we can load pt model in tf and vice-versa with model => model functions
tf_model = transformers.load_pytorch_model_in_tf2_model(
tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
)
pt_model = transformers.load_tf2_model_in_pytorch_model(
pt_model, tf_model, allow_missing_keys=allow_missing_keys
)
# Original test: check without `labels`
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
# Check we can load pt model in tf and vice-versa with checkpoint => model functions
with tempfile.TemporaryDirectory() as tmpdirname:
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
torch.save(pt_model.state_dict(), pt_checkpoint_path)
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
)
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
tf_model.save_weights(tf_checkpoint_path)
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
)
# Original test: check without `labels`
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
@require_tf
class TFWav2Vec2UtilsTest(unittest.TestCase):
def test_compute_mask_indices(self):
batch_size = 4
sequence_length = 60
mask_prob = 0.5
mask_length = 1
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
self.assertListEqual(
tf.reduce_sum(mask, -1).numpy().tolist(), [mask_prob * sequence_length for _ in range(batch_size)]
)
def test_compute_mask_indices_overlap(self):
batch_size = 4
sequence_length = 80
mask_prob = 0.5
mask_length = 4
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
# because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
for batch_sum in tf.reduce_sum(mask, -1):
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
@require_tf
@slow
class TFWav2Vec2ModelIntegrationTest(unittest.TestCase):
def tearDown(self):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").filter(
lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
)[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def _load_superb(self, task, num_samples):
ds = load_dataset("anton-l/superb_dummy", task, split="test")
return ds[:num_samples]
def test_inference_ctc_normal(self):
model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
input_speech = self._load_datasamples(1)
input_values = processor(input_speech, return_tensors="tf", sampling_rate=16000).input_values
logits = model(input_values).logits
predicted_ids = tf.argmax(logits, axis=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
def test_inference_ctc_normal_batched(self):
model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
input_speech = self._load_datasamples(2)
input_values = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000).input_values
logits = model(input_values).logits
predicted_ids = tf.argmax(logits, axis=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist",
"sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore",
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
def test_inference_ctc_robust_batched(self):
model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)
input_speech = self._load_datasamples(4)
inputs = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000)
input_values = inputs.input_values
attention_mask = inputs.attention_mask
logits = model(input_values, attention_mask=attention_mask).logits
predicted_ids = tf.argmax(logits, axis=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist",
"sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
"the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around"
" him with the thousands of spectators were trivialities not worth thinking about",
"his instant panic was followed by a small sharp blow high on his chest",
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
@require_pyctcdecode
@require_librosa
def test_wav2vec2_with_lm(self):
downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample")
file_path = glob.glob(downloaded_folder + "/*")[0]
sample = librosa.load(file_path, sr=16_000)[0]
model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(sample, return_tensors="tf").input_values
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes")
@require_pyctcdecode
@require_librosa
def test_wav2vec2_with_lm_pool(self):
downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample")
file_path = glob.glob(downloaded_folder + "/*")[0]
sample = librosa.load(file_path, sr=16_000)[0]
model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(sample, return_tensors="tf").input_values
logits = model(input_values).logits
# test user-managed pool
with multiprocessing.get_context("fork").Pool(2) as pool:
transcription = processor.batch_decode(logits.numpy(), pool).text
self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes")
# user-managed pool + num_processes should trigger a warning
with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool(
2
) as pool:
transcription = processor.batch_decode(logits.numpy(), pool, num_processes=2).text
self.assertIn("num_process", cl.out)
self.assertIn("it will be ignored", cl.out)
self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes")
@require_pyctcdecode
@require_librosa
def test_wav2vec2_with_lm_invalid_pool(self):
run_test_in_subprocess(test_case=self, target_func=_test_wav2vec2_with_lm_invalid_pool, inputs=None)
def test_inference_keyword_spotting(self):
model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks", from_pt=True)
processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks")
input_data = self._load_superb("ks", 4)
inputs = processor(input_data["speech"], return_tensors="tf", padding=True)
input_values = inputs.input_values
attention_mask = inputs.attention_mask
outputs = model(input_values, attention_mask)
predicted_logits, predicted_ids = (
tf.math.reduce_max(outputs.logits, axis=-1),
tf.argmax(outputs.logits, axis=-1),
)
expected_labels = [7, 6, 10, 9]
expected_logits = tf.convert_to_tensor([6.1186, 11.8961, 10.2931, 6.0898])
self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels)
self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2))
def test_inference_intent_classification(self):
model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic", from_pt=True)
processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic")
input_data = self._load_superb("ic", 4)
inputs = processor(input_data["speech"], return_tensors="tf", padding=True)
input_values = inputs.input_values
attention_mask = inputs.attention_mask
outputs = model(input_values, attention_mask=attention_mask)
predicted_logits_action, predicted_ids_action = (
tf.math.reduce_max(outputs.logits[:, :6], axis=-1),
tf.argmax(outputs.logits[:, :6], axis=-1),
)
predicted_logits_object, predicted_ids_object = (
tf.math.reduce_max(outputs.logits[:, 6:20], axis=-1),
tf.argmax(outputs.logits[:, 6:20], axis=-1),
)
predicted_logits_location, predicted_ids_location = (
tf.math.reduce_max(outputs.logits[:, 20:24], axis=-1),
tf.argmax(outputs.logits[:, 20:24], axis=-1),
)
expected_labels_action = [0, 0, 2, 3]
expected_logits_action = tf.convert_to_tensor([0.4568, 11.0848, 1.6621, 9.3841])
expected_labels_object = [3, 10, 3, 4]
expected_logits_object = tf.convert_to_tensor([1.5322, 10.7094, 5.2469, 22.1318])
expected_labels_location = [0, 0, 0, 1]
expected_logits_location = tf.convert_to_tensor([1.5335, 6.5096, 10.5704, 11.0569])
self.assertListEqual(predicted_ids_action.numpy().tolist(), expected_labels_action)
self.assertListEqual(predicted_ids_object.numpy().tolist(), expected_labels_object)
self.assertListEqual(predicted_ids_location.numpy().tolist(), expected_labels_location)
self.assertTrue(np.allclose(predicted_logits_action, expected_logits_action, atol=1e-2))
self.assertTrue(np.allclose(predicted_logits_object, expected_logits_object, atol=1e-2))
self.assertTrue(np.allclose(predicted_logits_location, expected_logits_location, atol=1e-2))
def test_inference_speaker_identification(self):
model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid", from_pt=True)
processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid")
input_data = self._load_superb("si", 4)
output_logits = []
for example in input_data["speech"]:
input = processor(example, return_tensors="tf", padding=True)
output = model(input.input_values, attention_mask=None)
output_logits.append(output.logits[0])
output_logits = tf.stack(output_logits)
predicted_logits, predicted_ids = tf.math.reduce_max(output_logits, axis=-1), tf.argmax(output_logits, axis=-1)
expected_labels = [251, 1, 1, 3]
expected_logits = tf.convert_to_tensor([37.5627, 71.6362, 64.2419, 31.7778])
self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels)
self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2))
def test_inference_emotion_recognition(self):
model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er", from_pt=True)
processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er")
input_data = self._load_superb("er", 4)
inputs = processor(input_data["speech"], return_tensors="tf", padding=True)
input_values = inputs.input_values
attention_mask = inputs.attention_mask
outputs = model(input_values, attention_mask=attention_mask)
predicted_logits, predicted_ids = (
tf.math.reduce_max(outputs.logits, axis=-1),
tf.argmax(outputs.logits, axis=-1),
)
expected_labels = [1, 1, 2, 2]
# s3prl logits for the same batch
expected_logits = tf.convert_to_tensor([2.1722, 3.0779, 8.0287, 6.6797])
self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels)
self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2))
| transformers/tests/models/wav2vec2/test_modeling_tf_wav2vec2.py/0 | {
"file_path": "transformers/tests/models/wav2vec2/test_modeling_tf_wav2vec2.py",
"repo_id": "transformers",
"token_count": 17501
} | 181 |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers import WhisperFeatureExtractor
from transformers.testing_utils import check_json_file_has_correct_format, require_torch
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
global_rng = random.Random()
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
class WhisperFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=10,
hop_length=160,
chunk_length=8,
padding_value=0.0,
sampling_rate=4_000,
return_attention_mask=False,
do_normalize=True,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.padding_value = padding_value
self.sampling_rate = sampling_rate
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
self.feature_size = feature_size
self.chunk_length = chunk_length
self.hop_length = hop_length
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
else:
# make sure that inputs increase in size
speech_inputs = [
floats_list((x, self.feature_size))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
class WhisperFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = WhisperFeatureExtractor
def setUp(self):
self.feat_extract_tester = WhisperFeatureExtractionTester(self)
def test_feat_extract_from_and_save_pretrained(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
mel_1 = feat_extract_first.mel_filters
mel_2 = feat_extract_second.mel_filters
self.assertTrue(np.allclose(mel_1, mel_2))
self.assertEqual(dict_first, dict_second)
def test_feat_extract_to_json_file(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "feat_extract.json")
feat_extract_first.to_json_file(json_file_path)
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
mel_1 = feat_extract_first.mel_filters
mel_2 = feat_extract_second.mel_filters
self.assertTrue(np.allclose(mel_1, mel_2))
self.assertEqual(dict_first, dict_second)
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test feature size
input_features = feature_extractor(np_speech_inputs, padding="max_length", return_tensors="np").input_features
self.assertTrue(input_features.ndim == 3)
self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames)
self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size)
# Test not batched input
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test 2-D numpy arrays are batched.
speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
np_speech_inputs = np.asarray(speech_inputs)
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test truncation required
speech_inputs = [floats_list((1, x))[0] for x in range(200, (feature_extractor.n_samples + 500), 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
speech_inputs_truncated = [x[: feature_extractor.n_samples] for x in speech_inputs]
np_speech_inputs_truncated = [np.asarray(speech_input) for speech_input in speech_inputs_truncated]
encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs_truncated, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
@require_torch
def test_double_precision_pad(self):
import torch
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_features.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_features.dtype == torch.float32)
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
@require_torch
def test_torch_integration(self):
# fmt: off
EXPECTED_INPUT_FEATURES = torch.tensor(
[
0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
-0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
]
)
# fmt: on
input_speech = self._load_datasamples(1)
feature_extractor = WhisperFeatureExtractor()
input_features = feature_extractor(input_speech, return_tensors="pt").input_features
self.assertEqual(input_features.shape, (1, 80, 3000))
self.assertTrue(torch.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4))
@unittest.mock.patch("transformers.models.whisper.feature_extraction_whisper.is_torch_available", lambda: False)
def test_numpy_integration(self):
# fmt: off
EXPECTED_INPUT_FEATURES = np.array(
[
0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
-0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
]
)
# fmt: on
input_speech = self._load_datasamples(1)
feature_extractor = WhisperFeatureExtractor()
input_features = feature_extractor(input_speech, return_tensors="np").input_features
self.assertEqual(input_features.shape, (1, 80, 3000))
self.assertTrue(np.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4))
def test_zero_mean_unit_variance_normalization_trunc_np_longest(self):
feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
audio = self._load_datasamples(1)[0]
audio = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue
audio = feat_extract.zero_mean_unit_var_norm([audio], attention_mask=None)[0]
self.assertTrue(np.all(np.mean(audio) < 1e-3))
self.assertTrue(np.all(np.abs(np.var(audio) - 1) < 1e-3))
| transformers/tests/models/whisper/test_feature_extraction_whisper.py/0 | {
"file_path": "transformers/tests/models/whisper/test_feature_extraction_whisper.py",
"repo_id": "transformers",
"token_count": 5032
} | 182 |
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import XLMRobertaTokenizer, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XmodConfig,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
)
from transformers.models.xmod.modeling_xmod import XmodEmbeddings, create_position_ids_from_input_ids
class XmodModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return XmodConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
default_language="en_XX",
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = XmodModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = XmodModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = XmodForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = XmodForCausalLM(config=config).to(torch_device).eval()
# make sure that ids don't start with pad token
mask = input_ids.ne(config.pad_token_id).long()
input_ids = input_ids * mask
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
# make sure that ids don't start with pad token
mask = next_tokens.ne(config.pad_token_id).long()
next_tokens = next_tokens * mask
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = XmodForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = XmodForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = XmodForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = XmodForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class XmodModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
XmodForCausalLM,
XmodForMaskedLM,
XmodModel,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodForMultipleChoice,
XmodForQuestionAnswering,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (XmodForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": XmodModel,
"fill-mask": XmodForMaskedLM,
"question-answering": XmodForQuestionAnswering,
"text-classification": XmodForSequenceClassification,
"text-generation": XmodForCausalLM,
"token-classification": XmodForTokenClassification,
"zero-shot": XmodForSequenceClassification,
}
if is_torch_available()
else {}
)
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"):
return True
return False
def setUp(self):
self.model_tester = XmodModelTester(self)
self.config_tester = ConfigTester(self, config_class=XmodConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_as_decoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_model_as_decoder_with_default_input_mask(self):
# This regression test was failing with PyTorch < 1.3
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
input_mask = None
self.model_tester.create_and_check_model_as_decoder(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def test_for_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_decoder_model_past_with_large_inputs_relative_pos_emb(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
config_and_inputs[0].position_embedding_type = "relative_key"
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_create_position_ids_respects_padding_index(self):
"""Ensure that the default position ids only assign a sequential . This is a regression
test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is XmodEmbeddings.padding_idx + 1
"""
config = self.model_tester.prepare_config_and_inputs()[0]
model = XmodEmbeddings(config=config)
input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
expected_positions = torch.as_tensor(
[[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]]
)
position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
def test_create_position_ids_from_inputs_embeds(self):
"""Ensure that the default position ids only assign a sequential . This is a regression
test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is XmodEmbeddings.padding_idx + 1
"""
config = self.model_tester.prepare_config_and_inputs()[0]
embeddings = XmodEmbeddings(config=config)
inputs_embeds = torch.empty(2, 4, 30)
expected_single_positions = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
def test_set_default_language(self):
config = self.model_tester.prepare_config_and_inputs()[0]
model = XmodForMaskedLM(config=config)
model.set_default_language("en_XX")
self.assertEqual(model.config.default_language, "en_XX")
with self.assertRaises(ValueError):
model.set_default_language("xx_XX")
def test_freeze_embeddings_and_language_adapters(self):
config = self.model_tester.prepare_config_and_inputs()[0]
model = XmodForMaskedLM(config=config)
num_trainable_params_before = sum(p.numel() for p in model.parameters() if p.requires_grad)
model.freeze_embeddings_and_language_adapters()
num_trainable_params_after = sum(p.numel() for p in model.parameters() if p.requires_grad)
self.assertLess(num_trainable_params_after, num_trainable_params_before)
@require_sentencepiece
@require_tokenizers
@require_torch
class XmodModelIntegrationTest(unittest.TestCase):
@slow
def test_xmod_base(self):
model = XmodModel.from_pretrained("facebook/xmod-base")
# language en_XX
model.set_default_language("en_XX")
input_ids = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
expected_output_shape = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
expected_output_values_last_dim = torch.tensor(
[[-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724]]
)
output = model(input_ids)["last_hidden_state"].detach()
self.assertEqual(output.shape, expected_output_shape)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
# language de_DE
model.set_default_language("de_DE")
input_ids = torch.tensor([[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2315, 58761, 18391, 5, 2]])
# Der Hund ist niedlich und wohnt in einem Gartenhaus.
expected_output_shape = torch.Size((1, 16, 768)) # batch_size, sequence_length, embedding_vector_dim
# fmt: off
expected_output_values_last_dim = torch.tensor(
[[0.0162, 0.0075, -0.1882, 0.2335, -0.0952, -0.3994, -0.0317, -0.1174, 0.0177, 0.4280, -0.0240, -0.2138,
0.0785, -0.1045, -0.2811, -0.3220]]
)
# fmt: on
output = model(input_ids)["last_hidden_state"].detach()
self.assertEqual(output.shape, expected_output_shape)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
@slow
def test_xmod_large_prenorm(self):
model = XmodModel.from_pretrained("facebook/xmod-large-prenorm")
# language en_XX
model.set_default_language("en_XX")
input_ids = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
expected_output_shape = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
# fmt: off
expected_output_values_last_dim = torch.tensor(
[[-0.0121, -0.0194, -0.0240, -0.0160, -0.0205, -0.0159, -0.0243, -0.0206, -0.0161, -0.0335, -0.0196,
-0.0141]]
)
# fmt: on
output = model(input_ids)["last_hidden_state"].detach()
self.assertEqual(output.shape, expected_output_shape)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
# language de_DE
model.set_default_language("de_DE")
input_ids = torch.tensor([[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2315, 58761, 18391, 5, 2]])
# Der Hund ist niedlich und wohnt in einem Gartenhaus.
expected_output_shape = torch.Size((1, 16, 1024)) # batch_size, sequence_length, embedding_vector_dim
# fmt: off
expected_output_values_last_dim = torch.tensor(
[[-0.0120, -0.0262, -0.0253, -0.0112, -0.0128, -0.0164, -0.0080, -0.0081, -0.0192, -0.0117, -0.0170,
-0.0120, -0.0210, -0.0173, -0.0078, -0.0122]]
)
# fmt: on
output = model(input_ids)["last_hidden_state"].detach()
self.assertEqual(output.shape, expected_output_shape)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
@slow
def test_multilingual_batch(self):
model = XmodModel.from_pretrained("facebook/xmod-base")
# fmt: off
input_ids = torch.tensor([
[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2],
[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2],
[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2],
[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2],
])
# fmt: on
lang_ids = torch.LongTensor([0, 8, 8, 0])
expected_output_shape = torch.Size((4, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
# fmt: off
expected_output_values_last_dim = torch.tensor([
[-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724],
[-0.2668, -0.0235, -0.1739, 0.2266, -0.0901, -0.3482, 0.0105, -0.1915, 0.0397, 0.3822, 0.1836, -0.3407],
[-0.2668, -0.0235, -0.1739, 0.2266, -0.0901, -0.3482, 0.0105, -0.1915, 0.0397, 0.3822, 0.1836, -0.3407],
[-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724],
])
# fmt: on
output = model(input_ids, lang_ids=lang_ids)["last_hidden_state"].detach()
self.assertEqual(output.shape, expected_output_shape)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
@slow
def test_end_to_end_mask_fill(self):
tokenizer = XLMRobertaTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
model = XmodForMaskedLM.from_pretrained("facebook/xmod-base", default_language="en_XX")
model.to(torch_device)
sentences = [
"Hello, my dog is a little <mask>.",
"Hi <mask>!",
]
inputs = tokenizer(sentences, return_tensors="pt", padding=True)
input_ids = inputs["input_ids"].to(torch_device)
outputs = model(
input_ids=input_ids,
attention_mask=inputs["attention_mask"].to(torch_device),
)
probs = outputs.logits.softmax(dim=-1)
_, predictions = probs.topk(1)
predictions = predictions.squeeze(-1)
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
output_non_padded = model(input_ids=inputs_non_padded)
probs_non_padded = output_non_padded.logits.softmax(dim=-1)
_, predictions_non_padded = probs_non_padded.topk(1)
predictions_non_padded = predictions_non_padded.squeeze(-1)
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
output_padded = model(input_ids=inputs_padded)
probs_padded = output_padded.logits.softmax(dim=-1)
_, predictions_padded = probs_padded.topk(1)
predictions_padded = predictions_padded.squeeze(-1)
batch_out_sentence = tokenizer.batch_decode(predictions, skip_special_tokens=True)
non_padded_sentence = tokenizer.decode(predictions_non_padded[0], skip_special_tokens=True)
padded_sentence = tokenizer.decode(predictions_padded[0], skip_special_tokens=True)
expected_output_sentence = [
"Hello, my dog is a little girl.",
"Hi everyone!",
]
self.assertListEqual(expected_output_sentence, batch_out_sentence)
self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
| transformers/tests/models/xmod/test_modeling_xmod.py/0 | {
"file_path": "transformers/tests/models/xmod/test_modeling_xmod.py",
"repo_id": "transformers",
"token_count": 13214
} | 183 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectron2,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
def load_image(_):
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
INVOICE_URL = (
"https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png"
)
@is_pipeline_test
@require_torch
@require_vision
class DocumentQuestionAnsweringPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def get_test_pipeline(self, model, tokenizer, processor):
dqa_pipeline = pipeline(
"document-question-answering", model=model, tokenizer=tokenizer, image_processor=processor
)
image = INVOICE_URL
word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))
question = "What is the placebo?"
examples = [
{
"image": load_image(image),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def run_pipeline_test(self, dqa_pipeline, examples):
outputs = dqa_pipeline(examples, top_k=2)
self.assertEqual(
outputs,
[
[
{"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)},
{"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)},
]
]
* 3,
)
@require_torch
@require_detectron2
@require_pytesseract
def test_small_model_pt(self):
dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2")
image = INVOICE_URL
question = "How many cats are there?"
expected_output = [
{"score": 0.0001, "answer": "oy 2312/2019", "start": 38, "end": 39},
{"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
]
outputs = dqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(nested_simplify(outputs, decimals=4), expected_output)
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
self.assertEqual(nested_simplify(outputs, decimals=4), expected_output)
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = dqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(outputs, [])
# We can optionnally pass directly the words and bounding boxes
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
words = []
boxes = []
outputs = dqa_pipeline(image=image, question=question, words=words, boxes=boxes, top_k=2)
self.assertEqual(outputs, [])
# TODO: Enable this once hf-internal-testing/tiny-random-donut is implemented
# @require_torch
# def test_small_model_pt_donut(self):
# dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-donut")
# # dqa_pipeline = pipeline("document-question-answering", model="../tiny-random-donut")
# image = "https://templates.invoicehome.com/invoice-template-us-neat-750px.png"
# question = "How many cats are there?"
#
# outputs = dqa_pipeline(image=image, question=question, top_k=2)
# self.assertEqual(
# nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
# )
@slow
@require_torch
@require_detectron2
@require_pytesseract
def test_large_model_pt(self):
dqa_pipeline = pipeline(
"document-question-answering",
model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa",
revision="9977165",
)
image = INVOICE_URL
question = "What is the invoice number?"
outputs = dqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
],
)
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
],
)
outputs = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
],
]
* 2,
)
@slow
@require_torch
@require_detectron2
@require_pytesseract
def test_large_model_pt_chunk(self):
dqa_pipeline = pipeline(
"document-question-answering",
model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa",
revision="9977165",
max_seq_len=50,
)
image = INVOICE_URL
question = "What is the invoice number?"
outputs = dqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
],
)
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
],
)
outputs = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2,
)
@slow
@require_torch
@require_pytesseract
@require_vision
def test_large_model_pt_layoutlm(self):
tokenizer = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True
)
dqa_pipeline = pipeline(
"document-question-answering",
model="impira/layoutlm-document-qa",
tokenizer=tokenizer,
revision="3dc6de3",
)
image = INVOICE_URL
question = "What is the invoice number?"
outputs = dqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
],
)
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
],
)
outputs = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
]
]
* 2,
)
word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))
# This model should also work if `image` is set to None
outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
],
)
@slow
@require_torch
@require_pytesseract
@require_vision
def test_large_model_pt_layoutlm_chunk(self):
tokenizer = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True
)
dqa_pipeline = pipeline(
"document-question-answering",
model="impira/layoutlm-document-qa",
tokenizer=tokenizer,
revision="3dc6de3",
max_seq_len=50,
)
image = INVOICE_URL
question = "What is the invoice number?"
outputs = dqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
],
)
outputs = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2,
)
word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))
# This model should also work if `image` is set to None
outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
],
)
@slow
@require_torch
def test_large_model_pt_donut(self):
dqa_pipeline = pipeline(
"document-question-answering",
model="naver-clova-ix/donut-base-finetuned-docvqa",
tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa"),
feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa",
)
image = INVOICE_URL
question = "What is the invoice number?"
outputs = dqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(nested_simplify(outputs, decimals=4), [{"answer": "us-001"}])
@require_tf
@unittest.skip("Document question answering not implemented in TF")
def test_small_model_tf(self):
pass
| transformers/tests/pipelines/test_pipelines_document_question_answering.py/0 | {
"file_path": "transformers/tests/pipelines/test_pipelines_document_question_answering.py",
"repo_id": "transformers",
"token_count": 6554
} | 184 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import (
MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING,
AutoProcessor,
TextToAudioPipeline,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
require_torch,
require_torch_accelerator,
require_torch_or_tf,
slow,
torch_device,
)
from transformers.trainer_utils import set_seed
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class TextToAudioPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING
# for now only test text_to_waveform and not text_to_spectrogram
@slow
@require_torch
def test_small_musicgen_pt(self):
music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt")
forward_params = {
"do_sample": False,
"max_new_tokens": 250,
}
outputs = music_generator("This is a test", forward_params=forward_params)
self.assertEqual({"audio": ANY(np.ndarray), "sampling_rate": 32000}, outputs)
# test two examples side-by-side
outputs = music_generator(["This is a test", "This is a second test"], forward_params=forward_params)
audio = [output["audio"] for output in outputs]
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
# test batching
outputs = music_generator(
["This is a test", "This is a second test"], forward_params=forward_params, batch_size=2
)
audio = [output["audio"] for output in outputs]
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
@slow
@require_torch
def test_small_bark_pt(self):
speech_generator = pipeline(task="text-to-audio", model="suno/bark-small", framework="pt")
forward_params = {
# Using `do_sample=False` to force deterministic output
"do_sample": False,
"semantic_max_new_tokens": 100,
}
outputs = speech_generator("This is a test", forward_params=forward_params)
self.assertEqual(
{"audio": ANY(np.ndarray), "sampling_rate": 24000},
outputs,
)
# test two examples side-by-side
outputs = speech_generator(
["This is a test", "This is a second test"],
forward_params=forward_params,
)
audio = [output["audio"] for output in outputs]
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
# test other generation strategy
forward_params = {
"do_sample": True,
"semantic_max_new_tokens": 100,
"semantic_num_return_sequences": 2,
}
outputs = speech_generator("This is a test", forward_params=forward_params)
audio = outputs["audio"]
self.assertEqual(ANY(np.ndarray), audio)
# test using a speaker embedding
processor = AutoProcessor.from_pretrained("suno/bark-small")
temp_inp = processor("hey, how are you?", voice_preset="v2/en_speaker_5")
history_prompt = temp_inp["history_prompt"]
forward_params["history_prompt"] = history_prompt
outputs = speech_generator(
["This is a test", "This is a second test"],
forward_params=forward_params,
batch_size=2,
)
audio = [output["audio"] for output in outputs]
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
@slow
@require_torch_accelerator
def test_conversion_additional_tensor(self):
speech_generator = pipeline(task="text-to-audio", model="suno/bark-small", framework="pt", device=torch_device)
processor = AutoProcessor.from_pretrained("suno/bark-small")
forward_params = {
"do_sample": True,
"semantic_max_new_tokens": 100,
}
# atm, must do to stay coherent with BarkProcessor
preprocess_params = {
"max_length": 256,
"add_special_tokens": False,
"return_attention_mask": True,
"return_token_type_ids": False,
"padding": "max_length",
}
outputs = speech_generator(
"This is a test",
forward_params=forward_params,
preprocess_params=preprocess_params,
)
temp_inp = processor("hey, how are you?", voice_preset="v2/en_speaker_5")
history_prompt = temp_inp["history_prompt"]
forward_params["history_prompt"] = history_prompt
# history_prompt is a torch.Tensor passed as a forward_param
# if generation is successful, it means that it was passed to the right device
outputs = speech_generator(
"This is a test", forward_params=forward_params, preprocess_params=preprocess_params
)
self.assertEqual(
{"audio": ANY(np.ndarray), "sampling_rate": 24000},
outputs,
)
@slow
@require_torch
def test_vits_model_pt(self):
speech_generator = pipeline(task="text-to-audio", model="facebook/mms-tts-eng", framework="pt")
outputs = speech_generator("This is a test")
self.assertEqual(outputs["sampling_rate"], 16000)
audio = outputs["audio"]
self.assertEqual(ANY(np.ndarray), audio)
# test two examples side-by-side
outputs = speech_generator(["This is a test", "This is a second test"])
audio = [output["audio"] for output in outputs]
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
# test batching
outputs = speech_generator(["This is a test", "This is a second test"], batch_size=2)
self.assertEqual(ANY(np.ndarray), outputs[0]["audio"])
@slow
@require_torch
def test_forward_model_kwargs(self):
# use vits - a forward model
speech_generator = pipeline(task="text-to-audio", model="kakao-enterprise/vits-vctk", framework="pt")
# for reproducibility
set_seed(555)
outputs = speech_generator("This is a test", forward_params={"speaker_id": 5})
audio = outputs["audio"]
with self.assertRaises(TypeError):
# assert error if generate parameter
outputs = speech_generator("This is a test", forward_params={"speaker_id": 5, "do_sample": True})
forward_params = {"speaker_id": 5}
generate_kwargs = {"do_sample": True}
with self.assertRaises(ValueError):
# assert error if generate_kwargs with forward-only models
outputs = speech_generator(
"This is a test", forward_params=forward_params, generate_kwargs=generate_kwargs
)
self.assertTrue(np.abs(outputs["audio"] - audio).max() < 1e-5)
@slow
@require_torch
def test_generative_model_kwargs(self):
# use musicgen - a generative model
music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt")
forward_params = {
"do_sample": True,
"max_new_tokens": 250,
}
# for reproducibility
set_seed(555)
outputs = music_generator("This is a test", forward_params=forward_params)
audio = outputs["audio"]
self.assertEqual(ANY(np.ndarray), audio)
# make sure generate kwargs get priority over forward params
forward_params = {
"do_sample": False,
"max_new_tokens": 250,
}
generate_kwargs = {"do_sample": True}
# for reproducibility
set_seed(555)
outputs = music_generator("This is a test", forward_params=forward_params, generate_kwargs=generate_kwargs)
self.assertListEqual(outputs["audio"].tolist(), audio.tolist())
def get_test_pipeline(self, model, tokenizer, processor):
speech_generator = TextToAudioPipeline(model=model, tokenizer=tokenizer)
return speech_generator, ["This is a test", "Another test"]
def run_pipeline_test(self, speech_generator, _):
outputs = speech_generator("This is a test")
self.assertEqual(ANY(np.ndarray), outputs["audio"])
forward_params = (
{"num_return_sequences": 2, "do_sample": True} if speech_generator.model.can_generate() else {}
)
outputs = speech_generator(["This is great !", "Something else"], forward_params=forward_params)
audio = [output["audio"] for output in outputs]
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
| transformers/tests/pipelines/test_pipelines_text_to_audio.py/0 | {
"file_path": "transformers/tests/pipelines/test_pipelines_text_to_audio.py",
"repo_id": "transformers",
"token_count": 3815
} | 185 |
# coding=utf-8
# Copyright 2022 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_accelerate_available,
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def get_some_linear_layer(model):
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_4h_to_h
if is_accelerate_available():
from accelerate import PartialState
from accelerate.logging import get_logger
logger = get_logger(__name__)
_ = PartialState()
if is_torch_available():
import torch
import torch.nn as nn
class LoRALayer(nn.Module):
"""Wraps a linear layer with LoRA-like adapter - Used for testing purposes only"""
def __init__(self, module: nn.Module, rank: int):
super().__init__()
self.module = module
self.adapter = nn.Sequential(
nn.Linear(module.in_features, rank, bias=False),
nn.Linear(rank, module.out_features, bias=False),
)
small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5
nn.init.normal_(self.adapter[0].weight, std=small_std)
nn.init.zeros_(self.adapter[1].weight)
self.adapter.to(module.weight.device)
def forward(self, input, *args, **kwargs):
return self.module(input, *args, **kwargs) + self.adapter(input)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class BaseMixedInt8Test(unittest.TestCase):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
model_name = "bigscience/bloom-1b7"
# Constant values
EXPECTED_RELATIVE_DIFFERENCE = (
1.540025 # This was obtained on a Quadro RTX 8000 so the number might slightly change
)
input_text = "Hello my name is"
EXPECTED_OUTPUTS = set()
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of the family.\n")
# Expected values on a A10
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n")
MAX_NEW_TOKENS = 10
def setUp(self):
# Models and tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
class MixedInt8Test(BaseMixedInt8Test):
def setUp(self):
super().setUp()
# Models and tokenizer
self.model_fp16 = AutoModelForCausalLM.from_pretrained(
self.model_name, torch_dtype=torch.float16, device_map="auto"
)
self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
def tearDown(self):
r"""
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
"""
del self.model_fp16
del self.model_8bit
gc.collect()
torch.cuda.empty_cache()
def test_get_keys_to_not_convert_trust_remote_code(self):
r"""
Test the `get_keys_to_not_convert` function with `trust_remote_code` models.
"""
from accelerate import init_empty_weights
from transformers.integrations.bitsandbytes import get_keys_to_not_convert
model_id = "mosaicml/mpt-7b"
config = AutoConfig.from_pretrained(
model_id, trust_remote_code=True, revision="ada218f9a93b5f1c6dce48a4cc9ff01fcba431e7"
)
with init_empty_weights():
model = AutoModelForCausalLM.from_config(
config, trust_remote_code=True, code_revision="ada218f9a93b5f1c6dce48a4cc9ff01fcba431e7"
)
self.assertEqual(get_keys_to_not_convert(model), ["transformer.wte"])
def test_get_keys_to_not_convert(self):
r"""
Test the `get_keys_to_not_convert` function.
"""
from accelerate import init_empty_weights
from transformers import AutoModelForMaskedLM, Blip2ForConditionalGeneration, MptForCausalLM, OPTForCausalLM
from transformers.integrations.bitsandbytes import get_keys_to_not_convert
model_id = "mosaicml/mpt-7b"
config = AutoConfig.from_pretrained(model_id, revision="72e5f594ce36f9cabfa2a9fd8f58b491eb467ee7")
with init_empty_weights():
model = MptForCausalLM(config)
# The order of the keys does not matter, so we sort them before comparing, same for the other tests.
self.assertEqual(get_keys_to_not_convert(model).sort(), ["lm_head", "transformer.wte"].sort())
model_id = "Salesforce/blip2-opt-2.7b"
config = AutoConfig.from_pretrained(model_id, revision="1ef7f63a8f0a144c13fdca8103eb7b4691c74cec")
with init_empty_weights():
model = Blip2ForConditionalGeneration(config)
self.assertEqual(
get_keys_to_not_convert(model).sort(),
["language_model.lm_head", "language_model.model.decoder.embed_tokens"].sort(),
)
model_id = "facebook/opt-350m"
config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5")
with init_empty_weights():
model = OPTForCausalLM(config)
self.assertEqual(get_keys_to_not_convert(model).sort(), ["lm_head", "model.decoder.embed_tokens"].sort())
model_id = "FacebookAI/roberta-large"
config = AutoConfig.from_pretrained(model_id, revision="716877d372b884cad6d419d828bac6c85b3b18d9")
with init_empty_weights():
model = AutoModelForMaskedLM.from_config(config)
self.assertEqual(
get_keys_to_not_convert(model).sort(),
["'roberta.embeddings.word_embeddings', 'lm_head', 'lm_head.decoder"].sort(),
)
def test_quantization_config_json_serialization(self):
r"""
A simple test to check if the quantization config is correctly serialized and deserialized
"""
config = self.model_8bit.config
self.assertTrue(hasattr(config, "quantization_config"))
_ = config.to_dict()
_ = config.to_diff_dict()
_ = config.to_json_string()
def test_original_dtype(self):
r"""
A simple test to check if the model succesfully stores the original dtype
"""
self.assertTrue(hasattr(self.model_8bit.config, "_pre_quantization_dtype"))
self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype"))
self.assertTrue(self.model_8bit.config._pre_quantization_dtype == torch.float16)
def test_memory_footprint(self):
r"""
A simple test to check if the model conversion has been done correctly by checking on the
memory footprint of the converted model and the class type of the linear layers of the converted models
"""
from bitsandbytes.nn import Int8Params
mem_fp16 = self.model_fp16.get_memory_footprint()
mem_8bit = self.model_8bit.get_memory_footprint()
self.assertAlmostEqual(mem_fp16 / mem_8bit, self.EXPECTED_RELATIVE_DIFFERENCE)
self.assertTrue(get_some_linear_layer(self.model_8bit).weight.__class__ == Int8Params)
def test_linear_are_8bit(self):
r"""
A simple test to check if the model conversion has been done correctly by checking on the
memory footprint of the converted model and the class type of the linear layers of the converted models
"""
from transformers import T5PreTrainedModel
self.model_fp16.get_memory_footprint()
self.model_8bit.get_memory_footprint()
for name, module in self.model_8bit.named_modules():
if isinstance(module, torch.nn.Linear):
if name not in ["lm_head"] + T5PreTrainedModel._keep_in_fp32_modules:
self.assertTrue(module.weight.dtype == torch.int8)
def test_llm_skip(self):
r"""
A simple test to check if `llm_int8_skip_modules` works as expected
"""
import bitsandbytes as bnb
quantization_config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_skip_modules=["classifier"])
seq_classification_model = AutoModelForSequenceClassification.from_pretrained(
"FacebookAI/roberta-large-mnli", quantization_config=quantization_config
)
self.assertTrue(seq_classification_model.roberta.encoder.layer[0].output.dense.weight.dtype == torch.int8)
self.assertTrue(
isinstance(seq_classification_model.roberta.encoder.layer[0].output.dense, bnb.nn.Linear8bitLt)
)
self.assertTrue(isinstance(seq_classification_model.classifier.dense, nn.Linear))
self.assertTrue(seq_classification_model.classifier.dense.weight.dtype != torch.int8)
self.assertTrue(isinstance(seq_classification_model.classifier.out_proj, nn.Linear))
self.assertTrue(seq_classification_model.classifier.out_proj != torch.int8)
def test_generate_quality(self):
r"""
Test the generation quality of the quantized model and see that we are matching the expected output.
Given that we are operating on small numbers + the testing model is relatively small, we might not get
the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
"""
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = self.model_8bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_generate_quality_config(self):
r"""
Test that loading the model with the config is equivalent
"""
bnb_config = BitsAndBytesConfig()
bnb_config.load_in_8bit = True
model_8bit_from_config = AutoModelForCausalLM.from_pretrained(
self.model_name, quantization_config=bnb_config, device_map="auto"
)
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = model_8bit_from_config.generate(
input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10
)
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_raise_if_config_and_load_in_8bit(self):
r"""
Test that loading the model with the config and `load_in_8bit` raises an error
"""
bnb_config = BitsAndBytesConfig()
with self.assertRaises(ValueError):
_ = AutoModelForCausalLM.from_pretrained(
self.model_name,
quantization_config=bnb_config,
load_in_8bit=True,
device_map="auto",
llm_int8_enable_fp32_cpu_offload=True,
)
def test_device_and_dtype_assignment(self):
r"""
Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error.
Checks also if other models are casted correctly.
"""
with self.assertRaises(ValueError):
# Tries with `str`
self.model_8bit.to("cpu")
with self.assertRaises(ValueError):
# Tries with a `dtype``
self.model_8bit.to(torch.float16)
with self.assertRaises(ValueError):
# Tries with a `device`
self.model_8bit.to(torch.device("cuda:0"))
with self.assertRaises(ValueError):
# Tries with a `device`
self.model_8bit.float()
with self.assertRaises(ValueError):
# Tries with a `device`
self.model_8bit.half()
# Test if we did not break anything
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
self.model_fp16 = self.model_fp16.to(torch.float32)
_ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
# Check this does not throw an error
_ = self.model_fp16.to("cpu")
# Check this does not throw an error
_ = self.model_fp16.half()
# Check this does not throw an error
_ = self.model_fp16.float()
def test_fp32_int8_conversion(self):
r"""
Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly.
"""
model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small", load_in_8bit=True, device_map="auto")
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32)
def test_int8_serialization(self):
r"""
Test whether it is possible to serialize a model in 8-bit.
"""
from bitsandbytes.nn import Int8Params
with tempfile.TemporaryDirectory() as tmpdirname:
self.model_8bit.save_pretrained(tmpdirname)
# check that the file `quantization_config` is present
config = AutoConfig.from_pretrained(tmpdirname)
self.assertTrue(hasattr(config, "quantization_config"))
model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, load_in_8bit=True, device_map="auto")
linear = get_some_linear_layer(model_from_saved)
self.assertTrue(linear.weight.__class__ == Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))
# generate
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_int8_serialization_regression(self):
r"""
Test whether it is possible to serialize a model in 8-bit - using not safetensors
"""
from bitsandbytes.nn import Int8Params
with tempfile.TemporaryDirectory() as tmpdirname:
self.model_8bit.save_pretrained(tmpdirname, safe_serialization=False)
# check that the file `quantization_config` is present
config = AutoConfig.from_pretrained(tmpdirname)
self.assertTrue(hasattr(config, "quantization_config"))
model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, load_in_8bit=True, device_map="auto")
linear = get_some_linear_layer(model_from_saved)
self.assertTrue(linear.weight.__class__ == Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))
# generate
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_int8_serialization_sharded(self):
r"""
Test whether it is possible to serialize a model in 8-bit - sharded version.
"""
from bitsandbytes.nn import Int8Params
with tempfile.TemporaryDirectory() as tmpdirname:
self.model_8bit.save_pretrained(tmpdirname, max_shard_size="200MB")
# check that the file `quantization_config` is present
config = AutoConfig.from_pretrained(tmpdirname)
self.assertTrue(hasattr(config, "quantization_config"))
model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname)
linear = get_some_linear_layer(model_from_saved)
self.assertTrue(linear.weight.__class__ == Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))
# generate
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_int8_from_pretrained(self):
r"""
Test whether loading a 8bit model from the Hub works as expected
"""
from bitsandbytes.nn import Int8Params
model_id = "ybelkada/bloom-1b7-8bit"
model = AutoModelForCausalLM.from_pretrained(model_id)
linear = get_some_linear_layer(model)
self.assertTrue(linear.weight.__class__ == Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))
# generate
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class MixedInt8T5Test(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model_name = "google-t5/t5-small"
cls.dense_act_model_name = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
cls.input_text = "Translate in German: Hello, my dog is cute"
def tearDown(self):
r"""
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
"""
gc.collect()
torch.cuda.empty_cache()
def test_inference_without_keep_in_fp32(self):
r"""
Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly.
`flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test
both cases.
"""
from transformers import T5ForConditionalGeneration
modules = T5ForConditionalGeneration._keep_in_fp32_modules
T5ForConditionalGeneration._keep_in_fp32_modules = None
# test with `google-t5/t5-small`
model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
_ = model.generate(**encoded_input)
# test with `flan-t5-small`
model = T5ForConditionalGeneration.from_pretrained(
self.dense_act_model_name, load_in_8bit=True, device_map="auto"
)
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
_ = model.generate(**encoded_input)
T5ForConditionalGeneration._keep_in_fp32_modules = modules
def test_inference_with_keep_in_fp32(self):
r"""
Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly.
`flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test
both cases.
"""
import bitsandbytes as bnb
from transformers import T5ForConditionalGeneration
# test with `google-t5/t5-small`
model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear8bitLt))
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
_ = model.generate(**encoded_input)
# test with `flan-t5-small`
model = T5ForConditionalGeneration.from_pretrained(
self.dense_act_model_name, load_in_8bit=True, device_map="auto"
)
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
_ = model.generate(**encoded_input)
def test_inference_with_keep_in_fp32_serialized(self):
r"""
Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly on
a serialized model.
`flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test
both cases.
"""
import bitsandbytes as bnb
from transformers import T5ForConditionalGeneration
# test with `google-t5/t5-small`
model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
model = T5ForConditionalGeneration.from_pretrained(tmp_dir)
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear8bitLt))
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
_ = model.generate(**encoded_input)
# test with `flan-t5-small`
model = T5ForConditionalGeneration.from_pretrained(
self.dense_act_model_name, load_in_8bit=True, device_map="auto"
)
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
_ = model.generate(**encoded_input)
class MixedInt8ModelClassesTest(BaseMixedInt8Test):
def setUp(self):
super().setUp()
# model_name
self.model_name = "bigscience/bloom-560m"
self.seq_to_seq_name = "google-t5/t5-small"
# Different types of model
self.base_model = AutoModel.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
# Sequence classification model
self.sequence_model = AutoModelForSequenceClassification.from_pretrained(
self.model_name, load_in_8bit=True, device_map="auto"
)
# CausalLM model
self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
# Seq2seq model
self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained(
self.seq_to_seq_name, load_in_8bit=True, device_map="auto"
)
def tearDown(self):
r"""
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
"""
del self.base_model
del self.sequence_model
del self.model_8bit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def test_correct_head_class(self):
r"""
A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification)
are kept in their native class.
"""
from bitsandbytes.nn import Int8Params
# last param of a base model should be a linear8bit module
self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Int8Params)
# Other heads should be nn.Parameter
self.assertTrue(self.model_8bit.lm_head.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter)
class MixedInt8TestPipeline(BaseMixedInt8Test):
def setUp(self):
super().setUp()
def tearDown(self):
r"""
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
"""
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def test_pipeline(self):
r"""
The aim of this test is to verify that the mixed int8 is compatible with `pipeline` from transformers. Since
we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything
on pipline.
"""
# self._clear_cuda_cache()
self.pipe = pipeline(
"text-generation",
model=self.model_name,
model_kwargs={"device_map": "auto", "load_in_8bit": True},
max_new_tokens=self.MAX_NEW_TOKENS,
)
# Real second forward pass
pipeline_output = self.pipe(self.input_text)
self.assertIn(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUTS)
@require_torch_multi_gpu
class MixedInt8TestMultiGpu(BaseMixedInt8Test):
def setUp(self):
super().setUp()
def test_multi_gpu_loading(self):
r"""
This tests that the model has been loaded and can be used correctly on a multi-GPU setup.
Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice
"""
model_parallel = AutoModelForCausalLM.from_pretrained(
self.model_name, load_in_8bit=True, device_map="balanced"
)
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1})
# Check that inference pass works on the model
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
# Second real batch
output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
@require_torch_multi_gpu
class MixedInt8TestCpuGpu(BaseMixedInt8Test):
def setUp(self):
super().setUp()
def check_inference_correctness(self, model):
# Check that inference pass works on the model
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
# Check the exactness of the results
output_parallel = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
# Get the generation
output_text = self.tokenizer.decode(output_parallel[0], skip_special_tokens=True)
self.assertIn(output_text, self.EXPECTED_OUTPUTS)
def test_cpu_gpu_loading_random_device_map(self):
r"""
A test to check is dispatching a model on cpu & gpu works correctly using a random `device_map`.
"""
device_map = {
"transformer.word_embeddings": 0,
"transformer.word_embeddings_layernorm": 0,
"lm_head": 0,
"transformer.h.0": "cpu",
"transformer.h.1": "cpu",
"transformer.h.2": 0,
"transformer.h.3": 0,
"transformer.h.4": 0,
"transformer.h.5": 0,
"transformer.h.6": 0,
"transformer.h.7": 0,
"transformer.h.8": 0,
"transformer.h.9": 1,
"transformer.h.10": 0,
"transformer.h.11": 1,
"transformer.h.12": 0,
"transformer.h.13": 0,
"transformer.h.14": 1,
"transformer.h.15": 0,
"transformer.h.16": 0,
"transformer.h.17": 1,
"transformer.h.18": 1,
"transformer.h.19": 0,
"transformer.h.20": 1,
"transformer.h.21": 1,
"transformer.h.22": 0,
"transformer.h.23": 0,
"transformer.ln_f": 1,
}
bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True, load_in_8bit=True)
model_8bit = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map=device_map,
quantization_config=bnb_config,
)
# Check that the model has been correctly set on device 0, 1, and `cpu`.
self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu"})
self.check_inference_correctness(model_8bit)
def test_cpu_gpu_loading_custom_device_map(self):
r"""
A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`.
This time the device map is more organized than the test above and uses the abstraction
`transformer.h` to encapsulate all the decoder layers.
"""
device_map = {
"transformer.word_embeddings": "cpu",
"transformer.word_embeddings_layernorm": "cpu",
"lm_head": "cpu",
"transformer.h": 0,
"transformer.ln_f": 1,
}
bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True, load_in_8bit=True)
# Load model
model_8bit = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map=device_map,
quantization_config=bnb_config,
)
# Check that the model has been correctly set on device 0, 1, and `cpu`.
self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu"})
self.check_inference_correctness(model_8bit)
def test_cpu_gpu_disk_loading_custom_device_map(self):
r"""
A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`.
This time we also add `disk` on the device_map.
"""
device_map = {
"transformer.word_embeddings": 0,
"transformer.word_embeddings_layernorm": "cpu",
"lm_head": 0,
"transformer.h": 1,
"transformer.ln_f": "disk",
}
bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True, load_in_8bit=True)
with tempfile.TemporaryDirectory() as tmpdirname:
# Load model
model_8bit = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map=device_map,
quantization_config=bnb_config,
offload_folder=tmpdirname,
)
# Check that the model has been correctly set on device 0, 1, and `cpu`.
self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"})
self.check_inference_correctness(model_8bit)
def test_cpu_gpu_disk_loading_custom_device_map_kwargs(self):
r"""
A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`.
This time we also add `disk` on the device_map - using the kwargs directly instead of the quantization config
"""
device_map = {
"transformer.word_embeddings": 0,
"transformer.word_embeddings_layernorm": "cpu",
"lm_head": 0,
"transformer.h": 1,
"transformer.ln_f": "disk",
}
with tempfile.TemporaryDirectory() as tmpdirname:
# Load model
model_8bit = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map=device_map,
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True,
offload_folder=tmpdirname,
)
# Check that the model has been correctly set on device 0, 1, and `cpu`.
self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"})
self.check_inference_correctness(model_8bit)
class MixedInt8TestTraining(BaseMixedInt8Test):
def setUp(self):
self.model_name = "facebook/opt-350m"
super().setUp()
def test_training(self):
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.0"):
return
# Step 1: freeze all parameters
model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True)
self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()})
for param in model.parameters():
param.requires_grad = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
param.data = param.data.to(torch.float32)
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(module)):
module.q_proj = LoRALayer(module.q_proj, rank=16)
module.k_proj = LoRALayer(module.k_proj, rank=16)
module.v_proj = LoRALayer(module.v_proj, rank=16)
# Step 3: dummy batch
batch = self.tokenizer("Test batch ", return_tensors="pt").to(0)
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
out = model.forward(**batch)
out.logits.norm().backward()
for module in model.modules():
if isinstance(module, LoRALayer):
self.assertTrue(module.adapter[1].weight.grad is not None)
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
elif isinstance(module, nn.Embedding):
self.assertTrue(module.weight.grad is None)
class MixedInt8GPT2Test(MixedInt8Test):
model_name = "openai-community/gpt2-xl"
EXPECTED_RELATIVE_DIFFERENCE = 1.8720077507258357
EXPECTED_OUTPUTS = set()
EXPECTED_OUTPUTS.add("Hello my name is John Doe, and I'm a big fan of")
EXPECTED_OUTPUTS.add("Hello my name is John Doe, and I'm a fan of the")
# Expected values on a A10
EXPECTED_OUTPUTS.add("Hello my name is John Doe, and I am a member of the")
def test_int8_from_pretrained(self):
r"""
Test whether loading a 8bit model from the Hub works as expected
"""
from bitsandbytes.nn import Int8Params
model_id = "ybelkada/gpt2-xl-8bit"
model = AutoModelForCausalLM.from_pretrained(model_id)
linear = get_some_linear_layer(model)
self.assertTrue(linear.weight.__class__ == Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))
# generate
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
| transformers/tests/quantization/bnb/test_mixed_int8.py/0 | {
"file_path": "transformers/tests/quantization/bnb/test_mixed_int8.py",
"repo_id": "transformers",
"token_count": 15675
} | 186 |
import argparse
import logging
import os
import sys
import time
import tensorflow as tf
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
from transformers.modeling_tf_utils import keras
from transformers.utils import is_sagemaker_dp_enabled
if os.environ.get("SDP_ENABLED") or is_sagemaker_dp_enabled():
SDP_ENABLED = True
os.environ["SAGEMAKER_INSTANCE_TYPE"] = "p3dn.24xlarge"
import smdistributed.dataparallel.tensorflow as sdp
else:
SDP_ENABLED = False
def fit(model, loss, opt, train_dataset, epochs, train_batch_size, max_steps=None):
pbar = tqdm(train_dataset)
for i, batch in enumerate(pbar):
with tf.GradientTape() as tape:
inputs, targets = batch
outputs = model(batch)
loss_value = loss(targets, outputs.logits)
if SDP_ENABLED:
tape = sdp.DistributedGradientTape(tape, sparse_as_dense=True)
grads = tape.gradient(loss_value, model.trainable_variables)
opt.apply_gradients(zip(grads, model.trainable_variables))
pbar.set_description(f"Loss: {loss_value:.4f}")
if SDP_ENABLED and i == 0:
sdp.broadcast_variables(model.variables, root_rank=0)
sdp.broadcast_variables(opt.variables(), root_rank=0)
if max_steps and i >= max_steps:
break
train_results = {"loss": loss_value.numpy()}
return train_results
def get_datasets(tokenizer, train_batch_size, eval_batch_size):
# Load dataset
train_dataset, test_dataset = load_dataset("imdb", split=["train", "test"])
# Preprocess train dataset
train_dataset = train_dataset.map(
lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True
)
train_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"])
train_features = {
x: train_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length])
for x in ["input_ids", "attention_mask"]
}
tf_train_dataset = tf.data.Dataset.from_tensor_slices((train_features, train_dataset["label"]))
# Preprocess test dataset
test_dataset = test_dataset.map(
lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True
)
test_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"])
test_features = {
x: test_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length])
for x in ["input_ids", "attention_mask"]
}
tf_test_dataset = tf.data.Dataset.from_tensor_slices((test_features, test_dataset["label"]))
if SDP_ENABLED:
tf_train_dataset = tf_train_dataset.shard(sdp.size(), sdp.rank())
tf_test_dataset = tf_test_dataset.shard(sdp.size(), sdp.rank())
tf_train_dataset = tf_train_dataset.batch(train_batch_size, drop_remainder=True)
tf_test_dataset = tf_test_dataset.batch(eval_batch_size, drop_remainder=True)
return tf_train_dataset, tf_test_dataset
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Hyperparameters sent by the client are passed as command-line arguments to the script.
parser.add_argument("--epochs", type=int, default=3)
parser.add_argument("--per_device_train_batch_size", type=int, default=16)
parser.add_argument("--per_device_eval_batch_size", type=int, default=8)
parser.add_argument("--model_name_or_path", type=str)
parser.add_argument("--learning_rate", type=str, default=5e-5)
parser.add_argument("--do_train", type=bool, default=True)
parser.add_argument("--do_eval", type=bool, default=True)
parser.add_argument("--output_dir", type=str)
parser.add_argument("--max_steps", type=int, default=None)
# Data, model, and output directories
parser.add_argument("--output_data_dir", type=str, default=os.environ["SM_OUTPUT_DATA_DIR"])
parser.add_argument("--model_dir", type=str, default=os.environ["SM_MODEL_DIR"])
parser.add_argument("--n_gpus", type=str, default=os.environ["SM_NUM_GPUS"])
args, _ = parser.parse_known_args()
# Set up logging
logger = logging.getLogger(__name__)
logging.basicConfig(
level=logging.getLevelName("INFO"),
handlers=[logging.StreamHandler(sys.stdout)],
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
if SDP_ENABLED:
sdp.init()
gpus = tf.config.experimental.list_physical_devices("GPU")
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
tf.config.experimental.set_visible_devices(gpus[sdp.local_rank()], "GPU")
# Load model and tokenizer
model = TFAutoModelForSequenceClassification.from_pretrained(args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
# get datasets
tf_train_dataset, tf_test_dataset = get_datasets(
tokenizer=tokenizer,
train_batch_size=args.per_device_train_batch_size,
eval_batch_size=args.per_device_eval_batch_size,
)
# fine optimizer and loss
optimizer = keras.optimizers.Adam(learning_rate=args.learning_rate)
loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metrics = [keras.metrics.SparseCategoricalAccuracy()]
model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
# Training
if args.do_train:
# train_results = model.fit(tf_train_dataset, epochs=args.epochs, batch_size=args.train_batch_size)
start_train_time = time.time()
train_results = fit(
model,
loss,
optimizer,
tf_train_dataset,
args.epochs,
args.per_device_train_batch_size,
max_steps=args.max_steps,
)
end_train_time = time.time() - start_train_time
logger.info("*** Train ***")
logger.info(f"train_runtime = {end_train_time}")
output_eval_file = os.path.join(args.output_dir, "train_results.txt")
if not SDP_ENABLED or sdp.rank() == 0:
with open(output_eval_file, "w") as writer:
logger.info("***** Train results *****")
logger.info(train_results)
for key, value in train_results.items():
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
# Evaluation
if args.do_eval and (not SDP_ENABLED or sdp.rank() == 0):
result = model.evaluate(tf_test_dataset, batch_size=args.per_device_eval_batch_size, return_dict=True)
logger.info("*** Evaluate ***")
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
logger.info(result)
for key, value in result.items():
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
# Save result
if SDP_ENABLED:
if sdp.rank() == 0:
model.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
else:
model.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
| transformers/tests/sagemaker/scripts/tensorflow/run_tf_dist.py/0 | {
"file_path": "transformers/tests/sagemaker/scripts/tensorflow/run_tf_dist.py",
"repo_id": "transformers",
"token_count": 3191
} | 187 |
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import copy
import inspect
import json
import os
import random
import tempfile
import unittest
from importlib import import_module
from math import isnan
from typing import List, Tuple
from datasets import Dataset
from transformers import is_tf_available, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import ( # noqa: F401
CaptureLogger,
_tf_gpu_memory_limit,
is_pt_tf_cross_test,
require_tf,
require_tf2onnx,
slow,
torch_device,
)
from transformers.utils import CONFIG_NAME, GENERATION_CONFIG_NAME, logging
from transformers.utils.generic import ModelOutput
logger = logging.get_logger(__name__)
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TFAutoModel,
TFAutoModelForSequenceClassification,
TFSharedEmbeddings,
)
from transformers.generation import (
TFBeamSampleDecoderOnlyOutput,
TFBeamSampleEncoderDecoderOutput,
TFBeamSearchDecoderOnlyOutput,
TFBeamSearchEncoderDecoderOutput,
TFGreedySearchDecoderOnlyOutput,
TFGreedySearchEncoderDecoderOutput,
TFSampleDecoderOnlyOutput,
TFSampleEncoderDecoderOutput,
)
from transformers.modeling_tf_utils import keras
tf.config.experimental.enable_tensor_float_32_execution(False)
if _tf_gpu_memory_limit is not None:
gpus = tf.config.list_physical_devices("GPU")
for gpu in gpus:
# Restrict TensorFlow to only allocate x GB of memory on the GPUs
try:
tf.config.set_logical_device_configuration(
gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
)
logical_gpus = tf.config.list_logical_devices("GPU")
print("Logical GPUs", logical_gpus)
except RuntimeError as e:
# Virtual devices must be set before GPUs have been initialized
print(e)
if is_torch_available():
import torch
def _config_zero_init(config):
configs_no_init = copy.deepcopy(config)
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key:
setattr(configs_no_init, key, 0.0)
return configs_no_init
@require_tf
class TFModelTesterMixin:
model_tester = None
all_model_classes = ()
all_generative_model_classes = ()
test_mismatched_shapes = True
test_resize_embeddings = True
test_head_masking = True
is_encoder_decoder = False
has_attentions = True
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
inputs_dict = copy.deepcopy(inputs_dict)
if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
inputs_dict = {
k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
if isinstance(v, tf.Tensor) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
elif model_class in [
*get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING),
*get_values(TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING),
]:
inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
elif model_class in [
*get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
*get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
]:
inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING):
inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
elif model_class in [
*get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
*get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING),
*get_values(TF_MODEL_FOR_MASKED_LM_MAPPING),
*get_values(TF_MODEL_FOR_PRETRAINING_MAPPING),
*get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
*get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING),
] and "labels" in dict(inspect.signature(model_class.call).parameters):
inputs_dict["labels"] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
)
elif model_class in get_values(TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING):
num_patches = self.model_tester.image_size // self.model_tester.patch_size
inputs_dict["bool_masked_pos"] = tf.zeros(
(self.model_tester.batch_size, num_patches**2), dtype=tf.int32
)
elif model_class in get_values(TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING):
batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
inputs_dict["labels"] = tf.zeros((self.model_tester.batch_size, height, width), dtype=tf.int32)
elif model_class.__name__.endswith("ForCTC"):
# When we have enough CTC models for an AutoClass, we should use their mapping instead of name checks
inputs_dict["labels"] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
)
return inputs_dict
def test_initialization(self):
pass
def test_save_load(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, saved_model=False)
# the config file (and the generation config file, if it can generate) should be saved
self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
self.assertEqual(
model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
)
model = model_class.from_pretrained(tmpdirname)
after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
self.assert_outputs_same(after_outputs, outputs)
def test_save_load_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
model_config = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(model_config)
new_model = model_class.from_config(model.get_config())
# make sure it also accepts a normal config
_ = model_class.from_config(model.config)
_ = new_model(self._prepare_for_class(inputs_dict, model_class)) # Build model
new_model.set_weights(model.get_weights())
after_outputs = new_model(self._prepare_for_class(inputs_dict, model_class))
self.assert_outputs_same(after_outputs, outputs)
@slow
def test_saved_model_creation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = False
config.output_attentions = False
if hasattr(config, "use_cache"):
config.use_cache = False
model_class = self.all_model_classes[0]
class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
model(class_inputs_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, saved_model=True)
saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
self.assertTrue(os.path.exists(saved_model_dir))
def test_prepare_serving_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = self.has_attentions
for model_class in self.all_model_classes:
model = model_class(config)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(inputs)
serving_outputs = model.serving_output(outputs)
for k, v in serving_outputs.items():
# Check that we have one of three possible outputs: None, tuple of tensors or a tensor
if isinstance(v, tuple):
self.assertTrue(all(isinstance(elem, tf.Tensor) for elem in v))
elif v is not None:
self.assertIsInstance(v, tf.Tensor)
else:
self.assertIsNone(v)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
if model.config.is_encoder_decoder:
expected_arg_names = [
"input_ids",
"attention_mask",
"decoder_input_ids",
"decoder_attention_mask",
]
expected_arg_names.extend(["decoder_position_ids"] if "decoder_position_ids" in arg_names else [])
expected_arg_names.extend(
["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else []
)
expected_arg_names.extend(
["cross_attn_head_mask", "encoder_outputs"]
if "cross_attn_head_mask" in arg_names
else ["encoder_outputs"]
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
else:
expected_arg_names = ["input_ids"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_onnx_compliancy(self):
if not self.test_onnx:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
INTERNAL_OPS = [
"Assert",
"AssignVariableOp",
"EmptyTensorList",
"ReadVariableOp",
"ResourceGather",
"TruncatedNormal",
"VarHandleOp",
"VarIsInitializedOp",
]
onnx_ops = []
with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f:
onnx_opsets = json.load(f)["opsets"]
for i in range(1, self.onnx_min_opset + 1):
onnx_ops.extend(onnx_opsets[str(i)])
for model_class in self.all_model_classes:
model_op_names = set()
with tf.Graph().as_default() as g:
model = model_class(config)
model.build_in_name_scope()
for op in g.get_operations():
model_op_names.add(op.node_def.op)
model_op_names = sorted(model_op_names)
incompatible_ops = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(op)
self.assertEqual(len(incompatible_ops), 0, incompatible_ops)
# `tf2onnx` issue page: https://github.com/onnx/tensorflow-onnx/issues/2172
# TODO: undo skip once a fix is done in `tf2onnx`
@unittest.skip("`tf2onnx` broke with TF 2.13")
@require_tf2onnx
@slow
def test_onnx_runtime_optimize(self):
if not self.test_onnx:
return
import onnxruntime
import tf2onnx
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:2]:
model = model_class(config)
model.build_in_name_scope()
onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset)
onnxruntime.InferenceSession(onnx_model_proto.SerializeToString())
def test_keras_save_load(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
tf_main_layer_classes = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__),)
for module_member_name in dir(module)
if module_member_name.endswith("MainLayer")
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")]
for module_member in (getattr(module, module_member_name),)
if isinstance(module_member, type)
and keras.layers.Layer in module_member.__bases__
and getattr(module_member, "_keras_serializable", False)
}
for main_layer_class in tf_main_layer_classes:
# T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
if "T5" in main_layer_class.__name__:
# Take the same values than in TFT5ModelTester for this shared layer
shared = TFSharedEmbeddings(99, 32, name="shared")
config.use_cache = inputs_dict.pop("use_cache", None)
main_layer = main_layer_class(config, embed_tokens=shared)
else:
main_layer = main_layer_class(config)
symbolic_inputs = {
name: keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
}
model = keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
outputs = model(inputs_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "keras_model.h5")
model.save(filepath)
if "T5" in main_layer_class.__name__:
model = keras.models.load_model(
filepath,
custom_objects={
main_layer_class.__name__: main_layer_class,
"TFSharedEmbeddings": TFSharedEmbeddings,
},
)
else:
model = keras.models.load_model(
filepath, custom_objects={main_layer_class.__name__: main_layer_class}
)
assert isinstance(model, keras.Model)
after_outputs = model(inputs_dict)
self.assert_outputs_same(after_outputs, outputs)
def assert_outputs_same(self, after_outputs, outputs):
# Make sure we don't have nans
if isinstance(after_outputs, tf.Tensor):
out_1 = after_outputs.numpy()
elif isinstance(after_outputs, dict):
out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
else:
out_1 = after_outputs[0].numpy()
out_2 = outputs[0].numpy()
self.assertEqual(out_1.shape, out_2.shape)
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
# Don't copy this method to model specific test file!
# TODO: remove this method once the issues are all fixed!
def _make_attention_mask_non_null(self, inputs_dict):
"""Make sure no sequence has all zeros as attention mask"""
for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
if k in inputs_dict:
attention_mask = inputs_dict[k]
# Make sure no all 0s attention masks - to avoid failure at this moment.
# Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
# TODO: remove this line once a fix regarding large negative values for attention mask is done.
attention_mask = tf.concat(
[tf.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], axis=-1
)
# Here we make the first sequence with all 0s as attention mask.
# Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
# values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
# TODO: enable this block once the large negative values thing is cleaned up.
# (see https://github.com/huggingface/transformers/issues/14859)
# attention_mask = tf.concat(
# [
# tf.zeros_like(attention_mask[:1], dtype=tf.int32),
# tf.cast(attention_mask[1:], dtype=tf.int32)
# ],
# axis=0
# )
inputs_dict[k] = attention_mask
# Don't copy this method to model specific test file!
# TODO: remove this method once the issues are all fixed!
def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
"""For temporarily ignoring some failed test cases (issues to be fixed)"""
tf_keys = {k for k, v in tf_outputs.items() if v is not None}
pt_keys = {k for k, v in pt_outputs.items() if v is not None}
key_differences = tf_keys.symmetric_difference(pt_keys)
if model_class.__name__ in [
"TFFlaubertWithLMHeadModel",
"TFFunnelForPreTraining",
"TFElectraForPreTraining",
"TFXLMWithLMHeadModel",
]:
for k in key_differences:
if k in ["loss", "losses"]:
tf_keys.discard(k)
pt_keys.discard(k)
elif model_class.__name__.startswith("TFGPT2"):
# `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
tf_keys.discard("past_key_values")
pt_keys.discard("past_key_values")
# create new outputs from the remaining fields
new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})
return new_tf_outputs, new_pt_outputs
def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
"""Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
Args:
model_class: The class of the model that is currently testing. For example, `TFBertModel`,
TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
error messages.
name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
being a named field in the output.
"""
self.assertEqual(type(name), str)
if attributes is not None:
self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
# Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
if isinstance(tf_outputs, ModelOutput):
self.assertTrue(
isinstance(pt_outputs, ModelOutput),
f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
)
# Don't copy this block to model specific test file!
# TODO: remove this method and this line after issues are fixed
tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
tf_keys = [k for k, v in tf_outputs.items() if v is not None]
pt_keys = [k for k, v in pt_outputs.items() if v is not None]
self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
# convert to the case of `tuple`
# appending each key to the current (string) `names`
attributes = tuple([f"{name}.{k}" for k in tf_keys])
self.check_pt_tf_outputs(
tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
)
# Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
elif type(tf_outputs) in [tuple, list]:
self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")
if attributes is not None:
# case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
self.assertEqual(
len(attributes),
len(tf_outputs),
f"{name}: The tuple `names` should have the same length as `tf_outputs`",
)
else:
# case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `names`
attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
elif isinstance(tf_outputs, tf.Tensor):
self.assertTrue(
isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
)
tf_outputs = tf_outputs.numpy()
pt_outputs = pt_outputs.detach().to("cpu").numpy()
self.assertEqual(
tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
)
# deal with NumPy's scalars to make replacing nan values by 0 work.
if np.isscalar(tf_outputs):
tf_outputs = np.array([tf_outputs])
pt_outputs = np.array([pt_outputs])
tf_nans = np.isnan(tf_outputs)
pt_nans = np.isnan(pt_outputs)
pt_outputs[tf_nans] = 0
tf_outputs[tf_nans] = 0
pt_outputs[pt_nans] = 0
tf_outputs[pt_nans] = 0
max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
self.assertLessEqual(max_diff, tol, f"{name}: Difference between torch and tf is {max_diff} (>= {tol}).")
else:
raise ValueError(
"`tf_outputs` should be an instance of `tf.Tensor`, a `tuple`, or an instance of `tf.Tensor`. Got"
f" {type(tf_outputs)} instead."
)
def prepare_pt_inputs_from_tf_inputs(self, tf_inputs_dict):
pt_inputs_dict = {}
for name, key in tf_inputs_dict.items():
if isinstance(key, bool):
pt_inputs_dict[name] = key
elif name == "input_values":
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
elif name == "pixel_values":
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
elif name == "input_features":
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
# other general float inputs
elif tf_inputs_dict[name].dtype.is_floating:
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
else:
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)
return pt_inputs_dict
def check_pt_tf_models(self, tf_model, pt_model, tf_inputs_dict):
pt_inputs_dict = self.prepare_pt_inputs_from_tf_inputs(tf_inputs_dict)
# send pytorch inputs to the correct device
pt_inputs_dict = {
k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
}
# send pytorch model to the correct device
pt_model.to(torch_device)
# Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
pt_model.eval()
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs_dict)
tf_outputs = tf_model(tf_inputs_dict)
# tf models returned loss is usually a tensor rather than a scalar.
# (see `hf_compute_loss`: it uses `keras.losses.Reduction.NONE`)
# Change it here to a scalar to match PyTorch models' loss
tf_loss = getattr(tf_outputs, "loss", None)
if tf_loss is not None:
tf_outputs.loss = tf.math.reduce_mean(tf_loss)
self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(tf_model))
@is_pt_tf_cross_test
def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
import transformers
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Output all for aggressive testing
config.output_hidden_states = True
config.output_attentions = self.has_attentions
# Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
# of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
# TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
self._make_attention_mask_non_null(inputs_dict)
pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning
pt_model_class = getattr(transformers, pt_model_class_name)
tf_model = model_class(config)
pt_model = pt_model_class(config)
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
tf_inputs_dict_with_labels = self._prepare_for_class(
inputs_dict,
model_class,
# Not all models accept "labels" in the forward pass (yet :) )
return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
)
# For some models (e.g. base models), there is no label returned.
# Set the input dict to `None` to avoid check outputs twice for the same input dicts.
if not set(tf_inputs_dict_with_labels.keys()).symmetric_difference(tf_inputs_dict.keys()):
tf_inputs_dict_with_labels = None
# Check we can load pt model in tf and vice-versa with model => model functions
tf_model = transformers.load_pytorch_model_in_tf2_model(
tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
)
pt_model = transformers.load_tf2_model_in_pytorch_model(
pt_model, tf_model, allow_missing_keys=allow_missing_keys
)
# Original test: check without `labels`
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
# check with `labels`
if tf_inputs_dict_with_labels:
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels)
# Check we can load pt model in tf and vice-versa with checkpoint => model functions
with tempfile.TemporaryDirectory() as tmpdirname:
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
torch.save(pt_model.state_dict(), pt_checkpoint_path)
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
)
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
tf_model.save_weights(tf_checkpoint_path)
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
)
# Original test: check without `labels`
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
# check with `labels`
if tf_inputs_dict_with_labels:
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels)
@slow
def test_compile_tf_model(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:2]:
# Prepare our model
model = model_class(config)
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
functional_inputs = {
key: keras.Input(shape=val.shape[1:], dtype=val.dtype, name=key)
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
outputs_dict = model(functional_inputs)
hidden_states = outputs_dict[0]
# Compile extended model
functional_model = keras.Model(inputs=functional_inputs, outputs=hidden_states)
model_out = functional_model.predict(model.dummy_inputs) # Check we can pass inputs with the Keras API
self.assertTrue(model_out is not None)
with tempfile.TemporaryDirectory() as tmpdirname:
functional_model.save(tmpdirname) # Ensure we can save/export the whole functional model
def test_keyword_and_dict_args(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs_dict = model(inputs)
inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
outputs_keywords = model(**inputs_keywords)
output_dict = outputs_dict[0].numpy()
output_keywords = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)
def test_attention_outputs(self):
if not self.has_attentions:
self.skipTest(reason="Model does not output attentions")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
def check_decoder_attentions_output(outputs):
out_len = len(outputs)
self.assertEqual(min(out_len % 2, out_len % 5), 0) # differentiation due to newly added cross_attentions
decoder_attentions = outputs.decoder_attentions
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
def check_encoder_attentions_output(outputs):
attentions = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
config.output_hidden_states = False
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
out_len = len(outputs)
self.assertEqual(config.output_hidden_states, False)
check_encoder_attentions_output(outputs)
if self.is_encoder_decoder:
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(config.output_hidden_states, False)
check_decoder_attentions_output(outputs)
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(config.output_hidden_states, False)
check_encoder_attentions_output(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
config.output_hidden_states = True
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
self.assertEqual(model.config.output_hidden_states, True)
check_encoder_attentions_output(outputs)
def test_headmasking(self):
if not self.test_head_masking:
return
random.Random().seed(42)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
random.Random().seed()
inputs_dict["output_attentions"] = True
config.output_hidden_states = True
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
# Prepare head_mask
def prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
if i == 0:
return tf.concat(
(tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0
)
elif i == num_hidden_layers - 1:
return tf.concat(
(tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0
)
else:
return tf.ones(attention_heads, dtype=tf.float32)
head_mask = tf.stack(
[
prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
for i in range(config.num_hidden_layers)
],
0,
)
inputs = self._prepare_for_class(inputs_dict, model_class).copy()
inputs["head_mask"] = head_mask
if model.config.is_encoder_decoder:
signature = inspect.signature(model.call)
arg_names = [*signature.parameters.keys()]
if "decoder_head_mask" in arg_names: # necessary diferentiation because of T5 model
inputs["decoder_head_mask"] = head_mask
if "cross_attn_head_mask" in arg_names:
inputs["cross_attn_head_mask"] = head_mask
outputs = model(**inputs, return_dict=True)
def check_attentions_validity(attentions):
# Remove Nan
for t in attentions:
self.assertLess(
(tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy()
) # Check we don't have more than 25% nans (arbitrary)
attentions = [
tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions
] # remove them (the test is less complete)
self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0)
self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0)
if len(attentions) > 2: # encoder-decodere models have only 2 layers in each modules
self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0)
self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0)
self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0)
if model.config.is_encoder_decoder:
check_attentions_validity(outputs.encoder_attentions)
check_attentions_validity(outputs.decoder_attentions)
if "cross_attn_head_mask" in arg_names:
check_attentions_validity(outputs.cross_attentions)
else:
check_attentions_validity(outputs.attentions)
def test_hidden_states_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_hidden_states_output(config, inputs_dict, model_class):
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
if model.config.is_encoder_decoder:
encoder_hidden_states = outputs.encoder_hidden_states
decoder_hidden_states = outputs.decoder_hidden_states
self.assertEqual(config.output_attentions, False)
self.assertEqual(len(encoder_hidden_states), expected_num_layers)
self.assertListEqual(
list(encoder_hidden_states[0].shape[-2:]),
[self.model_tester.seq_length, self.model_tester.hidden_size],
)
self.assertEqual(len(decoder_hidden_states), expected_num_layers)
self.assertListEqual(
list(decoder_hidden_states[0].shape[-2:]),
[self.model_tester.seq_length, self.model_tester.hidden_size],
)
else:
hidden_states = outputs.hidden_states
self.assertEqual(config.output_attentions, False)
self.assertEqual(len(hidden_states), expected_num_layers)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.seq_length, self.model_tester.hidden_size],
)
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(config, inputs_dict, model_class)
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(config, inputs_dict, model_class)
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
text_in_text_out_models = (
get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING)
+ get_values(TF_MODEL_FOR_MASKED_LM_MAPPING)
+ get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING)
)
speech_in_text_out_models = get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING)
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), keras.layers.Layer)
legacy_text_in_text_out = model.get_lm_head() is not None
if model_class in text_in_text_out_models or legacy_text_in_text_out:
out_embeddings = model.get_output_embeddings()
self.assertIsInstance(out_embeddings, keras.layers.Layer)
bias = model.get_bias()
if bias is not None:
self.assertIsInstance(bias, dict)
for _, v in bias.items():
self.assertIsInstance(v, tf.Variable)
elif model_class in speech_in_text_out_models:
out_embeddings = model.get_output_embeddings()
self.assertIsInstance(out_embeddings, keras.layers.Layer)
bias = model.get_bias()
self.assertIsNone(bias)
else:
out_embeddings = model.get_output_embeddings()
assert out_embeddings is None
bias = model.get_bias()
self.assertIsNone(bias)
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
first, second = (
model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
)
out_1 = first.numpy()
out_2 = second.numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(tuple_object, dict_object)),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}"
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
model = model_class(config)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
if self.has_attentions:
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
# Not all models accept "labels" in the forward pass (yet :) )
if "labels" in inspect.signature(model.call).parameters.keys():
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
if self.has_attentions:
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
)
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
inputs = copy.deepcopy(inputs_dict)
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
else:
inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)
inputs = self._prepare_for_class(inputs, model_class)
model(inputs)
def test_numpy_arrays_inputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def prepare_numpy_arrays(inputs_dict):
inputs_np_dict = {}
for k, v in inputs_dict.items():
if tf.is_tensor(v):
inputs_np_dict[k] = v.numpy()
else:
inputs_np_dict[k] = np.array(k)
return inputs_np_dict
for model_class in self.all_model_classes:
model = model_class(config)
inputs = self._prepare_for_class(inputs_dict, model_class)
inputs_np = prepare_numpy_arrays(inputs)
output_for_dict_input = model(inputs_np)
output_for_kw_input = model(**inputs_np)
self.assert_outputs_same(output_for_dict_input, output_for_kw_input)
def test_valid_input_signature_and_dummies(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
call_args = inspect.signature(model.call).parameters
for key in model.input_signature:
self.assertIn(key, call_args)
for key in model.dummy_inputs:
self.assertIn(key, call_args)
def test_resize_token_embeddings(self):
# TODO (joao): after the embeddings refactor is complete, rework this test so as to rely exclusively on
# keras.layers.Embedding
if not self.test_resize_embeddings:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(model, embedding_layer):
if isinstance(embedding_layer, keras.layers.Embedding):
# builds the embeddings layer
model.build_in_name_scope()
return embedding_layer.embeddings
else:
return model._get_word_embedding_weight(embedding_layer)
for model_class in self.all_model_classes:
for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
# build the embeddings
model = model_class(config=copy.deepcopy(config)) # `resize_token_embeddings` mutates `config`
old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
old_bias = model.get_bias()
old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
# reshape the embeddings
model.resize_token_embeddings(size)
new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
new_bias = model.get_bias()
new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
# check that the resized embeddings size matches the desired size.
assert_size = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0], assert_size)
# check that weights remain the same after resizing
models_equal = True
for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
models_equal = False
self.assertTrue(models_equal)
if old_bias is not None and new_bias is not None:
for old_weight, new_weight in zip(old_bias.values(), new_bias.values()):
self.assertEqual(new_weight.shape[-1], assert_size)
models_equal = True
for p1, p2 in zip(tf.squeeze(old_weight), tf.squeeze(new_weight)):
if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
models_equal = False
self.assertTrue(models_equal)
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0], assert_size)
self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1])
models_equal = True
for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
models_equal = False
self.assertTrue(models_equal)
# TODO (Joao): this test is not slow, but it's tagged as such to keep track of failures on the scheduled CI runs,
# while passing push CI. Fix the underlying issues and remove the tag.
@slow
def test_save_load_after_resize_token_embeddings(self):
if not self.test_resize_embeddings:
return
config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# create a model with resized (expended) embeddings
new_tokens_size = 10
old_total_size = config.vocab_size
new_total_size = old_total_size + new_tokens_size
model = model_class(config=copy.deepcopy(config)) # `resize_token_embeddings` mutates `config`
model.build_in_name_scope()
model.resize_token_embeddings(new_total_size)
# fetch the output for an input exclusively made of new members of the vocabulary
inputs_dict = copy.deepcopy(original_inputs_dict)
ids_feat_name = None
if "input_ids" in inputs_dict:
ids_feat_name = "input_ids"
elif "decoder_input_ids" in inputs_dict:
ids_feat_name = "decoder_input_ids"
else:
assert False, "No input ids feature found in the inputs dict"
new_vocab_input_ids = ids_tensor(inputs_dict[ids_feat_name].shape, new_tokens_size)
new_vocab_input_ids += old_total_size
inputs_dict[ids_feat_name] = new_vocab_input_ids
if "input_ids" in inputs_dict:
inputs_dict["input_ids"] = new_vocab_input_ids
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"] = new_vocab_input_ids
prepared_inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**prepared_inputs)
# save and load the model
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, saved_model=False)
model = model_class.from_pretrained(tmpdirname)
restored_model_outputs = model(**prepared_inputs)
# check that the output for the restored model is the same
self.assert_outputs_same(restored_model_outputs, outputs)
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
reason="This test always passes on CPU.",
)
def test_embeddings_out_of_bounds_raise_exception(self):
# TF embeddings layers don't raise an exception when an index is out of bounds on GPU, so we manually raise it.
# This test should only fail on GPU for models where we haven't added the safety check.
if not self.test_resize_embeddings:
return
config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config=config)
inputs_dict = copy.deepcopy(original_inputs_dict)
if "input_ids" in inputs_dict:
inputs_dict["input_ids"] = inputs_dict["input_ids"] * int(1e9)
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"] = inputs_dict["decoder_input_ids"] * int(1e9)
prepared_inputs = self._prepare_for_class(inputs_dict, model_class)
with self.assertRaises(tf.errors.InvalidArgumentError):
model(**prepared_inputs)
def test_lm_head_model_random_no_beam_search_generate(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_ids = inputs_dict.get("input_ids", None)
# iterate over all generative models
for model_class in self.all_generative_model_classes:
model = model_class(config)
if config.bos_token_id is None:
# if bos token id is not defined model needs input_ids
with self.assertRaises(ValueError):
model.generate(do_sample=True, max_length=5)
# num_return_sequences = 1
self._check_generated_ids(model.generate(input_ids, do_sample=True))
elif model_class.__name__ not in ["TFSpeech2TextForConditionalGeneration"]:
# Models with non-text inputs won't work here; num_return_sequences = 1
self._check_generated_ids(model.generate(do_sample=True, max_length=5))
with self.assertRaises(ValueError):
# generating multiple sequences when no beam search generation
# is not allowed as it would always generate the same sequences
model.generate(input_ids, do_sample=False, num_return_sequences=2)
# num_return_sequences > 1, sample
self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
# check bad words tokens language generation
# create list of 1-seq bad token and list of 2-seq of bad tokens
bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
output_tokens = model.generate(
input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
)
# only count generated tokens
generated_ids = output_tokens[:, input_ids.shape[-1] :]
self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
def test_lm_head_model_no_beam_search_generate_dict_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_ids = inputs_dict.get("input_ids", None)
if input_ids is None:
input_ids = inputs_dict.get("input_features", None)
# iterate over all generative models
for model_class in self.all_generative_model_classes:
model = model_class(config)
output_greedy = model.generate(
input_ids,
do_sample=False,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
return_dict_in_generate=True,
)
output_sample = model.generate(
input_ids,
do_sample=True,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
return_dict_in_generate=True,
)
if model.config.is_encoder_decoder:
self.assertIsInstance(output_greedy, TFGreedySearchEncoderDecoderOutput)
self.assertIsInstance(output_sample, TFSampleEncoderDecoderOutput)
else:
self.assertIsInstance(output_greedy, TFGreedySearchDecoderOnlyOutput)
self.assertIsInstance(output_sample, TFSampleDecoderOnlyOutput)
def test_lm_head_model_random_beam_search_generate(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_ids = inputs_dict.get("input_ids", None)
for model_class in self.all_generative_model_classes:
model = model_class(config)
if config.bos_token_id is None:
# if bos token id is not defined model needs input_ids, num_return_sequences = 1
self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
else:
# num_return_sequences = 1
self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))
with self.assertRaises(ValueError):
# generating more sequences than having beams leads is not possible
model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)
# num_return_sequences > 1, sample
self._check_generated_ids(
model.generate(
input_ids,
do_sample=True,
num_beams=2,
num_return_sequences=2,
)
)
# num_return_sequences > 1, greedy
self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))
# check bad words tokens language generation
# create list of 1-seq bad token and list of 2-seq of bad tokens
bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
output_tokens = model.generate(
input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
)
# only count generated tokens
generated_ids = output_tokens[:, input_ids.shape[-1] :]
self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
def test_lm_head_model_beam_search_generate_dict_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_ids = inputs_dict.get("input_ids", None)
if input_ids is None:
input_ids = inputs_dict.get("input_features", None)
# iterate over all generative models
for model_class in self.all_generative_model_classes:
model = model_class(config)
output_beam_search = model.generate(
input_ids,
num_beams=2,
do_sample=False,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
return_dict_in_generate=True,
)
output_beam_sample = model.generate(
input_ids,
num_beams=2,
do_sample=True,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
return_dict_in_generate=True,
)
if model.config.is_encoder_decoder:
self.assertIsInstance(output_beam_search, TFBeamSearchEncoderDecoderOutput)
self.assertIsInstance(output_beam_sample, TFBeamSampleEncoderDecoderOutput)
else:
self.assertIsInstance(output_beam_search, TFBeamSearchDecoderOnlyOutput)
self.assertIsInstance(output_beam_sample, TFBeamSampleDecoderOnlyOutput)
def test_loss_computation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
# The number of elements in the loss should be the same as the number of elements in the label
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
added_label_names = sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)
if not added_label_names:
continue # This test is only for models with easily-separable labels
added_label = prepared_for_class[added_label_names[0]]
expected_loss_size = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
possible_input_names = {"input_ids", "pixel_values", "input_features", "input_values"}
input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
model_input = prepared_for_class.pop(input_name)
outputs = model(model_input, **prepared_for_class)
if not isinstance(outputs, ModelOutput) or not hasattr(outputs, "loss"):
continue
loss = outputs.loss
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
# Test that model correctly compute the loss when we mask some positions
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
possible_input_names = {"input_ids", "pixel_values", "input_features", "input_values"}
input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
model_input = prepared_for_class.pop(input_name)
if "labels" in prepared_for_class:
labels = prepared_for_class["labels"].numpy()
if len(labels.shape) > 1 and labels.shape[1] != 1:
labels[0] = -100
prepared_for_class["labels"] = tf.convert_to_tensor(labels)
loss = model(model_input, **prepared_for_class)[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
self.assertTrue(not np.any(np.isnan(loss.numpy())))
# Test that model correctly compute the loss with a dict
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
loss = model(prepared_for_class)[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
# Test that model correctly compute the loss with a tuple
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
# Get keys that were added with the _prepare_for_class function
label_keys = prepared_for_class.keys() - inputs_dict.keys()
signature = inspect.signature(model.call).parameters
signature_names = list(signature.keys())
# Create a dictionary holding the location of the tensors in the tuple
tuple_index_mapping = {0: input_name}
for label_key in label_keys:
label_key_index = signature_names.index(label_key)
tuple_index_mapping[label_key_index] = label_key
sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
# Initialize a list with their default values, update the values and convert to a tuple
list_input = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default)
for index, value in sorted_tuple_index_mapping:
list_input[index] = prepared_for_class[value]
tuple_input = tuple(list_input)
# Send to model
loss = model(tuple_input[:-1])[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
def check_keras_fit_results(self, val_loss1, val_loss2, atol=1e-2, rtol=1e-3):
self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol))
@slow
def test_keras_fit(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
# Test that model correctly compute the loss with kwargs
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
# We also remove "return_loss" as this is covered by the train_step when using fit()
prepared_for_class = {
key: val
for key, val in prepared_for_class.items()
if key not in ("head_mask", "decoder_head_mask", "cross_attn_head_mask", "return_loss")
}
if "labels" in prepared_for_class and "decoder_input_ids" in prepared_for_class:
del prepared_for_class["decoder_input_ids"]
accuracy_classes = [
"ForPreTraining",
"ForCausalLM",
"ForMaskedLM",
"ForQuestionAnswering",
"ForMultipleChoice",
"ForSequenceClassification",
"ForTokenClassification",
"ForNextSentencePrediction",
"LMHeadModel",
]
for accuracy_class in accuracy_classes:
if model.__class__.__name__.endswith(accuracy_class):
metrics = [keras.metrics.SparseCategoricalAccuracy()]
break
else:
metrics = []
if hasattr(self.model_tester, "batch_size"):
sample_weight = tf.convert_to_tensor([0.5] * self.model_tester.batch_size, dtype=tf.float32)
else:
sample_weight = None
# Build the model so we can get some constant weights and check outputs
outputs = model(prepared_for_class)
if getattr(outputs, "loss", None) is None:
continue
model_weights = model.get_weights()
# Run eagerly to save some expensive compilation times
model.compile(optimizer=keras.optimizers.SGD(0.0), run_eagerly=True, metrics=metrics)
# Make sure the model fits without crashing regardless of where we pass the labels
history1 = model.fit(
prepared_for_class,
validation_data=prepared_for_class,
sample_weight=sample_weight,
steps_per_epoch=1,
validation_steps=1,
shuffle=False,
)
val_loss1 = history1.history["val_loss"][0]
self.assertTrue(not isnan(val_loss1))
accuracy1 = {key: val[0] for key, val in history1.history.items() if key.endswith("accuracy")}
possible_label_cols = {
"labels",
"label",
"label_ids",
"start_positions",
"start_position",
"end_positions",
"end_position",
"next_sentence_label",
}
label_names = possible_label_cols.intersection(set(prepared_for_class))
if len(label_names) == 0:
# The next tests only make sense for models with separate inputs and labels, and do not make
# sense for models that don't clearly distinguish between the two (e.g. CLIP)
return
labels = {key: val for key, val in prepared_for_class.items() if key in label_names}
inputs_minus_labels = {key: val for key, val in prepared_for_class.items() if key not in label_names}
self.assertGreater(len(inputs_minus_labels), 0)
# We reinitialize the model here even though our learning rate was zero
# because BatchNorm updates weights by means other than gradient descent.
model.set_weights(model_weights)
history2 = model.fit(
inputs_minus_labels,
labels,
validation_data=(inputs_minus_labels, labels),
sample_weight=sample_weight,
steps_per_epoch=1,
validation_steps=1,
shuffle=False,
)
val_loss2 = history2.history["val_loss"][0]
self.assertTrue(not isnan(val_loss2))
accuracy2 = {key: val[0] for key, val in history2.history.items() if key.endswith("accuracy")}
self.check_keras_fit_results(val_loss1, val_loss2)
self.assertEqual(history1.history.keys(), history2.history.keys())
for key in history1.history.keys():
if not key.startswith("val_"):
self.assertTrue("val_" + key in history1.history.keys(), "Outputs differ in train/test step!")
if metrics:
self.assertTrue(len(accuracy1) == len(accuracy2) > 0, "Missing metrics!")
def test_int_support(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
prepared_for_class = self._prepare_for_class(
inputs_dict.copy(),
model_class,
return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
)
if not any(
tensor.dtype.is_integer for tensor in prepared_for_class.values() if isinstance(tensor, tf.Tensor)
):
return # No integer inputs means no need for this test
prepared_for_class = {
key: tf.cast(tensor, tf.int64) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor
for key, tensor in prepared_for_class.items()
}
model = model_class(config)
model(**prepared_for_class) # No assertion, we're just checking this doesn't throw an error
int32_prepared_for_class = {
key: tf.cast(tensor, tf.int32) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor
for key, tensor in prepared_for_class.items()
}
model(**int32_prepared_for_class) # No assertion, we're just checking this doesn't throw an error
# After testing that the model accepts all int inputs, confirm that its dummies are int32
for key, tensor in model.dummy_inputs.items():
self.assertTrue(
isinstance(tensor, tf.Tensor) or keras.backend.is_keras_tensor(tensor),
"Dummy inputs should be tf.Tensor!",
)
if tensor.dtype.is_integer:
self.assertTrue(tensor.dtype == tf.int32, "Integer dummy inputs should be tf.int32!")
# Also confirm that the input_signature uses int32
for key, tensor_spec in model.input_signature.items():
if tensor_spec.dtype.is_integer:
self.assertTrue(tensor_spec.dtype == tf.int32, "Input signatures should use tf.int32 for ints!")
def test_generate_with_headmasking(self):
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_generative_model_classes:
model = model_class(config)
# We want to test only encoder-decoder models
if not config.is_encoder_decoder:
continue
head_masking = {
"head_mask": tf.zeros((config.encoder_layers, config.encoder_attention_heads)),
"decoder_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
"cross_attn_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
}
signature = inspect.signature(model.call)
if set(head_masking.keys()) < {*signature.parameters.keys()}:
continue
for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
out = model.generate(
inputs_dict["input_ids"],
num_beams=1,
max_length=inputs_dict["input_ids"] + 5,
output_attentions=True,
return_dict_in_generate=True,
**{name: mask},
)
# We check the state of decoder_attentions and cross_attentions just from the last step
attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([tf.reduce_sum(w).numpy() for w in attn_weights]), 0.0)
def test_load_with_mismatched_shapes(self):
if not self.test_mismatched_shapes:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if model_class not in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
continue
with self.subTest(msg=f"Testing {model_class}"):
with tempfile.TemporaryDirectory() as tmp_dir:
model = model_class(config)
inputs = self._prepare_for_class(inputs_dict, model_class)
_ = model(**inputs)
model.save_pretrained(tmp_dir)
# Fails when we don't set ignore_mismatched_sizes=True
with self.assertRaises(ValueError):
new_model = TFAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
with self.assertRaises(ValueError):
new_model_without_prefix = TFAutoModel.from_pretrained(tmp_dir, vocab_size=10)
logger = logging.get_logger("transformers.modeling_tf_utils")
with CaptureLogger(logger) as cl:
new_model = TFAutoModelForSequenceClassification.from_pretrained(
tmp_dir, num_labels=42, ignore_mismatched_sizes=True
)
self.assertIn("the shapes did not match", cl.out)
logits = new_model(**inputs).logits
self.assertEqual(logits.shape[1], 42)
with CaptureLogger(logger) as cl:
new_model_without_prefix = TFAutoModel.from_pretrained(
tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
)
self.assertIn("the shapes did not match", cl.out)
# Although Tf models always have a prefix pointing to `MainLayer`,
# we still add this "without prefix" test to keep a consistency between tf and pt tests.
input_ids = ids_tensor((2, 8), 10)
if self.is_encoder_decoder:
new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
else:
new_model_without_prefix(input_ids)
def test_model_main_input_name(self):
for model_class in self.all_model_classes:
model_signature = inspect.signature(getattr(model_class, "call"))
# The main input is the name of the argument after `self`
observed_main_input_name = list(model_signature.parameters.keys())[1]
self.assertEqual(model_class.main_input_name, observed_main_input_name)
def test_dataset_conversion(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=False)
if "labels" in tf_inputs_dict:
return # This is some kinda funky decoder model that needs labels in its forward pass
tf_inputs_dict = {
key: val
for key, val in tf_inputs_dict.items()
if "head_mask" not in key and isinstance(val, tf.Tensor)
}
tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0] # Use a random other tensor
input_dataset = Dataset.from_dict(tf_inputs_dict)
tf_dataset = model.prepare_tf_dataset(
input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False
)
test_batch = next(iter(tf_dataset))
if isinstance(test_batch, tf.Tensor):
self.assertEqual(len(test_batch), len(input_dataset)) # Assert we didn't lose any data
elif isinstance(test_batch, dict):
# Assert we discarded the unwanted extra column but kept everything else
self.assertEqual(len(test_batch), len(input_dataset.features) - 1)
self.assertNotIn("extra_unwanted_column", test_batch)
for tensor in test_batch.values():
self.assertTrue(isinstance(tensor, tf.Tensor))
self.assertEqual(len(tensor), len(input_dataset)) # Assert we didn't lose any data
model(test_batch, training=False)
if "labels" in inspect.signature(model_class.call).parameters.keys():
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
if "labels" not in tf_inputs_dict:
return # This model isn't giving us labels after all, don't try training with it
tf_inputs_dict = {key: val for key, val in tf_inputs_dict.items() if "head_mask" not in key}
tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0] # Use a random other tensor
input_dataset = Dataset.from_dict(tf_inputs_dict)
tf_dataset = model.prepare_tf_dataset(
input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False
)
test_batch, test_batch_labels = next(iter(tf_dataset))
self.assertGreater(len(test_batch_labels), 0) # Assert the labels are present
feature_columns = 1 if isinstance(test_batch, tf.Tensor) else len(test_batch)
label_columns = 1 if isinstance(test_batch_labels, tf.Tensor) else len(test_batch_labels)
# Assert we discarded the unwanted extra column but kept everything else
self.assertEqual(feature_columns + label_columns, len(input_dataset.features) - 1)
if isinstance(test_batch, dict):
self.assertNotIn("extra_unwanted_column", test_batch)
if isinstance(test_batch_labels, dict):
self.assertNotIn("extra_unwanted_column", test_batch_labels)
model.compile(optimizer="sgd", run_eagerly=True)
model.train_on_batch(test_batch, test_batch_labels)
def _test_xla_generate(self, **generate_kwargs):
def _generate_and_check_results(model, inputs_dict):
if "input_ids" in inputs_dict:
inputs = inputs_dict["input_ids"]
# make sure there are no pad tokens in prompt, which may trigger unwanted behavior
if model.generation_config.pad_token_id is not None:
if config.pad_token_id == 0:
new_pad_token = model.generation_config.pad_token_id + 1
else:
new_pad_token = model.generation_config.pad_token_id - 1
else:
new_pad_token = None
inputs = tf.where(inputs != model.generation_config.pad_token_id, inputs, new_pad_token)
elif "input_features" in inputs_dict:
inputs = inputs_dict["input_features"]
else:
raise ValueError("No valid generate input found in inputs_dict")
generated = model.generate(inputs, **generate_kwargs).numpy()
generate_xla = tf.function(model.generate, jit_compile=True)
generated_xla = generate_xla(inputs, **generate_kwargs).numpy()
# Due to numerical instability, let's fail the test only if there are more than 10% of input sequences give
# different outputs between XLA and non-XLA versions. If there are less than 10 examples, let's be strict
# and not allow any difference.
diff = [[], []]
for _generated, _generated_xla in zip(generated.tolist(), generated_xla.tolist()):
if _generated != _generated_xla:
diff[0].append(_generated)
diff[1].append(_generated_xla)
ratio = len(diff[0]) / len(generated)
if ratio > 0.1 or (len(diff[0]) > 0 and len(generated) < 10):
self.assertListEqual(diff[0], diff[1])
for model_class in self.all_generative_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.eos_token_id = None # Generate until max length
config.do_sample = False
# fix config for models with additional sequence-length limiting settings
for var_name in ["max_position_embeddings", "max_target_positions"]:
attr = getattr(config, var_name, None)
if attr is not None and attr < generate_kwargs["max_new_tokens"]:
try:
setattr(config, var_name, generate_kwargs["max_new_tokens"])
except NotImplementedError:
# xlnet will raise an exception when trying to set
# max_position_embeddings.
pass
model = model_class(config)
if model.supports_xla_generation:
_generate_and_check_results(model, inputs_dict)
else:
with self.assertRaises(ValueError):
_generate_and_check_results(model, inputs_dict)
def test_xla_generate_fast(self):
"""
Basic quick test for generate-compatible classes that confirms that XLA-generated tokens are the same as their
non XLA counterparts.
Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception
"""
self._test_xla_generate(num_beams=1, num_return_sequences=1, max_new_tokens=3)
@slow
def test_xla_generate_contrastive(self):
"""
Slow and challenging version of `test_xla_generate_fast` for contrastive search -- contrastive search directly
manipulates the model cache and other outputs, and this test ensures that they are in a valid format that is
also supported by XLA.
Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception
"""
self._test_xla_generate(num_beams=1, num_return_sequences=1, max_new_tokens=16, penalty_alpha=0.5, top_k=4)
@slow
def test_xla_generate_slow(self):
"""
Slow and challenging version of `test_xla_generate_fast` -- this test asks for several long sequences using
beam search, with and without XLA. The two outputs should match, and a failure in this test indicates that the
model may need further analysis if it is to be used for XLA generation.
Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception
"""
self._test_xla_generate(num_beams=8, num_return_sequences=2, max_new_tokens=128)
def _generate_random_bad_tokens(self, num_bad_tokens, model):
# special tokens cannot be bad tokens
special_tokens = []
if model.config.bos_token_id is not None:
special_tokens.append(model.config.bos_token_id)
if model.config.pad_token_id is not None:
special_tokens.append(model.config.pad_token_id)
if model.config.eos_token_id is not None:
special_tokens.append(model.config.eos_token_id)
# create random bad tokens that are not special tokens
bad_tokens = []
while len(bad_tokens) < num_bad_tokens:
token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
if token not in special_tokens:
bad_tokens.append(token)
return bad_tokens
def _check_generated_ids(self, output_ids):
for token_id in output_ids[0].numpy().tolist():
self.assertGreaterEqual(token_id, 0)
self.assertLess(token_id, self.model_tester.vocab_size)
def _check_match_tokens(self, generated_ids, bad_words_ids):
# for all bad word tokens
for bad_word_ids in bad_words_ids:
# for all slices in batch
for generated_ids_slice in generated_ids:
# for all word idx
for i in range(len(bad_word_ids), len(generated_ids_slice)):
# if tokens match
if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
return True
return False
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
return output
def random_attention_mask(shape, rng=None, name=None, dtype=None):
attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None, dtype=dtype)
# make sure that at least one token is attended to for each batch
attn_mask = tf.concat([attn_mask[:, :-1], tf.ones_like(attn_mask[:, -1:], dtype=dtype)], axis=-1)
return attn_mask
def floats_tensor(shape, scale=1.0, rng=None, name=None, dtype=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.random() * scale)
return tf.reshape(tf.constant(values, dtype=dtype if dtype is not None else tf.float32), shape=shape)
| transformers/tests/test_modeling_tf_common.py/0 | {
"file_path": "transformers/tests/test_modeling_tf_common.py",
"repo_id": "transformers",
"token_count": 43519
} | 188 |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from pathlib import Path
from transformers import is_vision_available, load_tool
from transformers.testing_utils import get_tests_dir
from .test_tools_common import ToolTesterMixin
if is_vision_available():
from PIL import Image
class ImageSegmentationToolTester(unittest.TestCase, ToolTesterMixin):
def setUp(self):
self.tool = load_tool("image-segmentation")
self.tool.setup()
self.remote_tool = load_tool("image-segmentation", remote=True)
def test_exact_match_arg(self):
image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png")
result = self.tool(image, "cat")
self.assertTrue(isinstance(result, Image.Image))
def test_exact_match_arg_remote(self):
image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png")
result = self.remote_tool(image, "cat")
self.assertTrue(isinstance(result, Image.Image))
def test_exact_match_kwarg(self):
image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png")
result = self.tool(image=image, label="cat")
self.assertTrue(isinstance(result, Image.Image))
def test_exact_match_kwarg_remote(self):
image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png")
result = self.remote_tool(image=image, label="cat")
self.assertTrue(isinstance(result, Image.Image))
| transformers/tests/tools/test_image_segmentation.py/0 | {
"file_path": "transformers/tests/tools/test_image_segmentation.py",
"repo_id": "transformers",
"token_count": 742
} | 189 |
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import unittest
import numpy as np
from transformers.data.data_collator import default_data_collator
from transformers.testing_utils import require_accelerate, require_torch
from transformers.trainer_utils import RemoveColumnsCollator, find_executable_batch_size
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import IterableDataset
from transformers.modeling_outputs import SequenceClassifierOutput
from transformers.tokenization_utils_base import BatchEncoding
from transformers.trainer_pt_utils import (
DistributedLengthGroupedSampler,
DistributedSamplerWithLoop,
DistributedTensorGatherer,
IterableDatasetShard,
LabelSmoother,
LengthGroupedSampler,
SequentialDistributedSampler,
ShardSampler,
get_parameter_names,
numpy_pad_and_concatenate,
torch_pad_and_concatenate,
)
class TstLayer(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.linear1 = nn.Linear(hidden_size, hidden_size)
self.ln1 = nn.LayerNorm(hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.ln2 = nn.LayerNorm(hidden_size)
self.bias = nn.Parameter(torch.zeros(hidden_size))
def forward(self, x):
h = self.ln1(nn.functional.relu(self.linear1(x)))
h = nn.functional.relu(self.linear2(x))
return self.ln2(x + h + self.bias)
class RandomIterableDataset(IterableDataset):
# For testing, an iterable dataset of random length
def __init__(self, p_stop=0.01, max_length=1000):
self.p_stop = p_stop
self.max_length = max_length
self.generator = torch.Generator()
def __iter__(self):
count = 0
stop = False
while not stop and count < self.max_length:
yield count
count += 1
number = torch.rand(1, generator=self.generator).item()
stop = number < self.p_stop
@require_torch
class TrainerUtilsTest(unittest.TestCase):
def test_distributed_tensor_gatherer(self):
# Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1
world_size = 4
num_samples = 21
input_indices = [
[0, 1, 6, 7, 12, 13, 18, 19],
[2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1],
[5, 11, 17, 2],
]
predictions = np.random.normal(size=(num_samples, 13))
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices in input_indices:
gatherer.add_arrays(predictions[indices])
result = gatherer.finalize()
self.assertTrue(np.array_equal(result, predictions))
# With nested tensors
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices in input_indices:
gatherer.add_arrays([predictions[indices], [predictions[indices], predictions[indices]]])
result = gatherer.finalize()
self.assertTrue(isinstance(result, list))
self.assertEqual(len(result), 2)
self.assertTrue(isinstance(result[1], list))
self.assertEqual(len(result[1]), 2)
self.assertTrue(np.array_equal(result[0], predictions))
self.assertTrue(np.array_equal(result[1][0], predictions))
self.assertTrue(np.array_equal(result[1][1], predictions))
def test_distributed_tensor_gatherer_different_shapes(self):
# Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1
world_size = 4
num_samples = 21
input_indices = [
[0, 1, 6, 7, 12, 13, 18, 19],
[2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1],
[5, 11, 17, 2],
]
sequence_lengths = [8, 10, 13]
predictions = np.random.normal(size=(num_samples, 13))
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices, seq_length in zip(input_indices, sequence_lengths):
gatherer.add_arrays(predictions[indices, :seq_length])
result = gatherer.finalize()
# Remove the extra samples added at the end for a round multiple of num processes.
actual_indices = [input_indices[0], input_indices[1][:-2], input_indices[2][:-1]]
for indices, seq_length in zip(actual_indices, sequence_lengths):
self.assertTrue(np.array_equal(result[indices, :seq_length], predictions[indices, :seq_length]))
# With nested tensors
predictions = np.random.normal(size=(num_samples, 13))
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices, seq_length in zip(input_indices, sequence_lengths):
gatherer.add_arrays([predictions[indices, :seq_length], predictions[indices]])
result = gatherer.finalize()
for indices, seq_length in zip(actual_indices, sequence_lengths):
self.assertTrue(np.array_equal(result[0][indices, :seq_length], predictions[indices, :seq_length]))
self.assertTrue(np.array_equal(result[1], predictions))
# Check if works if varying seq_length is second
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices, seq_length in zip(input_indices, sequence_lengths):
gatherer.add_arrays([predictions[indices], predictions[indices, :seq_length]])
result = gatherer.finalize()
self.assertTrue(np.array_equal(result[0], predictions))
for indices, seq_length in zip(actual_indices, sequence_lengths):
self.assertTrue(np.array_equal(result[1][indices, :seq_length], predictions[indices, :seq_length]))
def test_label_smoothing(self):
epsilon = 0.1
num_labels = 12
random_logits = torch.randn(4, 5, num_labels)
random_labels = torch.randint(0, num_labels, (4, 5))
loss = nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1))
model_output = SequenceClassifierOutput(logits=random_logits)
label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels)
log_probs = -nn.functional.log_softmax(random_logits, dim=-1)
expected_loss = (1 - epsilon) * loss + epsilon * log_probs.mean()
self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss))
# With a few -100 labels
random_labels[0, 1] = -100
random_labels[2, 1] = -100
random_labels[2, 3] = -100
loss = nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1))
model_output = SequenceClassifierOutput(logits=random_logits)
label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels)
log_probs = -nn.functional.log_softmax(random_logits, dim=-1)
# Mask the log probs with the -100 labels
log_probs[0, 1] = 0.0
log_probs[2, 1] = 0.0
log_probs[2, 3] = 0.0
expected_loss = (1 - epsilon) * loss + epsilon * log_probs.sum() / (num_labels * 17)
self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss))
def test_group_by_length(self):
# Get some inputs of random lengths
lengths = torch.randint(0, 25, (100,)).tolist()
# Put one bigger than the others to check it ends up in first position
lengths[32] = 50
indices = list(LengthGroupedSampler(4, lengths=lengths))
# The biggest element should be first
self.assertEqual(lengths[indices[0]], 50)
# The indices should be a permutation of range(100)
self.assertEqual(sorted(indices), list(range(100)))
def test_group_by_length_with_dict(self):
# Get some inputs of random lengths
data = []
for _ in range(6):
input_ids = torch.randint(0, 25, (100,)).tolist()
data.append({"input_ids": input_ids})
# Put one bigger than the others to check it ends up in first position
data[3]["input_ids"] = torch.randint(0, 25, (105,)).tolist()
indices = list(LengthGroupedSampler(4, dataset=data))
# The biggest element should be first
self.assertEqual(len(data[indices[0]]["input_ids"]), 105)
# The indices should be a permutation of range(6)
self.assertEqual(sorted(indices), list(range(6)))
def test_group_by_length_with_batch_encoding(self):
# Get some inputs of random lengths
data = []
for _ in range(6):
input_ids = torch.randint(0, 25, (100,)).tolist()
data.append(BatchEncoding({"input_ids": input_ids}))
# Put one bigger than the others to check it ends up in first position
data[3]["input_ids"] = torch.randint(0, 25, (105,)).tolist()
indices = list(LengthGroupedSampler(4, dataset=data))
# The biggest element should be first
self.assertEqual(len(data[indices[0]]["input_ids"]), 105)
# The indices should be a permutation of range(6)
self.assertEqual(sorted(indices), list(range(6)))
def test_distributed_length_grouped(self):
# Get some inputs of random lengths
lengths = torch.randint(0, 25, (100,)).tolist()
# Put one bigger than the others to check it ends up in first position
lengths[32] = 50
indices_process_0 = list(DistributedLengthGroupedSampler(4, num_replicas=2, rank=0, lengths=lengths))
indices_process_1 = list(DistributedLengthGroupedSampler(4, num_replicas=2, rank=1, lengths=lengths))
# The biggest element should be first
self.assertEqual(lengths[indices_process_0[0]], 50)
# The indices should be a permutation of range(100)
self.assertEqual(sorted(indices_process_0 + indices_process_1), list(range(100)))
def test_get_parameter_names(self):
model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
# fmt: off
self.assertEqual(
get_parameter_names(model, [nn.LayerNorm]),
['0.linear1.weight', '0.linear1.bias', '0.linear2.weight', '0.linear2.bias', '0.bias', '1.0.linear1.weight', '1.0.linear1.bias', '1.0.linear2.weight', '1.0.linear2.bias', '1.0.bias', '1.1.linear1.weight', '1.1.linear1.bias', '1.1.linear2.weight', '1.1.linear2.bias', '1.1.bias']
)
# fmt: on
def test_distributed_sampler_with_loop(self):
batch_size = 16
for length in [23, 64, 123]:
dataset = list(range(length))
shard1 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=0)
shard2 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=1)
# Set seeds
shard1.set_epoch(0)
shard2.set_epoch(0)
# Sample
samples1 = list(shard1)
samples2 = list(shard2)
self.assertTrue(len(samples1) % batch_size == 0)
self.assertTrue(len(samples2) % batch_size == 0)
total = []
for sample1, sample2 in zip(samples1, samples2):
total += [sample1, sample2]
self.assertEqual(set(total[:length]), set(dataset))
self.assertEqual(set(total[length:]), set(total[: (len(total) - length)]))
def test_sequential_distributed_sampler(self):
batch_size = 16
for length in [23, 64, 123]:
dataset = list(range(length))
shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0)
shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1)
# Sample
samples1 = list(shard1)
samples2 = list(shard2)
total = samples1 + samples2
self.assertListEqual(total[:length], dataset)
self.assertListEqual(total[length:], dataset[: (len(total) - length)])
# With a batch_size passed
shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0, batch_size=batch_size)
shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1, batch_size=batch_size)
# Sample
samples1 = list(shard1)
samples2 = list(shard2)
self.assertTrue(len(samples1) % batch_size == 0)
self.assertTrue(len(samples2) % batch_size == 0)
total = samples1 + samples2
self.assertListEqual(total[:length], dataset)
self.assertListEqual(total[length:], dataset[: (len(total) - length)])
def check_iterable_dataset_shard(self, dataset, batch_size, drop_last, num_processes=2, epoch=0):
# Set the seed for the base dataset to get the proper reference.
dataset.generator.manual_seed(epoch)
reference = list(dataset)
shards = [
IterableDatasetShard(
dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
)
for i in range(num_processes)
]
for shard in shards:
shard.set_epoch(epoch)
shard_lists = [list(shard) for shard in shards]
for shard in shard_lists:
# All shards have a number of samples that is a round multiple of batch size
self.assertTrue(len(shard) % batch_size == 0)
# All shards have the same number of samples
self.assertEqual(len(shard), len(shard_lists[0]))
for shard in shards:
# All shards know the total number of samples
self.assertEqual(shard.num_examples, len(reference))
observed = []
for idx in range(0, len(shard_lists[0]), batch_size):
for shard in shard_lists:
observed += shard[idx : idx + batch_size]
# If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of
# batch_size
if not drop_last:
while len(reference) < len(observed):
reference += reference
self.assertListEqual(observed, reference[: len(observed)])
# Check equivalence between IterableDataset and ShardSampler
dataset.generator.manual_seed(epoch)
reference = list(dataset)
sampler_shards = [
ShardSampler(
reference, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
)
for i in range(num_processes)
]
for shard, sampler_shard in zip(shard_lists, sampler_shards):
self.assertListEqual(shard, list(sampler_shard))
def test_iterable_dataset_shard(self):
dataset = RandomIterableDataset()
self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=2, epoch=0)
self.check_iterable_dataset_shard(dataset, 4, drop_last=False, num_processes=2, epoch=0)
self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=3, epoch=42)
self.check_iterable_dataset_shard(dataset, 4, drop_last=False, num_processes=3, epoch=42)
def test_iterable_dataset_shard_with_length(self):
sampler_shards = [
IterableDatasetShard(list(range(100)), batch_size=4, drop_last=True, num_processes=2, process_index=i)
for i in range(2)
]
# Build expected shards: each process will have batches of size 4 until there is not enough elements to
# form two full batches (so we stop at 96 = (100 // (4 * 2)) * 4)
expected_shards = [[], []]
current_shard = 0
for i in range(0, 96, 4):
expected_shards[current_shard].extend(list(range(i, i + 4)))
current_shard = 1 - current_shard
self.assertListEqual([list(shard) for shard in sampler_shards], expected_shards)
self.assertListEqual([len(shard) for shard in sampler_shards], [len(shard) for shard in expected_shards])
sampler_shards = [
IterableDatasetShard(list(range(100)), batch_size=4, drop_last=False, num_processes=2, process_index=i)
for i in range(2)
]
# When drop_last=False, we get two last full batches by looping back to the beginning.
expected_shards[0].extend(list(range(96, 100)))
expected_shards[1].extend(list(range(0, 4)))
self.assertListEqual([list(shard) for shard in sampler_shards], expected_shards)
self.assertListEqual([len(shard) for shard in sampler_shards], [len(shard) for shard in expected_shards])
def check_shard_sampler(self, dataset, batch_size, drop_last, num_processes=2):
shards = [
ShardSampler(
dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
)
for i in range(num_processes)
]
shard_lists = [list(shard) for shard in shards]
for shard in shard_lists:
# All shards have a number of samples that is a round multiple of batch size
self.assertTrue(len(shard) % batch_size == 0)
# All shards have the same number of samples
self.assertEqual(len(shard), len(shard_lists[0]))
observed = []
for idx in range(0, len(shard_lists[0]), batch_size):
for shard in shard_lists:
observed += shard[idx : idx + batch_size]
# If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of
# batch_size
reference = copy.copy(dataset)
if not drop_last:
while len(reference) < len(observed):
reference += reference
self.assertListEqual(observed, reference[: len(observed)])
def test_shard_sampler(self):
for n_elements in [64, 123]:
dataset = list(range(n_elements))
self.check_shard_sampler(dataset, 4, drop_last=True, num_processes=2)
self.check_shard_sampler(dataset, 4, drop_last=False, num_processes=2)
self.check_shard_sampler(dataset, 4, drop_last=True, num_processes=3)
self.check_shard_sampler(dataset, 4, drop_last=False, num_processes=3)
@require_accelerate
def test_executable_batch_size(self):
batch_sizes = []
@find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=True)
def mock_training_loop_function(batch_size):
nonlocal batch_sizes
batch_sizes.append(batch_size)
if batch_size > 16:
raise RuntimeError("CUDA out of memory.")
mock_training_loop_function()
self.assertEqual(batch_sizes, [64, 32, 16])
@require_accelerate
def test_executable_batch_size_no_search(self):
batch_sizes = []
@find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=False)
def mock_training_loop_function(batch_size):
nonlocal batch_sizes
batch_sizes.append(batch_size)
mock_training_loop_function()
self.assertEqual(batch_sizes, [64])
@require_accelerate
def test_executable_batch_size_with_error(self):
@find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=False)
def mock_training_loop_function(batch_size):
raise RuntimeError("CUDA out of memory.")
with self.assertRaises(RuntimeError) as cm:
mock_training_loop_function()
self.assertEqual("CUDA out of memory", cm.args[0])
def test_pad_and_concatenate_with_1d(self):
"""Tests whether pad_and_concatenate works with scalars."""
array1 = 1.0
array2 = 2.0
result = numpy_pad_and_concatenate(array1, array2)
self.assertTrue(np.array_equal(np.array([1.0, 2.0]), result))
tensor1 = torch.tensor(1.0)
tensor2 = torch.tensor(2.0)
result = torch_pad_and_concatenate(tensor1, tensor2)
self.assertTrue(torch.equal(result, torch.Tensor([1.0, 2.0])))
def test_remove_columns_collator(self):
class MockLogger:
def __init__(self) -> None:
self.called = 0
def info(self, msg):
self.called += 1
self.last_msg = msg
data_batch = [
{"col1": 1, "col2": 2, "col3": 3},
{"col1": 1, "col2": 2, "col3": 3},
]
logger = MockLogger()
remove_columns_collator = RemoveColumnsCollator(
default_data_collator, ["col1", "col2"], logger, "model", "training"
)
self.assertNotIn("col3", remove_columns_collator(data_batch))
# check that the logging message is printed out only once
remove_columns_collator(data_batch)
remove_columns_collator(data_batch)
self.assertEqual(logger.called, 1)
self.assertIn("col3", logger.last_msg)
| transformers/tests/trainer/test_trainer_utils.py/0 | {
"file_path": "transformers/tests/trainer/test_trainer_utils.py",
"repo_id": "transformers",
"token_count": 9624
} | 190 |
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
import datasets
import numpy as np
import pytest
from huggingface_hub.file_download import http_get
from requests import ConnectTimeout, ReadTimeout
from tests.pipelines.test_pipelines_document_question_answering import INVOICE_URL
from transformers import is_torch_available, is_vision_available
from transformers.image_utils import ChannelDimension, get_channel_dimension_axis, make_list_of_images
from transformers.testing_utils import is_flaky, require_torch, require_vision
if is_torch_available():
import torch
if is_vision_available():
import PIL.Image
from transformers import ImageFeatureExtractionMixin
from transformers.image_utils import get_image_size, infer_channel_dimension_format, load_image
def get_random_image(height, width):
random_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
return PIL.Image.fromarray(random_array)
@require_vision
class ImageFeatureExtractionTester(unittest.TestCase):
def test_conversion_image_to_array(self):
feature_extractor = ImageFeatureExtractionMixin()
image = get_random_image(16, 32)
# Conversion with defaults (rescale + channel first)
array1 = feature_extractor.to_numpy_array(image)
self.assertTrue(array1.dtype, np.float32)
self.assertEqual(array1.shape, (3, 16, 32))
# Conversion with rescale and not channel first
array2 = feature_extractor.to_numpy_array(image, channel_first=False)
self.assertTrue(array2.dtype, np.float32)
self.assertEqual(array2.shape, (16, 32, 3))
self.assertTrue(np.array_equal(array1, array2.transpose(2, 0, 1)))
# Conversion with no rescale and channel first
array3 = feature_extractor.to_numpy_array(image, rescale=False)
self.assertTrue(array3.dtype, np.uint8)
self.assertEqual(array3.shape, (3, 16, 32))
self.assertTrue(np.array_equal(array1, array3.astype(np.float32) * (1 / 255.0)))
# Conversion with no rescale and not channel first
array4 = feature_extractor.to_numpy_array(image, rescale=False, channel_first=False)
self.assertTrue(array4.dtype, np.uint8)
self.assertEqual(array4.shape, (16, 32, 3))
self.assertTrue(np.array_equal(array2, array4.astype(np.float32) * (1 / 255.0)))
def test_conversion_array_to_array(self):
feature_extractor = ImageFeatureExtractionMixin()
array = np.random.randint(0, 256, (16, 32, 3), dtype=np.uint8)
# By default, rescale (for an array of ints) and channel permute
array1 = feature_extractor.to_numpy_array(array)
self.assertTrue(array1.dtype, np.float32)
self.assertEqual(array1.shape, (3, 16, 32))
self.assertTrue(np.array_equal(array1, array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0)))
# Same with no permute
array2 = feature_extractor.to_numpy_array(array, channel_first=False)
self.assertTrue(array2.dtype, np.float32)
self.assertEqual(array2.shape, (16, 32, 3))
self.assertTrue(np.array_equal(array2, array.astype(np.float32) * (1 / 255.0)))
# Force rescale to False
array3 = feature_extractor.to_numpy_array(array, rescale=False)
self.assertTrue(array3.dtype, np.uint8)
self.assertEqual(array3.shape, (3, 16, 32))
self.assertTrue(np.array_equal(array3, array.transpose(2, 0, 1)))
# Force rescale to False and no channel permute
array4 = feature_extractor.to_numpy_array(array, rescale=False, channel_first=False)
self.assertTrue(array4.dtype, np.uint8)
self.assertEqual(array4.shape, (16, 32, 3))
self.assertTrue(np.array_equal(array4, array))
# Now test the default rescale for a float array (defaults to False)
array5 = feature_extractor.to_numpy_array(array2)
self.assertTrue(array5.dtype, np.float32)
self.assertEqual(array5.shape, (3, 16, 32))
self.assertTrue(np.array_equal(array5, array1))
def test_make_list_of_images_numpy(self):
# Test a single image is converted to a list of 1 image
images = np.random.randint(0, 256, (16, 32, 3))
images_list = make_list_of_images(images)
self.assertEqual(len(images_list), 1)
self.assertTrue(np.array_equal(images_list[0], images))
self.assertIsInstance(images_list, list)
# Test a batch of images is converted to a list of images
images = np.random.randint(0, 256, (4, 16, 32, 3))
images_list = make_list_of_images(images)
self.assertEqual(len(images_list), 4)
self.assertTrue(np.array_equal(images_list[0], images[0]))
self.assertIsInstance(images_list, list)
# Test a list of images is not modified
images = [np.random.randint(0, 256, (16, 32, 3)) for _ in range(4)]
images_list = make_list_of_images(images)
self.assertEqual(len(images_list), 4)
self.assertTrue(np.array_equal(images_list[0], images[0]))
self.assertIsInstance(images_list, list)
# Test batched masks with no channel dimension are converted to a list of masks
masks = np.random.randint(0, 2, (4, 16, 32))
masks_list = make_list_of_images(masks, expected_ndims=2)
self.assertEqual(len(masks_list), 4)
self.assertTrue(np.array_equal(masks_list[0], masks[0]))
self.assertIsInstance(masks_list, list)
@require_torch
def test_make_list_of_images_torch(self):
# Test a single image is converted to a list of 1 image
images = torch.randint(0, 256, (16, 32, 3))
images_list = make_list_of_images(images)
self.assertEqual(len(images_list), 1)
self.assertTrue(np.array_equal(images_list[0], images))
self.assertIsInstance(images_list, list)
# Test a batch of images is converted to a list of images
images = torch.randint(0, 256, (4, 16, 32, 3))
images_list = make_list_of_images(images)
self.assertEqual(len(images_list), 4)
self.assertTrue(np.array_equal(images_list[0], images[0]))
self.assertIsInstance(images_list, list)
# Test a list of images is left unchanged
images = [torch.randint(0, 256, (16, 32, 3)) for _ in range(4)]
images_list = make_list_of_images(images)
self.assertEqual(len(images_list), 4)
self.assertTrue(np.array_equal(images_list[0], images[0]))
self.assertIsInstance(images_list, list)
@require_torch
def test_conversion_torch_to_array(self):
feature_extractor = ImageFeatureExtractionMixin()
tensor = torch.randint(0, 256, (16, 32, 3))
array = tensor.numpy()
# By default, rescale (for a tensor of ints) and channel permute
array1 = feature_extractor.to_numpy_array(array)
self.assertTrue(array1.dtype, np.float32)
self.assertEqual(array1.shape, (3, 16, 32))
self.assertTrue(np.array_equal(array1, array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0)))
# Same with no permute
array2 = feature_extractor.to_numpy_array(array, channel_first=False)
self.assertTrue(array2.dtype, np.float32)
self.assertEqual(array2.shape, (16, 32, 3))
self.assertTrue(np.array_equal(array2, array.astype(np.float32) * (1 / 255.0)))
# Force rescale to False
array3 = feature_extractor.to_numpy_array(array, rescale=False)
self.assertTrue(array3.dtype, np.uint8)
self.assertEqual(array3.shape, (3, 16, 32))
self.assertTrue(np.array_equal(array3, array.transpose(2, 0, 1)))
# Force rescale to False and no channel permute
array4 = feature_extractor.to_numpy_array(array, rescale=False, channel_first=False)
self.assertTrue(array4.dtype, np.uint8)
self.assertEqual(array4.shape, (16, 32, 3))
self.assertTrue(np.array_equal(array4, array))
# Now test the default rescale for a float tensor (defaults to False)
array5 = feature_extractor.to_numpy_array(array2)
self.assertTrue(array5.dtype, np.float32)
self.assertEqual(array5.shape, (3, 16, 32))
self.assertTrue(np.array_equal(array5, array1))
def test_conversion_image_to_image(self):
feature_extractor = ImageFeatureExtractionMixin()
image = get_random_image(16, 32)
# On an image, `to_pil_image1` is a noop.
image1 = feature_extractor.to_pil_image(image)
self.assertTrue(isinstance(image, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image), np.array(image1)))
def test_conversion_array_to_image(self):
feature_extractor = ImageFeatureExtractionMixin()
array = np.random.randint(0, 256, (16, 32, 3), dtype=np.uint8)
# By default, no rescale (for an array of ints)
image1 = feature_extractor.to_pil_image(array)
self.assertTrue(isinstance(image1, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image1), array))
# If the array is channel-first, proper reordering of the channels is done.
image2 = feature_extractor.to_pil_image(array.transpose(2, 0, 1))
self.assertTrue(isinstance(image2, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image2), array))
# If the array has floating type, it's rescaled by default.
image3 = feature_extractor.to_pil_image(array.astype(np.float32) * (1 / 255.0))
self.assertTrue(isinstance(image3, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image3), array))
# You can override the default to rescale.
image4 = feature_extractor.to_pil_image(array.astype(np.float32), rescale=False)
self.assertTrue(isinstance(image4, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image4), array))
# And with floats + channel first.
image5 = feature_extractor.to_pil_image(array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0))
self.assertTrue(isinstance(image5, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image5), array))
@require_torch
def test_conversion_tensor_to_image(self):
feature_extractor = ImageFeatureExtractionMixin()
tensor = torch.randint(0, 256, (16, 32, 3))
array = tensor.numpy()
# By default, no rescale (for a tensor of ints)
image1 = feature_extractor.to_pil_image(tensor)
self.assertTrue(isinstance(image1, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image1), array))
# If the tensor is channel-first, proper reordering of the channels is done.
image2 = feature_extractor.to_pil_image(tensor.permute(2, 0, 1))
self.assertTrue(isinstance(image2, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image2), array))
# If the tensor has floating type, it's rescaled by default.
image3 = feature_extractor.to_pil_image(tensor.float() / 255.0)
self.assertTrue(isinstance(image3, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image3), array))
# You can override the default to rescale.
image4 = feature_extractor.to_pil_image(tensor.float(), rescale=False)
self.assertTrue(isinstance(image4, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image4), array))
# And with floats + channel first.
image5 = feature_extractor.to_pil_image(tensor.permute(2, 0, 1).float() * (1 / 255.0))
self.assertTrue(isinstance(image5, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image5), array))
def test_resize_image_and_array(self):
feature_extractor = ImageFeatureExtractionMixin()
image = get_random_image(16, 32)
array = np.array(image)
# Size can be an int or a tuple of ints.
resized_image = feature_extractor.resize(image, 8)
self.assertTrue(isinstance(resized_image, PIL.Image.Image))
self.assertEqual(resized_image.size, (8, 8))
resized_image1 = feature_extractor.resize(image, (8, 16))
self.assertTrue(isinstance(resized_image1, PIL.Image.Image))
self.assertEqual(resized_image1.size, (8, 16))
# Passing an array converts it to a PIL Image.
resized_image2 = feature_extractor.resize(array, 8)
self.assertTrue(isinstance(resized_image2, PIL.Image.Image))
self.assertEqual(resized_image2.size, (8, 8))
self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2)))
resized_image3 = feature_extractor.resize(image, (8, 16))
self.assertTrue(isinstance(resized_image3, PIL.Image.Image))
self.assertEqual(resized_image3.size, (8, 16))
self.assertTrue(np.array_equal(np.array(resized_image1), np.array(resized_image3)))
def test_resize_image_and_array_non_default_to_square(self):
feature_extractor = ImageFeatureExtractionMixin()
heights_widths = [
# height, width
# square image
(28, 28),
(27, 27),
# rectangular image: h < w
(28, 34),
(29, 35),
# rectangular image: h > w
(34, 28),
(35, 29),
]
# single integer or single integer in tuple/list
sizes = [22, 27, 28, 36, [22], (27,)]
for (height, width), size in zip(heights_widths, sizes):
for max_size in (None, 37, 1000):
image = get_random_image(height, width)
array = np.array(image)
size = size[0] if isinstance(size, (list, tuple)) else size
# Size can be an int or a tuple of ints.
# If size is an int, smaller edge of the image will be matched to this number.
# i.e, if height > width, then image will be rescaled to (size * height / width, size).
if height < width:
exp_w, exp_h = (int(size * width / height), size)
if max_size is not None and max_size < exp_w:
exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
elif width < height:
exp_w, exp_h = (size, int(size * height / width))
if max_size is not None and max_size < exp_h:
exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
else:
exp_w, exp_h = (size, size)
if max_size is not None and max_size < size:
exp_w, exp_h = max_size, max_size
resized_image = feature_extractor.resize(image, size=size, default_to_square=False, max_size=max_size)
self.assertTrue(isinstance(resized_image, PIL.Image.Image))
self.assertEqual(resized_image.size, (exp_w, exp_h))
# Passing an array converts it to a PIL Image.
resized_image2 = feature_extractor.resize(array, size=size, default_to_square=False, max_size=max_size)
self.assertTrue(isinstance(resized_image2, PIL.Image.Image))
self.assertEqual(resized_image2.size, (exp_w, exp_h))
self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2)))
@require_torch
def test_resize_tensor(self):
feature_extractor = ImageFeatureExtractionMixin()
tensor = torch.randint(0, 256, (16, 32, 3))
array = tensor.numpy()
# Size can be an int or a tuple of ints.
resized_image = feature_extractor.resize(tensor, 8)
self.assertTrue(isinstance(resized_image, PIL.Image.Image))
self.assertEqual(resized_image.size, (8, 8))
resized_image1 = feature_extractor.resize(tensor, (8, 16))
self.assertTrue(isinstance(resized_image1, PIL.Image.Image))
self.assertEqual(resized_image1.size, (8, 16))
# Check we get the same results as with NumPy arrays.
resized_image2 = feature_extractor.resize(array, 8)
self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2)))
resized_image3 = feature_extractor.resize(array, (8, 16))
self.assertTrue(np.array_equal(np.array(resized_image1), np.array(resized_image3)))
def test_normalize_image(self):
feature_extractor = ImageFeatureExtractionMixin()
image = get_random_image(16, 32)
array = np.array(image)
mean = [0.1, 0.5, 0.9]
std = [0.2, 0.4, 0.6]
# PIL Image are converted to NumPy arrays for the normalization
normalized_image = feature_extractor.normalize(image, mean, std)
self.assertTrue(isinstance(normalized_image, np.ndarray))
self.assertEqual(normalized_image.shape, (3, 16, 32))
# During the conversion rescale and channel first will be applied.
expected = array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0)
np_mean = np.array(mean).astype(np.float32)[:, None, None]
np_std = np.array(std).astype(np.float32)[:, None, None]
expected = (expected - np_mean) / np_std
self.assertTrue(np.array_equal(normalized_image, expected))
def test_normalize_array(self):
feature_extractor = ImageFeatureExtractionMixin()
array = np.random.random((16, 32, 3))
mean = [0.1, 0.5, 0.9]
std = [0.2, 0.4, 0.6]
# mean and std can be passed as lists or NumPy arrays.
expected = (array - np.array(mean)) / np.array(std)
normalized_array = feature_extractor.normalize(array, mean, std)
self.assertTrue(np.array_equal(normalized_array, expected))
normalized_array = feature_extractor.normalize(array, np.array(mean), np.array(std))
self.assertTrue(np.array_equal(normalized_array, expected))
# Normalize will detect automatically if channel first or channel last is used.
array = np.random.random((3, 16, 32))
expected = (array - np.array(mean)[:, None, None]) / np.array(std)[:, None, None]
normalized_array = feature_extractor.normalize(array, mean, std)
self.assertTrue(np.array_equal(normalized_array, expected))
normalized_array = feature_extractor.normalize(array, np.array(mean), np.array(std))
self.assertTrue(np.array_equal(normalized_array, expected))
@require_torch
def test_normalize_tensor(self):
feature_extractor = ImageFeatureExtractionMixin()
tensor = torch.rand(16, 32, 3)
mean = [0.1, 0.5, 0.9]
std = [0.2, 0.4, 0.6]
# mean and std can be passed as lists or tensors.
expected = (tensor - torch.tensor(mean)) / torch.tensor(std)
normalized_tensor = feature_extractor.normalize(tensor, mean, std)
self.assertTrue(torch.equal(normalized_tensor, expected))
normalized_tensor = feature_extractor.normalize(tensor, torch.tensor(mean), torch.tensor(std))
self.assertTrue(torch.equal(normalized_tensor, expected))
# Normalize will detect automatically if channel first or channel last is used.
tensor = torch.rand(3, 16, 32)
expected = (tensor - torch.tensor(mean)[:, None, None]) / torch.tensor(std)[:, None, None]
normalized_tensor = feature_extractor.normalize(tensor, mean, std)
self.assertTrue(torch.equal(normalized_tensor, expected))
normalized_tensor = feature_extractor.normalize(tensor, torch.tensor(mean), torch.tensor(std))
self.assertTrue(torch.equal(normalized_tensor, expected))
def test_center_crop_image(self):
feature_extractor = ImageFeatureExtractionMixin()
image = get_random_image(16, 32)
# Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions.
crop_sizes = [8, (8, 64), 20, (32, 64)]
for size in crop_sizes:
cropped_image = feature_extractor.center_crop(image, size)
self.assertTrue(isinstance(cropped_image, PIL.Image.Image))
# PIL Image.size is transposed compared to NumPy or PyTorch (width first instead of height first).
expected_size = (size, size) if isinstance(size, int) else (size[1], size[0])
self.assertEqual(cropped_image.size, expected_size)
def test_center_crop_array(self):
feature_extractor = ImageFeatureExtractionMixin()
image = get_random_image(16, 32)
array = feature_extractor.to_numpy_array(image)
# Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions.
crop_sizes = [8, (8, 64), 20, (32, 64)]
for size in crop_sizes:
cropped_array = feature_extractor.center_crop(array, size)
self.assertTrue(isinstance(cropped_array, np.ndarray))
expected_size = (size, size) if isinstance(size, int) else size
self.assertEqual(cropped_array.shape[-2:], expected_size)
# Check result is consistent with PIL.Image.crop
cropped_image = feature_extractor.center_crop(image, size)
self.assertTrue(np.array_equal(cropped_array, feature_extractor.to_numpy_array(cropped_image)))
@require_torch
def test_center_crop_tensor(self):
feature_extractor = ImageFeatureExtractionMixin()
image = get_random_image(16, 32)
array = feature_extractor.to_numpy_array(image)
tensor = torch.tensor(array)
# Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions.
crop_sizes = [8, (8, 64), 20, (32, 64)]
for size in crop_sizes:
cropped_tensor = feature_extractor.center_crop(tensor, size)
self.assertTrue(isinstance(cropped_tensor, torch.Tensor))
expected_size = (size, size) if isinstance(size, int) else size
self.assertEqual(cropped_tensor.shape[-2:], expected_size)
# Check result is consistent with PIL.Image.crop
cropped_image = feature_extractor.center_crop(image, size)
self.assertTrue(torch.equal(cropped_tensor, torch.tensor(feature_extractor.to_numpy_array(cropped_image))))
@require_vision
class LoadImageTester(unittest.TestCase):
def test_load_img_url(self):
img = load_image(INVOICE_URL)
img_arr = np.array(img)
self.assertEqual(img_arr.shape, (1061, 750, 3))
@is_flaky()
def test_load_img_url_timeout(self):
with self.assertRaises((ReadTimeout, ConnectTimeout)):
load_image(INVOICE_URL, timeout=0.001)
def test_load_img_local(self):
img = load_image("./tests/fixtures/tests_samples/COCO/000000039769.png")
img_arr = np.array(img)
self.assertEqual(
img_arr.shape,
(480, 640, 3),
)
def test_load_img_base64_prefix(self):
try:
tmp_file = tempfile.mktemp()
with open(tmp_file, "wb") as f:
http_get(
"https://huggingface.co/datasets/hf-internal-testing/dummy-base64-images/raw/main/image_0.txt", f
)
with open(tmp_file, encoding="utf-8") as b64:
img = load_image(b64.read())
img_arr = np.array(img)
finally:
os.remove(tmp_file)
self.assertEqual(img_arr.shape, (64, 32, 3))
def test_load_img_base64(self):
try:
tmp_file = tempfile.mktemp()
with open(tmp_file, "wb") as f:
http_get(
"https://huggingface.co/datasets/hf-internal-testing/dummy-base64-images/raw/main/image_1.txt", f
)
with open(tmp_file, encoding="utf-8") as b64:
img = load_image(b64.read())
img_arr = np.array(img)
finally:
os.remove(tmp_file)
self.assertEqual(img_arr.shape, (64, 32, 3))
def test_load_img_rgba(self):
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
img = load_image(dataset[0]["image"]) # img with mode RGBA
img_arr = np.array(img)
self.assertEqual(
img_arr.shape,
(512, 512, 3),
)
def test_load_img_la(self):
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
img = load_image(dataset[1]["image"]) # img with mode LA
img_arr = np.array(img)
self.assertEqual(
img_arr.shape,
(512, 768, 3),
)
def test_load_img_l(self):
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
img = load_image(dataset[2]["image"]) # img with mode L
img_arr = np.array(img)
self.assertEqual(
img_arr.shape,
(381, 225, 3),
)
def test_load_img_exif_transpose(self):
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
img_without_exif_transpose = dataset[3]["image"]
img_arr_without_exif_transpose = np.array(img_without_exif_transpose)
self.assertEqual(
img_arr_without_exif_transpose.shape,
(333, 500, 3),
)
img_with_exif_transpose = load_image(dataset[3]["image"])
img_arr_with_exif_transpose = np.array(img_with_exif_transpose)
self.assertEqual(
img_arr_with_exif_transpose.shape,
(500, 333, 3),
)
class UtilFunctionTester(unittest.TestCase):
def test_get_image_size(self):
# Test we can infer the size and channel dimension of an image.
image = np.random.randint(0, 256, (32, 64, 3))
self.assertEqual(get_image_size(image), (32, 64))
image = np.random.randint(0, 256, (3, 32, 64))
self.assertEqual(get_image_size(image), (32, 64))
# Test the channel dimension can be overriden
image = np.random.randint(0, 256, (3, 32, 64))
self.assertEqual(get_image_size(image, channel_dim=ChannelDimension.LAST), (3, 32))
def test_infer_channel_dimension(self):
# Test we fail with invalid input
with pytest.raises(ValueError):
infer_channel_dimension_format(np.random.randint(0, 256, (10, 10)))
with pytest.raises(ValueError):
infer_channel_dimension_format(np.random.randint(0, 256, (10, 10, 10, 10, 10)))
# Test we fail if neither first not last dimension is of size 3 or 1
with pytest.raises(ValueError):
infer_channel_dimension_format(np.random.randint(0, 256, (10, 1, 50)))
# But if we explicitly set one of the number of channels to 50 it works
inferred_dim = infer_channel_dimension_format(np.random.randint(0, 256, (10, 1, 50)), num_channels=50)
self.assertEqual(inferred_dim, ChannelDimension.LAST)
# Test we correctly identify the channel dimension
image = np.random.randint(0, 256, (3, 4, 5))
inferred_dim = infer_channel_dimension_format(image)
self.assertEqual(inferred_dim, ChannelDimension.FIRST)
image = np.random.randint(0, 256, (1, 4, 5))
inferred_dim = infer_channel_dimension_format(image)
self.assertEqual(inferred_dim, ChannelDimension.FIRST)
image = np.random.randint(0, 256, (4, 5, 3))
inferred_dim = infer_channel_dimension_format(image)
self.assertEqual(inferred_dim, ChannelDimension.LAST)
image = np.random.randint(0, 256, (4, 5, 1))
inferred_dim = infer_channel_dimension_format(image)
self.assertEqual(inferred_dim, ChannelDimension.LAST)
# We can take a batched array of images and find the dimension
image = np.random.randint(0, 256, (1, 3, 4, 5))
inferred_dim = infer_channel_dimension_format(image)
self.assertEqual(inferred_dim, ChannelDimension.FIRST)
def test_get_channel_dimension_axis(self):
# Test we correctly identify the channel dimension
image = np.random.randint(0, 256, (3, 4, 5))
inferred_axis = get_channel_dimension_axis(image)
self.assertEqual(inferred_axis, 0)
image = np.random.randint(0, 256, (1, 4, 5))
inferred_axis = get_channel_dimension_axis(image)
self.assertEqual(inferred_axis, 0)
image = np.random.randint(0, 256, (4, 5, 3))
inferred_axis = get_channel_dimension_axis(image)
self.assertEqual(inferred_axis, 2)
image = np.random.randint(0, 256, (4, 5, 1))
inferred_axis = get_channel_dimension_axis(image)
self.assertEqual(inferred_axis, 2)
# We can take a batched array of images and find the dimension
image = np.random.randint(0, 256, (1, 3, 4, 5))
inferred_axis = get_channel_dimension_axis(image)
self.assertEqual(inferred_axis, 1)
| transformers/tests/utils/test_image_utils.py/0 | {
"file_path": "transformers/tests/utils/test_image_utils.py",
"repo_id": "transformers",
"token_count": 13075
} | 191 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script is responsible for cleaning the list of doctests by making sure the entries all exist and are in
alphabetical order.
Usage (from the root of the repo):
Check that the doctest list is properly sorted and all files exist (used in `make repo-consistency`):
```bash
python utils/check_doctest_list.py
```
Auto-sort the doctest list if it is not properly sorted (used in `make fix-copies`):
```bash
python utils/check_doctest_list.py --fix_and_overwrite
```
"""
import argparse
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
REPO_PATH = "."
DOCTEST_FILE_PATHS = ["not_doctested.txt", "slow_documentation_tests.txt"]
def clean_doctest_list(doctest_file: str, overwrite: bool = False):
"""
Cleans the doctest in a given file.
Args:
doctest_file (`str`):
The path to the doctest file to check or clean.
overwrite (`bool`, *optional*, defaults to `False`):
Whether or not to fix problems. If `False`, will error when the file is not clean.
"""
non_existent_paths = []
all_paths = []
with open(doctest_file, "r", encoding="utf-8") as f:
for line in f:
line = line.strip().split(" ")[0]
path = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(line)
if len(non_existent_paths) > 0:
non_existent_paths = "\n".join([f"- {f}" for f in non_existent_paths])
raise ValueError(f"`{doctest_file}` contains non-existent paths:\n{non_existent_paths}")
sorted_paths = sorted(all_paths)
if all_paths != sorted_paths:
if not overwrite:
raise ValueError(
f"Files in `{doctest_file}` are not in alphabetical order, run `make fix-copies` to fix "
"this automatically."
)
with open(doctest_file, "w", encoding="utf-8") as f:
f.write("\n".join(sorted_paths) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
args = parser.parse_args()
for doctest_file in DOCTEST_FILE_PATHS:
doctest_file = os.path.join(REPO_PATH, "utils", doctest_file)
clean_doctest_list(doctest_file, args.fix_and_overwrite)
| transformers/utils/check_doctest_list.py/0 | {
"file_path": "transformers/utils/check_doctest_list.py",
"repo_id": "transformers",
"token_count": 1179
} | 192 |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
fork_point_sha = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
modified_files = (
subprocess.check_output(f"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode("utf-8").split()
)
joined_dirs = "|".join(sys.argv[1:])
regex = re.compile(rf"^({joined_dirs}).*?\.py$")
relevant_modified_files = [x for x in modified_files if regex.match(x)]
print(" ".join(relevant_modified_files), end="")
| transformers/utils/get_modified_files.py/0 | {
"file_path": "transformers/utils/get_modified_files.py",
"repo_id": "transformers",
"token_count": 448
} | 193 |
import torch
from transformers import PreTrainedModel
from .custom_configuration import CustomConfig, NoSuperInitConfig
class CustomModel(PreTrainedModel):
config_class = CustomConfig
def __init__(self, config):
super().__init__(config)
self.linear = torch.nn.Linear(config.hidden_size, config.hidden_size)
def forward(self, x):
return self.linear(x)
def _init_weights(self, module):
pass
class NoSuperInitModel(PreTrainedModel):
config_class = NoSuperInitConfig
def __init__(self, config):
super().__init__(config)
self.linear = torch.nn.Linear(config.attribute, config.attribute)
def forward(self, x):
return self.linear(x)
def _init_weights(self, module):
pass
| transformers/utils/test_module/custom_modeling.py/0 | {
"file_path": "transformers/utils/test_module/custom_modeling.py",
"repo_id": "transformers",
"token_count": 289
} | 194 |
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# How To Request Support
This is an Open Source Project so please be mindful that like in any other project of this kind there is no obligation to answer all requests for help.
However, we want to encourage you to ask for help whenever you think it's needed! We are happy about every question we get because it allows us to better understand your needs, possible misunderstandings, and most importantly a way for you to help us make this library better. That being said, this document's main purpose is to provide guidelines at how you can formulate your requests to increase your chances to be understood and to get support.
There are two main venues to receive support: [the forums](https://discuss.huggingface.co/) and [the GitHub issues](https://github.com/huggingface/transformers/issues).
## The Forums
[The user forums](https://discuss.huggingface.co/) are supported by the wide community of the library users and backed up by developers when needed.
If you have a difficulty with deploying this library or some questions, or you'd like to discuss a new feature, please first consider discussing those things at the forums. Only when you feel your subject matter has been crystalized and you still need support from the library developers do proceed to file an [issue](https://github.com/huggingface/transformers/issues).
In particular all "Please explain" questions or objectively very user-specific feature requests belong to the forums. Here are some example of such questions:
* "I would like to use a BertModel within a RL-Agent for a customer support service. How can I use a BertForMaskedLM in my ChatBotModel?"
* "Could you please explain why T5 has no positional embedding matrix under T5Model?"
* "How should I set my generation parameters for translation?"
* "How to train T5 on De->En translation?"
## The GitHub Issues
Everything which hints at a bug should be opened as an [issue](https://github.com/huggingface/transformers/issues).
You are not required to read the following guidelines before opening an issue. However, if you notice that your issue doesn't get any replies, chances are that the developers have one or several difficulties with its quality. In this case, reading the following points and adjusting your issue accordingly could help.
1. Before posting an issue, first search for already posted issues, since chances are someone has already asked a similar question before you.
If you use Google your search query should be:
```
"huggingface" "transformers" your query
```
The first two quoted words tell Google to limit the search to the context of the Huggingface Transformers. The remainder is your query - most commonly this would be the error message the software fails with. We will go deeper into details shortly.
The results of such a query will typically match GitHub issues, Hugging Face forums, StackExchange, and blogs.
If you find relevant hints, you may choose to continue the discussion there if you have follow up questions.
If what you found is similar but doesn't quite answer your problem, please, post a new issue and do include links to similar issues or forum discussions you may have found.
Let's look at some examples:
The error message, often referred to as an assertion, tells us what went wrong. Here is an example of an assertion:
```python
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/transformers/src/transformers/__init__.py", line 34, in <module>
from . import dependency_versions_check
File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module>
from .utils import is_tokenizers_available
File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module>
from tqdm.auto import tqdm
ModuleNotFoundError: No module named 'tqdm.auto'
```
and it typically includes a traceback, so that we can see the full stack of calls the program made before it fails. This gives us the context to know why the program failed.
Going back to the above example. If you received this error search, look at the very last line of the error which is:
```python
ModuleNotFoundError: No module named 'tqdm.auto'
```
And now we can use it to do the searching on your favorite search engine:
1. first for `"huggingface" "transformers" "ModuleNotFoundError: No module named 'tqdm.auto'"`
2. if you don't find relevant results, then search for just `"ModuleNotFoundError: No module named 'tqdm.auto'"`
3. and finally if nothing still comes up, then remove the outside quotes: `ModuleNotFoundError: No module named 'tqdm.auto'`
If the error includes any messages that include bits unique to your filesystem, always remove those in the search query since other users will not have the same filesystem as yours. For example:
```bash
python -c 'open("/tmp/wrong_path.txt", "r")'
Traceback (most recent call last):
File "<string>", line 1, in <module>
FileNotFoundError: [Errno 2] No such file or directory: '/tmp/wrong_path.txt'
```
Here you'd search for just: `"FileNotFoundError: [Errno 2] No such file or directory"`
If the local information that you removed were inside the error message and you removed them you may need to remove double quotes since your query is no longer exact. So if the error message was something like:
```bash
ValueError: '/tmp/wrong_path.txt' cannot be found
```
then you'd search for `"ValueError" "cannot be found"`
As you search you will notice that when you don't use quotes often the search engines will return a variety of unrelated hits, which may or may not be what you want.
Experiment with different ways and find which approach gives the most satisfactory results.
2. Keep the issue short, providing the information that you think will aid the developers to understand your situation. Put yourself in the shoes of the person who has never seen your code or knows anything about your custom setup. This mental exercise will help to develop an intuition to what/what not to share"
3. If there is a software failure, always provide the full traceback, for example:
```python
$ python -c 'import transformers'
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/transformers/src/transformers/__init__.py", line 34, in <module>
from . import dependency_versions_check
File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module>
from .utils import is_tokenizers_available
File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module>
from tqdm.auto import tqdm
ModuleNotFoundError: No module named 'tqdm.auto'
```
As compared to providing just the last line of the error message, e.g.:
```python
ModuleNotFoundError: No module named 'tqdm.auto'
```
which is not sufficient.
If your application is running on more than one GPU (e.g. under `DistributedDataParallel`) and typically getting every log and traceback printed multiple times, please make sure that you paste only one copy of it. At times the traceback from parallel processes may get interleaved - so either disentangle these or change the loggers to log only for `local_rank==0` so that only one process logs things.
4. When quoting a traceback, command line instructions and any type of code always enclose it in triple backticks inside the editor window, that is:
````
```
git clone https://github.com/huggingface/transformers
cd transformers
pip install .
```
````
If it's a command line with a long argument list, please consider breaking it down using backslashes and new lines. Here is an example of a good command line quote:
```bash
cd examples/seq2seq
torchrun --nproc_per_node=2 ./finetune_trainer.py \
--model_name_or_path sshleifer/distill-mbart-en-ro-12-4 --data_dir wmt_en_ro \
--output_dir output_dir --overwrite_output_dir \
--do_train --n_train 500 --num_train_epochs 1 \
--per_device_train_batch_size 1 --freeze_embeds \
--src_lang en_XX --tgt_lang ro_RO --task translation \
--fp16
```
If you don't break it up, one has to scroll horizontally which often makes it quite difficult to quickly see what's happening.
The backslashes allow us to copy the command directly into the console to run it, without needing to edit it.
5. Include only the important information that you think will help the developer to quickly identify the problem.
For example applications often create huge amounts of logs. Ask yourself whether providing all or parts of the log is useful.
Pasting a 100-1000 lines of log into the issue is an immediate turn off, since it will take a lot of time to figure out where the pertinent parts of the log are.
Attaching a full log can be helpful if it's done as an attachment, if it's enclosed in the following html code in the comment editor window:
```
<details>
<summary>Full log</summary>
<pre>
many
lines
go
here
</pre>
</details>
```
which would result in the following entry, which can be opened if desired, but otherwise takes little space.
<details>
<summary>Full log</summary>
<pre>
many
lines
go
here
</pre>
</details>
You could also provide a link to a pastebin service, but this is less beneficial since those links tend to expire quickly and future readers of your issue might not be able to access that log file anymore and may lack some context.
6. If this is an issue in your code, do try to reduce that code to a minimal example that still demonstrates the problem. Please ask at the forums if you have a hard time figuring how to do that. Please realize that we don't have the luxury of having time to try and understand all of your custom code.
If you really tried to make a short reproducible code but couldn't figure it out, it might be that having a traceback will give the developer enough information to know what's going on. But if it is not enough and we can't reproduce the problem, we can't really solve it.
Do not despair if you can't figure it out from the beginning, just share what you can and perhaps someone else will be able to help you at the forums.
If your setup involves any custom datasets, the best way to help us reproduce the problem is to create a [Google Colab notebook](https://colab.research.google.com/) that demonstrates the issue and once you verify that the issue still exists, include a link to that notebook in the Issue. Just make sure that you don't copy and paste the location bar url of the open notebook - as this is private and we won't be able to open it. Instead, you need to click on `Share` in the right upper corner of the notebook, select `Get Link` and then copy and paste the public link it will give to you.
7. If you forked off some of this project's code or example applications, please, do not ask us to go into your code repository and figure out what you may have done. The code is already very complex and unless there is an easy way to do a diff and it's a small diff, it won't be possible to find someone with time on their hands to make a lengthy investigation. Albeit, you might find someone at the forums who will be generous to do this for you.
8. Before reporting an issue, first, always try to update your environment to the latest official version of this library. We have no resources to go and debug older revisions, which could easily have bugs that have been fixed in the latest released version.
We understand that this is not always possible, especially when APIs change, in which case file an issue against the highest library version your environment can support.
Of course, if you upgrade the library, always retest that the problem is still there.
9. Please do not ask us to reproduce an issue with your custom data, since we don't have it. So, either you should use some existing dataset supported by HF datasets or you need to supply a code that generates a small sample on the fly, or some another quick and simple way to get it.
Please do not send us any non-public domain data that may require a license or a permission to be used.
10. Do not tag multiple developers on the issue unless you know this is expected, either because you asked them and they gave you an explicit permission to tag them or the issue template instructs you to do so.
The "who to tag for what domain" part of the issue template is there to help users direct their questions to the right developers who are designated maintainers of project's specific domains. They can then decide at their own discretion to tag other developers if they feel it'd help move the issue forward.
We currently don't have a triage service and we trust your capacity to identify the right domain and thus the persons to tag in your issue. If you are not sure, please use the forums to ask for guidance.
When in doubt, err on the side of not tagging a given person. If you tag multiple people out of context or permission don't be surprised if you get no response at all. Please remember that every time you tag someone, they get a notification and you're taking their time without their permission. Please be sensitive to that.
If you got helped by one of the developers in the past please don't tag them in future issues, unless they are listed in the issue template for the domain you are asking about or that developer gave you an explicit permission to tag them in future issues.
If you see a certain developer doing multiple and/or recent commits into a specific area of the project that you feel is relevant to your issue, it is not a good reason to tag them. Various developers may be fixing things that prevent them from moving forward, but often their work is focused on a totally different domain. And while they may or may not know how to help you with the problem at hand, it would benefit the whole community much more if they focus on the domain of their unique expertise.
11. Use the Edit button. Take your time, and re-read and improve the wording and formatting to make your posts and comments as easy to understand as possible.
Avoid posting multiple comments in a row, as each comment generates a notification for the developers tagged in that issue. If you happened to post multiple comments in a row, and nobody followed up yet - consider merging those into one or a few comments while editing the combined content to be coherent.
If you choose to edit your older comments after others posted follow up comments you need to be aware that your modifications might not be noticed, so if it's not a typo fixing, try to write a new comment flagging that something has been changed in the previous comments.
For example, the very first comment is the most important one. If while the thread unfolds you realize that things aren't as they seemed to you originally you may want to edit the first post to reflect the up-to-date understanding of the issue at hand so that it helps those who read your issue in the future quickly understand what's going on and not need to sift through dozens of comments. It also helps to indicate that the post was edited. So, those reading the thread later can understand why there might be certain discontinuity in the information flow.
Use bullets and items if you have lists of items and the outcome improves overall readability.
Use backticks to refer to class and function names, e.g. `BartModel` and `generate` as these stand out and improve the speed of a reader's comprehension.
Try not use italics and bold text too much as these often make the text more difficult to read.
12. If you are cross-referencing a specific comment in a given thread or another issue, always link to that specific comment, rather than using the issue link. If you do the latter it could be quite impossible to find which specific comment you're referring to.
To get the link to the specific comment do not copy the url from the location bar of your browser, but instead, click the `...` icon in the upper right corner of the comment and then select "Copy Link".
For example the first link is a link to an issue, and the second to a specific comment in the same issue:
1. https://github.com/huggingface/transformers/issues/9257
2. https://github.com/huggingface/transformers/issues/9257#issuecomment-749945162
13. If you are replying to a last comment, it's totally fine to make your reply with just your comment in it. The readers can follow the information flow here.
But if you're replying to a comment that happened some comments back it's always a good practice to quote just the relevant lines you're replying it. The `>` is used for quoting, or you can always use the menu to do so. For example your editor box will look like:
```
> How big is your gpu cluster?
Our cluster is made of 256 gpus.
```
If you are addressing multiple comments, quote the relevant parts of each before your answer. Some people use the same comment to do multiple replies, others separate them into separate comments. Either way works. The latter approach helps for linking to a specific comment.
In general the best way to figure out what works the best is learn from issues posted by other people - see which issues get great responses and which get little to no response - observe what the posters who received great responses did differently from those who did not.
Thank you for reading this somewhat lengthy document. We would like to conclude that these are not absolute rules, but a friendly advice that will help maximize the chances for us to understand what you are trying to communicate, reproduce the problem then resolve it to your satisfaction and the benefit of the whole community.
If after reading this document there are remaining questions on how and why or there is a need for further elucidation, please, don't hesitate to ask your question in [this thread](https://discuss.huggingface.co/t/how-to-request-support/3128).
| transformers/ISSUES.md/0 | {
"file_path": "transformers/ISSUES.md",
"repo_id": "transformers",
"token_count": 4684
} | 0 |
# Awesome projects built with Transformers
This page lists awesome projects built on top of Transformers. Transformers is more than a toolkit to use pretrained
models: it's a community of projects built around it and the Hugging Face Hub. We want Transformers to enable
developers, researchers, students, professors, engineers, and anyone else to build their dream projects.
In this list, we showcase incredibly impactful and novel projects that have pushed the field forward. We celebrate
100 of these projects as we reach the milestone of 100k stars as a community; but we're very open to pull requests
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
to add it.
## [gpt4all](https://github.com/nomic-ai/gpt4all)
[gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style.
Keywords: Open-source, LLaMa, GPT-J, instruction, assistant
## [recommenders](https://github.com/microsoft/recommenders)
This repository contains examples and best practices for building recommendation systems, provided as Jupyter notebooks. It goes over several aspects required to build efficient recommendation systems: data preparation, modeling, evaluation, model selection & optimization, as well as operationalization
Keywords: Recommender systems, AzureML
## [IOPaint](https://github.com/Sanster/IOPaint)
Image inpainting tool powered by Stable Diffusion. Remove any unwanted object, defect, people from your pictures or erase and replace anything on your pictures.
Keywords: inpainting, SD, Stable Diffusion
## [flair](https://github.com/flairNLP/flair)
FLAIR is a powerful PyTorch NLP framework, convering several important tasks: NER, sentiment-analysis, part-of-speech tagging, text and document embeddings, among other things.
Keywords: NLP, text embedding, document embedding, biomedical, NER, PoS, sentiment-analysis
## [mindsdb](https://github.com/mindsdb/mindsdb)
MindsDB is a low-code ML platform, which automates and integrates several ML frameworks into the data stack as "AI Tables" to streamline the integration of AI into applications, making it accessible to developers of all skill levels.
Keywords: Database, low-code, AI table
## [langchain](https://github.com/hwchase17/langchain)
[langchain](https://github.com/hwchase17/langchain) is aimed at assisting in the development of apps merging both LLMs and other sources of knowledge. The library allows chaining calls to applications, creating a sequence across many tools.
Keywords: LLMs, Large Language Models, Agents, Chains
## [LlamaIndex](https://github.com/jerryjliu/llama_index)
[LlamaIndex](https://github.com/jerryjliu/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retreival mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
## [ParlAI](https://github.com/facebookresearch/ParlAI)
[ParlAI](https://github.com/facebookresearch/ParlAI) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dialogue, to visual question answering. It provides more than 100 datasets under the same API, a large zoo of pretrained models, a set of agents, and has several integrations.
Keywords: Dialogue, Chatbots, VQA, Datasets, Agents
## [sentence-transformers](https://github.com/UKPLab/sentence-transformers)
This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity.
Keywords: Dense vector representations, Text embeddings, Sentence embeddings
## [ludwig](https://github.com/ludwig-ai/ludwig)
Ludwig is a declarative machine learning framework that makes it easy to define machine learning pipelines using a simple and flexible data-driven configuration system. Ludwig is targeted at a wide variety of AI tasks. It provides a data-driven configuration system, training, prediction, and evaluation scripts, as well as a programmatic API.
Keywords: Declarative, Data-driven, ML Framework
## [InvokeAI](https://github.com/invoke-ai/InvokeAI)
[InvokeAI](https://github.com/invoke-ai/InvokeAI) is an engine for Stable Diffusion models, aimed at professionals, artists, and enthusiasts. It leverages the latest AI-driven technologies through CLI as well as a WebUI.
Keywords: Stable-Diffusion, WebUI, CLI
## [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)
[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) is an easy-to-use and powerful NLP library particularly targeted at the Chinese languages. It has support for multiple pre-trained model zoos, and supports a wide-range of NLP tasks from research to industrial applications.
Keywords: NLP, Chinese, Research, Industry
## [stanza](https://github.com/stanfordnlp/stanza)
The Stanford NLP Group's official Python NLP library. It contains support for running various accurate natural language processing tools on 60+ languages and for accessing the Java Stanford CoreNLP software from Python.
Keywords: NLP, Multilingual, CoreNLP
## [DeepPavlov](https://github.com/deeppavlov/DeepPavlov)
[DeepPavlov](https://github.com/deeppavlov/DeepPavlov) is an open-source conversational AI library. It is designed for the development of production ready chat-bots and complex conversational systems, as well as research in the area of NLP and, particularly, of dialog systems.
Keywords: Conversational, Chatbot, Dialog
## [alpaca-lora](https://github.com/tloen/alpaca-lora)
Alpaca-lora contains code for reproducing the Stanford Alpaca results using low-rank adaptation (LoRA). The repository provides training (fine-tuning) as well as generation scripts.
Keywords: LoRA, Parameter-efficient fine-tuning
## [imagen-pytorch](https://github.com/lucidrains/imagen-pytorch)
An open-source Implementation of Imagen, Google's closed-source Text-to-Image Neural Network that beats DALL-E2. As of release, it is the new SOTA for text-to-image synthesis.
Keywords: Imagen, Text-to-image
## [adapters](https://github.com/adapter-hub/adapters)
[adapters](https://github.com/adapter-hub/adapters) is an extension of HuggingFace's Transformers library, integrating adapters into state-of-the-art language models by incorporating AdapterHub, a central repository for pre-trained adapter modules. It is a drop-in replacement for transformers, which is regularly updated to stay up-to-date with the developments of transformers.
Keywords: Adapters, LoRA, Parameter-efficient fine-tuning, Hub
## [NeMo](https://github.com/NVIDIA/NeMo)
NVIDIA [NeMo](https://github.com/NVIDIA/NeMo) is a conversational AI toolkit built for researchers working on automatic speech recognition (ASR), text-to-speech synthesis (TTS), large language models (LLMs), and natural language processing (NLP). The primary objective of [NeMo](https://github.com/NVIDIA/NeMo) is to help researchers from industry and academia to reuse prior work (code and pretrained models) and make it easier to create new https://developer.nvidia.com/conversational-ai#started.
Keywords: Conversational, ASR, TTS, LLMs, NLP
## [Runhouse](https://github.com/run-house/runhouse)
[Runhouse](https://github.com/run-house/runhouse) allows to send code and data to any of your compute or data infra, all in Python, and continue to interact with them normally from your existing code and environment. Runhouse developers mention:
> Think of it as an expansion pack to your Python interpreter that lets it take detours to remote machines or manipulate remote data.
Keywords: MLOps, Infrastructure, Data storage, Modeling
## [MONAI](https://github.com/Project-MONAI/MONAI)
[MONAI](https://github.com/Project-MONAI/MONAI) is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its ambitions are:
- developing a community of academic, industrial and clinical researchers collaborating on a common foundation;
- creating state-of-the-art, end-to-end training workflows for healthcare imaging;
- providing researchers with the optimized and standardized way to create and evaluate deep learning models.
Keywords: Healthcare imaging, Training, Evaluation
## [simpletransformers](https://github.com/ThilinaRajapakse/simpletransformers)
Simple Transformers lets you quickly train and evaluate Transformer models. Only 3 lines of code are needed to initialize, train, and evaluate a model. It supports a wide variety of NLP tasks.
Keywords: Framework, simplicity, NLP
## [JARVIS](https://github.com/microsoft/JARVIS)
[JARVIS](https://github.com/microsoft/JARVIS) is a system attempting to merge LLMs such as GPT-4 with the rest of the open-source ML community: leveraging up to 60 downstream models in order to perform tasks identified by the LLM.
Keywords: LLM, Agents, HF Hub
## [transformers.js](https://xenova.github.io/transformers.js/)
[transformers.js](https://xenova.github.io/transformers.js/) is a JavaScript library targeted at running models from transformers directly within the browser.
Keywords: Transformers, JavaScript, browser
## [bumblebee](https://github.com/elixir-nx/bumblebee)
Bumblebee provides pre-trained Neural Network models on top of Axon, a neural networks library for the Elixir language. It includes integration with 🤗 Models, allowing anyone to download and perform Machine Learning tasks with few lines of code.
Keywords: Elixir, Axon
## [argilla](https://github.com/argilla-io/argilla)
Argilla is an open-source platform providing advanced NLP labeling, monitoring, and workspaces. It is compatible with many open source ecosystems such as Hugging Face, Stanza, FLAIR, and others.
Keywords: NLP, Labeling, Monitoring, Workspaces
## [haystack](https://github.com/deepset-ai/haystack)
Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs. It offers production-ready tools to quickly build complex decision making, question answering, semantic search, text generation applications, and more.
Keywords: NLP, Framework, LLM
## [spaCy](https://github.com/explosion/spaCy)
[spaCy](https://github.com/explosion/spaCy) is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. It offers support for transformers models through its third party package, spacy-transformers.
Keywords: NLP, Framework
## [speechbrain](https://github.com/speechbrain/speechbrain)
SpeechBrain is an open-source and all-in-one conversational AI toolkit based on PyTorch.
The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognition, speech enhancement, speech separation, language identification, multi-microphone signal processing, and many others.
Keywords: Conversational, Speech
## [skorch](https://github.com/skorch-dev/skorch)
Skorch is a scikit-learn compatible neural network library that wraps PyTorch. It has support for models within transformers, and tokenizers from tokenizers.
Keywords: Scikit-Learn, PyTorch
## [bertviz](https://github.com/jessevig/bertviz)
BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models.
Keywords: Visualization, Transformers
## [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax)
[mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) is a haiku library using the xmap/pjit operators in JAX for model parallelism of transformers. This library is designed for scalability up to approximately 40B parameters on TPUv3s. It was the library used to train the GPT-J model.
Keywords: Haiku, Model parallelism, LLM, TPU
## [deepchem](https://github.com/deepchem/deepchem)
DeepChem aims to provide a high quality open-source toolchain that democratizes the use of deep-learning in drug discovery, materials science, quantum chemistry, and biology.
Keywords: Drug discovery, Materials Science, Quantum Chemistry, Biology
## [OpenNRE](https://github.com/thunlp/OpenNRE)
An Open-Source Package for Neural Relation Extraction (NRE). It is targeted at a wide range of users, from newcomers to relation extraction, to developers, researchers, or students.
Keywords: Neural Relation Extraction, Framework
## [pycorrector](https://github.com/shibing624/pycorrector)
PyCorrector is a Chinese Text Error Correction Tool. It uses a language model to detect errors, pinyin feature and shape feature to correct Chinese text errors. it can be used for Chinese Pinyin and stroke input method.
Keywords: Chinese, Error correction tool, Language model, Pinyin
## [nlpaug](https://github.com/makcedward/nlpaug)
This python library helps you with augmenting nlp for machine learning projects. It is a lightweight library featuring synthetic data generation for improving model performance, support for audio and text, and compatibility with several ecosystems (scikit-learn, pytorch, tensorflow).
Keywords: Data augmentation, Synthetic data generation, Audio, NLP
## [dream-textures](https://github.com/carson-katri/dream-textures)
[dream-textures](https://github.com/carson-katri/dream-textures) is a library targeted at bringing stable-diffusion support within Blender. It supports several use-cases, such as image generation, texture projection, inpainting/outpainting, ControlNet, and upscaling.
Keywords: Stable-Diffusion, Blender
## [seldon-core](https://github.com/SeldonIO/seldon-core)
Seldon core converts your ML models (Tensorflow, Pytorch, H2o, etc.) or language wrappers (Python, Java, etc.) into production REST/GRPC microservices.
Seldon handles scaling to thousands of production machine learning models and provides advanced machine learning capabilities out of the box including Advanced Metrics, Request Logging, Explainers, Outlier Detectors, A/B Tests, Canaries and more.
Keywords: Microservices, Modeling, Language wrappers
## [open_model_zoo](https://github.com/openvinotoolkit/open_model_zoo)
This repository includes optimized deep learning models and a set of demos to expedite development of high-performance deep learning inference applications. Use these free pre-trained models instead of training your own models to speed-up the development and production deployment process.
Keywords: Optimized models, Demos
## [ml-stable-diffusion](https://github.com/apple/ml-stable-diffusion)
ML-Stable-Diffusion is a repository by Apple bringing Stable Diffusion support to Core ML, on Apple Silicon devices. It supports stable diffusion checkpoints hosted on the Hugging Face Hub.
Keywords: Stable Diffusion, Apple Silicon, Core ML
## [stable-dreamfusion](https://github.com/ashawkey/stable-dreamfusion)
Stable-Dreamfusion is a pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model.
Keywords: Text-to-3D, Stable Diffusion
## [txtai](https://github.com/neuml/txtai)
[txtai](https://github.com/neuml/txtai) is an open-source platform for semantic search and workflows powered by language models. txtai builds embeddings databases, which are a union of vector indexes and relational databases enabling similarity search with SQL. Semantic workflows connect language models together into unified applications.
Keywords: Semantic search, LLM
## [djl](https://github.com/deepjavalibrary/djl)
Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. DJL is designed to be easy to get started with and simple to use for developers. DJL provides a native Java development experience and functions like any other regular Java library. DJL offers [a Java binding](https://github.com/deepjavalibrary/djl/tree/master/extensions/tokenizers) for HuggingFace Tokenizers and easy conversion toolkit for HuggingFace model to deploy in Java.
Keywords: Java, Framework
## [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/)
This project provides a unified framework to test generative language models on a large number of different evaluation tasks. It has support for more than 200 tasks, and supports different ecosystems: HF Transformers, GPT-NeoX, DeepSpeed, as well as the OpenAI API.
Keywords: LLM, Evaluation, Few-shot
## [gpt-neox](https://github.com/EleutherAI/gpt-neox)
This repository records EleutherAI's library for training large-scale language models on GPUs. The framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. It is focused on training multi-billion-parameter models.
Keywords: Training, LLM, Megatron, DeepSpeed
## [muzic](https://github.com/microsoft/muzic)
Muzic is a research project on AI music that empowers music understanding and generation with deep learning and artificial intelligence. Muzic was created by researchers from Microsoft Research Asia.
Keywords: Music understanding, Music generation
## [dalle-flow](https://github.com/jina-ai/dalle-flow)
DALL·E Flow is an interactive workflow for generating high-definition images from a text prompt. Itt leverages DALL·E-Mega, GLID-3 XL, and Stable Diffusion to generate image candidates, and then calls CLIP-as-service to rank the candidates w.r.t. the prompt.
The preferred candidate is fed to GLID-3 XL for diffusion, which often enriches the texture and background. Finally, the candidate is upscaled to 1024x1024 via SwinIR.
Keywords: High-definition image generation, Stable Diffusion, DALL-E Mega, GLID-3 XL, CLIP, SwinIR
## [lightseq](https://github.com/bytedance/lightseq)
LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP and CV models such as BERT, GPT, Transformer, etc. It is therefore best useful for machine translation, text generation, image classification, and other sequence related tasks.
Keywords: Training, Inference, Sequence Processing, Sequence Generation
## [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)
The goal of this project is to create a learning based system that takes an image of a math formula and returns corresponding LaTeX code.
Keywords: OCR, LaTeX, Math formula
## [open_clip](https://github.com/mlfoundations/open_clip)
OpenCLIP is an open source implementation of OpenAI's CLIP.
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
Specifically, a ResNet-50 model trained with this codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet.
Keywords: CLIP, Open-source, Contrastive, Image-text
## [dalle-playground](https://github.com/saharmor/dalle-playground)
A playground to generate images from any text prompt using Stable Diffusion and Dall-E mini.
Keywords: WebUI, Stable Diffusion, Dall-E mini
## [FedML](https://github.com/FedML-AI/FedML)
[FedML](https://github.com/FedML-AI/FedML) is a federated learning and analytics library enabling secure and collaborative machine learning on decentralized data anywhere at any scale.
It supports large-scale cross-silo federated learning, and cross-device federated learning on smartphones/IoTs, and research simulation.
Keywords: Federated Learning, Analytics, Collaborative ML, Decentralized
## [gpt-code-clippy](https://github.com/CodedotAl/gpt-code-clippy)
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.
Keywords: LLM, Code
## [TextAttack](https://github.com/QData/TextAttack)
[TextAttack](https://github.com/QData/TextAttack) 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
Keywords: Adversarial attacks, Data augmentation, NLP
## [OpenPrompt](https://github.com/thunlp/OpenPrompt)
Prompt-learning is a paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modify the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. [OpenPrompt](https://github.com/thunlp/OpenPrompt) supports loading PLMs directly from https://github.com/huggingface/transformers.
## [text-generation-webui](https://github.com/oobabooga/text-generation-webui/)
[text-generation-webui](https://github.com/oobabooga/text-generation-webui/) is a Gradio Web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, Pythia, OPT, and GALACTICA.
Keywords: LLM, WebUI
## [libra](https://github.com/Palashio/libra)
An ergonomic machine learning [libra](https://github.com/Palashio/libra)ry for non-technical users. It focuses on ergonomics and on ensuring that training a model is as simple as it can be.
Keywords: Ergonomic, Non-technical
## [alibi](https://github.com/SeldonIO/alibi)
Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation methods for classification and regression models.
Keywords: Model inspection, Model interpretation, Black-box, White-box
## [tortoise-tts](https://github.com/neonbjb/tortoise-tts)
Tortoise is a text-to-speech program built with the following priorities: strong multi-voice capabilities, and highly realistic prosody and intonation.
Keywords: Text-to-speech
## [flower](https://github.com/adap/flower)
Flower (flwr) is a framework for building federated learning systems. The design of Flower is based on a few guiding principles: customizability, extendability, framework agnosticity, and ease-of-use.
Keywords: Federated learning systems, Customizable, Extendable, Framework-agnostic, Simplicity
## [fast-bert](https://github.com/utterworks/fast-bert)
Fast-Bert is a deep learning library that allows developers and data scientists to train and deploy BERT and XLNet based models for natural language processing tasks beginning with Text Classification. It is aimed at simplicity.
Keywords: Deployment, BERT, XLNet
## [towhee](https://github.com/towhee-io/towhee)
Towhee makes it easy to build neural data processing pipelines for AI applications. We provide hundreds of models, algorithms, and transformations that can be used as standard pipeline building blocks. Users can use Towhee's Pythonic API to build a prototype of their pipeline and automatically optimize it for production-ready environments.
Keywords: Data processing pipeline, Optimization
## [alibi-detect](https://github.com/SeldonIO/alibi-detect)
Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
Keywords: Adversarial, Outlier, Drift detection
## [FARM](https://github.com/deepset-ai/FARM)
[FARM](https://github.com/deepset-ai/FARM) makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built upon transformers and provides additional features to simplify the life of developers: Parallelized preprocessing, highly modular design, multi-task learning, experiment tracking, easy debugging and close integration with AWS SageMaker.
Keywords: Transfer Learning, Modular design, Multi-task learning, Experiment tracking
## [aitextgen](https://github.com/minimaxir/aitextgen)
A robust Python tool for text-based AI training and generation using OpenAI's GPT-2 and EleutherAI's GPT Neo/GPT-3 architecture.
[aitextgen](https://github.com/minimaxir/aitextgen) is a Python package that leverages PyTorch, Hugging Face Transformers and pytorch-lightning with specific optimizations for text generation using GPT-2, plus many added features.
Keywords: Training, Generation
## [diffgram](https://github.com/diffgram/diffgram)
Diffgram aims to integrate human supervision into platforms. We support your team programmatically changing the UI (Schema, layout, etc.) like in Streamlit. This means that you can collect and annotate timely data from users. In other words, we are the platform behind your platform, an integrated part of your application, to ship new & better AI products faster.
Keywords: Human supervision, Platform
## [ecco](https://github.com/jalammar/ecco)
Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0).
Keywords: Model explainability
## [s3prl](https://github.com/s3prl/s3prl)
[s3prl](https://github.com/s3prl/s3prl) stands for Self-Supervised Speech Pre-training and Representation Learning. Self-supervised speech pre-trained models are called upstream in this toolkit, and are utilized in various downstream tasks.
Keywords: Speech, Training
## [ru-dalle](https://github.com/ai-forever/ru-dalle)
RuDALL-E aims to be similar to DALL-E, targeted to Russian.
Keywords: DALL-E, Russian
## [DeepKE](https://github.com/zjunlp/DeepKE)
[DeepKE](https://github.com/zjunlp/DeepKE) is a knowledge extraction toolkit for knowledge graph construction supporting cnSchema,low-resource, document-level and multimodal scenarios for entity, relation and attribute extraction.
Keywords: Knowledge Extraction, Knowledge Graphs
## [Nebuly](https://github.com/nebuly-ai/nebuly)
Nebuly is the next-generation platform to monitor and optimize your AI costs in one place. The platform connects to all your AI cost sources (compute, API providers, AI software licenses, etc) and centralizes them in one place to give you full visibility on a model basis. The platform also provides optimization recommendations and a co-pilot model that can guide during the optimization process. The platform builds on top of the open-source tools allowing you to optimize the different steps of your AI stack to squeeze out the best possible cost performances.
Keywords: Optimization, Performance, Monitoring
## [imaginAIry](https://github.com/brycedrennan/imaginAIry)
Offers a CLI and a Python API to generate images with Stable Diffusion. It has support for many tools, like image structure control (controlnet), instruction-based image edits (InstructPix2Pix), prompt-based masking (clipseg), among others.
Keywords: Stable Diffusion, CLI, Python API
## [sparseml](https://github.com/neuralmagic/sparseml)
SparseML is an open-source model optimization toolkit that enables you to create inference-optimized sparse models using pruning, quantization, and distillation algorithms. Models optimized with SparseML can then be exported to the ONNX and deployed with DeepSparse for GPU-class performance on CPU hardware.
Keywords: Model optimization, Pruning, Quantization, Distillation
## [opacus](https://github.com/pytorch/opacus)
Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment.
Keywords: Differential privacy
## [LAVIS](https://github.com/salesforce/LAVIS)
[LAVIS](https://github.com/salesforce/LAVIS) is a Python deep learning library for LAnguage-and-VISion intelligence research and applications. This library aims to provide engineers and researchers with a one-stop solution to rapidly develop models for their specific multimodal scenarios, and benchmark them across standard and customized datasets. It features a unified interface design to access
Keywords: Multimodal, NLP, Vision
## [buzz](https://github.com/chidiwilliams/buzz)
Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.
Keywords: Audio transcription, Translation
## [rust-bert](https://github.com/guillaume-be/rust-bert)
Rust-native state-of-the-art Natural Language Processing models and pipelines. Port of Hugging Face's Transformers library, using the tch-rs crate and pre-processing from rust-tokenizers. Supports multi-threaded tokenization and GPU inference. This repository exposes the model base architecture, task-specific heads and ready-to-use pipelines.
Keywords: Rust, BERT, Inference
## [EasyNLP](https://github.com/alibaba/EasyNLP)
[EasyNLP](https://github.com/alibaba/EasyNLP) is an easy-to-use NLP development and application toolkit in PyTorch, first released inside Alibaba in 2021. It is built with scalable distributed training strategies and supports a comprehensive suite of NLP algorithms for various NLP applications. [EasyNLP](https://github.com/alibaba/EasyNLP) integrates knowledge distillation and few-shot learning for landing large pre-trained models, together with various popular multi-modality pre-trained models. It provides a unified framework of model training, inference, and deployment for real-world applications.
Keywords: NLP, Knowledge distillation, Few-shot learning, Multi-modality, Training, Inference, Deployment
## [TurboTransformers](https://github.com/Tencent/TurboTransformers)
A fast and user-friendly runtime for transformer inference (Bert, Albert, GPT2, Decoders, etc) on CPU and GPU.
Keywords: Optimization, Performance
## [hivemind](https://github.com/learning-at-home/hivemind)
Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers.
Keywords: Decentralized training
## [docquery](https://github.com/impira/docquery)
DocQuery is a library and command-line tool that makes it easy to analyze semi-structured and unstructured documents (PDFs, scanned images, etc.) using large language models (LLMs). You simply point DocQuery at one or more documents and specify a question you want to ask. DocQuery is created by the team at Impira.
Keywords: Semi-structured documents, Unstructured documents, LLM, Document Question Answering
## [CodeGeeX](https://github.com/THUDM/CodeGeeX)
[CodeGeeX](https://github.com/THUDM/CodeGeeX) is a large-scale multilingual code generation model with 13 billion parameters, pre-trained on a large code corpus of more than 20 programming languages. It has several unique features:
- Multilingual code generation
- Crosslingual code translation
- Is a customizable programming assistant
Keywords: Code Generation Model
## [ktrain](https://github.com/amaiya/ktrain)
[ktrain](https://github.com/amaiya/ktrain) is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, [ktrain](https://github.com/amaiya/ktrain) is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners.
Keywords: Keras wrapper, Model building, Training, Deployment
## [FastDeploy](https://github.com/PaddlePaddle/FastDeploy)
[FastDeploy](https://github.com/PaddlePaddle/FastDeploy) is an Easy-to-use and High Performance AI model deployment toolkit for Cloud, Mobile and Edge with packageout-of-the-box and unified experience, endend-to-end optimization for over fire160+ Text, Vision, Speech and Cross-modal AI models. Including image classification, object detection, OCR, face detection, matting, pp-tracking, NLP, stable diffusion, TTS and other tasks to meet developers' industrial deployment needs for multi-scenario, multi-hardware and multi-platform.
Keywords: Model deployment, CLoud, Mobile, Edge
## [underthesea](https://github.com/undertheseanlp/underthesea)
[underthesea](https://github.com/undertheseanlp/underthesea) is a Vietnamese NLP toolkit. Underthesea is a suite of open source Python modules data sets and tutorials supporting research and development in Vietnamese Natural Language Processing. We provides extremely easy API to quickly apply pretrained NLP models to your Vietnamese text, such as word segmentation, part-of-speech tagging (PoS), named entity recognition (NER), text classification and dependency parsing.
Keywords: Vietnamese, NLP
## [hasktorch](https://github.com/hasktorch/hasktorch)
Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the core C++ libraries shared by PyTorch.
Keywords: Haskell, Neural Networks
## [donut](https://github.com/clovaai/donut)
Donut, or Document understanding transformer, is a new method of document understanding that utilizes an OCR-free end-to-end Transformer model.
Donut does not require off-the-shelf OCR engines/APIs, yet it shows state-of-the-art performances on various visual document understanding tasks, such as visual document classification or information extraction (a.k.a. document parsing).
Keywords: Document Understanding
## [transformers-interpret](https://github.com/cdpierse/transformers-interpret)
Transformers Interpret is a model explainability tool designed to work exclusively with the transformers package.
In line with the philosophy of the Transformers package Transformers Interpret allows any transformers model to be explained in just two lines. Explainers are available for both text and computer vision models. Visualizations are also available in notebooks and as savable png and html files
Keywords: Model interpretation, Visualization
## [mlrun](https://github.com/mlrun/mlrun)
MLRun is an open MLOps platform for quickly building and managing continuous ML applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements.
Keywords: MLOps
## [FederatedScope](https://github.com/alibaba/FederatedScope)
[FederatedScope](https://github.com/alibaba/FederatedScope) is a comprehensive federated learning platform that provides convenient usage and flexible customization for various federated learning tasks in both academia and industry. Based on an event-driven architecture, [FederatedScope](https://github.com/alibaba/FederatedScope) integrates rich collections of functionalities to satisfy the burgeoning demands from federated learning, and aims to build up an easy-to-use platform for promoting learning safely and effectively.
Keywords: Federated learning, Event-driven
## [pythainlp](https://github.com/PyThaiNLP/pythainlp)
PyThaiNLP is a Python package for text processing and linguistic analysis, similar to NLTK with focus on Thai language.
Keywords: Thai, NLP, NLTK
## [FlagAI](https://github.com/FlagAI-Open/FlagAI)
[FlagAI](https://github.com/FlagAI-Open/FlagAI) (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model. Our goal is to support training, fine-tuning, and deployment of large-scale models on various downstream tasks with multi-modality.
Keywords: Large models, Training, Fine-tuning, Deployment, Multi-modal
## [pyserini](https://github.com/castorini/pyserini)
[pyserini](https://github.com/castorini/pyserini) is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse representations is provided via integration with the group's Anserini IR toolkit. Retrieval using dense representations is provided via integration with Facebook's Faiss library.
Keywords: IR, Information Retrieval, Dense, Sparse
## [baal](https://github.com/baal-org/baal)
[baal](https://github.com/baal-org/baal) is an active learning library that supports both industrial applications and research usecases. [baal](https://github.com/baal-org/baal) currently supports Monte-Carlo Dropout, MCDropConnect, deep ensembles, and semi-supervised learning.
Keywords: Active Learning, Research, Labeling
## [cleanlab](https://github.com/cleanlab/cleanlab)
[cleanlab](https://github.com/cleanlab/cleanlab) is the standard data-centric AI package for data quality and machine learning with messy, real-world data and labels. For text, image, tabular, audio (among others) datasets, you can use cleanlab to automatically: detect data issues (outliers, label errors, near duplicates, etc), train robust ML models, infer consensus + annotator-quality for multi-annotator data, suggest data to (re)label next (active learning).
Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active Learning
## [BentoML](https://github.com/bentoml/BentoML)
[BentoML](https://github.com/bentoml) is the unified framework for for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
Keywords: BentoML, Framework, Deployment, AI Applications
## [LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory)
[LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning).
Keywords: PEFT, fine-tuning, LLaMA-2, ChatGLM, Qwen
| transformers/awesome-transformers.md/0 | {
"file_path": "transformers/awesome-transformers.md",
"repo_id": "transformers",
"token_count": 10233
} | 1 |
Subsets and Splits