text
stringlengths
29
320k
id
stringlengths
22
166
metadata
dict
__index_level_0__
int64
0
195
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Any, Callable, Dict, List, Type, TypeVar, Union, overload import torch import torch.nn as nn import torch.types def add(m1: torch.Tensor, m2: torch.Tensor, inplace: bool) -> torch.Tensor: # The first operation in a checkpoint can't be in-place, but it's # nice to have in-place addition during inference. Thus... if not inplace: m1 = m1 + m2 else: m1 += m2 return m1 def permute_final_dims(tensor: torch.Tensor, inds: List[int]) -> torch.Tensor: zero_index = -1 * len(inds) first_inds = list(range(len(tensor.shape[:zero_index]))) return tensor.permute(first_inds + [zero_index + i for i in inds]) def flatten_final_dims(t: torch.Tensor, no_dims: int) -> torch.Tensor: return t.reshape(t.shape[:-no_dims] + (-1,)) def masked_mean(mask: torch.Tensor, value: torch.Tensor, dim: int, eps: float = 1e-4) -> torch.Tensor: mask = mask.expand(*value.shape) return torch.sum(mask * value, dim=dim) / (eps + torch.sum(mask, dim=dim)) def pts_to_distogram( pts: torch.Tensor, min_bin: torch.types.Number = 2.3125, max_bin: torch.types.Number = 21.6875, no_bins: int = 64 ) -> torch.Tensor: boundaries = torch.linspace(min_bin, max_bin, no_bins - 1, device=pts.device) dists = torch.sqrt(torch.sum((pts.unsqueeze(-2) - pts.unsqueeze(-3)) ** 2, dim=-1)) return torch.bucketize(dists, boundaries) def dict_multimap(fn: Callable[[list], Any], dicts: List[dict]) -> dict: first = dicts[0] new_dict = {} for k, v in first.items(): all_v = [d[k] for d in dicts] if isinstance(v, dict): new_dict[k] = dict_multimap(fn, all_v) else: new_dict[k] = fn(all_v) return new_dict def one_hot(x: torch.Tensor, v_bins: torch.Tensor) -> torch.Tensor: reshaped_bins = v_bins.view(((1,) * len(x.shape)) + (len(v_bins),)) diffs = x[..., None] - reshaped_bins am = torch.argmin(torch.abs(diffs), dim=-1) return nn.functional.one_hot(am, num_classes=len(v_bins)).float() def batched_gather(data: torch.Tensor, inds: torch.Tensor, dim: int = 0, no_batch_dims: int = 0) -> torch.Tensor: ranges: List[Union[slice, torch.Tensor]] = [] for i, s in enumerate(data.shape[:no_batch_dims]): r = torch.arange(s) r = r.view(*(*((1,) * i), -1, *((1,) * (len(inds.shape) - i - 1)))) ranges.append(r) remaining_dims: List[Union[slice, torch.Tensor]] = [slice(None) for _ in range(len(data.shape) - no_batch_dims)] remaining_dims[dim - no_batch_dims if dim >= 0 else dim] = inds ranges.extend(remaining_dims) # Matt note: Editing this to get around the behaviour of using a list as an array index changing # in recent Numpy versions return data[tuple(ranges)] T = TypeVar("T") # With tree_map, a poor man's JAX tree_map def dict_map( fn: Callable[[T], Any], dic: Dict[Any, Union[dict, list, tuple, T]], leaf_type: Type[T] ) -> Dict[Any, Union[dict, list, tuple, Any]]: new_dict: Dict[Any, Union[dict, list, tuple, Any]] = {} for k, v in dic.items(): if isinstance(v, dict): new_dict[k] = dict_map(fn, v, leaf_type) else: new_dict[k] = tree_map(fn, v, leaf_type) return new_dict @overload def tree_map(fn: Callable[[T], Any], tree: T, leaf_type: Type[T]) -> Any: ... @overload def tree_map(fn: Callable[[T], Any], tree: dict, leaf_type: Type[T]) -> dict: ... @overload def tree_map(fn: Callable[[T], Any], tree: list, leaf_type: Type[T]) -> list: ... @overload def tree_map(fn: Callable[[T], Any], tree: tuple, leaf_type: Type[T]) -> tuple: ... def tree_map(fn, tree, leaf_type): if isinstance(tree, dict): return dict_map(fn, tree, leaf_type) elif isinstance(tree, list): return [tree_map(fn, x, leaf_type) for x in tree] elif isinstance(tree, tuple): return tuple(tree_map(fn, x, leaf_type) for x in tree) elif isinstance(tree, leaf_type): return fn(tree) else: print(type(tree)) raise ValueError("Not supported") tensor_tree_map = partial(tree_map, leaf_type=torch.Tensor)
transformers/src/transformers/models/esm/openfold_utils/tensor_utils.py/0
{ "file_path": "transformers/src/transformers/models/esm/openfold_utils/tensor_utils.py", "repo_id": "transformers", "token_count": 1946 }
97
# coding=utf-8 # Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Flaubert model. """ from __future__ import annotations import itertools import random import warnings from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSequenceSummary, TFSharedEmbeddings, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( MULTIPLE_CHOICE_DUMMY_INPUTS, ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_flaubert import FlaubertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "flaubert/flaubert_base_cased" _CONFIG_FOR_DOC = "FlaubertConfig" TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ # See all Flaubert models at https://huggingface.co/models?filter=flaubert ] FLAUBERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`FlaubertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FLAUBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - `1` for tokens that are **not masked**, - `0` for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) langs (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the *language name to language id* mapping is in `model.config.lang2id` (which is a dictionary string to int) and the *language id to language name* mapping is in `model.config.id2lang` (dictionary int to string). See usage examples detailed in the [multilingual documentation](../multilingual). token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - `0` corresponds to a *sentence A* token, - `1` corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) lengths (`tf.Tensor` or `Numpy array` of shape `(batch_size,)`, *optional*): Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use *attention_mask* for the same result (see above), kept here for compatibility Indices selected in `[0, ..., input_ids.size(-1)]`: cache (`Dict[str, tf.Tensor]`, *optional*): Dictionary string to `tf.FloatTensor` that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential decoding. The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states. head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - `1` indicates the head is **not masked**, - `0` indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ def get_masks(slen, lengths, causal, padding_mask=None): """ Generate hidden states mask, and optionally an attention mask. """ bs = shape_list(lengths)[0] if padding_mask is not None: mask = padding_mask else: # assert lengths.max().item() <= slen alen = tf.range(slen, dtype=lengths.dtype) mask = alen < tf.expand_dims(lengths, axis=1) # attention mask is the same as mask, or triangular inferior attention (causal) if causal: attn_mask = tf.less_equal( tf.tile(tf.reshape(alen, (1, 1, slen)), (bs, slen, 1)), tf.reshape(alen, (1, slen, 1)) ) else: attn_mask = mask # sanity check # assert shape_list(mask) == [bs, slen] tf.debugging.assert_equal(shape_list(mask), [bs, slen]) if causal: tf.debugging.assert_equal(shape_list(attn_mask), [bs, slen, slen]) return mask, attn_mask class TFFlaubertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FlaubertConfig base_model_prefix = "transformer" @property def dummy_inputs(self): # Sometimes Flaubert has language embeddings so don't forget to build them as well if needed inputs_list = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]], dtype=tf.int32) attns_list = tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32) if self.config.use_lang_emb and self.config.n_langs > 1: return { "input_ids": inputs_list, "attention_mask": attns_list, "langs": tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32), } else: return {"input_ids": inputs_list, "attention_mask": attns_list} @add_start_docstrings( "The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.", FLAUBERT_START_DOCSTRING, ) class TFFlaubertModel(TFFlaubertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer") @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutput]: outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMMultiHeadAttention with XLM->Flaubert class TFFlaubertMultiHeadAttention(keras.layers.Layer): NEW_ID = itertools.count() def __init__(self, n_heads, dim, config, **kwargs): super().__init__(**kwargs) self.layer_id = next(TFFlaubertMultiHeadAttention.NEW_ID) self.dim = dim self.n_heads = n_heads self.output_attentions = config.output_attentions assert self.dim % self.n_heads == 0 self.q_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="q_lin") self.k_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="k_lin") self.v_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="v_lin") self.out_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="out_lin") self.dropout = keras.layers.Dropout(config.attention_dropout) self.pruned_heads = set() self.dim = dim def prune_heads(self, heads): raise NotImplementedError def call(self, input, mask, kv, cache, head_mask, output_attentions, training=False): """ Self-attention (if kv is None) or attention over source sentence (provided by kv). """ # Input is (bs, qlen, dim) # Mask is (bs, klen) (non-causal) or (bs, klen, klen) bs, qlen, dim = shape_list(input) if kv is None: klen = qlen if cache is None else cache["slen"] + qlen else: klen = shape_list(kv)[1] # assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured' dim_per_head = self.dim // self.n_heads mask_reshape = (bs, 1, qlen, klen) if len(shape_list(mask)) == 3 else (bs, 1, 1, klen) def shape(x): """projection""" return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3)) def unshape(x): """compute context""" return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head)) q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head) if kv is None: k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head) v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head) elif cache is None or self.layer_id not in cache: k = v = kv k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head) v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head) if cache is not None: if self.layer_id in cache: if kv is None: k_, v_ = cache[self.layer_id] k = tf.concat([k_, k], axis=2) # (bs, n_heads, klen, dim_per_head) v = tf.concat([v_, v], axis=2) # (bs, n_heads, klen, dim_per_head) else: k, v = cache[self.layer_id] cache[self.layer_id] = (k, v) f_dim_per_head = tf.cast(dim_per_head, dtype=q.dtype) q = tf.multiply(q, tf.math.rsqrt(f_dim_per_head)) # (bs, n_heads, qlen, dim_per_head) k = tf.cast(k, dtype=q.dtype) scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, qlen, klen) mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen) # scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, qlen, klen) mask = tf.cast(mask, dtype=scores.dtype) scores = scores - 1e30 * (1.0 - mask) weights = stable_softmax(scores, axis=-1) # (bs, n_heads, qlen, klen) weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen) # Mask heads if we want to if head_mask is not None: weights = weights * head_mask context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head) context = unshape(context) # (bs, qlen, dim) outputs = (self.out_lin(context),) if output_attentions: outputs = outputs + (weights,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "q_lin", None) is not None: with tf.name_scope(self.q_lin.name): self.q_lin.build([None, None, self.dim]) if getattr(self, "k_lin", None) is not None: with tf.name_scope(self.k_lin.name): self.k_lin.build([None, None, self.dim]) if getattr(self, "v_lin", None) is not None: with tf.name_scope(self.v_lin.name): self.v_lin.build([None, None, self.dim]) if getattr(self, "out_lin", None) is not None: with tf.name_scope(self.out_lin.name): self.out_lin.build([None, None, self.dim]) # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMTransformerFFN class TFFlaubertTransformerFFN(keras.layers.Layer): def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs): super().__init__(**kwargs) self.lin1 = keras.layers.Dense(dim_hidden, kernel_initializer=get_initializer(config.init_std), name="lin1") self.lin2 = keras.layers.Dense(out_dim, kernel_initializer=get_initializer(config.init_std), name="lin2") self.act = get_tf_activation("gelu") if config.gelu_activation else get_tf_activation("relu") self.dropout = keras.layers.Dropout(config.dropout) self.in_dim = in_dim self.dim_hidden = dim_hidden def call(self, input, training=False): x = self.lin1(input) x = self.act(x) x = self.lin2(x) x = self.dropout(x, training=training) return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "lin1", None) is not None: with tf.name_scope(self.lin1.name): self.lin1.build([None, None, self.in_dim]) if getattr(self, "lin2", None) is not None: with tf.name_scope(self.lin2.name): self.lin2.build([None, None, self.dim_hidden]) @keras_serializable class TFFlaubertMainLayer(keras.layers.Layer): config_class = FlaubertConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.n_heads = config.n_heads self.n_langs = config.n_langs self.dim = config.emb_dim self.hidden_dim = self.dim * 4 self.n_words = config.n_words self.pad_index = config.pad_index self.causal = config.causal self.n_layers = config.n_layers self.use_lang_emb = config.use_lang_emb self.layerdrop = getattr(config, "layerdrop", 0.0) self.pre_norm = getattr(config, "pre_norm", False) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.max_position_embeddings = config.max_position_embeddings self.embed_init_std = config.embed_init_std self.dropout = keras.layers.Dropout(config.dropout) self.embeddings = TFSharedEmbeddings( self.n_words, self.dim, initializer_range=config.embed_init_std, name="embeddings" ) self.layer_norm_emb = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm_emb") self.attentions = [] self.layer_norm1 = [] self.ffns = [] self.layer_norm2 = [] for i in range(self.n_layers): self.attentions.append( TFFlaubertMultiHeadAttention(self.n_heads, self.dim, config=config, name=f"attentions_._{i}") ) self.layer_norm1.append( keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm1_._{i}") ) # if self.is_decoder: # self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) # self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout)) self.ffns.append( TFFlaubertTransformerFFN(self.dim, self.hidden_dim, self.dim, config=config, name=f"ffns_._{i}") ) self.layer_norm2.append( keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm2_._{i}") ) def build(self, input_shape=None): with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.dim], initializer=get_initializer(self.embed_init_std), ) if self.n_langs > 1 and self.use_lang_emb: with tf.name_scope("lang_embeddings"): self.lang_embeddings = self.add_weight( name="embeddings", shape=[self.n_langs, self.dim], initializer=get_initializer(self.embed_init_std), ) if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "layer_norm_emb", None) is not None: with tf.name_scope(self.layer_norm_emb.name): self.layer_norm_emb.build([None, None, self.dim]) for layer in self.attentions: with tf.name_scope(layer.name): layer.build(None) for layer in self.layer_norm1: with tf.name_scope(layer.name): layer.build([None, None, self.dim]) for layer in self.ffns: with tf.name_scope(layer.name): layer.build(None) for layer in self.layer_norm2: with tf.name_scope(layer.name): layer.build([None, None, self.dim]) def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] @unpack_inputs def call( self, input_ids: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutput]: # removed: src_enc=None, src_len=None if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: bs, slen = shape_list(input_ids) elif inputs_embeds is not None: bs, slen = shape_list(inputs_embeds)[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if lengths is None: if input_ids is not None: lengths = tf.reduce_sum( tf.cast(tf.not_equal(input_ids, self.pad_index), dtype=input_ids.dtype), axis=1 ) else: lengths = tf.convert_to_tensor([slen] * bs) # mask = input_ids != self.pad_index # check inputs # assert shape_list(lengths)[0] == bs ( tf.debugging.assert_equal(shape_list(lengths)[0], bs), f"Expected batch size {shape_list(lengths)[0]} and received batch size {bs} mismatched", ) # assert lengths.max().item() <= slen # input_ids = input_ids.transpose(0, 1) # batch size as dimension 0 # assert (src_enc is None) == (src_len is None) # if src_enc is not None: # assert self.is_decoder # assert src_enc.size(0) == bs # generate masks mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask) # if self.is_decoder and src_enc is not None: # src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None] # position_ids if position_ids is None: position_ids = tf.expand_dims(tf.range(slen), axis=0) position_ids = tf.tile(position_ids, (bs, 1)) # assert shape_list(position_ids) == [bs, slen] # (slen, bs) ( tf.debugging.assert_equal(shape_list(position_ids), [bs, slen]), f"Position id shape {shape_list(position_ids)} and input shape {[bs, slen]} mismatched", ) # position_ids = position_ids.transpose(0, 1) # langs if langs is not None: # assert shape_list(langs) == [bs, slen] # (slen, bs) ( tf.debugging.assert_equal(shape_list(langs), [bs, slen]), f"Lang shape {shape_list(langs)} and input shape {[bs, slen]} mismatched", ) # langs = langs.transpose(0, 1) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.n_layers # do not recompute cached elements if cache is not None and input_ids is not None: _slen = slen - cache["slen"] input_ids = input_ids[:, -_slen:] position_ids = position_ids[:, -_slen:] if langs is not None: langs = langs[:, -_slen:] mask = mask[:, -_slen:] attn_mask = attn_mask[:, -_slen:] # embeddings if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embeddings.vocab_size) inputs_embeds = self.embeddings(input_ids) tensor = inputs_embeds + tf.gather(self.position_embeddings, position_ids) if langs is not None and self.use_lang_emb: tensor = tensor + tf.gather(self.lang_embeddings, langs) if token_type_ids is not None: tensor = tensor + self.embeddings(token_type_ids) tensor = self.layer_norm_emb(tensor) tensor = self.dropout(tensor, training=training) mask = tf.cast(mask, dtype=tensor.dtype) tensor = tensor * tf.expand_dims(mask, axis=-1) # hidden_states and attentions cannot be None in graph mode. hidden_states = () if output_hidden_states else None attentions = () if output_attentions else None # transformer layers for i in range(self.n_layers): # LayerDrop dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue if output_hidden_states: hidden_states = hidden_states + (tensor,) # self attention if not self.pre_norm: attn_outputs = self.attentions[i]( tensor, attn_mask, None, cache, head_mask[i], output_attentions, training=training, ) attn = attn_outputs[0] if output_attentions: attentions = attentions + (attn_outputs[1],) attn = self.dropout(attn, training=training) tensor = tensor + attn tensor = self.layer_norm1[i](tensor) else: tensor_normalized = self.layer_norm1[i](tensor) attn_outputs = self.attentions[i]( tensor_normalized, attn_mask, None, cache, head_mask[i], output_attentions, training=training, ) attn = attn_outputs[0] if output_attentions: attentions = attentions + (attn_outputs[1],) attn = self.dropout(attn, training=training) tensor = tensor + attn # encoder attention (for decoder only) # if self.is_decoder and src_enc is not None: # attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache) # attn = nn.functional.dropout(attn, p=self.dropout, training=self.training) # tensor = tensor + attn # tensor = self.layer_norm15[i](tensor) # FFN if not self.pre_norm: tensor = tensor + self.ffns[i](tensor) tensor = self.layer_norm2[i](tensor) else: tensor_normalized = self.layer_norm2[i](tensor) tensor = tensor + self.ffns[i](tensor_normalized) tensor = tensor * tf.expand_dims(mask, axis=-1) # Add last hidden state if output_hidden_states: hidden_states = hidden_states + (tensor,) # update cache length if cache is not None: cache["slen"] += tensor.size(1) # move back sequence length to dimension 0 # tensor = tensor.transpose(0, 1) if not return_dict: return tuple(v for v in [tensor, hidden_states, attentions] if v is not None) return TFBaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions) # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMPredLayer class TFFlaubertPredLayer(keras.layers.Layer): """ Prediction layer (cross_entropy or adaptive_softmax). """ def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.asm = config.asm self.n_words = config.n_words self.pad_index = config.pad_index if config.asm is False: self.input_embeddings = input_embeddings else: raise NotImplementedError # self.proj = nn.AdaptiveLogSoftmaxWithLoss( # in_features=dim, # n_classes=config.n_words, # cutoffs=config.asm_cutoffs, # div_value=config.asm_div_value, # head_bias=True, # default is False # ) def build(self, input_shape): # The output weights are the same as the input embeddings, but there is an output-only bias for each token. self.bias = self.add_weight(shape=(self.n_words,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states @dataclass class TFFlaubertWithLMHeadModelOutput(ModelOutput): """ Base class for [`TFFlaubertWithLMHeadModel`] outputs. Args: logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @add_start_docstrings( """ The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, FLAUBERT_START_DOCSTRING, ) class TFFlaubertWithLMHeadModel(TFFlaubertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer") self.pred_layer = TFFlaubertPredLayer(config, self.transformer.embeddings, name="pred_layer_._proj") # Flaubert does not have past caching features self.supports_xla_generation = False def get_lm_head(self): return self.pred_layer def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.pred_layer.name def prepare_inputs_for_generation(self, inputs, **kwargs): mask_token_id = self.config.mask_token_id lang_id = self.config.lang_id effective_batch_size = inputs.shape[0] mask_token = tf.fill((effective_batch_size, 1), 1) * mask_token_id inputs = tf.concat([inputs, mask_token], axis=1) if lang_id is not None: langs = tf.ones_like(inputs) * lang_id else: langs = None return {"input_ids": inputs, "langs": langs} @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFFlaubertWithLMHeadModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFFlaubertWithLMHeadModelOutput]: transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] outputs = self.pred_layer(output) if not return_dict: return (outputs,) + transformer_outputs[1:] return TFFlaubertWithLMHeadModelOutput( logits=outputs, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "pred_layer", None) is not None: with tf.name_scope(self.pred_layer.name): self.pred_layer.build(None) @add_start_docstrings( """ Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, FLAUBERT_START_DOCSTRING, ) # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForSequenceClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert class TFFlaubertForSequenceClassification(TFFlaubertPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFFlaubertMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary") @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] logits = self.sequence_summary(output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "sequence_summary", None) is not None: with tf.name_scope(self.sequence_summary.name): self.sequence_summary.build(None) @add_start_docstrings( """ Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FLAUBERT_START_DOCSTRING, ) # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForQuestionAnsweringSimple with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert class TFFlaubertForQuestionAnsweringSimple(TFFlaubertPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.init_std), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = transformer_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, FLAUBERT_START_DOCSTRING, ) # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForTokenClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert class TFFlaubertForTokenClassification(TFFlaubertPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFFlaubertMainLayer(config, name="transformer") self.dropout = keras.layers.Dropout(config.dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.init_std), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = transformer_outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, FLAUBERT_START_DOCSTRING, ) # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForMultipleChoice with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert class TFFlaubertForMultipleChoice(TFFlaubertPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary") self.logits_proj = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj" ) self.config = config @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ # Sometimes Flaubert has language embeddings so don't forget to build them as well if needed if self.config.use_lang_emb and self.config.n_langs > 1: return { "input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32), "langs": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32), } else: return { "input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32), } @unpack_inputs @add_start_docstrings_to_model_forward( FLAUBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None flat_langs = tf.reshape(langs, (-1, seq_length)) if langs is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) if lengths is not None: logger.warning( "The `lengths` parameter cannot be used with the Flaubert multiple choice models. Please use the " "attention mask instead.", ) lengths = None transformer_outputs = self.transformer( flat_input_ids, flat_attention_mask, flat_langs, flat_token_type_ids, flat_position_ids, lengths, cache, head_mask, flat_inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] logits = self.sequence_summary(output) logits = self.logits_proj(logits) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "sequence_summary", None) is not None: with tf.name_scope(self.sequence_summary.name): self.sequence_summary.build(None) if getattr(self, "logits_proj", None) is not None: with tf.name_scope(self.logits_proj.name): self.logits_proj.build([None, None, self.config.num_labels])
transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py/0
{ "file_path": "transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py", "repo_id": "transformers", "token_count": 25400 }
98
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch GIT model.""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...file_utils import ModelOutput from ...modeling_attn_mask_utils import _prepare_4d_attention_mask from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPast, BaseModelOutputWithPooling, CausalLMOutputWithPast, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_git import GitConfig, GitVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "microsoft/git-base" _CONFIG_FOR_DOC = "GitConfig" GIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/git-base", # See all GIT models at https://huggingface.co/models?filter=git ] @dataclass # Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Git class GitVisionModelOutput(ModelOutput): """ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. Args: image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None class GitEmbeddings(nn.Module): """Construct the embeddings from word and position embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if inputs_embeds is None: embeddings = self.word_embeddings(input_ids) else: embeddings = inputs_embeds if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class GitSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.image_patch_tokens = int((config.vision_config.image_size / config.vision_config.patch_size) ** 2 + 1) if config.num_image_with_embedding is not None: self.image_patch_tokens *= config.num_image_with_embedding self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, pixel_values_present: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) cutoff = self.image_patch_tokens if pixel_values_present else 0 if past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([key_layer[:, :, :cutoff, :], past_key_value[0], key_layer[:, :, -1:, :]], dim=2) value_layer = torch.cat( [value_layer[:, :, :cutoff, :], past_key_value[1], value_layer[:, :, -1:, :]], dim=2 ) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` # NOTE: like in other caches, we store the text component. In GIT it means we discard the image component. past_key_value = ( key_layer[:, :, cutoff:, :], value_layer[:, :, cutoff:, :], ) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in GitModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class GitSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class GitAttention(nn.Module): # Copied from transformers.models.bert.modeling_bert.BertAttention.__init__ with Bert->Git def __init__(self, config, position_embedding_type=None): super().__init__() self.self = GitSelfAttention(config, position_embedding_type=position_embedding_type) self.output = GitSelfOutput(config) self.pruned_heads = set() # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, pixel_values_present: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, past_key_value, output_attentions, pixel_values_present, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class GitIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class GitOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class GitLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = GitAttention(config) self.intermediate = GitIntermediate(config) self.output = GitOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, pixel_values_present: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, pixel_values_present=pixel_values_present, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class GitEncoder(nn.Module): # Copied from transformers.models.bert.modeling_bert.BertEncoder.__init__ with Bert->Git def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([GitLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, pixel_values_present: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]: if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, past_key_value, output_attentions, pixel_values_present, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class GitPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GitConfig base_model_prefix = "git" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, GitVisionEmbeddings): nn.init.normal_(module.class_embedding, mean=0.0, std=self.config.initializer_range) nn.init.normal_(module.patch_embedding.weight, std=self.config.initializer_range) nn.init.normal_(module.position_embedding.weight, std=self.config.initializer_range) if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) GIT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`GitConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ GIT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Git class GitVisionEmbeddings(nn.Module): def __init__(self, config: GitVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPMLP class GitVisionMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.clip.modeling_clip.CLIPAttention class GitVisionAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->GitVision class GitVisionEncoderLayer(nn.Module): def __init__(self, config: GitVisionConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = GitVisionAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = GitVisionMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->GitVision, CLIPConfig class GitVisionEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`GitVisionEncoderLayer`]. Args: config: GitVisionConfig """ def __init__(self, config: GitVisionConfig): super().__init__() self.config = config self.layers = nn.ModuleList([GitVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, causal_attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) GIT_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class GitVisionTransformer(nn.Module): # Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.__init__ with CLIPEncoder->GitVisionEncoder, CLIP->Git def __init__(self, config: GitVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = GitVisionEmbeddings(config) self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = GitVisionEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(GIT_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=GitVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) if not return_dict: return (last_hidden_state,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=last_hidden_state, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """The vision model from CLIP, used in GIT, without any head or projection on top.""", GIT_START_DOCSTRING, ) class GitVisionModel(GitPreTrainedModel): config_class = GitVisionConfig main_input_name = "pixel_values" # Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP->Git def __init__(self, config: GitVisionConfig): super().__init__(config) self.vision_model = GitVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(GIT_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=GitVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, GitVisionModel >>> processor = AutoProcessor.from_pretrained("microsoft/git-base") >>> model = GitVisionModel.from_pretrained("microsoft/git-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class GitProjection(nn.Module): def __init__(self, config: GitConfig): super().__init__() self.config = config self.visual_projection = nn.Sequential( nn.Linear(config.vision_config.hidden_size, config.hidden_size), nn.LayerNorm(config.hidden_size, eps=config.vision_config.layer_norm_eps), ) def forward(self, embeddings: torch.Tensor) -> torch.Tensor: return self.visual_projection(embeddings) @add_start_docstrings( "The bare GIT Model transformer consisting of a CLIP image encoder and text decoder outputting raw hidden-states" " without any specific head on top.", GIT_START_DOCSTRING, ) class GitModel(GitPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = GitEmbeddings(config) self.image_encoder = GitVisionModel(config.vision_config) self.encoder = GitEncoder(config) self.visual_projection = GitProjection(config) if config.num_image_with_embedding is not None: self.img_temperal_embedding = nn.ParameterList( nn.Parameter(torch.zeros(1, 1, config.vision_config.hidden_size)) for _ in range(config.num_image_with_embedding) ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def _generate_future_mask(self, size: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor: # Default mask is for forward direction. Flip for backward direction. mask = torch.triu(torch.ones(size, size, device=device, dtype=dtype), diagonal=1) mask = mask.masked_fill(mask == 1, float("-inf")) return mask def create_attention_mask(self, tgt, memory, tgt_mask, past_key_values_length, memory_key_padding_mask=None): num_tgt = tgt.shape[1] num_memory = memory.shape[1] device = tgt.device dtype = tgt.dtype top_left = torch.zeros((num_memory, num_memory), device=device, dtype=dtype) top_right = torch.full( (num_memory, num_tgt + past_key_values_length), float("-inf"), device=tgt.device, dtype=dtype, ) bottom_left = torch.zeros( (num_tgt, num_memory), dtype=dtype, device=tgt_mask.device, ) if past_key_values_length > 0: tgt_mask = torch.zeros( (tgt_mask.shape[0], tgt_mask.shape[0] + past_key_values_length), dtype=dtype, device=tgt_mask.device, ) left = torch.cat((top_left, bottom_left), dim=0) right = torch.cat((top_right, tgt_mask.to(dtype)), dim=0) full_attention_mask = torch.cat((left, right), dim=1)[None, :] if memory_key_padding_mask is None: memory_key_padding_mask = torch.full((memory.shape[0], memory.shape[1]), fill_value=False, device=device) # if it is False, it means valid. That is, it is not a padding if memory_key_padding_mask.dtype != torch.bool: raise ValueError("Memory key padding mask must be a boolean tensor.") zero_negative_infinity = torch.zeros_like(memory_key_padding_mask, dtype=tgt.dtype) zero_negative_infinity[memory_key_padding_mask] = float("-inf") full_attention_mask = full_attention_mask.expand( (memory_key_padding_mask.shape[0], num_memory + num_tgt, num_memory + past_key_values_length + num_tgt) ) full_attention_mask = full_attention_mask.clone() origin_left = full_attention_mask[:, :, :num_memory] update = zero_negative_infinity[:, None, :] full_attention_mask[:, :, :num_memory] = origin_left + update # add axis for multi-head full_attention_mask = full_attention_mask[:, None, :, :] return full_attention_mask @add_start_docstrings_to_model_forward(GIT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]: r""" past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModel >>> import requests >>> from PIL import Image >>> processor = AutoProcessor.from_pretrained("microsoft/git-base") >>> model = AutoModel.from_pretrained("microsoft/git-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "this is an image of two cats" >>> inputs = processor(text, images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") seq_length = input_shape[1] # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) projected_visual_features = None if pixel_values is not None: if pixel_values.ndim == 4: # here we assume pixel_values is of shape (batch_size, num_channels, height, width) visual_features = self.image_encoder(pixel_values).last_hidden_state elif pixel_values.ndim == 5: # here we assume pixel_values is of shape (batch_size, num_frames, num_channels, height, width) visual_features = [] for frame_idx in range(pixel_values.shape[1]): visual_features_frame = self.image_encoder(pixel_values[:, frame_idx, :, :]).last_hidden_state visual_features_frame += self.img_temperal_embedding[frame_idx] visual_features.append(visual_features_frame) # finally, concatenate all features along sequence dimension visual_features = torch.cat(visual_features, dim=1) else: raise ValueError("pixel_values must be of rank 4 or 5") projected_visual_features = self.visual_projection(visual_features) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) if projected_visual_features is None: projected_visual_features = torch.zeros( (embedding_output.shape[0], 0, embedding_output.shape[2]), dtype=embedding_output.dtype, device=embedding_output.device, ) # Repeat visual features to match embedding batch size. projected_visual_features = projected_visual_features.repeat( embedding_output.size(0) // projected_visual_features.size(0), 1, 1 ) # concatenate patch token and text token embeddings hidden_states = torch.cat((projected_visual_features, embedding_output), dim=1) # By default, an additive causal mask is created # for masking the future (one direction). tgt_mask = self._generate_future_mask(seq_length, embedding_output.dtype, embedding_output.device) # Create an attention mask of shape (batch_size, 1, tgt_seq_len, src_seq_len) combined_attention_mask = self.create_attention_mask( tgt=embedding_output, memory=projected_visual_features, tgt_mask=tgt_mask, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # if the user provides an attention mask, we add it to the default one # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _prepare_4d_attention_mask( attention_mask, embedding_output.dtype, tgt_len=input_shape[-1] ).to(embedding_output.device) if past_key_values_length > 0: expanded_attn_mask = expanded_attn_mask[:, :, -past_key_values_length:, :] else: combined_attention_mask[:, :, -input_shape[1] :, -input_shape[1] :] += expanded_attn_mask encoder_outputs = self.encoder( hidden_states, attention_mask=combined_attention_mask, head_mask=head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, pixel_values_present=pixel_values is not None, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutputWithPast( last_hidden_state=sequence_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """GIT Model with a `language modeling` head on top for autoregressive language modeling.""", GIT_START_DOCSTRING ) class GitForCausalLM(GitPreTrainedModel): _tied_weights_keys = ["output.weight"] def __init__(self, config): super().__init__(config) self.git = GitModel(config) self.output = nn.Linear(config.hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.output def set_output_embeddings(self, new_embeddings): self.output = new_embeddings @add_start_docstrings_to_model_forward(GIT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Examples: Image captioning example: ```python >>> from transformers import AutoProcessor, AutoModelForCausalLM >>> import requests >>> from PIL import Image >>> processor = AutoProcessor.from_pretrained("microsoft/git-base-coco") >>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> pixel_values = processor(images=image, return_tensors="pt").pixel_values >>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50) >>> generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> print(generated_caption) two cats sleeping on a pink blanket next to remotes. ``` Visual question answering (VQA) example: ```python >>> from transformers import AutoProcessor, AutoModelForCausalLM >>> from huggingface_hub import hf_hub_download >>> from PIL import Image >>> processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa") >>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa") >>> file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset") >>> image = Image.open(file_path).convert("RGB") >>> pixel_values = processor(images=image, return_tensors="pt").pixel_values >>> question = "what does the front of the bus say at the top?" >>> input_ids = processor(text=question, add_special_tokens=False).input_ids >>> input_ids = [processor.tokenizer.cls_token_id] + input_ids >>> input_ids = torch.tensor(input_ids).unsqueeze(0) >>> generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50) >>> print(processor.batch_decode(generated_ids, skip_special_tokens=True)) ['what does the front of the bus say at the top? special'] ``` Video captioning example: ```python >>> import av >>> import numpy as np >>> from PIL import Image >>> from huggingface_hub import hf_hub_download >>> from transformers import AutoProcessor, AutoModelForCausalLM >>> processor = AutoProcessor.from_pretrained("microsoft/git-base-vatex") >>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vatex") >>> # set seed for reproducability >>> np.random.seed(45) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`List[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # load video >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample frames >>> num_frames = model.config.num_image_with_embedding >>> indices = sample_frame_indices( ... clip_len=num_frames, frame_sample_rate=4, seg_len=container.streams.video[0].frames ... ) >>> frames = read_video_pyav(container, indices) >>> pixel_values = processor(images=list(frames), return_tensors="pt").pixel_values >>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50) >>> print("Generated caption:", processor.batch_decode(generated_ids, skip_special_tokens=True)) Generated caption: ['a woman is sitting at a table and she is talking about the food she is holding.'] ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.git( input_ids, attention_mask=attention_mask, position_ids=position_ids, pixel_values=pixel_values, head_mask=head_mask, inputs_embeds=inputs_embeds, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.output(sequence_output) loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one num_image_tokens = self.git.encoder.layer[0].attention.self.image_patch_tokens shifted_logits = logits[:, num_image_tokens:-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() loss = loss_fct(shifted_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: input_ids = input_ids[:, -1:] # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly input_shape = input_ids.shape if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) return { "input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": kwargs.get("pixel_values", None), "past_key_values": past_key_values, "use_cache": use_cache, } def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
transformers/src/transformers/models/git/modeling_git.py/0
{ "file_path": "transformers/src/transformers/models/git/modeling_git.py", "repo_id": "transformers", "token_count": 29391 }
99
# coding=utf-8 # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for OpenAI GPT.""" import json from typing import Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpt2 import GPT2Tokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "openai-community/gpt2": "https://huggingface.co/openai-community/gpt2/resolve/main/vocab.json", "openai-community/gpt2-medium": "https://huggingface.co/openai-community/gpt2-medium/resolve/main/vocab.json", "openai-community/gpt2-large": "https://huggingface.co/openai-community/gpt2-large/resolve/main/vocab.json", "openai-community/gpt2-xl": "https://huggingface.co/openai-community/gpt2-xl/resolve/main/vocab.json", "distilbert/distilgpt2": "https://huggingface.co/distilbert/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "openai-community/gpt2": "https://huggingface.co/openai-community/gpt2/resolve/main/merges.txt", "openai-community/gpt2-medium": "https://huggingface.co/openai-community/gpt2-medium/resolve/main/merges.txt", "openai-community/gpt2-large": "https://huggingface.co/openai-community/gpt2-large/resolve/main/merges.txt", "openai-community/gpt2-xl": "https://huggingface.co/openai-community/gpt2-xl/resolve/main/merges.txt", "distilbert/distilgpt2": "https://huggingface.co/distilbert/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "openai-community/gpt2": "https://huggingface.co/openai-community/gpt2/resolve/main/tokenizer.json", "openai-community/gpt2-medium": "https://huggingface.co/openai-community/gpt2-medium/resolve/main/tokenizer.json", "openai-community/gpt2-large": "https://huggingface.co/openai-community/gpt2-large/resolve/main/tokenizer.json", "openai-community/gpt2-xl": "https://huggingface.co/openai-community/gpt2-xl/resolve/main/tokenizer.json", "distilbert/distilgpt2": "https://huggingface.co/distilbert/distilgpt2/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "openai-community/gpt2": 1024, "openai-community/gpt2-medium": 1024, "openai-community/gpt2-large": 1024, "openai-community/gpt2-xl": 1024, "distilbert/distilgpt2": 1024, } class GPT2TokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" GPT-2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import GPT2TokenizerFast >>> tokenizer = GPT2TokenizerFast.from_pretrained("openai-community/gpt2") >>> tokenizer("Hello world")["input_ids"] [15496, 995] >>> tokenizer(" Hello world")["input_ids"] [18435, 995] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. </Tip> This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`, *optional*): Path to the vocabulary file. merges_file (`str`, *optional*): Path to the merges file. tokenizer_file (`str`, *optional*): Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that contains everything needed to load the tokenizer. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (GPT2 tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = GPT2Tokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", add_prefix_space=False, **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, add_prefix_space=add_prefix_space, **kwargs, ) self.add_bos_token = kwargs.pop("add_bos_token", False) pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) pre_tok_state["add_prefix_space"] = add_prefix_space self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) self.add_prefix_space = add_prefix_space def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) @property # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template def default_chat_template(self): """ A simple chat template that ignores role information and just concatenates messages with EOS tokens. """ logger.warning_once( "\nNo chat template is defined for this tokenizer - using the default template " f"for the {self.__class__.__name__} class. If the default is not appropriate for " "your model, please set `tokenizer.chat_template` to an appropriate template. " "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" ) return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
transformers/src/transformers/models/gpt2/tokenization_gpt2_fast.py/0
{ "file_path": "transformers/src/transformers/models/gpt2/tokenization_gpt2_fast.py", "repo_id": "transformers", "token_count": 3468 }
100
# coding=utf-8 # Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch GPTNeoX model.""" from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_gpt_neox_japanese import GPTNeoXJapaneseConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "abeja/gpt-neox-japanese-2.7b" _CONFIG_FOR_DOC = "GPTNeoXJapaneseConfig" GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST = { "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", # See all GPTNeoXJapanese models at https://huggingface.co/models?filter=gpt_neox_japanese } class GPTNeoXJapanesePreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPTNeoXJapaneseConfig base_model_prefix = "gpt_neox_japanese" _no_split_modules = ["GPTNeoXJapaneseLayer"] _skip_keys_device_placement = "past_key_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class GPTNeoXJapaneseAttention(nn.Module): def __init__(self, config, use_bias=False): super().__init__() self.num_attention_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_attention_heads self.rotary_ndims = int(self.head_size * config.rotary_pct) self.rotary_emb = RotaryEmbedding( self.rotary_ndims, config.max_position_embeddings, base=config.rotary_emb_base ) self.max_positions = config.max_position_embeddings self.attention_dropout = nn.Dropout(config.attention_dropout) self.norm_factor = torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)).to(torch.get_default_dtype()) self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=False) self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False) # Activate bias if the last layer self.use_bias = use_bias self.dense_bias = nn.Parameter(torch.zeros(config.hidden_size)) if use_bias else None def forward( self, hidden_states, attention_mask, head_mask=None, layer_past=None, use_cache=False, output_attentions=False, ): has_layer_past = layer_past is not None and layer_past[0].numel() > 0 # Compute QKV # Attention heads [batch, seq_len, hidden_size] # --> [batch, seq_len, (np * 3 * head_size)] qkv = self.query_key_value(hidden_states) # [batch, seq_len, (num_heads * 3 * head_size)] # --> [batch, seq_len, num_heads, 3 * head_size] new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size) qkv = qkv.view(*new_qkv_shape) # [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size] query = qkv[..., : self.head_size].permute(0, 2, 1, 3) key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3) value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3) # Compute rotary embeddings on rotary_ndims query_rot = query[..., : self.rotary_ndims] query_pass = query[..., self.rotary_ndims :] key_rot = key[..., : self.rotary_ndims] key_pass = key[..., self.rotary_ndims :] # Compute token offset for rotary embeddings (when decoding) seq_len = key.shape[-2] offset = 0 if has_layer_past: offset = layer_past[0].shape[-2] seq_len += offset cos, sin = self.rotary_emb(value, seq_len=seq_len) query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, offset=offset) query = torch.cat((query, query_pass), dim=-1) key = torch.cat((key, key_pass), dim=-1) # Cache QKV values if has_layer_past: past_key = layer_past[0] past_value = layer_past[1] key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) present = (key, value) if use_cache else None # Compute attention attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) # Reshape outputs attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size) attn_output = self.dense(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs, self.dense_bias @classmethod def _split_heads(cls, tensor, num_attention_heads, attn_head_size): """ Splits hidden dim into attn_head_size and num_attention_heads """ # tensor: [bs, seq_len, hidden_size] new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size) # -> [bs, seq_len, num_attention_heads, attn_head_size] tensor = tensor.view(new_shape) # -> [bs, num_attention_heads, seq_len, attn_head_size] tensor = tensor.permute(0, 2, 1, 3) return tensor @classmethod def _merge_heads(cls, tensor, num_attention_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into hidden dim """ # tensor [bs, num_attention_heads, seq_len, attn_head_size] tensor = tensor.permute(0, 2, 1, 3).contiguous() # -> [bs, seq_len, num_attention_heads, attn_head_size] tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size) # -> [bs, seq_len, hidden_size] return tensor def _create_causal_mask(self, key_length, query_length): causal_mask = torch.tril( torch.ones((self.max_positions, self.max_positions), dtype=torch.bool).view( 1, 1, self.max_positions, self.max_positions ) ) return causal_mask[:, :, key_length - query_length : key_length, :key_length] def _attn(self, query, key, value, attention_mask=None, head_mask=None): # q, k, v: [bs, num_attention_heads, seq_len, attn_head_size] # compute causal mask from causal mask buffer batch_size, num_attention_heads, query_length, attn_head_size = query.size() key_length = key.size(-2) causal_mask = self._create_causal_mask(key_length, query_length) query = query.view(batch_size * num_attention_heads, query_length, attn_head_size) key = key.view(batch_size * num_attention_heads, key_length, attn_head_size) attn_scores = torch.zeros( batch_size * num_attention_heads, query_length, key_length, dtype=query.dtype, device=key.device, ) attn_scores = torch.baddbmm( attn_scores, query, key.transpose(1, 2), beta=1.0, alpha=(torch.tensor(1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device) / self.norm_factor), ) attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length) mask_value = torch.finfo(attn_scores.dtype).min # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device) causal_mask = causal_mask.to(attn_scores.device) attn_scores = torch.where(causal_mask, attn_scores, mask_value) if attention_mask is not None: # Apply the attention mask attn_scores = attn_scores + attention_mask attn_weights = nn.functional.softmax(attn_scores, dim=-1) attn_weights = self.attention_dropout(attn_weights) attn_weights = attn_weights.to(value.dtype) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights # Copied from transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXRotaryEmbedding with GPTNeoXRotaryEmbedding->RotaryEmbedding class RotaryEmbedding(nn.Module): # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding.__init__ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos(), persistent=False) self.register_buffer("sin_cached", emb.sin(), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len], self.sin_cached[:seq_len], ) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0): cos = cos[..., offset : q.shape[-2] + offset, :] sin = sin[..., offset : q.shape[-2] + offset, :] q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def bias_dropout_add(x: Tensor, bias: Tensor, residual: Optional[Tensor], prob: float, training: bool) -> Tensor: """add bias to x, apply dropout and residual connection Args: x (Tensor): main path of output bias (Tensor): None or attn_bias of the last attention layer residual (Optional[Tensor]): residual value prob (float): dropout probability training (bool): whether in training mode or not Returns: Tensor: dropout(x + bias) + residual """ if bias is not None: x = x + bias out = torch.nn.functional.dropout(x, p=prob, training=training) if residual is not None: out = residual + out return out class GPTNeoXJapaneseMLP(nn.Module): def __init__(self, config): super().__init__() intermediate_size = int(config.hidden_size * config.intermediate_multiple_size) self.dense_h_to_4h = nn.Linear(config.hidden_size, intermediate_size, bias=False) # Project back to h. self.dense_4h_to_h = nn.Linear(intermediate_size, config.hidden_size, bias=False) self.act = ACT2FN[config.hidden_act] def forward(self, hidden_states): intermediate = self.dense_h_to_4h(hidden_states) intermediate = self.act(intermediate) output = self.dense_4h_to_h(intermediate) return output class GPTNeoXJapaneseLayer(nn.Module): def __init__(self, config, layer_number): super().__init__() self.layer_number = layer_number self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # activate bias only last layer self.attention = GPTNeoXJapaneseAttention(config=config, use_bias=layer_number == config.num_hidden_layers - 1) self.mlp = GPTNeoXJapaneseMLP(config) self.hidden_dropout = config.hidden_dropout def forward( self, hidden_states, attention_mask=None, head_mask=None, use_cache=False, layer_past=None, output_attentions=False, ): residual = hidden_states ln_out = self.input_layernorm(hidden_states) attention_layer_outputs, attn_bias = self.attention( ln_out, attention_mask=attention_mask, layer_past=layer_past, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attention_layer_outputs[0] # output_attn: a, present, (attentions) outputs = attention_layer_outputs[1:] # attn_output = (atten_output + bias) + residual attn_output = bias_dropout_add( attn_output, bias=attn_bias.expand_as(residual) if attn_bias is not None else attn_bias, residual=residual, prob=self.hidden_dropout, training=self.training, ) mlp_output = self.mlp(self.post_attention_layernorm(attn_output)) # attn_output = (mlp_output + mlp_bias) + atten_output attn_output = bias_dropout_add( mlp_output, bias=None, residual=attn_output, prob=self.hidden_dropout, training=self.training ) if use_cache: outputs = (attn_output,) + outputs else: outputs = (attn_output,) + outputs[1:] return outputs # hidden_states, present, (attentions) GPT_NEOX_JAPANESE_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`~GPTNeoXJapaneseConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ GPT_NEOX_JAPANESE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare GPTNeoXJapanese Model transformer outputting raw hidden-states without any specific head on top.", GPT_NEOX_JAPANESE_START_DOCSTRING, ) class GPTNeoXJapaneseModel(GPTNeoXJapanesePreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList( [GPTNeoXJapaneseLayer(config=config, layer_number=i) for i in range(config.num_hidden_layers)] ) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_in def set_input_embeddings(self, value): self.embed_in = value @add_start_docstrings_to_model_forward(GPT_NEOX_JAPANESE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: r""" past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, GPTNeoXJapaneseModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> model = GPTNeoXJapaneseModel.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values = tuple([None] * self.config.num_hidden_layers) # Attention mask. if attention_mask is not None: if not batch_size > 0: raise ValueError("batch_size has to be defined and > 0") attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) if inputs_embeds is None: inputs_embeds = self.embed_in(input_ids) hidden_states = inputs_embeds presents = () if use_cache else None all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = layer( hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], layer_past=layer_past, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_attentions = all_attentions + (outputs[2 if use_cache else 1],) hidden_states = self.final_layer_norm(hidden_states) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_attentions, ) @add_start_docstrings( """GPTNeoXJapanese Model with a `language modeling` head on top for Classifier Model fine-tuning.""", GPT_NEOX_JAPANESE_START_DOCSTRING, ) class GPTNeoXJapaneseForCausalLM(GPTNeoXJapanesePreTrainedModel): _tied_weights_keys = ["embed_out.weight"] def __init__(self, config): super().__init__(config) self.config = config self.gpt_neox_japanese = GPTNeoXJapaneseModel(config) self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.embed_out def set_output_embeddings(self, new_embeddings): self.embed_out = new_embeddings @add_start_docstrings_to_model_forward(GPT_NEOX_JAPANESE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> config = GPTNeoXJapaneseConfig.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> config.is_decoder = True >>> model = GPTNeoXJapaneseForCausalLM.from_pretrained("abeja/gpt-neox-japanese-2.7b", config=config) >>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.gpt_neox_japanese( input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits = self.embed_out(hidden_states) lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # we are doing next-token prediction; shift prediction scores and input ids by one shift_logits = lm_logits[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithPast( loss=lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past_key_values and past_key_values[0] is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past
transformers/src/transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py/0
{ "file_path": "transformers/src/transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py", "repo_id": "transformers", "token_count": 13899 }
101
# Copyright (c) Microsoft Corporation and HuggingFace # Licensed under the MIT License. import cython cimport numpy from cython.parallel cimport parallel, prange import numpy as np # Reduce this number if matrices are too big for large graphs UNREACHABLE_NODE_DISTANCE = 510 def floyd_warshall(adjacency_matrix): """ Applies the Floyd-Warshall algorithm to the adjacency matrix, to compute the shortest paths distance between all nodes, up to UNREACHABLE_NODE_DISTANCE. """ (nrows, ncols) = adjacency_matrix.shape assert nrows == ncols cdef unsigned int n = nrows adj_mat_copy = adjacency_matrix.astype(np.int32, order='C', casting='safe', copy=True) assert adj_mat_copy.flags['C_CONTIGUOUS'] cdef numpy.ndarray[numpy.int32_t, ndim=2, mode='c'] M = adj_mat_copy cdef numpy.ndarray[numpy.int32_t, ndim=2, mode='c'] path = -1 * np.ones([n, n], dtype=np.int32) cdef unsigned int i, j, k cdef numpy.int32_t M_ij, M_ik, cost_ikkj cdef numpy.int32_t* M_ptr = &M[0,0] cdef numpy.int32_t* M_i_ptr cdef numpy.int32_t* M_k_ptr # set unreachable nodes distance to UNREACHABLE_NODE_DISTANCE for i in range(n): for j in range(n): if i == j: M[i][j] = 0 elif M[i][j] == 0: M[i][j] = UNREACHABLE_NODE_DISTANCE # floyed algo for k in range(n): M_k_ptr = M_ptr + n*k for i in range(n): M_i_ptr = M_ptr + n*i M_ik = M_i_ptr[k] for j in range(n): cost_ikkj = M_ik + M_k_ptr[j] M_ij = M_i_ptr[j] if M_ij > cost_ikkj: M_i_ptr[j] = cost_ikkj path[i][j] = k # set unreachable path to UNREACHABLE_NODE_DISTANCE for i in range(n): for j in range(n): if M[i][j] >= UNREACHABLE_NODE_DISTANCE: path[i][j] = UNREACHABLE_NODE_DISTANCE M[i][j] = UNREACHABLE_NODE_DISTANCE return M, path def get_all_edges(path, i, j): """ Recursive function to compute all possible paths between two nodes from the graph adjacency matrix. """ cdef int k = path[i][j] if k == -1: return [] else: return get_all_edges(path, i, k) + [k] + get_all_edges(path, k, j) def gen_edge_input(max_dist, path, edge_feat): """ Generates the full edge feature and adjacency matrix. Shape: num_nodes * num_nodes * max_distance_between_nodes * num_edge_features Dim 1 is the input node, dim 2 the output node of the edge, dim 3 the depth of the edge, dim 4 the feature """ (nrows, ncols) = path.shape assert nrows == ncols cdef unsigned int n = nrows cdef unsigned int max_dist_copy = max_dist path_copy = path.astype(long, order='C', casting='safe', copy=True) edge_feat_copy = edge_feat.astype(long, order='C', casting='safe', copy=True) assert path_copy.flags['C_CONTIGUOUS'] assert edge_feat_copy.flags['C_CONTIGUOUS'] cdef numpy.ndarray[numpy.int32_t, ndim=4, mode='c'] edge_fea_all = -1 * np.ones([n, n, max_dist_copy, edge_feat.shape[-1]], dtype=np.int32) cdef unsigned int i, j, k, num_path, cur for i in range(n): for j in range(n): if i == j: continue if path_copy[i][j] == UNREACHABLE_NODE_DISTANCE: continue path = [i] + get_all_edges(path_copy, i, j) + [j] num_path = len(path) - 1 for k in range(num_path): edge_fea_all[i, j, k, :] = edge_feat_copy[path[k], path[k+1], :] return edge_fea_all
transformers/src/transformers/models/graphormer/algos_graphormer.pyx/0
{ "file_path": "transformers/src/transformers/models/graphormer/algos_graphormer.pyx", "repo_id": "transformers", "token_count": 1752 }
102
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Hubert checkpoint.""" import argparse import torch from transformers import HubertConfig, HubertForSequenceClassification, Wav2Vec2FeatureExtractor, logging logging.set_verbosity_info() logger = logging.get_logger(__name__) SUPPORTED_MODELS = ["UtteranceLevel"] @torch.no_grad() def convert_s3prl_checkpoint(base_model_name, config_path, checkpoint_path, model_dump_path): """ Copy/paste/tweak model's weights to transformers design. """ checkpoint = torch.load(checkpoint_path, map_location="cpu") if checkpoint["Config"]["downstream_expert"]["modelrc"]["select"] not in SUPPORTED_MODELS: raise NotImplementedError(f"The supported s3prl models are {SUPPORTED_MODELS}") downstream_dict = checkpoint["Downstream"] hf_congfig = HubertConfig.from_pretrained(config_path) hf_model = HubertForSequenceClassification.from_pretrained(base_model_name, config=hf_congfig) hf_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( base_model_name, return_attention_mask=True, do_normalize=False ) if hf_congfig.use_weighted_layer_sum: hf_model.layer_weights.data = checkpoint["Featurizer"]["weights"] hf_model.projector.weight.data = downstream_dict["projector.weight"] hf_model.projector.bias.data = downstream_dict["projector.bias"] hf_model.classifier.weight.data = downstream_dict["model.post_net.linear.weight"] hf_model.classifier.bias.data = downstream_dict["model.post_net.linear.bias"] hf_feature_extractor.save_pretrained(model_dump_path) hf_model.save_pretrained(model_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") args = parser.parse_args() convert_s3prl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
transformers/src/transformers/models/hubert/convert_hubert_original_s3prl_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/hubert/convert_hubert_original_s3prl_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 982 }
103
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert OpenAI Image GPT checkpoints.""" import argparse import torch from transformers import ImageGPTConfig, ImageGPTForCausalLM, load_tf_weights_in_imagegpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def convert_imagegpt_checkpoint_to_pytorch(imagegpt_checkpoint_path, model_size, pytorch_dump_folder_path): # Construct configuration depending on size MODELS = {"small": (512, 8, 24), "medium": (1024, 8, 36), "large": (1536, 16, 48)} n_embd, n_head, n_layer = MODELS[model_size] # set model hyperparameters config = ImageGPTConfig(n_embd=n_embd, n_layer=n_layer, n_head=n_head) model = ImageGPTForCausalLM(config) # Load weights from numpy load_tf_weights_in_imagegpt(model, config, imagegpt_checkpoint_path) # Save pytorch-model pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}") torch.save(model.state_dict(), pytorch_weights_dump_path) print(f"Save configuration file to {pytorch_config_dump_path}") with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: f.write(config.to_json_string()) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--imagegpt_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--model_size", default=None, type=str, required=True, help="Size of the model (can be either 'small', 'medium' or 'large').", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_imagegpt_checkpoint_to_pytorch( args.imagegpt_checkpoint_path, args.model_size, args.pytorch_dump_folder_path )
transformers/src/transformers/models/imagegpt/convert_imagegpt_original_tf2_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/imagegpt/convert_imagegpt_original_tf2_to_pytorch.py", "repo_id": "transformers", "token_count": 993 }
104
# coding=utf-8 # Copyright 2022 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for OpenAI Jukebox.""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } PRETRAINED_VOCAB_FILES_MAP = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } PRETRAINED_LYRIC_TOKENS_SIZES = { "jukebox": 512, } class JukeboxTokenizer(PreTrainedTokenizer): """ Constructs a Jukebox tokenizer. Jukebox can be conditioned on 3 different inputs : - Artists, unique ids are associated to each artist from the provided dictionary. - Genres, unique ids are associated to each genre from the provided dictionary. - Lyrics, character based tokenization. Must be initialized with the list of characters that are inside the vocabulary. This tokenizer does not require training. It should be able to process a different number of inputs: as the conditioning of the model can be done on the three different queries. If None is provided, defaults values will be used.: Depending on the number of genres on which the model should be conditioned (`n_genres`). ```python >>> from transformers import JukeboxTokenizer >>> tokenizer = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics") >>> tokenizer("Alan Jackson", "Country Rock", "old town road")["input_ids"] [tensor([[ 0, 0, 0, 6785, 546, 41, 38, 30, 76, 46, 41, 49, 40, 76, 44, 41, 27, 30]]), tensor([[ 0, 0, 0, 145, 0]]), tensor([[ 0, 0, 0, 145, 0]])] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> If nothing is provided, the genres and the artist will either be selected randomly or set to None </Tip> This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to: this superclass for more information regarding those methods. However the code does not allow that and only supports composing from various genres. Args: artists_file (`str`): Path to the vocabulary file which contains a mapping between artists and ids. The default file supports both "v2" and "v3" genres_file (`str`): Path to the vocabulary file which contain a mapping between genres and ids. lyrics_file (`str`): Path to the vocabulary file which contains the accepted characters for the lyrics tokenization. version (`List[str]`, `optional`, default to `["v3", "v2", "v2"]`) : List of the tokenizer versions. The `5b-lyrics`'s top level prior model was trained using `v3` instead of `v2`. n_genres (`int`, `optional`, defaults to 1): Maximum number of genres to use for composition. max_n_lyric_tokens (`int`, `optional`, defaults to 512): Maximum number of lyric tokens to keep. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_lyric_input_size = PRETRAINED_LYRIC_TOKENS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, artists_file, genres_file, lyrics_file, version=["v3", "v2", "v2"], max_n_lyric_tokens=512, n_genres=5, unk_token="<|endoftext|>", **kwargs, ): unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token self.version = version self.max_n_lyric_tokens = max_n_lyric_tokens self.n_genres = n_genres self._added_tokens_decoder = {0: unk_token} with open(artists_file, encoding="utf-8") as vocab_handle: self.artists_encoder = json.load(vocab_handle) with open(genres_file, encoding="utf-8") as vocab_handle: self.genres_encoder = json.load(vocab_handle) with open(lyrics_file, encoding="utf-8") as vocab_handle: self.lyrics_encoder = json.load(vocab_handle) oov = r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder) == 79: oov = oov.replace(r"\-'", r"\-+'") self.out_of_vocab = regex.compile(oov) self.artists_decoder = {v: k for k, v in self.artists_encoder.items()} self.genres_decoder = {v: k for k, v in self.genres_encoder.items()} self.lyrics_decoder = {v: k for k, v in self.lyrics_encoder.items()} super().__init__( unk_token=unk_token, n_genres=n_genres, version=version, max_n_lyric_tokens=max_n_lyric_tokens, **kwargs, ) @property def vocab_size(self): return len(self.artists_encoder) + len(self.genres_encoder) + len(self.lyrics_encoder) def get_vocab(self): return { "artists_encoder": self.artists_encoder, "genres_encoder": self.genres_encoder, "lyrics_encoder": self.lyrics_encoder, } def _convert_token_to_id(self, list_artists, list_genres, list_lyrics): """Converts the artist, genre and lyrics tokens to their index using the vocabulary. The total_length, offset and duration have to be provided in order to select relevant lyrics and add padding to the lyrics token sequence. """ artists_id = [self.artists_encoder.get(artist, 0) for artist in list_artists] for genres in range(len(list_genres)): list_genres[genres] = [self.genres_encoder.get(genre, 0) for genre in list_genres[genres]] list_genres[genres] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres])) lyric_ids = [[self.lyrics_encoder.get(character, 0) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def _tokenize(self, lyrics): """ Converts a string into a sequence of tokens (string), using the tokenizer. Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces). Do NOT take care of added tokens. Only the lyrics are split into character for the character-based vocabulary. """ # only lyrics are not tokenized, but character based is easily handled return list(lyrics) def tokenize(self, artist, genre, lyrics, **kwargs): """ Converts three strings in a 3 sequence of tokens using the tokenizer """ artist, genre, lyrics = self.prepare_for_tokenization(artist, genre, lyrics) lyrics = self._tokenize(lyrics) return artist, genre, lyrics def prepare_for_tokenization( self, artists: str, genres: str, lyrics: str, is_split_into_words: bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """ Performs any necessary transformations before tokenization. Args: artist (`str`): The artist name to prepare. This will mostly lower the string genres (`str`): The genre name to prepare. This will mostly lower the string. lyrics (`str`): The lyrics to prepare. is_split_into_words (`bool`, *optional*, defaults to `False`): Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification. """ for idx in range(len(self.version)): if self.version[idx] == "v3": artists[idx] = artists[idx].lower() genres[idx] = [genres[idx].lower()] else: artists[idx] = self._normalize(artists[idx]) + ".v2" genres[idx] = [ self._normalize(genre) + ".v2" for genre in genres[idx].split("_") ] # split is for the full dictionary with combined genres if self.version[0] == "v2": self.out_of_vocab = regex.compile(r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+") vocab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" self.vocab = {vocab[index]: index + 1 for index in range(len(vocab))} self.vocab["<unk>"] = 0 self.n_vocab = len(vocab) + 1 self.lyrics_encoder = self.vocab self.lyrics_decoder = {v: k for k, v in self.vocab.items()} self.lyrics_decoder[0] = "" else: self.out_of_vocab = regex.compile(r"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+") lyrics = self._run_strip_accents(lyrics) lyrics = lyrics.replace("\\", "\n") lyrics = self.out_of_vocab.sub("", lyrics), [], [] return artists, genres, lyrics def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _normalize(self, text: str) -> str: """ Normalizes the input text. This process is for the genres and the artist Args: text (`str`): Artist or Genre string to normalize """ accepted = ( [chr(i) for i in range(ord("a"), ord("z") + 1)] + [chr(i) for i in range(ord("A"), ord("Z") + 1)] + [chr(i) for i in range(ord("0"), ord("9") + 1)] + ["."] ) accepted = frozenset(accepted) pattern = re.compile(r"_+") text = "".join([c if c in accepted else "_" for c in text.lower()]) text = pattern.sub("_", text).strip("_") return text def convert_lyric_tokens_to_string(self, lyrics: List[str]) -> str: return " ".join(lyrics) def convert_to_tensors( self, inputs, tensor_type: Optional[Union[str, TensorType]] = None, prepend_batch_axis: bool = False ): """ Convert the inner content to tensors. Args: tensor_type (`str` or [`~utils.TensorType`], *optional*): The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If unset, no modification is done. prepend_batch_axis (`int`, *optional*, defaults to `False`): Whether or not to add the batch dimension during the conversion. """ # Convert to TensorType if not isinstance(tensor_type, TensorType): tensor_type = TensorType(tensor_type) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf as_tensor = tf.constant is_tensor = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.") import torch as_tensor = torch.tensor is_tensor = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.") import jax.numpy as jnp # noqa: F811 as_tensor = jnp.array is_tensor = _is_jax else: as_tensor = np.asarray is_tensor = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: inputs = [inputs] if not is_tensor(inputs): inputs = as_tensor(inputs) except: # noqa E722 raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length." ) return inputs def __call__(self, artist, genres, lyrics="", return_tensors="pt") -> BatchEncoding: """Convert the raw string to a list of token ids Args: artist (`str`): Name of the artist. genres (`str`): List of genres that will be mixed to condition the audio lyrics (`str`, *optional*, defaults to `""`): Lyrics used to condition the generation """ input_ids = [0, 0, 0] artist = [artist] * len(self.version) genres = [genres] * len(self.version) artists_tokens, genres_tokens, lyrics_tokens = self.tokenize(artist, genres, lyrics) artists_id, genres_ids, full_tokens = self._convert_token_to_id(artists_tokens, genres_tokens, lyrics_tokens) attention_masks = [-INFINITY] * len(full_tokens[-1]) input_ids = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]], tensor_type=return_tensors ) for i in range(len(self.version)) ] return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks}) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: """ Saves the tokenizer's vocabulary dictionary to the provided save_directory. Args: save_directory (`str`): A path to the directory where to saved. It will be created if it doesn't exist. filename_prefix (`Optional[str]`, *optional*): A prefix to add to the names of the files saved by the tokenizer. """ if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return artists_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"] ) with open(artists_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.artists_encoder, ensure_ascii=False)) genres_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"] ) with open(genres_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.genres_encoder, ensure_ascii=False)) lyrics_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"] ) with open(lyrics_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.lyrics_encoder, ensure_ascii=False)) return (artists_file, genres_file, lyrics_file) def _convert_id_to_token(self, artists_index, genres_index, lyric_index): """ Converts an index (integer) in a token (str) using the vocab. Args: artists_index (`int`): Index of the artist in its corresponding dictionary. genres_index (`Union[List[int], int]`): Index of the genre in its corresponding dictionary. lyric_index (`List[int]`): List of character indices, which each correspond to a character. """ artist = self.artists_decoder.get(artists_index) genres = [self.genres_decoder.get(genre) for genre in genres_index] lyrics = [self.lyrics_decoder.get(character) for character in lyric_index] return artist, genres, lyrics
transformers/src/transformers/models/jukebox/tokenization_jukebox.py/0
{ "file_path": "transformers/src/transformers/models/jukebox/tokenization_jukebox.py", "repo_id": "transformers", "token_count": 7768 }
105
# coding=utf-8 # Copyright 2021 Microsoft Research The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch LayoutLMv2 model.""" import math from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_detectron2_available, logging, replace_return_docstrings, requires_backends, ) from .configuration_layoutlmv2 import LayoutLMv2Config # soft dependency if is_detectron2_available(): import detectron2 from detectron2.modeling import META_ARCH_REGISTRY logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "microsoft/layoutlmv2-base-uncased" _CONFIG_FOR_DOC = "LayoutLMv2Config" LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/layoutlmv2-base-uncased", "microsoft/layoutlmv2-large-uncased", # See all LayoutLMv2 models at https://huggingface.co/models?filter=layoutlmv2 ] class LayoutLMv2Embeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super(LayoutLMv2Embeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size) self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size) self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size) self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def _calc_spatial_position_embeddings(self, bbox): try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) spatial_position_embeddings = torch.cat( [ left_position_embeddings, upper_position_embeddings, right_position_embeddings, lower_position_embeddings, h_position_embeddings, w_position_embeddings, ], dim=-1, ) return spatial_position_embeddings class LayoutLMv2SelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.fast_qkv = config.fast_qkv self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.has_relative_attention_bias = config.has_relative_attention_bias self.has_spatial_attention_bias = config.has_spatial_attention_bias if config.fast_qkv: self.qkv_linear = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=False) self.q_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size)) self.v_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size)) else: self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def compute_qkv(self, hidden_states): if self.fast_qkv: qkv = self.qkv_linear(hidden_states) q, k, v = torch.chunk(qkv, 3, dim=-1) if q.ndimension() == self.q_bias.ndimension(): q = q + self.q_bias v = v + self.v_bias else: _sz = (1,) * (q.ndimension() - 1) + (-1,) q = q + self.q_bias.view(*_sz) v = v + self.v_bias.view(*_sz) else: q = self.query(hidden_states) k = self.key(hidden_states) v = self.value(hidden_states) return q, k, v def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): q, k, v = self.compute_qkv(hidden_states) # (B, L, H*D) -> (B, H, L, D) query_layer = self.transpose_for_scores(q) key_layer = self.transpose_for_scores(k) value_layer = self.transpose_for_scores(v) query_layer = query_layer / math.sqrt(self.attention_head_size) # [BSZ, NAT, L, L] attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.has_relative_attention_bias: attention_scores += rel_pos if self.has_spatial_attention_bias: attention_scores += rel_2d_pos attention_scores = attention_scores.float().masked_fill_( attention_mask.to(torch.bool), torch.finfo(attention_scores.dtype).min ) attention_probs = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).type_as(value_layer) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class LayoutLMv2Attention(nn.Module): def __init__(self, config): super().__init__() self.self = LayoutLMv2SelfAttention(config) self.output = LayoutLMv2SelfOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class LayoutLMv2SelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->LayoutLMv2 class LayoutLMv2Intermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->LayoutLM class LayoutLMv2Output(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LayoutLMv2Layer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = LayoutLMv2Attention(config) self.intermediate = LayoutLMv2Intermediate(config) self.output = LayoutLMv2Output(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output def relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on. Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ ret = 0 if bidirectional: num_buckets //= 2 ret += (relative_position > 0).long() * num_buckets n = torch.abs(relative_position) else: n = torch.max(-relative_position, torch.zeros_like(relative_position)) # now n is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = n < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret class LayoutLMv2Encoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LayoutLMv2Layer(config) for _ in range(config.num_hidden_layers)]) self.has_relative_attention_bias = config.has_relative_attention_bias self.has_spatial_attention_bias = config.has_spatial_attention_bias if self.has_relative_attention_bias: self.rel_pos_bins = config.rel_pos_bins self.max_rel_pos = config.max_rel_pos self.rel_pos_bias = nn.Linear(self.rel_pos_bins, config.num_attention_heads, bias=False) if self.has_spatial_attention_bias: self.max_rel_2d_pos = config.max_rel_2d_pos self.rel_2d_pos_bins = config.rel_2d_pos_bins self.rel_pos_x_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False) self.rel_pos_y_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False) self.gradient_checkpointing = False def _calculate_1d_position_embeddings(self, position_ids): rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1) rel_pos = relative_position_bucket( rel_pos_mat, num_buckets=self.rel_pos_bins, max_distance=self.max_rel_pos, ) rel_pos = self.rel_pos_bias.weight.t()[rel_pos].permute(0, 3, 1, 2) rel_pos = rel_pos.contiguous() return rel_pos def _calculate_2d_position_embeddings(self, bbox): position_coord_x = bbox[:, :, 0] position_coord_y = bbox[:, :, 3] rel_pos_x_2d_mat = position_coord_x.unsqueeze(-2) - position_coord_x.unsqueeze(-1) rel_pos_y_2d_mat = position_coord_y.unsqueeze(-2) - position_coord_y.unsqueeze(-1) rel_pos_x = relative_position_bucket( rel_pos_x_2d_mat, num_buckets=self.rel_2d_pos_bins, max_distance=self.max_rel_2d_pos, ) rel_pos_y = relative_position_bucket( rel_pos_y_2d_mat, num_buckets=self.rel_2d_pos_bins, max_distance=self.max_rel_2d_pos, ) rel_pos_x = self.rel_pos_x_bias.weight.t()[rel_pos_x].permute(0, 3, 1, 2) rel_pos_y = self.rel_pos_y_bias.weight.t()[rel_pos_y].permute(0, 3, 1, 2) rel_pos_x = rel_pos_x.contiguous() rel_pos_y = rel_pos_y.contiguous() rel_2d_pos = rel_pos_x + rel_pos_y return rel_2d_pos def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, bbox=None, position_ids=None, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None rel_pos = self._calculate_1d_position_embeddings(position_ids) if self.has_relative_attention_bias else None rel_2d_pos = self._calculate_2d_position_embeddings(bbox) if self.has_spatial_attention_bias else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, all_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class LayoutLMv2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LayoutLMv2Config pretrained_model_archive_map = LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST base_model_prefix = "layoutlmv2" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def my_convert_sync_batchnorm(module, process_group=None): # same as `nn.modules.SyncBatchNorm.convert_sync_batchnorm` but allowing converting from `detectron2.layers.FrozenBatchNorm2d` if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): return nn.modules.SyncBatchNorm.convert_sync_batchnorm(module, process_group) module_output = module if isinstance(module, detectron2.layers.FrozenBatchNorm2d): module_output = torch.nn.SyncBatchNorm( num_features=module.num_features, eps=module.eps, affine=True, track_running_stats=True, process_group=process_group, ) module_output.weight = torch.nn.Parameter(module.weight) module_output.bias = torch.nn.Parameter(module.bias) module_output.running_mean = module.running_mean module_output.running_var = module.running_var module_output.num_batches_tracked = torch.tensor(0, dtype=torch.long, device=module.running_mean.device) for name, child in module.named_children(): module_output.add_module(name, my_convert_sync_batchnorm(child, process_group)) del module return module_output class LayoutLMv2VisualBackbone(nn.Module): def __init__(self, config): super().__init__() self.cfg = config.get_detectron2_config() meta_arch = self.cfg.MODEL.META_ARCHITECTURE model = META_ARCH_REGISTRY.get(meta_arch)(self.cfg) assert isinstance(model.backbone, detectron2.modeling.backbone.FPN) self.backbone = model.backbone assert len(self.cfg.MODEL.PIXEL_MEAN) == len(self.cfg.MODEL.PIXEL_STD) num_channels = len(self.cfg.MODEL.PIXEL_MEAN) self.register_buffer( "pixel_mean", torch.Tensor(self.cfg.MODEL.PIXEL_MEAN).view(num_channels, 1, 1), persistent=False, ) self.register_buffer( "pixel_std", torch.Tensor(self.cfg.MODEL.PIXEL_STD).view(num_channels, 1, 1), persistent=False ) self.out_feature_key = "p2" if torch.are_deterministic_algorithms_enabled(): logger.warning("using `AvgPool2d` instead of `AdaptiveAvgPool2d`") input_shape = (224, 224) backbone_stride = self.backbone.output_shape()[self.out_feature_key].stride self.pool = nn.AvgPool2d( ( math.ceil(math.ceil(input_shape[0] / backbone_stride) / config.image_feature_pool_shape[0]), math.ceil(math.ceil(input_shape[1] / backbone_stride) / config.image_feature_pool_shape[1]), ) ) else: self.pool = nn.AdaptiveAvgPool2d(config.image_feature_pool_shape[:2]) if len(config.image_feature_pool_shape) == 2: config.image_feature_pool_shape.append(self.backbone.output_shape()[self.out_feature_key].channels) assert self.backbone.output_shape()[self.out_feature_key].channels == config.image_feature_pool_shape[2] def forward(self, images): images_input = ((images if torch.is_tensor(images) else images.tensor) - self.pixel_mean) / self.pixel_std features = self.backbone(images_input) features = features[self.out_feature_key] features = self.pool(features).flatten(start_dim=2).transpose(1, 2).contiguous() return features def synchronize_batch_norm(self): if not ( torch.distributed.is_available() and torch.distributed.is_initialized() and torch.distributed.get_rank() > -1 ): raise RuntimeError("Make sure torch.distributed is set up properly.") self_rank = torch.distributed.get_rank() node_size = torch.cuda.device_count() world_size = torch.distributed.get_world_size() if not (world_size % node_size == 0): raise RuntimeError("Make sure the number of processes can be divided by the number of nodes") node_global_ranks = [list(range(i * node_size, (i + 1) * node_size)) for i in range(world_size // node_size)] sync_bn_groups = [ torch.distributed.new_group(ranks=node_global_ranks[i]) for i in range(world_size // node_size) ] node_rank = self_rank // node_size self.backbone = my_convert_sync_batchnorm(self.backbone, process_group=sync_bn_groups[node_rank]) LAYOUTLMV2_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LayoutLMv2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LAYOUTLMV2_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `{0}`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): Bounding boxes of each input sequence tokens. Selected in the range `[0, config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1) represents the position of the lower right corner. image (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `detectron.structures.ImageList` whose `tensors` is of shape `(batch_size, num_channels, height, width)`): Batch of document images. attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `{0}`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `{0}`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class LayoutLMv2Pooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output @add_start_docstrings( "The bare LayoutLMv2 Model transformer outputting raw hidden-states without any specific head on top.", LAYOUTLMV2_START_DOCSTRING, ) class LayoutLMv2Model(LayoutLMv2PreTrainedModel): def __init__(self, config): requires_backends(self, "detectron2") super().__init__(config) self.config = config self.has_visual_segment_embedding = config.has_visual_segment_embedding self.embeddings = LayoutLMv2Embeddings(config) self.visual = LayoutLMv2VisualBackbone(config) self.visual_proj = nn.Linear(config.image_feature_pool_shape[-1], config.hidden_size) if self.has_visual_segment_embedding: self.visual_segment_embedding = nn.Parameter(nn.Embedding(1, config.hidden_size).weight[0]) self.visual_LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.visual_dropout = nn.Dropout(config.hidden_dropout_prob) self.encoder = LayoutLMv2Encoder(config) self.pooler = LayoutLMv2Pooler(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _calc_text_embeddings(self, input_ids, bbox, position_ids, token_type_ids, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) if inputs_embeds is None: inputs_embeds = self.embeddings.word_embeddings(input_ids) position_embeddings = self.embeddings.position_embeddings(position_ids) spatial_position_embeddings = self.embeddings._calc_spatial_position_embeddings(bbox) token_type_embeddings = self.embeddings.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + spatial_position_embeddings + token_type_embeddings embeddings = self.embeddings.LayerNorm(embeddings) embeddings = self.embeddings.dropout(embeddings) return embeddings def _calc_img_embeddings(self, image, bbox, position_ids): visual_embeddings = self.visual_proj(self.visual(image)) position_embeddings = self.embeddings.position_embeddings(position_ids) spatial_position_embeddings = self.embeddings._calc_spatial_position_embeddings(bbox) embeddings = visual_embeddings + position_embeddings + spatial_position_embeddings if self.has_visual_segment_embedding: embeddings += self.visual_segment_embedding embeddings = self.visual_LayerNorm(embeddings) embeddings = self.visual_dropout(embeddings) return embeddings def _calc_visual_bbox(self, image_feature_pool_shape, bbox, device, final_shape): visual_bbox_x = torch.div( torch.arange( 0, 1000 * (image_feature_pool_shape[1] + 1), 1000, device=device, dtype=bbox.dtype, ), self.config.image_feature_pool_shape[1], rounding_mode="floor", ) visual_bbox_y = torch.div( torch.arange( 0, 1000 * (self.config.image_feature_pool_shape[0] + 1), 1000, device=device, dtype=bbox.dtype, ), self.config.image_feature_pool_shape[0], rounding_mode="floor", ) visual_bbox = torch.stack( [ visual_bbox_x[:-1].repeat(image_feature_pool_shape[0], 1), visual_bbox_y[:-1].repeat(image_feature_pool_shape[1], 1).transpose(0, 1), visual_bbox_x[1:].repeat(image_feature_pool_shape[0], 1), visual_bbox_y[1:].repeat(image_feature_pool_shape[1], 1).transpose(0, 1), ], dim=-1, ).view(-1, bbox.size(-1)) visual_bbox = visual_bbox.repeat(final_shape[0], 1, 1) return visual_bbox def _get_input_shape(self, input_ids=None, inputs_embeds=None): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: return input_ids.size() elif inputs_embeds is not None: return inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") @add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, image: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Return: Examples: ```python >>> from transformers import AutoProcessor, LayoutLMv2Model, set_seed >>> from PIL import Image >>> import torch >>> from datasets import load_dataset >>> set_seed(88) >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased") >>> model = LayoutLMv2Model.from_pretrained("microsoft/layoutlmv2-base-uncased") >>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa") >>> image_path = dataset["test"][0]["file"] >>> image = Image.open(image_path).convert("RGB") >>> encoding = processor(image, return_tensors="pt") >>> outputs = model(**encoding) >>> last_hidden_states = outputs.last_hidden_state >>> last_hidden_states.shape torch.Size([1, 342, 768]) ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_shape = self._get_input_shape(input_ids, inputs_embeds) device = input_ids.device if input_ids is not None else inputs_embeds.device visual_shape = list(input_shape) visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1] visual_shape = torch.Size(visual_shape) # needs a new copy of input_shape for tracing. Otherwise wrong dimensions will occur final_shape = list(self._get_input_shape(input_ids, inputs_embeds)) final_shape[1] += visual_shape[1] final_shape = torch.Size(final_shape) visual_bbox = self._calc_visual_bbox(self.config.image_feature_pool_shape, bbox, device, final_shape) final_bbox = torch.cat([bbox, visual_bbox], dim=1) if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) visual_attention_mask = torch.ones(visual_shape, device=device) final_attention_mask = torch.cat([attention_mask, visual_attention_mask], dim=1) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if position_ids is None: seq_length = input_shape[1] position_ids = self.embeddings.position_ids[:, :seq_length] position_ids = position_ids.expand(input_shape) visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat( input_shape[0], 1 ) final_position_ids = torch.cat([position_ids, visual_position_ids], dim=1) if bbox is None: bbox = torch.zeros(tuple(list(input_shape) + [4]), dtype=torch.long, device=device) text_layout_emb = self._calc_text_embeddings( input_ids=input_ids, bbox=bbox, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, ) visual_emb = self._calc_img_embeddings( image=image, bbox=visual_bbox, position_ids=visual_position_ids, ) final_emb = torch.cat([text_layout_emb, visual_emb], dim=1) extended_attention_mask = final_attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.to(dtype=next(self.parameters()).dtype) else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( final_emb, extended_attention_mask, bbox=final_bbox, position_ids=final_position_ids, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ LayoutLMv2 Model with a sequence classification head on top (a linear layer on top of the concatenation of the final hidden state of the [CLS] token, average-pooled initial visual embeddings and average-pooled final visual embeddings, e.g. for document image classification tasks such as the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset. """, LAYOUTLMV2_START_DOCSTRING, ) class LayoutLMv2ForSequenceClassification(LayoutLMv2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.layoutlmv2 = LayoutLMv2Model(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.layoutlmv2.embeddings.word_embeddings @add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, image: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Example: ```python >>> from transformers import AutoProcessor, LayoutLMv2ForSequenceClassification, set_seed >>> from PIL import Image >>> import torch >>> from datasets import load_dataset >>> set_seed(88) >>> dataset = load_dataset("rvl_cdip", split="train", streaming=True) >>> data = next(iter(dataset)) >>> image = data["image"].convert("RGB") >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased") >>> model = LayoutLMv2ForSequenceClassification.from_pretrained( ... "microsoft/layoutlmv2-base-uncased", num_labels=dataset.info.features["label"].num_classes ... ) >>> encoding = processor(image, return_tensors="pt") >>> sequence_label = torch.tensor([data["label"]]) >>> outputs = model(**encoding, labels=sequence_label) >>> loss, logits = outputs.loss, outputs.logits >>> predicted_idx = logits.argmax(dim=-1).item() >>> predicted_answer = dataset.info.features["label"].names[4] >>> predicted_idx, predicted_answer (4, 'advertisement') ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device visual_shape = list(input_shape) visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1] visual_shape = torch.Size(visual_shape) final_shape = list(input_shape) final_shape[1] += visual_shape[1] final_shape = torch.Size(final_shape) visual_bbox = self.layoutlmv2._calc_visual_bbox( self.config.image_feature_pool_shape, bbox, device, final_shape ) visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat( input_shape[0], 1 ) initial_image_embeddings = self.layoutlmv2._calc_img_embeddings( image=image, bbox=visual_bbox, position_ids=visual_position_ids, ) outputs = self.layoutlmv2( input_ids=input_ids, bbox=bbox, image=image, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] sequence_output, final_image_embeddings = outputs[0][:, :seq_length], outputs[0][:, seq_length:] cls_final_output = sequence_output[:, 0, :] # average-pool the visual embeddings pooled_initial_image_embeddings = initial_image_embeddings.mean(dim=1) pooled_final_image_embeddings = final_image_embeddings.mean(dim=1) # concatenate with cls_final_output sequence_output = torch.cat( [cls_final_output, pooled_initial_image_embeddings, pooled_final_image_embeddings], dim=1 ) sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ LayoutLMv2 Model with a token classification head on top (a linear layer on top of the text part of the hidden states) e.g. for sequence labeling (information extraction) tasks such as [FUNSD](https://guillaumejaume.github.io/FUNSD/), [SROIE](https://rrc.cvc.uab.es/?ch=13), [CORD](https://github.com/clovaai/cord) and [Kleister-NDA](https://github.com/applicaai/kleister-nda). """, LAYOUTLMV2_START_DOCSTRING, ) class LayoutLMv2ForTokenClassification(LayoutLMv2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.layoutlmv2 = LayoutLMv2Model(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.layoutlmv2.embeddings.word_embeddings @add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, image: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: Example: ```python >>> from transformers import AutoProcessor, LayoutLMv2ForTokenClassification, set_seed >>> from PIL import Image >>> from datasets import load_dataset >>> set_seed(88) >>> datasets = load_dataset("nielsr/funsd", split="test") >>> labels = datasets.features["ner_tags"].feature.names >>> id2label = {v: k for v, k in enumerate(labels)} >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr") >>> model = LayoutLMv2ForTokenClassification.from_pretrained( ... "microsoft/layoutlmv2-base-uncased", num_labels=len(labels) ... ) >>> data = datasets[0] >>> image = Image.open(data["image_path"]).convert("RGB") >>> words = data["words"] >>> boxes = data["bboxes"] # make sure to normalize your bounding boxes >>> word_labels = data["ner_tags"] >>> encoding = processor( ... image, ... words, ... boxes=boxes, ... word_labels=word_labels, ... padding="max_length", ... truncation=True, ... return_tensors="pt", ... ) >>> outputs = model(**encoding) >>> logits, loss = outputs.logits, outputs.loss >>> predicted_token_class_ids = logits.argmax(-1) >>> predicted_tokens_classes = [id2label[t.item()] for t in predicted_token_class_ids[0]] >>> predicted_tokens_classes[:5] ['B-ANSWER', 'B-HEADER', 'B-HEADER', 'B-HEADER', 'B-HEADER'] ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv2( input_ids=input_ids, bbox=bbox, image=image, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # only take the text part of the output representations sequence_output = outputs[0][:, :seq_length] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ LayoutLMv2 Model with a span classification head on top for extractive question-answering tasks such as [DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the text part of the hidden-states output to compute `span start logits` and `span end logits`). """, LAYOUTLMV2_START_DOCSTRING, ) class LayoutLMv2ForQuestionAnswering(LayoutLMv2PreTrainedModel): def __init__(self, config, has_visual_segment_embedding=True): super().__init__(config) self.num_labels = config.num_labels config.has_visual_segment_embedding = has_visual_segment_embedding self.layoutlmv2 = LayoutLMv2Model(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.layoutlmv2.embeddings.word_embeddings @add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, image: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Example: In this example below, we give the LayoutLMv2 model an image (of texts) and ask it a question. It will give us a prediction of what it thinks the answer is (the span of the answer within the texts parsed from the image). ```python >>> from transformers import AutoProcessor, LayoutLMv2ForQuestionAnswering, set_seed >>> import torch >>> from PIL import Image >>> from datasets import load_dataset >>> set_seed(88) >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased") >>> model = LayoutLMv2ForQuestionAnswering.from_pretrained("microsoft/layoutlmv2-base-uncased") >>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa") >>> image_path = dataset["test"][0]["file"] >>> image = Image.open(image_path).convert("RGB") >>> question = "When is coffee break?" >>> encoding = processor(image, question, return_tensors="pt") >>> outputs = model(**encoding) >>> predicted_start_idx = outputs.start_logits.argmax(-1).item() >>> predicted_end_idx = outputs.end_logits.argmax(-1).item() >>> predicted_start_idx, predicted_end_idx (154, 287) >>> predicted_answer_tokens = encoding.input_ids.squeeze()[predicted_start_idx : predicted_end_idx + 1] >>> predicted_answer = processor.tokenizer.decode(predicted_answer_tokens) >>> predicted_answer # results are not very good without further fine-tuning 'council mem - bers conducted by trrf treasurer philip g. kuehn to get answers which the public ... ``` ```python >>> target_start_index = torch.tensor([7]) >>> target_end_index = torch.tensor([14]) >>> outputs = model(**encoding, start_positions=target_start_index, end_positions=target_end_index) >>> predicted_answer_span_start = outputs.start_logits.argmax(-1).item() >>> predicted_answer_span_end = outputs.end_logits.argmax(-1).item() >>> predicted_answer_span_start, predicted_answer_span_end (154, 287) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv2( input_ids=input_ids, bbox=bbox, image=image, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # only take the text part of the output representations sequence_output = outputs[0][:, :seq_length] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py/0
{ "file_path": "transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py", "repo_id": "transformers", "token_count": 26677 }
106
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Tokenization classes for LayoutXLM model.""" import os from shutil import copyfile from typing import Dict, List, Optional, Tuple, Union from ...tokenization_utils import AddedToken from ...tokenization_utils_base import ( BatchEncoding, EncodedInput, PreTokenizedInput, TextInput, TextInputPair, TruncationStrategy, ) from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, TensorType, add_end_docstrings, is_sentencepiece_available, logging from ..xlm_roberta.tokenization_xlm_roberta_fast import ( PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES, PRETRAINED_VOCAB_FILES_MAP, VOCAB_FILES_NAMES, ) if is_sentencepiece_available(): from .tokenization_layoutxlm import LayoutXLMTokenizer else: LayoutXLMTokenizer = None logger = logging.get_logger(__name__) LAYOUTXLM_ENCODE_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_token_type_ids (`bool`, *optional*): Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are token type IDs?](../glossary#token-type-ids) return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) return_overflowing_tokens (`bool`, *optional*, defaults to `False`): Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead of returning overflowing tokens. return_special_tokens_mask (`bool`, *optional*, defaults to `False`): Whether or not to return special tokens mask information. return_offsets_mapping (`bool`, *optional*, defaults to `False`): Whether or not to return `(char_start, char_end)` for each token. This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using Python's tokenizer, this method will raise `NotImplementedError`. return_length (`bool`, *optional*, defaults to `False`): Whether or not to return the lengths of the encoded inputs. verbose (`bool`, *optional*, defaults to `True`): Whether or not to print more information and warnings. **kwargs: passed to the `self.tokenize()` method Return: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. [What are input IDs?](../glossary#input-ids) - **bbox** -- List of bounding boxes to be fed to a model. - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or if *"token_type_ids"* is in `self.model_input_names`). [What are token type IDs?](../glossary#token-type-ids) - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). [What are attention masks?](../glossary#attention-mask) - **labels** -- List of labels to be fed to a model. (when `word_labels` is specified). - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and `return_overflowing_tokens=True`). - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and `return_overflowing_tokens=True`). - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`). - **length** -- The length of the inputs (when `return_length=True`). """ class LayoutXLMTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" LayoutXLM tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [CLS] token. sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`): The bounding box to use for the special [SEP] token. pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [PAD] token. pad_token_label (`int`, *optional*, defaults to -100): The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's CrossEntropyLoss. only_label_first_subword (`bool`, *optional*, defaults to `True`): Whether or not to only label the first subword, in case word labels are provided. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = LayoutXLMTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", cls_token_box=[0, 0, 0, 0], sep_token_box=[1000, 1000, 1000, 1000], pad_token_box=[0, 0, 0, 0], pad_token_label=-100, only_label_first_subword=True, **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file, tokenizer_file=tokenizer_file, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, cls_token_box=cls_token_box, sep_token_box=sep_token_box, pad_token_box=pad_token_box, pad_token_label=pad_token_label, only_label_first_subword=only_label_first_subword, **kwargs, ) self.vocab_file = vocab_file # additional properties self.cls_token_box = cls_token_box self.sep_token_box = sep_token_box self.pad_token_box = pad_token_box self.pad_token_label = pad_token_label self.only_label_first_subword = only_label_first_subword @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False @add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, boxes: Union[List[List[int]], List[List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences with word-level normalized bounding boxes and optional labels. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings (words of a single example or questions of a batch of examples) or a list of list of strings (batch of words). text_pair (`List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence should be a list of strings (pretokenized string). boxes (`List[List[int]]`, `List[List[List[int]]]`): Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale. word_labels (`List[int]`, `List[List[int]]`, *optional*): Word-level integer labels (for token classification tasks such as FUNSD, CORD). """ # Input type checking for clearer error def _is_valid_text_input(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... empty return True elif isinstance(t[0], str): # ... list of strings return True elif isinstance(t[0], (list, tuple)): # ... list with an empty list or with a list of strings return len(t[0]) == 0 or isinstance(t[0][0], str) else: return False else: return False if text_pair is not None: # in case text + text_pair are provided, text = questions, text_pair = words if not _is_valid_text_input(text): raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") if not isinstance(text_pair, (list, tuple)): raise ValueError( "words must of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) else: # in case only text is provided => must be words if not isinstance(text, (list, tuple)): raise ValueError( "Words must of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) if text_pair is not None: is_batched = isinstance(text, (list, tuple)) else: is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) words = text if text_pair is None else text_pair if boxes is None: raise ValueError("You must provide corresponding bounding boxes") if is_batched: if len(words) != len(boxes): raise ValueError("You must provide words and boxes for an equal amount of examples") for words_example, boxes_example in zip(words, boxes): if len(words_example) != len(boxes_example): raise ValueError("You must provide as many words as there are bounding boxes") else: if len(words) != len(boxes): raise ValueError("You must provide as many words as there are bounding boxes") if is_batched: if text_pair is not None and len(text) != len(text_pair): raise ValueError( f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" f" {len(text_pair)}." ) batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text is_pair = bool(text_pair is not None) return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]: batched_input = [(text, pair)] if pair else [text] encodings = self._tokenizer.encode_batch( batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs ) return encodings[0].tokens def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, boxes: Optional[List[List[List[int]]]] = None, word_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if not isinstance(batch_text_or_text_pairs, list): raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})") # Set the truncation and padding strategy and restore the initial configuration self.set_truncation_and_padding( padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, ) if is_pair: batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs] encodings = self._tokenizer.encode_batch( batch_text_or_text_pairs, add_special_tokens=add_special_tokens, is_pretokenized=True, # we set this to True as LayoutLMv2 always expects pretokenized inputs ) # Convert encoding to dict # `Tokens` has type: Tuple[ # List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]], # List[EncodingFast] # ] # with nested dimensions corresponding to batch, overflows, sequence length tokens_and_encodings = [ self._convert_encoding( encoding=encoding, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=True if word_labels is not None else return_offsets_mapping, # we use offsets to create the labels return_length=return_length, verbose=verbose, ) for encoding in encodings ] # Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension # From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length) # (we say ~ because the number of overflow varies with the example in the batch) # # To match each overflowing sample with the original sample in the batch # we add an overflow_to_sample_mapping array (see below) sanitized_tokens = {} for key in tokens_and_encodings[0][0].keys(): stack = [e for item, _ in tokens_and_encodings for e in item[key]] sanitized_tokens[key] = stack sanitized_encodings = [e for _, item in tokens_and_encodings for e in item] # If returning overflowing tokens, we need to return a mapping # from the batch idx to the original sample if return_overflowing_tokens: overflow_to_sample_mapping = [] for i, (toks, _) in enumerate(tokens_and_encodings): overflow_to_sample_mapping += [i] * len(toks["input_ids"]) sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping for input_ids in sanitized_tokens["input_ids"]: self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose) # create the token boxes token_boxes = [] for batch_index in range(len(sanitized_tokens["input_ids"])): if return_overflowing_tokens: original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index] else: original_index = batch_index token_boxes_example = [] for id, sequence_id, word_id in zip( sanitized_tokens["input_ids"][batch_index], sanitized_encodings[batch_index].sequence_ids, sanitized_encodings[batch_index].word_ids, ): if word_id is not None: if is_pair and sequence_id == 0: token_boxes_example.append(self.pad_token_box) else: token_boxes_example.append(boxes[original_index][word_id]) else: if id == self.cls_token_id: token_boxes_example.append(self.cls_token_box) elif id == self.sep_token_id: token_boxes_example.append(self.sep_token_box) elif id == self.pad_token_id: token_boxes_example.append(self.pad_token_box) else: raise ValueError("Id not recognized") token_boxes.append(token_boxes_example) sanitized_tokens["bbox"] = token_boxes # optionally, create the labels if word_labels is not None: labels = [] for batch_index in range(len(sanitized_tokens["input_ids"])): if return_overflowing_tokens: original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index] else: original_index = batch_index labels_example = [] for id, offset, word_id in zip( sanitized_tokens["input_ids"][batch_index], sanitized_tokens["offset_mapping"][batch_index], sanitized_encodings[batch_index].word_ids, ): if word_id is not None: if self.only_label_first_subword: if offset[0] == 0: # Use the real label id for the first token of the word, and padding ids for the remaining tokens labels_example.append(word_labels[original_index][word_id]) else: labels_example.append(self.pad_token_label) else: labels_example.append(word_labels[original_index][word_id]) else: labels_example.append(self.pad_token_label) labels.append(labels_example) sanitized_tokens["labels"] = labels # finally, remove offsets if the user didn't want them if not return_offsets_mapping: del sanitized_tokens["offset_mapping"] return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors) def _encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[bool] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # make it a batched input # 2 options: # 1) only text, in case text must be a list of str # 2) text + text_pair, in which case text = str and text_pair a list of str batched_input = [(text, text_pair)] if text_pair else [text] batched_boxes = [boxes] batched_word_labels = [word_labels] if word_labels is not None else None batched_output = self._batch_encode_plus( batched_input, is_pair=bool(text_pair is not None), boxes=batched_boxes, word_labels=batched_word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) # Return tensor is None, then we can remove the leading batch axis # Overflowing tokens are returned as a batch of output so we keep them in this case if return_tensors is None and not return_overflowing_tokens: batched_output = BatchEncoding( { key: value[0] if len(value) > 0 and isinstance(value[0], list) else value for key, value in batched_output.items() }, batched_output.encodings, ) self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose) return batched_output def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "bbox" in encoded_inputs: encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "bbox" in encoded_inputs: encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"] if "labels" in encoded_inputs: encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) return encoded_inputs def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM-RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory.") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
transformers/src/transformers/models/layoutxlm/tokenization_layoutxlm_fast.py/0
{ "file_path": "transformers/src/transformers/models/layoutxlm/tokenization_layoutxlm_fast.py", "repo_id": "transformers", "token_count": 17923 }
107
# coding=utf-8 # Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tensorflow Longformer model.""" from __future__ import annotations import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_longformer import LongformerConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "allenai/longformer-base-4096" _CONFIG_FOR_DOC = "LongformerConfig" LARGE_NEGATIVE = -1e8 TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "allenai/longformer-base-4096", "allenai/longformer-large-4096", "allenai/longformer-large-4096-finetuned-triviaqa", "allenai/longformer-base-4096-extra.pos.embd.only", "allenai/longformer-large-4096-extra.pos.embd.only", # See all Longformer models at https://huggingface.co/models?filter=longformer ] @dataclass class TFLongformerBaseModelOutput(ModelOutput): """ Base class for Longformer's outputs, with potential hidden states, local and global attentions. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where `x` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first `x` values) and to every token in the attention window (remaining `attention_window + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be accessed from `global_attentions`. global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ last_hidden_state: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None global_attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFLongformerBaseModelOutputWithPooling(ModelOutput): """ Base class for Longformer's outputs that also contains a pooling of the last hidden states. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where `x` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first `x` values) and to every token in the attention window (remaining `attention_window + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be accessed from `global_attentions`. global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ last_hidden_state: tf.Tensor = None pooler_output: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None global_attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFLongformerMaskedLMOutput(ModelOutput): """ Base class for masked language models outputs. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Masked language modeling (MLM) loss. logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where `x` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first `x` values) and to every token in the attention window (remaining `attention_window + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be accessed from `global_attentions`. global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: tf.Tensor | None = None logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None global_attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFLongformerQuestionAnsweringModelOutput(ModelOutput): """ Base class for outputs of question answering Longformer models. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Span-start scores (before SoftMax). end_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Span-end scores (before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where `x` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first `x` values) and to every token in the attention window (remaining `attention_window + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be accessed from `global_attentions`. global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: tf.Tensor | None = None start_logits: tf.Tensor = None end_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None global_attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFLongformerSequenceClassifierOutput(ModelOutput): """ Base class for outputs of sentence classification models. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where `x` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first `x` values) and to every token in the attention window (remaining `attention_window + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be accessed from `global_attentions`. global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: tf.Tensor | None = None logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None global_attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFLongformerMultipleChoiceModelOutput(ModelOutput): """ Base class for outputs of multiple choice models. Args: loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided): Classification loss. logits (`tf.Tensor` of shape `(batch_size, num_choices)`): *num_choices* is the second dimension of the input tensors. (see *input_ids* above). Classification scores (before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where `x` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first `x` values) and to every token in the attention window (remaining `attention_window + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be accessed from `global_attentions`. global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: tf.Tensor | None = None logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None global_attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFLongformerTokenClassifierOutput(ModelOutput): """ Base class for outputs of token classification models. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : Classification loss. logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.num_labels)`): Classification scores (before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where `x` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first `x` values) and to every token in the attention window (remaining `attention_window + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be accessed from `global_attentions`. global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: tf.Tensor | None = None logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None global_attentions: Tuple[tf.Tensor, ...] | None = None def _compute_global_attention_mask(input_ids_shape, sep_token_indices, before_sep_token=True): """ Computes global attention mask by putting attention on all tokens before `sep_token_id` if `before_sep_token is True` else after `sep_token_id`. """ assert shape_list(sep_token_indices)[1] == 2, "`input_ids` should have two dimensions" question_end_index = tf.reshape(sep_token_indices, (input_ids_shape[0], 3, 2))[:, 0, 1][:, None] # bool attention mask with True in locations of global attention attention_mask = tf.expand_dims(tf.range(input_ids_shape[1], dtype=tf.int64), axis=0) attention_mask = tf.tile(attention_mask, (input_ids_shape[0], 1)) if before_sep_token is True: question_end_index = tf.tile(question_end_index, (1, input_ids_shape[1])) attention_mask = tf.cast(attention_mask < question_end_index, dtype=question_end_index.dtype) else: # last token is separation token and should not be counted and in the middle are two separation tokens question_end_index = tf.tile(question_end_index + 1, (1, input_ids_shape[1])) attention_mask = tf.cast( attention_mask > question_end_index, dtype=question_end_index.dtype, ) * tf.cast(attention_mask < input_ids_shape[-1], dtype=question_end_index.dtype) return attention_mask # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->Longformer class TFLongformerLMHead(keras.layers.Layer): """Longformer Head for masked language modeling.""" def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.act = get_tf_activation("gelu") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = input_embeddings def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.hidden_size]) def get_output_embeddings(self): return self.decoder def set_output_embeddings(self, value): self.decoder.weight = value self.decoder.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.layer_norm(hidden_states) # project back to size of vocabulary with bias seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states class TFLongformerEmbeddings(keras.layers.Layer): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing and some extra casting. """ def __init__(self, config, **kwargs): super().__init__(**kwargs) self.padding_idx = 1 self.config = config self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: input_ids: tf.Tensor Returns: tf.Tensor """ mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype) incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask return incremental_indices + self.padding_idx def call( self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, past_key_values_length=0, training=False, ): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.cast(tf.fill(dims=input_shape, value=0), tf.int64) if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids( input_ids=input_ids, past_key_values_length=past_key_values_length ) else: position_ids = tf.expand_dims( tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1, dtype=tf.int64), axis=0, ) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Longformer class TFLongformerIntermediate(keras.layers.Layer): def __init__(self, config: LongformerConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Longformer class TFLongformerOutput(keras.layers.Layer): def __init__(self, config: LongformerConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Longformer class TFLongformerPooler(keras.layers.Layer): def __init__(self, config: LongformerConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Longformer class TFLongformerSelfOutput(keras.layers.Layer): def __init__(self, config: LongformerConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFLongformerSelfAttention(keras.layers.Layer): def __init__(self, config, layer_id, **kwargs): super().__init__(**kwargs) self.config = config if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads}" ) self.num_heads = config.num_attention_heads self.head_dim = int(config.hidden_size / config.num_attention_heads) self.embed_dim = config.hidden_size self.query = keras.layers.Dense( self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="query", ) self.key = keras.layers.Dense( self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="key", ) self.value = keras.layers.Dense( self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="value", ) # separate projection layers for tokens with global attention self.query_global = keras.layers.Dense( self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="query_global", ) self.key_global = keras.layers.Dense( self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="key_global", ) self.value_global = keras.layers.Dense( self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="value_global", ) self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.global_dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.layer_id = layer_id attention_window = config.attention_window[self.layer_id] assert ( attention_window % 2 == 0 ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}" assert ( attention_window > 0 ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}" self.one_sided_attn_window_size = attention_window // 2 def build(self, input_shape=None): if not self.built: with tf.name_scope("query_global"): self.query_global.build((self.config.hidden_size,)) with tf.name_scope("key_global"): self.key_global.build((self.config.hidden_size,)) with tf.name_scope("value_global"): self.value_global.build((self.config.hidden_size,)) if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) if getattr(self, "query_global", None) is not None: with tf.name_scope(self.query_global.name): self.query_global.build([None, None, self.config.hidden_size]) if getattr(self, "key_global", None) is not None: with tf.name_scope(self.key_global.name): self.key_global.build([None, None, self.config.hidden_size]) if getattr(self, "value_global", None) is not None: with tf.name_scope(self.value_global.name): self.value_global.build([None, None, self.config.hidden_size]) def call( self, inputs, training=False, ): """ LongformerSelfAttention expects *len(hidden_states)* to be multiple of *attention_window*. Padding to *attention_window* happens in LongformerModel.forward to avoid redoing the padding on each layer. The *attention_mask* is changed in [`LongformerModel.forward`] from 0, 1, 2 to: - -10000: no attention - 0: local attention - +10000: global attention """ # retrieve input args ( hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn, ) = inputs # project hidden states query_vectors = self.query(hidden_states) key_vectors = self.key(hidden_states) value_vectors = self.value(hidden_states) batch_size, seq_len, embed_dim = shape_list(hidden_states) tf.debugging.assert_equal( embed_dim, self.embed_dim, message=f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}", ) # normalize query query_vectors /= tf.math.sqrt(tf.cast(self.head_dim, dtype=query_vectors.dtype)) query_vectors = tf.reshape(query_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) key_vectors = tf.reshape(key_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) # attn_probs = (batch_size, seq_len, num_heads, window*2+1) attn_scores = self._sliding_chunks_query_key_matmul( query_vectors, key_vectors, self.one_sided_attn_window_size ) # values to pad for attention probs remove_from_windowed_attention_mask = attention_mask != 0 # cast to fp32/fp16 then replace 1's with -inf float_mask = tf.cast(remove_from_windowed_attention_mask, dtype=query_vectors.dtype) * LARGE_NEGATIVE # diagonal mask with zeros everywhere and -inf inplace of padding diagonal_mask = self._sliding_chunks_query_key_matmul( tf.ones(shape_list(attention_mask)), float_mask, self.one_sided_attn_window_size, ) # pad local attention probs attn_scores += diagonal_mask tf.debugging.assert_equal( shape_list(attn_scores), [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1], message=( f"attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}," f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {shape_list(attn_scores)}" ), ) # compute global attn indices required through out forward fn ( max_num_global_attn_indices, is_index_global_attn_nonzero, is_local_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero, ) = self._get_global_attn_indices(is_index_global_attn) # this function is only relevant for global attention if is_global_attn: attn_scores = self._concat_with_global_key_attn_probs( attn_scores=attn_scores, query_vectors=query_vectors, key_vectors=key_vectors, max_num_global_attn_indices=max_num_global_attn_indices, is_index_global_attn_nonzero=is_index_global_attn_nonzero, is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, ) attn_probs = stable_softmax(attn_scores, axis=-1) # softmax sometimes inserts NaN if all positions are masked, replace them with 0 # Make sure to create a mask with the proper shape: # if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1] # if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1] if is_global_attn: masked_index = tf.tile( is_index_masked[:, :, None, None], (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1), ) else: masked_index = tf.tile( is_index_masked[:, :, None, None], (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1), ) attn_probs = tf.where( masked_index, tf.zeros(shape_list(masked_index), dtype=attn_probs.dtype), attn_probs, ) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_probs = tf.reshape(layer_head_mask, (1, 1, -1, 1)) * attn_probs # apply dropout attn_probs = self.dropout(attn_probs, training=training) value_vectors = tf.reshape(value_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) # if global attention, compute sum of global and local attn if is_global_attn: attn_output = self._compute_attn_output_with_global_indices( value_vectors=value_vectors, attn_probs=attn_probs, max_num_global_attn_indices=max_num_global_attn_indices, is_index_global_attn_nonzero=is_index_global_attn_nonzero, is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, ) else: attn_output = self._sliding_chunks_matmul_attn_probs_value( attn_probs, value_vectors, self.one_sided_attn_window_size ) tf.debugging.assert_equal( shape_list(attn_output), [batch_size, seq_len, self.num_heads, self.head_dim], message="Unexpected size" ) attn_output = tf.reshape(attn_output, (batch_size, seq_len, embed_dim)) # compute value for global attention and overwrite to attention output if is_global_attn: attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden( attn_output=attn_output, hidden_states=hidden_states, max_num_global_attn_indices=max_num_global_attn_indices, layer_head_mask=layer_head_mask, is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, is_index_global_attn_nonzero=is_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, is_index_masked=is_index_masked, training=training, ) else: # Leave attn_output unchanged global_attn_probs = tf.zeros((batch_size, self.num_heads, max_num_global_attn_indices, seq_len)) # make sure that local attention probabilities are set to 0 for indices of global attn # Make sure to create a mask with the proper shape: # if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1] # if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1] if is_global_attn: masked_global_attn_index = tf.tile( is_index_global_attn[:, :, None, None], (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1), ) else: masked_global_attn_index = tf.tile( is_index_global_attn[:, :, None, None], (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1), ) attn_probs = tf.where( masked_global_attn_index, tf.zeros(shape_list(masked_global_attn_index), dtype=attn_probs.dtype), attn_probs, ) outputs = (attn_output, attn_probs, global_attn_probs) return outputs def _sliding_chunks_query_key_matmul(self, query, key, window_overlap): """ Matrix multiplication of query and key tensors using with a sliding window attention pattern. This implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an overlap of size window_overlap """ batch_size, seq_len, num_heads, head_dim = shape_list(query) tf.debugging.assert_equal( seq_len % (window_overlap * 2), 0, message=f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}", ) tf.debugging.assert_equal( shape_list(query), shape_list(key), message=( f"Shape of query and key should be equal, but got query: {shape_list(query)} and key:" f" {shape_list(key)}" ), ) chunks_count = seq_len // window_overlap - 1 # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2 query = tf.reshape( tf.transpose(query, (0, 2, 1, 3)), (batch_size * num_heads, seq_len, head_dim), ) key = tf.reshape(tf.transpose(key, (0, 2, 1, 3)), (batch_size * num_heads, seq_len, head_dim)) chunked_query = self._chunk(query, window_overlap) chunked_key = self._chunk(key, window_overlap) # matrix multiplication # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim # bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap chunked_query = tf.cast(chunked_query, dtype=chunked_key.dtype) chunked_attention_scores = tf.einsum("bcxd,bcyd->bcxy", chunked_query, chunked_key) # multiply # convert diagonals into columns paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 1], [0, 0]]) diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims(chunked_attention_scores, paddings) # allocate space for the overall attention matrix where the chunks are combined. The last dimension # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to # window_overlap previous words). The following column is attention score from each word to itself, then # followed by window_overlap columns for the upper triangle. # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions # - copying the main diagonal and the upper triangle # TODO: This code is most likely not very efficient and should be improved diagonal_attn_scores_up_triang = tf.concat( [ diagonal_chunked_attention_scores[:, :, :window_overlap, : window_overlap + 1], diagonal_chunked_attention_scores[:, -1:, window_overlap:, : window_overlap + 1], ], axis=1, ) # - copying the lower triangle diagonal_attn_scores_low_triang = tf.concat( [ tf.zeros( (batch_size * num_heads, 1, window_overlap, window_overlap), dtype=diagonal_chunked_attention_scores.dtype, ), diagonal_chunked_attention_scores[:, :, -(window_overlap + 1) : -1, window_overlap + 1 :], ], axis=1, ) diagonal_attn_scores_first_chunk = tf.concat( [ tf.roll( diagonal_chunked_attention_scores, shift=[1, window_overlap], axis=[2, 3], )[:, :, :window_overlap, :window_overlap], tf.zeros( (batch_size * num_heads, 1, window_overlap, window_overlap), dtype=diagonal_chunked_attention_scores.dtype, ), ], axis=1, ) first_chunk_mask = ( tf.tile( tf.range(chunks_count + 1, dtype=tf.int64)[None, :, None, None], (batch_size * num_heads, 1, window_overlap, window_overlap), ) < 1 ) diagonal_attn_scores_low_triang = tf.where( first_chunk_mask, diagonal_attn_scores_first_chunk, diagonal_attn_scores_low_triang, ) # merging upper and lower triangle diagonal_attention_scores = tf.concat( [diagonal_attn_scores_low_triang, diagonal_attn_scores_up_triang], axis=-1 ) # separate batch_size and num_heads dimensions again diagonal_attention_scores = tf.transpose( tf.reshape( diagonal_attention_scores, (batch_size, num_heads, seq_len, 2 * window_overlap + 1), ), (0, 2, 1, 3), ) diagonal_attention_scores = self._mask_invalid_locations(diagonal_attention_scores, window_overlap) return diagonal_attention_scores @staticmethod def _mask_invalid_locations(input_tensor, window_overlap): # create correct upper triangle bool mask mask_2d_upper = tf.reverse( tf.linalg.band_part(tf.ones(shape=(window_overlap, window_overlap + 1)), -1, 0), axis=[0], ) # pad to full matrix padding = tf.convert_to_tensor( [[0, shape_list(input_tensor)[1] - window_overlap], [0, shape_list(input_tensor)[3] - window_overlap - 1]] ) # create lower mask mask_2d = tf.pad(mask_2d_upper, padding) # combine with upper mask mask_2d = mask_2d + tf.reverse(mask_2d, axis=[0, 1]) # broadcast to full matrix mask_4d = tf.tile(mask_2d[None, :, None, :], (shape_list(input_tensor)[0], 1, 1, 1)) # inf tensor used for masking inf_tensor = -float("inf") * tf.ones_like(input_tensor) # mask input_tensor = tf.where(tf.math.greater(mask_4d, 0), inf_tensor, input_tensor) return input_tensor def _sliding_chunks_matmul_attn_probs_value(self, attn_probs, value, window_overlap): """ Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the same shape as `attn_probs` """ batch_size, seq_len, num_heads, head_dim = shape_list(value) tf.debugging.assert_equal( seq_len % (window_overlap * 2), 0, message="Seq_len has to be multiple of 2 * window_overlap" ) tf.debugging.assert_equal( shape_list(attn_probs)[:3], shape_list(value)[:3], message="value and attn_probs must have same dims (except head_dim)", ) tf.debugging.assert_equal( shape_list(attn_probs)[3], 2 * window_overlap + 1, message="attn_probs last dim has to be 2 * window_overlap + 1", ) chunks_count = seq_len // window_overlap - 1 # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap chunked_attn_probs = tf.reshape( tf.transpose(attn_probs, (0, 2, 1, 3)), ( batch_size * num_heads, seq_len // window_overlap, window_overlap, 2 * window_overlap + 1, ), ) # group batch_size and num_heads dimensions into one value = tf.reshape( tf.transpose(value, (0, 2, 1, 3)), (batch_size * num_heads, seq_len, head_dim), ) # pad seq_len with w at the beginning of the sequence and another window overlap at the end paddings = tf.convert_to_tensor([[0, 0], [window_overlap, window_overlap], [0, 0]]) padded_value = tf.pad(value, paddings, constant_values=-1) # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap frame_size = 3 * window_overlap * head_dim frame_hop_size = (shape_list(padded_value)[1] * head_dim - frame_size) // chunks_count chunked_value = tf.signal.frame( tf.reshape(padded_value, (batch_size * num_heads, -1)), frame_size, frame_hop_size, ) chunked_value = tf.reshape( chunked_value, (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim), ) tf.debugging.assert_equal( shape_list(chunked_value), [batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim], message="Chunked value has the wrong shape", ) chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs) context = tf.einsum("bcwd,bcdh->bcwh", chunked_attn_probs, chunked_value) context = tf.transpose( tf.reshape(context, (batch_size, num_heads, seq_len, head_dim)), (0, 2, 1, 3), ) return context @staticmethod def _pad_and_transpose_last_two_dims(hidden_states_padded, paddings): """pads rows and then flips rows and columns""" hidden_states_padded = tf.pad( hidden_states_padded, paddings ) # padding value is not important because it will be overwritten batch_size, chunk_size, seq_length, hidden_dim = shape_list(hidden_states_padded) hidden_states_padded = tf.reshape(hidden_states_padded, (batch_size, chunk_size, hidden_dim, seq_length)) return hidden_states_padded @staticmethod def _pad_and_diagonalize(chunked_hidden_states): """ shift every row 1 step right, converting columns into diagonals. Example: ```python chunked_hidden_states: [ 0.4983, 2.6918, -0.0071, 1.0492, -1.8348, 0.7672, 0.2986, 0.0285, -0.7584, 0.4206, -0.0405, 0.1599, 2.0514, -1.1600, 0.5372, 0.2629, ] window_overlap = num_rows = 4 ``` (pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000 0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206, -0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ] """ total_num_heads, num_chunks, window_overlap, hidden_dim = shape_list(chunked_hidden_states) paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 0], [0, window_overlap + 1]]) chunked_hidden_states = tf.pad( chunked_hidden_states, paddings ) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten chunked_hidden_states = tf.reshape( chunked_hidden_states, (total_num_heads, num_chunks, -1) ) # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap+window_overlap chunked_hidden_states = chunked_hidden_states[ :, :, :-window_overlap ] # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap chunked_hidden_states = tf.reshape( chunked_hidden_states, (total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim), ) # total_num_heads x num_chunks, window_overlap x hidden_dim+window_overlap chunked_hidden_states = chunked_hidden_states[:, :, :, :-1] return chunked_hidden_states @staticmethod def _chunk(hidden_states, window_overlap): """convert into overlapping chunks. Chunk size = 2w, overlap size = w""" batch_size, seq_length, hidden_dim = shape_list(hidden_states) num_output_chunks = 2 * (seq_length // (2 * window_overlap)) - 1 # define frame size and frame stride (similar to convolution) frame_hop_size = window_overlap * hidden_dim frame_size = 2 * frame_hop_size hidden_states = tf.reshape(hidden_states, (batch_size, seq_length * hidden_dim)) # chunk with overlap chunked_hidden_states = tf.signal.frame(hidden_states, frame_size, frame_hop_size) tf.debugging.assert_equal( shape_list(chunked_hidden_states), [batch_size, num_output_chunks, frame_size], message=( "Make sure chunking is correctly applied. `Chunked hidden states should have output dimension" f" {[batch_size, frame_size, num_output_chunks]}, but got {shape_list(chunked_hidden_states)}." ), ) chunked_hidden_states = tf.reshape( chunked_hidden_states, (batch_size, num_output_chunks, 2 * window_overlap, hidden_dim), ) return chunked_hidden_states @staticmethod def _get_global_attn_indices(is_index_global_attn): """compute global attn indices required throughout forward pass""" # helper variable num_global_attn_indices = tf.math.count_nonzero(is_index_global_attn, axis=1) num_global_attn_indices = tf.cast(num_global_attn_indices, dtype=tf.constant(1).dtype) # max number of global attn indices in batch max_num_global_attn_indices = tf.reduce_max(num_global_attn_indices) # indices of global attn is_index_global_attn_nonzero = tf.where(is_index_global_attn) # helper variable is_local_index_global_attn = tf.range(max_num_global_attn_indices) < tf.expand_dims( num_global_attn_indices, axis=-1 ) # location of the non-padding values within global attention indices is_local_index_global_attn_nonzero = tf.where(is_local_index_global_attn) # location of the padding values within global attention indices is_local_index_no_global_attn_nonzero = tf.where(tf.math.logical_not(is_local_index_global_attn)) return ( max_num_global_attn_indices, is_index_global_attn_nonzero, is_local_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero, ) def _concat_with_global_key_attn_probs( self, attn_scores, key_vectors, query_vectors, max_num_global_attn_indices, is_index_global_attn_nonzero, is_local_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero, ): batch_size = shape_list(key_vectors)[0] # select global key vectors global_key_vectors = tf.gather_nd(key_vectors, is_index_global_attn_nonzero) # create only global key vectors key_vectors_only_global = tf.scatter_nd( is_local_index_global_attn_nonzero, global_key_vectors, shape=( batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim, ), ) # (batch_size, seq_len, num_heads, max_num_global_attn_indices) attn_probs_from_global_key = tf.einsum("blhd,bshd->blhs", query_vectors, key_vectors_only_global) # (batch_size, max_num_global_attn_indices, seq_len, num_heads) attn_probs_from_global_key_trans = tf.transpose(attn_probs_from_global_key, (0, 3, 1, 2)) mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple( shape_list(attn_probs_from_global_key_trans)[-2:] ) mask = tf.ones(mask_shape) * -10000.0 mask = tf.cast(mask, dtype=attn_probs_from_global_key_trans.dtype) # scatter mask attn_probs_from_global_key_trans = tf.tensor_scatter_nd_update( attn_probs_from_global_key_trans, is_local_index_no_global_attn_nonzero, mask, ) # (batch_size, seq_len, num_heads, max_num_global_attn_indices) attn_probs_from_global_key = tf.transpose(attn_probs_from_global_key_trans, (0, 2, 3, 1)) # concat to attn_probs # (batch_size, seq_len, num_heads, extra attention count + 2*window+1) attn_scores = tf.concat((attn_probs_from_global_key, attn_scores), axis=-1) return attn_scores def _compute_attn_output_with_global_indices( self, value_vectors, attn_probs, max_num_global_attn_indices, is_index_global_attn_nonzero, is_local_index_global_attn_nonzero, ): batch_size = shape_list(attn_probs)[0] # cut local attn probs to global only attn_probs_only_global = attn_probs[:, :, :, :max_num_global_attn_indices] # select global value vectors global_value_vectors = tf.gather_nd(value_vectors, is_index_global_attn_nonzero) # create only global value vectors value_vectors_only_global = tf.scatter_nd( is_local_index_global_attn_nonzero, global_value_vectors, shape=( batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim, ), ) # compute attn output only global attn_output_only_global = tf.einsum("blhs,bshd->blhd", attn_probs_only_global, value_vectors_only_global) # reshape attn probs attn_probs_without_global = attn_probs[:, :, :, max_num_global_attn_indices:] # compute attn output with global attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value( attn_probs_without_global, value_vectors, self.one_sided_attn_window_size ) return attn_output_only_global + attn_output_without_global def _compute_global_attn_output_from_hidden( self, attn_output, hidden_states, max_num_global_attn_indices, layer_head_mask, is_local_index_global_attn_nonzero, is_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero, is_index_masked, training, ): batch_size, seq_len = shape_list(hidden_states)[:2] # prepare global hidden states global_attn_hidden_states = tf.gather_nd(hidden_states, is_index_global_attn_nonzero) global_attn_hidden_states = tf.scatter_nd( is_local_index_global_attn_nonzero, global_attn_hidden_states, shape=(batch_size, max_num_global_attn_indices, self.embed_dim), ) # global key, query, value global_query_vectors_only_global = self.query_global(global_attn_hidden_states) global_key_vectors = self.key_global(hidden_states) global_value_vectors = self.value_global(hidden_states) # normalize global_query_vectors_only_global /= tf.math.sqrt( tf.cast(self.head_dim, dtype=global_query_vectors_only_global.dtype) ) global_query_vectors_only_global = self.reshape_and_transpose(global_query_vectors_only_global, batch_size) global_key_vectors = self.reshape_and_transpose(global_key_vectors, batch_size) global_value_vectors = self.reshape_and_transpose(global_value_vectors, batch_size) # compute attn scores global_attn_scores = tf.matmul(global_query_vectors_only_global, global_key_vectors, transpose_b=True) tf.debugging.assert_equal( shape_list(global_attn_scores), [batch_size * self.num_heads, max_num_global_attn_indices, seq_len], message=( "global_attn_scores have the wrong size. Size should be" f" {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is" f" {shape_list(global_attn_scores)}." ), ) global_attn_scores = tf.reshape( global_attn_scores, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len), ) global_attn_scores_trans = tf.transpose(global_attn_scores, (0, 2, 1, 3)) mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple( shape_list(global_attn_scores_trans)[-2:] ) global_attn_mask = tf.ones(mask_shape) * -10000.0 global_attn_mask = tf.cast(global_attn_mask, dtype=global_attn_scores_trans.dtype) # scatter mask global_attn_scores_trans = tf.tensor_scatter_nd_update( global_attn_scores_trans, is_local_index_no_global_attn_nonzero, global_attn_mask, ) global_attn_scores = tf.transpose(global_attn_scores_trans, (0, 2, 1, 3)) # mask global attn scores attn_mask = tf.tile(is_index_masked[:, None, None, :], (1, shape_list(global_attn_scores)[1], 1, 1)) global_attn_scores = tf.where(attn_mask, -10000.0, global_attn_scores) global_attn_scores = tf.reshape( global_attn_scores, (batch_size * self.num_heads, max_num_global_attn_indices, seq_len), ) # compute global attn probs global_attn_probs_float = stable_softmax(global_attn_scores, axis=-1) # apply layer head masking if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) global_attn_probs_float = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( global_attn_probs_float, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len) ) global_attn_probs_float = tf.reshape( global_attn_probs_float, (batch_size * self.num_heads, max_num_global_attn_indices, seq_len) ) # dropout global_attn_probs = self.global_dropout(global_attn_probs_float, training=training) # global attn output global_attn_output = tf.matmul(global_attn_probs, global_value_vectors) tf.debugging.assert_equal( shape_list(global_attn_output), [batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim], message=( "global_attn_output tensor has the wrong size. Size should be" f" {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is" f" {shape_list(global_attn_output)}." ), ) global_attn_output = tf.reshape( global_attn_output, (batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim), ) # get only non zero global attn output nonzero_global_attn_output = tf.gather_nd( tf.transpose(global_attn_output, (0, 2, 1, 3)), is_local_index_global_attn_nonzero, ) nonzero_global_attn_output = tf.reshape( nonzero_global_attn_output, (shape_list(is_local_index_global_attn_nonzero)[0], -1), ) # overwrite values with global attention attn_output = tf.tensor_scatter_nd_update( attn_output, is_index_global_attn_nonzero, nonzero_global_attn_output ) global_attn_probs = tf.reshape( global_attn_probs, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len) ) return attn_output, global_attn_probs def reshape_and_transpose(self, vector, batch_size): return tf.reshape( tf.transpose( tf.reshape(vector, (batch_size, -1, self.num_heads, self.head_dim)), (0, 2, 1, 3), ), (batch_size * self.num_heads, -1, self.head_dim), ) class TFLongformerAttention(keras.layers.Layer): def __init__(self, config, layer_id=0, **kwargs): super().__init__(**kwargs) self.self_attention = TFLongformerSelfAttention(config, layer_id, name="self") self.dense_output = TFLongformerSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call(self, inputs, training=False): ( hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn, ) = inputs self_outputs = self.self_attention( [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn], training=training, ) attention_output = self.dense_output(self_outputs[0], hidden_states, training=training) outputs = (attention_output,) + self_outputs[1:] return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attention", None) is not None: with tf.name_scope(self.self_attention.name): self.self_attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) class TFLongformerLayer(keras.layers.Layer): def __init__(self, config, layer_id=0, **kwargs): super().__init__(**kwargs) self.attention = TFLongformerAttention(config, layer_id, name="attention") self.intermediate = TFLongformerIntermediate(config, name="intermediate") self.longformer_output = TFLongformerOutput(config, name="output") def call(self, inputs, training=False): ( hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn, ) = inputs attention_outputs = self.attention( [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn], training=training, ) attention_output = attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.longformer_output(intermediate_output, attention_output, training=training) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "longformer_output", None) is not None: with tf.name_scope(self.longformer_output.name): self.longformer_output.build(None) class TFLongformerEncoder(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.layer = [TFLongformerLayer(config, i, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states, attention_mask=None, head_mask=None, padding_len=0, is_index_masked=None, is_index_global_attn=None, is_global_attn=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): all_hidden_states = () if output_hidden_states else None all_attentions = all_global_attentions = () if output_attentions else None for idx, layer_module in enumerate(self.layer): if output_hidden_states: hidden_states_to_add = hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states all_hidden_states = all_hidden_states + (hidden_states_to_add,) layer_outputs = layer_module( [ hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, is_index_masked, is_index_global_attn, is_global_attn, ], training=training, ) hidden_states = layer_outputs[0] if output_attentions: # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1) all_attentions = all_attentions + (tf.transpose(layer_outputs[1], (0, 2, 1, 3)),) # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn all_global_attentions = all_global_attentions + (tf.transpose(layer_outputs[2], (0, 1, 3, 2)),) # Add last layer if output_hidden_states: hidden_states_to_add = hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states all_hidden_states = all_hidden_states + (hidden_states_to_add,) # undo padding # unpad `hidden_states` because the calling function is expecting a length == input_ids.size(1) hidden_states = hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states if output_attentions: all_attentions = ( tuple([state[:, :, :-padding_len, :] for state in all_attentions]) if padding_len > 0 else all_attentions ) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_global_attentions] if v is not None ) return TFLongformerBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, global_attentions=all_global_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFLongformerMainLayer(keras.layers.Layer): config_class = LongformerConfig def __init__(self, config, add_pooling_layer=True, **kwargs): super().__init__(**kwargs) if isinstance(config.attention_window, int): assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value" assert config.attention_window > 0, "`config.attention_window` has to be positive" config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer else: assert len(config.attention_window) == config.num_hidden_layers, ( "`len(config.attention_window)` should equal `config.num_hidden_layers`. " f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}" ) self.config = config self.num_hidden_layers = config.num_hidden_layers self.initializer_range = config.initializer_range self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.pad_token_id = config.pad_token_id self.attention_window = config.attention_window self.embeddings = TFLongformerEmbeddings(config, name="embeddings") self.encoder = TFLongformerEncoder(config, name="encoder") self.pooler = TFLongformerPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids=None, attention_mask=None, head_mask=None, global_attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and not isinstance(input_ids, tf.Tensor): input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int64) elif input_ids is not None: input_ids = tf.cast(input_ids, tf.int64) if attention_mask is not None and not isinstance(attention_mask, tf.Tensor): attention_mask = tf.convert_to_tensor(attention_mask, dtype=tf.int64) elif attention_mask is not None: attention_mask = tf.cast(attention_mask, tf.int64) if global_attention_mask is not None and not isinstance(global_attention_mask, tf.Tensor): global_attention_mask = tf.convert_to_tensor(global_attention_mask, dtype=tf.int64) elif global_attention_mask is not None: global_attention_mask = tf.cast(global_attention_mask, tf.int64) if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.cast(tf.fill(input_shape, 1), tf.int64) if token_type_ids is None: token_type_ids = tf.cast(tf.fill(input_shape, 0), tf.int64) # merge `global_attention_mask` and `attention_mask` if global_attention_mask is not None: attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask) ( padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds, ) = self._pad_to_window_size( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, pad_token_id=self.pad_token_id, ) # is index masked or global attention is_index_masked = tf.math.less(attention_mask, 1) is_index_global_attn = tf.math.greater(attention_mask, 1) is_global_attn = tf.math.reduce_any(is_index_global_attn) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, to_seq_length, 1, 1] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(attention_mask) extended_attention_mask = tf.reshape(attention_mask, (attention_mask_shape[0], attention_mask_shape[1], 1, 1)) # Since attention_mask is 1.0 for positions we want to attend locally and 0.0 for # masked and global attn positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(tf.math.abs(1 - extended_attention_mask), tf.dtypes.float32) * -10000.0 embedding_output = self.embeddings( input_ids, position_ids, token_type_ids, inputs_embeds, training=training, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, padding_len=padding_len, is_index_masked=is_index_masked, is_index_global_attn=is_index_global_attn, is_global_attn=is_global_attn, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFLongformerBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, global_attentions=encoder_outputs.global_attentions, ) def _pad_to_window_size( self, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds, pad_token_id, ): """A helper function to pad tokens and mask to work with implementation of Longformer selfattention.""" # padding attention_window = ( self.attention_window if isinstance(self.attention_window, int) else max(self.attention_window) ) assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}" input_shape = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds) batch_size, seq_len = input_shape[:2] padding_len = (attention_window - seq_len % attention_window) % attention_window paddings = tf.convert_to_tensor([[0, 0], [0, padding_len]]) if input_ids is not None: input_ids = tf.pad(input_ids, paddings, constant_values=pad_token_id) if position_ids is not None: # pad with position_id = pad_token_id as in modeling_roberta.RobertaEmbeddings position_ids = tf.pad(position_ids, paddings, constant_values=pad_token_id) if inputs_embeds is not None: if padding_len > 0: input_ids_padding = tf.cast(tf.fill((batch_size, padding_len), self.pad_token_id), tf.int64) inputs_embeds_padding = self.embeddings(input_ids_padding) inputs_embeds = tf.concat([inputs_embeds, inputs_embeds_padding], axis=-2) attention_mask = tf.pad(attention_mask, paddings, constant_values=False) # no attention on the padding tokens token_type_ids = tf.pad(token_type_ids, paddings, constant_values=0) # pad with token_type_id = 0 return ( padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds, ) @staticmethod def _merge_to_attention_mask(attention_mask: tf.Tensor, global_attention_mask: tf.Tensor): # longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn) # (global_attention_mask + 1) => 1 for local attention, 2 for global attention # => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention if attention_mask is not None: attention_mask = attention_mask * (global_attention_mask + 1) else: # simply use `global_attention_mask` as `attention_mask` # if no `attention_mask` is given attention_mask = global_attention_mask + 1 return attention_mask def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) class TFLongformerPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LongformerConfig base_model_prefix = "longformer" @property def input_signature(self): sig = super().input_signature sig["global_attention_mask"] = tf.TensorSpec((None, None), tf.int32, name="global_attention_mask") return sig LONGFORMER_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`LongformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LONGFORMER_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`np.ndarray` or `tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. global_attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to decide the attention given on each token, local attention or global attention. Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is important for task-specific finetuning because it makes the model more flexible at representing the task. For example, for classification, the <s> token should be given global attention. For QA, all question tokens should also have global attention. Please refer to the [Longformer paper](https://arxiv.org/abs/2004.05150) for more details. Mask values selected in `[0, 1]`: - 0 for local attention (a sliding window attention), - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Longformer Model outputting raw hidden-states without any specific head on top.", LONGFORMER_START_DOCSTRING, ) class TFLongformerModel(TFLongformerPreTrainedModel): """ This class copies code from [`TFRobertaModel`] and overwrites standard self-attention with longformer self-attention to provide the ability to process long sequences following the self-attention approach described in [Longformer: the Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer self-attention combines a local (sliding window) and global attention to extend to long documents without the O(n^2) increase in memory and compute. The self-attention module `TFLongformerSelfAttention` implemented here supports the combination of local and global attention but it lacks support for autoregressive attention and dilated attention. Autoregressive and dilated attention are more relevant for autoregressive language modeling than finetuning on downstream tasks. Future release will add support for autoregressive attention, but the support for dilated attention requires a custom CUDA kernel to be memory and compute efficient. """ def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.longformer = TFLongformerMainLayer(config, name="longformer") @unpack_inputs @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, global_attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFLongformerBaseModelOutputWithPooling, Tuple[tf.Tensor]]: outputs = self.longformer( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "longformer", None) is not None: with tf.name_scope(self.longformer.name): self.longformer.build(None) @add_start_docstrings( """Longformer Model with a `language modeling` head on top.""", LONGFORMER_START_DOCSTRING, ) class TFLongformerForMaskedLM(TFLongformerPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer") self.lm_head = TFLongformerLMHead(config, self.longformer.embeddings, name="lm_head") def get_lm_head(self): return self.lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name @unpack_inputs @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="allenai/longformer-base-4096", output_type=TFLongformerMaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", expected_output="' Paris'", expected_loss=0.44, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, global_attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFLongformerMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.longformer( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFLongformerMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, global_attentions=outputs.global_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "longformer", None) is not None: with tf.name_scope(self.longformer.name): self.longformer.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build(None) @add_start_docstrings( """ Longformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / TriviaQA (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, LONGFORMER_START_DOCSTRING, ) class TFLongformerForQuestionAnswering(TFLongformerPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs", ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="allenai/longformer-large-4096-finetuned-triviaqa", output_type=TFLongformerQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, expected_output="' puppet'", expected_loss=0.96, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, global_attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFLongformerQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence are not taken into account for computing the loss. """ if input_ids is not None and not isinstance(input_ids, tf.Tensor): input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int64) elif input_ids is not None: input_ids = tf.cast(input_ids, tf.int64) if attention_mask is not None and not isinstance(attention_mask, tf.Tensor): attention_mask = tf.convert_to_tensor(attention_mask, dtype=tf.int64) elif attention_mask is not None: attention_mask = tf.cast(attention_mask, tf.int64) if global_attention_mask is not None and not isinstance(global_attention_mask, tf.Tensor): global_attention_mask = tf.convert_to_tensor(global_attention_mask, dtype=tf.int64) elif global_attention_mask is not None: global_attention_mask = tf.cast(global_attention_mask, tf.int64) # set global attention on question tokens if global_attention_mask is None and input_ids is not None: if shape_list(tf.where(input_ids == self.config.sep_token_id))[0] != 3 * shape_list(input_ids)[0]: logger.warning( f"There should be exactly three separator tokens: {self.config.sep_token_id} in every sample for" " questions answering. You might also consider to set `global_attention_mask` manually in the" " forward function to avoid this. This is most likely an error. The global attention is disabled" " for this forward pass." ) global_attention_mask = tf.cast(tf.fill(shape_list(input_ids), value=0), tf.int64) else: logger.warning_once("Initializing global attention on question tokens...") # put global attention on all tokens until `config.sep_token_id` is reached sep_token_indices = tf.where(input_ids == self.config.sep_token_id) sep_token_indices = tf.cast(sep_token_indices, dtype=tf.int64) global_attention_mask = _compute_global_attention_mask(shape_list(input_ids), sep_token_indices) outputs = self.longformer( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFLongformerQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, global_attentions=outputs.global_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "longformer", None) is not None: with tf.name_scope(self.longformer.name): self.longformer.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size]) class TFLongformerClassificationHead(keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.out_proj = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) self.config = config def call(self, hidden_states, training=False): hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) output = self.out_proj(hidden_states) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ Longformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, LONGFORMER_START_DOCSTRING, ) class TFLongformerForSequenceClassification(TFLongformerPreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer") self.classifier = TFLongformerClassificationHead(config, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFLongformerSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, global_attention_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFLongformerSequenceClassifierOutput, Tuple[tf.Tensor]]: if input_ids is not None and not isinstance(input_ids, tf.Tensor): input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int64) elif input_ids is not None: input_ids = tf.cast(input_ids, tf.int64) if attention_mask is not None and not isinstance(attention_mask, tf.Tensor): attention_mask = tf.convert_to_tensor(attention_mask, dtype=tf.int64) elif attention_mask is not None: attention_mask = tf.cast(attention_mask, tf.int64) if global_attention_mask is not None and not isinstance(global_attention_mask, tf.Tensor): global_attention_mask = tf.convert_to_tensor(global_attention_mask, dtype=tf.int64) elif global_attention_mask is not None: global_attention_mask = tf.cast(global_attention_mask, tf.int64) if global_attention_mask is None and input_ids is not None: logger.warning_once("Initializing global attention on CLS token...") # global attention on cls token global_attention_mask = tf.zeros_like(input_ids) updates = tf.ones(shape_list(input_ids)[0], dtype=tf.int64) indices = tf.pad( tensor=tf.expand_dims(tf.range(shape_list(input_ids)[0], dtype=tf.int64), axis=1), paddings=[[0, 0], [0, 1]], constant_values=0, ) global_attention_mask = tf.tensor_scatter_nd_update( global_attention_mask, indices, updates, ) outputs = self.longformer( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFLongformerSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, global_attentions=outputs.global_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "longformer", None) is not None: with tf.name_scope(self.longformer.name): self.longformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build(None) @add_start_docstrings( """ Longformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, LONGFORMER_START_DOCSTRING, ) class TFLongformerForMultipleChoice(TFLongformerPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.longformer = TFLongformerMainLayer(config, name="longformer") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @property def input_signature(self): return { "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), "global_attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="global_attention_mask"), } @unpack_inputs @add_start_docstrings_to_model_forward( LONGFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFLongformerMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, global_attention_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFLongformerMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None flat_global_attention_mask = ( tf.reshape(global_attention_mask, (-1, shape_list(global_attention_mask)[-1])) if global_attention_mask is not None else None ) flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.longformer( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, global_attention_mask=flat_global_attention_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFLongformerMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, global_attentions=outputs.global_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "longformer", None) is not None: with tf.name_scope(self.longformer.name): self.longformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ Longformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, LONGFORMER_START_DOCSTRING, ) class TFLongformerForTokenClassification(TFLongformerPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.longformer = TFLongformerMainLayer(config=config, add_pooling_layer=False, name="longformer") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFLongformerTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, global_attention_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[np.array, tf.Tensor]] = None, training: Optional[bool] = False, ) -> Union[TFLongformerTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.longformer( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFLongformerTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, global_attentions=outputs.global_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "longformer", None) is not None: with tf.name_scope(self.longformer.name): self.longformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size])
transformers/src/transformers/models/longformer/modeling_tf_longformer.py/0
{ "file_path": "transformers/src/transformers/models/longformer/modeling_tf_longformer.py", "repo_id": "transformers", "token_count": 55431 }
108
# coding=utf-8 # Copyright 2018 Hao Tan, Mohit Bansal, and the HuggingFace team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch LXMERT model.""" import math import os import warnings from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss, SmoothL1Loss from ...activations import ACT2FN, gelu from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_lxmert import LxmertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "unc-nlp/lxmert-base-uncased" _CONFIG_FOR_DOC = "LxmertConfig" LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "unc-nlp/lxmert-base-uncased", ] class GeLU(nn.Module): def __init__(self): super().__init__() def forward(self, x): return gelu(x) @dataclass class LxmertModelOutput(ModelOutput): """ Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language, visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship" encoder") Args: language_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the language encoder. vision_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the visual encoder. pooled_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed by a Linear layer and a Tanh activation function. The Linear language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of shape `(batch_size, sequence_length, hidden_size)`. vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of shape `(batch_size, sequence_length, hidden_size)`. language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ language_output: Optional[torch.FloatTensor] = None vision_output: Optional[torch.FloatTensor] = None pooled_output: Optional[torch.FloatTensor] = None language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None language_attentions: Optional[Tuple[torch.FloatTensor]] = None vision_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class LxmertForQuestionAnsweringOutput(ModelOutput): """ Output type of [`LxmertForQuestionAnswering`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.k. question_answering_score (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`, *optional*): Prediction scores of question answering objective (classification). language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of shape `(batch_size, sequence_length, hidden_size)`. vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of shape `(batch_size, sequence_length, hidden_size)`. language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None question_answering_score: Optional[torch.FloatTensor] = None language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None language_attentions: Optional[Tuple[torch.FloatTensor]] = None vision_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class LxmertForPreTrainingOutput(ModelOutput): """ Output type of [`LxmertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). cross_relationship_score (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the textual matching objective (classification) head (scores of True/False continuation before SoftMax). question_answering_score (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`): Prediction scores of question answering objective (classification). language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of shape `(batch_size, sequence_length, hidden_size)`. vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of shape `(batch_size, sequence_length, hidden_size)`. language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: Optional[torch.FloatTensor] = None cross_relationship_score: Optional[torch.FloatTensor] = None question_answering_score: Optional[torch.FloatTensor] = None language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None language_attentions: Optional[Tuple[torch.FloatTensor]] = None vision_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None def load_tf_weights_in_lxmert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in [ "adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step", ] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: assert pointer.shape == array.shape except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model class LxmertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size, padding_idx=0) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() device = input_ids.device else: input_shape = inputs_embeds.size()[:-1] device = inputs_embeds.device seq_length = input_shape[1] position_ids = torch.arange(seq_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand(input_shape) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LxmertAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size # visual_dim = 2048 if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) if attention_mask is not None: attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class LxmertAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LxmertCrossAttentionLayer(nn.Module): def __init__(self, config): super().__init__() self.att = LxmertAttention(config) self.output = LxmertAttentionOutput(config) def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None, output_attentions=False): output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions=output_attentions) if output_attentions: attention_probs = output[1] attention_output = self.output(output[0], input_tensor) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs class LxmertSelfAttentionLayer(nn.Module): def __init__(self, config): super().__init__() self.self = LxmertAttention(config) self.output = LxmertAttentionOutput(config) def forward(self, input_tensor, attention_mask, output_attentions=False): # Self attention attends to itself, thus keys and queries are the same (input_tensor). output = self.self( input_tensor, input_tensor, attention_mask, output_attentions=output_attentions, ) if output_attentions: attention_probs = output[1] attention_output = self.output(output[0], input_tensor) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs class LxmertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) self.intermediate_act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class LxmertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LxmertLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = LxmertSelfAttentionLayer(config) self.intermediate = LxmertIntermediate(config) self.output = LxmertOutput(config) def forward(self, hidden_states, attention_mask=None, output_attentions=False): outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions) attention_output = outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) outputs = (layer_output,) + outputs[1:] # add attentions if we output them return outputs class LxmertXLayer(nn.Module): def __init__(self, config): super().__init__() # The cross-attention Layer self.visual_attention = LxmertCrossAttentionLayer(config) # Self-attention Layers self.lang_self_att = LxmertSelfAttentionLayer(config) self.visn_self_att = LxmertSelfAttentionLayer(config) # Intermediate and Output Layers (FFNs) self.lang_inter = LxmertIntermediate(config) self.lang_output = LxmertOutput(config) self.visn_inter = LxmertIntermediate(config) self.visn_output = LxmertOutput(config) def cross_att( self, lang_input, lang_attention_mask, visual_input, visual_attention_mask, output_x_attentions=False, ): # Cross Attention lang_att_output = self.visual_attention( lang_input, visual_input, ctx_att_mask=visual_attention_mask, output_attentions=output_x_attentions, ) visual_att_output = self.visual_attention( visual_input, lang_input, ctx_att_mask=lang_attention_mask, output_attentions=False, ) return lang_att_output, visual_att_output def self_att(self, lang_input, lang_attention_mask, visual_input, visual_attention_mask): # Self Attention lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions=False) visual_att_output = self.visn_self_att(visual_input, visual_attention_mask, output_attentions=False) return lang_att_output[0], visual_att_output[0] def output_fc(self, lang_input, visual_input): # FC layers lang_inter_output = self.lang_inter(lang_input) visual_inter_output = self.visn_inter(visual_input) # Layer output lang_output = self.lang_output(lang_inter_output, lang_input) visual_output = self.visn_output(visual_inter_output, visual_input) return lang_output, visual_output def forward( self, lang_feats, lang_attention_mask, visual_feats, visual_attention_mask, output_attentions=False, ): lang_att_output, visual_att_output = self.cross_att( lang_input=lang_feats, lang_attention_mask=lang_attention_mask, visual_input=visual_feats, visual_attention_mask=visual_attention_mask, output_x_attentions=output_attentions, ) attention_probs = lang_att_output[1:] lang_att_output, visual_att_output = self.self_att( lang_att_output[0], lang_attention_mask, visual_att_output[0], visual_attention_mask, ) lang_output, visual_output = self.output_fc(lang_att_output, visual_att_output) return ( ( lang_output, visual_output, attention_probs[0], ) if output_attentions else (lang_output, visual_output) ) class LxmertVisualFeatureEncoder(nn.Module): def __init__(self, config): super().__init__() feat_dim = config.visual_feat_dim pos_dim = config.visual_pos_dim # Object feature encoding self.visn_fc = nn.Linear(feat_dim, config.hidden_size) self.visn_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12) # Box position encoding self.box_fc = nn.Linear(pos_dim, config.hidden_size) self.box_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, visual_feats, visual_pos): x = self.visn_fc(visual_feats) x = self.visn_layer_norm(x) y = self.box_fc(visual_pos) y = self.box_layer_norm(y) output = (x + y) / 2 output = self.dropout(output) return output class LxmertEncoder(nn.Module): def __init__(self, config): super().__init__() # Obj-level image embedding layer self.visn_fc = LxmertVisualFeatureEncoder(config) self.config = config # Number of layers self.num_l_layers = config.l_layers self.num_x_layers = config.x_layers self.num_r_layers = config.r_layers # Layers # Using self.layer instead of self.l_layer to support loading BERT weights. self.layer = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_l_layers)]) self.x_layers = nn.ModuleList([LxmertXLayer(config) for _ in range(self.num_x_layers)]) self.r_layers = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_r_layers)]) def forward( self, lang_feats, lang_attention_mask, visual_feats, visual_pos, visual_attention_mask=None, output_attentions=None, ): vision_hidden_states = () language_hidden_states = () vision_attentions = () if output_attentions or self.config.output_attentions else None language_attentions = () if output_attentions or self.config.output_attentions else None cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None visual_feats = self.visn_fc(visual_feats, visual_pos) # Run language layers for layer_module in self.layer: l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions=output_attentions) lang_feats = l_outputs[0] language_hidden_states = language_hidden_states + (lang_feats,) if language_attentions is not None: language_attentions = language_attentions + (l_outputs[1],) # Run relational layers for layer_module in self.r_layers: v_outputs = layer_module(visual_feats, visual_attention_mask, output_attentions=output_attentions) visual_feats = v_outputs[0] vision_hidden_states = vision_hidden_states + (visual_feats,) if vision_attentions is not None: vision_attentions = vision_attentions + (v_outputs[1],) # Run cross-modality layers for layer_module in self.x_layers: x_outputs = layer_module( lang_feats, lang_attention_mask, visual_feats, visual_attention_mask, output_attentions=output_attentions, ) lang_feats, visual_feats = x_outputs[:2] vision_hidden_states = vision_hidden_states + (visual_feats,) language_hidden_states = language_hidden_states + (lang_feats,) if cross_encoder_attentions is not None: cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],) visual_encoder_outputs = ( vision_hidden_states, vision_attentions if output_attentions else None, ) lang_encoder_outputs = ( language_hidden_states, language_attentions if output_attentions else None, ) return ( visual_encoder_outputs, lang_encoder_outputs, cross_encoder_attentions if output_attentions else None, ) class LxmertPooler(nn.Module): def __init__(self, config): super(LxmertPooler, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class LxmertPredictionHeadTransform(nn.Module): def __init__(self, config): super(LxmertPredictionHeadTransform, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = ACT2FN[config.hidden_act] self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class LxmertLMPredictionHead(nn.Module): def __init__(self, config, lxmert_model_embedding_weights): super(LxmertLMPredictionHead, self).__init__() self.transform = LxmertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear( lxmert_model_embedding_weights.size(1), lxmert_model_embedding_weights.size(0), bias=False, ) self.decoder.weight = lxmert_model_embedding_weights self.bias = nn.Parameter(torch.zeros(lxmert_model_embedding_weights.size(0))) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class LxmertVisualAnswerHead(nn.Module): def __init__(self, config, num_labels): super().__init__() hid_dim = config.hidden_size self.logit_fc = nn.Sequential( nn.Linear(hid_dim, hid_dim * 2), GeLU(), nn.LayerNorm(hid_dim * 2, eps=1e-12), nn.Linear(hid_dim * 2, num_labels), ) def forward(self, hidden_states): return self.logit_fc(hidden_states) class LxmertVisualObjHead(nn.Module): def __init__(self, config): super().__init__() self.transform = LxmertPredictionHeadTransform(config) # Decide the use of visual losses visual_losses = {} if config.visual_obj_loss: visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels} if config.visual_attr_loss: visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels} if config.visual_feat_loss: visual_losses["feat"] = { "shape": (-1, config.visual_feat_dim), "num": config.visual_feat_dim, } self.visual_losses = visual_losses # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder_dict = nn.ModuleDict( {key: nn.Linear(config.hidden_size, self.visual_losses[key]["num"]) for key in self.visual_losses} ) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) output = {} for key in self.visual_losses: output[key] = self.decoder_dict[key](hidden_states) return output class LxmertPreTrainingHeads(nn.Module): def __init__(self, config, lxmert_model_embedding_weights): super(LxmertPreTrainingHeads, self).__init__() self.predictions = LxmertLMPredictionHead(config, lxmert_model_embedding_weights) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class LxmertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LxmertConfig load_tf_weights = load_tf_weights_in_lxmert base_model_prefix = "lxmert" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) LXMERT_START_DOCSTRING = r""" The LXMERT model was proposed in [LXMERT: Learning Cross-Modality Encoder Representations from Transformers](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. It's a vision and language transformer model, pretrained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MSCOCO captions, and Visual genome, using a combination of masked language modeling, region of interest feature regression, cross entropy loss for question answering attribute prediction, and object tag prediction. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LxmertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LXMERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) visual_feats (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`): This input represents visual features. They ROI pooled object features from bounding boxes using a faster-RCNN model) These are currently not provided by the transformers library. visual_pos (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_pos_dim)`): This input represents spacial features corresponding to their relative (via index) visual features. The pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to 1. These are currently not provided by the transformers library. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) visual_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Lxmert Model transformer outputting raw hidden-states without any specific head on top.", LXMERT_START_DOCSTRING, ) class LxmertModel(LxmertPreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = LxmertEmbeddings(config) self.encoder = LxmertEncoder(config) self.pooler = LxmertPooler(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, new_embeddings): self.embeddings.word_embeddings = new_embeddings @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=LxmertModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, visual_feats: Optional[torch.FloatTensor] = None, visual_pos: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, visual_attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[LxmertModelOutput, Tuple[torch.FloatTensor]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if visual_feats is None: raise ValueError("`visual_feats` cannot be `None`") if visual_pos is None: raise ValueError("`visual_pos` cannot be `None`") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min # Process the visual attention mask if visual_attention_mask is not None: extended_visual_attention_mask = visual_attention_mask.unsqueeze(1).unsqueeze(2) extended_visual_attention_mask = extended_visual_attention_mask.to(dtype=self.dtype) extended_visual_attention_mask = (1.0 - extended_visual_attention_mask) * torch.finfo(self.dtype).min else: extended_visual_attention_mask = None # Positional Word Embeddings embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds) # Run Lxmert encoder encoder_outputs = self.encoder( embedding_output, extended_attention_mask, visual_feats=visual_feats, visual_pos=visual_pos, visual_attention_mask=extended_visual_attention_mask, output_attentions=output_attentions, ) visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2] vision_hidden_states = visual_encoder_outputs[0] language_hidden_states = lang_encoder_outputs[0] all_attentions = () if output_attentions: language_attentions = lang_encoder_outputs[1] vision_attentions = visual_encoder_outputs[1] cross_encoder_attentions = encoder_outputs[2] all_attentions = ( language_attentions, vision_attentions, cross_encoder_attentions, ) hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else () visual_output = vision_hidden_states[-1] lang_output = language_hidden_states[-1] pooled_output = self.pooler(lang_output) if not return_dict: return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions return LxmertModelOutput( pooled_output=pooled_output, language_output=lang_output, vision_output=visual_output, language_hidden_states=language_hidden_states if output_hidden_states else None, vision_hidden_states=vision_hidden_states if output_hidden_states else None, language_attentions=language_attentions if output_attentions else None, vision_attentions=vision_attentions if output_attentions else None, cross_encoder_attentions=cross_encoder_attentions if output_attentions else None, ) @add_start_docstrings( """Lxmert Model with a specified pretraining head on top.""", LXMERT_START_DOCSTRING, ) class LxmertForPreTraining(LxmertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight"] def __init__(self, config): super().__init__(config) # Configuration self.config = config self.num_qa_labels = config.num_qa_labels self.visual_loss_normalizer = config.visual_loss_normalizer # Use of pretraining tasks self.task_mask_lm = config.task_mask_lm self.task_obj_predict = config.task_obj_predict self.task_matched = config.task_matched self.task_qa = config.task_qa # Lxmert backbone self.lxmert = LxmertModel(config) # Pre-training heads self.cls = LxmertPreTrainingHeads(config, self.lxmert.embeddings.word_embeddings.weight) if self.task_obj_predict: self.obj_predict_head = LxmertVisualObjHead(config) if self.task_qa: self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels) # Weight initialization # Initialize weights and apply final processing self.post_init() # Loss functions self.loss_fcts = { "l2": SmoothL1Loss(reduction="none"), "visual_ce": CrossEntropyLoss(reduction="none"), "ce": CrossEntropyLoss(), } visual_losses = {} if config.visual_obj_loss: visual_losses["obj"] = { "shape": (-1,), "num": config.num_object_labels, "loss": "visual_ce", } if config.visual_attr_loss: visual_losses["attr"] = { "shape": (-1,), "num": config.num_attr_labels, "loss": "visual_ce", } if config.visual_feat_loss: visual_losses["feat"] = { "shape": (-1, config.visual_feat_dim), "num": config.visual_feat_dim, "loss": "l2", } self.visual_losses = visual_losses def resize_num_qa_labels(self, num_labels): """ Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size will add newly initialized weights. Reducing the size will remove weights from the end Args: num_labels (`int`, *optional*): New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized weights at the end. Reducing the size will remove weights from the end. If not provided or `None`, just returns a pointer to the qa labels ``torch.nn.Linear``` module of the model without doing anything. Return: `torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer """ cur_qa_logit_layer = self.get_qa_logit_layer() if num_labels is None or cur_qa_logit_layer is None: return new_qa_logit_layer = self._resize_qa_labels(num_labels) self.config.num_qa_labels = num_labels self.num_qa_labels = num_labels return new_qa_logit_layer def _resize_qa_labels(self, num_labels): cur_qa_logit_layer = self.get_qa_logit_layer() new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels) self._set_qa_logit_layer(new_qa_logit_layer) return self.get_qa_logit_layer() def get_qa_logit_layer(self) -> nn.Module: """ Returns the linear layer that produces question answering logits. Returns: `nn.Module`: A torch module mapping the question answering prediction hidden states or `None` if LXMERT does not have a visual answering head. """ if hasattr(self, "answer_head"): return self.answer_head.logit_fc[-1] def _set_qa_logit_layer(self, qa_logit_layer): self.answer_head.logit_fc[-1] = qa_logit_layer def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels): if num_labels is None: return cur_qa_logit_layer cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size() if cur_qa_labels == num_labels: return cur_qa_logit_layer # Build new linear output if getattr(cur_qa_logit_layer, "bias", None) is not None: new_qa_logit_layer = nn.Linear(hidden_dim, num_labels) else: new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False) new_qa_logit_layer.to(cur_qa_logit_layer.weight.device) # initialize all new labels self._init_weights(new_qa_logit_layer) # Copy labels from the previous weights num_labels_to_copy = min(cur_qa_labels, num_labels) new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :] if getattr(cur_qa_logit_layer, "bias", None) is not None: new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy] return new_qa_logit_layer @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=LxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, visual_feats: Optional[torch.FloatTensor] = None, visual_pos: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, visual_attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, obj_labels: Optional[Dict[str, Tuple[torch.FloatTensor, torch.FloatTensor]]] = None, matched_label: Optional[torch.LongTensor] = None, ans: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[LxmertForPreTrainingOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` obj_labels (`Dict[Str: Tuple[Torch.FloatTensor, Torch.FloatTensor]]`, *optional*): each key is named after each one of the visual losses and each element of the tuple is of the shape `(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and the label score respectively matched_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the whether or not the text input matches the image (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates that the sentence does not match the image, - 1 indicates that the sentence does match the image. ans (`Torch.Tensor` of shape `(batch_size)`, *optional*): a one hot representation hof the correct answer *optional* Returns: """ if "masked_lm_labels" in kwargs: warnings.warn( "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels`" " instead.", FutureWarning, ) labels = kwargs.pop("masked_lm_labels") return_dict = return_dict if return_dict is not None else self.config.use_return_dict device = input_ids.device if input_ids is not None else inputs_embeds.device lxmert_output = self.lxmert( input_ids=input_ids, visual_feats=visual_feats, visual_pos=visual_pos, token_type_ids=token_type_ids, attention_mask=attention_mask, visual_attention_mask=visual_attention_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) lang_output, visual_output, pooled_output = ( lxmert_output[0], lxmert_output[1], lxmert_output[2], ) lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output) if self.task_qa: answer_score = self.answer_head(pooled_output) else: answer_score = pooled_output[0][0] total_loss = ( None if (labels is None and matched_label is None and obj_labels is None and ans is None) else torch.tensor(0.0, device=device) ) if labels is not None and self.task_mask_lm: masked_lm_loss = self.loss_fcts["ce"]( lang_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1), ) total_loss += masked_lm_loss if matched_label is not None and self.task_matched: matched_loss = self.loss_fcts["ce"](cross_relationship_score.view(-1, 2), matched_label.view(-1)) total_loss += matched_loss if obj_labels is not None and self.task_obj_predict: total_visual_loss = torch.tensor(0.0, device=input_ids.device) visual_prediction_scores_dict = self.obj_predict_head(visual_output) for key, key_info in self.visual_losses.items(): label, mask_conf = obj_labels[key] output_dim = key_info["num"] loss_fct_name = key_info["loss"] label_shape = key_info["shape"] weight = self.visual_loss_normalizer visual_loss_fct = self.loss_fcts[loss_fct_name] visual_prediction_scores = visual_prediction_scores_dict[key] visual_loss = visual_loss_fct( visual_prediction_scores.view(-1, output_dim), label.view(label_shape), ) if visual_loss.dim() > 1: # Regression Losses visual_loss = visual_loss.mean(1) visual_loss = (visual_loss * mask_conf.view(-1)).mean() * weight total_visual_loss += visual_loss total_loss += total_visual_loss if ans is not None and self.task_qa: answer_loss = self.loss_fcts["ce"](answer_score.view(-1, self.num_qa_labels), ans.view(-1)) total_loss += answer_loss if not return_dict: output = ( lang_prediction_scores, cross_relationship_score, answer_score, ) + lxmert_output[3:] return ((total_loss,) + output) if total_loss is not None else output return LxmertForPreTrainingOutput( loss=total_loss, prediction_logits=lang_prediction_scores, cross_relationship_score=cross_relationship_score, question_answering_score=answer_score, language_hidden_states=lxmert_output.language_hidden_states, vision_hidden_states=lxmert_output.vision_hidden_states, language_attentions=lxmert_output.language_attentions, vision_attentions=lxmert_output.vision_attentions, cross_encoder_attentions=lxmert_output.cross_encoder_attentions, ) @add_start_docstrings( """Lxmert Model with a visual-answering head on top for downstream QA tasks""", LXMERT_START_DOCSTRING, ) class LxmertForQuestionAnswering(LxmertPreTrainedModel): def __init__(self, config): super().__init__(config) # Configuration self.config = config self.num_qa_labels = config.num_qa_labels self.visual_loss_normalizer = config.visual_loss_normalizer # Lxmert backbone self.lxmert = LxmertModel(config) self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels) # Weight initialization # Initialize weights and apply final processing self.post_init() # Loss function self.loss = CrossEntropyLoss() def resize_num_qa_labels(self, num_labels): """ Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size will add newly initialized weights. Reducing the size will remove weights from the end Args: num_labels (`int`, *optional*): New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized weights at the end. Reducing the size will remove weights from the end. If not provided or `None`, just returns a pointer to the qa labels ``torch.nn.Linear``` module of the model without doing anything. Return: `torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer """ cur_qa_logit_layer = self.get_qa_logit_layer() if num_labels is None or cur_qa_logit_layer is None: return new_qa_logit_layer = self._resize_qa_labels(num_labels) self.config.num_qa_labels = num_labels self.num_qa_labels = num_labels return new_qa_logit_layer def _resize_qa_labels(self, num_labels): cur_qa_logit_layer = self.get_qa_logit_layer() new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels) self._set_qa_logit_layer(new_qa_logit_layer) return self.get_qa_logit_layer() def get_qa_logit_layer(self) -> nn.Module: """ Returns the linear layer that produces question answering logits Returns: `nn.Module`: A torch module mapping the question answering prediction hidden states. `None`: A NoneType object if Lxmert does not have the visual answering head. """ if hasattr(self, "answer_head"): return self.answer_head.logit_fc[-1] def _set_qa_logit_layer(self, qa_logit_layer): self.answer_head.logit_fc[-1] = qa_logit_layer def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels): if num_labels is None: return cur_qa_logit_layer cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size() if cur_qa_labels == num_labels: return cur_qa_logit_layer # Build new linear output if getattr(cur_qa_logit_layer, "bias", None) is not None: new_qa_logit_layer = nn.Linear(hidden_dim, num_labels) else: new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False) new_qa_logit_layer.to(cur_qa_logit_layer.weight.device) # initialize all new labels self._init_weights(new_qa_logit_layer) # Copy labels from the previous weights num_labels_to_copy = min(cur_qa_labels, num_labels) new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :] if getattr(cur_qa_logit_layer, "bias", None) is not None: new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy] return new_qa_logit_layer @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=LxmertForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, visual_feats: Optional[torch.FloatTensor] = None, visual_pos: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, visual_attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[LxmertForQuestionAnsweringOutput, Tuple[torch.FloatTensor]]: r""" labels (`Torch.Tensor` of shape `(batch_size)`, *optional*): A one-hot representation of the correct answer """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict lxmert_output = self.lxmert( input_ids=input_ids, visual_feats=visual_feats, visual_pos=visual_pos, token_type_ids=token_type_ids, attention_mask=attention_mask, visual_attention_mask=visual_attention_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) pooled_output = lxmert_output[2] answer_score = self.answer_head(pooled_output) loss = None if labels is not None: loss = self.loss(answer_score.view(-1, self.num_qa_labels), labels.view(-1)) if not return_dict: output = (answer_score,) + lxmert_output[3:] return (loss,) + output if loss is not None else output return LxmertForQuestionAnsweringOutput( loss=loss, question_answering_score=answer_score, language_hidden_states=lxmert_output.language_hidden_states, vision_hidden_states=lxmert_output.vision_hidden_states, language_attentions=lxmert_output.language_attentions, vision_attentions=lxmert_output.vision_attentions, cross_encoder_attentions=lxmert_output.cross_encoder_attentions, )
transformers/src/transformers/models/lxmert/modeling_lxmert.py/0
{ "file_path": "transformers/src/transformers/models/lxmert/modeling_lxmert.py", "repo_id": "transformers", "token_count": 27624 }
109
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import re import warnings from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "source_spm": "source.spm", "target_spm": "target.spm", "vocab": "vocab.json", "target_vocab_file": "target_vocab.json", "tokenizer_config_file": "tokenizer_config.json", } PRETRAINED_VOCAB_FILES_MAP = { "source_spm": { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/source.spm" }, "target_spm": { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/target.spm" }, "vocab": { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/vocab.json" }, "tokenizer_config_file": { "Helsinki-NLP/opus-mt-en-de": ( "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/tokenizer_config.json" ) }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"Helsinki-NLP/opus-mt-en-de": 512} PRETRAINED_INIT_CONFIGURATION = {} SPIECE_UNDERLINE = "▁" # Example URL https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/vocab.json class MarianTokenizer(PreTrainedTokenizer): r""" Construct a Marian tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: source_spm (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that contains the vocabulary for the source language. target_spm (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that contains the vocabulary for the target language. source_lang (`str`, *optional*): A string representing the source language. target_lang (`str`, *optional*): A string representing the target language. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. model_max_length (`int`, *optional*, defaults to 512): The maximum sentence length the model accepts. additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Examples: ```python >>> from transformers import MarianForCausalLM, MarianTokenizer >>> model = MarianForCausalLM.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> src_texts = ["I am a small frog.", "Tom asked his teacher for advice."] >>> tgt_texts = ["Ich bin ein kleiner Frosch.", "Tom bat seinen Lehrer um Rat."] # optional >>> inputs = tokenizer(src_texts, text_target=tgt_texts, return_tensors="pt", padding=True) >>> outputs = model(**inputs) # should work ```""" vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] language_code_re = re.compile(">>.+<<") # type: re.Pattern def __init__( self, source_spm, target_spm, vocab, target_vocab_file=None, source_lang=None, target_lang=None, unk_token="<unk>", eos_token="</s>", pad_token="<pad>", model_max_length=512, sp_model_kwargs: Optional[Dict[str, Any]] = None, separate_vocabs=False, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs assert Path(source_spm).exists(), f"cannot find spm source {source_spm}" self.separate_vocabs = separate_vocabs self.encoder = load_json(vocab) if str(unk_token) not in self.encoder: raise KeyError("<unk> token must be in the vocab") assert str(pad_token) in self.encoder if separate_vocabs: self.target_encoder = load_json(target_vocab_file) self.decoder = {v: k for k, v in self.target_encoder.items()} self.supported_language_codes = [] else: self.decoder = {v: k for k, v in self.encoder.items()} self.supported_language_codes: list = [k for k in self.encoder if k.startswith(">>") and k.endswith("<<")] self.source_lang = source_lang self.target_lang = target_lang self.spm_files = [source_spm, target_spm] # load SentencePiece model for pre-processing self.spm_source = load_spm(source_spm, self.sp_model_kwargs) self.spm_target = load_spm(target_spm, self.sp_model_kwargs) self.current_spm = self.spm_source self.current_encoder = self.encoder # Multilingual target side: default to using first supported language code. self._setup_normalizer() super().__init__( # bos_token=bos_token, unused. Start decoding with config.decoder_start_token_id source_lang=source_lang, target_lang=target_lang, unk_token=unk_token, eos_token=eos_token, pad_token=pad_token, model_max_length=model_max_length, sp_model_kwargs=self.sp_model_kwargs, target_vocab_file=target_vocab_file, separate_vocabs=separate_vocabs, **kwargs, ) def _setup_normalizer(self): try: from sacremoses import MosesPunctNormalizer self.punc_normalizer = MosesPunctNormalizer(self.source_lang).normalize except (ImportError, FileNotFoundError): warnings.warn("Recommended: pip install sacremoses.") self.punc_normalizer = lambda x: x def normalize(self, x: str) -> str: """Cover moses empty string edge case. They return empty list for '' input!""" return self.punc_normalizer(x) if x else "" def _convert_token_to_id(self, token): return self.current_encoder.get(token, self.current_encoder[self.unk_token]) def remove_language_code(self, text: str): """Remove language codes like >>fr<< before sentencepiece""" match = self.language_code_re.match(text) code: list = [match.group(0)] if match else [] return code, self.language_code_re.sub("", text) def _tokenize(self, text: str) -> List[str]: code, text = self.remove_language_code(text) pieces = self.current_spm.encode(text, out_type=str) return code + pieces def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the decoder.""" return self.decoder.get(index, self.unk_token) def batch_decode(self, sequences, **kwargs): """ Convert a list of lists of token ids into a list of strings by calling decode. Args: sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). use_source_tokenizer (`bool`, *optional*, defaults to `False`): Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence problems). kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `List[str]`: The list of decoded sentences. """ return super().batch_decode(sequences, **kwargs) def decode(self, token_ids, **kwargs): """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). use_source_tokenizer (`bool`, *optional*, defaults to `False`): Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence problems). kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ return super().decode(token_ids, **kwargs) def convert_tokens_to_string(self, tokens: List[str]) -> str: """Uses source spm if _decode_use_source_tokenizer is True, and target spm otherwise""" sp_model = self.spm_source if self._decode_use_source_tokenizer else self.spm_target current_sub_tokens = [] out_string = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += sp_model.decode_pieces(current_sub_tokens) + token + " " current_sub_tokens = [] else: current_sub_tokens.append(token) out_string += sp_model.decode_pieces(current_sub_tokens) out_string = out_string.replace(SPIECE_UNDERLINE, " ") return out_string.strip() def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """Build model inputs from a sequence by appending eos_token_id.""" if token_ids_1 is None: return token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_0 + token_ids_1 + [self.eos_token_id] def _switch_to_input_mode(self): self.current_spm = self.spm_source self.current_encoder = self.encoder def _switch_to_target_mode(self): self.current_spm = self.spm_target if self.separate_vocabs: self.current_encoder = self.target_encoder @property def vocab_size(self) -> int: return len(self.encoder) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return saved_files = [] if self.separate_vocabs: out_src_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"], ) out_tgt_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["target_vocab_file"], ) save_json(self.encoder, out_src_vocab_file) save_json(self.target_encoder, out_tgt_vocab_file) saved_files.append(out_src_vocab_file) saved_files.append(out_tgt_vocab_file) else: out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"] ) save_json(self.encoder, out_vocab_file) saved_files.append(out_vocab_file) for spm_save_filename, spm_orig_path, spm_model in zip( [VOCAB_FILES_NAMES["source_spm"], VOCAB_FILES_NAMES["target_spm"]], self.spm_files, [self.spm_source, self.spm_target], ): spm_save_path = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + spm_save_filename ) if os.path.abspath(spm_orig_path) != os.path.abspath(spm_save_path) and os.path.isfile(spm_orig_path): copyfile(spm_orig_path, spm_save_path) saved_files.append(spm_save_path) elif not os.path.isfile(spm_orig_path): with open(spm_save_path, "wb") as fi: content_spiece_model = spm_model.serialized_model_proto() fi.write(content_spiece_model) saved_files.append(spm_save_path) return tuple(saved_files) def get_vocab(self) -> Dict: return self.get_src_vocab() def get_src_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def get_tgt_vocab(self): return dict(self.target_encoder, **self.added_tokens_decoder) def __getstate__(self) -> Dict: state = self.__dict__.copy() state.update( {k: None for k in ["spm_source", "spm_target", "current_spm", "punc_normalizer", "target_vocab_file"]} ) return state def __setstate__(self, d: Dict) -> None: self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.spm_source, self.spm_target = (load_spm(f, self.sp_model_kwargs) for f in self.spm_files) self.current_spm = self.spm_source self._setup_normalizer() def num_special_tokens_to_add(self, *args, **kwargs): """Just EOS""" return 1 def _special_token_mask(self, seq): all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def get_special_tokens_mask( self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False ) -> List[int]: """Get list where entries are [1] if a token is [eos] or [pad] else 0.""" if already_has_special_tokens: return self._special_token_mask(token_ids_0) elif token_ids_1 is None: return self._special_token_mask(token_ids_0) + [1] else: return self._special_token_mask(token_ids_0 + token_ids_1) + [1] def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor: spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs) spm.Load(path) return spm def save_json(data, path: str) -> None: with open(path, "w") as f: json.dump(data, f, indent=2) def load_json(path: str) -> Union[Dict, List]: with open(path, "r") as f: return json.load(f)
transformers/src/transformers/models/marian/tokenization_marian.py/0
{ "file_path": "transformers/src/transformers/models/marian/tokenization_marian.py", "repo_id": "transformers", "token_count": 7701 }
110
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from argparse import ArgumentParser from dataclasses import dataclass from pathlib import Path from pprint import pformat from typing import Any, Dict, Iterator, List, Set, Tuple import requests import torch import torchvision.transforms as T from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.data import MetadataCatalog from detectron2.projects.deeplab import add_deeplab_config from PIL import Image from torch import Tensor, nn from transformers.models.maskformer.feature_extraction_maskformer import MaskFormerImageProcessor from transformers.models.maskformer.modeling_maskformer import ( MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerForInstanceSegmentationOutput, MaskFormerModel, MaskFormerModelOutput, ) from transformers.utils import logging StateDict = Dict[str, Tensor] logging.set_verbosity_info() logger = logging.get_logger() torch.manual_seed(0) class TrackedStateDict: def __init__(self, to_track: Dict): """This class "tracks" a python dictionary by keeping track of which item is accessed. Args: to_track (Dict): The dictionary we wish to track """ self.to_track = to_track self._seen: Set[str] = set() def __getitem__(self, key: str) -> Any: return self.to_track[key] def __setitem__(self, key: str, item: Any): self._seen.add(key) self.to_track[key] = item def diff(self) -> List[str]: """This method returns a set difference between the keys in the tracked state dict and the one we have access so far. This is an effective method to check if we have update all the keys Returns: List[str]: List of keys not yet updated """ return set(self.to_track.keys()) - self._seen def copy(self) -> Dict: # proxy the call to the internal dictionary return self.to_track.copy() # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" img_data = requests.get(url, stream=True).raw im = Image.open(img_data) return im @dataclass class Args: """Fake command line arguments needed by maskformer/detectron implementation""" config_file: str def setup_cfg(args: Args): # load config from file and command-line arguments cfg = get_cfg() add_deeplab_config(cfg) add_mask_former_config(cfg) cfg.merge_from_file(args.config_file) cfg.freeze() return cfg class OriginalMaskFormerConfigToOursConverter: def __call__(self, original_config: object) -> MaskFormerConfig: model = original_config.MODEL mask_former = model.MASK_FORMER swin = model.SWIN dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST[0]) id2label = dict(enumerate(dataset_catalog.stuff_classes)) label2id = {label: idx for idx, label in id2label.items()} config: MaskFormerConfig = MaskFormerConfig( fpn_feature_size=model.SEM_SEG_HEAD.CONVS_DIM, mask_feature_size=model.SEM_SEG_HEAD.MASK_DIM, num_labels=model.SEM_SEG_HEAD.NUM_CLASSES, no_object_weight=mask_former.NO_OBJECT_WEIGHT, num_queries=mask_former.NUM_OBJECT_QUERIES, backbone_config={ "pretrain_img_size": swin.PRETRAIN_IMG_SIZE, "image_size": swin.PRETRAIN_IMG_SIZE, "in_channels": 3, "patch_size": swin.PATCH_SIZE, "embed_dim": swin.EMBED_DIM, "depths": swin.DEPTHS, "num_heads": swin.NUM_HEADS, "window_size": swin.WINDOW_SIZE, "drop_path_rate": swin.DROP_PATH_RATE, "model_type": "swin", }, dice_weight=mask_former.DICE_WEIGHT, ce_weight=1.0, mask_weight=mask_former.MASK_WEIGHT, decoder_config={ "model_type": "detr", "max_position_embeddings": 1024, "encoder_layers": 6, "encoder_ffn_dim": 2048, "encoder_attention_heads": 8, "decoder_layers": mask_former.DEC_LAYERS, "decoder_ffn_dim": mask_former.DIM_FEEDFORWARD, "decoder_attention_heads": mask_former.NHEADS, "encoder_layerdrop": 0.0, "decoder_layerdrop": 0.0, "d_model": mask_former.HIDDEN_DIM, "dropout": mask_former.DROPOUT, "attention_dropout": 0.0, "activation_dropout": 0.0, "init_std": 0.02, "init_xavier_std": 1.0, "scale_embedding": False, "auxiliary_loss": False, "dilation": False, # default pretrained config values }, id2label=id2label, label2id=label2id, ) return config class OriginalMaskFormerConfigToImageProcessorConverter: def __call__(self, original_config: object) -> MaskFormerImageProcessor: model = original_config.MODEL model_input = original_config.INPUT dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST[0]) return MaskFormerImageProcessor( image_mean=(torch.tensor(model.PIXEL_MEAN) / 255).tolist(), image_std=(torch.tensor(model.PIXEL_STD) / 255).tolist(), size=model_input.MIN_SIZE_TEST, max_size=model_input.MAX_SIZE_TEST, num_labels=model.SEM_SEG_HEAD.NUM_CLASSES, ignore_index=dataset_catalog.ignore_label, size_divisibility=32, # 32 is required by swin ) class OriginalMaskFormerCheckpointToOursConverter: def __init__(self, original_model: nn.Module, config: MaskFormerConfig): self.original_model = original_model self.config = config def pop_all(self, renamed_keys: List[Tuple[str, str]], dst_state_dict: StateDict, src_state_dict: StateDict): for src_key, dst_key in renamed_keys: dst_state_dict[dst_key] = src_state_dict.pop(src_key) def replace_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: MaskFormerConfig): dst_prefix: str = "pixel_level_module.encoder" src_prefix: str = "backbone" renamed_keys = [ ( f"{src_prefix}.patch_embed.proj.weight", f"{dst_prefix}.model.embeddings.patch_embeddings.projection.weight", ), (f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.model.embeddings.patch_embeddings.projection.bias"), (f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.model.embeddings.norm.weight"), (f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.model.embeddings.norm.bias"), ] num_layers = len(config.backbone_config.depths) for layer_idx in range(num_layers): for block_idx in range(config.backbone_config.depths[layer_idx]): renamed_keys.extend( [ # src, dst ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table", ), ] ) # now we need to handle the attentions # read in weights + bias of input projection layer of cross-attention src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"] src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"] size = src_att_weight.shape[0] offset = size // 3 dst_state_dict[ f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight" ] = src_att_weight[:offset, :] dst_state_dict[ f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias" ] = src_att_bias[:offset] dst_state_dict[ f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight" ] = src_att_weight[offset : offset * 2, :] dst_state_dict[ f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias" ] = src_att_bias[offset : offset * 2] dst_state_dict[ f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight" ] = src_att_weight[-offset:, :] dst_state_dict[ f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias" ] = src_att_bias[-offset:] # let's pop them src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight") src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias") # proj renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias", ), ] ) # second norm renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias", ), ] ) # mlp renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias", ), ] ) renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index", f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index", ) ] ) if layer_idx < num_layers - 1: # patch merging renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight", f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.reduction.weight", ), ( f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight", f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.norm.weight", ), ( f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias", f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.norm.bias", ), ] ) # hidden states norms renamed_keys.extend( [ ( f"{src_prefix}.norm{layer_idx}.weight", f"{dst_prefix}.hidden_states_norms.{layer_idx}.weight", ), ( f"{src_prefix}.norm{layer_idx}.bias", f"{dst_prefix}.hidden_states_norms.{layer_idx}.bias", ), ] ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def replace_pixel_module(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "pixel_level_module.decoder" src_prefix: str = "sem_seg_head.pixel_decoder" self.replace_backbone(dst_state_dict, src_state_dict, self.config) def rename_keys_for_conv(detectron_conv: str, mine_conv: str): return [ (f"{detectron_conv}.weight", f"{mine_conv}.0.weight"), # 2 cuz the have act in the middle -> rename it (f"{detectron_conv}.norm.weight", f"{mine_conv}.1.weight"), (f"{detectron_conv}.norm.bias", f"{mine_conv}.1.bias"), ] renamed_keys = [ (f"{src_prefix}.mask_features.weight", f"{dst_prefix}.mask_projection.weight"), (f"{src_prefix}.mask_features.bias", f"{dst_prefix}.mask_projection.bias"), # the layers in the original one are in reverse order, stem is the last one! ] renamed_keys.extend(rename_keys_for_conv(f"{src_prefix}.layer_4", f"{dst_prefix}.fpn.stem")) # add all the fpn layers (here we need some config parameters to know the size in advance) for src_i, dst_i in zip(range(3, 0, -1), range(0, 3)): renamed_keys.extend( rename_keys_for_conv(f"{src_prefix}.adapter_{src_i}", f"{dst_prefix}.fpn.layers.{dst_i}.proj") ) renamed_keys.extend( rename_keys_for_conv(f"{src_prefix}.layer_{src_i}", f"{dst_prefix}.fpn.layers.{dst_i}.block") ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def rename_keys_in_detr_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "transformer_module.decoder" src_prefix: str = "sem_seg_head.predictor.transformer.decoder" # not sure why we are not popping direcetly here! # here we list all keys to be renamed (original name on the left, our name on the right) rename_keys = [] for i in range(self.config.decoder_config.decoder_layers): # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f"{src_prefix}.layers.{i}.self_attn.out_proj.weight", f"{dst_prefix}.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( ( f"{src_prefix}.layers.{i}.self_attn.out_proj.bias", f"{dst_prefix}.layers.{i}.self_attn.out_proj.bias", ) ) rename_keys.append( ( f"{src_prefix}.layers.{i}.multihead_attn.out_proj.weight", f"{dst_prefix}.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"{src_prefix}.layers.{i}.multihead_attn.out_proj.bias", f"{dst_prefix}.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"{src_prefix}.layers.{i}.linear1.weight", f"{dst_prefix}.layers.{i}.fc1.weight")) rename_keys.append((f"{src_prefix}.layers.{i}.linear1.bias", f"{dst_prefix}.layers.{i}.fc1.bias")) rename_keys.append((f"{src_prefix}.layers.{i}.linear2.weight", f"{dst_prefix}.layers.{i}.fc2.weight")) rename_keys.append((f"{src_prefix}.layers.{i}.linear2.bias", f"{dst_prefix}.layers.{i}.fc2.bias")) rename_keys.append( (f"{src_prefix}.layers.{i}.norm1.weight", f"{dst_prefix}.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (f"{src_prefix}.layers.{i}.norm1.bias", f"{dst_prefix}.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (f"{src_prefix}.layers.{i}.norm2.weight", f"{dst_prefix}.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"{src_prefix}.layers.{i}.norm2.bias", f"{dst_prefix}.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append( (f"{src_prefix}.layers.{i}.norm3.weight", f"{dst_prefix}.layers.{i}.final_layer_norm.weight") ) rename_keys.append( (f"{src_prefix}.layers.{i}.norm3.bias", f"{dst_prefix}.layers.{i}.final_layer_norm.bias") ) return rename_keys def replace_q_k_v_in_detr_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "transformer_module.decoder" src_prefix: str = "sem_seg_head.predictor.transformer.decoder" for i in range(self.config.decoder_config.decoder_layers): # read in weights + bias of input projection layer of self-attention in_proj_weight = src_state_dict.pop(f"{src_prefix}.layers.{i}.self_attn.in_proj_weight") in_proj_bias = src_state_dict.pop(f"{src_prefix}.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :] dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256] dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512] dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention in_proj_weight_cross_attn = src_state_dict.pop(f"{src_prefix}.layers.{i}.multihead_attn.in_proj_weight") in_proj_bias_cross_attn = src_state_dict.pop(f"{src_prefix}.layers.{i}.multihead_attn.in_proj_bias") # next, add query, keys and values (in that order) of cross-attention to the state dict dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :] dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256] dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[ 256:512, : ] dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512] dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :] dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:] def replace_detr_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "transformer_module.decoder" src_prefix: str = "sem_seg_head.predictor.transformer.decoder" renamed_keys = self.rename_keys_in_detr_decoder(dst_state_dict, src_state_dict) # add more renamed_keys.extend( [ (f"{src_prefix}.norm.weight", f"{dst_prefix}.layernorm.weight"), (f"{src_prefix}.norm.bias", f"{dst_prefix}.layernorm.bias"), ] ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) self.replace_q_k_v_in_detr_decoder(dst_state_dict, src_state_dict) def replace_transformer_module(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "transformer_module" src_prefix: str = "sem_seg_head.predictor" self.replace_detr_decoder(dst_state_dict, src_state_dict) renamed_keys = [ (f"{src_prefix}.query_embed.weight", f"{dst_prefix}.queries_embedder.weight"), (f"{src_prefix}.input_proj.weight", f"{dst_prefix}.input_projection.weight"), (f"{src_prefix}.input_proj.bias", f"{dst_prefix}.input_projection.bias"), ] self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def replace_instance_segmentation_module(self, dst_state_dict: StateDict, src_state_dict: StateDict): # NOTE in our case we don't have a prefix, thus we removed the "." from the keys later on! dst_prefix: str = "" src_prefix: str = "sem_seg_head.predictor" renamed_keys = [ (f"{src_prefix}.class_embed.weight", f"{dst_prefix}class_predictor.weight"), (f"{src_prefix}.class_embed.bias", f"{dst_prefix}class_predictor.bias"), ] mlp_len = 3 for i in range(mlp_len): renamed_keys.extend( [ (f"{src_prefix}.mask_embed.layers.{i}.weight", f"{dst_prefix}mask_embedder.{i}.0.weight"), (f"{src_prefix}.mask_embed.layers.{i}.bias", f"{dst_prefix}mask_embedder.{i}.0.bias"), ] ) logger.info(f"Replacing keys {pformat(renamed_keys)}") self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def convert(self, mask_former: MaskFormerModel) -> MaskFormerModel: dst_state_dict = TrackedStateDict(mask_former.state_dict()) src_state_dict = self.original_model.state_dict() self.replace_pixel_module(dst_state_dict, src_state_dict) self.replace_transformer_module(dst_state_dict, src_state_dict) logger.info(f"Missed keys are {pformat(dst_state_dict.diff())}") logger.info(f"Not copied keys are {pformat(src_state_dict.keys())}") logger.info("🙌 Done") mask_former.load_state_dict(dst_state_dict) return mask_former def convert_instance_segmentation( self, mask_former: MaskFormerForInstanceSegmentation ) -> MaskFormerForInstanceSegmentation: dst_state_dict = TrackedStateDict(mask_former.state_dict()) src_state_dict = self.original_model.state_dict() self.replace_instance_segmentation_module(dst_state_dict, src_state_dict) mask_former.load_state_dict(dst_state_dict) return mask_former @staticmethod def using_dirs(checkpoints_dir: Path, config_dir: Path) -> Iterator[Tuple[object, Path, Path]]: checkpoints: List[Path] = checkpoints_dir.glob("**/*.pkl") for checkpoint in checkpoints: logger.info(f"💪 Converting {checkpoint.stem}") # find associated config file config: Path = config_dir / checkpoint.parents[0].stem / "swin" / f"{checkpoint.stem}.yaml" yield config, checkpoint def test(original_model, our_model: MaskFormerForInstanceSegmentation, image_processor: MaskFormerImageProcessor): with torch.no_grad(): original_model = original_model.eval() our_model = our_model.eval() im = prepare_img() tr = T.Compose( [ T.Resize((384, 384)), T.ToTensor(), T.Normalize( mean=torch.tensor([123.675, 116.280, 103.530]) / 255.0, std=torch.tensor([58.395, 57.120, 57.375]) / 255.0, ), ], ) x = tr(im).unsqueeze(0) original_model_backbone_features = original_model.backbone(x.clone()) our_model_output: MaskFormerModelOutput = our_model.model(x.clone(), output_hidden_states=True) for original_model_feature, our_model_feature in zip( original_model_backbone_features.values(), our_model_output.encoder_hidden_states ): assert torch.allclose( original_model_feature, our_model_feature, atol=1e-3 ), "The backbone features are not the same." original_model_pixel_out = original_model.sem_seg_head.pixel_decoder.forward_features( original_model_backbone_features ) assert torch.allclose( original_model_pixel_out[0], our_model_output.pixel_decoder_last_hidden_state, atol=1e-4 ), "The pixel decoder feature are not the same" # let's test the full model original_model_out = original_model([{"image": x.squeeze(0)}]) original_segmentation = original_model_out[0]["sem_seg"] our_model_out: MaskFormerForInstanceSegmentationOutput = our_model(x) our_segmentation = image_processor.post_process_segmentation(our_model_out, target_size=(384, 384)) assert torch.allclose( original_segmentation, our_segmentation, atol=1e-3 ), "The segmentation image is not the same." logger.info("✅ Test passed!") def get_name(checkpoint_file: Path): model_name_raw: str = checkpoint_file.stem # model_name_raw is something like maskformer_panoptic_swin_base_IN21k_384_bs64_554k parent_name: str = checkpoint_file.parents[0].stem backbone = "swin" dataset = "" if "coco" in parent_name: dataset = "coco" elif "ade" in parent_name: dataset = "ade" else: raise ValueError(f"{parent_name} must be wrong since we didn't find 'coco' or 'ade' in it ") backbone_types = ["tiny", "small", "base", "large"] backbone_type = list(filter(lambda x: x in model_name_raw, backbone_types))[0] model_name = f"maskformer-{backbone}-{backbone_type}-{dataset}" return model_name if __name__ == "__main__": parser = ArgumentParser( description="Command line to convert the original maskformers (with swin backbone) to our implementations." ) parser.add_argument( "--checkpoints_dir", type=Path, help=( "A directory containing the model's checkpoints. The directory has to have the following structure:" " <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.pkl" ), ) parser.add_argument( "--configs_dir", type=Path, help=( "A directory containing the model's configs, see detectron2 doc. The directory has to have the following" " structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.yaml" ), ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=Path, help="Path to the folder to output PyTorch models.", ) parser.add_argument( "--maskformer_dir", required=True, type=Path, help=( "A path to MaskFormer's original implementation directory. You can download from here:" " https://github.com/facebookresearch/MaskFormer" ), ) args = parser.parse_args() checkpoints_dir: Path = args.checkpoints_dir config_dir: Path = args.configs_dir save_directory: Path = args.pytorch_dump_folder_path maskformer_dir: Path = args.maskformer_dir # append the path to the parents to maskformer dir sys.path.append(str(maskformer_dir.parent)) # and import what's needed from MaskFormer.mask_former import add_mask_former_config from MaskFormer.mask_former.mask_former_model import MaskFormer as OriginalMaskFormer if not save_directory.exists(): save_directory.mkdir(parents=True) for config_file, checkpoint_file in OriginalMaskFormerCheckpointToOursConverter.using_dirs( checkpoints_dir, config_dir ): image_processor = OriginalMaskFormerConfigToImageProcessorConverter()(setup_cfg(Args(config_file=config_file))) original_config = setup_cfg(Args(config_file=config_file)) mask_former_kwargs = OriginalMaskFormer.from_config(original_config) original_model = OriginalMaskFormer(**mask_former_kwargs).eval() DetectionCheckpointer(original_model).load(str(checkpoint_file)) config: MaskFormerConfig = OriginalMaskFormerConfigToOursConverter()(original_config) mask_former = MaskFormerModel(config=config).eval() converter = OriginalMaskFormerCheckpointToOursConverter(original_model, config) maskformer = converter.convert(mask_former) mask_former_for_instance_segmentation = MaskFormerForInstanceSegmentation(config=config).eval() mask_former_for_instance_segmentation.model = mask_former mask_former_for_instance_segmentation = converter.convert_instance_segmentation( mask_former_for_instance_segmentation ) test(original_model, mask_former_for_instance_segmentation, image_processor) model_name = get_name(checkpoint_file) logger.info(f"🪄 Saving {model_name}") image_processor.save_pretrained(save_directory / model_name) mask_former_for_instance_segmentation.save_pretrained(save_directory / model_name) image_processor.push_to_hub( repo_path_or_name=save_directory / model_name, commit_message="Add model", use_temp_dir=True, ) mask_former_for_instance_segmentation.push_to_hub( repo_path_or_name=save_directory / model_name, commit_message="Add model", use_temp_dir=True, )
transformers/src/transformers/models/maskformer/convert_maskformer_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/maskformer/convert_maskformer_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 16104 }
111
# coding=utf-8 # Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/mbart-large-50-one-to-many-mmt": 1024, } FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: skip class MBart50Tokenizer(PreTrainedTokenizer): """ Construct a MBart50 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. src_lang (`str`, *optional*): A string representing the source language. tgt_lang (`str`, *optional*): A string representing the target language. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Examples: ```python >>> from transformers import MBart50Tokenizer >>> tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO") >>> src_text = " UN Chief Says There Is No Military Solution in Syria" >>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" >>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") >>> # model(**model_inputs) should work ```""" vocab_files_names = VOCAB_FILES_NAMES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file, src_lang=None, tgt_lang=None, eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or [] kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab self.fairseq_offset = 1 self.sp_model_size = len(self.sp_model) self.lang_code_to_id = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES) } self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()} self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} super().__init__( src_lang=src_lang, tgt_lang=tgt_lang, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self._src_lang = src_lang if src_lang is not None else "en_XX" self.cur_lang_code_id = self.lang_code_to_id[self._src_lang] self.tgt_lang = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def vocab_size(self) -> int: return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__(self) -> Dict: state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d: Dict) -> None: self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def get_vocab(self) -> Dict: vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token: str) -> int: """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] * len(self.suffix_tokens) if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An MBART-50 sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `[src_lang_code] X [eos]` - `labels`: (for decoder) `[tgt_lang_code] X [eos]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "en_XX", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "ro_RO", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang: str) -> None: """Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.lang_code_to_id[src_lang] self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: """Reset the special tokens to the target language setting. prefix=[tgt_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.lang_code_to_id[tgt_lang] self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id]
transformers/src/transformers/models/mbart50/tokenization_mbart50.py/0
{ "file_path": "transformers/src/transformers/models/mbart50/tokenization_mbart50.py", "repo_id": "transformers", "token_count": 7343 }
112
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Processor class for MGP-STR.""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class DecodeType(ExplicitEnum): CHARACTER = "char" BPE = "bpe" WORDPIECE = "wp" SUPPORTED_ANNOTATION_FORMATS = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class MgpstrProcessor(ProcessorMixin): r""" Constructs a MGP-STR processor which wraps an image processor and MGP-STR tokenizers into a single [`MgpstrProcessor`] offers all the functionalities of `ViTImageProcessor`] and [`MgpstrTokenizer`]. See the [`~MgpstrProcessor.__call__`] and [`~MgpstrProcessor.batch_decode`] for more information. Args: image_processor (`ViTImageProcessor`, *optional*): An instance of `ViTImageProcessor`. The image processor is a required input. tokenizer ([`MgpstrTokenizer`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "char_tokenizer"] image_processor_class = "ViTImageProcessor" char_tokenizer_class = "MgpstrTokenizer" def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") self.char_tokenizer = tokenizer self.bpe_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") self.wp_tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") super().__init__(image_processor, tokenizer) def __call__(self, text=None, images=None, return_tensors=None, **kwargs): """ When used in normal mode, this method forwards all its arguments to ViTImageProcessor's [`~ViTImageProcessor.__call__`] and returns its output. This method also forwards the `text` and `kwargs` arguments to MgpstrTokenizer's [`~MgpstrTokenizer.__call__`] if `text` is not `None` to encode the text. Please refer to the doctsring of the above methods for more information. """ if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process.") if images is not None: inputs = self.image_processor(images, return_tensors=return_tensors, **kwargs) if text is not None: encodings = self.char_tokenizer(text, return_tensors=return_tensors, **kwargs) if text is None: return inputs elif images is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def batch_decode(self, sequences): """ Convert a list of lists of token ids into a list of strings by calling decode. Args: sequences (`torch.Tensor`): List of tokenized input ids. Returns: `Dict[str, any]`: Dictionary of all the outputs of the decoded results. generated_text (`List[str]`): The final results after fusion of char, bpe, and wp. scores (`List[float]`): The final scores after fusion of char, bpe, and wp. char_preds (`List[str]`): The list of character decoded sentences. bpe_preds (`List[str]`): The list of bpe decoded sentences. wp_preds (`List[str]`): The list of wp decoded sentences. This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ char_preds, bpe_preds, wp_preds = sequences batch_size = char_preds.size(0) char_strs, char_scores = self._decode_helper(char_preds, "char") bpe_strs, bpe_scores = self._decode_helper(bpe_preds, "bpe") wp_strs, wp_scores = self._decode_helper(wp_preds, "wp") final_strs = [] final_scores = [] for i in range(batch_size): scores = [char_scores[i], bpe_scores[i], wp_scores[i]] strs = [char_strs[i], bpe_strs[i], wp_strs[i]] max_score_index = scores.index(max(scores)) final_strs.append(strs[max_score_index]) final_scores.append(scores[max_score_index]) out = {} out["generated_text"] = final_strs out["scores"] = final_scores out["char_preds"] = char_strs out["bpe_preds"] = bpe_strs out["wp_preds"] = wp_strs return out def _decode_helper(self, pred_logits, format): """ Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer. Args: pred_logits (`torch.Tensor`): List of model prediction logits. format (`Union[DecoderType, str]`): Type of model prediction. Must be one of ['char', 'bpe', 'wp']. Returns: `tuple`: dec_strs(`str`): The decode strings of model prediction. conf_scores(`List[float]`): The confidence score of model prediction. """ if format == DecodeType.CHARACTER: decoder = self.char_decode eos_token = 1 eos_str = "[s]" elif format == DecodeType.BPE: decoder = self.bpe_decode eos_token = 2 eos_str = "#" elif format == DecodeType.WORDPIECE: decoder = self.wp_decode eos_token = 102 eos_str = "[SEP]" else: raise ValueError(f"Format {format} is not supported.") dec_strs, conf_scores = [], [] batch_size = pred_logits.size(0) batch_max_length = pred_logits.size(1) _, preds_index = pred_logits.topk(1, dim=-1, largest=True, sorted=True) preds_index = preds_index.view(-1, batch_max_length)[:, 1:] preds_str = decoder(preds_index) preds_max_prob, _ = torch.nn.functional.softmax(pred_logits, dim=2).max(dim=2) preds_max_prob = preds_max_prob[:, 1:] for index in range(batch_size): pred_eos = preds_str[index].find(eos_str) pred = preds_str[index][:pred_eos] pred_index = preds_index[index].cpu().tolist() pred_eos_index = pred_index.index(eos_token) if eos_token in pred_index else -1 pred_max_prob = preds_max_prob[index][: pred_eos_index + 1] confidence_score = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(pred) conf_scores.append(confidence_score) return dec_strs, conf_scores def char_decode(self, sequences): """ Convert a list of lists of char token ids into a list of strings by calling char tokenizer. Args: sequences (`torch.Tensor`): List of tokenized input ids. Returns: `List[str]`: The list of char decoded sentences. """ decode_strs = [seq.replace(" ", "") for seq in self.char_tokenizer.batch_decode(sequences)] return decode_strs def bpe_decode(self, sequences): """ Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer. Args: sequences (`torch.Tensor`): List of tokenized input ids. Returns: `List[str]`: The list of bpe decoded sentences. """ return self.bpe_tokenizer.batch_decode(sequences) def wp_decode(self, sequences): """ Convert a list of lists of word piece token ids into a list of strings by calling word piece tokenizer. Args: sequences (`torch.Tensor`): List of tokenized input ids. Returns: `List[str]`: The list of wp decoded sentences. """ decode_strs = [seq.replace(" ", "") for seq in self.wp_tokenizer.batch_decode(sequences)] return decode_strs
transformers/src/transformers/models/mgp_str/processing_mgp_str.py/0
{ "file_path": "transformers/src/transformers/models/mgp_str/processing_mgp_str.py", "repo_id": "transformers", "token_count": 4028 }
113
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, mobilebert_config_file, pytorch_dump_path): # Initialise PyTorch model config = MobileBertConfig.from_json_file(mobilebert_config_file) print(f"Building PyTorch model from configuration: {config}") model = MobileBertForPreTraining(config) # Load weights from tf checkpoint model = load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
transformers/src/transformers/models/mobilebert/convert_mobilebert_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/mobilebert/convert_mobilebert_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 753 }
114
# coding=utf-8 # Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch MobileNetV2 model.""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, SemanticSegmenterOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilenet_v2 import MobileNetV2Config logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "MobileNetV2Config" # Base docstring _CHECKPOINT_FOR_DOC = "google/mobilenet_v2_1.0_224" _EXPECTED_OUTPUT_SHAPE = [1, 1280, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "google/mobilenet_v2_1.0_224" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/mobilenet_v2_1.4_224", "google/mobilenet_v2_1.0_224", "google/mobilenet_v2_0.37_160", "google/mobilenet_v2_0.35_96", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 ] def _build_tf_to_pytorch_map(model, config, tf_weights=None): """ A map of modules from TF to PyTorch. """ tf_to_pt_map = {} if isinstance(model, (MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation)): backbone = model.mobilenet_v2 else: backbone = model # Use the EMA weights if available def ema(x): return x + "/ExponentialMovingAverage" if x + "/ExponentialMovingAverage" in tf_weights else x prefix = "MobilenetV2/Conv/" tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_stem.first_conv.convolution.weight tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.first_conv.normalization.bias tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.first_conv.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.first_conv.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.first_conv.normalization.running_var prefix = "MobilenetV2/expanded_conv/depthwise/" tf_to_pt_map[ema(prefix + "depthwise_weights")] = backbone.conv_stem.conv_3x3.convolution.weight tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.conv_3x3.normalization.bias tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.conv_3x3.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.conv_3x3.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.conv_3x3.normalization.running_var prefix = "MobilenetV2/expanded_conv/project/" tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_stem.reduce_1x1.convolution.weight tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.reduce_1x1.normalization.bias tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.reduce_1x1.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.reduce_1x1.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.reduce_1x1.normalization.running_var for i in range(16): tf_index = i + 1 pt_index = i pointer = backbone.layer[pt_index] prefix = f"MobilenetV2/expanded_conv_{tf_index}/expand/" tf_to_pt_map[ema(prefix + "weights")] = pointer.expand_1x1.convolution.weight tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.expand_1x1.normalization.bias tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.expand_1x1.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.expand_1x1.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.expand_1x1.normalization.running_var prefix = f"MobilenetV2/expanded_conv_{tf_index}/depthwise/" tf_to_pt_map[ema(prefix + "depthwise_weights")] = pointer.conv_3x3.convolution.weight tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.conv_3x3.normalization.bias tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.conv_3x3.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.conv_3x3.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.conv_3x3.normalization.running_var prefix = f"MobilenetV2/expanded_conv_{tf_index}/project/" tf_to_pt_map[ema(prefix + "weights")] = pointer.reduce_1x1.convolution.weight tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.reduce_1x1.normalization.bias tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.reduce_1x1.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.reduce_1x1.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.reduce_1x1.normalization.running_var prefix = "MobilenetV2/Conv_1/" tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_1x1.convolution.weight tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_1x1.normalization.bias tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_1x1.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_1x1.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_1x1.normalization.running_var if isinstance(model, MobileNetV2ForImageClassification): prefix = "MobilenetV2/Logits/Conv2d_1c_1x1/" tf_to_pt_map[ema(prefix + "weights")] = model.classifier.weight tf_to_pt_map[ema(prefix + "biases")] = model.classifier.bias if isinstance(model, MobileNetV2ForSemanticSegmentation): prefix = "image_pooling/" tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_pool.convolution.weight tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_pool.normalization.bias tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_pool.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = model.segmentation_head.conv_pool.normalization.running_mean tf_to_pt_map[ prefix + "BatchNorm/moving_variance" ] = model.segmentation_head.conv_pool.normalization.running_var prefix = "aspp0/" tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_aspp.convolution.weight tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_aspp.normalization.bias tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_aspp.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = model.segmentation_head.conv_aspp.normalization.running_mean tf_to_pt_map[ prefix + "BatchNorm/moving_variance" ] = model.segmentation_head.conv_aspp.normalization.running_var prefix = "concat_projection/" tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_projection.convolution.weight tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_projection.normalization.bias tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_projection.normalization.weight tf_to_pt_map[ prefix + "BatchNorm/moving_mean" ] = model.segmentation_head.conv_projection.normalization.running_mean tf_to_pt_map[ prefix + "BatchNorm/moving_variance" ] = model.segmentation_head.conv_projection.normalization.running_var prefix = "logits/semantic/" tf_to_pt_map[ema(prefix + "weights")] = model.segmentation_head.classifier.convolution.weight tf_to_pt_map[ema(prefix + "biases")] = model.segmentation_head.classifier.convolution.bias return tf_to_pt_map def load_tf_weights_in_mobilenet_v2(model, config, tf_checkpoint_path): """Load TensorFlow checkpoints in a PyTorch model.""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model init_vars = tf.train.list_variables(tf_checkpoint_path) tf_weights = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_checkpoint_path, name) tf_weights[name] = array # Build TF to PyTorch weights loading map tf_to_pt_map = _build_tf_to_pytorch_map(model, config, tf_weights) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}") if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping") continue array = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise") array = np.transpose(array, (2, 3, 0, 1)) elif "weights" in name: logger.info("Transposing") if len(pointer.shape) == 2: # copying into linear layer array = array.squeeze().transpose() else: array = np.transpose(array, (3, 2, 0, 1)) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") logger.info(f"Initialize PyTorch weight {name} {array.shape}") pointer.data = torch.from_numpy(array) tf_weights.pop(name, None) tf_weights.pop(name + "/RMSProp", None) tf_weights.pop(name + "/RMSProp_1", None) tf_weights.pop(name + "/ExponentialMovingAverage", None) tf_weights.pop(name + "/Momentum", None) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}") return model def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int: """ Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the original TensorFlow repo. It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_value < 0.9 * value: new_value += divisor return int(new_value) def apply_depth_multiplier(config: MobileNetV2Config, channels: int) -> int: return make_divisible(int(round(channels * config.depth_multiplier)), config.depth_divisible_by, config.min_depth) def apply_tf_padding(features: torch.Tensor, conv_layer: nn.Conv2d) -> torch.Tensor: """ Apply TensorFlow-style "SAME" padding to a convolution layer. See the notes at: https://www.tensorflow.org/api_docs/python/tf/nn#notes_on_padding_2 """ in_height = int(features.shape[-2]) in_width = int(features.shape[-1]) stride_height, stride_width = conv_layer.stride kernel_height, kernel_width = conv_layer.kernel_size dilation_height, dilation_width = conv_layer.dilation if in_height % stride_height == 0: pad_along_height = max(kernel_height - stride_height, 0) else: pad_along_height = max(kernel_height - (in_height % stride_height), 0) if in_width % stride_width == 0: pad_along_width = max(kernel_width - stride_width, 0) else: pad_along_width = max(kernel_width - (in_width % stride_width), 0) pad_left = pad_along_width // 2 pad_right = pad_along_width - pad_left pad_top = pad_along_height // 2 pad_bottom = pad_along_height - pad_top padding = ( pad_left * dilation_width, pad_right * dilation_width, pad_top * dilation_height, pad_bottom * dilation_height, ) return nn.functional.pad(features, padding, "constant", 0.0) class MobileNetV2ConvLayer(nn.Module): def __init__( self, config: MobileNetV2Config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, groups: int = 1, bias: bool = False, dilation: int = 1, use_normalization: bool = True, use_activation: Union[bool, str] = True, layer_norm_eps: Optional[float] = None, ) -> None: super().__init__() self.config = config if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") padding = 0 if config.tf_padding else int((kernel_size - 1) / 2) * dilation self.convolution = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode="zeros", ) if use_normalization: self.normalization = nn.BatchNorm2d( num_features=out_channels, eps=config.layer_norm_eps if layer_norm_eps is None else layer_norm_eps, momentum=0.997, affine=True, track_running_stats=True, ) else: self.normalization = None if use_activation: if isinstance(use_activation, str): self.activation = ACT2FN[use_activation] elif isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act else: self.activation = None def forward(self, features: torch.Tensor) -> torch.Tensor: if self.config.tf_padding: features = apply_tf_padding(features, self.convolution) features = self.convolution(features) if self.normalization is not None: features = self.normalization(features) if self.activation is not None: features = self.activation(features) return features class MobileNetV2InvertedResidual(nn.Module): def __init__( self, config: MobileNetV2Config, in_channels: int, out_channels: int, stride: int, dilation: int = 1 ) -> None: super().__init__() expanded_channels = make_divisible( int(round(in_channels * config.expand_ratio)), config.depth_divisible_by, config.min_depth ) if stride not in [1, 2]: raise ValueError(f"Invalid stride {stride}.") self.use_residual = (stride == 1) and (in_channels == out_channels) self.expand_1x1 = MobileNetV2ConvLayer( config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1 ) self.conv_3x3 = MobileNetV2ConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=3, stride=stride, groups=expanded_channels, dilation=dilation, ) self.reduce_1x1 = MobileNetV2ConvLayer( config, in_channels=expanded_channels, out_channels=out_channels, kernel_size=1, use_activation=False, ) def forward(self, features: torch.Tensor) -> torch.Tensor: residual = features features = self.expand_1x1(features) features = self.conv_3x3(features) features = self.reduce_1x1(features) return residual + features if self.use_residual else features class MobileNetV2Stem(nn.Module): def __init__(self, config: MobileNetV2Config, in_channels: int, expanded_channels: int, out_channels: int) -> None: super().__init__() # The very first layer is a regular 3x3 convolution with stride 2 that expands to 32 channels. # All other expansion layers use the expansion factor to compute the number of output channels. self.first_conv = MobileNetV2ConvLayer( config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=3, stride=2, ) if config.first_layer_is_expansion: self.expand_1x1 = None else: self.expand_1x1 = MobileNetV2ConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=1 ) self.conv_3x3 = MobileNetV2ConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=3, stride=1, groups=expanded_channels, ) self.reduce_1x1 = MobileNetV2ConvLayer( config, in_channels=expanded_channels, out_channels=out_channels, kernel_size=1, use_activation=False, ) def forward(self, features: torch.Tensor) -> torch.Tensor: features = self.first_conv(features) if self.expand_1x1 is not None: features = self.expand_1x1(features) features = self.conv_3x3(features) features = self.reduce_1x1(features) return features class MobileNetV2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileNetV2Config load_tf_weights = load_tf_weights_in_mobilenet_v2 base_model_prefix = "mobilenet_v2" main_input_name = "pixel_values" supports_gradient_checkpointing = False def _init_weights(self, module: Union[nn.Linear, nn.Conv2d]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.BatchNorm2d): module.bias.data.zero_() module.weight.data.fill_(1.0) MOBILENET_V2_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILENET_V2_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV2ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileNetV2 model outputting raw hidden-states without any specific head on top.", MOBILENET_V2_START_DOCSTRING, ) class MobileNetV2Model(MobileNetV2PreTrainedModel): def __init__(self, config: MobileNetV2Config, add_pooling_layer: bool = True): super().__init__(config) self.config = config # Output channels for the projection layers channels = [16, 24, 24, 32, 32, 32, 64, 64, 64, 64, 96, 96, 96, 160, 160, 160, 320] channels = [apply_depth_multiplier(config, x) for x in channels] # Strides for the depthwise layers strides = [2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1] self.conv_stem = MobileNetV2Stem( config, in_channels=config.num_channels, expanded_channels=apply_depth_multiplier(config, 32), out_channels=channels[0], ) current_stride = 2 # first conv layer has stride 2 dilation = 1 self.layer = nn.ModuleList() for i in range(16): # Keep making the feature maps smaller or use dilated convolution? if current_stride == config.output_stride: layer_stride = 1 layer_dilation = dilation dilation *= strides[i] # larger dilation starts in next block else: layer_stride = strides[i] layer_dilation = 1 current_stride *= layer_stride self.layer.append( MobileNetV2InvertedResidual( config, in_channels=channels[i], out_channels=channels[i + 1], stride=layer_stride, dilation=layer_dilation, ) ) if config.finegrained_output and config.depth_multiplier < 1.0: output_channels = 1280 else: output_channels = apply_depth_multiplier(config, 1280) self.conv_1x1 = MobileNetV2ConvLayer( config, in_channels=channels[-1], out_channels=output_channels, kernel_size=1, ) self.pooler = nn.AdaptiveAvgPool2d((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): raise NotImplementedError @add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.conv_stem(pixel_values) all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) last_hidden_state = self.conv_1x1(hidden_states) if self.pooler is not None: pooled_output = torch.flatten(self.pooler(last_hidden_state), start_dim=1) else: pooled_output = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=all_hidden_states, ) @add_start_docstrings( """ MobileNetV2 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, MOBILENET_V2_START_DOCSTRING, ) class MobileNetV2ForImageClassification(MobileNetV2PreTrainedModel): def __init__(self, config: MobileNetV2Config) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilenet_v2 = MobileNetV2Model(config) last_hidden_size = self.mobilenet_v2.conv_1x1.convolution.out_channels # Classifier head self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True) self.classifier = nn.Linear(last_hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilenet_v2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(self.dropout(pooled_output)) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) class MobileNetV2DeepLabV3Plus(nn.Module): """ The neural network from the paper "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation" https://arxiv.org/abs/1802.02611 """ def __init__(self, config: MobileNetV2Config) -> None: super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(output_size=1) self.conv_pool = MobileNetV2ConvLayer( config, in_channels=apply_depth_multiplier(config, 320), out_channels=256, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", layer_norm_eps=1e-5, ) self.conv_aspp = MobileNetV2ConvLayer( config, in_channels=apply_depth_multiplier(config, 320), out_channels=256, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", layer_norm_eps=1e-5, ) self.conv_projection = MobileNetV2ConvLayer( config, in_channels=512, out_channels=256, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", layer_norm_eps=1e-5, ) self.dropout = nn.Dropout2d(config.classifier_dropout_prob) self.classifier = MobileNetV2ConvLayer( config, in_channels=256, out_channels=config.num_labels, kernel_size=1, use_normalization=False, use_activation=False, bias=True, ) def forward(self, features: torch.Tensor) -> torch.Tensor: spatial_size = features.shape[-2:] features_pool = self.avg_pool(features) features_pool = self.conv_pool(features_pool) features_pool = nn.functional.interpolate( features_pool, size=spatial_size, mode="bilinear", align_corners=True ) features_aspp = self.conv_aspp(features) features = torch.cat([features_pool, features_aspp], dim=1) features = self.conv_projection(features) features = self.dropout(features) features = self.classifier(features) return features @add_start_docstrings( """ MobileNetV2 model with a semantic segmentation head on top, e.g. for Pascal VOC. """, MOBILENET_V2_START_DOCSTRING, ) class MobileNetV2ForSemanticSegmentation(MobileNetV2PreTrainedModel): def __init__(self, config: MobileNetV2Config) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilenet_v2 = MobileNetV2Model(config, add_pooling_layer=False) self.segmentation_head = MobileNetV2DeepLabV3Plus(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, MobileNetV2ForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") >>> model = MobileNetV2ForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilenet_v2( pixel_values, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.segmentation_head(encoder_hidden_states[-1]) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) loss = loss_fct(upsampled_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=None, )
transformers/src/transformers/models/mobilenet_v2/modeling_mobilenet_v2.py/0
{ "file_path": "transformers/src/transformers/models/mobilenet_v2/modeling_mobilenet_v2.py", "repo_id": "transformers", "token_count": 15255 }
115
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for MPNet.""" import collections import os import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/vocab.txt", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/mpnet-base": 512, } PRETRAINED_INIT_CONFIGURATION = { "microsoft/mpnet-base": {"do_lower_case": True}, } def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class MPNetTokenizer(PreTrainedTokenizer): """ This tokenizer inherits from [`BertTokenizer`] which contains most of the methods. Users should refer to the superclass for more information regarding methods. Args: vocab_file (`str`): Path to the vocabulary file. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="[UNK]", pad_token="<pad>", mask_token="<mask>", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) def get_vocab(self): # "<mask>" is part of the vocab, but was wrongfully added at a wrong index in the fast saved version vocab = self.added_tokens_encoder.copy() vocab.update(self.vocab) return vocab def _tokenize(self, text): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A MPNet sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` methods. Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Set to True if the token list is already formatted with special tokens for the model Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. MPNet does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
transformers/src/transformers/models/mpnet/tokenization_mpnet.py/0
{ "file_path": "transformers/src/transformers/models/mpnet/tokenization_mpnet.py", "repo_id": "transformers", "token_count": 9997 }
116
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert MusicGen checkpoints from the original repository.""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, T5EncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) EXPECTED_MISSING_KEYS = ["model.decoder.embed_positions.weights"] def rename_keys(name): if "emb" in name: name = name.replace("emb", "model.decoder.embed_tokens") if "transformer" in name: name = name.replace("transformer", "model.decoder") if "cross_attention" in name: name = name.replace("cross_attention", "encoder_attn") if "linear1" in name: name = name.replace("linear1", "fc1") if "linear2" in name: name = name.replace("linear2", "fc2") if "norm1" in name: name = name.replace("norm1", "self_attn_layer_norm") if "norm_cross" in name: name = name.replace("norm_cross", "encoder_attn_layer_norm") if "norm2" in name: name = name.replace("norm2", "final_layer_norm") if "out_norm" in name: name = name.replace("out_norm", "model.decoder.layer_norm") if "linears" in name: name = name.replace("linears", "lm_heads") if "condition_provider.conditioners.description.output_proj" in name: name = name.replace("condition_provider.conditioners.description.output_proj", "enc_to_dec_proj") return name def rename_state_dict(state_dict: OrderedDict, hidden_size: int) -> Tuple[Dict, Dict]: """Function that takes the fairseq Musicgen state dict and renames it according to the HF module names. It further partitions the state dict into the decoder (LM) state dict, and that for the encoder-decoder projection.""" keys = list(state_dict.keys()) enc_dec_proj_state_dict = {} for key in keys: val = state_dict.pop(key) key = rename_keys(key) if "in_proj_weight" in key: # split fused qkv proj state_dict[key.replace("in_proj_weight", "q_proj.weight")] = val[:hidden_size, :] state_dict[key.replace("in_proj_weight", "k_proj.weight")] = val[hidden_size : 2 * hidden_size, :] state_dict[key.replace("in_proj_weight", "v_proj.weight")] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: enc_dec_proj_state_dict[key[len("enc_to_dec_proj.") :]] = val else: state_dict[key] = val return state_dict, enc_dec_proj_state_dict def decoder_config_from_checkpoint(checkpoint: str) -> MusicgenDecoderConfig: if checkpoint == "small" or checkpoint == "facebook/musicgen-stereo-small": # default config values hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 elif checkpoint == "medium" or checkpoint == "facebook/musicgen-stereo-medium": hidden_size = 1536 num_hidden_layers = 48 num_attention_heads = 24 elif checkpoint == "large" or checkpoint == "facebook/musicgen-stereo-large": hidden_size = 2048 num_hidden_layers = 48 num_attention_heads = 32 else: raise ValueError( "Checkpoint should be one of `['small', 'medium', 'large']` for the mono checkpoints, " "or `['facebook/musicgen-stereo-small', 'facebook/musicgen-stereo-medium', 'facebook/musicgen-stereo-large']` " f"for the stereo checkpoints, got {checkpoint}." ) if "stereo" in checkpoint: audio_channels = 2 num_codebooks = 8 else: audio_channels = 1 num_codebooks = 4 config = MusicgenDecoderConfig( hidden_size=hidden_size, ffn_dim=hidden_size * 4, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, num_codebooks=num_codebooks, audio_channels=audio_channels, ) return config @torch.no_grad() def convert_musicgen_checkpoint( checkpoint, pytorch_dump_folder=None, repo_id=None, device="cpu", safe_serialization=False ): fairseq_model = MusicGen.get_pretrained(checkpoint, device=device) decoder_config = decoder_config_from_checkpoint(checkpoint) decoder_state_dict = fairseq_model.lm.state_dict() decoder_state_dict, enc_dec_proj_state_dict = rename_state_dict( decoder_state_dict, hidden_size=decoder_config.hidden_size ) text_encoder = T5EncoderModel.from_pretrained("google-t5/t5-base") audio_encoder = EncodecModel.from_pretrained("facebook/encodec_32khz") decoder = MusicgenForCausalLM(decoder_config).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection missing_keys, unexpected_keys = decoder.load_state_dict(decoder_state_dict, strict=False) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder")) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(key) if len(missing_keys) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}") if len(unexpected_keys) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}") # init the composite model model = MusicgenForConditionalGeneration(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(enc_dec_proj_state_dict) # check we can do a forward pass input_ids = torch.arange(0, 2 * decoder_config.num_codebooks, dtype=torch.long).reshape(2, -1) decoder_input_ids = input_ids.reshape(2 * decoder_config.num_codebooks, -1) with torch.no_grad(): logits = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids).logits if logits.shape != (2 * decoder_config.num_codebooks, 1, 2048): raise ValueError("Incorrect shape for logits") # now construct the processor tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") feature_extractor = AutoFeatureExtractor.from_pretrained( "facebook/encodec_32khz", padding_side="left", feature_size=decoder_config.audio_channels ) processor = MusicgenProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer) # set the appropriate bos/pad token ids model.generation_config.decoder_start_token_id = 2048 model.generation_config.pad_token_id = 2048 # set other default generation config params model.generation_config.max_length = int(30 * audio_encoder.config.frame_rate) model.generation_config.do_sample = True model.generation_config.guidance_scale = 3.0 if pytorch_dump_folder is not None: Path(pytorch_dump_folder).mkdir(exist_ok=True) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}") model.save_pretrained(pytorch_dump_folder, safe_serialization=safe_serialization) processor.save_pretrained(pytorch_dump_folder) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}") model.push_to_hub(repo_id, safe_serialization=safe_serialization) processor.push_to_hub(repo_id) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: " "`['small', 'medium', 'large']` for the mono checkpoints, or " "`['facebook/musicgen-stereo-small', 'facebook/musicgen-stereo-medium', 'facebook/musicgen-stereo-large']` " "for the stereo checkpoints.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) parser.add_argument( "--safe_serialization", action="store_true", help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).", ) args = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
transformers/src/transformers/models/musicgen/convert_musicgen_transformers.py/0
{ "file_path": "transformers/src/transformers/models/musicgen/convert_musicgen_transformers.py", "repo_id": "transformers", "token_count": 3651 }
117
# coding=utf-8 # Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert OneFormer checkpoints from the original repository. URL: https://github.com/SHI-Labs/OneFormer""" import os import sys from argparse import ArgumentParser from dataclasses import dataclass from pathlib import Path from pprint import pformat from typing import Any, Dict, Iterator, List, Set, Tuple import requests import torch import torchvision.transforms as T from PIL import Image from torch import Tensor, nn try: from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.data import MetadataCatalog from detectron2.projects.deeplab import add_deeplab_config except ImportError: pass from transformers import CLIPTokenizer, DinatConfig, SwinConfig from transformers.models.oneformer.image_processing_oneformer import OneFormerImageProcessor from transformers.models.oneformer.modeling_oneformer import ( OneFormerConfig, OneFormerForUniversalSegmentation, OneFormerForUniversalSegmentationOutput, OneFormerModel, OneFormerModelOutput, ) from transformers.models.oneformer.processing_oneformer import OneFormerProcessor from transformers.utils import logging StateDict = Dict[str, Tensor] logging.set_verbosity_info() logger = logging.get_logger() torch.manual_seed(0) class TrackedStateDict: def __init__(self, to_track: Dict): """This class "tracks" a python dictionary by keeping track of which item is accessed. Args: to_track (Dict): The dictionary we wish to track """ self.to_track = to_track self._seen: Set[str] = set() def __getitem__(self, key: str) -> Any: return self.to_track[key] def __setitem__(self, key: str, item: Any): self._seen.add(key) self.to_track[key] = item def diff(self) -> List[str]: """This method returns a set difference between the keys in the tracked state dict and the one we have access so far. This is an effective method to check if we have update all the keys Returns: List[str]: List of keys not yet updated """ return set(self.to_track.keys()) - self._seen def copy(self) -> Dict: # proxy the call to the internal dictionary return self.to_track.copy() # Image to verify the result def prepare_img(): url = "https://praeclarumjj3.github.io/files/coco.jpeg" img_data = requests.get(url, stream=True).raw im = Image.open(img_data) return im @dataclass class Args: """Fake command line arguments needed by oneformer/detectron2 implementation""" config_file: str def setup_cfg(args: Args): # load config from file and command-line arguments cfg = get_cfg() add_deeplab_config(cfg) add_common_config(cfg) add_oneformer_config(cfg) add_swin_config(cfg) add_dinat_config(cfg) cfg.merge_from_file(args.config_file) cfg.freeze() return cfg class OriginalOneFormerConfigToOursConverter: def __call__(self, original_config: object, is_swin: bool) -> OneFormerConfig: model = original_config.MODEL dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST_PANOPTIC[0]) id2label = dict(enumerate(dataset_catalog.stuff_classes)) label2id = {label: idx for idx, label in id2label.items()} if is_swin: if model.SWIN.EMBED_DIM == 96: backbone_config = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224", drop_path_rate=model.SWIN.DROP_PATH_RATE, out_features=["stage1", "stage2", "stage3", "stage4"], ) elif model.SWIN.EMBED_DIM == 192: backbone_config = SwinConfig.from_pretrained( "microsoft/swin-large-patch4-window12-384", drop_path_rate=model.SWIN.DROP_PATH_RATE, out_features=["stage1", "stage2", "stage3", "stage4"], ) else: raise ValueError(f"embed dim {model.SWIN.EMBED_DIM} not supported for Swin!") else: backbone_config = DinatConfig.from_pretrained( "shi-labs/dinat-large-11x11-in22k-in1k-384", dilations=model.DiNAT.DILATIONS, kernel_size=model.DiNAT.KERNEL_SIZE, out_features=["stage1", "stage2", "stage3", "stage4"], ) config: OneFormerConfig = OneFormerConfig( backbone_config=backbone_config, output_attentions=True, output_hidden_states=True, return_dict=True, ignore_value=model.SEM_SEG_HEAD.IGNORE_VALUE, num_classes=model.SEM_SEG_HEAD.NUM_CLASSES, num_queries=model.ONE_FORMER.NUM_OBJECT_QUERIES, no_object_weight=model.ONE_FORMER.NO_OBJECT_WEIGHT, class_weight=model.ONE_FORMER.CLASS_WEIGHT, mask_weight=model.ONE_FORMER.MASK_WEIGHT, dice_weight=model.ONE_FORMER.DICE_WEIGHT, contrastive_weight=model.ONE_FORMER.CONTRASTIVE_WEIGHT, contrastive_temperature=model.ONE_FORMER.CONTRASTIVE_TEMPERATURE, train_num_points=model.ONE_FORMER.TRAIN_NUM_POINTS, oversample_ratio=model.ONE_FORMER.OVERSAMPLE_RATIO, importance_sample_ratio=model.ONE_FORMER.IMPORTANCE_SAMPLE_RATIO, init_std=0.02, init_xavier_std=1.0, layer_norm_eps=1e-05, is_training=False, use_auxiliary_loss=model.ONE_FORMER.DEEP_SUPERVISION, output_auxiliary_logits=True, strides=[4, 8, 16, 32], task_seq_len=original_config.INPUT.TASK_SEQ_LEN, max_seq_len=original_config.INPUT.MAX_SEQ_LEN, text_encoder_width=model.TEXT_ENCODER.WIDTH, text_encoder_context_length=model.TEXT_ENCODER.CONTEXT_LENGTH, text_encoder_num_layers=model.TEXT_ENCODER.NUM_LAYERS, text_encoder_vocab_size=model.TEXT_ENCODER.VOCAB_SIZE, text_encoder_proj_layers=model.TEXT_ENCODER.PROJ_NUM_LAYERS, text_encoder_n_ctx=model.TEXT_ENCODER.N_CTX, conv_dim=model.SEM_SEG_HEAD.CONVS_DIM, mask_dim=model.SEM_SEG_HEAD.MASK_DIM, hidden_dim=model.ONE_FORMER.HIDDEN_DIM, norm=model.SEM_SEG_HEAD.NORM, encoder_layers=model.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS, encoder_feedforward_dim=1024, decoder_layers=model.ONE_FORMER.DEC_LAYERS, use_task_norm=model.ONE_FORMER.USE_TASK_NORM, num_attention_heads=model.ONE_FORMER.NHEADS, dropout=model.ONE_FORMER.DROPOUT, dim_feedforward=model.ONE_FORMER.DIM_FEEDFORWARD, pre_norm=model.ONE_FORMER.PRE_NORM, enforce_input_proj=model.ONE_FORMER.ENFORCE_INPUT_PROJ, query_dec_layers=model.ONE_FORMER.CLASS_DEC_LAYERS, common_stride=model.SEM_SEG_HEAD.COMMON_STRIDE, id2label=id2label, label2id=label2id, ) return config class OriginalOneFormerConfigToProcessorConverter: def __call__(self, original_config: object, model_repo: str) -> OneFormerProcessor: model = original_config.MODEL model_input = original_config.INPUT dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST_PANOPTIC[0]) if "ade20k" in model_repo: class_info_file = "ade20k_panoptic.json" elif "coco" in model_repo: class_info_file = "coco_panoptic.json" elif "cityscapes" in model_repo: class_info_file = "cityscapes_panoptic.json" else: raise ValueError("Invalid Dataset!") image_processor = OneFormerImageProcessor( image_mean=(torch.tensor(model.PIXEL_MEAN) / 255).tolist(), image_std=(torch.tensor(model.PIXEL_STD) / 255).tolist(), size=model_input.MIN_SIZE_TEST, max_size=model_input.MAX_SIZE_TEST, num_labels=model.SEM_SEG_HEAD.NUM_CLASSES, ignore_index=dataset_catalog.ignore_label, class_info_file=class_info_file, ) tokenizer = CLIPTokenizer.from_pretrained(model_repo) return OneFormerProcessor( image_processor=image_processor, tokenizer=tokenizer, task_seq_length=original_config.INPUT.TASK_SEQ_LEN, max_seq_length=original_config.INPUT.MAX_SEQ_LEN, ) class OriginalOneFormerCheckpointToOursConverter: def __init__(self, original_model: nn.Module, config: OneFormerConfig): self.original_model = original_model self.config = config def pop_all(self, renamed_keys: List[Tuple[str, str]], dst_state_dict: StateDict, src_state_dict: StateDict): for src_key, dst_key in renamed_keys: dst_state_dict[dst_key] = src_state_dict.pop(src_key) # Swin Backbone def replace_swin_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: OneFormerConfig): dst_prefix: str = "pixel_level_module.encoder" src_prefix: str = "backbone" renamed_keys = [ ( f"{src_prefix}.patch_embed.proj.weight", f"{dst_prefix}.embeddings.patch_embeddings.projection.weight", ), (f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.embeddings.patch_embeddings.projection.bias"), (f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.embeddings.norm.weight"), (f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.embeddings.norm.bias"), ] num_layers = len(config.backbone_config.depths) for layer_idx in range(num_layers): for block_idx in range(config.backbone_config.depths[layer_idx]): renamed_keys.extend( [ # src, dst ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table", ), ] ) # now we need to handle the attentions # read in weights + bias of input projection layer of cross-attention src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"] src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"] size = src_att_weight.shape[0] offset = size // 3 dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight" ] = src_att_weight[:offset, :] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias" ] = src_att_bias[:offset] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight" ] = src_att_weight[offset : offset * 2, :] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias" ] = src_att_bias[offset : offset * 2] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight" ] = src_att_weight[-offset:, :] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias" ] = src_att_bias[-offset:] # let's pop them src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight") src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias") # proj renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias", ), ] ) # second norm renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias", ), ] ) # mlp renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias", ), ] ) renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index", ) ] ) if layer_idx < num_layers - 1: # patch merging renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.reduction.weight", ), ( f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.weight", ), ( f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.bias", ), ] ) # hidden states norms renamed_keys.extend( [ ( f"{src_prefix}.norm{layer_idx}.weight", f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight", ), ( f"{src_prefix}.norm{layer_idx}.bias", f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias", ), ] ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) # Dinat Backbone def replace_dinat_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: OneFormerConfig): dst_prefix: str = "pixel_level_module.encoder" src_prefix: str = "backbone" def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] renamed_keys = rename_keys_for_weight_bias(f"{src_prefix}.patch_embed.norm", f"{dst_prefix}.embeddings.norm") for i in range(2): renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.patch_embed.proj.{i}", f"{dst_prefix}.embeddings.patch_embeddings.projection.{i}", ) ) num_layers = len(config.backbone_config.depths) for layer_idx in range(num_layers): for block_idx in range(config.backbone_config.depths[layer_idx]): renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.norm1", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.layernorm_before", ) ) renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.norm2", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.layernorm_after", ) ) renamed_keys.extend( [ # src, dst ( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.rpb", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.rpb", ), ] ) # now we need to handle the attentions # read in weights + bias of input projection layer of cross-attention src_att_weight = src_state_dict[f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"] src_att_bias = src_state_dict[f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"] size = src_att_weight.shape[0] offset = size // 3 dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.query.weight" ] = src_att_weight[:offset, :] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.query.bias" ] = src_att_bias[:offset] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.key.weight" ] = src_att_weight[offset : offset * 2, :] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.key.bias" ] = src_att_bias[offset : offset * 2] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.value.weight" ] = src_att_weight[-offset:, :] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.value.bias" ] = src_att_bias[-offset:] # let's pop them src_state_dict.pop(f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.weight") src_state_dict.pop(f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.bias") # proj renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.proj", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.output.dense", ) ) # mlp renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.mlp.fc1", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.intermediate.dense", ) ) renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.mlp.fc2", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.output.dense", ) ) if layer_idx < num_layers - 1: # patch merging renamed_keys.extend( [ ( f"{src_prefix}.levels.{layer_idx}.downsample.reduction.weight", f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.reduction.weight", ), ( f"{src_prefix}.levels.{layer_idx}.downsample.norm.weight", f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.norm.weight", ), ( f"{src_prefix}.levels.{layer_idx}.downsample.norm.bias", f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.norm.bias", ), ] ) # hidden states norms renamed_keys.extend( [ ( f"{src_prefix}.norm{layer_idx}.weight", f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight", ), ( f"{src_prefix}.norm{layer_idx}.bias", f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias", ), ] ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) # Backbone + Pixel Decoder def replace_pixel_module(self, dst_state_dict: StateDict, src_state_dict: StateDict, is_swin: bool): dst_prefix: str = "pixel_level_module.decoder" src_prefix: str = "sem_seg_head.pixel_decoder" if is_swin: self.replace_swin_backbone(dst_state_dict, src_state_dict, self.config) else: self.replace_dinat_backbone(dst_state_dict, src_state_dict, self.config) def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str): self_attn_keys = [] self_attn_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.attention_weights", f"{dst_prefix}.attention_weights") ) self_attn_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.output_proj", f"{dst_prefix}.output_proj") ) self_attn_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.sampling_offsets", f"{dst_prefix}.sampling_offsets") ) self_attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.value_proj", f"{dst_prefix}.value_proj")) return self_attn_keys def rename_keys_for_encoder_layer(src_prefix: str, dst_prefix: str): encoder_keys = [] encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.fc1")) encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.fc2")) encoder_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.self_attn_layer_norm") ) encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.final_layer_norm")) encoder_keys.extend(rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn")) return encoder_keys # convolution layer for final features renamed_keys = [ (f"{src_prefix}.adapter_1.weight", f"{dst_prefix}.adapter_1.0.weight"), (f"{src_prefix}.adapter_1.norm.weight", f"{dst_prefix}.adapter_1.1.weight"), (f"{src_prefix}.adapter_1.norm.bias", f"{dst_prefix}.adapter_1.1.bias"), ] renamed_keys.extend( [ (f"{src_prefix}.layer_1.weight", f"{dst_prefix}.layer_1.0.weight"), (f"{src_prefix}.layer_1.norm.weight", f"{dst_prefix}.layer_1.1.weight"), (f"{src_prefix}.layer_1.norm.bias", f"{dst_prefix}.layer_1.1.bias"), ] ) # proj layers for i in range(3): for j in range(2): renamed_keys.extend( [ (f"{src_prefix}.input_proj.{i}.{j}.weight", f"{dst_prefix}.input_projections.{i}.{j}.weight"), (f"{src_prefix}.input_proj.{i}.{j}.bias", f"{dst_prefix}.input_projections.{i}.{j}.bias"), ] ) renamed_keys.extend([(f"{src_prefix}.transformer.level_embed", f"{dst_prefix}.level_embed")]) # layers for layer_idx in range(self.config.encoder_layers): renamed_keys.extend( rename_keys_for_encoder_layer( f"{src_prefix}.transformer.encoder.layers.{layer_idx}", f"{dst_prefix}.encoder.layers.{layer_idx}" ) ) # proj renamed_keys.extend( [ (f"{src_prefix}.mask_features.weight", f"{dst_prefix}.mask_projection.weight"), (f"{src_prefix}.mask_features.bias", f"{dst_prefix}.mask_projection.bias"), ] ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) # Transformer Decoder def replace_keys_qkv_transformer_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "transformer_module.decoder.layers" src_prefix: str = "sem_seg_head.predictor" for i in range(self.config.decoder_layers - 1): # read in weights + bias of input projection layer of self-attention in_proj_weight = src_state_dict.pop( f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_weight" ) in_proj_bias = src_state_dict.pop( f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.q_proj.weight"] = in_proj_weight[:256, :] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.q_proj.bias"] = in_proj_bias[:256] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.k_proj.bias"] = in_proj_bias[256:512] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.v_proj.bias"] = in_proj_bias[-256:] def replace_transformer_module(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "transformer_module" src_prefix: str = "sem_seg_head.predictor" def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] def rename_keys_for_attn(src_prefix: str, dst_prefix: str): attn_keys = [ (f"{src_prefix}.in_proj_bias", f"{dst_prefix}.in_proj_bias"), (f"{src_prefix}.in_proj_weight", f"{dst_prefix}.in_proj_weight"), ] attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj")) return attn_keys def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str): attn_keys = [] attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj")) return attn_keys def rename_keys_for_query_transformer_layer(src_prefix: str, dst_prefix: str): query_transformer_layer_keys = [] query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.linear1") ) query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.linear2") ) query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.norm1") ) query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.norm2") ) query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.norm3", f"{dst_prefix}.norm3") ) query_transformer_layer_keys.extend( rename_keys_for_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn") ) query_transformer_layer_keys.extend( rename_keys_for_attn(f"{src_prefix}.multihead_attn", f"{dst_prefix}.multihead_attn") ) return query_transformer_layer_keys def rename_keys_for_cross_attn_layer(src_prefix: str, dst_prefix: str): cross_attn_layer_keys = [] cross_attn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm")) cross_attn_layer_keys.extend( rename_keys_for_attn(f"{src_prefix}.multihead_attn", f"{dst_prefix}.multihead_attn") ) return cross_attn_layer_keys def rename_keys_for_self_attn_layer(src_prefix: str, dst_prefix: str): self_attn_layer_keys = [] self_attn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm")) self_attn_layer_keys.extend( rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn") ) return self_attn_layer_keys def rename_keys_for_ffn_layer(src_prefix: str, dst_prefix: str): ffn_layer_keys = [] ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.linear1")) ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.linear2")) ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm")) return ffn_layer_keys def rename_keys_for_transformer_decoder_layer(src_prefix: str, dst_prefix: str, idx: int): transformer_decoder_layer_keys = [] transformer_decoder_layer_keys.extend( rename_keys_for_cross_attn_layer( f"{src_prefix}.transformer_cross_attention_layers.{idx}", f"{dst_prefix}.{idx}.cross_attn" ) ) transformer_decoder_layer_keys.extend( rename_keys_for_self_attn_layer( f"{src_prefix}.transformer_self_attention_layers.{idx}", f"{dst_prefix}.{idx}.self_attn" ) ) transformer_decoder_layer_keys.extend( rename_keys_for_ffn_layer(f"{src_prefix}.transformer_ffn_layers.{idx}", f"{dst_prefix}.{idx}.ffn") ) return transformer_decoder_layer_keys # positional embedding for object queries renamed_keys = [ (f"{src_prefix}.query_embed.weight", f"{dst_prefix}.queries_embedder.weight"), (f"{src_prefix}.level_embed.weight", f"{dst_prefix}.level_embed.weight"), ] # norm renamed_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.decoder_norm", f"{dst_prefix}.decoder.decoder_norm") ) # proj renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.class_input_proj", f"{dst_prefix}.decoder.query_input_projection" ) ) renamed_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.class_embed", f"{dst_prefix}.decoder.class_embed") ) for i in range(3): renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.mask_embed.layers.{i}", f"{dst_prefix}.decoder.mask_embed.layers.{i}.0" ) ) # norm renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.class_transformer.decoder.norm", f"{dst_prefix}.decoder.query_transformer.decoder.norm" ) ) # transformer to update queries with task tokens for i in range(self.config.query_dec_layers): renamed_keys.extend( rename_keys_for_query_transformer_layer( f"{src_prefix}.class_transformer.decoder.layers.{i}", f"{dst_prefix}.decoder.query_transformer.decoder.layers.{i}", ) ) # decoder layers for i in range(self.config.decoder_layers - 1): renamed_keys.extend( rename_keys_for_transformer_decoder_layer( f"{src_prefix}", f"{dst_prefix}.decoder.layers", i, ) ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) self.replace_keys_qkv_transformer_decoder(dst_state_dict, src_state_dict) def replace_task_mlp(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "task_encoder" src_prefix: str = "task_mlp" def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] renamed_keys = [] for i in range(2): renamed_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.layers.{i}", f"{dst_prefix}.task_mlp.layers.{i}.0") ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def replace_text_projector(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "text_mapper.text_projector" src_prefix: str = "text_projector" def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] renamed_keys = [] for i in range(self.config.text_encoder_config["text_encoder_proj_layers"]): renamed_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.layers.{i}", f"{dst_prefix}.{i}.0")) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def replace_text_mapper(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "text_mapper.text_encoder" src_prefix: str = "text_encoder" self.replace_text_projector(dst_state_dict, src_state_dict) def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] def rename_keys_for_attn(src_prefix: str, dst_prefix: str): attn_keys = [ (f"{src_prefix}.in_proj_bias", f"{dst_prefix}.in_proj_bias"), (f"{src_prefix}.in_proj_weight", f"{dst_prefix}.in_proj_weight"), ] attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj")) return attn_keys def rename_keys_for_layer(src_prefix: str, dst_prefix: str): resblock_keys = [] resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.mlp.c_fc", f"{dst_prefix}.mlp.fc1")) resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.mlp.c_proj", f"{dst_prefix}.mlp.fc2")) resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_1", f"{dst_prefix}.layer_norm1")) resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_2", f"{dst_prefix}.layer_norm2")) resblock_keys.extend(rename_keys_for_attn(f"{src_prefix}.attn", f"{dst_prefix}.self_attn")) return resblock_keys renamed_keys = [ ("prompt_ctx.weight", "text_mapper.prompt_ctx.weight"), ] renamed_keys.extend( [ (f"{src_prefix}.positional_embedding", f"{dst_prefix}.positional_embedding"), (f"{src_prefix}.token_embedding.weight", f"{dst_prefix}.token_embedding.weight"), ] ) renamed_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_final", f"{dst_prefix}.ln_final")) for i in range(self.config.text_encoder_config["text_encoder_num_layers"]): renamed_keys.extend( rename_keys_for_layer( f"{src_prefix}.transformer.resblocks.{i}", f"{dst_prefix}.transformer.layers.{i}" ) ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def convert(self, oneformer: OneFormerModel, is_swin: bool) -> OneFormerModel: dst_state_dict = TrackedStateDict(oneformer.state_dict()) src_state_dict = self.original_model.state_dict() self.replace_pixel_module(dst_state_dict, src_state_dict, is_swin) self.replace_transformer_module(dst_state_dict, src_state_dict) self.replace_task_mlp(dst_state_dict, src_state_dict) if self.config.is_training: self.replace_text_mapper(dst_state_dict, src_state_dict) logger.info(f"Missed keys are {pformat(dst_state_dict.diff())}") logger.info(f"Not copied keys are {pformat(src_state_dict.keys())}") logger.info("🙌 Done") oneformer.load_state_dict(dst_state_dict) return oneformer @staticmethod def using_dirs(checkpoints_dir: Path, config_dir: Path) -> Iterator[Tuple[object, Path, Path]]: checkpoints: List[Path] = checkpoints_dir.glob("**/*.pth") for checkpoint in checkpoints: logger.info(f"💪 Converting {checkpoint.stem}") # find associated config file config: Path = config_dir / f"{checkpoint.stem}.yaml" yield config, checkpoint def post_process_sem_seg_output(outputs: OneFormerForUniversalSegmentationOutput, target_size: Tuple[int, int]): # class_queries_logits has shape [BATCH, QUERIES, CLASSES + 1] class_queries_logits = outputs.class_queries_logits # masks_queries_logits has shape [BATCH, QUERIES, HEIGHT, WIDTH] masks_queries_logits = outputs.masks_queries_logits if target_size is not None: masks_queries_logits = torch.nn.functional.interpolate( masks_queries_logits, size=target_size, mode="bilinear", align_corners=False, ) # remove the null class `[..., :-1]` masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] # mask probs has shape [BATCH, QUERIES, HEIGHT, WIDTH] masks_probs = masks_queries_logits.sigmoid() # now we want to sum over the queries, # $ out_{c,h,w} = \sum_q p_{q,c} * m_{q,h,w} $ # where $ softmax(p) \in R^{q, c} $ is the mask classes # and $ sigmoid(m) \in R^{q, h, w}$ is the mask probabilities # b(atch)q(uery)c(lasses), b(atch)q(uery)h(eight)w(idth) segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) return segmentation def test( original_model, our_model: OneFormerForUniversalSegmentation, processor: OneFormerProcessor, model_repo: str, ): def _preprocess_text(text_list=None, max_length=77): if text_list is None: raise ValueError("tokens cannot be None.") tokens = tokenizer(text_list, padding="max_length", max_length=max_length, truncation=True) attention_masks, input_ids = tokens["attention_mask"], tokens["input_ids"] token_inputs = [] for attn_mask, input_id in zip(attention_masks, input_ids): token = torch.tensor(attn_mask) * torch.tensor(input_id) token_inputs.append(token.unsqueeze(0)) token_inputs = torch.cat(token_inputs, dim=0) return token_inputs with torch.no_grad(): tokenizer = CLIPTokenizer.from_pretrained(model_repo) original_model = original_model.eval() our_model = our_model.eval() im = prepare_img() tr = T.Compose( [ T.Resize((640, 640)), T.ToTensor(), T.Normalize( mean=torch.tensor([123.675, 116.280, 103.530]) / 255.0, std=torch.tensor([58.395, 57.120, 57.375]) / 255.0, ), ], ) x = tr(im).unsqueeze(0) task_input = ["the task is semantic"] task_token = _preprocess_text(task_input, max_length=processor.task_seq_length) original_model_backbone_features = original_model.backbone(x.clone()) our_model_output: OneFormerModelOutput = our_model.model(x.clone(), task_token, output_hidden_states=True) for original_model_feature, our_model_feature in zip( original_model_backbone_features.values(), our_model_output.encoder_hidden_states ): assert torch.allclose( original_model_feature, our_model_feature, atol=3e-3 ), "The backbone features are not the same." mask_features, _, multi_scale_features, _, _ = original_model.sem_seg_head.pixel_decoder.forward_features( original_model_backbone_features ) original_pixel_decoder_features = [] original_pixel_decoder_features.append(mask_features) for i in range(len(multi_scale_features)): original_pixel_decoder_features.append(multi_scale_features[i]) for original_model_feature, our_model_feature in zip( original_pixel_decoder_features, our_model_output.pixel_decoder_hidden_states ): assert torch.allclose( original_model_feature, our_model_feature, atol=3e-4 ), "The pixel decoder feature are not the same" tr_complete = T.Compose( [ T.Resize((640, 640)), T.ToTensor(), ], ) y = (tr_complete(im) * 255.0).to(torch.int).float() # let's test the full model original_model_out = original_model([{"image": y.clone(), "task": "The task is semantic"}]) original_segmentation = original_model_out[0]["sem_seg"] our_model_out: OneFormerForUniversalSegmentationOutput = our_model( x.clone(), task_token, output_hidden_states=True ) our_segmentation = post_process_sem_seg_output(our_model_out, target_size=(640, 640))[0] assert torch.allclose( original_segmentation, our_segmentation, atol=1e-3 ), "The segmentation image is not the same." logger.info("✅ Test passed!") def get_name(checkpoint_file: Path): model_name_raw: str = checkpoint_file.stem backbone = "swin" if "swin" in model_name_raw else "dinat" dataset = "" if "coco" in model_name_raw: dataset = "coco" elif "ade20k" in model_name_raw: dataset = "ade20k" elif "cityscapes" in model_name_raw: dataset = "cityscapes" else: raise ValueError( f"{model_name_raw} must be wrong since we didn't find 'coco' or 'ade20k' or 'cityscapes' in it " ) backbone_types = ["tiny", "large"] backbone_type = list(filter(lambda x: x in model_name_raw, backbone_types))[0] model_name = f"oneformer_{dataset}_{backbone}_{backbone_type}" return model_name if __name__ == "__main__": parser = ArgumentParser( description=( "Command line to convert the original oneformer models (with swin backbone) to transformers" " implementation." ) ) parser.add_argument( "--checkpoints_dir", type=Path, help=( "A directory containing the model's checkpoints. The directory has to have the following structure:" " structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.pth; where <CONFIG_NAME> name must follow the" " following nomenclature nomenclature: oneformer_<DATASET_NAME>_<BACKBONE>_<BACKBONE_TYPE>" ), ) parser.add_argument( "--configs_dir", type=Path, help=( "A directory containing the model's configs, see detectron2 doc. The directory has to have the following" " structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.yaml; where <CONFIG_NAME> name must follow the" " following nomenclature nomenclature: oneformer_<DATASET_NAME>_<BACKBONE>_<BACKBONE_TYPE>" ), ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=Path, help="Path to the folder to output PyTorch models.", ) parser.add_argument( "--oneformer_dir", required=True, type=Path, help=( "A path to OneFormer's original implementation directory. You can download from here: " "https://github.com/SHI-Labs/OneFormer" ), ) args = parser.parse_args() checkpoints_dir: Path = args.checkpoints_dir config_dir: Path = args.configs_dir save_directory: Path = args.pytorch_dump_folder_path oneformer_dir: Path = args.oneformer_dir # append the path to the parents to oneformer dir sys.path.append(str(oneformer_dir.parent)) # and import what's needed from OneFormer.oneformer import add_common_config, add_dinat_config, add_oneformer_config, add_swin_config from OneFormer.oneformer.oneformer_model import OneFormer as OriginalOneFormer if not save_directory.exists(): save_directory.mkdir(parents=True) for config_file, checkpoint_file in OriginalOneFormerCheckpointToOursConverter.using_dirs( checkpoints_dir, config_dir ): processor = OriginalOneFormerConfigToProcessorConverter()( setup_cfg(Args(config_file=config_file)), os.path.join("shi-labs", config_file.stem) ) original_config = setup_cfg(Args(config_file=config_file)) oneformer_kwargs = OriginalOneFormer.from_config(original_config) original_model = OriginalOneFormer(**oneformer_kwargs).eval() DetectionCheckpointer(original_model).load(str(checkpoint_file)) is_swin = "swin" in config_file.stem config: OneFormerConfig = OriginalOneFormerConfigToOursConverter()(original_config, is_swin) oneformer = OneFormerModel(config=config).eval() converter = OriginalOneFormerCheckpointToOursConverter(original_model, config) oneformer = converter.convert(oneformer, is_swin) oneformer_for_universal_segmentation = OneFormerForUniversalSegmentation(config=config).eval() oneformer_for_universal_segmentation.model = oneformer test( original_model, oneformer_for_universal_segmentation, processor, os.path.join("shi-labs", config_file.stem), ) model_name = get_name(checkpoint_file) logger.info(f"🪄 Saving {model_name}") processor.save_pretrained(save_directory / model_name) oneformer_for_universal_segmentation.save_pretrained(save_directory / model_name) processor.push_to_hub( repo_id=os.path.join("shi-labs", config_file.stem), commit_message="Add configs", use_temp_dir=True, ) oneformer_for_universal_segmentation.push_to_hub( repo_id=os.path.join("shi-labs", config_file.stem), commit_message="Add model", use_temp_dir=True, )
transformers/src/transformers/models/oneformer/convert_to_hf_oneformer.py/0
{ "file_path": "transformers/src/transformers/models/oneformer/convert_to_hf_oneformer.py", "repo_id": "transformers", "token_count": 26214 }
118
# coding=utf-8 # Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 OPT model.""" from __future__ import annotations from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import TFBaseModelOutputWithPast, TFCausalLMOutputWithPast # Public API from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, TFSharedEmbeddings, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_opt import OPTConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/opt-350m" _CONFIG_FOR_DOC = "OPTConfig" # Base model docstring _EXPECTED_OUTPUT_SHAPE = [1, 8, 1024] # Causal LM output _CAUSAL_LM_EXPECTED_OUTPUT = ( "Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo." ) LARGE_NEGATIVE = -1e8 def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz = input_ids_shape[0] tgt_len = input_ids_shape[1] # We need triu with k = 1 but TF expects known compile-time dims for that, so we hack around it mask = tf.fill((tgt_len, tgt_len), tf.cast(LARGE_NEGATIVE, tf.float32)) mask = tf.linalg.band_part(mask, 0, -1) - tf.linalg.band_part(mask, 0, 0) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TFOPTLearnedPositionalEmbedding(keras.layers.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs) def call(self, attention_mask, past_key_values_length: int = 0): """`input_ids_shape` is expected to be [bsz x seqlen].""" attention_mask = tf.cast(attention_mask, tf.int64) # create positions depending on attention_mask positions = tf.math.cumsum(attention_mask, axis=1) * attention_mask - 1 # cut positions if `past_key_values_length` is > 0 positions = positions[:, past_key_values_length:] return super().call(positions + self.offset) # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->OPT class TFOPTAttention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim]) class TFOPTDecoderLayer(keras.layers.Layer): def __init__(self, config: OPTConfig, **kwargs): super().__init__(**kwargs) self.do_layer_norm_before = config.do_layer_norm_before self.embed_dim = config.hidden_size self.self_attn = TFOPTAttention( embed_dim=self.embed_dim, num_heads=config.num_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.fc1 = keras.layers.Dense(config.ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: np.ndarray | tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, training: Optional[bool] = False, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`, *optional*): mask for attention heads in a given layer of size `(decoder_attention_heads,)` past_key_value (`Tuple(tf.Tensor)`, *optional*): cached past key and value projection states training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ residual = hidden_states # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention if self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # 350m applies layer norm AFTER attention if not self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention if self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # 350m applies layer norm AFTER attention if not self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) return (hidden_states, self_attn_weights, present_key_value) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) OPT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`OPTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare OPT Model outputting raw hidden-states without any specific head on top.", OPT_START_DOCSTRING, ) class TFOPTPreTrainedModel(TFPreTrainedModel): """ TFOPT Pretrained Model that inheritates from transformers.TFPreTrainedModel Args: config: OPTConfig """ config_class = OPTConfig base_model_prefix = "model" OPT_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @keras_serializable class TFOPTDecoder(keras.layers.Layer): config_class = OPTConfig def __init__(self, config: OPTConfig, **kwargs): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.layerdrop = config.layerdrop num_embeddings = config.max_position_embeddings self.embed_tokens = TFSharedEmbeddings( config.vocab_size, config.word_embed_proj_dim, config.pad_token_id, name="embed_tokens" ) self.embed_positions = TFOPTLearnedPositionalEmbedding( num_embeddings, config.hidden_size, name="embed_positions", ) # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility # with checkpoints that have been fine-tuned before transformers v4.20.1 # see https://github.com/facebookresearch/metaseq/pull/164 if config.do_layer_norm_before and not config._remove_final_layer_norm: self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") else: self.final_layer_norm = None if config.word_embed_proj_dim != config.hidden_size: self.project_out = keras.layers.Dense(config.word_embed_proj_dim, name="project_out", use_bias=False) self.project_in = keras.layers.Dense(config.hidden_size, name="project_in", use_bias=False) else: self.project_in = None self.project_out = None self.layers = [TFOPTDecoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)] self.dropout = keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens def set_input_embeddings(self, new_embeddings): self.embed_tokens.vocab_size = new_embeddings.shape[0] self.embed_tokens.weight = new_embeddings def get_input_embeddings(self): return self.embed_tokens def _prepare_decoder_attention_mask(self, attention_mask, input_shape, past_key_values_length): # create causal mask # # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] _, seq_length = input_shape tf.debugging.assert_equal( seq_length + past_key_values_length, shape_list(attention_mask)[1], message="Attention mask shape should be (batch_size, seq_length + past_key_values_length)" f" but is {shape_list(attention_mask)[1]} with input_ids shape {input_shape} and past length" f" {past_key_values_length}.", ) expanded_attn_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1]) if seq_length > 1: combined_attention_mask = ( _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + expanded_attn_mask ) else: combined_attention_mask = expanded_attn_mask return combined_attention_mask @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]: r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size) inputs_embeds = self.embed_tokens(input_ids) if attention_mask is None: attention_mask = tf.ones((input_shape[0], input_shape[1] + past_key_values_length), dtype=tf.bool) else: tf.debugging.assert_equal( shape_list(attention_mask)[1], past_key_values_length + input_shape[1], message=( f"The provided attention mask has length {tf.shape(attention_mask)[1]}, but its length should be " f"{past_key_values_length + input_shape[1]} (sum of the lengths of current and past inputs)" ), ) pos_embeds = self.embed_positions(attention_mask, past_key_values_length) attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length) if self.project_in is not None: inputs_embeds = self.project_in(inputs_embeds) hidden_states = inputs_embeds + pos_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None present_key_values = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, present_key_value = decoder_layer( hidden_states, attention_mask=attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, past_key_value=past_key_value, ) if use_cache: present_key_values += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if self.final_layer_norm is not None: hidden_states = self.final_layer_norm(hidden_states) if self.project_out is not None: hidden_states = self.project_out(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, present_key_values, all_hidden_states, all_self_attns] if v is not None ) else: return TFBaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_tokens", None) is not None: with tf.name_scope(self.embed_tokens.name): self.embed_tokens.build(None) if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.config.hidden_size]) if getattr(self, "project_out", None) is not None: with tf.name_scope(self.project_out.name): self.project_out.build([None, None, self.config.hidden_size]) if getattr(self, "project_in", None) is not None: with tf.name_scope(self.project_in.name): self.project_in.build([None, None, self.config.word_embed_proj_dim]) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFOPTMainLayer(keras.layers.Layer): config_class = OPTConfig def __init__(self, config: OPTConfig, **kwargs): super().__init__(**kwargs) self.config = config self.decoder = TFOPTDecoder(config, name="decoder") def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, new_embeddings): self.decoder.set_input_embeddings(new_embeddings) @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.decoder( input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return outputs return TFBaseModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None) @add_start_docstrings( "The bare TF OPT Model outputting raw hidden-states without any specific head on top.", OPT_START_DOCSTRING, ) @keras_serializable class TFOPTModel(TFOPTPreTrainedModel): config_class = OPTConfig def __init__(self, config: OPTConfig, **kwargs): super().__init__(config, **kwargs) self.config = config self.model = TFOPTMainLayer(config, name="model") def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, new_embeddings): self.model.set_input_embeddings(new_embeddings) @unpack_inputs @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC, expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return outputs return TFBaseModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutputWithPast( last_hidden_state=output.last_hidden_state, past_key_values=pkv, hidden_states=hs, attentions=attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) @add_start_docstrings( """ The OPT Model transformer with a language modeling head on top. """, OPT_START_DOCSTRING, ) @keras_serializable class TFOPTForCausalLM(TFOPTPreTrainedModel, TFCausalLanguageModelingLoss): config_class = OPTConfig def __init__(self, config: OPTConfig, **kwargs): super().__init__(config, **kwargs) self.config = config self.model = TFOPTMainLayer(config, name="model") def get_output_embeddings(self): return self.model.get_input_embeddings() def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs): attention_mask = kwargs.get("attention_mask", None) # only last token for inputs_ids if past is defined in kwargs if past_key_values: inputs = tf.expand_dims(inputs[:, -1], -1) return { "input_ids": inputs, "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": use_cache, } @unpack_inputs @replace_return_docstrings(output_type=TFCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC, expected_output=_CAUSAL_LM_EXPECTED_OUTPUT, ) def call( self, input_ids: TFModelInputType | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFCausalLMOutputWithPast, Tuple[tf.Tensor]]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) logits = self.model.decoder.embed_tokens(outputs[0], mode="linear") loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels, shifted_logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFCausalLMOutputWithPast( past_key_values=pkv, hidden_states=hs, attentions=attns, loss=output.loss, logits=output.logits, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None)
transformers/src/transformers/models/opt/modeling_tf_opt.py/0
{ "file_path": "transformers/src/transformers/models/opt/modeling_tf_opt.py", "repo_id": "transformers", "token_count": 21486 }
119
# coding=utf-8 # Copyright 2023 IBM and HuggingFace Inc. team. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch PatchTSMixer model.""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from transformers.modeling_utils import PreTrainedModel from transformers.utils import ModelOutput from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_patchtsmixer import PatchTSMixerConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "PatchTSMixerConfig" PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "ibm/patchtsmixer-etth1-pretrain", # See all PatchTSMixer models at https://huggingface.co/models?filter=patchtsmixer ] PATCHTSMIXER_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PatchTSMixerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. mask_input (`bool`, *optional*, defaults to `False`): If True, Masking will be enabled. False otherwise. """ PATCHTSMIXER_INPUTS_DOCSTRING = r""" Args: past_values (`torch.FloatTensor` of shape `(batch_size, seq_length, num_input_channels)`): Context values of the time series. For a pretraining task, this denotes the input time series to predict the masked portion. For a forecasting task, this denotes the history/past time series values. Similarly, for classification or regression tasks, it denotes the appropriate context values of the time series. For univariate time series, `num_input_channels` dimension should be 1. For multivariate time series, it is greater than 1. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class PatchTSMixerGatedAttention(nn.Module): """ Module that applies gated attention to input data. Args: in_size (`int`): The input size. out_size (`int`): The output size. """ def __init__(self, in_size: int, out_size: int): super().__init__() self.attn_layer = nn.Linear(in_size, out_size) self.attn_softmax = nn.Softmax(dim=-1) def forward(self, inputs): attn_weight = self.attn_softmax(self.attn_layer(inputs)) inputs = inputs * attn_weight return inputs # Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTBatchNorm with PatchTST->PatchTSMixer class PatchTSMixerBatchNorm(nn.Module): """ Compute batch normalization over the sequence length (time) dimension. """ def __init__(self, config: PatchTSMixerConfig): super().__init__() self.batchnorm = nn.BatchNorm1d(config.d_model, eps=config.norm_eps) def forward(self, inputs: torch.Tensor): """ Parameters: inputs (`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`): input for Batch norm calculation Returns: `torch.Tensor` of shape `(batch_size, sequence_length, d_model)` """ output = inputs.transpose(1, 2) # output: (batch_size, d_model, sequence_length) output = self.batchnorm(output) return output.transpose(1, 2) class PatchTSMixerPositionalEncoding(nn.Module): """ Class for positional encoding """ def __init__(self, config: PatchTSMixerConfig): super().__init__() # positional encoding: [num_patches x d_model] if config.use_positional_encoding: self.position_enc = self._init_pe(config) else: self.position_enc = nn.Parameter(torch.zeros(config.num_patches, config.d_model)) @staticmethod def _init_pe(config: PatchTSMixerConfig) -> nn.Parameter: # Positional encoding if config.positional_encoding_type == "random": position_enc = nn.Parameter(torch.randn(config.num_patches, config.d_model), requires_grad=True) elif config.positional_encoding_type == "sincos": position_enc = torch.zeros(config.num_patches, config.d_model) position = torch.arange(0, config.num_patches).unsqueeze(1) div_term = torch.exp(torch.arange(0, config.d_model, 2) * -(math.log(10000.0) / config.d_model)) position_enc[:, 0::2] = torch.sin(position * div_term) position_enc[:, 1::2] = torch.cos(position * div_term) position_enc = position_enc - position_enc.mean() position_enc = position_enc / (position_enc.std() * 10) position_enc = nn.Parameter(position_enc, requires_grad=False) else: raise ValueError( f"{config.positional_encoding_type} is not a valid positional encoder. Available types are 'random' and 'sincos'." ) return position_enc def forward(self, patch_input: torch.Tensor): # hidden_state: [bs x num_channels x num_patches x d_model] hidden_state = patch_input + self.position_enc return hidden_state class PatchTSMixerNormLayer(nn.Module): """Normalization block Args: config (`PatchTSMixerConfig`, *required*): Configuration. """ def __init__(self, config: PatchTSMixerConfig): super().__init__() self.norm_mlp = config.norm_mlp if "batch" in config.norm_mlp.lower(): self.norm = PatchTSMixerBatchNorm(config) else: self.norm = nn.LayerNorm(config.d_model, eps=config.norm_eps) def forward(self, inputs: torch.Tensor): """ Args: inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`): Input to the normalization layer. Returns: `torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))` """ if "batch" in self.norm_mlp.lower(): # reshape the data inputs_reshaped = torch.reshape( inputs, ( inputs.shape[0] * inputs.shape[1], inputs.shape[2], inputs.shape[3], ), ) # inputs_reshaped: [batch_size*num_channels, num_patches, d_model] # inputs_reshaped: [batch_size*num_channels, num_patches, d_model] inputs_reshaped = self.norm(inputs_reshaped) # put back data to the original shape inputs = torch.reshape(inputs_reshaped, inputs.shape) else: inputs = self.norm(inputs) return inputs class PatchTSMixerMLP(nn.Module): def __init__(self, in_features, out_features, config): super().__init__() num_hidden = in_features * config.expansion_factor self.fc1 = nn.Linear(in_features, num_hidden) self.dropout1 = nn.Dropout(config.dropout) self.fc2 = nn.Linear(num_hidden, out_features) self.dropout2 = nn.Dropout(config.dropout) def forward(self, inputs: torch.Tensor): """ Args: inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`): Input to the MLP layer. Returns: `torch.Tensor` of the same shape as `inputs` """ inputs = self.dropout1(nn.functional.gelu(self.fc1(inputs))) inputs = self.fc2(inputs) inputs = self.dropout2(inputs) return inputs class PatchTSMixerChannelFeatureMixerBlock(nn.Module): """This module mixes the features in the channel dimension. Args: config (`PatchTSMixerConfig`, *required*): Configuration. """ def __init__(self, config: PatchTSMixerConfig): super().__init__() self.norm = PatchTSMixerNormLayer(config) self.gated_attn = config.gated_attn self.mlp = PatchTSMixerMLP( in_features=config.num_input_channels, out_features=config.num_input_channels, config=config, ) if config.gated_attn: self.gating_block = PatchTSMixerGatedAttention( in_size=config.num_input_channels, out_size=config.num_input_channels ) def forward(self, inputs: torch.Tensor): """ Args: inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`): input to the MLP layer Returns: `torch.Tensor` of the same shape as `inputs` """ residual = inputs inputs = self.norm(inputs) inputs = inputs.permute(0, 3, 2, 1) if self.gated_attn: inputs = self.gating_block(inputs) inputs = self.mlp(inputs) inputs = inputs.permute(0, 3, 2, 1) out = inputs + residual return out # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PatchTSMixer class PatchTSMixerAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[PatchTSMixerConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class PatchMixerBlock(nn.Module): """This module mixes the patch dimension. Args: config (`PatchTSMixerConfig`, *required*): Configuration. """ def __init__(self, config: PatchTSMixerConfig): super().__init__() self.norm = PatchTSMixerNormLayer(config) self.self_attn = config.self_attn self.gated_attn = config.gated_attn self.mlp = PatchTSMixerMLP( in_features=config.num_patches, out_features=config.num_patches, config=config, ) if config.gated_attn: self.gating_block = PatchTSMixerGatedAttention(in_size=config.num_patches, out_size=config.num_patches) if config.self_attn: self.self_attn_layer = PatchTSMixerAttention( embed_dim=config.d_model, num_heads=config.self_attn_heads, dropout=config.dropout, ) self.norm_attn = PatchTSMixerNormLayer(config) def forward(self, hidden_state): """ Args: hidden_state (`torch.Tensor`): Input tensor. Returns: `torch.Tensor`: Transformed tensor. """ residual = hidden_state hidden_state = self.norm(hidden_state) if self.self_attn: batch_size, n_vars, num_patches, d_model = hidden_state.shape hidden_state_reshaped = hidden_state.reshape(batch_size * n_vars, num_patches, d_model) x_attn, _, _ = self.self_attn_layer(hidden_state_reshaped, output_attentions=False) x_attn = x_attn.reshape(batch_size, n_vars, num_patches, d_model) # Transpose so that num_patches is the last dimension hidden_state = hidden_state.transpose(2, 3) hidden_state = self.mlp(hidden_state) if self.gated_attn: hidden_state = self.gating_block(hidden_state) # Transpose back hidden_state = hidden_state.transpose(2, 3) if self.self_attn: hidden_state = self.norm_attn(hidden_state + x_attn) out = hidden_state + residual return out class FeatureMixerBlock(nn.Module): """This module mixes the hidden feature dimension. Args: config (`PatchTSMixerConfig`, *required*): Configuration. """ def __init__(self, config: PatchTSMixerConfig): super().__init__() self.norm = PatchTSMixerNormLayer(config) self.gated_attn = config.gated_attn self.mlp = PatchTSMixerMLP( in_features=config.d_model, out_features=config.d_model, config=config, ) if config.gated_attn: self.gating_block = PatchTSMixerGatedAttention(in_size=config.d_model, out_size=config.d_model) def forward(self, hidden: torch.Tensor): """ Args: hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`): Input tensor to the layer. Returns: `torch.Tensor`: Transformed tensor. """ residual = hidden hidden = self.norm(hidden) hidden = self.mlp(hidden) if self.gated_attn: hidden = self.gating_block(hidden) out = hidden + residual return out class PatchTSMixerLayer(nn.Module): """ The `PatchTSMixer` layer that does all three kinds of mixing. Args: config (`PatchTSMixerConfig`, *required*): Configuration. """ def __init__(self, config: PatchTSMixerConfig): super().__init__() self.patch_mixer = PatchMixerBlock(config=config) self.feature_mixer = FeatureMixerBlock(config=config) self.mode = config.mode if config.mode == "mix_channel": self.channel_feature_mixer = PatchTSMixerChannelFeatureMixerBlock(config=config) def forward(self, hidden: torch.Tensor): """ Args: hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`): Input tensor to the layer. Returns: `torch.Tensor`: Transformed tensor. """ if self.mode == "mix_channel": hidden = self.channel_feature_mixer(hidden) hidden = self.patch_mixer(hidden) hidden = self.feature_mixer(hidden) # hidden: (batch_size x num_patches x d_model) return hidden class PatchTSMixerBlock(nn.Module): """The main computing framework of the `PatchTSMixer` model. Args: config (`PatchTSMixerConfig`, *required*): Configuration. """ def __init__(self, config: PatchTSMixerConfig): super().__init__() num_layers = config.num_layers self.mixers = nn.ModuleList([PatchTSMixerLayer(config=config) for _ in range(num_layers)]) def forward(self, hidden_state, output_hidden_states: bool = False): """ Args: hidden_state (`torch.Tensor`): The input tensor. output_hidden_states (`bool`, *optional*, defaults to False.): Whether to output the hidden states as well. Returns: `torch.Tensor`: The embedding. `list`: List of all hidden states if `output_hidden_states` is set to `True`. """ all_hidden_states = [] embedding = hidden_state for mod in self.mixers: embedding = mod(embedding) if output_hidden_states: all_hidden_states.append(embedding) if output_hidden_states: return embedding, all_hidden_states else: return embedding, None class PatchTSMixerForPredictionHead(nn.Module): """Prediction Head for Forecasting Args: config (`PatchTSMixerConfig`, *required*): Configuration. """ def __init__(self, config: PatchTSMixerConfig, distribution_output=None): super().__init__() self.prediction_channel_indices = config.prediction_channel_indices if self.prediction_channel_indices is not None: self.prediction_channel_indices.sort() self.dropout_layer = nn.Dropout(config.head_dropout) if distribution_output is None: self.base_forecast_block = nn.Linear((config.num_patches * config.d_model), config.prediction_length) else: self.base_forecast_block = distribution_output.get_parameter_projection( config.num_patches * config.d_model ) self.flatten = nn.Flatten(start_dim=-2) def forward(self, hidden_features): """ Args: hidden_features (`torch.Tensor` of shape `(batch_size, num_patch, d_model)` in `flatten` mode or `(batch_size, n_vars, num_patch, d_model)` in `common_channel`/`mix_channel` mode.): Input hidden features. Returns: `torch.Tensor` of shape `(batch_size, prediction_length, nvars)`. """ hidden_features = self.flatten(hidden_features) # [batch_size x n_vars x num_patch * d_model] hidden_features = self.dropout_layer(hidden_features) # [batch_size x n_vars x num_patch * d_model] forecast = self.base_forecast_block(hidden_features) # [batch_size x n_vars x prediction_length] if isinstance(forecast, tuple): forecast = tuple(z.transpose(-1, -2) for z in forecast) else: forecast = forecast.transpose(-1, -2) # [batch_size x prediction_length x n_vars] if self.prediction_channel_indices is not None: if isinstance(forecast, tuple): forecast = tuple(z[..., self.prediction_channel_indices] for z in forecast) else: forecast = forecast[..., self.prediction_channel_indices] # [batch_size x prediction_length x n_vars] return forecast class PatchTSMixerLinearHead(nn.Module): """Linear head for Classification and Regression. Args: config (`PatchTSMixerConfig`, *required*): """ def __init__(self, config: PatchTSMixerConfig, distribution_output=None): super().__init__() self.head_aggregation = config.head_aggregation self.output_range = config.output_range if config.head_aggregation is None: mul_factor = config.num_patches else: mul_factor = 1 self.distribution_output = distribution_output if distribution_output is None: self.projection = nn.Linear( config.d_model * config.num_input_channels * mul_factor, config.num_targets, ) else: self.projection = distribution_output.get_parameter_projection( config.d_model * config.num_input_channels * mul_factor ) if config.head_aggregation is None: self.flatten = nn.Flatten(start_dim=-3) else: self.flatten = nn.Flatten(start_dim=-2) self.dropout = nn.Dropout(config.head_dropout) def forward(self, hidden_features): """ Args: hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden features. Returns: `torch.Tensor` of shape `(batch_size x num_targets)`. """ # batch_size x d_model x num_patch or batch_size x n_vars x d_model x num_patch hidden_features = hidden_features.transpose(-1, -2) if self.head_aggregation == "use_last": # batch_size x d_model (flatten) or # batch_size x n_vars x d_model (common_channel) hidden_features = hidden_features[..., -1] elif self.head_aggregation == "max_pool": # batch_size x n_vars x d_model or batch_size x d_model hidden_features = hidden_features.max(dim=-1).values elif self.head_aggregation == "avg_pool": # batch_size x n_vars x d_model or batch_size x d_model hidden_features = hidden_features.mean(dim=-1) if self.flatten: hidden_features = self.flatten(hidden_features) hidden_features = self.dropout(hidden_features) hidden_features = self.projection(hidden_features) # batch_size x num_targets if (self.distribution_output is None) and (self.output_range is not None): hidden_features = ( torch.sigmoid(hidden_features) * (self.output_range[1] - self.output_range[0]) + self.output_range[0] ) return hidden_features class PatchTSMixerPreTrainedModel(PreTrainedModel): # Weight initialization config_class = PatchTSMixerConfig base_model_prefix = "model" main_input_name = "past_values" supports_gradient_checkpointing = False def _init_weights(self, module): """Initialize weights""" if isinstance(module, PatchTSMixerPositionalEncoding): # initialize positional encoding if self.config.positional_encoding_type == "random": nn.init.normal_(module.position_enc, mean=0.0, std=0.1) elif isinstance(module, (nn.LayerNorm, nn.BatchNorm1d)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, PatchTSMixerBatchNorm): module.batchnorm.bias.data.zero_() module.batchnorm.weight.data.fill_(1.0) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.bias is not None: module.bias.data.zero_() class PatchTSMixerPretrainHead(nn.Module): """Pretraining head. Args: config (`PatchTSMixerConfig`, *required*): Configuration. """ def __init__(self, config: PatchTSMixerConfig): super().__init__() self.dropout_layer = nn.Dropout(config.head_dropout) self.base_pt_block = nn.Linear(config.d_model, config.patch_length) def forward(self, hidden_features): """ Args: hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden features. Returns: `torch.Tensor` of shape `(batch_size x n_vars x num_patch x patch_length)`. """ hidden_features = self.dropout_layer(hidden_features) forecast = self.base_pt_block(hidden_features) # [batch_size x n_vars x num_patch x patch_length] return forecast # Copied from transformers.models.patchtst.modeling_patchtst.random_masking def random_masking( inputs: torch.Tensor, mask_ratio: float, unmasked_channel_indices: list = None, channel_consistent_masking: bool = False, mask_value: int = 0, ): """random_masking: Mask the input considering the control variables. Args: inputs (`torch.Tensor` of shape `(batch_size, num_channels, sequence_length, num_features)`): The input tensor to mask. mask_ratio (`float`): Masking ratio applied to mask the input data during random pretraining. It is the number between 0 and 1. unmasked_channel_indices (list, *optional*): Indices of channels that will not be masked. channel_consistent_masking (bool, *optional*, defaults to `False`): When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary across channels. mask_value (int, *optional*, defaults to 0): Define the value of masked patches for pretraining. Returns: `tuple(torch.Tensor)`: inputs_mask, masked input, same shape as input Tensor and mask tensor of shape [bs x c x n] """ if mask_ratio < 0 or mask_ratio >= 1: raise ValueError(f"Mask ratio {mask_ratio} has to be between 0 and 1.") batch_size, num_channels, sequence_length, num_features = inputs.shape device = inputs.device len_keep = int(sequence_length * (1 - mask_ratio)) if channel_consistent_masking: noise = torch.rand(batch_size, 1, sequence_length, device=device) # noise in [0, 1], bs x 1 x L noise = noise.repeat(1, num_channels, 1) # bs x num_channels x time else: # noise in [0, 1], bs x num_channels x L noise = torch.rand(batch_size, num_channels, sequence_length, device=device) # mask: [bs x num_channels x num_patch] mask = torch.ones(batch_size, num_channels, sequence_length, device=device) mask[:, :, :len_keep] = 0 # sort noise for each sample ids_shuffle = torch.argsort(noise, dim=-1) # ascend: small is keep, large is remove ids_restore = torch.argsort(ids_shuffle, dim=-1) # ids_restore: [bs x num_channels x L] mask = torch.gather(mask, dim=-1, index=ids_restore) mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patches x patch_length] if unmasked_channel_indices is not None: mask[:, unmasked_channel_indices, :, :] = 0 inputs_mask = inputs.masked_fill(mask.bool(), mask_value) return inputs_mask, mask[..., 0] # Copied from transformers.models.patchtst.modeling_patchtst.forecast_masking def forecast_masking( inputs: torch.Tensor, num_forecast_mask_patches: Union[list, int], unmasked_channel_indices: list = None, mask_value: int = 0, ): """Forecast masking that masks the last K patches where K is from the num_forecast_mask_patches. If num_forecast_mask_patches is a list, samples in the batch will be randomly masked by numbers defined in the list. Parameters: inputs (`torch.Tensor`): Input of shape `(bs, num_channels, num_patch, patch_length)` num_forecast_mask_patches (`list`): Number of patches to be masked at the end of each batch sample. e.g. 4 or [3, 5]. unmasked_channel_indices (`list`, *optional*): Indices of channels that are not masked. mask_value (`int`, *optional*, defaults to 0): Values in the masked patches will be filled by `mask_value`. Returns: `tuple(torch.Tensor)`: inputs_mask, masked input, same shape as inputs Tensor and Mask tensor of shape `(bs, num_channels , num_patch)` or `(bs, tsg1, tsg2, num_channels, num_patch)` """ if isinstance(num_forecast_mask_patches, int): num_forecast_mask_patches = [num_forecast_mask_patches] forecast_mask_ratios = [1 for _ in num_forecast_mask_patches] batch_size, num_channels, sequence_length, num_features = inputs.shape mask = torch.zeros(batch_size, num_channels, sequence_length, device=inputs.device) t_list = [] total_length = 0 total_ratio = sum(forecast_mask_ratios) for patch_length, ratio in zip(num_forecast_mask_patches, forecast_mask_ratios): if patch_length <= 0 or patch_length >= sequence_length: raise ValueError( f"num_forecast_mask_patches {patch_length} should be greater than 0 and less than total patches." ) temp_len = int(batch_size * ratio / total_ratio) t_list.append([patch_length, ratio, temp_len]) total_length += temp_len t_list = sorted(t_list, key=lambda x: x[2]) if total_length < batch_size: t_list[0][2] = t_list[0][2] + (batch_size - total_length) elif total_length > batch_size: t_list[-1][2] = t_list[-1][2] + (total_length - batch_size) batch1 = 0 for patch_len, _, temp_len in t_list: batch2 = batch1 + temp_len mask[batch1:batch2, :, -patch_len:] = 1 batch1 = batch2 perm = torch.randperm(mask.shape[0]) mask = mask[perm] mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patch x patch_len] if unmasked_channel_indices is not None: mask[:, unmasked_channel_indices, :, :] = 0 inputs_mask = inputs.masked_fill(mask.bool(), mask_value) return inputs_mask, mask[..., 0] # Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTPatchify with PatchTST->PatchTSMixer class PatchTSMixerPatchify(nn.Module): """ A class to patchify the time series sequence into different patches Returns: `torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)` """ def __init__(self, config: PatchTSMixerConfig): super().__init__() self.sequence_length = config.context_length self.patch_length = config.patch_length self.patch_stride = config.patch_stride if self.sequence_length <= self.patch_length: raise ValueError( f"Sequence length ({self.sequence_length}) has to be greater than the patch length ({self.patch_length})" ) # get the number of patches self.num_patches = (max(self.sequence_length, self.patch_length) - self.patch_length) // self.patch_stride + 1 new_sequence_length = self.patch_length + self.patch_stride * (self.num_patches - 1) self.sequence_start = self.sequence_length - new_sequence_length def forward(self, past_values: torch.Tensor): """ Parameters: past_values (`torch.Tensor` of shape `(batch_size, sequence_length, num_channels)`, *required*): Input for patchification Returns: `torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)` """ sequence_length = past_values.shape[-2] if sequence_length != self.sequence_length: raise ValueError( f"Input sequence length ({sequence_length}) doesn't match model configuration ({self.sequence_length})." ) # output: [bs x new_sequence_length x num_channels] output = past_values[:, self.sequence_start :, :] # output: [bs x num_patches x num_input_channels x patch_length] output = output.unfold(dimension=-2, size=self.patch_length, step=self.patch_stride) # output: [bs x num_input_channels x num_patches x patch_length] output = output.transpose(-2, -3).contiguous() return output # Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTMasking with PatchTST->PatchTSMixer class PatchTSMixerMasking(nn.Module): """ Class to perform random or forecast masking. Parameters: config (`PatchTSMixerConfig`): model config Returns: x_mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`) Masked patched input mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`) Bool tensor indicating True on masked points """ def __init__(self, config: PatchTSMixerConfig): super().__init__() self.random_mask_ratio = config.random_mask_ratio self.channel_consistent_masking = config.channel_consistent_masking self.mask_type = config.mask_type self.num_forecast_mask_patches = config.num_forecast_mask_patches self.unmasked_channel_indices = config.unmasked_channel_indices self.mask_value = config.mask_value if self.unmasked_channel_indices is not None: self.unmasked_channel_indices = sorted(self.unmasked_channel_indices) def forward(self, patch_input: torch.Tensor): """ Parameters: patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*): Patch input Return: masked_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`) Masked patched input mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`) Bool tensor indicating True on masked points """ if self.mask_type == "random": masked_input, mask = random_masking( inputs=patch_input, mask_ratio=self.random_mask_ratio, unmasked_channel_indices=self.unmasked_channel_indices, channel_consistent_masking=self.channel_consistent_masking, mask_value=self.mask_value, ) elif self.mask_type == "forecast": masked_input, mask = forecast_masking( inputs=patch_input, num_forecast_mask_patches=self.num_forecast_mask_patches, unmasked_channel_indices=self.unmasked_channel_indices, mask_value=self.mask_value, ) else: raise ValueError(f"Invalid mask type {self.mask_type}.") # mask: [bs x num_input_channels x num_patch] mask = mask.bool() return masked_input, mask # Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTStdScaler with PatchTST->PatchTSMixer class PatchTSMixerStdScaler(nn.Module): """ Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by subtracting from the mean and dividing by the standard deviation. """ def __init__(self, config: PatchTSMixerConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5 def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Calculating the scale on the observed indicator. Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim) denominator = denominator.clamp_min(1.0) loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator scale = torch.sqrt(variance + self.minimum_scale) return (data - loc) / scale, loc, scale # Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTMeanScaler with PatchTST->PatchTSMixer class PatchTSMixerMeanScaler(nn.Module): """ Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data accordingly. """ def __init__(self, config: PatchTSMixerConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10 self.default_scale = config.default_scale if hasattr(config, "default_scale") else None def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Calculating the scale on the observed indicator. Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True) num_observed = observed_indicator.sum(self.dim, keepdim=True) scale = ts_sum / torch.clamp(num_observed, min=1) # If `default_scale` is provided, we use it, otherwise we use the scale # of the batch. if self.default_scale is None: batch_sum = ts_sum.sum(dim=0) batch_observations = torch.clamp(num_observed.sum(0), min=1) default_scale = torch.squeeze(batch_sum / batch_observations) else: default_scale = self.default_scale * torch.ones_like(scale) # apply default scale where there are no observations scale = torch.where(num_observed > 0, scale, default_scale) # ensure the scale is at least `self.minimum_scale` scale = torch.clamp(scale, min=self.minimum_scale) scaled_data = data / scale if not self.keepdim: scale = scale.squeeze(dim=self.dim) return scaled_data, torch.zeros_like(scale), scale # Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTNOPScaler with PatchTST->PatchTSMixer class PatchTSMixerNOPScaler(nn.Module): """ Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data. """ def __init__(self, config: PatchTSMixerConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor = None ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) return data, loc, scale @dataclass class PatchTSMixerEncoderOutput(ModelOutput): """ Base class for `PatchTSMixerEncoderOutput`, with potential hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, d_model)`): Hidden-state at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*): Hidden-states of the model at the output of each layer. """ last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None class PatchTSMixerEncoder(PatchTSMixerPreTrainedModel): """ Encoder for PatchTSMixer which inputs patched time-series and outputs patched embeddings. Args: config (`PatchTSMixerConfig`, *required*): Configuration. """ def __init__(self, config: PatchTSMixerConfig): super().__init__(config) self.use_return_dict = config.use_return_dict self.patcher = nn.Linear(config.patch_length, config.d_model) if config.use_positional_encoding: self.positional_encoder = PatchTSMixerPositionalEncoding(config=config) else: self.positional_encoder = None self.mlp_mixer_encoder = PatchTSMixerBlock(config=config) # Initialize weights and apply final processing if config.post_init: self.post_init() @replace_return_docstrings(output_type=PatchTSMixerEncoderOutput, config_class=_CONFIG_FOR_DOC) def forward( self, past_values: torch.Tensor, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = None, ) -> Union[Tuple, PatchTSMixerEncoderOutput]: r""" Args: past_values (`torch.FloatTensor` of shape `(batch_size, seq_length, num_input_channels)`): Context values of the time series. For a pretraining task, this denotes the input time series to predict the masked portion. For a forecasting task, this denotes the history/past time series values. Similarly, for classification or regression tasks, it denotes the appropriate context values of the time series. For univariate time series, `num_input_channels` dimension should be 1. For multivariate time series, it is greater than 1. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: `torch.FloatTensor` of shape `(batch_size, n_vars, num_patches, d_model)` """ return_dict = return_dict if return_dict is not None else self.use_return_dict # flatten [bs x num_patch x d_model]. common_channel/mix_channel: [bs x n_vars x num_patch x d_model] patches = self.patcher(past_values) # add positional encoder if self.positional_encoder is not None: patches = self.positional_encoder(patches) last_hidden_state, hidden_states = self.mlp_mixer_encoder(patches, output_hidden_states=output_hidden_states) if not return_dict: return tuple( v for v in [ last_hidden_state, hidden_states, ] ) return PatchTSMixerEncoderOutput(last_hidden_state=last_hidden_state, hidden_states=hidden_states) @dataclass class PatchTSMixerModelOutput(ModelOutput): """ Base class for model's outputs, with potential hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, d_model)`): Hidden-state at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*): Hidden-states of the model at the output of each layer. patch_input (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, patch_length)`): Patched input data to the model. mask: (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches)`,*optional*): Bool Tensor indicating True in masked patches and False otherwise. loc: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`,*optional*): Gives the mean of the context window per channel. Used for revin denorm outside the model, if revin enabled. scale: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`,*optional*): Gives the std dev of the context window per channel. Used for revin denorm outside the model, if revin enabled. """ last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None patch_input: torch.FloatTensor = None mask: Optional[torch.FloatTensor] = None loc: Optional[torch.FloatTensor] = None scale: Optional[torch.FloatTensor] = None @add_start_docstrings( "The PatchTSMixer Model for time-series forecasting.", PATCHTSMIXER_START_DOCSTRING, ) class PatchTSMixerModel(PatchTSMixerPreTrainedModel): def __init__(self, config: PatchTSMixerConfig, mask_input: bool = False): super().__init__(config) self.use_return_dict = config.use_return_dict self.encoder = PatchTSMixerEncoder(config) self.patching = PatchTSMixerPatchify(config) if mask_input is True: self.masking = PatchTSMixerMasking(config) else: self.masking = None if config.scaling == "mean": self.scaler = PatchTSMixerMeanScaler(config) elif config.scaling == "std" or config.scaling is True: self.scaler = PatchTSMixerStdScaler(config) else: self.scaler = PatchTSMixerNOPScaler(config) # Initialize weights and apply final processing if config.post_init: self.post_init() @add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=PatchTSMixerModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, past_values: torch.Tensor, observed_mask: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = None, ) -> PatchTSMixerModelOutput: r""" observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). Returns: """ return_dict = return_dict if return_dict is not None else self.use_return_dict mask = None if observed_mask is None: observed_mask = torch.ones_like(past_values) scaled_past_values, loc, scale = self.scaler(past_values, observed_mask) patched_x = self.patching(scaled_past_values) # [batch_size x num_input_channels x num_patch x patch_length enc_input = patched_x if self.masking is not None: enc_input, mask = self.masking(patched_x) # enc_input: [batch_size x num_input_channels x num_patch x patch_length] # mask: [batch_size x num_input_channels x num_patch] encoder_output = self.encoder( enc_input, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if isinstance(encoder_output, tuple): encoder_output = PatchTSMixerEncoderOutput(*encoder_output) if not return_dict: return tuple( v for v in [ encoder_output.last_hidden_state, encoder_output.hidden_states, patched_x, mask, loc, scale, ] ) return PatchTSMixerModelOutput( last_hidden_state=encoder_output.last_hidden_state, hidden_states=encoder_output.hidden_states, patch_input=patched_x, mask=mask, loc=loc, scale=scale, ) @dataclass class PatchTSMixerForPreTrainingOutput(ModelOutput): """ Output type of [`PatchTSMixerForPreTrainingOutput`]. Args: prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, patch_length)`): Prediction output from the pretrain head. hidden_states (`tuple(torch.FloatTensor)`, *optional*): Hidden-states of the model at the output of each layer. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`): Backbone embeddings before passing through the head. loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`): Total loss """ loss: Optional[torch.FloatTensor] = None prediction_outputs: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None class PatchTSMixerForPretraining(PatchTSMixerPreTrainedModel): r""" `PatchTSMixer` for mask pretraining. Args: config (`PatchTSMixerConfig`, *required*): Configuration. Returns: `None`. """ def __init__(self, config: PatchTSMixerConfig): super().__init__(config) self.model = PatchTSMixerModel(config, mask_input=True) self.head = PatchTSMixerPretrainHead(config=config) self.masked_loss = config.masked_loss self.use_return_dict = config.use_return_dict # Initialize weights and apply final processing if config.post_init: self.post_init() @add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=PatchTSMixerForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, past_values: torch.Tensor, observed_mask: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = False, return_loss: bool = True, return_dict: Optional[bool] = None, ) -> PatchTSMixerForPreTrainingOutput: r""" observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). return_loss (`bool`, *optional*): Whether to return the loss in the `forward` call. Returns: """ return_dict = return_dict if return_dict is not None else self.use_return_dict if self.masked_loss is True: loss = torch.nn.MSELoss(reduction="none") else: loss = torch.nn.MSELoss(reduction="mean") # past_values: tensor [batch_size x context_length x num_input_channels] model_output = self.model( past_values, observed_mask=observed_mask, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # x.last_hidden_state: [batch_size x nvars x num_patch x d_model] if isinstance(model_output, tuple): model_output = PatchTSMixerModelOutput(*model_output) x_hat = self.head(model_output.last_hidden_state) # tensor [batch_size x nvars x num_patch x patch_length] if return_loss is True: loss_val = loss(x_hat, model_output.patch_input) else: loss_val = None # calculate masked_loss if self.masked_loss is True and loss_val is not None: loss_val = (loss_val.mean(dim=-1) * model_output.mask).sum() / (model_output.mask.sum() + 1e-10) if not return_dict: return tuple( v for v in [ loss_val, x_hat, model_output.last_hidden_state, model_output.hidden_states, ] ) return PatchTSMixerForPreTrainingOutput( loss=loss_val, prediction_outputs=x_hat, # tensor [batch_size x nvars x num_patch x patch_length] last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model] hidden_states=model_output.hidden_states, ) @dataclass class PatchTSMixerForPredictionOutput(ModelOutput): """ Output type of [`PatchTSMixerForPredictionOutput`]. Args: prediction_outputs (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_input_channels)`): Prediction output from the forecast head. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`): Backbone embeddings before passing through the head. hidden_states (`tuple(torch.FloatTensor)`, *optional*): Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`): Total loss. loc (`torch.FloatTensor`, *optional* of shape `(batch_size, 1, num_input_channels)`): Input mean scale (`torch.FloatTensor`, *optional* of shape `(batch_size, 1, num_input_channels)`): Input std dev """ loss: Optional[torch.FloatTensor] = None prediction_outputs: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None loc: torch.FloatTensor = None scale: torch.FloatTensor = None @dataclass class SamplePatchTSMixerPredictionOutput(ModelOutput): """ Base class for time series model's predictions outputs that contains the sampled values from the chosen distribution. Args: sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, prediction_length, number_channels)`): Sampled values from the chosen distribution. """ sequences: torch.FloatTensor = None @dataclass class SamplePatchTSMixerRegressionOutput(ModelOutput): """ Base class for time series model's predictions outputs that contains the sampled values from the chosen distribution. Args: sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, num_targets)` Sampled values from the chosen distribution. """ sequences: torch.FloatTensor = None # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor: """ Computes the negative log likelihood loss from input distribution with respect to target. """ return -input.log_prob(target) # Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor: """ Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero, meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`. Args: input_tensor (`torch.FloatTensor`): Input tensor, of which the average must be computed. weights (`torch.FloatTensor`, *optional*): Weights tensor, of the same shape as `input_tensor`. dim (`int`, *optional*): The dim along which to average `input_tensor`. Returns: `torch.FloatTensor`: The tensor with values averaged along the specified `dim`. """ if weights is not None: weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor)) sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0) return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights else: return input_tensor.mean(dim=dim) class PatchTSMixerForPrediction(PatchTSMixerPreTrainedModel): r""" `PatchTSMixer` for forecasting application. Args: config (`PatchTSMixerConfig`, *required*): Configuration. Returns: `None`. """ def __init__(self, config: PatchTSMixerConfig): super().__init__(config) self.loss = config.loss self.use_return_dict = config.use_return_dict self.prediction_channel_indices = config.prediction_channel_indices self.num_parallel_samples = config.num_parallel_samples if config.loss == "mse": self.distribution_output = None else: dim = config.prediction_length distribution_output_map = { "student_t": StudentTOutput, "normal": NormalOutput, "negative_binomial": NegativeBinomialOutput, } output_class = distribution_output_map.get(config.distribution_output, None) if output_class is not None: self.distribution_output = output_class(dim=dim) else: raise ValueError(f"Unknown distribution output {config.distribution_output}") self.model = PatchTSMixerModel(config) self.head = PatchTSMixerForPredictionHead( config=config, distribution_output=self.distribution_output, ) # Initialize weights and apply final processing if config.post_init: self.post_init() @add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=PatchTSMixerForPredictionOutput, config_class=_CONFIG_FOR_DOC) def forward( self, past_values: torch.Tensor, observed_mask: Optional[torch.Tensor] = None, future_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = False, return_loss: bool = True, return_dict: Optional[bool] = None, ) -> PatchTSMixerForPredictionOutput: r""" observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). future_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,: `(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target values of the time series, that serve as labels for the model. The `future_values` is what the Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT required for a pretraining task. For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter, pass the target data with all channels, as channel Filtering for both prediction and target will be manually applied before the loss computation. return_loss (`bool`, *optional*): Whether to return the loss in the `forward` call. Returns: """ if self.loss == "mse": loss = nn.MSELoss(reduction="mean") elif self.loss == "nll": loss = nll else: raise ValueError("Invalid loss function: Allowed values: mse and nll") return_dict = return_dict if return_dict is not None else self.use_return_dict # past_values: tensor [batch_size x context_length x num_input_channels] model_output = self.model( past_values, observed_mask=observed_mask, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # model_output: [batch_size x nvars x num_patch x d_model] if isinstance(model_output, tuple): model_output = PatchTSMixerModelOutput(*model_output) # tensor [batch_size x prediction_length x num_input_channels] y_hat = self.head(model_output.last_hidden_state) loss_val = None if self.prediction_channel_indices is not None: if self.distribution_output: distribution = self.distribution_output.distribution( y_hat, loc=model_output.loc[..., self.prediction_channel_indices], scale=model_output.scale[..., self.prediction_channel_indices], ) if future_values is not None and return_loss is True: loss_val = loss( distribution, future_values[..., self.prediction_channel_indices], ) # take average of the loss loss_val = weighted_average(loss_val) else: y_hat = ( y_hat * model_output.scale[..., self.prediction_channel_indices] + model_output.loc[..., self.prediction_channel_indices] ) if future_values is not None and return_loss is True: loss_val = loss(y_hat, future_values[..., self.prediction_channel_indices]) else: if self.distribution_output: distribution = self.distribution_output.distribution( y_hat, loc=model_output.loc, scale=model_output.scale ) if future_values is not None and return_loss is True: loss_val = loss(distribution, future_values) loss_val = weighted_average(loss_val) else: y_hat = y_hat * model_output.scale + model_output.loc if future_values is not None and return_loss is True: loss_val = loss(y_hat, future_values) if self.prediction_channel_indices is not None: loc = model_output.loc[..., self.prediction_channel_indices] scale = model_output.scale[..., self.prediction_channel_indices] else: loc = model_output.loc scale = model_output.scale if not return_dict: return tuple( v for v in [ loss_val, y_hat, model_output.last_hidden_state, model_output.hidden_states, loc, scale, ] ) return PatchTSMixerForPredictionOutput( loss=loss_val, prediction_outputs=y_hat, # tensor [batch_size x prediction_length x num_input_channels] last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model] hidden_states=model_output.hidden_states, loc=loc, scale=scale, ) def generate( self, past_values: torch.Tensor, observed_mask: Optional[torch.Tensor] = None, ) -> SamplePatchTSMixerPredictionOutput: """ Generate sequences of sample predictions from a model with a probability distribution head. Args: past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Past values of the time series that serves as context in order to predict the future. observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). Return: [`SamplePatchTSMixerPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of samples, prediction_length, num_input_channels)`. """ # get number of samples num_parallel_samples = self.num_parallel_samples # get model output outputs = self( past_values=past_values, future_values=None, observed_mask=observed_mask, output_hidden_states=False, ) # get distribution distribution = self.distribution_output.distribution( outputs.prediction_outputs, loc=outputs.loc, scale=outputs.scale ) # get samples: list of [batch_size x prediction_length x num_channels] samples = [distribution.sample() for _ in range(num_parallel_samples)] # stack tensors samples = torch.stack(samples, dim=1) # [batch_size x num_samples x prediction_length x num_channels] return SamplePatchTSMixerPredictionOutput(sequences=samples) @dataclass class PatchTSMixerForTimeSeriesClassificationOutput(ModelOutput): """ Output type of [`PatchTSMixerForTimeSeriesClassificationOutput`]. Args: prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_labels)`): Prediction output from the classfication head. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`): Backbone embeddings before passing through the head. hidden_states (`tuple(torch.FloatTensor)`, *optional*): Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`): Total loss. """ loss: Optional[torch.FloatTensor] = None prediction_outputs: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None class PatchTSMixerForTimeSeriesClassification(PatchTSMixerPreTrainedModel): r""" `PatchTSMixer` for classification application. Args: config (`PatchTSMixerConfig`, *required*): Configuration. Returns: `None`. """ def __init__(self, config: PatchTSMixerConfig): super().__init__(config) self.model = PatchTSMixerModel(config) self.head = PatchTSMixerLinearHead( config=config, ) self.use_return_dict = config.use_return_dict if config.scaling in ["std", "mean", True]: self.inject_scale = InjectScalerStatistics4D(d_model=config.d_model, num_patches=config.num_patches) else: self.inject_scale = None # Initialize weights and apply final processing if config.post_init: self.post_init() @add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING) @replace_return_docstrings( output_type=PatchTSMixerForTimeSeriesClassificationOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, past_values: torch.Tensor, target_values: torch.Tensor = None, output_hidden_states: Optional[bool] = False, return_loss: bool = True, return_dict: Optional[bool] = None, ) -> PatchTSMixerForTimeSeriesClassificationOutput: r""" target_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting, `(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target values of the time series, that serve as labels for the model. The `target_values` is what the Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT required for a pretraining task. For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter, pass the target data with all channels, as channel Filtering for both prediction and target will be manually applied before the loss computation. For a classification task, it has a shape of `(batch_size,)`. For a regression task, it has a shape of `(batch_size, num_targets)`. return_loss (`bool`, *optional*): Whether to return the loss in the `forward` call. Returns: """ loss = torch.nn.CrossEntropyLoss() return_dict = return_dict if return_dict is not None else self.use_return_dict model_output = self.model( past_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # x: [batch_size x nvars x num_patch x d_model] if isinstance(model_output, tuple): model_output = PatchTSMixerModelOutput(*model_output) if self.inject_scale is not None: model_output.last_hidden_state = self.inject_scale( model_output.last_hidden_state, loc=model_output.loc, scale=model_output.scale, ) # x: [batch_size x nvars x num_patch x d_model] y_hat = self.head(model_output.last_hidden_state) # tensor [batch_size x n_labels] if target_values is not None and return_loss is True: loss_val = loss(y_hat, target_values) else: loss_val = None if not return_dict: return tuple( v for v in [ loss_val, y_hat, model_output.last_hidden_state, model_output.hidden_states, ] ) return PatchTSMixerForTimeSeriesClassificationOutput( loss=loss_val, prediction_outputs=y_hat, # tensor [batch_size x n_labels] last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model] hidden_states=model_output.hidden_states, ) @dataclass class PatchTSMixerForRegressionOutput(ModelOutput): """ Output type of [`PatchTSMixerForRegressionOutput`]. Args: regression_outputs (`torch.FloatTensor` of shape `(batch_size, num_targets)`): Prediction output from the regression head. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`): Backbone embeddings before passing through the head. hidden_states (`tuple(torch.FloatTensor)`, *optional*): Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`): Total loss. """ loss: Optional[torch.FloatTensor] = None regression_outputs: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None class InjectScalerStatistics4D(nn.Module): def __init__(self, d_model: int, num_patches: int, expansion: int = 2): super().__init__() self.inverse_trans_expansion = nn.Linear(d_model + 2, expansion * d_model) self.inverse_trans_compression = nn.Linear(expansion * d_model, d_model) self.map_scale_expansion = nn.Linear(2, 2 * expansion) self.map_scale_compression = nn.Linear(2 * expansion, 2) self.num_patches = num_patches def forward(self, inputs: torch.Tensor, loc: torch.Tensor, scale: torch.Tensor): """ Args: inputs (`torch.Tensor` of shape `(batch_size, num_input_channels, num_patch, d_model)`) loc (`torch.Tensor` of shape `(batch_size, 1, num_input_channels)`) scale (`torch.Tensor` of shape `(batch_size, 1, num_input_channels)`) Returns: `torch.Tensor` of shape `(batch_size, num_input_channels, num_patch, d_model)` """ mean = loc.transpose(-1, -2) # [batch_size x n_channels x 1 ] mean = mean.unsqueeze(-2) # [batch_size x n_channels x 1 x 1] mean = mean.repeat(1, 1, self.num_patches, 1) # [batch_size x n_channels x num_patch x 1] stdev = scale.transpose(-1, -2) # [batch_size x n_channels x 1 ] stdev = stdev.unsqueeze(-2) # [batch_size x n_channels x 1 x 1] stdev = stdev.repeat(1, 1, self.num_patches, 1) # [batch_size x n_channels x num_patch x 1] concat_stats = torch.cat([mean, stdev], dim=-1) # [batch_size x n_channels x num_patch x 2] concat_stats = self.map_scale_expansion(concat_stats) # [batch_size x n_channels x num_patch x (2*expansion)] concat_stats = self.map_scale_compression(concat_stats) # [batch_size x n_channels x num_patch x 2] inputs = torch.cat([inputs, concat_stats], dim=-1) # [batch_size x channels x num_patch x d_model+2] inputs = self.inverse_trans_expansion(inputs) # [batch_size x channels x num_patch x (expansion*d_model)] inputs = self.inverse_trans_compression(inputs) # [batch_size x channels x num_patch x d_model] return inputs class PatchTSMixerForRegression(PatchTSMixerPreTrainedModel): r""" `PatchTSMixer` for regression application. Args: config (`PatchTSMixerConfig`, *required*): Configuration. Returns: `None`. """ def __init__(self, config: PatchTSMixerConfig): super().__init__(config) self.model = PatchTSMixerModel(config) self.loss = config.loss self.distribution_output = config.distribution_output self.use_return_dict = config.use_return_dict self.num_parallel_samples = config.num_parallel_samples if config.loss == "mse": self.distribution_output = None else: distribution_output_map = { "student_t": StudentTOutput, "normal": NormalOutput, "negative_binomial": NegativeBinomialOutput, } output_class = distribution_output_map.get(config.distribution_output) if output_class is not None: self.distribution_output = output_class(dim=config.num_targets) else: raise ValueError(f"Unknown distribution output {config.distribution_output}") if config.scaling in ["std", "mean", True]: self.inject_scale = InjectScalerStatistics4D(d_model=config.d_model, num_patches=config.num_patches) else: self.inject_scale = None self.head = PatchTSMixerLinearHead( config=config, distribution_output=self.distribution_output, ) # Initialize weights and apply final processing if config.post_init: self.post_init() @add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=PatchTSMixerForRegressionOutput, config_class=_CONFIG_FOR_DOC) def forward( self, past_values: torch.Tensor, target_values: torch.Tensor = None, output_hidden_states: Optional[bool] = False, return_loss: bool = True, return_dict: Optional[bool] = None, ) -> PatchTSMixerForRegressionOutput: r""" target_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting, `(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target values of the time series, that serve as labels for the model. The `target_values` is what the Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT required for a pretraining task. For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter, pass the target data with all channels, as channel Filtering for both prediction and target will be manually applied before the loss computation. For a classification task, it has a shape of `(batch_size,)`. For a regression task, it has a shape of `(batch_size, num_targets)`. return_loss (`bool`, *optional*): Whether to return the loss in the `forward` call. Returns: """ if self.loss == "mse": loss = nn.MSELoss(reduction="mean") elif self.loss == "nll": loss = nll else: raise ValueError("Invalid loss function: Allowed values: mse and nll") return_dict = return_dict if return_dict is not None else self.use_return_dict model_output = self.model( past_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # model_output: [batch_size x nvars x num_patch x d_model] if isinstance(model_output, tuple): model_output = PatchTSMixerModelOutput(*model_output) if self.inject_scale is not None: model_output.last_hidden_state = self.inject_scale( model_output.last_hidden_state, loc=model_output.loc, scale=model_output.scale, ) # x: [batch_size x nvars x num_patch x d_model] y_hat = self.head(model_output.last_hidden_state) # [batch_size x num_targets] if target_values is not None and return_loss is True: if self.distribution_output: if self.distribution_output == "negative_binomial" and torch.any(target_values < 0): raise Exception("target_values cannot be negative for negative_binomial distribution.") distribution = self.distribution_output.distribution(y_hat) # y_hat should be a 2-tuple, each with dimension [bs, num_targets] y_hat = tuple([item.view(-1, self.config.num_targets) for item in y_hat]) loss_val = loss(distribution, target_values) # take average of the loss loss_val = weighted_average(loss_val) else: loss_val = loss(y_hat, target_values) else: loss_val = None if not return_dict: return tuple( v for v in [ loss_val, y_hat, model_output.last_hidden_state, model_output.hidden_states, ] ) return PatchTSMixerForRegressionOutput( loss=loss_val, regression_outputs=y_hat, # tensor [batch_size x num_targets] last_hidden_state=model_output.last_hidden_state, # [batch_size x nvars x num_patch x d_model] hidden_states=model_output.hidden_states, ) def generate( self, past_values: torch.Tensor, ) -> SamplePatchTSMixerRegressionOutput: """ Generate sequences of sample predictions from a model with a probability distribution head. Args: past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Past values of the time series that serves as context in order to predict the target values. Return: [`SamplePatchTSMixerRegressionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of samples, num_targets)`. """ # get number of samples num_parallel_samples = self.num_parallel_samples # get model output outputs = self( past_values=past_values, target_values=None, output_hidden_states=False, ) # get distribution distribution = self.distribution_output.distribution(outputs.regression_outputs) # get samples samples = [ distribution.sample() for _ in range(num_parallel_samples) ] # samples: list of [batch_size x num_targets] # stack tensors # [batch_size x num_samples x num_targets] samples = torch.stack(samples, dim=1).view(-1, num_parallel_samples, self.config.num_targets) return SamplePatchTSMixerRegressionOutput(sequences=samples)
transformers/src/transformers/models/patchtsmixer/modeling_patchtsmixer.py/0
{ "file_path": "transformers/src/transformers/models/patchtsmixer/modeling_patchtsmixer.py", "repo_id": "transformers", "token_count": 38159 }
120
# coding=utf-8 # Copyright Deepmind and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Perceiver model configuration""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging logger = logging.get_logger(__name__) PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class PerceiverConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`PerceiverModel`]. It is used to instantiate an Perceiver model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Perceiver [deepmind/language-perceiver](https://huggingface.co/deepmind/language-perceiver) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_latents (`int`, *optional*, defaults to 256): The number of latents. d_latents (`int`, *optional*, defaults to 1280): Dimension of the latent embeddings. d_model (`int`, *optional*, defaults to 768): Dimension of the inputs. Should only be provided in case [*PerceiverTextPreprocessor*] is used or no preprocessor is provided. num_blocks (`int`, *optional*, defaults to 1): Number of blocks in the Transformer encoder. num_self_attends_per_block (`int`, *optional*, defaults to 26): The number of self-attention layers per block. num_self_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each self-attention layer in the Transformer encoder. num_cross_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each cross-attention layer in the Transformer encoder. qk_channels (`int`, *optional*): Dimension to project the queries + keys before applying attention in the cross-attention and self-attention layers of the encoder. Will default to preserving the dimension of the queries if not specified. v_channels (`int`, *optional*): Dimension to project the values before applying attention in the cross-attention and self-attention layers of the encoder. Will default to preserving the dimension of the queries if not specified. cross_attention_shape_for_attention (`str`, *optional*, defaults to `"kv"`): Dimension to use when downsampling the queries and keys in the cross-attention layer of the encoder. self_attention_widening_factor (`int`, *optional*, defaults to 1): Dimension of the feed-forward layer in the cross-attention layer of the Transformer encoder. cross_attention_widening_factor (`int`, *optional*, defaults to 1): Dimension of the feed-forward layer in the self-attention layers of the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. use_query_residual (`float`, *optional*, defaults to `True`): Whether to add a query residual in the cross-attention layer of the encoder. vocab_size (`int`, *optional*, defaults to 262): Vocabulary size for the masked language modeling model. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that the masked language modeling model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). image_size (`int`, *optional*, defaults to 56): Size of the images after preprocessing, for [`PerceiverForImageClassificationLearned`]. train_size (`List[int]`, *optional*, defaults to `[368, 496]`): Training size of the images for the optical flow model. num_frames (`int`, *optional*, defaults to 16): Number of video frames used for the multimodal autoencoding model. audio_samples_per_frame (`int`, *optional*, defaults to 1920): Number of audio samples per frame for the multimodal autoencoding model. samples_per_patch (`int`, *optional*, defaults to 16): Number of audio samples per patch when preprocessing the audio for the multimodal autoencoding model. output_shape (`List[int]`, *optional*, defaults to `[1, 16, 224, 224]`): Shape of the output (batch_size, num_frames, height, width) for the video decoder queries of the multimodal autoencoding model. This excludes the channel dimension. output_num_channels (`int`, *optional*, defaults to 512): Number of output channels for each modalitiy decoder. Example: ```python >>> from transformers import PerceiverModel, PerceiverConfig >>> # Initializing a Perceiver deepmind/language-perceiver style configuration >>> configuration = PerceiverConfig() >>> # Initializing a model from the deepmind/language-perceiver style configuration >>> model = PerceiverModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "perceiver" def __init__( self, num_latents=256, d_latents=1280, d_model=768, num_blocks=1, num_self_attends_per_block=26, num_self_attention_heads=8, num_cross_attention_heads=8, qk_channels=None, v_channels=None, cross_attention_shape_for_attention="kv", self_attention_widening_factor=1, cross_attention_widening_factor=1, hidden_act="gelu", attention_probs_dropout_prob=0.1, initializer_range=0.02, layer_norm_eps=1e-12, use_query_residual=True, vocab_size=262, max_position_embeddings=2048, image_size=56, train_size=[368, 496], num_frames=16, audio_samples_per_frame=1920, samples_per_patch=16, output_shape=[1, 16, 224, 224], output_num_channels=512, _label_trainable_num_channels=1024, **kwargs, ): super().__init__(**kwargs) self.num_latents = num_latents self.d_latents = d_latents self.d_model = d_model self.num_blocks = num_blocks self.num_self_attends_per_block = num_self_attends_per_block self.num_self_attention_heads = num_self_attention_heads self.num_cross_attention_heads = num_cross_attention_heads self.qk_channels = qk_channels self.v_channels = v_channels self.cross_attention_shape_for_attention = cross_attention_shape_for_attention self.self_attention_widening_factor = self_attention_widening_factor self.cross_attention_widening_factor = cross_attention_widening_factor self.hidden_act = hidden_act self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_query_residual = use_query_residual # masked language modeling attributes self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings # image classification attributes self.image_size = image_size # flow attributes self.train_size = train_size # multimodal autoencoding attributes self.num_frames = num_frames self.audio_samples_per_frame = audio_samples_per_frame self.samples_per_patch = samples_per_patch self.output_shape = output_shape self.output_num_channels = output_num_channels self._label_trainable_num_channels = _label_trainable_num_channels class PerceiverOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def atol_for_validation(self) -> float: return 1e-4 def generate_dummy_inputs( self, preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], batch_size: int = -1, seq_length: int = -1, num_choices: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, num_channels: int = 3, image_width: int = 40, image_height: int = 40, ) -> Mapping[str, Any]: # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(preprocessor, PreTrainedTokenizerBase): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension( batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX token_to_add = preprocessor.num_special_tokens_to_add(is_pair) seq_length = compute_effective_axis_dimension( seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add ) # Generate dummy inputs according to compute batch and sequence dummy_input = [" ".join(["a"]) * seq_length] * batch_size inputs = dict(preprocessor(dummy_input, return_tensors=framework)) inputs["inputs"] = inputs.pop("input_ids") return inputs elif isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width) inputs = dict(preprocessor(images=dummy_input, return_tensors=framework)) inputs["inputs"] = inputs.pop("pixel_values") return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
transformers/src/transformers/models/perceiver/configuration_perceiver.py/0
{ "file_path": "transformers/src/transformers/models/perceiver/configuration_perceiver.py", "repo_id": "transformers", "token_count": 4729 }
121
# coding=utf-8 # Copyright 2022 Sea AI Lab and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch PoolFormer model.""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "PoolFormerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "sail/poolformer_s12" _EXPECTED_OUTPUT_SHAPE = [1, 512, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "sail/poolformer_s12" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->PoolFormer class PoolFormerDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class PoolFormerEmbeddings(nn.Module): """ Construct Patch Embeddings. """ def __init__(self, hidden_size, num_channels, patch_size, stride, padding, norm_layer=None): super().__init__() patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride) padding = padding if isinstance(padding, collections.abc.Iterable) else (padding, padding) self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=padding) self.norm = norm_layer(hidden_size) if norm_layer else nn.Identity() def forward(self, pixel_values): embeddings = self.projection(pixel_values) embeddings = self.norm(embeddings) return embeddings class PoolFormerGroupNorm(nn.GroupNorm): """ Group Normalization with 1 group. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, **kwargs): super().__init__(1, num_channels, **kwargs) class PoolFormerPooling(nn.Module): def __init__(self, pool_size): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, hidden_states): return self.pool(hidden_states) - hidden_states class PoolFormerOutput(nn.Module): def __init__(self, config, dropout_prob, hidden_size, intermediate_size): super().__init__() self.conv1 = nn.Conv2d(hidden_size, intermediate_size, 1) self.conv2 = nn.Conv2d(intermediate_size, hidden_size, 1) self.drop = PoolFormerDropPath(dropout_prob) if isinstance(config.hidden_act, str): self.act_fn = ACT2FN[config.hidden_act] else: self.act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.conv1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.drop(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.drop(hidden_states) return hidden_states class PoolFormerLayer(nn.Module): """This corresponds to the 'PoolFormerBlock' class in the original implementation.""" def __init__(self, config, num_channels, pool_size, hidden_size, intermediate_size, drop_path): super().__init__() self.pooling = PoolFormerPooling(pool_size) self.output = PoolFormerOutput(config, drop_path, hidden_size, intermediate_size) self.before_norm = PoolFormerGroupNorm(num_channels) self.after_norm = PoolFormerGroupNorm(num_channels) # Useful for training neural nets self.drop_path = PoolFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.use_layer_scale = config.use_layer_scale if config.use_layer_scale: self.layer_scale_1 = nn.Parameter( config.layer_scale_init_value * torch.ones((num_channels)), requires_grad=True ) self.layer_scale_2 = nn.Parameter( config.layer_scale_init_value * torch.ones((num_channels)), requires_grad=True ) def forward(self, hidden_states): if self.use_layer_scale: pooling_output = self.pooling(self.before_norm(hidden_states)) scaled_op = self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * pooling_output # First residual connection hidden_states = hidden_states + self.drop_path(scaled_op) outputs = () layer_output = self.output(self.after_norm(hidden_states)) scaled_op = self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * layer_output # Second residual connection output = hidden_states + self.drop_path(scaled_op) outputs = (output,) + outputs return outputs else: pooling_output = self.drop_path(self.pooling(self.before_norm(hidden_states))) # First residual connection hidden_states = pooling_output + hidden_states outputs = () # Second residual connection inside the PoolFormerOutput block layer_output = self.drop_path(self.output(self.after_norm(hidden_states))) output = hidden_states + layer_output outputs = (output,) + outputs return outputs class PoolFormerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] # patch embeddings embeddings = [] for i in range(config.num_encoder_blocks): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i], stride=config.strides[i], padding=config.padding[i], num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], hidden_size=config.hidden_sizes[i], ) ) self.patch_embeddings = nn.ModuleList(embeddings) # Transformer blocks blocks = [] cur = 0 for i in range(config.num_encoder_blocks): # each block consists of layers layers = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( PoolFormerLayer( config, num_channels=config.hidden_sizes[i], pool_size=config.pool_size, hidden_size=config.hidden_sizes[i], intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio), drop_path=dpr[cur + j], ) ) blocks.append(nn.ModuleList(layers)) self.block = nn.ModuleList(blocks) def forward(self, pixel_values, output_hidden_states=False, return_dict=True): all_hidden_states = () if output_hidden_states else None hidden_states = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings, self.block)): embedding_layer, block_layer = layers # Get patch embeddings from hidden_states hidden_states = embedding_layer(hidden_states) # Send the embeddings through the blocks for _, blk in enumerate(block_layer): layer_outputs = blk(hidden_states) hidden_states = layer_outputs[0] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) class PoolFormerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = PoolFormerConfig base_model_prefix = "poolformer" main_input_name = "pixel_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) POOLFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ POOLFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.", POOLFORMER_START_DOCSTRING, ) class PoolFormerModel(PoolFormerPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.encoder = PoolFormerEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(POOLFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") encoder_outputs = self.encoder( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, ) class PoolFormerFinalPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states): output = self.dense(hidden_states) return output @add_start_docstrings( """ PoolFormer Model transformer with an image classification head on top """, POOLFORMER_START_DOCSTRING, ) class PoolFormerForImageClassification(PoolFormerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.poolformer = PoolFormerModel(config) # Final norm self.norm = PoolFormerGroupNorm(config.hidden_sizes[-1]) # Classifier head self.classifier = ( nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(POOLFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.poolformer( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(self.norm(sequence_output).mean([-2, -1])) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
transformers/src/transformers/models/poolformer/modeling_poolformer.py/0
{ "file_path": "transformers/src/transformers/models/poolformer/modeling_poolformer.py", "repo_id": "transformers", "token_count": 7408 }
122
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _import_structure = { "configuration_realm": ["REALM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RealmConfig"], "tokenization_realm": ["RealmTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_realm_fast"] = ["RealmTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_realm"] = [ "REALM_PRETRAINED_MODEL_ARCHIVE_LIST", "RealmEmbedder", "RealmForOpenQA", "RealmKnowledgeAugEncoder", "RealmPreTrainedModel", "RealmReader", "RealmScorer", "load_tf_weights_in_realm", ] _import_structure["retrieval_realm"] = ["RealmRetriever"] if TYPE_CHECKING: from .configuration_realm import REALM_PRETRAINED_CONFIG_ARCHIVE_MAP, RealmConfig from .tokenization_realm import RealmTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_realm import RealmTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_realm import ( REALM_PRETRAINED_MODEL_ARCHIVE_LIST, RealmEmbedder, RealmForOpenQA, RealmKnowledgeAugEncoder, RealmPreTrainedModel, RealmReader, RealmScorer, load_tf_weights_in_realm, ) from .retrieval_realm import RealmRetriever else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/realm/__init__.py/0
{ "file_path": "transformers/src/transformers/models/realm/__init__.py", "repo_id": "transformers", "token_count": 1040 }
123
# coding=utf-8 # Copyright 2023 The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.traverse_util import flatten_dict, unflatten_dict from transformers import RegNetConfig from transformers.modeling_flax_outputs import ( FlaxBaseModelOutputWithNoAttention, FlaxBaseModelOutputWithPooling, FlaxBaseModelOutputWithPoolingAndNoAttention, FlaxImageClassifierOutputWithNoAttention, ) from transformers.modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_replace_return_docstrings, overwrite_call_docstring, ) from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, ) REGNET_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ REGNET_INPUTS_DOCSTRING = r""" Args: pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`RegNetImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.resnet.modeling_flax_resnet.Identity class Identity(nn.Module): """Identity function.""" @nn.compact def __call__(self, x, **kwargs): return x class FlaxRegNetConvLayer(nn.Module): out_channels: int kernel_size: int = 3 stride: int = 1 groups: int = 1 activation: Optional[str] = "relu" dtype: jnp.dtype = jnp.float32 def setup(self): self.convolution = nn.Conv( self.out_channels, kernel_size=(self.kernel_size, self.kernel_size), strides=self.stride, padding=self.kernel_size // 2, feature_group_count=self.groups, use_bias=False, kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"), dtype=self.dtype, ) self.normalization = nn.BatchNorm(momentum=0.9, epsilon=1e-05, dtype=self.dtype) self.activation_func = ACT2FN[self.activation] if self.activation is not None else Identity() def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: hidden_state = self.convolution(hidden_state) hidden_state = self.normalization(hidden_state, use_running_average=deterministic) hidden_state = self.activation_func(hidden_state) return hidden_state class FlaxRegNetEmbeddings(nn.Module): config: RegNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.embedder = FlaxRegNetConvLayer( self.config.embedding_size, kernel_size=3, stride=2, activation=self.config.hidden_act, dtype=self.dtype, ) def __call__(self, pixel_values: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: num_channels = pixel_values.shape[-1] if num_channels != self.config.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) hidden_state = self.embedder(pixel_values, deterministic=deterministic) return hidden_state # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetShortCut with ResNet->RegNet class FlaxRegNetShortCut(nn.Module): """ RegNet shortcut, used to project the residual features to the correct size. If needed, it is also used to downsample the input using `stride=2`. """ out_channels: int stride: int = 2 dtype: jnp.dtype = jnp.float32 def setup(self): self.convolution = nn.Conv( self.out_channels, kernel_size=(1, 1), strides=self.stride, use_bias=False, kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"), dtype=self.dtype, ) self.normalization = nn.BatchNorm(momentum=0.9, epsilon=1e-05, dtype=self.dtype) def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: hidden_state = self.convolution(x) hidden_state = self.normalization(hidden_state, use_running_average=deterministic) return hidden_state class FlaxRegNetSELayerCollection(nn.Module): in_channels: int reduced_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.conv_1 = nn.Conv( self.reduced_channels, kernel_size=(1, 1), kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"), dtype=self.dtype, name="0", ) # 0 is the name used in corresponding pytorch implementation self.conv_2 = nn.Conv( self.in_channels, kernel_size=(1, 1), kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"), dtype=self.dtype, name="2", ) # 2 is the name used in corresponding pytorch implementation def __call__(self, hidden_state: jnp.ndarray) -> jnp.ndarray: hidden_state = self.conv_1(hidden_state) hidden_state = nn.relu(hidden_state) hidden_state = self.conv_2(hidden_state) attention = nn.sigmoid(hidden_state) return attention class FlaxRegNetSELayer(nn.Module): """ Squeeze and Excitation layer (SE) proposed in [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507). """ in_channels: int reduced_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.pooler = partial(nn.avg_pool, padding=((0, 0), (0, 0))) self.attention = FlaxRegNetSELayerCollection(self.in_channels, self.reduced_channels, dtype=self.dtype) def __call__(self, hidden_state: jnp.ndarray) -> jnp.ndarray: pooled = self.pooler( hidden_state, window_shape=(hidden_state.shape[1], hidden_state.shape[2]), strides=(hidden_state.shape[1], hidden_state.shape[2]), ) attention = self.attention(pooled) hidden_state = hidden_state * attention return hidden_state class FlaxRegNetXLayerCollection(nn.Module): config: RegNetConfig out_channels: int stride: int = 1 dtype: jnp.dtype = jnp.float32 def setup(self): groups = max(1, self.out_channels // self.config.groups_width) self.layer = [ FlaxRegNetConvLayer( self.out_channels, kernel_size=1, activation=self.config.hidden_act, dtype=self.dtype, name="0", ), FlaxRegNetConvLayer( self.out_channels, stride=self.stride, groups=groups, activation=self.config.hidden_act, dtype=self.dtype, name="1", ), FlaxRegNetConvLayer( self.out_channels, kernel_size=1, activation=None, dtype=self.dtype, name="2", ), ] def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: for layer in self.layer: hidden_state = layer(hidden_state, deterministic=deterministic) return hidden_state class FlaxRegNetXLayer(nn.Module): """ RegNet's layer composed by three `3x3` convolutions, same as a ResNet bottleneck layer with reduction = 1. """ config: RegNetConfig in_channels: int out_channels: int stride: int = 1 dtype: jnp.dtype = jnp.float32 def setup(self): should_apply_shortcut = self.in_channels != self.out_channels or self.stride != 1 self.shortcut = ( FlaxRegNetShortCut( self.out_channels, stride=self.stride, dtype=self.dtype, ) if should_apply_shortcut else Identity() ) self.layer = FlaxRegNetXLayerCollection( self.config, in_channels=self.in_channels, out_channels=self.out_channels, stride=self.stride, dtype=self.dtype, ) self.activation_func = ACT2FN[self.config.hidden_act] def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: residual = hidden_state hidden_state = self.layer(hidden_state) residual = self.shortcut(residual, deterministic=deterministic) hidden_state += residual hidden_state = self.activation_func(hidden_state) return hidden_state class FlaxRegNetYLayerCollection(nn.Module): config: RegNetConfig in_channels: int out_channels: int stride: int = 1 dtype: jnp.dtype = jnp.float32 def setup(self): groups = max(1, self.out_channels // self.config.groups_width) self.layer = [ FlaxRegNetConvLayer( self.out_channels, kernel_size=1, activation=self.config.hidden_act, dtype=self.dtype, name="0", ), FlaxRegNetConvLayer( self.out_channels, stride=self.stride, groups=groups, activation=self.config.hidden_act, dtype=self.dtype, name="1", ), FlaxRegNetSELayer( self.out_channels, reduced_channels=int(round(self.in_channels / 4)), dtype=self.dtype, name="2", ), FlaxRegNetConvLayer( self.out_channels, kernel_size=1, activation=None, dtype=self.dtype, name="3", ), ] def __call__(self, hidden_state: jnp.ndarray) -> jnp.ndarray: for layer in self.layer: hidden_state = layer(hidden_state) return hidden_state class FlaxRegNetYLayer(nn.Module): """ RegNet's Y layer: an X layer with Squeeze and Excitation. """ config: RegNetConfig in_channels: int out_channels: int stride: int = 1 dtype: jnp.dtype = jnp.float32 def setup(self): should_apply_shortcut = self.in_channels != self.out_channels or self.stride != 1 self.shortcut = ( FlaxRegNetShortCut( self.out_channels, stride=self.stride, dtype=self.dtype, ) if should_apply_shortcut else Identity() ) self.layer = FlaxRegNetYLayerCollection( self.config, in_channels=self.in_channels, out_channels=self.out_channels, stride=self.stride, dtype=self.dtype, ) self.activation_func = ACT2FN[self.config.hidden_act] def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: residual = hidden_state hidden_state = self.layer(hidden_state) residual = self.shortcut(residual, deterministic=deterministic) hidden_state += residual hidden_state = self.activation_func(hidden_state) return hidden_state class FlaxRegNetStageLayersCollection(nn.Module): """ A RegNet stage composed by stacked layers. """ config: RegNetConfig in_channels: int out_channels: int stride: int = 2 depth: int = 2 dtype: jnp.dtype = jnp.float32 def setup(self): layer = FlaxRegNetXLayer if self.config.layer_type == "x" else FlaxRegNetYLayer layers = [ # downsampling is done in the first layer with stride of 2 layer( self.config, self.in_channels, self.out_channels, stride=self.stride, dtype=self.dtype, name="0", ) ] for i in range(self.depth - 1): layers.append( layer( self.config, self.out_channels, self.out_channels, dtype=self.dtype, name=str(i + 1), ) ) self.layers = layers def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: hidden_state = x for layer in self.layers: hidden_state = layer(hidden_state, deterministic=deterministic) return hidden_state # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetStage with ResNet->RegNet class FlaxRegNetStage(nn.Module): """ A RegNet stage composed by stacked layers. """ config: RegNetConfig in_channels: int out_channels: int stride: int = 2 depth: int = 2 dtype: jnp.dtype = jnp.float32 def setup(self): self.layers = FlaxRegNetStageLayersCollection( self.config, in_channels=self.in_channels, out_channels=self.out_channels, stride=self.stride, depth=self.depth, dtype=self.dtype, ) def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: return self.layers(x, deterministic=deterministic) # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetStageCollection with ResNet->RegNet class FlaxRegNetStageCollection(nn.Module): config: RegNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): in_out_channels = zip(self.config.hidden_sizes, self.config.hidden_sizes[1:]) stages = [ FlaxRegNetStage( self.config, self.config.embedding_size, self.config.hidden_sizes[0], stride=2 if self.config.downsample_in_first_stage else 1, depth=self.config.depths[0], dtype=self.dtype, name="0", ) ] for i, ((in_channels, out_channels), depth) in enumerate(zip(in_out_channels, self.config.depths[1:])): stages.append( FlaxRegNetStage(self.config, in_channels, out_channels, depth=depth, dtype=self.dtype, name=str(i + 1)) ) self.stages = stages def __call__( self, hidden_state: jnp.ndarray, output_hidden_states: bool = False, deterministic: bool = True, ) -> FlaxBaseModelOutputWithNoAttention: hidden_states = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: hidden_states = hidden_states + (hidden_state.transpose(0, 3, 1, 2),) hidden_state = stage_module(hidden_state, deterministic=deterministic) return hidden_state, hidden_states # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetEncoder with ResNet->RegNet class FlaxRegNetEncoder(nn.Module): config: RegNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.stages = FlaxRegNetStageCollection(self.config, dtype=self.dtype) def __call__( self, hidden_state: jnp.ndarray, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ) -> FlaxBaseModelOutputWithNoAttention: hidden_state, hidden_states = self.stages( hidden_state, output_hidden_states=output_hidden_states, deterministic=deterministic ) if output_hidden_states: hidden_states = hidden_states + (hidden_state.transpose(0, 3, 1, 2),) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return FlaxBaseModelOutputWithNoAttention( last_hidden_state=hidden_state, hidden_states=hidden_states, ) # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetPreTrainedModel with ResNet->RegNet,resnet->regnet,RESNET->REGNET class FlaxRegNetPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RegNetConfig base_model_prefix = "regnet" main_input_name = "pixel_values" module_class: nn.Module = None def __init__( self, config: RegNetConfig, input_shape=(1, 224, 224, 3), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) if input_shape is None: input_shape = (1, config.image_size, config.image_size, config.num_channels) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors pixel_values = jnp.zeros(input_shape, dtype=self.dtype) rngs = {"params": rng} random_params = self.module.init(rngs, pixel_values, return_dict=False) if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING) def __call__( self, pixel_values, params: dict = None, train: bool = False, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} return self.module.apply( { "params": params["params"] if params is not None else self.params["params"], "batch_stats": params["batch_stats"] if params is not None else self.params["batch_stats"], }, jnp.array(pixel_values, dtype=jnp.float32), not train, output_hidden_states, return_dict, rngs=rngs, mutable=["batch_stats"] if train else False, # Returing tuple with batch_stats only when train is True ) # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetModule with ResNet->RegNet class FlaxRegNetModule(nn.Module): config: RegNetConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.embedder = FlaxRegNetEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxRegNetEncoder(self.config, dtype=self.dtype) # Adaptive average pooling used in resnet self.pooler = partial( nn.avg_pool, padding=((0, 0), (0, 0)), ) def __call__( self, pixel_values, deterministic: bool = True, output_hidden_states: bool = False, return_dict: bool = True, ) -> FlaxBaseModelOutputWithPoolingAndNoAttention: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict embedding_output = self.embedder(pixel_values, deterministic=deterministic) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) last_hidden_state = encoder_outputs[0] pooled_output = self.pooler( last_hidden_state, window_shape=(last_hidden_state.shape[1], last_hidden_state.shape[2]), strides=(last_hidden_state.shape[1], last_hidden_state.shape[2]), ).transpose(0, 3, 1, 2) last_hidden_state = last_hidden_state.transpose(0, 3, 1, 2) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return FlaxBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top.", REGNET_START_DOCSTRING, ) class FlaxRegNetModel(FlaxRegNetPreTrainedModel): module_class = FlaxRegNetModule FLAX_VISION_MODEL_DOCSTRING = """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, FlaxRegNetModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040") >>> model = FlaxRegNetModel.from_pretrained("facebook/regnet-y-040") >>> inputs = image_processor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ``` """ overwrite_call_docstring(FlaxRegNetModel, FLAX_VISION_MODEL_DOCSTRING) append_replace_return_docstrings( FlaxRegNetModel, output_type=FlaxBaseModelOutputWithPooling, config_class=RegNetConfig, ) # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetClassifierCollection with ResNet->RegNet class FlaxRegNetClassifierCollection(nn.Module): config: RegNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype, name="1") def __call__(self, x: jnp.ndarray) -> jnp.ndarray: return self.classifier(x) # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetForImageClassificationModule with ResNet->RegNet,resnet->regnet,RESNET->REGNET class FlaxRegNetForImageClassificationModule(nn.Module): config: RegNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.regnet = FlaxRegNetModule(config=self.config, dtype=self.dtype) if self.config.num_labels > 0: self.classifier = FlaxRegNetClassifierCollection(self.config, dtype=self.dtype) else: self.classifier = Identity() def __call__( self, pixel_values=None, deterministic: bool = True, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.regnet( pixel_values, deterministic=deterministic, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output[:, :, 0, 0]) if not return_dict: output = (logits,) + outputs[2:] return output return FlaxImageClassifierOutputWithNoAttention(logits=logits, hidden_states=outputs.hidden_states) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, REGNET_START_DOCSTRING, ) class FlaxRegNetForImageClassification(FlaxRegNetPreTrainedModel): module_class = FlaxRegNetForImageClassificationModule FLAX_VISION_CLASSIF_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoImageProcessor, FlaxRegNetForImageClassification >>> from PIL import Image >>> import jax >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040") >>> model = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040") >>> inputs = image_processor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1) >>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()]) ``` """ overwrite_call_docstring(FlaxRegNetForImageClassification, FLAX_VISION_CLASSIF_DOCSTRING) append_replace_return_docstrings( FlaxRegNetForImageClassification, output_type=FlaxImageClassifierOutputWithNoAttention, config_class=RegNetConfig, )
transformers/src/transformers/models/regnet/modeling_flax_regnet.py/0
{ "file_path": "transformers/src/transformers/models/regnet/modeling_flax_regnet.py", "repo_id": "transformers", "token_count": 12467 }
124
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SAM model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) SAM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/sam-vit-huge": "https://huggingface.co/facebook/sam-vit-huge/resolve/main/config.json", "facebook/sam-vit-large": "https://huggingface.co/facebook/sam-vit-large/resolve/main/config.json", "facebook/sam-vit-base": "https://huggingface.co/facebook/sam-vit-base/resolve/main/config.json", } class SamPromptEncoderConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SamPromptEncoder`]. The [`SamPromptEncoder`] module is used to encode the input 2D points and bounding boxes. Instantiating a configuration defaults will yield a similar configuration to that of the SAM-vit-h [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 256): Dimensionality of the hidden states. image_size (`int`, *optional*, defaults to 1024): The expected output resolution of the image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. mask_input_channels (`int`, *optional*, defaults to 16): The number of channels to be fed to the `MaskDecoder` module. num_point_embeddings (`int`, *optional*, defaults to 4): The number of point embeddings to be used. hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function in the encoder and pooler. """ def __init__( self, hidden_size=256, image_size=1024, patch_size=16, mask_input_channels=16, num_point_embeddings=4, hidden_act="gelu", layer_norm_eps=1e-6, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.image_size = image_size self.patch_size = patch_size self.image_embedding_size = image_size // patch_size self.mask_input_channels = mask_input_channels self.num_point_embeddings = num_point_embeddings self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps class SamMaskDecoderConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SamMaskDecoder`]. It is used to instantiate a SAM mask decoder to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the SAM-vit-h [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 256): Dimensionality of the hidden states. hidden_act (`str`, *optional*, defaults to `"relu"`): The non-linear activation function used inside the `SamMaskDecoder` module. mlp_dim (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 2): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. attention_downsample_rate (`int`, *optional*, defaults to 2): The downsampling rate of the attention layer. num_multimask_outputs (`int`, *optional*, defaults to 3): The number of outputs from the `SamMaskDecoder` module. In the Segment Anything paper, this is set to 3. iou_head_depth (`int`, *optional*, defaults to 3): The number of layers in the IoU head module. iou_head_hidden_dim (`int`, *optional*, defaults to 256): The dimensionality of the hidden states in the IoU head module. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. """ def __init__( self, hidden_size=256, hidden_act="relu", mlp_dim=2048, num_hidden_layers=2, num_attention_heads=8, attention_downsample_rate=2, num_multimask_outputs=3, iou_head_depth=3, iou_head_hidden_dim=256, layer_norm_eps=1e-6, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.hidden_act = hidden_act self.mlp_dim = mlp_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.attention_downsample_rate = attention_downsample_rate self.num_multimask_outputs = num_multimask_outputs self.iou_head_depth = iou_head_depth self.iou_head_hidden_dim = iou_head_hidden_dim self.layer_norm_eps = layer_norm_eps class SamVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SamVisionModel`]. It is used to instantiate a SAM vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the SAM ViT-h [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. output_channels (`int`, *optional*, defaults to 256): Dimensionality of the output channels in the Patch Encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input image. image_size (`int`, *optional*, defaults to 1024): Expected resolution. Target size of the resized input image. patch_size (`int`, *optional*, defaults to 16): Size of the patches to be extracted from the input image. hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 1e-10): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to query, key, value projections. mlp_ratio (`float`, *optional*, defaults to 4.0): Ratio of mlp hidden dim to embedding dim. use_abs_pos (`bool`, *optional*, defaults to `True`): Whether to use absolute position embedding. use_rel_pos (`bool`, *optional*, defaults to `True`): Whether to use relative position embedding. window_size (`int`, *optional*, defaults to 14): Window size for relative position. global_attn_indexes (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`): The indexes of the global attention layers. num_pos_feats (`int`, *optional*, defaults to 128): The dimensionality of the position embedding. mlp_dim (`int`, *optional*): The dimensionality of the MLP layer in the Transformer encoder. If `None`, defaults to `mlp_ratio * hidden_size`. """ def __init__( self, hidden_size=768, output_channels=256, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=1024, patch_size=16, hidden_act="gelu", layer_norm_eps=1e-06, attention_dropout=0.0, initializer_range=1e-10, qkv_bias=True, mlp_ratio=4.0, use_abs_pos=True, use_rel_pos=True, window_size=14, global_attn_indexes=[2, 5, 8, 11], num_pos_feats=128, mlp_dim=None, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.output_channels = output_channels self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.qkv_bias = qkv_bias self.mlp_ratio = mlp_ratio self.use_abs_pos = use_abs_pos self.use_rel_pos = use_rel_pos self.window_size = window_size self.global_attn_indexes = global_attn_indexes self.num_pos_feats = num_pos_feats self.mlp_dim = int(hidden_size * mlp_ratio) if mlp_dim is None else mlp_dim class SamConfig(PretrainedConfig): r""" [`SamConfig`] is the configuration class to store the configuration of a [`SamModel`]. It is used to instantiate a SAM model according to the specified arguments, defining the vision model, prompt-encoder model and mask decoder configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the SAM-ViT-H [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (Union[`dict`, `SamVisionConfig`], *optional*): Dictionary of configuration options used to initialize [`SamVisionConfig`]. prompt_encoder_config (Union[`dict`, `SamPromptEncoderConfig`], *optional*): Dictionary of configuration options used to initialize [`SamPromptEncoderConfig`]. mask_decoder_config (Union[`dict`, `SamMaskDecoderConfig`], *optional*): Dictionary of configuration options used to initialize [`SamMaskDecoderConfig`]. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import ( ... SamVisionConfig, ... SamPromptEncoderConfig, ... SamMaskDecoderConfig, ... SamModel, ... ) >>> # Initializing a SamConfig with `"facebook/sam-vit-huge"` style configuration >>> configuration = SamConfig() >>> # Initializing a SamModel (with random weights) from the `"facebook/sam-vit-huge"` style configuration >>> model = SamModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a SamConfig from a SamVisionConfig, SamPromptEncoderConfig, and SamMaskDecoderConfig >>> # Initializing SAM vision, SAM Q-Former and language model configurations >>> vision_config = SamVisionConfig() >>> prompt_encoder_config = SamPromptEncoderConfig() >>> mask_decoder_config = SamMaskDecoderConfig() >>> config = SamConfig(vision_config, prompt_encoder_config, mask_decoder_config) ```""" model_type = "sam" def __init__( self, vision_config=None, prompt_encoder_config=None, mask_decoder_config=None, initializer_range=0.02, **kwargs, ): super().__init__(**kwargs) vision_config = vision_config if vision_config is not None else {} prompt_encoder_config = prompt_encoder_config if prompt_encoder_config is not None else {} mask_decoder_config = mask_decoder_config if mask_decoder_config is not None else {} if isinstance(vision_config, SamVisionConfig): vision_config = vision_config.to_dict() if isinstance(prompt_encoder_config, SamPromptEncoderConfig): prompt_encoder_config = prompt_encoder_config.to_dict() if isinstance(mask_decoder_config, SamMaskDecoderConfig): mask_decoder_config = mask_decoder_config.to_dict() self.vision_config = SamVisionConfig(**vision_config) self.prompt_encoder_config = SamPromptEncoderConfig(**prompt_encoder_config) self.mask_decoder_config = SamMaskDecoderConfig(**mask_decoder_config) self.initializer_range = initializer_range
transformers/src/transformers/models/sam/configuration_sam.py/0
{ "file_path": "transformers/src/transformers/models/sam/configuration_sam.py", "repo_id": "transformers", "token_count": 5408 }
125
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Converting Meta SeamlessM4Tv2 checkpoints from seamless_communication to HF.""" import argparse import os from pathlib import Path import torch from accelerate.utils.modeling import find_tied_parameters from seamless_communication.inference import Translator from transformers import ( SeamlessM4TFeatureExtractor, SeamlessM4TProcessor, SeamlessM4TTokenizer, SeamlessM4Tv2Config, SeamlessM4Tv2Model, ) from transformers.utils import logging # fmt: off UNIT_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kan__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tam__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__", ] # fmt: on # fmt: off VOCODER_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__",] # fmt: on # fmt: off LARGE_SUPPORTED_LANGUAGES = ["afr","amh","arb","ary","arz","asm","azj","bel","ben","bos","bul","cat","ceb","ces","ckb","cmn","cmn_Hant","cym","dan","deu","ell","eng","est","eus","fin","fra","fuv","gaz","gle","glg","guj","heb","hin","hrv","hun","hye","ibo","ind","isl","ita","jav","jpn","kan","kat","kaz","khk","khm","kir","kor","lao","lit","lug","luo","lvs","mai","mal","mar","mkd","mlt","mni","mya","nld","nno","nob","npi","nya","ory","pan","pbt","pes","pol","por","ron","rus","sat","slk","slv","sna","snd","som","spa","srp","swe","swh","tam","tel","tgk","tgl","tha","tur","ukr","urd","uzn","vie","yor","yue","zlm","zul",] # fmt: on def assert_param_count(model_1, model_2): count_1 = sum(p[1].numel() for p in model_1.named_parameters() if "final_proj" not in p[0]) count_2 = sum(p[1].numel() for p in model_2.named_parameters() if "final_proj" not in p[0]) assert count_1 == count_2, f"{model_1.__class__}: {count_1} != {model_2.__class__}: {count_2}" def param_count(model): return sum(p[1].numel() for p in model.named_parameters() if "final_proj" not in p[0]) def _grab_best_device(use_gpu=True): if torch.cuda.device_count() > 0 and use_gpu: device = "cuda" else: device = "cpu" return torch.device(device) logging.set_verbosity_info() logger = logging.get_logger(__name__) vocoder_convert_list = [ ("ups", "hifi_gan.upsampler"), ("conv_pre", "hifi_gan.conv_pre"), ("resblocks", "hifi_gan.resblocks"), ("conv_post", "hifi_gan.conv_post"), ("lang", "language_embedding"), ("spkr", "speaker_embedding"), ("dict.", "unit_embedding."), ("dur_predictor.conv1.0", "dur_predictor.conv1"), ("dur_predictor.conv2.0", "dur_predictor.conv2"), ] # order is important wav2vec_convert_list = [ ("speech_encoder_frontend.model_dim_proj", "feature_projection.projection"), ("speech_encoder_frontend.post_extract_layer_norm", "feature_projection.layer_norm"), ("speech_encoder_frontend.pos_encoder.conv", "encoder.pos_conv_embed.conv"), ("speech_encoder.inner.layers", "encoder.layers"), ("speech_encoder.inner_layer_norm", "encoder.layer_norm"), ("speech_encoder.adaptor_layers", "adapter.layers"), ("inner_proj", "intermediate_dense"), ("self_attn.output_proj", "self_attn.linear_out"), ("output_proj", "output_dense"), ("self_attn.k_proj", "self_attn.linear_k"), ("self_attn.v_proj", "self_attn.linear_v"), ("self_attn.q_proj", "self_attn.linear_q"), ("self_attn.sdpa.u_bias", "self_attn.pos_bias_u"), ("self_attn.sdpa.v_bias", "self_attn.pos_bias_v"), ("self_attn.sdpa.rel_k_embed", "self_attn.distance_embedding"), ("self_attn.sdpa.r_proj", "self_attn.linear_pos"), ("conv.pointwise_conv1", "conv_module.pointwise_conv1"), ("conv.pointwise_conv2", "conv_module.pointwise_conv2"), ("conv.depthwise_conv", "conv_module.depthwise_conv"), ("conv.batch_norm", "conv_module.batch_norm"), ("conv.layer_norm", "conv_module.depthwise_layer_norm"), ("conv_layer_norm", "conv_module.layer_norm"), ("speech_encoder.proj1", "intermediate_ffn.intermediate_dense"), ("speech_encoder.proj2", "intermediate_ffn.output_dense"), ("speech_encoder.layer_norm", "inner_layer_norm"), ] t2u_convert_list = [ ("t2u_model.final_proj", "lm_head"), ("t2u_model.", "model."), ("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"), ("encoder_decoder_attn", "cross_attention"), ("linear_k", "k_proj"), ("linear_v", "v_proj"), ("linear_q", "q_proj"), ("ffn.inner_proj", "ffn.fc1"), ("ffn.output_proj", "ffn.fc2"), ("output_proj", "out_proj"), ("decoder_frontend.embed_char", "decoder.embed_char"), ("decoder_frontend.pos_emb_alpha_char", "decoder.pos_emb_alpha_char"), ("decoder_frontend.embed", "decoder.embed_tokens"), ("decoder_frontend.pos_emb_alpha", "decoder.pos_emb_alpha"), ("conv1d.conv", "conv"), ("conv1d_layer_norm", "conv_layer_norm"), ("decoder_frontend.variance_adaptor", "decoder"), ("duration_predictor.conv1.0", "duration_predictor.conv1"), ("duration_predictor.conv2.0", "duration_predictor.conv2"), ] text_convert_list = [ ("text_encoder.", ""), ("text_decoder.", ""), ("text_encoder_frontend.embed", "embed_tokens"), ("text_decoder_frontend.embed", "embed_tokens"), ("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"), ("encoder_decoder_attn", "cross_attention"), ("linear_k", "k_proj"), ("linear_v", "v_proj"), ("linear_q", "q_proj"), ("ffn.inner_proj", "ffn.fc1"), ("ffn.output_proj", "ffn.fc2"), ("output_proj", "out_proj"), ("final_proj", "lm_head"), ] CUR_PATH = os.path.dirname(os.path.abspath(__file__)) default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache") CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "huggingface", "hub") def _load_hf_config(): return SeamlessM4Tv2Config() def _convert_model( original_model, hf_model, convert_list, device, unwanted_prefix="model.", filter_state_dict="speech", exclude_state_dict=None, ): state_dict = original_model.state_dict() # filter func if isinstance(filter_state_dict, str): def filter_func(x): return filter_state_dict in x[0] else: def filter_func(item): if exclude_state_dict is not None and exclude_state_dict in item[0]: return False for filter_el in filter_state_dict: if filter_el in item[0]: return True return False state_dict = dict(filter(filter_func, state_dict.items())) for k, v in list(state_dict.items()): new_k = k[len(unwanted_prefix) :] for old_layer_name, new_layer_name in convert_list: if old_layer_name in new_k: new_k = new_k.replace(old_layer_name, new_layer_name) # must do it by hand if ".layer_norm" in new_k and new_k.split(".layer_norm")[0][-1].isnumeric(): new_k = new_k.replace("layer_norm", "final_layer_norm") state_dict[new_k] = state_dict.pop(k) extra_keys = set(state_dict.keys()) - set(hf_model.state_dict().keys()) extra_keys = set(extra_keys) missing_keys = set(hf_model.state_dict().keys()) - set(state_dict.keys()) missing_keys = set({k for k in missing_keys if "final_logits_bias" not in k}) if len(extra_keys) != 0: raise ValueError(f"extra keys found: {extra_keys}") if len(missing_keys) != 0: raise ValueError(f"missing keys: {missing_keys}") hf_model.load_state_dict(state_dict, strict=False) n_params = param_count(hf_model) logger.info(f"model loaded: {round(n_params/1e6,1)}M params") hf_model.eval() hf_model.to(device) del state_dict return hf_model def load_model(save_dir, model_type, repo_id): """ Meta SeamlessM4Tv2 is made of 8 main components: - speech_encoder (#1) and speech_encoder_frontend (#2) - t2u_model (#3) - text_encoder (#4) and text_encoder_frontend (#5) - text_decoder (#6) [and text_decoder_frontend (#5) = equals to text_encoder_frontend] - final_proj (#7) - vocoder (#8) """ device = _grab_best_device() name = "seamlessM4T_v2_large" original_model = Translator(name, "vocoder_v2", device, dtype=torch.float32) ######### TOKENIZER langs = LARGE_SUPPORTED_LANGUAGES langs = [f"__{lang}__" for lang in langs] vocab_file = os.path.join(os.path.expanduser("~"), "tokenizer", model_type, "tokenizer.model") save_dir = os.path.join(save_dir, name) Path(save_dir).mkdir(exist_ok=True) tokenizer = SeamlessM4TTokenizer(vocab_file, additional_special_tokens=langs) sanity_check_lang_id = tokenizer.convert_tokens_to_ids("__fra__") tokenizer.save_pretrained(save_dir) tokenizer = SeamlessM4TTokenizer.from_pretrained(save_dir) if sanity_check_lang_id != tokenizer.convert_tokens_to_ids("__fra__"): raise ValueError( f"Error in tokenizer saving/loading - __fra__ lang id is not coherent: {sanity_check_lang_id} vs {tokenizer.convert_tokens_to_ids('__fra__')}" ) ####### get language to ids dict text_decoder_lang_code_to_id = {lang.replace("__", ""): tokenizer.convert_tokens_to_ids(lang) for lang in langs} # offset: vocoder unit vocab size + 5 (for EOS/PAD/BOS/UNK/MSK) + len(supported_languages) t2u_lang_code_to_id = { code.replace("__", ""): i + 10005 + len(UNIT_SUPPORTED_LANGUAGES) for i, code in enumerate(UNIT_SUPPORTED_LANGUAGES) } vocoder_lang_code_to_id = {code.replace("__", ""): i for i, code in enumerate(VOCODER_SUPPORTED_LANGUAGES)} ######### FE fe = SeamlessM4TFeatureExtractor(language_code=langs) fe.save_pretrained(save_dir) fe = SeamlessM4TFeatureExtractor.from_pretrained(save_dir) processor = SeamlessM4TProcessor(feature_extractor=fe, tokenizer=tokenizer) processor.save_pretrained(save_dir) processor.push_to_hub(repo_id=repo_id, create_pr=True) processor = SeamlessM4TProcessor.from_pretrained(save_dir) ######## Model # init config hf_config = _load_hf_config() ######## get id_to_text and char_to_id from original model tokenizers id_to_text = {i: original_model.text_tokenizer.model.index_to_token(i) for i in range(hf_config.vocab_size)} char_to_id = { original_model.model.t2u_model.decoder_frontend.char_tokenizer.model.index_to_token(i): i for i in range(10904) } # init model hf_model = SeamlessM4Tv2Model(hf_config) hf_model.generation_config.__setattr__("text_decoder_lang_to_code_id", text_decoder_lang_code_to_id) hf_model.generation_config.__setattr__("t2u_lang_code_to_id", t2u_lang_code_to_id) hf_model.generation_config.__setattr__("vocoder_lang_code_to_id", vocoder_lang_code_to_id) hf_model.generation_config.__setattr__("id_to_text", id_to_text) hf_model.generation_config.__setattr__("char_to_id", char_to_id) # -1. take care of vocoder # similarly to speech T5 must apply and remove weight norm hf_model.vocoder.apply_weight_norm() hf_model.vocoder = _convert_model( original_model, hf_model.vocoder, vocoder_convert_list, device, unwanted_prefix="vocoder.code_generator.", filter_state_dict="vocoder", ) hf_model.vocoder.remove_weight_norm() # 1. take care of speech encoder wav2vec = hf_model.speech_encoder hf_model.speech_encoder = _convert_model( original_model, wav2vec, wav2vec_convert_list, device, unwanted_prefix="model.", filter_state_dict="speech" ) # 2. take care of t2u hf_model.t2u_model = _convert_model( original_model, hf_model.t2u_model, t2u_convert_list, device, unwanted_prefix="model.", filter_state_dict="t2u_model", ) # 3. take care of text encoder hf_model.text_encoder = _convert_model( original_model, hf_model.text_encoder, text_convert_list, device, unwanted_prefix="model.", filter_state_dict=["model.text_encoder"], exclude_state_dict="t2u_model", ) # 4. take care of text decoder hf_model.text_decoder = _convert_model( original_model, hf_model.text_decoder, text_convert_list, device, unwanted_prefix="model.", filter_state_dict=["model.text_decoder"], exclude_state_dict="t2u_model", ) # 5. take care of final proj hf_model.lm_head = _convert_model( original_model, hf_model.lm_head, [("final_proj.", "")], device, unwanted_prefix="model.", filter_state_dict=["model.final_proj"], exclude_state_dict="t2u_model", ) # sanity check print(find_tied_parameters(hf_model)) count_1 = param_count(hf_model) count_2 = param_count(original_model) print(f"HF MODEL:{count_1}, ORIGINAL_MODEL: {count_2}, diff:{count_1 - count_2}") print(f"HF MODEL excluding embeddings:{hf_model.num_parameters(exclude_embeddings=True)}") del original_model hf_model.generation_config._from_model_config = False hf_model.save_pretrained(save_dir) hf_model.push_to_hub(repo_id=repo_id, create_pr=True) hf_model = SeamlessM4Tv2Model.from_pretrained(save_dir) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_type", default="large", type=str, help="Model type.", ) parser.add_argument( "--save_dir", default="/home/ubuntu/weights_v2", type=str, help="Path to the output PyTorch model.", ) parser.add_argument( "--repo_id", default="facebook/seamless-m4t-v2-large", type=str, help="Repo ID.", ) args = parser.parse_args() load_model(args.save_dir, args.model_type, args.repo_id)
transformers/src/transformers/models/seamless_m4t_v2/convert_fairseq2_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/seamless_m4t_v2/convert_fairseq2_to_hf.py", "repo_id": "transformers", "token_count": 6572 }
126
# coding=utf-8 # Copyright 2021 ASAPP Inc. and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch SEW model.""" import math import warnings from collections.abc import Sequence from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss, LayerNorm from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import softmax_backward_data from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_sew_d import SEWDConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 1 # General docstring _CONFIG_FOR_DOC = "SEWDConfig" # Base docstring _CHECKPOINT_FOR_DOC = "asapp/sew-d-tiny-100k-ft-ls100h" _EXPECTED_OUTPUT_SHAPE = [1, 292, 384] # CTC docstring _CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTIL OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" _CTC_EXPECTED_LOSS = 0.21 # Audio class docstring _SEQ_CLASS_CHECKPOINT = "anton-l/sew-d-mid-400k-ft-keyword-spotting" _SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'" _SEQ_CLASS_EXPECTED_LOSS = 3.16 SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST = [ "asapp/sew-d-tiny-100k", "asapp/sew-d-small-100k", "asapp/sew-d-mid-100k", "asapp/sew-d-mid-k127-100k", "asapp/sew-d-base-100k", "asapp/sew-d-base-plus-100k", "asapp/sew-d-mid-400k", "asapp/sew-d-mid-k127-400k", "asapp/sew-d-base-plus-400k", # See all SEW models at https://huggingface.co/models?filter=sew-d ] # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.deberta_v2.modeling_deberta_v2.make_log_bucket_position def make_log_bucket_position(relative_pos, bucket_size, max_position): sign = torch.sign(relative_pos) mid = bucket_size // 2 abs_pos = torch.where( (relative_pos < mid) & (relative_pos > -mid), torch.tensor(mid - 1).type_as(relative_pos), torch.abs(relative_pos), ) log_pos = ( torch.ceil(torch.log(abs_pos / mid) / torch.log(torch.tensor((max_position - 1) / mid)) * (mid - 1)) + mid ) bucket_pos = torch.where(abs_pos <= mid, relative_pos.type_as(log_pos), log_pos * sign) return bucket_pos # Copied from transformers.models.deberta_v2.modeling_deberta_v2.build_relative_position def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1, device=None): """ Build relative position according to the query and key We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q - P_k\\) Args: query_size (int): the length of query key_size (int): the length of key bucket_size (int): the size of position bucket max_position (int): the maximum allowed absolute position device (`torch.device`): the device on which tensors will be created. Return: `torch.LongTensor`: A tensor with shape [1, query_size, key_size] """ q_ids = torch.arange(0, query_size, device=device) k_ids = torch.arange(0, key_size, device=device) rel_pos_ids = q_ids[:, None] - k_ids[None, :] if bucket_size > 0 and max_position > 0: rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position) rel_pos_ids = rel_pos_ids.to(torch.long) rel_pos_ids = rel_pos_ids[:query_size, :] rel_pos_ids = rel_pos_ids.unsqueeze(0) return rel_pos_ids @torch.jit.script # Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos): return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)]) @torch.jit.script # Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand def p2c_dynamic_expand(c2p_pos, query_layer, key_layer): return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)]) @torch.jit.script # Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand def pos_dynamic_expand(pos_index, p2c_att, key_layer): return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))) # Copied from transformers.models.deberta.modeling_deberta.get_mask def get_mask(input, local_context): if not isinstance(local_context, DropoutContext): dropout = local_context mask = None else: dropout = local_context.dropout dropout *= local_context.scale mask = local_context.mask if local_context.reuse_mask else None if dropout > 0 and mask is None: mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool) if isinstance(local_context, DropoutContext): if local_context.mask is None: local_context.mask = mask return mask, dropout # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SEWD class SEWDNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SEWD class SEWDLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SEWD class SEWDGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.sew.modeling_sew.SEWPositionalConvEmbedding with SEW->SEWD class SEWDPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, stride=config.squeeze_factor, ) if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) self.padding = SEWDSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SEW class SEWDSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.sew.modeling_sew.SEWUpsampling with SEW->SEWD class SEWDUpsampling(nn.Module): def __init__(self, config): super().__init__() self.projection = nn.Linear(config.hidden_size, config.hidden_size * config.squeeze_factor) self.activation = ACT2FN[config.feat_extract_activation] self.squeeze_factor = config.squeeze_factor def forward(self, hidden_states): hidden_states = self.projection(hidden_states) hidden_states = self.activation(hidden_states) if self.squeeze_factor > 1: # transform embedding channels to sequence length bsz, src_len, src_embed_dim = hidden_states.size() tgt_len = src_len * self.squeeze_factor tgt_embed_dim = src_embed_dim // self.squeeze_factor hidden_states = hidden_states.reshape(bsz, src_len, self.squeeze_factor, tgt_embed_dim) hidden_states = hidden_states.reshape(bsz, tgt_len, tgt_embed_dim) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SEWD class SEWDFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [SEWDGroupNormConvLayer(config, layer_id=0)] + [ SEWDNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [SEWDLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class SEWDFeatureExtractor(SEWDFeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) # Copied from transformers.models.deberta.modeling_deberta.ContextPooler class ContextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size) self.dropout = StableDropout(config.pooler_dropout) self.config = config def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. context_token = hidden_states[:, 0] context_token = self.dropout(context_token) pooled_output = self.dense(context_token) pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output) return pooled_output @property def output_dim(self): return self.config.hidden_size # Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2 class XSoftmax(torch.autograd.Function): """ Masked Softmax which is optimized for saving memory Args: input (`torch.tensor`): The input tensor that will apply softmax. mask (`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation. dim (int): The dimension that will apply softmax Example: ```python >>> import torch >>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax >>> # Make a tensor >>> x = torch.randn([4, 20, 100]) >>> # Create a mask >>> mask = (x > 0).int() >>> # Specify the dimension to apply softmax >>> dim = -1 >>> y = XSoftmax.apply(x, mask, dim) ```""" @staticmethod def forward(self, input, mask, dim): self.dim = dim rmask = ~(mask.to(torch.bool)) output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min)) output = torch.softmax(output, self.dim) output.masked_fill_(rmask, 0) self.save_for_backward(output) return output @staticmethod def backward(self, grad_output): (output,) = self.saved_tensors inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output) return inputGrad, None, None @staticmethod def symbolic(g, self, mask, dim): import torch.onnx.symbolic_helper as sym_help from torch.onnx.symbolic_opset9 import masked_fill, softmax mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"]) r_mask = g.op( "Cast", g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value), to_i=sym_help.cast_pytorch_to_onnx["Bool"], ) output = masked_fill( g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min)) ) output = softmax(g, output, dim) return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool))) # Copied from transformers.models.deberta.modeling_deberta.DropoutContext class DropoutContext(object): def __init__(self): self.dropout = 0 self.mask = None self.scale = 1 self.reuse_mask = True # Copied from transformers.models.deberta.modeling_deberta.XDropout class XDropout(torch.autograd.Function): """Optimized dropout function to save computation and memory by using mask operation instead of multiplication.""" @staticmethod def forward(ctx, input, local_ctx): mask, dropout = get_mask(input, local_ctx) ctx.scale = 1.0 / (1 - dropout) if dropout > 0: ctx.save_for_backward(mask) return input.masked_fill(mask, 0) * ctx.scale else: return input @staticmethod def backward(ctx, grad_output): if ctx.scale > 1: (mask,) = ctx.saved_tensors return grad_output.masked_fill(mask, 0) * ctx.scale, None else: return grad_output, None @staticmethod def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value: from torch.onnx import symbolic_opset12 dropout_p = local_ctx if isinstance(local_ctx, DropoutContext): dropout_p = local_ctx.dropout # StableDropout only calls this function when training. train = True # TODO: We should check if the opset_version being used to export # is > 12 here, but there's no good way to do that. As-is, if the # opset_version < 12, export will fail with a CheckerError. # Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like: # if opset_version < 12: # return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train) return symbolic_opset12.dropout(g, input, dropout_p, train) # Copied from transformers.models.deberta.modeling_deberta.StableDropout class StableDropout(nn.Module): """ Optimized dropout module for stabilizing the training Args: drop_prob (float): the dropout probabilities """ def __init__(self, drop_prob): super().__init__() self.drop_prob = drop_prob self.count = 0 self.context_stack = None def forward(self, x): """ Call the module Args: x (`torch.tensor`): The input tensor to apply dropout """ if self.training and self.drop_prob > 0: return XDropout.apply(x, self.get_context()) return x def clear_context(self): self.count = 0 self.context_stack = None def init_context(self, reuse_mask=True, scale=1): if self.context_stack is None: self.context_stack = [] self.count = 0 for c in self.context_stack: c.reuse_mask = reuse_mask c.scale = scale def get_context(self): if self.context_stack is not None: if self.count >= len(self.context_stack): self.context_stack.append(DropoutContext()) ctx = self.context_stack[self.count] ctx.dropout = self.drop_prob self.count += 1 return ctx else: return self.drop_prob # Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaV2->SEWD, DebertaLayerNorm->LayerNorm, hidden_dropout_prob->activation_dropout class SEWDSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.activation_dropout) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.deberta_v2.modeling_deberta_v2.DisentangledSelfAttention with attention_probs_dropout_prob->attention_dropout, hidden_dropout_prob->activation_dropout class DisentangledSelfAttention(nn.Module): """ Disentangled self-attention module Parameters: config (`DebertaV2Config`): A model config class instance with the configuration to build a new model. The schema is similar to *BertConfig*, for more details, please refer [`DebertaV2Config`] """ def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads _attention_head_size = config.hidden_size // config.num_attention_heads self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.share_att_key = getattr(config, "share_att_key", False) self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else [] self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.position_buckets = getattr(config, "position_buckets", -1) self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.pos_ebd_size = self.max_relative_positions if self.position_buckets > 0: self.pos_ebd_size = self.position_buckets self.pos_dropout = StableDropout(config.activation_dropout) if not self.share_att_key: if "c2p" in self.pos_att_type: self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) if "p2c" in self.pos_att_type: self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = StableDropout(config.attention_dropout) def transpose_for_scores(self, x, attention_heads): new_x_shape = x.size()[:-1] + (attention_heads, -1) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1)) def forward( self, hidden_states, attention_mask, output_attentions=False, query_states=None, relative_pos=None, rel_embeddings=None, ): """ Call the module Args: hidden_states (`torch.FloatTensor`): Input states to the module usually the output from previous layer, it will be the Q,K and V in *Attention(Q,K,V)* attention_mask (`torch.BoolTensor`): An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j* th token. output_attentions (`bool`, optional): Whether return the attention matrix. query_states (`torch.FloatTensor`, optional): The *Q* state in *Attention(Q,K,V)*. relative_pos (`torch.LongTensor`): The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with values ranging in [*-max_relative_positions*, *max_relative_positions*]. rel_embeddings (`torch.FloatTensor`): The embedding of relative distances. It's a tensor of shape [\\(2 \\times \\text{max_relative_positions}\\), *hidden_size*]. """ if query_states is None: query_states = hidden_states query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads) key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads) value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads) rel_att = None # Take the dot product between "query" and "key" to get the raw attention scores. scale_factor = 1 if "c2p" in self.pos_att_type: scale_factor += 1 if "p2c" in self.pos_att_type: scale_factor += 1 scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor) attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2) / scale.to(dtype=query_layer.dtype)) if self.relative_attention: rel_embeddings = self.pos_dropout(rel_embeddings) rel_att = self.disentangled_attention_bias( query_layer, key_layer, relative_pos, rel_embeddings, scale_factor ) if rel_att is not None: attention_scores = attention_scores + rel_att attention_scores = attention_scores attention_scores = attention_scores.view( -1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1) ) # bsz x height x length x dimension attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1) attention_probs = self.dropout(attention_probs) context_layer = torch.bmm( attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer ) context_layer = ( context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1)) .permute(0, 2, 1, 3) .contiguous() ) new_context_layer_shape = context_layer.size()[:-2] + (-1,) context_layer = context_layer.view(new_context_layer_shape) if output_attentions: return (context_layer, attention_probs) else: return context_layer def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor): if relative_pos is None: q = query_layer.size(-2) relative_pos = build_relative_position( q, key_layer.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions, device=query_layer.device, ) if relative_pos.dim() == 2: relative_pos = relative_pos.unsqueeze(0).unsqueeze(0) elif relative_pos.dim() == 3: relative_pos = relative_pos.unsqueeze(1) # bsz x height x query x key elif relative_pos.dim() != 4: raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}") att_span = self.pos_ebd_size relative_pos = relative_pos.long().to(query_layer.device) rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0) if self.share_att_key: pos_query_layer = self.transpose_for_scores( self.query_proj(rel_embeddings), self.num_attention_heads ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat( query_layer.size(0) // self.num_attention_heads, 1, 1 ) else: if "c2p" in self.pos_att_type: pos_key_layer = self.transpose_for_scores( self.pos_key_proj(rel_embeddings), self.num_attention_heads ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1) if "p2c" in self.pos_att_type: pos_query_layer = self.transpose_for_scores( self.pos_query_proj(rel_embeddings), self.num_attention_heads ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1) score = 0 # content->position if "c2p" in self.pos_att_type: scale = torch.sqrt(torch.tensor(pos_key_layer.size(-1), dtype=torch.float) * scale_factor) c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2)) c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1) c2p_att = torch.gather( c2p_att, dim=-1, index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]), ) score += c2p_att / scale.to(dtype=c2p_att.dtype) # position->content if "p2c" in self.pos_att_type: scale = torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor) if key_layer.size(-2) != query_layer.size(-2): r_pos = build_relative_position( key_layer.size(-2), key_layer.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions, device=query_layer.device, ) r_pos = r_pos.unsqueeze(0) else: r_pos = relative_pos p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1) p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2)) p2c_att = torch.gather( p2c_att, dim=-1, index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]), ).transpose(-1, -2) score += p2c_att / scale.to(dtype=p2c_att.dtype) return score # Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->SEWD class SEWDAttention(nn.Module): def __init__(self, config): super().__init__() self.self = DisentangledSelfAttention(config) self.output = SEWDSelfOutput(config) self.config = config def forward( self, hidden_states, attention_mask, output_attentions=False, query_states=None, relative_pos=None, rel_embeddings=None, ): self_output = self.self( hidden_states, attention_mask, output_attentions, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, ) if output_attentions: self_output, att_matrix = self_output if query_states is None: query_states = hidden_states attention_output = self.output(self_output, query_states) if output_attentions: return (attention_output, att_matrix) else: return attention_output # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->SEWD class SEWDIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm, hidden_dropout_prob->activation_dropout class SEWDOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.activation_dropout) self.config = config def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->SEWD class SEWDLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = SEWDAttention(config) self.intermediate = SEWDIntermediate(config) self.output = SEWDOutput(config) def forward( self, hidden_states, attention_mask, query_states=None, relative_pos=None, rel_embeddings=None, output_attentions=False, ): attention_output = self.attention( hidden_states, attention_mask, output_attentions=output_attentions, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, ) if output_attentions: attention_output, att_matrix = attention_output intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) if output_attentions: return (layer_output, att_matrix) else: return layer_output # Copied from transformers.models.deberta_v2.modeling_deberta_v2.ConvLayer class ConvLayer(nn.Module): def __init__(self, config): super().__init__() kernel_size = getattr(config, "conv_kernel_size", 3) groups = getattr(config, "conv_groups", 1) self.conv_act = getattr(config, "conv_act", "tanh") self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups ) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.hidden_dropout_prob) self.config = config def forward(self, hidden_states, residual_states, input_mask): out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous() rmask = (1 - input_mask).bool() out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0) out = ACT2FN[self.conv_act](self.dropout(out)) layer_norm_input = residual_states + out output = self.LayerNorm(layer_norm_input).to(layer_norm_input) if input_mask is None: output_states = output else: if input_mask.dim() != layer_norm_input.dim(): if input_mask.dim() == 4: input_mask = input_mask.squeeze(1).squeeze(1) input_mask = input_mask.unsqueeze(2) input_mask = input_mask.to(output.dtype) output_states = output * input_mask return output_states # Copied from transformers.models.deberta_v2.modeling_deberta_v2.DebertaV2Encoder with DebertaV2->SEWD class SEWDTransformerEncoder(nn.Module): """Modified BertEncoder with relative position bias support""" def __init__(self, config): super().__init__() self.layer = nn.ModuleList([SEWDLayer(config) for _ in range(config.num_hidden_layers)]) self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.position_buckets = getattr(config, "position_buckets", -1) pos_ebd_size = self.max_relative_positions * 2 if self.position_buckets > 0: pos_ebd_size = self.position_buckets * 2 self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size) self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")] if "layer_norm" in self.norm_rel_ebd: self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True) self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None self.gradient_checkpointing = False def get_rel_embedding(self): rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd): rel_embeddings = self.LayerNorm(rel_embeddings) return rel_embeddings def get_attention_mask(self, attention_mask): if attention_mask.dim() <= 2: extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1) elif attention_mask.dim() == 3: attention_mask = attention_mask.unsqueeze(1) return attention_mask def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): if self.relative_attention and relative_pos is None: q = query_states.size(-2) if query_states is not None else hidden_states.size(-2) relative_pos = build_relative_position( q, hidden_states.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions, device=hidden_states.device, ) return relative_pos def forward( self, hidden_states, attention_mask, output_hidden_states=True, output_attentions=False, query_states=None, relative_pos=None, return_dict=True, ): if attention_mask.dim() <= 2: input_mask = attention_mask else: input_mask = attention_mask.sum(-2) > 0 attention_mask = self.get_attention_mask(attention_mask) relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None if isinstance(hidden_states, Sequence): next_kv = hidden_states[0] else: next_kv = hidden_states rel_embeddings = self.get_rel_embedding() output_states = next_kv for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) if self.gradient_checkpointing and self.training: output_states = self._gradient_checkpointing_func( layer_module.__call__, next_kv, attention_mask, query_states, relative_pos, rel_embeddings, output_attentions, ) else: output_states = layer_module( next_kv, attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, ) if output_attentions: output_states, att_m = output_states if i == 0 and self.conv is not None: output_states = self.conv(hidden_states, output_states, input_mask) if query_states is not None: query_states = output_states if isinstance(hidden_states, Sequence): next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None else: next_kv = output_states if output_attentions: all_attentions = all_attentions + (att_m,) if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) if not return_dict: return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions ) class SEWDEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = SEWDPositionalConvEmbedding(config) self.pool = nn.AvgPool1d(config.squeeze_factor, config.squeeze_factor) self.encoder = SEWDTransformerEncoder(config) self.upsample = SEWDUpsampling(config) self.gradient_checkpointing = False def forward( self, hidden_states: torch.tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): max_encoder_length = hidden_states.shape[1] // self.config.squeeze_factor if attention_mask is None: attention_mask = torch.ones( (hidden_states.shape[0], max_encoder_length), dtype=torch.long, device=hidden_states.device ) else: # make sure padded tokens output 0 hidden_states[~attention_mask.bool()] = 0.0 input_lengths = (attention_mask.long()).sum(-1) # apply pooling formula to get real output_lengths output_lengths = input_lengths // self.config.squeeze_factor attention_ids = ( torch.arange(0, max_encoder_length, device=output_lengths.device) .view(1, -1) .expand(output_lengths.shape[0], -1) ) attention_mask = (attention_ids < output_lengths.view(-1, 1)).long() n_input_timesteps = hidden_states.shape[1] hidden_states = hidden_states.transpose(1, 2) position_embeddings = self.pos_conv_embed(hidden_states) pooled_hidden_states = self.pool(hidden_states) min_length = min(position_embeddings.size(-1), pooled_hidden_states.size(-1)) hidden_states = pooled_hidden_states[..., :min_length] + position_embeddings[..., :min_length] hidden_states = hidden_states.transpose(1, 2) encoder_outputs = self.encoder(hidden_states, attention_mask, output_hidden_states, output_attentions) hidden_states = self.upsample(encoder_outputs.last_hidden_state) if hidden_states.shape[1] < n_input_timesteps: hidden_states = nn.functional.pad(hidden_states, (0, 0, 0, n_input_timesteps - hidden_states.shape[1])) if not return_dict: return tuple( v for v in [hidden_states, encoder_outputs.hidden_states, encoder_outputs.attentions] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class SEWDPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SEWDConfig base_model_prefix = "sew-d" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, SEWDPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): if is_deepspeed_zero3_enabled(): import deepspeed if hasattr(module, "weight_v") and hasattr(module, "weight_g"): with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0): nn.init.kaiming_normal_(module.weight.data) else: with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0): nn.init.kaiming_normal_(module.weight.data) else: nn.init.kaiming_normal_(module.weight.data) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None: module.bias.data.zero_() def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask SEWD_START_DOCSTRING = r""" SEW-D was proposed in [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SEWDConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SEWD_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SEW-D Model transformer outputting raw hidden-states without any specific head on top.", SEWD_START_DOCSTRING, ) # Copied from transformers.models.sew.modeling_sew.SEWModel with SEW->SEWD, layer_norm_eps->feature_layer_norm_eps class SEWDModel(SEWDPreTrainedModel): def __init__(self, config: SEWDConfig): super().__init__(config) self.config = config self.feature_extractor = SEWDFeatureEncoder(config) self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.feature_layer_norm_eps) self.project_features = config.conv_dim[-1] != config.hidden_size if self.project_features: self.feature_projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.feature_dropout = nn.Dropout(config.feat_proj_dropout) if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) self.encoder = SEWDEncoder(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) extract_features = self.layer_norm(extract_features) if self.project_features: extract_features = self.feature_projection(extract_features) hidden_states = self.feature_dropout(extract_features) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """SEW-D Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", SEWD_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->SEWD, wav2vec2->sew_d, WAV_2_VEC_2->SEWD class SEWDForCTC(SEWDPreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.sew_d = SEWDModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `SEWDForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for SEWD so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, SEWD never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.sew_d.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.sew_d.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.sew_d( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ SEWD Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, SEWD_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification with Wav2Vec2->SEWD, wav2vec2->sew_d, WAV_2_VEC_2->SEWD class SEWDForSequenceClassification(SEWDPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of SEWD adapters (config.add_adapter=True)" ) self.sew_d = SEWDModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.sew_d.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.sew_d.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_SEQ_CLASS_CHECKPOINT, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.sew_d( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/sew_d/modeling_sew_d.py/0
{ "file_path": "transformers/src/transformers/models/sew_d/modeling_sew_d.py", "repo_id": "transformers", "token_count": 32314 }
127
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from torch import nn from transformers import Speech2TextConfig, Speech2TextForConditionalGeneration def remove_ignore_keys_(state_dict): ignore_keys = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(k, None) def rename_keys(s_dict): keys = list(s_dict.keys()) for key in keys: if "transformer_layers" in key: s_dict[key.replace("transformer_layers", "layers")] = s_dict.pop(key) elif "subsample" in key: s_dict[key.replace("subsample", "conv")] = s_dict.pop(key) def make_linear_from_emb(emb): vocab_size, emb_size = emb.weight.shape lin_layer = nn.Linear(vocab_size, emb_size, bias=False) lin_layer.weight.data = emb.weight.data return lin_layer def convert_fairseq_s2t_checkpoint_to_tfms(checkpoint_path, pytorch_dump_folder_path): m2m_100 = torch.load(checkpoint_path, map_location="cpu") args = m2m_100["args"] state_dict = m2m_100["model"] lm_head_weights = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(state_dict) rename_keys(state_dict) vocab_size = state_dict["decoder.embed_tokens.weight"].shape[0] tie_embeds = args.share_decoder_input_output_embed conv_kernel_sizes = [int(i) for i in args.conv_kernel_sizes.split(",")] config = Speech2TextConfig( vocab_size=vocab_size, max_source_positions=args.max_source_positions, max_target_positions=args.max_target_positions, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function="relu", num_conv_layers=len(conv_kernel_sizes), conv_channels=args.conv_channels, conv_kernel_sizes=conv_kernel_sizes, input_feat_per_channel=args.input_feat_per_channel, input_channels=args.input_channels, tie_word_embeddings=tie_embeds, num_beams=5, max_length=200, use_cache=True, decoder_start_token_id=2, early_stopping=True, ) model = Speech2TextForConditionalGeneration(config) missing, unexpected = model.model.load_state_dict(state_dict, strict=False) if len(missing) > 0 and not set(missing) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," f" but all the following weights are missing {missing}" ) if tie_embeds: model.lm_head = make_linear_from_emb(model.model.decoder.embed_tokens) else: model.lm_head.weight.data = lm_head_weights model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") args = parser.parse_args() convert_fairseq_s2t_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
transformers/src/transformers/models/speech_to_text/convert_s2t_fairseq_to_tfms.py/0
{ "file_path": "transformers/src/transformers/models/speech_to_text/convert_s2t_fairseq_to_tfms.py", "repo_id": "transformers", "token_count": 1824 }
128
# coding=utf-8 # Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch SpeechT5 model.""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, L1Loss from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, Seq2SeqSpectrogramOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_speecht5 import SpeechT5Config, SpeechT5HifiGanConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 1 # General docstring _CONFIG_FOR_DOC = "SpeechT5Config" SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/speecht5_asr", "microsoft/speecht5_tts", "microsoft/speecht5_vc", # See all SpeechT5 models at https://huggingface.co/models?filter=speecht5 ] # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids def shift_spectrograms_right(input_values: torch.Tensor, reduction_factor: int = 1): """ Shift input spectrograms one timestep to the right. Also applies the reduction factor to the sequence length. """ # thin out frames for reduction factor if reduction_factor > 1: input_values = input_values[:, reduction_factor - 1 :: reduction_factor] shifted_input_values = input_values.new_zeros(input_values.shape) shifted_input_values[:, 1:] = input_values[:, :-1].clone() # replace possible -100 values in labels by zeros shifted_input_values.masked_fill_(shifted_input_values == -100.0, 0.0) return shifted_input_values # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SpeechT5 class SpeechT5NoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SpeechT5 class SpeechT5LayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SpeechT5 class SpeechT5GroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextSinusoidalPositionalEmbedding with Speech2Text->SpeechT5 class SpeechT5SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__() self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.weights = nn.Parameter(emb_weights) self.weights.requires_grad = False self.weights.detach_() @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): bsz, seq_len = input_ids.size() # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( input_ids.device ) # expand embeddings if needed max_pos = self.padding_idx + 1 + seq_len if max_pos > self.weights.size(0): self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach() def create_position_ids_from_input_ids( self, input_ids: torch.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0 ): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->SpeechT5 class SpeechT5PositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = SpeechT5SamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class SpeechT5ScaledPositionalEncoding(nn.Module): """ Scaled positional encoding, see §3.2 in https://arxiv.org/abs/1809.08895 """ def __init__(self, dropout, dim, max_len=5000): pe = torch.zeros(max_len, dim) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.int64).float() * -(math.log(10000.0) / dim))) pe[:, 0::2] = torch.sin(position.float() * div_term) pe[:, 1::2] = torch.cos(position.float() * div_term) pe = pe.unsqueeze(0) super().__init__() self.register_buffer("pe", pe, persistent=False) self.dropout = nn.Dropout(p=dropout) self.dim = dim self.alpha = torch.nn.Parameter(torch.tensor(1.0)) def forward(self, emb): emb = emb + self.alpha * self.pe[:, : emb.size(1)] emb = self.dropout(emb) return emb class SpeechT5RelativePositionalEncoding(torch.nn.Module): def __init__(self, dim, max_length=1000): super().__init__() self.dim = dim self.max_length = max_length self.pe_k = torch.nn.Embedding(2 * max_length, dim) def forward(self, hidden_states): seq_len = hidden_states.shape[1] pos_seq = torch.arange(0, seq_len).long().to(hidden_states.device) pos_seq = pos_seq[:, None] - pos_seq[None, :] pos_seq[pos_seq < -self.max_length] = -self.max_length pos_seq[pos_seq >= self.max_length] = self.max_length - 1 pos_seq = pos_seq + self.max_length return self.pe_k(pos_seq) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SpeechT5 class SpeechT5SamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SpeechT5 class SpeechT5FeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [SpeechT5GroupNormConvLayer(config, layer_id=0)] + [ SpeechT5NoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ SpeechT5LayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->SpeechT5 class SpeechT5FeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states class SpeechT5SpeechEncoderPrenet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.feature_encoder = SpeechT5FeatureEncoder(config) self.feature_projection = SpeechT5FeatureProjection(config) # model only needs masking vector if mask prob is > 0.0 if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) self.pos_conv_embed = SpeechT5PositionalConvEmbedding(config) self.pos_sinusoidal_embed = SpeechT5SinusoidalPositionalEmbedding( config.max_speech_positions + config.pad_token_id + 1, config.hidden_size, config.pad_token_id, ) def freeze_feature_encoder(self): self.feature_encoder._freeze_parameters() def forward( self, input_values: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, ): extract_features = self.feature_encoder(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) positional_conv_embedding = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + positional_conv_embedding if attention_mask is not None: padding_mask = attention_mask.ne(1).long() else: padding_mask = torch.zeros(hidden_states.shape[:2], dtype=torch.long, device=hidden_states.device) positional_sinusoidal_embeddings = self.pos_sinusoidal_embed(padding_mask) hidden_states = hidden_states + positional_sinusoidal_embeddings return hidden_states, attention_mask # Copied from transformers.models.unispeech.modeling_unispeech.UniSpeechPreTrainedModel._get_feature_vector_attention_mask def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask # Copied from transformers.models.unispeech.modeling_unispeech.UniSpeechPreTrainedModel._get_feat_extract_output_lengths def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states class SpeechT5SpeechDecoderPrenet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layers = nn.ModuleList( [ nn.Linear( config.num_mel_bins if i == 0 else config.speech_decoder_prenet_units, config.speech_decoder_prenet_units, ) for i in range(config.speech_decoder_prenet_layers) ] ) self.final_layer = nn.Linear(config.speech_decoder_prenet_units, config.hidden_size) self.encode_positions = SpeechT5ScaledPositionalEncoding( config.positional_dropout, config.hidden_size, config.max_speech_positions, ) self.speaker_embeds_layer = nn.Linear(config.speaker_embedding_dim + config.hidden_size, config.hidden_size) def _consistent_dropout(self, inputs_embeds, p): mask = torch.bernoulli(inputs_embeds[0], p=p) all_masks = mask.unsqueeze(0).repeat(inputs_embeds.size(0), 1, 1) return torch.where(all_masks == 1, inputs_embeds, 0) * 1 / (1 - p) def forward( self, input_values: torch.Tensor, speaker_embeddings: Optional[torch.Tensor] = None, ): # Dropout is always applied, even when evaluating. See §2.2 in https://arxiv.org/abs/1712.05884. inputs_embeds = input_values for layer in self.layers: inputs_embeds = nn.functional.relu(layer(inputs_embeds)) inputs_embeds = self._consistent_dropout(inputs_embeds, self.config.speech_decoder_prenet_dropout) inputs_embeds = self.final_layer(inputs_embeds) inputs_embeds = self.encode_positions(inputs_embeds) if speaker_embeddings is not None: speaker_embeddings = nn.functional.normalize(speaker_embeddings) speaker_embeddings = speaker_embeddings.unsqueeze(1).expand(-1, inputs_embeds.size(1), -1) inputs_embeds = torch.cat([inputs_embeds, speaker_embeddings], dim=-1) inputs_embeds = nn.functional.relu(self.speaker_embeds_layer(inputs_embeds)) return inputs_embeds class SpeechT5BatchNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() if layer_id == 0: in_conv_dim = config.num_mel_bins else: in_conv_dim = config.speech_decoder_postnet_units if layer_id == config.speech_decoder_postnet_layers - 1: out_conv_dim = config.num_mel_bins else: out_conv_dim = config.speech_decoder_postnet_units self.conv = nn.Conv1d( in_conv_dim, out_conv_dim, kernel_size=config.speech_decoder_postnet_kernel, stride=1, padding=(config.speech_decoder_postnet_kernel - 1) // 2, bias=False, ) self.batch_norm = nn.BatchNorm1d(out_conv_dim) if layer_id < config.speech_decoder_postnet_layers - 1: self.activation = nn.Tanh() else: self.activation = None self.dropout = nn.Dropout(config.speech_decoder_postnet_dropout) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.batch_norm(hidden_states) if self.activation is not None: hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class SpeechT5SpeechDecoderPostnet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.feat_out = nn.Linear(config.hidden_size, config.num_mel_bins * config.reduction_factor) self.prob_out = nn.Linear(config.hidden_size, config.reduction_factor) self.layers = nn.ModuleList( [SpeechT5BatchNormConvLayer(config, i) for i in range(config.speech_decoder_postnet_layers)] ) def forward(self, hidden_states: torch.Tensor): outputs_before_postnet = self.feat_out(hidden_states).view(hidden_states.size(0), -1, self.config.num_mel_bins) outputs_after_postnet = self.postnet(outputs_before_postnet) logits = self.prob_out(hidden_states).view(hidden_states.size(0), -1) return outputs_before_postnet, outputs_after_postnet, logits def postnet(self, hidden_states: torch.Tensor): layer_output = hidden_states.transpose(1, 2) for layer in self.layers: layer_output = layer(layer_output) return hidden_states + layer_output.transpose(1, 2) class SpeechT5TextEncoderPrenet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.encode_positions = SpeechT5ScaledPositionalEncoding( config.positional_dropout, config.hidden_size, config.max_text_positions, ) def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward(self, input_ids: torch.Tensor): inputs_embeds = self.embed_tokens(input_ids) inputs_embeds = self.encode_positions(inputs_embeds) return inputs_embeds class SpeechT5TextDecoderPrenet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.dropout = nn.Dropout(config.positional_dropout) self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.embed_positions = SpeechT5SinusoidalPositionalEmbedding( config.max_text_positions + config.pad_token_id + 1, config.hidden_size, config.pad_token_id, ) def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, ): if input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) else: raise ValueError("You have to specify `decoder_input_ids`") past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 positions = self.embed_positions(input_ids, past_key_values_length) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale inputs_embeds += positions inputs_embeds = self.dropout(inputs_embeds) return inputs_embeds, attention_mask class SpeechT5TextDecoderPostnet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) def forward(self, hidden_states: torch.Tensor): return self.lm_head(hidden_states) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings class SpeechT5Attention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper with relative position bias (see https://aclanthology.org/N18-2074.pdf) """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, position_bias: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # relative attention bias if position_bias is not None: reshape_q = query_states.contiguous().view(bsz * self.num_heads, -1, self.head_dim).transpose(0, 1) rel_pos_bias = torch.matmul(reshape_q, position_bias.transpose(-2, -1)) rel_pos_bias = rel_pos_bias.transpose(0, 1).view( bsz * self.num_heads, position_bias.size(0), position_bias.size(1) ) attn_weights += rel_pos_bias if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned aross GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class SpeechT5FeedForward(nn.Module): def __init__(self, config, intermediate_size): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class SpeechT5EncoderLayer(nn.Module): def __init__(self, config: SpeechT5Config): super().__init__() self.attention = SpeechT5Attention( embed_dim=config.hidden_size, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = SpeechT5FeedForward(config, config.encoder_ffn_dim) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, position_bias: Optional[torch.Tensor] = None, output_attentions: bool = False, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, hidden_size)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(config.encoder_attention_heads,)`. position_bias (`torch.FloatTensor`): relative position embeddings of size `(seq_len, seq_len, hidden_size // encoder_attention_heads)` output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, position_bias=position_bias, output_attentions=output_attentions, ) hidden_states = self.dropout(hidden_states) hidden_states = residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class SpeechT5DecoderLayer(nn.Module): def __init__(self, config: SpeechT5Config): super().__init__() self.self_attn = SpeechT5Attention( embed_dim=config.hidden_size, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = nn.Dropout(config.hidden_dropout) self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.encoder_attn = SpeechT5Attention( config.hidden_size, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.encoder_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = SpeechT5FeedForward(config, config.decoder_ffn_dim) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, hidden_size)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, hidden_size)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = self.dropout(hidden_states) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = self.dropout(hidden_states) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class SpeechT5PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SpeechT5Config base_model_prefix = "speecht5" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, SpeechT5PositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, SpeechT5FeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() class SpeechT5Encoder(SpeechT5PreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* layers. Each layer is a [`SpeechT5EncoderLayer`]. """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layerdrop = config.encoder_layerdrop self.layers = nn.ModuleList([SpeechT5EncoderLayer(config) for _ in range(config.encoder_layers)]) self.embed_positions = SpeechT5RelativePositionalEncoding( config.hidden_size // config.encoder_attention_heads, config.encoder_max_relative_position ) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, hidden_states: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`): Features extracted from the speech or text input by the encoder prenet. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) position_bias = self.embed_positions(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != len(self.layers): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) skip_the_layer = False if self.training: dropout_probability = torch.rand([]) skip_the_layer = dropout_probability < self.layerdrop if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), position_bias, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class SpeechT5EncoderWithSpeechPrenet(SpeechT5PreTrainedModel): """ Wrapper around SpeechT5Encoder that applies SpeechT5SpeechEncoderPrenet to convert the audio waveform data to hidden features. """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.prenet = SpeechT5SpeechEncoderPrenet(config) self.wrapped_encoder = SpeechT5Encoder(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_values: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: hidden_states, attention_mask = self.prenet(input_values, attention_mask) outputs = self.wrapped_encoder( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs class SpeechT5EncoderWithTextPrenet(SpeechT5PreTrainedModel): """ Wrapper around SpeechT5Encoder that applies SpeechT5TextEncoderPrenet to convert the input_ids to hidden features. """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.prenet = SpeechT5TextEncoderPrenet(config) self.wrapped_encoder = SpeechT5Encoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.prenet.get_input_embeddings() def set_input_embeddings(self, value): self.prenet.set_input_embeddings(value) def forward( self, input_values: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: hidden_states = self.prenet(input_values) outputs = self.wrapped_encoder( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs class SpeechT5EncoderWithoutPrenet(SpeechT5PreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when used in combination with [`SpeechT5Model`]. """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.wrapped_encoder = SpeechT5Encoder(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_values: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: return self.wrapped_encoder( hidden_states=input_values, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class SpeechT5Decoder(SpeechT5PreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SpeechT5DecoderLayer`] """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.layerdrop = config.decoder_layerdrop self.layers = nn.ModuleList([SpeechT5DecoderLayer(config) for _ in range(config.decoder_layers)]) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: r""" Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`): Features extracted from the speech or text input by the decoder prenet. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_shape = hidden_states.size()[:-1] past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, hidden_states, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, hidden_states.dtype, tgt_len=input_shape[-1] ) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != (len(self.layers)): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) skip_the_layer = False if self.training: dropout_probability = torch.rand([]) skip_the_layer = dropout_probability < self.layerdrop if skip_the_layer and not deepspeed_zero3_is_enabled: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class SpeechT5DecoderWithSpeechPrenet(SpeechT5PreTrainedModel): """ Wrapper around SpeechT5Decoder that applies SpeechT5SpeechDecoderPrenet to convert log-mel filterbanks to hidden features. """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.prenet = SpeechT5SpeechDecoderPrenet(config) self.wrapped_decoder = SpeechT5Decoder(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, speaker_embeddings: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: decoder_hidden_states = self.prenet(input_values, speaker_embeddings) outputs = self.wrapped_decoder( hidden_states=decoder_hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs class SpeechT5DecoderWithTextPrenet(SpeechT5PreTrainedModel): """ Wrapper around SpeechT5Decoder that applies SpeechT5TextDecoderPrenet to convert input tokens to hidden features. """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.prenet = SpeechT5TextDecoderPrenet(config) self.wrapped_decoder = SpeechT5Decoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.prenet.get_input_embeddings() def set_input_embeddings(self, value): self.prenet.set_input_embeddings(value) def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: decoder_hidden_states, attention_mask = self.prenet(input_values, attention_mask, past_key_values) outputs = self.wrapped_decoder( hidden_states=decoder_hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs class SpeechT5DecoderWithoutPrenet(SpeechT5PreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when used in combination with [`SpeechT5Model`]. """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.wrapped_decoder = SpeechT5Decoder(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: outputs = self.wrapped_decoder( hidden_states=input_values, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs class SpeechT5GuidedMultiheadAttentionLoss(nn.Module): """ Guided attention loss from the paper [Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention](https://arxiv.org/abs/1710.08969), adapted for multi-head attention. """ def __init__(self, config: SpeechT5Config): super().__init__() self.sigma = config.guided_attention_loss_sigma self.scale = config.guided_attention_loss_scale def forward( self, attentions: torch.FloatTensor, input_masks: torch.BoolTensor, output_masks: torch.BoolTensor ) -> torch.Tensor: """ Compute the attention loss. Args: attentions (`torch.FloatTensor` of shape `(batch_size, layers * heads, output_sequence_length, input_sequence_length)`): Batch of multi-head attention weights input_masks (`torch.BoolTensor` of shape `(batch_size, input_sequence_length)`): Input attention mask as booleans. output_masks (`torch.BoolTensor` of shape `(batch_size, output_sequence_length)`): Target attention mask as booleans. Returns: `torch.Tensor` with the loss value """ guided_attn_masks = self._make_guided_attention_masks(input_masks, output_masks, attentions.device) masks = output_masks.unsqueeze(-1) & input_masks.unsqueeze(-2) masks = masks.to(attentions.device).unsqueeze(1) losses = guided_attn_masks * attentions loss = torch.mean(losses.masked_select(masks)) return self.scale * loss def _make_guided_attention_masks(self, input_masks, output_masks, device): input_lengths = input_masks.sum(-1) output_lengths = output_masks.sum(-1) guided_attn_masks = torch.zeros((len(input_masks), output_masks.shape[1], input_masks.shape[1]), device=device) for idx, (ilen, olen) in enumerate(zip(input_lengths, output_lengths)): guided_attn_masks[idx, :olen, :ilen] = self._make_guided_attention_mask(ilen, olen, self.sigma, device) return guided_attn_masks.unsqueeze(1) @staticmethod def _make_guided_attention_mask(input_length, output_length, sigma, device): grid_y, grid_x = torch.meshgrid( torch.arange(input_length, device=device), torch.arange(output_length, device=device), indexing="xy", ) grid_x = grid_x.float() / output_length grid_y = grid_y.float() / input_length return 1.0 - torch.exp(-((grid_y - grid_x) ** 2) / (2 * (sigma**2))) class SpeechT5SpectrogramLoss(nn.Module): """ Loss computation used by SpeechT5ForTextToSpeech. """ def __init__(self, config: SpeechT5Config): super().__init__() self.use_guided_attention_loss = config.use_guided_attention_loss self.guided_attention_loss_num_heads = config.guided_attention_loss_num_heads self.reduction_factor = config.reduction_factor self.l1_criterion = L1Loss() self.bce_criterion = BCEWithLogitsLoss(pos_weight=torch.tensor(5.0)) if self.use_guided_attention_loss: self.attn_criterion = SpeechT5GuidedMultiheadAttentionLoss(config) def forward( self, attention_mask: torch.LongTensor, outputs_before_postnet: torch.FloatTensor, outputs_after_postnet: torch.FloatTensor, logits: torch.FloatTensor, labels: torch.FloatTensor, cross_attentions: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: padding_mask = labels != -100.0 # mask out the padded portions labels = labels.masked_select(padding_mask) outputs_before_postnet = outputs_before_postnet.masked_select(padding_mask) outputs_after_postnet = outputs_after_postnet.masked_select(padding_mask) # spectrogram loss l1_loss = self.l1_criterion(outputs_after_postnet, labels) + self.l1_criterion(outputs_before_postnet, labels) # construct stop labels from the padding mask masks = padding_mask[:, :, 0] stop_labels = torch.cat([~masks * 1.0, torch.ones(masks.size(0), 1).to(masks.device)], dim=1) stop_labels = stop_labels[:, 1:].masked_select(masks) logits = logits.masked_select(masks) # stop token loss bce_loss = self.bce_criterion(logits, stop_labels) # combined loss loss = l1_loss + bce_loss # guided attention loss if self.use_guided_attention_loss: attn = torch.cat([x[:, : self.guided_attention_loss_num_heads] for x in cross_attentions], dim=1) input_masks = attention_mask == 1 output_masks = padding_mask[:, :, 0] if self.reduction_factor > 1: output_masks = output_masks[:, self.reduction_factor - 1 :: self.reduction_factor] attn_loss = self.attn_criterion(attn, input_masks, output_masks) loss += attn_loss return loss SPEECHT5_BASE_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SpeechT5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. encoder ([`SpeechT5EncoderWithSpeechPrenet`] or [`SpeechT5EncoderWithTextPrenet`] or `None`): The Transformer encoder module that applies the appropiate speech or text encoder prenet. If `None`, [`SpeechT5EncoderWithoutPrenet`] will be used and the `input_values` are assumed to be hidden states. decoder ([`SpeechT5DecoderWithSpeechPrenet`] or [`SpeechT5DecoderWithTextPrenet`] or `None`): The Transformer decoder module that applies the appropiate speech or text decoder prenet. If `None`, [`SpeechT5DecoderWithoutPrenet`] will be used and the `decoder_input_values` are assumed to be hidden states. """ SPEECHT5_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SpeechT5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SPEECHT5_INPUTS_DOCSTRING = r""" Args: attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_values`. Causal mask will also be used by default. If you want to change padding behavior, you should read [`SpeechT5Decoder._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. head_mask (`torch.FloatTensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.FloatTensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_values` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_values` of shape `(batch_size, sequence_length)`. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_values` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_values` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SpeechT5 Encoder-Decoder Model outputting raw hidden-states without any specific pre- or post-nets.", SPEECHT5_BASE_START_DOCSTRING, ) class SpeechT5Model(SpeechT5PreTrainedModel): def __init__( self, config: SpeechT5Config, encoder: Optional[nn.Module] = None, decoder: Optional[nn.Module] = None, ): super().__init__(config) self.config = config self.encoder = SpeechT5EncoderWithoutPrenet(config) if encoder is None else encoder self.decoder = SpeechT5DecoderWithoutPrenet(config) if decoder is None else decoder # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): if isinstance(self.encoder, SpeechT5EncoderWithTextPrenet): return self.encoder.get_input_embeddings() if isinstance(self.decoder, SpeechT5DecoderWithTextPrenet): return self.decoder.get_input_embeddings() return None def set_input_embeddings(self, value): if isinstance(self.encoder, SpeechT5EncoderWithTextPrenet): self.encoder.set_input_embeddings(value) if isinstance(self.decoder, SpeechT5DecoderWithTextPrenet): self.decoder.set_input_embeddings(value) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ if isinstance(self.encoder, SpeechT5EncoderWithSpeechPrenet): self.encoder.prenet.freeze_feature_encoder() @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_values: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, speaker_embeddings: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" input_values (`torch.Tensor` of shape `(batch_size, sequence_length)`): Depending on which encoder is being used, the `input_values` are either: float values of the input raw speech waveform, or indices of input sequence tokens in the vocabulary, or hidden states. decoder_input_values (`torch.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Depending on which decoder is being used, the `decoder_input_values` are either: float values of log-mel filterbank features extracted from the raw speech waveform, or indices of decoder input sequence tokens in the vocabulary, or hidden states. speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): Tensor containing the speaker embeddings. Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( input_values=input_values, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # downsample encoder attention mask (only for encoders with speech input) if attention_mask is not None and isinstance(self.encoder, SpeechT5EncoderWithSpeechPrenet): encoder_attention_mask = self.encoder.prenet._get_feature_vector_attention_mask( encoder_outputs[0].shape[1], attention_mask ) else: encoder_attention_mask = attention_mask if isinstance(self.decoder, SpeechT5DecoderWithSpeechPrenet): decoder_args = {"speaker_embeddings": speaker_embeddings} else: decoder_args = {} decoder_outputs = self.decoder( input_values=decoder_input_values, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **decoder_args, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( """SpeechT5 Model with a speech encoder and a text decoder.""", SPEECHT5_START_DOCSTRING, ) class SpeechT5ForSpeechToText(SpeechT5PreTrainedModel): _tied_weights_keys = ["text_decoder_postnet.lm_head.weight"] def __init__(self, config: SpeechT5Config): super().__init__(config) if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that does not define the" " vocabulary size of the language model head. Please instantiate the model as follows:" " `SpeechT5ForSpeechToText.from_pretrained(..., vocab_size=vocab_size)`. or define `vocab_size` of" " your model's configuration." ) speech_encoder = SpeechT5EncoderWithSpeechPrenet(config) text_decoder = SpeechT5DecoderWithTextPrenet(config) self.speecht5 = SpeechT5Model(config, speech_encoder, text_decoder) self.text_decoder_postnet = SpeechT5TextDecoderPostnet(config) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.speecht5.get_encoder() def get_decoder(self): return self.speecht5.get_decoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.get_encoder().prenet.freeze_feature_encoder() def get_output_embeddings(self): return self.text_decoder_postnet.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.text_decoder_postnet.set_output_embeddings(new_embeddings) @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple, Seq2SeqLMOutput]: r""" input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array into `input_values`, the [`SpeechT5Processor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details. decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`SpeechT5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) SpeechT5 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Label indices can be obtained using [`SpeechT5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. Returns: Example: ```python >>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToText >>> from datasets import load_dataset >>> dataset = load_dataset( ... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation" ... ) # doctest: +IGNORE_RESULT >>> dataset = dataset.sort("id") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_asr") >>> model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr") >>> # audio file is decoded on the fly >>> inputs = processor(audio=dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") >>> predicted_ids = model.generate(**inputs, max_length=100) >>> # transcribe speech >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) >>> transcription[0] 'mister quilter is the apostle of the middle classes and we are glad to welcome his gospel' ``` ```python >>> inputs["labels"] = processor(text_target=dataset[0]["text"], return_tensors="pt").input_ids >>> # compute loss >>> loss = model(**inputs).loss >>> round(loss.item(), 2) 19.68 ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.speecht5( input_values=input_values, attention_mask=attention_mask, decoder_input_values=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) logits = self.text_decoder_postnet(outputs[0]) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if decoder_input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = decoder_input_ids.shape[1] - 1 decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] return { "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past def _generate_speech( model: SpeechT5PreTrainedModel, input_values: torch.FloatTensor, speaker_embeddings: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, threshold: float = 0.5, minlenratio: float = 0.0, maxlenratio: float = 20.0, vocoder: Optional[nn.Module] = None, output_cross_attentions: bool = False, return_output_lengths: bool = False, ) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]: if speaker_embeddings is None: raise ValueError( """`speaker_embeddings` must be specified. For example, you can use a speaker embeddings by following the code snippet provided in this link: https://huggingface.co/datasets/Matthijs/cmu-arctic-xvectors """ ) if attention_mask is None: encoder_attention_mask = 1 - (input_values == model.config.pad_token_id).int() else: encoder_attention_mask = attention_mask bsz = input_values.size(0) encoder_out = model.speecht5.encoder( input_values=input_values, attention_mask=encoder_attention_mask, return_dict=True, ) encoder_last_hidden_state = encoder_out.last_hidden_state # downsample encoder attention mask if isinstance(model.speecht5.encoder, SpeechT5EncoderWithSpeechPrenet): encoder_attention_mask = model.speecht5.encoder.prenet._get_feature_vector_attention_mask( encoder_out[0].shape[1], encoder_attention_mask ) maxlen = int(encoder_last_hidden_state.size(1) * maxlenratio / model.config.reduction_factor) minlen = int(encoder_last_hidden_state.size(1) * minlenratio / model.config.reduction_factor) # Start the output sequence with a mel spectrum that is all zeros. output_sequence = encoder_last_hidden_state.new_zeros(bsz, 1, model.config.num_mel_bins) spectrogram = [] cross_attentions = [] past_key_values = None idx = 0 result_spectrogram = {} while True: idx += 1 # Run the decoder prenet on the entire output sequence. decoder_hidden_states = model.speecht5.decoder.prenet(output_sequence, speaker_embeddings) # Run the decoder layers on the last element of the prenet output. decoder_out = model.speecht5.decoder.wrapped_decoder( hidden_states=decoder_hidden_states[:, -1:], attention_mask=None, encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=True, output_attentions=output_cross_attentions, return_dict=True, ) if output_cross_attentions: cross_attentions.append(torch.cat(decoder_out.cross_attentions, dim=0)) last_decoder_output = decoder_out.last_hidden_state.squeeze(1) past_key_values = decoder_out.past_key_values # Predict the new mel spectrum for this step in the sequence. spectrum = model.speech_decoder_postnet.feat_out(last_decoder_output) spectrum = spectrum.view(bsz, model.config.reduction_factor, model.config.num_mel_bins) spectrogram.append(spectrum) # Extend the output sequence with the new mel spectrum. new_spectrogram = spectrum[:, -1, :].view(bsz, 1, model.config.num_mel_bins) output_sequence = torch.cat((output_sequence, new_spectrogram), dim=1) # Predict the probability that this is the stop token. prob = torch.sigmoid(model.speech_decoder_postnet.prob_out(last_decoder_output)) if idx < minlen: continue else: # If the generation loop is less than maximum length time, check the ones in the batch that have met # the prob threshold. Otherwise, assume all have met thresholds and fill other spectrograms for the batch. if idx < maxlen: meet_thresholds = torch.sum(prob, dim=-1) >= threshold meet_indexes = torch.where(meet_thresholds)[0].tolist() else: meet_indexes = range(len(prob)) meet_indexes = [i for i in meet_indexes if i not in result_spectrogram] if len(meet_indexes) > 0: spectrograms = torch.stack(spectrogram) spectrograms = spectrograms.transpose(0, 1).flatten(1, 2) spectrograms = model.speech_decoder_postnet.postnet(spectrograms) for meet_index in meet_indexes: result_spectrogram[meet_index] = spectrograms[meet_index] if len(result_spectrogram) >= bsz: break spectrograms = [result_spectrogram[i] for i in range(len(result_spectrogram))] if not return_output_lengths: spectrogram = spectrograms[0] if bsz == 1 else torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True) if vocoder is not None: outputs = vocoder(spectrogram) else: outputs = spectrogram if output_cross_attentions: cross_attentions = torch.cat(cross_attentions, dim=2) if bsz > 1: cross_attentions = cross_attentions.view( bsz, int(cross_attentions.size(0) / bsz), *cross_attentions.size()[-3:] ) outputs = (outputs, cross_attentions) else: # batched return values should also include the spectrogram/waveform lengths spectrogram_lengths = [] for i in range(bsz): spectrogram_lengths.append(spectrograms[i].size(0)) if vocoder is None: spectrograms = torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True) outputs = (spectrograms, spectrogram_lengths) else: waveforms = [] spectrograms = torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True) waveforms = vocoder(spectrograms) waveform_lengths = [int(waveforms.size(1) / max(spectrogram_lengths)) * i for i in spectrogram_lengths] outputs = (waveforms, waveform_lengths) if output_cross_attentions: cross_attentions = torch.cat(cross_attentions, dim=2) cross_attentions = cross_attentions.view( bsz, int(cross_attentions.size(0) / bsz), *cross_attentions.size()[-3:] ) outputs = (*outputs, cross_attentions) return outputs @add_start_docstrings( """SpeechT5 Model with a text encoder and a speech decoder.""", SPEECHT5_START_DOCSTRING, ) class SpeechT5ForTextToSpeech(SpeechT5PreTrainedModel): main_input_name = "input_ids" def __init__(self, config: SpeechT5Config): super().__init__(config) if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that does not define the" " vocabulary size of the language model head. Please instantiate the model as follows:" " `SpeechT5ForTextToSpeech.from_pretrained(..., vocab_size=vocab_size)`. or define `vocab_size` of" " your model's configuration." ) text_encoder = SpeechT5EncoderWithTextPrenet(config) speech_decoder = SpeechT5DecoderWithSpeechPrenet(config) self.speecht5 = SpeechT5Model(config, text_encoder, speech_decoder) self.speech_decoder_postnet = SpeechT5SpeechDecoderPostnet(config) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.speecht5.get_encoder() def get_decoder(self): return self.speecht5.get_decoder() @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqSpectrogramOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_values: Optional[torch.FloatTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, speaker_embeddings: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, stop_labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, Seq2SeqSpectrogramOutput]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and [`~PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) decoder_input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`): Float values of input mel spectrogram. SpeechT5 uses an all-zero spectrum as the starting token for `decoder_input_values` generation. If `past_key_values` is used, optionally only the last `decoder_input_values` have to be input (see `past_key_values`). speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): Tensor containing the speaker embeddings. labels (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`, *optional*): Float values of target mel spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss computation. Spectrograms can be obtained using [`SpeechT5Processor`]. See [`SpeechT5Processor.__call__`] for details. Returns: Example: ```python >>> from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, set_seed >>> import torch >>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") >>> model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") >>> vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") >>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt") >>> speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file >>> set_seed(555) # make deterministic >>> # generate speech >>> speech = model.generate(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) >>> speech.shape torch.Size([15872]) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_values is None: decoder_input_values = shift_spectrograms_right(labels, self.config.reduction_factor) if self.config.use_guided_attention_loss: output_attentions = True outputs = self.speecht5( input_values=input_ids, attention_mask=attention_mask, decoder_input_values=decoder_input_values, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, use_cache=use_cache, speaker_embeddings=speaker_embeddings, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) outputs_before_postnet, outputs_after_postnet, logits = self.speech_decoder_postnet(outputs[0]) loss = None if labels is not None: criterion = SpeechT5SpectrogramLoss(self.config) loss = criterion( attention_mask, outputs_before_postnet, outputs_after_postnet, logits, labels, outputs.cross_attentions, ) if not return_dict: output = (outputs_after_postnet,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqSpectrogramOutput( loss=loss, spectrogram=outputs_after_postnet, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @torch.no_grad() def generate( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.LongTensor] = None, speaker_embeddings: Optional[torch.FloatTensor] = None, threshold: float = 0.5, minlenratio: float = 0.0, maxlenratio: float = 20.0, vocoder: Optional[nn.Module] = None, output_cross_attentions: bool = False, return_output_lengths: bool = False, **kwargs, ) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]: r""" Converts a sequence of input tokens into a sequence of mel spectrograms, which are subsequently turned into a speech waveform using a vocoder. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and [`~PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Attention mask from the tokenizer, required for batched inference to signal to the model where to ignore padded tokens from the input_ids. speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): Tensor containing the speaker embeddings. threshold (`float`, *optional*, defaults to 0.5): The generated sequence ends when the predicted stop token probability exceeds this value. minlenratio (`float`, *optional*, defaults to 0.0): Used to calculate the minimum required length for the output sequence. maxlenratio (`float`, *optional*, defaults to 20.0): Used to calculate the maximum allowed length for the output sequence. vocoder (`nn.Module`, *optional*): The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel spectrogram. output_cross_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of the decoder's cross-attention layers. return_output_lengths (`bool`, *optional*, defaults to `False`): Whether or not to return the concrete spectrogram/waveform lengths. Returns: `tuple(torch.FloatTensor)` comprising various elements depending on the inputs: - when `return_output_lengths` is False - **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape `(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram. - **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape `(num_frames,)` -- The predicted speech waveform. - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) `torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads, output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. - when `return_output_lengths` is True - **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape `(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that are padded to the maximum length. - **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of all the concrete lengths for each spectrogram. - **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape `(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length. - **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all the concrete lengths for each waveform. - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) `torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads, output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. """ if speaker_embeddings is not None: batch_size = input_ids.size(0) if speaker_embeddings.size(0) != batch_size: if speaker_embeddings.size(0) == 1: speaker_embeddings = speaker_embeddings.repeat(batch_size, 1) else: raise ValueError( "The first dimension of speaker_embeddings must be either 1 or the same as batch_size." ) return _generate_speech( self, input_ids, speaker_embeddings, attention_mask, threshold, minlenratio, maxlenratio, vocoder, output_cross_attentions, return_output_lengths, ) @torch.no_grad() def generate_speech( self, input_ids: torch.LongTensor, speaker_embeddings: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, threshold: float = 0.5, minlenratio: float = 0.0, maxlenratio: float = 20.0, vocoder: Optional[nn.Module] = None, output_cross_attentions: bool = False, return_output_lengths: bool = False, ) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]: r""" Converts a sequence of input tokens into a sequence of mel spectrograms, which are subsequently turned into a speech waveform using a vocoder. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and [`~PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): Tensor containing the speaker embeddings. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) threshold (`float`, *optional*, defaults to 0.5): The generated sequence ends when the predicted stop token probability exceeds this value. minlenratio (`float`, *optional*, defaults to 0.0): Used to calculate the minimum required length for the output sequence. maxlenratio (`float`, *optional*, defaults to 20.0): Used to calculate the maximum allowed length for the output sequence. vocoder (`nn.Module`, *optional*, defaults to `None`): The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel spectrogram. output_cross_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of the decoder's cross-attention layers. return_output_lengths (`bool`, *optional*, defaults to `False`): Whether or not to return the concrete spectrogram/waveform lengths. Returns: `tuple(torch.FloatTensor)` comprising various elements depending on the inputs: - when `return_output_lengths` is False - **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape `(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram. - **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape `(num_frames,)` -- The predicted speech waveform. - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) `torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads, output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. - when `return_output_lengths` is True - **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape `(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that are padded to the maximum length. - **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of all the concrete lengths for each spectrogram. - **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape `(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length. - **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all the concrete lengths for each waveform. - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) `torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads, output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. """ if speaker_embeddings is not None: batch_size = input_ids.size(0) if speaker_embeddings.size(0) != batch_size: if speaker_embeddings.size(0) == 1: speaker_embeddings = speaker_embeddings.repeat(batch_size, 1) else: raise ValueError( "The first dimension of speaker_embeddings must be either 1 or the same as batch size." ) return _generate_speech( self, input_ids, speaker_embeddings, attention_mask, threshold, minlenratio, maxlenratio, vocoder, output_cross_attentions, return_output_lengths, ) @add_start_docstrings( """SpeechT5 Model with a speech encoder and a speech decoder.""", SPEECHT5_START_DOCSTRING, ) class SpeechT5ForSpeechToSpeech(SpeechT5PreTrainedModel): def __init__(self, config: SpeechT5Config): super().__init__(config) speech_encoder = SpeechT5EncoderWithSpeechPrenet(config) speech_decoder = SpeechT5DecoderWithSpeechPrenet(config) self.speecht5 = SpeechT5Model(config, speech_encoder, speech_decoder) self.speech_decoder_postnet = SpeechT5SpeechDecoderPostnet(config) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.speecht5.get_encoder() def get_decoder(self): return self.speecht5.get_decoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.get_encoder().prenet.freeze_feature_encoder() @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqSpectrogramOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_values: Optional[torch.FloatTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, speaker_embeddings: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, stop_labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, Seq2SeqSpectrogramOutput]: r""" input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array into `input_values`, the [`SpeechT5Processor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details. decoder_input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`): Float values of input mel spectrogram. SpeechT5 uses an all-zero spectrum as the starting token for `decoder_input_values` generation. If `past_key_values` is used, optionally only the last `decoder_input_values` have to be input (see `past_key_values`). speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): Tensor containing the speaker embeddings. labels (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`, *optional*): Float values of target mel spectrogram. Spectrograms can be obtained using [`SpeechT5Processor`]. See [`SpeechT5Processor.__call__`] for details. Returns: Example: ```python >>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan, set_seed >>> from datasets import load_dataset >>> import torch >>> dataset = load_dataset( ... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation" ... ) # doctest: +IGNORE_RESULT >>> dataset = dataset.sort("id") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_vc") >>> model = SpeechT5ForSpeechToSpeech.from_pretrained("microsoft/speecht5_vc") >>> vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") >>> # audio file is decoded on the fly >>> inputs = processor(audio=dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") >>> speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file >>> set_seed(555) # make deterministic >>> # generate speech >>> speech = model.generate_speech(inputs["input_values"], speaker_embeddings, vocoder=vocoder) >>> speech.shape torch.Size([77824]) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_values is None: decoder_input_values = shift_spectrograms_right(labels, self.config.reduction_factor) outputs = self.speecht5( input_values=input_values, attention_mask=attention_mask, decoder_input_values=decoder_input_values, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, use_cache=use_cache, speaker_embeddings=speaker_embeddings, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) _, spectrogram, logits = self.speech_decoder_postnet(outputs[0]) loss = None if not return_dict: output = (spectrogram,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqSpectrogramOutput( loss=loss, spectrogram=spectrogram, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @torch.no_grad() def generate_speech( self, input_values: torch.FloatTensor, speaker_embeddings: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, threshold: float = 0.5, minlenratio: float = 0.0, maxlenratio: float = 20.0, vocoder: Optional[nn.Module] = None, output_cross_attentions: bool = False, return_output_lengths: bool = False, ) -> torch.FloatTensor: r""" Converts a raw speech waveform into a sequence of mel spectrograms, which are subsequently turned back into a speech waveform using a vocoder. Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array into `input_values`, the [`SpeechT5Processor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details. speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): Tensor containing the speaker embeddings. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) threshold (`float`, *optional*, defaults to 0.5): The generated sequence ends when the predicted stop token probability exceeds this value. minlenratio (`float`, *optional*, defaults to 0.0): Used to calculate the minimum required length for the output sequence. maxlenratio (`float`, *optional*, defaults to 20.0): Used to calculate the maximum allowed length for the output sequence. vocoder (`nn.Module`, *optional*, defaults to `None`): The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel spectrogram. output_cross_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of the decoder's cross-attention layers. return_output_lengths (`bool`, *optional*, defaults to `False`): Whether or not to return the concrete spectrogram/waveform lengths. Returns: `tuple(torch.FloatTensor)` comprising various elements depending on the inputs: - when `return_output_lengths` is False - **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape `(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram. - **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape `(num_frames,)` -- The predicted speech waveform. - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) `torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads, output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. - when `return_output_lengths` is True - **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape `(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that are padded to the maximum length. - **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of all the concrete lengths for each spectrogram. - **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape `(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length. - **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all the concrete lengths for each waveform. - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) `torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads, output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. """ if speaker_embeddings is None: speaker_embeddings = torch.zeros((1, 512), device=input_values.device) return _generate_speech( self, input_values, speaker_embeddings, attention_mask, threshold, minlenratio, maxlenratio, vocoder, output_cross_attentions, return_output_lengths, ) HIFIGAN_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SpeechT5HifiGanConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ class HifiGanResidualBlock(nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): super().__init__() self.leaky_relu_slope = leaky_relu_slope self.convs1 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=dilation[i], padding=self.get_padding(kernel_size, dilation[i]), ) for i in range(len(dilation)) ] ) self.convs2 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=1, padding=self.get_padding(kernel_size, 1), ) for _ in range(len(dilation)) ] ) def get_padding(self, kernel_size, dilation=1): return (kernel_size * dilation - dilation) // 2 def apply_weight_norm(self): for layer in self.convs1: nn.utils.weight_norm(layer) for layer in self.convs2: nn.utils.weight_norm(layer) def remove_weight_norm(self): for layer in self.convs1: nn.utils.remove_weight_norm(layer) for layer in self.convs2: nn.utils.remove_weight_norm(layer) def forward(self, hidden_states): for conv1, conv2 in zip(self.convs1, self.convs2): residual = hidden_states hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv1(hidden_states) hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv2(hidden_states) hidden_states = hidden_states + residual return hidden_states @add_start_docstrings( """HiFi-GAN vocoder.""", HIFIGAN_START_DOCSTRING, ) class SpeechT5HifiGan(PreTrainedModel): config_class = SpeechT5HifiGanConfig main_input_name = "spectrogram" def __init__(self, config: SpeechT5HifiGanConfig): super().__init__(config) self.num_kernels = len(config.resblock_kernel_sizes) self.num_upsamples = len(config.upsample_rates) self.conv_pre = nn.Conv1d( config.model_in_dim, config.upsample_initial_channel, kernel_size=7, stride=1, padding=3, ) self.upsampler = nn.ModuleList() for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): self.upsampler.append( nn.ConvTranspose1d( config.upsample_initial_channel // (2**i), config.upsample_initial_channel // (2 ** (i + 1)), kernel_size=kernel_size, stride=upsample_rate, padding=(kernel_size - upsample_rate) // 2, ) ) self.resblocks = nn.ModuleList() for i in range(len(self.upsampler)): channels = config.upsample_initial_channel // (2 ** (i + 1)) for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3) self.register_buffer("mean", torch.zeros(config.model_in_dim)) self.register_buffer("scale", torch.ones(config.model_in_dim)) # Initialize weights and apply final processing self.post_init() def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def apply_weight_norm(self): nn.utils.weight_norm(self.conv_pre) for layer in self.upsampler: nn.utils.weight_norm(layer) for layer in self.resblocks: layer.apply_weight_norm() nn.utils.weight_norm(self.conv_post) def remove_weight_norm(self): nn.utils.remove_weight_norm(self.conv_pre) for layer in self.upsampler: nn.utils.remove_weight_norm(layer) for layer in self.resblocks: layer.remove_weight_norm() nn.utils.remove_weight_norm(self.conv_post) def forward(self, spectrogram: torch.FloatTensor) -> torch.FloatTensor: r""" Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech waveform. Args: spectrogram (`torch.FloatTensor`): Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length, config.model_in_dim)`, or un-batched and of shape `(sequence_length, config.model_in_dim)`. Returns: `torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`. """ if self.config.normalize_before: spectrogram = (spectrogram - self.mean) / self.scale is_batched = spectrogram.dim() == 3 if not is_batched: spectrogram = spectrogram.unsqueeze(0) hidden_states = spectrogram.transpose(2, 1) hidden_states = self.conv_pre(hidden_states) for i in range(self.num_upsamples): hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope) hidden_states = self.upsampler[i](hidden_states) res_state = self.resblocks[i * self.num_kernels](hidden_states) for j in range(1, self.num_kernels): res_state += self.resblocks[i * self.num_kernels + j](hidden_states) hidden_states = res_state / self.num_kernels hidden_states = nn.functional.leaky_relu(hidden_states) hidden_states = self.conv_post(hidden_states) hidden_states = torch.tanh(hidden_states) if not is_batched: # remove batch dim and collapse tensor to 1-d audio waveform waveform = hidden_states.squeeze(0).transpose(1, 0).view(-1) else: # remove seq-len dim since this collapses to 1 waveform = hidden_states.squeeze(1) return waveform
transformers/src/transformers/models/speecht5/modeling_speecht5.py/0
{ "file_path": "transformers/src/transformers/models/speecht5/modeling_speecht5.py", "repo_id": "transformers", "token_count": 66586 }
129
# coding=utf-8 # Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch StableLM model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from .configuration_stablelm import StableLmConfig if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "StableLmConfig" # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->StableLm class StableLmRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) # Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->StableLm class StableLmLinearScalingRotaryEmbedding(StableLmRotaryEmbedding): """StableLmRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) t = t / self.scaling_factor freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) # Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->StableLm class StableLmDynamicNTKScalingRotaryEmbedding(StableLmRotaryEmbedding): """StableLmRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len if seq_len > self.max_position_embeddings: base = self.base * ( (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) ) ** (self.dim / (self.dim - 2)) inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->StableLm class StableLmMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class StableLmAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: StableLmConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.partial_rotary_factor = config.partial_rotary_factor self.is_causal = True if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.use_qkv_bias) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias) self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.attention_dropout = nn.Dropout(config.attention_dropout) self._init_rope() # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonAttention._init_rope with Persimmon->StableLm def _init_rope(self): if self.config.rope_scaling is None: self.rotary_emb = StableLmRotaryEmbedding( int(self.partial_rotary_factor * self.head_dim), max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) else: scaling_type = self.config.rope_scaling["type"] scaling_factor = self.config.rope_scaling["factor"] if scaling_type == "linear": self.rotary_emb = StableLmLinearScalingRotaryEmbedding( int(self.partial_rotary_factor * self.head_dim), max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "dynamic": self.rotary_emb = StableLmDynamicNTKScalingRotaryEmbedding( int(self.partial_rotary_factor * self.head_dim), max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_emb.dim], query_states[..., self.rotary_emb.dim :], ) key_rot, key_pass = ( key_states[..., : self.rotary_emb.dim], key_states[..., self.rotary_emb.dim :], ) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: # Specific to RoPE models with partial rotation cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # Repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query_states.dtype) attn_weights = self.attention_dropout(attn_weights) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class StableLmSdpaAttention(StableLmAttention): def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "StableLmModel is using StableLmSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_emb.dim], query_states[..., self.rotary_emb.dim :], ) key_rot, key_pass = ( key_states[..., : self.rotary_emb.dim], key_states[..., self.rotary_emb.dim :], ) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: # Specific to RoPE models with partial rotation cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # Repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.attention_dropout.p if self.training else 0.0, # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal=self.is_causal and attention_mask is None and q_len > 1, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value class StableLmFlashAttention2(StableLmAttention): """ StableLM flash attention module. This module inherits from `StableLmAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # StableLmFlashAttention2 attention does not support output_attentions output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_emb.dim], query_states[..., self.rotary_emb.dim :], ) key_rot, key_pass = ( key_states[..., : self.rotary_emb.dim], key_states[..., self.rotary_emb.dim :], ) query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`int`, *optional*): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal ) return attn_output # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) ATTENTION_CLASSES = { "eager": StableLmAttention, "sdpa": StableLmSdpaAttention, "flash_attention_2": StableLmFlashAttention2, } class StableLmDecoderLayer(nn.Module): def __init__(self, config: StableLmConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) self.mlp = StableLmMLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + residual outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs STABLELM_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`StableLmConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare StableLm Model outputting raw hidden-states without any specific head on top.", STABLELM_START_DOCSTRING, ) class StableLmPreTrainedModel(PreTrainedModel): config_class = StableLmConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["StableLmDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_cache_class = True _supports_sdpa = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() STABLELM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare StableLm Model outputting raw hidden-states without any specific head on top.", STABLELM_START_DOCSTRING, ) class StableLmModel(StableLmPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`StableLmDecoderLayer`] Args: config: StableLmConfig """ def __init__(self, config: StableLmConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [StableLmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self._attn_implementation = config._attn_implementation self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") seq_length_with_past = seq_length past_key_values_length = 0 if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if use_cache: use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values_length = past_key_values.get_usable_length(seq_length) seq_length_with_past = seq_length_with_past + past_key_values_length if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # embed positions if self._attn_implementation == "flash_attention_2": # 2d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None # for output_attentions case used fallback to eager attention realization elif self._attn_implementation == "sdpa" and not output_attentions: attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_values, output_attentions, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM with PERSIMMON->STABLELM,Persimmon->StableLm class StableLmForCausalLM(StableLmPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with LLAMA->STABLELM,Llama->StableLm def __init__(self, config): super().__init__(config) self.model = StableLmModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings def get_input_embeddings(self): return self.model.embed_tokens # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings def set_input_embeddings(self, value): self.model.embed_tokens = value # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder def set_decoder(self, decoder): self.model = decoder # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) # Ignore copy def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, StableLmForCausalLM >>> model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t") >>> tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t") >>> prompt = "The weather is always wonderful in" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] 'The weather is always wonderful in the summer in the city of San Diego. The city is located on the coast of the Pacific Ocean and is surrounded by' ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens max_cache_length = past_key_values.get_max_length() else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """ The StableLm transformer with a sequence classification head on top (linear layer). [`StableLmForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, STABLELM_START_DOCSTRING, ) # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->STABLELM,Llama->StableLm class StableLmForSequenceClassification(StableLmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = StableLmModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
transformers/src/transformers/models/stablelm/modeling_stablelm.py/0
{ "file_path": "transformers/src/transformers/models/stablelm/modeling_stablelm.py", "repo_id": "transformers", "token_count": 27455 }
130
# coding=utf-8 # Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch T5 model.""" import copy import math import os import warnings from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, Seq2SeqQuestionAnsweringModelOutput, Seq2SeqSequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( DUMMY_INPUTS, DUMMY_MASK, add_start_docstrings, add_start_docstrings_to_model_forward, is_torch_fx_proxy, logging, replace_return_docstrings, ) from ...utils.model_parallel_utils import assert_device_map, get_device_map from .configuration_t5 import T5Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "T5Config" _CHECKPOINT_FOR_DOC = "google-t5/t5-small" #################################################### # This dict contains ids and associated url # for the pretrained weights provided with the models #################################################### T5_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google-t5/t5-small", "google-t5/t5-base", "google-t5/t5-large", "google-t5/t5-3b", "google-t5/t5-11b", # See all T5 models at https://huggingface.co/models?filter=t5 ] #################################################### # This is a conversion method from TF 1.0 to PyTorch # More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28 #################################################### def load_tf_weights_in_t5(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] tf_weights = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) tf_weights[name] = array for txt_name in names: name = txt_name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") tf_weights.pop(txt_name, None) continue if "_slot_" in name[-1]: logger.info(f"Skipping {'/'.join(name)}") tf_weights.pop(txt_name, None) continue pointer = model array = tf_weights[txt_name] for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] in ["kernel", "scale", "embedding"]: pointer = getattr(pointer, "weight") elif scope_names[0] == "self_attention": pointer = getattr(pointer, "layer") pointer = pointer[0] elif scope_names[0] == "enc_dec_attention": pointer = getattr(pointer, "layer") pointer = pointer[1] elif scope_names[0] == "dense_relu_dense": pointer = getattr(pointer, "layer") pointer = pointer[2] elif scope_names[0] == "rms_norm": if hasattr(pointer, "layer_norm"): pointer = getattr(pointer, "layer_norm") elif hasattr(pointer, "final_layer_norm"): pointer = getattr(pointer, "final_layer_norm") elif scope_names[0] == "scale": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") elif scope_names[0] == "decoder" and name[1] == "logits": continue elif scope_names[0] == "logits": pointer = getattr(pointer, "lm_head") elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit(): pointer = getattr(pointer, f"wi_{scope_names[1]}") continue else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if scope_names[0] not in ["kernel", "scale", "embedding"]: pointer = getattr(pointer, "weight") if scope_names[0] != "embedding": logger.info(f"Transposing numpy weight of shape {array.shape} for {name}") array = np.transpose(array) try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array.astype(np.float32)) tf_weights.pop(txt_name, None) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") return model #################################################### # PyTorch Models are constructed by sub-classing # - torch.nn.Module for the layers and # - PreTrainedModel for the models (it-self a sub-class of nn.Module) #################################################### PARALLELIZE_DOCSTRING = r""" This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices. Args: device_map (`Dict[int, list]`, optional, defaults to None): A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the t5 models have the following number of attention modules: - google-t5/t5-small: 6 - google-t5/t5-base: 12 - google-t5/t5-large: 24 - google-t5/t5-3b: 24 - google-t5/t5-11b: 24 Example: ```python # Here is an example of a device map on a machine with 4 GPUs using google-t5/t5-3b, which has a total of 24 attention modules: model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b") device_map = { 0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15, 16], 3: [17, 18, 19, 20, 21, 22, 23], } model.parallelize(device_map) ``` """ DEPARALLELIZE_DOCSTRING = r""" Moves the model to cpu from a model parallel state. Example: ```python # On a 4 GPU machine with google-t5/t5-3b: model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b") device_map = { 0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15, 16], 3: [17, 18, 19, 20, 21, 22, 23], } model.parallelize(device_map) # Splits the model across several devices model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() ``` """ class T5LayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Construct a layernorm module in the T5 style. No bias and no subtraction of mean. """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states try: from apex.normalization import FusedRMSNorm T5LayerNorm = FusedRMSNorm # noqa logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm") except ImportError: # using the normal T5LayerNorm pass except Exception: logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm") pass ALL_LAYERNORM_LAYERS.append(T5LayerNorm) class T5DenseActDense(nn.Module): def __init__(self, config: T5Config): super().__init__() self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) if ( isinstance(self.wo.weight, torch.Tensor) and hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8 ): hidden_states = hidden_states.to(self.wo.weight.dtype) hidden_states = self.wo(hidden_states) return hidden_states class T5DenseGatedActDense(nn.Module): def __init__(self, config: T5Config): super().__init__() self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. # See https://github.com/huggingface/transformers/issues/20287 # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` if ( isinstance(self.wo.weight, torch.Tensor) and hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8 ): hidden_states = hidden_states.to(self.wo.weight.dtype) hidden_states = self.wo(hidden_states) return hidden_states class T5LayerFF(nn.Module): def __init__(self, config: T5Config): super().__init__() if config.is_gated_act: self.DenseReluDense = T5DenseGatedActDense(config) else: self.DenseReluDense = T5DenseActDense(config) self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward(self, hidden_states): forwarded_states = self.layer_norm(hidden_states) forwarded_states = self.DenseReluDense(forwarded_states) hidden_states = hidden_states + self.dropout(forwarded_states) return hidden_states class T5Attention(nn.Module): def __init__(self, config: T5Config, has_relative_attention_bias=False): super().__init__() self.is_decoder = config.is_decoder self.has_relative_attention_bias = has_relative_attention_bias self.relative_attention_num_buckets = config.relative_attention_num_buckets self.relative_attention_max_distance = config.relative_attention_max_distance self.d_model = config.d_model self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.dropout = config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim # Mesh TensorFlow initialization to avoid scaling before softmax self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.pruned_heads = set() self.gradient_checkpointing = False def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads ) # Prune linear layers self.q = prune_linear_layer(self.q, index) self.k = prune_linear_layer(self.k, index) self.v = prune_linear_layer(self.v, index) self.o = prune_linear_layer(self.o, index, dim=1) # Update hyper params self.n_heads = self.n_heads - len(heads) self.inner_dim = self.key_value_proj_dim * self.n_heads self.pruned_heads = self.pruned_heads.union(heads) @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets def compute_bias(self, query_length, key_length, device=None): """Compute binned relative position bias""" if device is None: device = self.relative_attention_bias.weight.device context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] relative_position = memory_position - context_position # shape (query_length, key_length) relative_position_bucket = self._relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) return values def forward( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = hidden_states.shape[:2] real_seq_length = seq_length if past_key_value is not None: if len(past_key_value) != 2: raise ValueError( f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" ) real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] def shape(states): """projection""" return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) def unshape(states): """reshape""" return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) def project(hidden_states, proj_layer, key_value_states, past_key_value): """projects hidden states correctly to key/query states""" if key_value_states is None: # self-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(hidden_states)) elif past_key_value is None: # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) if past_key_value is not None: if key_value_states is None: # self-attn # (batch_size, n_heads, key_length, dim_per_head) hidden_states = torch.cat([past_key_value, hidden_states], dim=2) elif past_key_value.shape[2] != key_value_states.shape[1]: # checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) else: # cross-attn hidden_states = past_key_value return hidden_states # get query states query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) # get key/value states key_states = project( hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None ) value_states = project( hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None ) # compute scores scores = torch.matmul( query_states, key_states.transpose(3, 2) ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 if position_bias is None: if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) # if key and values are already calculated # we want only the last query position bias if past_key_value is not None: position_bias = position_bias[:, :, -hidden_states.size(1) :, :] if mask is not None: position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) if self.pruned_heads: mask = torch.ones(position_bias.shape[1]) mask[list(self.pruned_heads)] = 0 position_bias_masked = position_bias[:, mask.bool()] else: position_bias_masked = position_bias scores += position_bias_masked attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( scores ) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.dropout( attn_weights, p=self.dropout, training=self.training ) # (batch_size, n_heads, seq_length, key_length) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) attn_output = self.o(attn_output) present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs class T5LayerSelfAttention(nn.Module): def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias) self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.SelfAttention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0]) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class T5LayerCrossAttention(nn.Module): def __init__(self, config): super().__init__() self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False) self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, query_length=None, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.EncDecAttention( normed_hidden_states, mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, query_length=query_length, output_attentions=output_attentions, ) layer_output = hidden_states + self.dropout(attention_output[0]) outputs = (layer_output,) + attention_output[1:] # add attentions if we output them return outputs class T5Block(nn.Module): def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.is_decoder = config.is_decoder self.layer = nn.ModuleList() self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) if self.is_decoder: self.layer.append(T5LayerCrossAttention(config)) self.layer.append(T5LayerFF(config)) def forward( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, return_dict=True, ): if past_key_value is not None: if not self.is_decoder: logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 if len(past_key_value) != expected_num_past_key_values: raise ValueError( f"There should be {expected_num_past_key_values} past states. " f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" f"Got {len(past_key_value)} past key / value states" ) self_attn_past_key_value = past_key_value[:2] cross_attn_past_key_value = past_key_value[2:] else: self_attn_past_key_value, cross_attn_past_key_value = None, None self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=self_attn_past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states, present_key_value_state = self_attention_outputs[:2] attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) do_cross_attention = self.is_decoder and encoder_hidden_states is not None if do_cross_attention: # the actual query length is unknown for cross attention # if using past key value states. Need to inject it here if present_key_value_state is not None: query_length = present_key_value_state[0].shape[2] else: query_length = None cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, query_length=query_length, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = cross_attention_outputs[0] # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) # Combine self attn and cross attn key value states if present_key_value_state is not None: present_key_value_state = present_key_value_state + cross_attention_outputs[1] # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[2:] # Apply Feed Forward layer hidden_states = self.layer[-1](hidden_states) # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if use_cache: outputs = outputs + (present_key_value_state,) + attention_outputs else: outputs = outputs + attention_outputs return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) class T5ClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config: T5Config): super().__init__() self.dense = nn.Linear(config.d_model, config.d_model) self.dropout = nn.Dropout(p=config.classifier_dropout) self.out_proj = nn.Linear(config.d_model, config.num_labels) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states class T5PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = T5Config load_tf_weights = load_tf_weights_in_t5 base_model_prefix = "transformer" is_parallelizable = True supports_gradient_checkpointing = True _no_split_modules = ["T5Block"] _keep_in_fp32_modules = ["wo"] @property def dummy_inputs(self): input_ids = torch.tensor(DUMMY_INPUTS) input_mask = torch.tensor(DUMMY_MASK) dummy_inputs = { "decoder_input_ids": input_ids, "input_ids": input_ids, "decoder_attention_mask": input_mask, } return dummy_inputs def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor # Used for testing weights initialization if isinstance(module, T5LayerNorm): module.weight.data.fill_(factor * 1.0) elif isinstance( module, (T5Model, T5ForConditionalGeneration, T5EncoderModel, T5ForQuestionAnswering), ): # Mesh TensorFlow embeddings initialization # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) if hasattr(module, "qa_outputs"): module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) module.qa_outputs.bias.data.zero_() elif isinstance(module, T5ForTokenClassification): if hasattr(module, "classifier"): module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0) module.classifier.bias.data.zero_() elif isinstance(module, T5ClassificationHead): module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.dense, "bias") and module.dense.bias is not None: module.dense.bias.data.zero_() module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None: module.out_proj.bias.data.zero_() elif isinstance(module, T5DenseActDense): # Mesh TensorFlow FF initialization # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi, "bias") and module.wi.bias is not None: module.wi.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, T5DenseGatedActDense): module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: module.wi_0.bias.data.zero_() module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: module.wi_1.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, T5Attention): # Mesh TensorFlow attention initialization to avoid scaling before softmax # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 d_model = self.config.d_model key_value_proj_dim = self.config.d_kv n_heads = self.config.num_heads module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) if module.has_relative_attention_bias: module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id if decoder_start_token_id is None: raise ValueError( "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. " "See T5 docs for more information." ) # shift inputs to the right if is_torch_fx_proxy(input_ids): # Item assignment is not supported natively for proxies. shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) else: shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class T5Stack(T5PreTrainedModel): def __init__(self, config, embed_tokens=None): super().__init__(config) self.embed_tokens = embed_tokens self.is_decoder = config.is_decoder self.block = nn.ModuleList( [T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] ) self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None self.gradient_checkpointing = False @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`T5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," " 'block.1': 1, ...}", FutureWarning, ) # Check validity of device_map self.device_map = ( get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.block)) self.model_parallel = True self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) self.last_device = "cuda:" + str(max(self.device_map.keys())) # Load onto devices for k, v in self.device_map.items(): for layer in v: cuda_device = "cuda:" + str(k) self.block[layer] = self.block[layer].to(cuda_device) # Set embed_tokens to first layer self.embed_tokens = self.embed_tokens.to(self.first_device) # Set final layer norm to last device self.final_layer_norm = self.final_layer_norm.to(self.last_device) @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.model_parallel = False self.device_map = None self.first_device = "cpu" self.last_device = "cpu" for i in range(len(self.block)): self.block[i] = self.block[i].to("cpu") self.embed_tokens = self.embed_tokens.to("cpu") self.final_layer_norm = self.final_layer_norm.to("cpu") torch.cuda.empty_cache() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, new_embeddings): self.embed_tokens = new_embeddings def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): # Model parallel if self.model_parallel: torch.cuda.set_device(self.first_device) self.embed_tokens = self.embed_tokens.to(self.first_device) use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError( f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") if inputs_embeds is None: if self.embed_tokens is None: raise ValueError("You have to initialize the model with valid token embeddings") inputs_embeds = self.embed_tokens(input_ids) batch_size, seq_length = input_shape # required mask seq length can be calculated via length of past mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length if use_cache is True: if not self.is_decoder: raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") # initialize past_key_values with `None` if past does not exist if past_key_values is None: past_key_values = [None] * len(self.block) if attention_mask is None: attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones( encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long ) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.num_layers) cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) present_key_value_states = () if use_cache else None all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and self.is_decoder) else None position_bias = None encoder_decoder_position_bias = None hidden_states = self.dropout(inputs_embeds) for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): layer_head_mask = head_mask[i] cross_attn_layer_head_mask = cross_attn_head_mask[i] # Model parallel if self.model_parallel: torch.cuda.set_device(hidden_states.device) # Ensure that attention_mask is always on the same device as hidden_states if attention_mask is not None: attention_mask = attention_mask.to(hidden_states.device) if position_bias is not None: position_bias = position_bias.to(hidden_states.device) if encoder_hidden_states is not None: encoder_hidden_states = encoder_hidden_states.to(hidden_states.device) if encoder_extended_attention_mask is not None: encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device) if encoder_decoder_position_bias is not None: encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device) if layer_head_mask is not None: layer_head_mask = layer_head_mask.to(hidden_states.device) if cross_attn_layer_head_mask is not None: cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.forward, hidden_states, extended_attention_mask, position_bias, encoder_hidden_states, encoder_extended_attention_mask, encoder_decoder_position_bias, layer_head_mask, cross_attn_layer_head_mask, None, # past_key_value is always None with gradient checkpointing use_cache, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask=extended_attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, layer_head_mask=layer_head_mask, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) # layer_outputs is a tuple with: # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) if use_cache is False: layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] hidden_states, present_key_value_state = layer_outputs[:2] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[2] if self.is_decoder and encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] # append next layer key value states if use_cache: present_key_value_states = present_key_value_states + (present_key_value_state,) if output_attentions: all_attentions = all_attentions + (layer_outputs[3],) if self.is_decoder: all_cross_attentions = all_cross_attentions + (layer_outputs[5],) # Model Parallel: If it's the last layer for that device, put things on the next device if self.model_parallel: for k, v in self.device_map.items(): if i == v[-1] and "cuda:" + str(k) != self.last_device: hidden_states = hidden_states.to("cuda:" + str(k + 1)) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, present_key_value_states, all_hidden_states, all_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) T5_START_DOCSTRING = r""" The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a text-to-text denoising generative setting. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`T5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ T5_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 Training](./t5#training). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ T5_ENCODER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask __HEAD_MASK_WARNING_MSG = """ The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, num_heads)`. """ @add_start_docstrings( "The bare T5 Model transformer outputting raw hidden-states without any specific head on top.", T5_START_DOCSTRING, ) class T5Model(T5PreTrainedModel): _keys_to_ignore_on_load_unexpected = [ "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", ] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: T5Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = T5Stack(decoder_config, self.shared) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':" " 0, 'encoder.block.1': 1, ...}", FutureWarning, ) self.device_map = ( get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.encoder.block)) self.encoder.parallelize(self.device_map) self.decoder.parallelize(self.device_map) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.encoder.deparallelize() self.decoder.deparallelize() self.encoder = self.encoder.to("cpu") self.decoder = self.decoder.to("cpu") self.model_parallel = False self.device_map = None torch.cuda.empty_cache() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, T5Model >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") >>> model = T5Model.from_pretrained("google-t5/t5-small") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. >>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. >>> decoder_input_ids = model._shift_right(decoder_input_ids) >>> # forward pass >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) hidden_states = hidden_states.to(self.decoder.first_device) if decoder_input_ids is not None: decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) if attention_mask is not None: attention_mask = attention_mask.to(self.decoder.first_device) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING) class T5ForConditionalGeneration(T5PreTrainedModel): _keys_to_ignore_on_load_unexpected = [ "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", ] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: T5Config): super().__init__(config) self.model_dim = config.d_model self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = T5Stack(decoder_config, self.shared) self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you" " should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also" " provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance" " {'encoder.block.0': 0, 'encoder.block.1': 1, ...}", FutureWarning, ) self.device_map = ( get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.encoder.block)) self.encoder.parallelize(self.device_map) self.decoder.parallelize(self.device_map) self.lm_head = self.lm_head.to(self.decoder.first_device) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.encoder.deparallelize() self.decoder.deparallelize() self.encoder = self.encoder.to("cpu") self.decoder = self.decoder.to("cpu") self.lm_head = self.lm_head.to("cpu") self.model_parallel = False self.device_map = None torch.cuda.empty_cache() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_output_embeddings(self): return self.lm_head def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import AutoTokenizer, T5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") >>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small") >>> # training >>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids >>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids >>> outputs = model(input_ids=input_ids, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits >>> # inference >>> input_ids = tokenizer( ... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> outputs = model.generate(input_ids) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) >>> # studies have shown that owning a dog is good for you. ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: # Convert encoder inputs in embeddings if needed encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) hidden_states = hidden_states.to(self.decoder.first_device) if decoder_input_ids is not None: decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) if attention_mask is not None: attention_mask = attention_mask.to(self.decoder.first_device) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = decoder_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.encoder.first_device) self.lm_head = self.lm_head.to(self.encoder.first_device) sequence_output = sequence_output.to(self.lm_head.weight.device) if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.model_dim**-0.5) lm_logits = self.lm_head(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-100) # move labels to correct device to enable PP labels = labels.to(lm_logits.device) loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 if not return_dict: output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, decoder_attention_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] return { "decoder_input_ids": input_ids, "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "decoder_attention_mask": decoder_attention_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, } def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) def _reorder_cache(self, past_key_values, beam_idx): # if decoder past is not included in output # speedy decoding is disabled and no need to reorder if past_key_values is None: logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") return past_key_values reordered_decoder_past = () for layer_past_states in past_key_values: # get the correct batch idx from layer past batch dim # batch dim of `past` is at 2nd position reordered_layer_past_states = () for layer_past_state in layer_past_states: # need to set correct `past` for each of the four key / value states reordered_layer_past_states = reordered_layer_past_states + ( layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), ) if reordered_layer_past_states[0].shape != layer_past_states[0].shape: raise ValueError( f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" ) if len(reordered_layer_past_states) != len(layer_past_states): raise ValueError( f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" ) reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) return reordered_decoder_past @add_start_docstrings( "The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.", T5_START_DOCSTRING, ) class T5EncoderModel(T5PreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight"] _keys_to_ignore_on_load_unexpected = [r"decoder"] def __init__(self, config: T5Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," " 'block.1': 1, ...}", FutureWarning, ) self.device_map = ( get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.encoder.block)) self.encoder.parallelize(self.device_map) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.encoder.deparallelize() self.encoder = self.encoder.to("cpu") self.model_parallel = False self.device_map = None torch.cuda.empty_cache() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads) @add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, T5EncoderModel >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") >>> model = T5EncoderModel.from_pretrained("google-t5/t5-small") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return encoder_outputs @add_start_docstrings( """ T5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, T5_START_DOCSTRING, ) class T5ForSequenceClassification(T5PreTrainedModel): _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: T5Config): super().__init__(config) self.transformer = T5Model(config) self.classification_head = T5ClassificationHead(config) # Initialize weights and apply final processing self.post_init() self.model_parallel = False @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False if input_ids is None and inputs_embeds is not None: raise NotImplementedError( f"Passing input embeddings is currently not supported for {self.__class__.__name__}" ) # Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates # decoder_input_ids from input_ids if no decoder_input_ids are provided if decoder_input_ids is None and decoder_inputs_embeds is None: if input_ids is None: raise ValueError( "If no `decoder_input_ids` or `decoder_inputs_embeds` are " "passed, `input_ids` cannot be `None`. Please pass either " "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." ) decoder_input_ids = self._shift_right(input_ids) outputs = self.transformer( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device) if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: raise ValueError("All examples must have the same number of <eos> tokens.") batch_size, _, hidden_size = sequence_output.shape sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :] logits = self.classification_head(sentence_representation) loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.config.num_labels == 1: self.config.problem_type = "regression" elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.config.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqSequenceClassifierOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( """ T5 Encoder Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, T5_START_DOCSTRING, ) class T5ForTokenClassification(T5PreTrainedModel): _tied_weights_keys = ["transformer.encoder.embed_tokens.weight"] def __init__(self, config: T5Config): super().__init__(config) self.num_labels = config.num_labels self.transformer = T5EncoderModel(config) self.dropout = nn.Dropout(config.classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits, outputs[2:-1]) return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ T5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, T5_START_DOCSTRING, ) class T5ForQuestionAnswering(T5PreTrainedModel): _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: T5Config): super().__init__(config) self.model_dim = config.d_model self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = T5Stack(decoder_config, self.shared) self.num_labels = config.num_labels self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() self.model_parallel = False def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence are not taken into account for computing the loss. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache if start_positions is not None and end_positions is not None: use_cache = False # Copied from models.bart.modeling_bart.BartModel.forward # different to other models, T5 automatically creates decoder_input_ids from # input_ids if no decoder_input_ids are provided if decoder_input_ids is None and decoder_inputs_embeds is None: if input_ids is None: raise ValueError( "If no `decoder_input_ids` or `decoder_inputs_embeds` are " "passed, `input_ids` cannot be `None`. Please pass either " "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." ) decoder_input_ids = self._shift_right(input_ids) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=None, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = decoder_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1).to(start_logits.device) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1).to(end_logits.device) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs return ((total_loss,) + output) if total_loss is not None else output return Seq2SeqQuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, )
transformers/src/transformers/models/t5/modeling_t5.py/0
{ "file_path": "transformers/src/transformers/models/t5/modeling_t5.py", "repo_id": "transformers", "token_count": 48176 }
131
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Time Series Transformer model configuration""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class TimeSeriesTransformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`TimeSeriesTransformerModel`]. It is used to instantiate a Time Series Transformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Time Series Transformer [huggingface/time-series-transformer-tourism-monthly](https://huggingface.co/huggingface/time-series-transformer-tourism-monthly) architecture. Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: prediction_length (`int`): The prediction length for the decoder. In other words, the prediction horizon of the model. This value is typically dictated by the dataset and we recommend to set it appropriately. context_length (`int`, *optional*, defaults to `prediction_length`): The context length for the encoder. If `None`, the context length will be the same as the `prediction_length`. distribution_output (`string`, *optional*, defaults to `"student_t"`): The distribution emission head for the model. Could be either "student_t", "normal" or "negative_binomial". loss (`string`, *optional*, defaults to `"nll"`): The loss function for the model corresponding to the `distribution_output` head. For parametric distributions it is the negative log likelihood (nll) - which currently is the only supported one. input_size (`int`, *optional*, defaults to 1): The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of multivariate targets. scaling (`string` or `bool`, *optional* defaults to `"mean"`): Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the scaler is set to "mean". lags_sequence (`list[int]`, *optional*, defaults to `[1, 2, 3, 4, 5, 6, 7]`): The lags of the input time series as covariates often dictated by the frequency of the data. Default is `[1, 2, 3, 4, 5, 6, 7]` but we recommend to change it based on the dataset appropriately. num_time_features (`int`, *optional*, defaults to 0): The number of time features in the input time series. num_dynamic_real_features (`int`, *optional*, defaults to 0): The number of dynamic real valued features. num_static_categorical_features (`int`, *optional*, defaults to 0): The number of static categorical features. num_static_real_features (`int`, *optional*, defaults to 0): The number of static real valued features. cardinality (`list[int]`, *optional*): The cardinality (number of different values) for each of the static categorical features. Should be a list of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if `num_static_categorical_features` is > 0. embedding_dimension (`list[int]`, *optional*): The dimension of the embedding for each of the static categorical features. Should be a list of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if `num_static_categorical_features` is > 0. d_model (`int`, *optional*, defaults to 64): Dimensionality of the transformer layers. encoder_layers (`int`, *optional*, defaults to 2): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 2): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 2): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 2): Number of attention heads for each attention layer in the Transformer decoder. encoder_ffn_dim (`int`, *optional*, defaults to 32): Dimension of the "intermediate" (often named feed-forward) layer in encoder. decoder_ffn_dim (`int`, *optional*, defaults to 32): Dimension of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and decoder. If string, `"gelu"` and `"relu"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the encoder, and decoder. encoder_layerdrop (`float`, *optional*, defaults to 0.1): The dropout probability for the attention and fully connected layers for each encoder layer. decoder_layerdrop (`float`, *optional*, defaults to 0.1): The dropout probability for the attention and fully connected layers for each decoder layer. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout probability used between the two layers of the feed-forward networks. num_parallel_samples (`int`, *optional*, defaults to 100): The number of samples to generate in parallel for each time step of inference. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated normal weight initialization distribution. use_cache (`bool`, *optional*, defaults to `True`): Whether to use the past key/values attentions (if applicable to the model) to speed up decoding. Example: ```python >>> from transformers import TimeSeriesTransformerConfig, TimeSeriesTransformerModel >>> # Initializing a Time Series Transformer configuration with 12 time steps for prediction >>> configuration = TimeSeriesTransformerConfig(prediction_length=12) >>> # Randomly initializing a model (with random weights) from the configuration >>> model = TimeSeriesTransformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "time_series_transformer" attribute_map = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self, prediction_length: Optional[int] = None, context_length: Optional[int] = None, distribution_output: str = "student_t", loss: str = "nll", input_size: int = 1, lags_sequence: List[int] = [1, 2, 3, 4, 5, 6, 7], scaling: Optional[Union[str, bool]] = "mean", num_dynamic_real_features: int = 0, num_static_categorical_features: int = 0, num_static_real_features: int = 0, num_time_features: int = 0, cardinality: Optional[List[int]] = None, embedding_dimension: Optional[List[int]] = None, encoder_ffn_dim: int = 32, decoder_ffn_dim: int = 32, encoder_attention_heads: int = 2, decoder_attention_heads: int = 2, encoder_layers: int = 2, decoder_layers: int = 2, is_encoder_decoder: bool = True, activation_function: str = "gelu", d_model: int = 64, dropout: float = 0.1, encoder_layerdrop: float = 0.1, decoder_layerdrop: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, num_parallel_samples: int = 100, init_std: float = 0.02, use_cache=True, **kwargs, ): # time series specific configuration self.prediction_length = prediction_length self.context_length = context_length or prediction_length self.distribution_output = distribution_output self.loss = loss self.input_size = input_size self.num_time_features = num_time_features self.lags_sequence = lags_sequence self.scaling = scaling self.num_dynamic_real_features = num_dynamic_real_features self.num_static_real_features = num_static_real_features self.num_static_categorical_features = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(cardinality) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) self.cardinality = cardinality else: self.cardinality = [0] if embedding_dimension and num_static_categorical_features > 0: if len(embedding_dimension) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) self.embedding_dimension = embedding_dimension else: self.embedding_dimension = [min(50, (cat + 1) // 2) for cat in self.cardinality] self.num_parallel_samples = num_parallel_samples # Transformer architecture configuration self.feature_size = input_size * len(lags_sequence) + self._number_of_features self.d_model = d_model self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.encoder_ffn_dim = encoder_ffn_dim self.decoder_ffn_dim = decoder_ffn_dim self.encoder_layers = encoder_layers self.decoder_layers = decoder_layers self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs) @property def _number_of_features(self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
transformers/src/transformers/models/time_series_transformer/configuration_time_series_transformer.py/0
{ "file_path": "transformers/src/transformers/models/time_series_transformer/configuration_time_series_transformer.py", "repo_id": "transformers", "token_count": 4507 }
132
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for TVLT.""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging logger = logging.get_logger(__name__) class TvltFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a TVLT audio feature extractor. This feature extractor can be used to prepare audios for the model. This feature extractor inherits from [`FeatureExtractionMixin`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: spectrogram_length (`Dict[str, int]` *optional*, defaults to 2048): The time length of each audio spectrogram. num_channels (`int` *optional*, defaults to 1): Number of audio channels. patch_size (`List[int]` *optional*, defaults to `[16, 16]`): The patch size of audio patch embedding. feature_size (`int`, *optional*, defaults to 128): The frequency length of audio spectrogram. sampling_rate (`int`, *optional*, defaults to 44100): The sampling rate at which the audio files should be digitalized expressed in Hertz (Hz). hop_length_to_sampling_rate (`int`, *optional*, defaults to 86): Hop length is length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients. For example, with sampling rate 44100, the hop length is 512, with 44100 / 512 = 86 n_fft (`int`, *optional*, defaults to 2048): Size of the Fourier transform. padding_value (`float`, *optional*, defaults to 0.0): Padding value used to pad the audio. Should correspond to silences. """ model_input_names = ["audio_values", "audio_mask"] def __init__( self, spectrogram_length=2048, num_channels=1, patch_size=[16, 16], feature_size=128, sampling_rate=44100, hop_length_to_sampling_rate=86, n_fft=2048, padding_value=0.0, **kwargs, ): super().__init__( feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs, ) self.spectrogram_length = spectrogram_length self.num_channels = num_channels self.patch_size = patch_size self.freq_len = feature_size // self.patch_size[1] self.n_fft = n_fft self.hop_length = sampling_rate // hop_length_to_sampling_rate self.sampling_rate = sampling_rate self.padding_value = padding_value self.mel_filters = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=feature_size, min_frequency=0.0, max_frequency=22050.0, sampling_rate=sampling_rate, norm="slaney", mel_scale="slaney", ).T def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray: """ Compute the log-mel spectrogram of the provided audio, gives similar results to Whisper's original torch implementation with 1e-5 tolerance. """ log_spec = spectrogram( waveform, window_function(self.n_fft, "hann"), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) log_spec = log_spec[:, :-1] log_spec = log_spec - 20.0 log_spec = np.clip(log_spec / 40.0, -2.0, 0.0) + 1.0 return log_spec def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], return_tensors: Optional[Union[str, TensorType]] = None, return_attention_mask: Optional[bool] = True, sampling_rate: Optional[int] = None, resample: bool = False, mask_audio: bool = False, **kwargs, ) -> BatchFeature: """ Main method to prepare one or several audio(s) for the model. Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*, default to `True`): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) <Tip> For TvltTransformer models, `attention_mask` should alwys be passed for batched inference, to avoid subtle bugs. </Tip> sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition pipeline. Current model supports sampling rate 16000 and 44100. resample (`bool`, *optional*, defaults to `False`): If the sampling rate is not matched, resample the input audio to match. mask_audio (`bool`, *optional*, defaults to `False`): Whether or not to mask input audio for MAE task. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **audio_values** -- Audio values to be fed to a model, of shape (batch_size, num_channels, height, width). - **audio_mask** -- Audio masks to be fed to a model, of shape (batch_size, num_audio_patches). """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" f" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech, dtype=np.float32) elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): raw_speech = raw_speech.astype(np.float32) # always return batch if not is_batched: raw_speech = [np.asarray([raw_speech]).T] # Convert audio signals to log mel spectrograms, truncate by time axis audio_features = [ self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], List): audio_features = [np.asarray(feature, dtype=np.float32) for feature in audio_features] # Create audio attention mask max_patch_len = max( [ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: audio_mask = [ (ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0] for feature in audio_features ] audio_mask = np.array(audio_mask).astype(np.float32) # convert into correct format for padding max_time_len = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch padded_audio_features = np.ones([len(audio_features), 1, max_time_len, self.feature_size]).astype(np.float32) padded_audio_features = padded_audio_features * self.padding_value for i in range(len(audio_features)): feature = audio_features[i] padded_audio_features[i, :, : feature.shape[0], :] = feature # return as BatchFeature if return_attention_mask: data = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: data = {"audio_values": padded_audio_features} encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) return encoded_inputs
transformers/src/transformers/models/tvlt/feature_extraction_tvlt.py/0
{ "file_path": "transformers/src/transformers/models/tvlt/feature_extraction_tvlt.py", "repo_id": "transformers", "token_count": 4436 }
133
# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch UniSpeech model.""" import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, Wav2Vec2BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_unispeech import UniSpeechConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "UniSpeechConfig" # Base docstring _CHECKPOINT_FOR_DOC = "patrickvonplaten/unispeech-large-1500h-cv-timit" _EXPECTED_OUTPUT_SHAPE = [1, 292, 1024] # CTC docstring _CTC_EXPECTED_OUTPUT = "'mister quilter is the apposl of the midle classes and weare glad to welcom his gosepl'" _CTC_EXPECTED_LOSS = 17.17 UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/unispeech-large-1500h-cv", "microsoft/unispeech-large-multi-lingual-1500h-cv", # See all UniSpeech models at https://huggingface.co/models?filter=unispeech ] @dataclass class UniSpeechForPreTrainingOutput(ModelOutput): """ Output type of [`UniSpeechForPreTrainingOutput`], with potential hidden states and attentions. Args: loss (*optional*, returned when model is in train mode, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked projected quantized states. projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive target vectors for contrastive loss. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None projected_states: torch.FloatTensor = None projected_quantized_states: torch.FloatTensor = None codevector_perplexity: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->UniSpeech class UniSpeechNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->UniSpeech class UniSpeechLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->UniSpeech class UniSpeechGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->UniSpeech class UniSpeechPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = UniSpeechSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->UniSpeech class UniSpeechSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->UniSpeech class UniSpeechFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [UniSpeechGroupNormConvLayer(config, layer_id=0)] + [ UniSpeechNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ UniSpeechLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class UniSpeechFeatureExtractor(UniSpeechFeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->UniSpeech class UniSpeechFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->UniSpeech class UniSpeechAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[UniSpeechConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->UniSpeech class UniSpeechFeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->UniSpeech class UniSpeechEncoderLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = UniSpeechAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = UniSpeechFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, output_attentions=False): attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AttnAdapterLayer with Wav2Vec2->UniSpeech class UniSpeechAttnAdapterLayer(nn.Module): def __init__(self, config): """ Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed up training throughput. """ super().__init__() self.input_dim = config.adapter_attn_dim self.hidden_dim = config.hidden_size self.norm = nn.LayerNorm(self.hidden_dim) self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim) self.act_fn = nn.ReLU() self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim) def forward(self, hidden_states: torch.FloatTensor): hidden_states = self.norm(hidden_states) hidden_states = self.linear_1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->UniSpeech class UniSpeechEncoderLayerStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.attention = UniSpeechAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = UniSpeechFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if getattr(config, "adapter_attn_dim", None) is not None: self.adapter_layer = UniSpeechAttnAdapterLayer(config) else: self.adapter_layer = None def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ): attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) if self.adapter_layer is not None: hidden_states = hidden_states + self.adapter_layer(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->UniSpeech class UniSpeechEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([UniSpeechEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderStableLayerNorm with Wav2Vec2->UniSpeech class UniSpeechEncoderStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList( [UniSpeechEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens are not attended to expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class UniSpeechGumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. """ def __init__(self, config): super().__init__() self.num_groups = config.num_codevector_groups self.num_vars = config.num_codevectors_per_group if config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {config.codevector_dim} must be divisible by `config.num_codevector_groups`" f" {self.num_groups} for concatenation" ) # storage for codebook variables (codewords) self.codevectors = nn.Parameter( torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) ) self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) # can be decayed for training self.temperature = 2 @staticmethod def _compute_perplexity(probs): marginal_probs = probs.mean(dim=0) perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() return perplexity def forward(self, hidden_states): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) if self.training: # sample code vector probs via gumbel in differentiateable way codevector_probs = nn.functional.gumbel_softmax( hidden_states.float(), tau=self.temperature, hard=True ).type_as(hidden_states) # compute perplexity codevector_soft_dist = torch.softmax( hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(dim=-1) codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_( -1, codevector_idx.view(-1, 1), 1.0 ) codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs) codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) return codevectors, perplexity class UniSpeechPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = UniSpeechConfig base_model_prefix = "unispeech" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" # gumbel softmax requires special init if isinstance(module, UniSpeechGumbelVectorQuantizer): module.weight_proj.weight.data.normal_(mean=0.0, std=1) module.weight_proj.bias.data.zero_() nn.init.uniform_(module.codevectors) elif isinstance(module, UniSpeechPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, UniSpeechFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask UNISPEECH_START_DOCSTRING = r""" UniSpeech was proposed in [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`UniSpeechConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UNISPEECH_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare UniSpeech Model transformer outputting raw hidden-states without any specific head on top.", UNISPEECH_START_DOCSTRING, ) class UniSpeechModel(UniSpeechPreTrainedModel): def __init__(self, config: UniSpeechConfig): super().__init__(config) self.config = config self.feature_extractor = UniSpeechFeatureEncoder(config) self.feature_projection = UniSpeechFeatureProjection(config) if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: self.encoder = UniSpeechEncoderStableLayerNorm(config) else: self.encoder = UniSpeechEncoder(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """UniSpeech Model with a vector-quantization module and ctc loss for pre-training.""", UNISPEECH_START_DOCSTRING ) class UniSpeechForPreTraining(UniSpeechPreTrainedModel): def __init__(self, config: UniSpeechConfig): super().__init__(config) self.unispeech = UniSpeechModel(config) self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) self.quantizer = UniSpeechGumbelVectorQuantizer(config) self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) self.project_hid = nn.Linear(config.proj_codevector_dim, config.hidden_size) self.ctc_proj = nn.Linear(config.hidden_size, config.num_ctc_classes) self.dropout = nn.Dropout(config.final_dropout) # Initialize weights and apply final processing self.post_init() def set_gumbel_temperature(self, temperature: int): """ Set the Gumbel softmax temperature to a given value. Only necessary for training """ self.quantizer.temperature = temperature def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech.feature_extractor._freeze_parameters() @staticmethod def compute_contrastive_logits( target_features: torch.FloatTensor, negative_features: torch.FloatTensor, predicted_features: torch.FloatTensor, temperature: int = 1, ): """ Compute logits for contrastive loss based using cosine similarity as the distance measure between `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. """ target_features = torch.cat([target_features, negative_features], dim=0) logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1) logits = logits.type_as(target_features) # apply temperature logits = logits / temperature return logits @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=UniSpeechForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, UniSpeechForPreTrainingOutput]: r""" mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in *config.proj_codevector_dim* space. sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*): Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training. Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, UniSpeechForPreTraining >>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/unispeech-large-1500h-cv") >>> model = UniSpeechForPreTraining.from_pretrained("microsoft/unispeech-large-1500h-cv") >>> # TODO: Add full pretraining example ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.unispeech( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) transformer_features = outputs[0] # quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1]) quantized_features, codevector_perplexity = self.quantizer(extract_features) # project quantized features twice quantized_features = self.project_q(quantized_features) quantized_features = self.project_hid(quantized_features) prob_replace_matrix = torch.empty(transformer_features.size(0), transformer_features.size(1)).fill_( self.config.replace_prob ) prob_replace_matrix = prob_replace_matrix.transpose(0, 1) sampled_replace_matrix = torch.bernoulli(prob_replace_matrix).bool().to(transformer_features.device) sampled_replace_matrix = sampled_replace_matrix.transpose(0, 1) sampled_replace_matrix = sampled_replace_matrix.unsqueeze(-1) logits = transformer_features.masked_fill(sampled_replace_matrix, 0.0) + ( quantized_features.masked_fill(~sampled_replace_matrix, 0.0) ) # project to ctc units logits = self.dropout(logits) logits = self.ctc_proj(logits) # TODO(PVP) - add negative sampling & loss computation loss = None if not return_dict: if loss is not None: return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return UniSpeechForPreTrainingOutput( loss=loss, projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """UniSpeech Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", UNISPEECH_START_DOCSTRING, """ target_lang (`str`, *optional*): Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or adapter.<lang>.bin. Only relevant when using an instance of [`UniSpeechForCTC`] with adapters. Uses 'eng' by default. """, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->UniSpeech, wav2vec2->unispeech, WAV_2_VEC_2->UNISPEECH class UniSpeechForCTC(UniSpeechPreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.unispeech = UniSpeechModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `UniSpeechForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for UniSpeech so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, UniSpeech never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.unispeech.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.unispeech( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ UniSpeech Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, UNISPEECH_START_DOCSTRING, ) class UniSpeechForSequenceClassification(UniSpeechPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of UniSpeech adapters (config.add_adapter=True)" ) self.unispeech = UniSpeechModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->unispeech def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->unispeech def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.unispeech.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->UniSpeech, wav2vec2->unispeech def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.unispeech( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/unispeech/modeling_unispeech.py/0
{ "file_path": "transformers/src/transformers/models/unispeech/modeling_unispeech.py", "repo_id": "transformers", "token_count": 30778 }
134
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_videomae": ["VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "VideoMAEConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_videomae"] = [ "VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST", "VideoMAEForPreTraining", "VideoMAEModel", "VideoMAEPreTrainedModel", "VideoMAEForVideoClassification", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_videomae"] = ["VideoMAEFeatureExtractor"] _import_structure["image_processing_videomae"] = ["VideoMAEImageProcessor"] if TYPE_CHECKING: from .configuration_videomae import VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP, VideoMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_videomae import ( VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, VideoMAEPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_videomae import VideoMAEFeatureExtractor from .image_processing_videomae import VideoMAEImageProcessor else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/videomae/__init__.py/0
{ "file_path": "transformers/src/transformers/models/videomae/__init__.py", "repo_id": "transformers", "token_count": 943 }
135
# coding=utf-8 # Copyright 2023 the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch VipLlava model.""" from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ... import PreTrainedModel from ...activations import ACT2FN from ...cache_utils import Cache from ...modeling_outputs import ModelOutput from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto import AutoModel, AutoModelForCausalLM from .configuration_vipllava import VipLlavaConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "VipLlavaConfig" VIPLLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "llava-hf/vip-llava-7b-hf", # See all VipLlava models at https://huggingface.co/models?filter=vipllava ] @dataclass # Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->VipLlava class VipLlavaCausalLMOutputWithPast(ModelOutput): """ Base class for VipLlava causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None class VipLlavaMultiModalProjector(nn.Module): def __init__(self, config: VipLlavaConfig): super().__init__() self.projector_layernorm = nn.LayerNorm( len(config.vision_feature_layers) * config.vision_config.hidden_size, eps=config.projector_layernorm_eps ) self.linear_1 = nn.Linear( len(config.vision_feature_layers) * config.vision_config.hidden_size, config.text_config.hidden_size, bias=True, ) self.act = ACT2FN[config.projector_hidden_act] self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) def forward(self, hidden_states): hidden_states = self.projector_layernorm(hidden_states) hidden_states = self.linear_1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states VIPLLAVA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`VipLlavaConfig`] or [`VipLlavaVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare VipLlava Model outputting raw hidden-states without any specific head on top.", VIPLLAVA_START_DOCSTRING, ) # Copied from transformers.models.llava.modeling_llava.LlavaPreTrainedModel with Llava->VipLlava,llava->vipllava class VipLlavaPreTrainedModel(PreTrainedModel): config_class = VipLlavaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["VipLlavaVisionAttention"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True def _init_weights(self, module): # important: this ported version of VipLlava isn't meant for training from scratch - only # inference and fine-tuning - so the proper init weights code has been removed - the original codebase # https://github.com/haotian-liu/LLaVA/tree/main/vipllava should serve for that purpose std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.text_config.initializer_range ) if hasattr(module, "class_embedding"): module.class_embedding.data.normal_(mean=0.0, std=std) if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @property def _supports_sdpa(self): """ Retrieve language_model's attribute to check whether the model supports SDPA or not. """ return self.language_model._supports_sdpa VIPLLAVA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses [`CLIPImageProcessor`] for processing images). attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The VIPLLAVA model which consists of a vision backbone and a language model.""", VIPLLAVA_START_DOCSTRING, ) # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration with LLAVA->VIPLLAVA,Llava->VipLlava class VipLlavaForConditionalGeneration(VipLlavaPreTrainedModel): def __init__(self, config: VipLlavaConfig): super().__init__(config) self.vision_tower = AutoModel.from_config(config.vision_config) self.multi_modal_projector = VipLlavaMultiModalProjector(config) self.vocab_size = config.vocab_size self.language_model = AutoModelForCausalLM.from_config( config.text_config, attn_implementation=config._attn_implementation ) self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.language_model.set_decoder(decoder) def get_decoder(self): return self.language_model.get_decoder() def tie_weights(self): return self.language_model.tie_weights() def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) # update vocab size self.config.text_config.vocab_size = model_embeds.num_embeddings self.config.vocab_size = model_embeds.num_embeddings self.vocab_size = model_embeds.num_embeddings return model_embeds def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels): num_images, num_image_patches, embed_dim = image_features.shape batch_size, sequence_length = input_ids.shape left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id)) # 1. Create a mask to know where special image tokens are special_image_token_mask = input_ids == self.config.image_token_index num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) # Compute the maximum embed dimension max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index) # 2. Compute the positions where text should be written # Calculate new positions for text tokens in merged image-text sequence. # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens. # `torch.cumsum` computes how each image token shifts subsequent text token positions. # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1 nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1] if left_padding: new_token_positions += nb_image_pad[:, None] # offset for left padding text_to_overwrite = new_token_positions[batch_indices, non_image_indices] # 3. Create the full embedding, already padded to the maximum position final_embedding = torch.zeros( batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device ) final_attention_mask = torch.zeros( batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device ) if labels is not None: final_labels = torch.full( (batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device ) # In case the Vision model or the Language model has been offloaded to CPU, we need to manually # set the corresponding tensors into their correct target device. target_device = inputs_embeds.device batch_indices, non_image_indices, text_to_overwrite = ( batch_indices.to(target_device), non_image_indices.to(target_device), text_to_overwrite.to(target_device), ) attention_mask = attention_mask.to(target_device) # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"] # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] if labels is not None: final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] # 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling image_to_overwrite = torch.all(final_embedding == 0, dim=-1) image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device) if image_to_overwrite.sum() != image_features.shape[:-1].numel(): raise ValueError( f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while" f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation." ) final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device) final_attention_mask |= image_to_overwrite position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) if labels is None: final_labels = None return final_embedding, final_attention_mask, final_labels, position_ids @add_start_docstrings_to_model_forward(VIPLLAVA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=VipLlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) # Ignore copy def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layers: Optional[List[int]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, VipLlavaCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import torch >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, VipLlavaForConditionalGeneration >>> model = VipLlavaForConditionalGeneration.from_pretrained("llava-hf/vip-llava-7b-hf", device_map="auto", torch_dtype=torch.float16) >>> processor = AutoProcessor.from_pretrained("llava-hf/vip-llava-7b-hf") >>> prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.###Human: <image>\n{}###Assistant:" >>> question = "Can you please describe this image?" >>> prompt = prompt.format(question) >>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-neg.png" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=text, images=image, return_tensors="pt").to(0, torch.float16) >>> # Generate >>> generate_ids = model.generate(**inputs, max_new_tokens=20) >>> processor.decode(generate_ids[0][len(inputs["input_ids"][0]):], skip_special_tokens=True) The image features a brown and white cat sitting on a green surface, with a red ball in its ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_layers = ( vision_feature_layers if vision_feature_layers is not None else self.config.vision_feature_layers ) if inputs_embeds is None: # 1. Extra the input embeddings inputs_embeds = self.get_input_embeddings()(input_ids) # 2. Merge text and images if pixel_values is not None and input_ids.shape[1] != 1: image_outputs = self.vision_tower(pixel_values, output_hidden_states=True) # For VIP-llava, the image features are computed this way # We select the features from index 1: for the layers -2, -5, -8, -11 and 6 image_features = [image_outputs.hidden_states[index][:, 1:] for index in vision_feature_layers] image_features = torch.cat(image_features, dim=-1) image_features = self.multi_modal_projector(image_features) inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features( image_features, inputs_embeds, input_ids, attention_mask, labels ) if labels is None: labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long) else: # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of # generation with cache if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1: # Retrieve the first layer to inspect the logits and mask out the hidden states # that are set to 0 first_layer_past_key_value = past_key_values[0][0][:, 0, :, :] # Sum all dimensions of head_dim (-1) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941 batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-1) == 0) # Get the target length target_seqlen = first_layer_past_key_value.shape[-2] + 1 extended_attention_mask = torch.ones( (attention_mask.shape[0], target_seqlen - attention_mask.shape[1]), dtype=attention_mask.dtype, device=attention_mask.device, ) # Filter out only the tokens that can be un-attended, this can happen # in the case one uses Llava + Fused modules where the cache on the # first iteration is already big enough, or if one passes custom cache valid_indices = non_attended_tokens < extended_attention_mask.size(-1) new_batch_index = batch_index[valid_indices] new_non_attended_tokens = non_attended_tokens[valid_indices] # Zero-out the places where we don't need to attend extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1) position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs[0] loss = None if labels is not None: # Shift so that tokens < n predict n if attention_mask is not None: shift_attention_mask = attention_mask[..., 1:] shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return VipLlavaCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, **kwargs ): if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens else: cache_length = past_length = past_key_values[0][0].shape[2] # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. elif self.config.image_token_index in input_ids: input_ids = input_ids[:, input_ids.shape[1] - 1 :] # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the # older attention values, as their corresponding values are not part of the input. if cache_length < past_length and attention_mask is not None: attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "pixel_values": pixel_values, } ) return model_inputs def _reorder_cache(self, *args, **kwargs): return self.language_model._reorder_cache(*args, **kwargs)
transformers/src/transformers/models/vipllava/modeling_vipllava.py/0
{ "file_path": "transformers/src/transformers/models/vipllava/modeling_vipllava.py", "repo_id": "transformers", "token_count": 12096 }
136
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _import_structure = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_vit"] = ["ViTFeatureExtractor"] _import_structure["image_processing_vit"] = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_vit"] = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_vit"] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_vit"] = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/vit/__init__.py/0
{ "file_path": "transformers/src/transformers/models/vit/__init__.py", "repo_id": "transformers", "token_count": 1429 }
137
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ViT MAE checkpoints from the original repository: https://github.com/facebookresearch/mae""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def rename_key(name): if "cls_token" in name: name = name.replace("cls_token", "vit.embeddings.cls_token") if "mask_token" in name: name = name.replace("mask_token", "decoder.mask_token") if "decoder_pos_embed" in name: name = name.replace("decoder_pos_embed", "decoder.decoder_pos_embed") if "pos_embed" in name and "decoder" not in name: name = name.replace("pos_embed", "vit.embeddings.position_embeddings") if "patch_embed.proj" in name: name = name.replace("patch_embed.proj", "vit.embeddings.patch_embeddings.projection") if "patch_embed.norm" in name: name = name.replace("patch_embed.norm", "vit.embeddings.norm") if "decoder_blocks" in name: name = name.replace("decoder_blocks", "decoder.decoder_layers") if "blocks" in name: name = name.replace("blocks", "vit.encoder.layer") if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "attn" in name: name = name.replace("attn", "attention.self") if "norm1" in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if "decoder_embed" in name: name = name.replace("decoder_embed", "decoder.decoder_embed") if "decoder_norm" in name: name = name.replace("decoder_norm", "decoder.decoder_norm") if "decoder_pred" in name: name = name.replace("decoder_pred", "decoder.decoder_pred") if "norm.weight" in name and "decoder" not in name: name = name.replace("norm.weight", "vit.layernorm.weight") if "norm.bias" in name and "decoder" not in name: name = name.replace("norm.bias", "vit.layernorm.bias") return name def convert_state_dict(orig_state_dict, config): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if "qkv" in key: key_split = key.split(".") layer_num = int(key_split[1]) if "decoder_blocks" in key: dim = config.decoder_hidden_size prefix = "decoder.decoder_layers." if "weight" in key: orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.weight"] = val[:dim, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.weight"] = val[dim : dim * 2, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.weight"] = val[-dim:, :] elif "bias" in key: orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.bias"] = val[:dim] orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.bias"] = val[dim : dim * 2] orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.bias"] = val[-dim:] else: dim = config.hidden_size prefix = "vit.encoder.layer." if "weight" in key: orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.weight"] = val[:dim, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.weight"] = val[dim : dim * 2, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.weight"] = val[-dim:, :] elif "bias" in key: orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.bias"] = val[:dim] orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.bias"] = val[dim : dim * 2] orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.bias"] = val[-dim:] else: orig_state_dict[rename_key(key)] = val return orig_state_dict def convert_vit_mae_checkpoint(checkpoint_url, pytorch_dump_folder_path): config = ViTMAEConfig() if "large" in checkpoint_url: config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 elif "huge" in checkpoint_url: config.patch_size = 14 config.hidden_size = 1280 config.intermediate_size = 5120 config.num_hidden_layers = 32 config.num_attention_heads = 16 model = ViTMAEForPreTraining(config) state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"] image_processor = ViTMAEImageProcessor(size=config.image_size) new_state_dict = convert_state_dict(state_dict, config) model.load_state_dict(new_state_dict) model.eval() url = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" image = Image.open(requests.get(url, stream=True).raw) image_processor = ViTMAEImageProcessor(size=config.image_size) inputs = image_processor(images=image, return_tensors="pt") # forward pass torch.manual_seed(2) outputs = model(**inputs) logits = outputs.logits if "large" in checkpoint_url: expected_slice = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: expected_slice = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: expected_slice = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3], expected_slice, atol=1e-4) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
transformers/src/transformers/models/vit_mae/convert_vit_mae_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/vit_mae/convert_vit_mae_to_pytorch.py", "repo_id": "transformers", "token_count": 3304 }
138
# coding=utf-8 # Copyright 2023 The Kakao Enterprise Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ VITS model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) VITS_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/mms-tts-eng": "https://huggingface.co/facebook/mms-tts-eng/resolve/main/config.json", } class VitsConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`VitsModel`]. It is used to instantiate a VITS model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VITS [facebook/mms-tts-eng](https://huggingface.co/facebook/mms-tts-eng) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 38): Vocabulary size of the VITS model. Defines the number of different tokens that can be represented by the `inputs_ids` passed to the forward method of [`VitsModel`]. hidden_size (`int`, *optional*, defaults to 192): Dimensionality of the text encoder layers. num_hidden_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 2): Number of attention heads for each attention layer in the Transformer encoder. window_size (`int`, *optional*, defaults to 4): Window size for the relative positional embeddings in the attention layers of the Transformer encoder. use_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the key, query, value projection layers in the Transformer encoder. ffn_dim (`int`, *optional*, defaults to 768): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. ffn_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the 1D convolution layers used by the feed-forward network in the Transformer encoder. flow_size (`int`, *optional*, defaults to 192): Dimensionality of the flow layers. spectrogram_bins (`int`, *optional*, defaults to 513): Number of frequency bins in the target spectrogram. hidden_act (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings and encoder. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for activations inside the fully connected layer. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. use_stochastic_duration_prediction (`bool`, *optional*, defaults to `True`): Whether to use the stochastic duration prediction module or the regular duration predictor. num_speakers (`int`, *optional*, defaults to 1): Number of speakers if this is a multi-speaker model. speaker_embedding_size (`int`, *optional*, defaults to 0): Number of channels used by the speaker embeddings. Is zero for single-speaker models. upsample_initial_channel (`int`, *optional*, defaults to 512): The number of input channels into the HiFi-GAN upsampling network. upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 2, 2]`): A tuple of integers defining the stride of each 1D convolutional layer in the HiFi-GAN upsampling network. The length of `upsample_rates` defines the number of convolutional layers and has to match the length of `upsample_kernel_sizes`. upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[16, 16, 4, 4]`): A tuple of integers defining the kernel size of each 1D convolutional layer in the HiFi-GAN upsampling network. The length of `upsample_kernel_sizes` defines the number of convolutional layers and has to match the length of `upsample_rates`. resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`): A tuple of integers defining the kernel sizes of the 1D convolutional layers in the HiFi-GAN multi-receptive field fusion (MRF) module. resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`): A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the HiFi-GAN multi-receptive field fusion (MRF) module. leaky_relu_slope (`float`, *optional*, defaults to 0.1): The angle of the negative slope used by the leaky ReLU activation. depth_separable_channels (`int`, *optional*, defaults to 2): Number of channels to use in each depth-separable block. depth_separable_num_layers (`int`, *optional*, defaults to 3): Number of convolutional layers to use in each depth-separable block. duration_predictor_flow_bins (`int`, *optional*, defaults to 10): Number of channels to map using the unonstrained rational spline in the duration predictor model. duration_predictor_tail_bound (`float`, *optional*, defaults to 5.0): Value of the tail bin boundary when computing the unconstrained rational spline in the duration predictor model. duration_predictor_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the 1D convolution layers used in the duration predictor model. duration_predictor_dropout (`float`, *optional*, defaults to 0.5): The dropout ratio for the duration predictor model. duration_predictor_num_flows (`int`, *optional*, defaults to 4): Number of flow stages used by the duration predictor model. duration_predictor_filter_channels (`int`, *optional*, defaults to 256): Number of channels for the convolution layers used in the duration predictor model. prior_encoder_num_flows (`int`, *optional*, defaults to 4): Number of flow stages used by the prior encoder flow model. prior_encoder_num_wavenet_layers (`int`, *optional*, defaults to 4): Number of WaveNet layers used by the prior encoder flow model. posterior_encoder_num_wavenet_layers (`int`, *optional*, defaults to 16): Number of WaveNet layers used by the posterior encoder model. wavenet_kernel_size (`int`, *optional*, defaults to 5): Kernel size of the 1D convolution layers used in the WaveNet model. wavenet_dilation_rate (`int`, *optional*, defaults to 1): Dilation rates of the dilated 1D convolutional layers used in the WaveNet model. wavenet_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the WaveNet layers. speaking_rate (`float`, *optional*, defaults to 1.0): Speaking rate. Larger values give faster synthesised speech. noise_scale (`float`, *optional*, defaults to 0.667): How random the speech prediction is. Larger values create more variation in the predicted speech. noise_scale_duration (`float`, *optional*, defaults to 0.8): How random the duration prediction is. Larger values create more variation in the predicted durations. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the output audio waveform is digitalized expressed in hertz (Hz). Example: ```python >>> from transformers import VitsModel, VitsConfig >>> # Initializing a "facebook/mms-tts-eng" style configuration >>> configuration = VitsConfig() >>> # Initializing a model (with random weights) from the "facebook/mms-tts-eng" style configuration >>> model = VitsModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vits" def __init__( self, vocab_size=38, hidden_size=192, num_hidden_layers=6, num_attention_heads=2, window_size=4, use_bias=True, ffn_dim=768, layerdrop=0.1, ffn_kernel_size=3, flow_size=192, spectrogram_bins=513, hidden_act="relu", hidden_dropout=0.1, attention_dropout=0.1, activation_dropout=0.1, initializer_range=0.02, layer_norm_eps=1e-5, use_stochastic_duration_prediction=True, num_speakers=1, speaker_embedding_size=0, upsample_initial_channel=512, upsample_rates=[8, 8, 2, 2], upsample_kernel_sizes=[16, 16, 4, 4], resblock_kernel_sizes=[3, 7, 11], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], leaky_relu_slope=0.1, depth_separable_channels=2, depth_separable_num_layers=3, duration_predictor_flow_bins=10, duration_predictor_tail_bound=5.0, duration_predictor_kernel_size=3, duration_predictor_dropout=0.5, duration_predictor_num_flows=4, duration_predictor_filter_channels=256, prior_encoder_num_flows=4, prior_encoder_num_wavenet_layers=4, posterior_encoder_num_wavenet_layers=16, wavenet_kernel_size=5, wavenet_dilation_rate=1, wavenet_dropout=0.0, speaking_rate=1.0, noise_scale=0.667, noise_scale_duration=0.8, sampling_rate=16_000, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.window_size = window_size self.use_bias = use_bias self.ffn_dim = ffn_dim self.layerdrop = layerdrop self.ffn_kernel_size = ffn_kernel_size self.flow_size = flow_size self.spectrogram_bins = spectrogram_bins self.hidden_act = hidden_act self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_stochastic_duration_prediction = use_stochastic_duration_prediction self.num_speakers = num_speakers self.speaker_embedding_size = speaker_embedding_size self.upsample_initial_channel = upsample_initial_channel self.upsample_rates = upsample_rates self.upsample_kernel_sizes = upsample_kernel_sizes self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.leaky_relu_slope = leaky_relu_slope self.depth_separable_channels = depth_separable_channels self.depth_separable_num_layers = depth_separable_num_layers self.duration_predictor_flow_bins = duration_predictor_flow_bins self.duration_predictor_tail_bound = duration_predictor_tail_bound self.duration_predictor_kernel_size = duration_predictor_kernel_size self.duration_predictor_dropout = duration_predictor_dropout self.duration_predictor_num_flows = duration_predictor_num_flows self.duration_predictor_filter_channels = duration_predictor_filter_channels self.prior_encoder_num_flows = prior_encoder_num_flows self.prior_encoder_num_wavenet_layers = prior_encoder_num_wavenet_layers self.posterior_encoder_num_wavenet_layers = posterior_encoder_num_wavenet_layers self.wavenet_kernel_size = wavenet_kernel_size self.wavenet_dilation_rate = wavenet_dilation_rate self.wavenet_dropout = wavenet_dropout self.speaking_rate = speaking_rate self.noise_scale = noise_scale self.noise_scale_duration = noise_scale_duration self.sampling_rate = sampling_rate if len(upsample_kernel_sizes) != len(upsample_rates): raise ValueError( f"The length of `upsample_kernel_sizes` ({len(upsample_kernel_sizes)}) must match the length of " f"`upsample_rates` ({len(upsample_rates)})" ) super().__init__(**kwargs)
transformers/src/transformers/models/vits/configuration_vits.py/0
{ "file_path": "transformers/src/transformers/models/vits/configuration_vits.py", "repo_id": "transformers", "token_count": 5431 }
139
# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Wav2Vec2 model.""" import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import ( BaseModelOutput, CausalLMOutput, MaskedLMOutput, SequenceClassifierOutput, TokenClassifierOutput, Wav2Vec2BaseModelOutput, XVectorOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import is_torch_greater_or_equal_than_1_13 from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_file, is_peft_available, is_safetensors_available, logging, replace_return_docstrings, ) from .configuration_wav2vec2 import Wav2Vec2Config WAV2VEC2_ADAPTER_PT_FILE = "adapter.{}.bin" WAV2VEC2_ADAPTER_SAFE_FILE = "adapter.{}.safetensors" if is_safetensors_available(): from safetensors.torch import load_file as safe_load_file logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "Wav2Vec2Config" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/wav2vec2-base-960h" _EXPECTED_OUTPUT_SHAPE = [1, 292, 768] # CTC docstring _CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" _CTC_EXPECTED_LOSS = 53.48 # Audio class docstring _SEQ_CLASS_CHECKPOINT = "superb/wav2vec2-base-superb-ks" _SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'" _SEQ_CLASS_EXPECTED_LOSS = 6.54 # Frame class docstring _FRAME_CLASS_CHECKPOINT = "anton-l/wav2vec2-base-superb-sd" _FRAME_EXPECTED_OUTPUT = [0, 0] # Speaker Verification docstring _XVECTOR_CHECKPOINT = "anton-l/wav2vec2-base-superb-sv" _XVECTOR_EXPECTED_OUTPUT = 0.98 WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/wav2vec2-base-960h", "facebook/wav2vec2-large-960h", "facebook/wav2vec2-large-960h-lv60", "facebook/wav2vec2-large-960h-lv60-self", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 ] @dataclass class Wav2Vec2ForPreTrainingOutput(ModelOutput): """ Output type of [`Wav2Vec2ForPreTraining`], with potential hidden states and attentions. Args: loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked projected quantized states. projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive target vectors for contrastive loss. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. contrastive_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): The contrastive loss (L_m) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . diversity_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): The diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . """ loss: Optional[torch.FloatTensor] = None projected_states: torch.FloatTensor = None projected_quantized_states: torch.FloatTensor = None codevector_perplexity: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None contrastive_loss: Optional[torch.FloatTensor] = None diversity_loss: Optional[torch.FloatTensor] = None def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask def _sample_negative_indices( features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None ): """ Sample `num_negatives` vectors from feature vectors. """ batch_size, sequence_length = features_shape # generate indices of the positive vectors themselves, repeat them `num_negatives` times sequence_length_range = np.arange(sequence_length) # get `num_negatives` random vector indices from the same utterance sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32) mask_time_indices = ( mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool) ) for batch_idx in range(batch_size): high = mask_time_indices[batch_idx].sum() - 1 mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]] feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives)) sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives)) # avoid sampling the same positive vector, but keep the distribution uniform sampled_indices[sampled_indices >= feature_indices] += 1 # remap to actual indices sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices] # correct for batch size sampled_negative_indices[batch_idx] += batch_idx * sequence_length return sampled_negative_indices class Wav2Vec2NoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class Wav2Vec2LayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states class Wav2Vec2GroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class Wav2Vec2PositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = Wav2Vec2SamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class Wav2Vec2SamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states class Wav2Vec2FeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [Wav2Vec2GroupNormConvLayer(config, layer_id=0)] + [ Wav2Vec2NoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ Wav2Vec2LayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class Wav2Vec2FeatureExtractor(Wav2Vec2FeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) class Wav2Vec2FeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Wav2Vec2 class Wav2Vec2Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[Wav2Vec2Config] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class Wav2Vec2FeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class Wav2Vec2EncoderLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = Wav2Vec2Attention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = Wav2Vec2FeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, output_attentions=False): attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class Wav2Vec2EncoderLayerStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.attention = Wav2Vec2Attention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = Wav2Vec2FeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if getattr(config, "adapter_attn_dim", None) is not None: self.adapter_layer = Wav2Vec2AttnAdapterLayer(config) else: self.adapter_layer = None def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ): attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) if self.adapter_layer is not None: hidden_states = hidden_states + self.adapter_layer(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class Wav2Vec2Encoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([Wav2Vec2EncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class Wav2Vec2EncoderStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList( [Wav2Vec2EncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens are not attended to expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class Wav2Vec2GumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. """ def __init__(self, config): super().__init__() self.num_groups = config.num_codevector_groups self.num_vars = config.num_codevectors_per_group if config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {config.codevector_dim} must be divisible " f"by `config.num_codevector_groups` {self.num_groups} for concatenation" ) # storage for codebook variables (codewords) self.codevectors = nn.Parameter( torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) ) self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) # can be decayed for training self.temperature = 2 @staticmethod def _compute_perplexity(probs, mask=None): if mask is not None: mask_extended = mask.flatten()[:, None, None].expand(probs.shape) probs = torch.where(mask_extended, probs, torch.zeros_like(probs)) marginal_probs = probs.sum(dim=0) / mask.sum() else: marginal_probs = probs.mean(dim=0) perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() return perplexity def forward(self, hidden_states, mask_time_indices=None): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) if self.training: # sample code vector probs via gumbel in differentiateable way codevector_probs = nn.functional.gumbel_softmax( hidden_states.float(), tau=self.temperature, hard=True ).type_as(hidden_states) # compute perplexity codevector_soft_dist = torch.softmax( hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(dim=-1) codevector_probs = hidden_states.new_zeros(hidden_states.shape).scatter_( -1, codevector_idx.view(-1, 1), 1.0 ) codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs, mask_time_indices) codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) return codevectors, perplexity class Wav2Vec2Adapter(nn.Module): def __init__(self, config): super().__init__() # feature dim might need to be down-projected if config.output_hidden_size != config.hidden_size: self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size) else: self.proj = self.proj_layer_norm = None self.layers = nn.ModuleList(Wav2Vec2AdapterLayer(config) for _ in range(config.num_adapter_layers)) self.layerdrop = config.layerdrop def forward(self, hidden_states): # down project hidden_states if necessary if self.proj is not None and self.proj_layer_norm is not None: hidden_states = self.proj(hidden_states) hidden_states = self.proj_layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2) for layer in self.layers: layerdrop_prob = np.random.random() if not self.training or (layerdrop_prob > self.layerdrop): hidden_states = layer(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class Wav2Vec2AdapterLayer(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.output_hidden_size, 2 * config.output_hidden_size, config.adapter_kernel_size, stride=config.adapter_stride, padding=1, ) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=1) return hidden_states class Wav2Vec2AttnAdapterLayer(nn.Module): def __init__(self, config): """ Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed up training throughput. """ super().__init__() self.input_dim = config.adapter_attn_dim self.hidden_dim = config.hidden_size self.norm = nn.LayerNorm(self.hidden_dim) self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim) self.act_fn = nn.ReLU() self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim) def forward(self, hidden_states: torch.FloatTensor): hidden_states = self.norm(hidden_states) hidden_states = self.linear_1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states class Wav2Vec2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Wav2Vec2Config base_model_prefix = "wav2vec2" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" # Wav2Vec2ForPreTraining last 2 linear layers need standard Linear init. if isinstance(module, Wav2Vec2ForPreTraining): module.project_hid.reset_parameters() module.project_q.reset_parameters() module.project_hid._is_hf_initialized = True module.project_q._is_hf_initialized = True # gumbel softmax requires special init elif isinstance(module, Wav2Vec2GumbelVectorQuantizer): module.weight_proj.weight.data.normal_(mean=0.0, std=1) module.weight_proj.bias.data.zero_() nn.init.uniform_(module.codevectors) elif isinstance(module, Wav2Vec2PositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, Wav2Vec2FeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _get_feat_extract_output_lengths( self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None ): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) output_lengths = output_lengths.to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask def _get_adapters(self): if self.config.adapter_attn_dim is None: raise ValueError(f"{self.__class__} has no adapter layers. Make sure to define `config.adapter_attn_dim`.") adapter_weights = {} for name, module in self.named_modules(): if isinstance(module, Wav2Vec2AttnAdapterLayer): for param_name, param in module.named_parameters(): adapter_weights[".".join([name, param_name])] = param if isinstance(self, Wav2Vec2ForCTC): for name, param in self.lm_head.named_parameters(): adapter_weights[".".join(["lm_head", name])] = param return adapter_weights def init_adapter_layers(self): """ (Re-)initialize attention adapter layers and lm head for adapter-only fine-tuning """ # init attention adapters for module in self.modules(): if isinstance(module, Wav2Vec2AttnAdapterLayer): self._init_weights(module) # init lm head if isinstance(self, Wav2Vec2ForCTC): self._init_weights(self.lm_head) def load_adapter(self, target_lang: str, force_load=True, **kwargs): r""" Load a language adapter model from a pre-trained adapter model. Parameters: target_lang (`str`): Has to be a language id of an existing adapter weight. Adapter weights are stored in the format adapter.<lang>.safetensors or adapter.<lang>.bin force_load (`bool`, defaults to `True`): Whether the weights shall be loaded even if `target_lang` matches `self.target_lang`. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only(`bool`, *optional*, defaults to `False`): Whether or not to only look at local files (i.e., do not try to download the model). token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. <Tip> To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>". </Tip> mirror (`str`, *optional*): Mirror source to accelerate downloads in China. If you are from China and have an accessibility problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. Please refer to the mirror site for more information. <Tip> Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to use this method in a firewalled environment. </Tip> Examples: ```python >>> from transformers import Wav2Vec2ForCTC, AutoProcessor >>> ckpt = "facebook/mms-1b-all" >>> processor = AutoProcessor.from_pretrained(ckpt) >>> model = Wav2Vec2ForCTC.from_pretrained(ckpt, target_lang="eng") >>> # set specific language >>> processor.tokenizer.set_target_lang("spa") >>> model.load_adapter("spa") ``` """ if self.config.adapter_attn_dim is None: raise ValueError(f"Cannot load_adapter for {target_lang} if `config.adapter_attn_dim` is not defined.") if target_lang == self.target_lang and not force_load: logger.warning(f"Adapter weights are already set to {target_lang}.") return cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) token = kwargs.pop("token", None) use_auth_token = kwargs.pop("use_auth_token", None) revision = kwargs.pop("revision", None) use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token model_path_or_id = self.config._name_or_path state_dict = None # 1. Let's first try loading a safetensors adapter weight if use_safetensors is not False: filepath = WAV2VEC2_ADAPTER_SAFE_FILE.format(target_lang) try: weight_path = cached_file( model_path_or_id, filename=filepath, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, cache_dir=cache_dir, ) state_dict = safe_load_file(weight_path) except EnvironmentError: if use_safetensors: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted # to the original exception. raise except Exception: # For any other exception, we throw a generic error. if use_safetensors: raise EnvironmentError( f"Can't load the model for '{model_path_or_id}'. If you were trying to load it" " from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{model_path_or_id}' is the correct path to a" f" directory containing a file named {filepath}." ) # 2. If this didn't work let's try loading a PyTorch adapter weight if state_dict is None: filepath = WAV2VEC2_ADAPTER_PT_FILE.format(target_lang) try: weight_path = cached_file( model_path_or_id, filename=filepath, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, cache_dir=cache_dir, ) weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} state_dict = torch.load( weight_path, map_location="cpu", **weights_only_kwarg, ) except EnvironmentError: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted # to the original exception. raise except Exception: # For any other exception, we throw a generic error. raise EnvironmentError( f"Can't load the model for '{model_path_or_id}'. If you were trying to load it" " from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{model_path_or_id}' is the correct path to a" f" directory containing a file named {filepath}." ) adapter_weights = self._get_adapters() unexpected_keys = set(state_dict.keys()) - set(adapter_weights.keys()) missing_keys = set(adapter_weights.keys()) - set(state_dict.keys()) if len(unexpected_keys) > 0: raise ValueError(f"The adapter weights {weight_path} has unexpected keys: {', '.join(unexpected_keys)}.") elif len(missing_keys) > 0: raise ValueError(f"The adapter weights {weight_path} has missing keys: {', '.join(missing_keys)}.") # make sure now vocab size is correct target_vocab_size = state_dict["lm_head.weight"].shape[0] if target_vocab_size != self.config.vocab_size: self.lm_head = nn.Linear( self.config.output_hidden_size, target_vocab_size, device=self.device, dtype=self.dtype ) self.config.vocab_size = target_vocab_size # make sure that adapter weights are put in exactly the same precision and device placement and overwritten adapter weights state_dict = {k: v.to(adapter_weights[k]) for k, v in state_dict.items()} self.load_state_dict(state_dict, strict=False) # set target language corectly self.target_lang = target_lang WAV_2_VEC_2_START_DOCSTRING = r""" Wav2Vec2 was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Wav2Vec2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ WAV_2_VEC_2_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, such as [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Wav2Vec2 Model transformer outputting raw hidden-states without any specific head on top.", WAV_2_VEC_2_START_DOCSTRING, ) class Wav2Vec2Model(Wav2Vec2PreTrainedModel): def __init__(self, config: Wav2Vec2Config): super().__init__(config) self.config = config self.feature_extractor = Wav2Vec2FeatureEncoder(config) self.feature_projection = Wav2Vec2FeatureProjection(config) # model only needs masking vector if mask prob is > 0.0 if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: self.encoder = Wav2Vec2EncoderStableLayerNorm(config) else: self.encoder = Wav2Vec2Encoder(config) self.adapter = Wav2Vec2Adapter(config) if config.add_adapter else None # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.feature_extractor._freeze_parameters() def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings("""Wav2Vec2 Model with a quantizer and `VQ` head on top.""", WAV_2_VEC_2_START_DOCSTRING) class Wav2Vec2ForPreTraining(Wav2Vec2PreTrainedModel): def __init__(self, config: Wav2Vec2Config): super().__init__(config) self.wav2vec2 = Wav2Vec2Model(config) self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) self.quantizer = Wav2Vec2GumbelVectorQuantizer(config) self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim) self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) # Initialize weights and apply final processing self.post_init() def set_gumbel_temperature(self, temperature: int): """ Set the Gumbel softmax temperature to a given value. Only necessary for training """ self.quantizer.temperature = temperature def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() @staticmethod def compute_contrastive_logits( target_features: torch.FloatTensor, negative_features: torch.FloatTensor, predicted_features: torch.FloatTensor, temperature: int = 0.1, ): """ Compute logits for contrastive loss based using cosine similarity as the distance measure between `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. """ target_features = torch.cat([target_features, negative_features], dim=0) logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1).type_as( target_features ) # apply temperature logits = logits / temperature return logits @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Wav2Vec2ForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.BoolTensor] = None, sampled_negative_indices: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2ForPreTrainingOutput]: r""" mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in *config.proj_codevector_dim* space. sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*): Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training. Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, Wav2Vec2ForPreTraining >>> from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices, _sample_negative_indices >>> from datasets import load_dataset >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") >>> model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1 >>> # compute masked indices >>> batch_size, raw_sequence_length = input_values.shape >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item() >>> mask_time_indices = _compute_mask_indices( ... shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2 ... ) >>> sampled_negative_indices = _sample_negative_indices( ... features_shape=(batch_size, sequence_length), ... num_negatives=model.config.num_negatives, ... mask_time_indices=mask_time_indices, ... ) >>> mask_time_indices = torch.tensor(data=mask_time_indices, device=input_values.device, dtype=torch.long) >>> sampled_negative_indices = torch.tensor( ... data=sampled_negative_indices, device=input_values.device, dtype=torch.long ... ) >>> with torch.no_grad(): ... outputs = model(input_values, mask_time_indices=mask_time_indices) >>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states) >>> cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1) >>> # show that cosine similarity is much higher than random >>> cosine_sim[mask_time_indices.to(torch.bool)].mean() > 0.5 tensor(True) >>> # for contrastive loss training model should be put into train mode >>> model = model.train() >>> loss = model( ... input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices ... ).loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if mask_time_indices is not None: mask_time_indices = mask_time_indices.to(torch.bool) outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, mask_time_indices=mask_time_indices, return_dict=return_dict, ) # 1. project all transformed features (including masked) to final vq dim transformer_features = self.project_hid(outputs[0]) # 2. quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1]) if attention_mask is not None: # compute reduced attention_mask correponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) quantized_features, codevector_perplexity = self.quantizer( extract_features, mask_time_indices=mask_time_indices ) quantized_features = self.project_q(quantized_features) loss = contrastive_loss = diversity_loss = None if sampled_negative_indices is not None: batch_size, sequence_length, hidden_size = quantized_features.shape # for training, we sample negatives # 3. sample K negatives (distractors) quantized states for contrastive loss # if attention_mask is passed, make sure that padded feature vectors cannot be sampled # sample negative quantized vectors BTC => (BxT)C negative_quantized_features = quantized_features.view(-1, hidden_size)[ sampled_negative_indices.long().view(-1) ] negative_quantized_features = negative_quantized_features.view( batch_size, sequence_length, -1, hidden_size ).permute(2, 0, 1, 3) # 4. compute logits, corresponding to `logs = sim(c_t, [q_t, \sim{q}_t]) / \kappa` # of equation (3) in https://arxiv.org/pdf/2006.11477.pdf logits = self.compute_contrastive_logits( quantized_features[None, :], negative_quantized_features, transformer_features, self.config.contrastive_logits_temperature, ) # 5. if a negative vector is identical to the positive (i.e. when codebook utilization is low), # its cosine similarity will be masked neg_is_pos = (quantized_features == negative_quantized_features).all(-1) if neg_is_pos.any(): logits[1:][neg_is_pos] = float("-inf") # 6. compute contrastive loss \mathbf{L}_m = cross_entropy(logs) = # -log(exp(sim(c_t, q_t)/\kappa) / \sum_{\sim{q}} exp(sim(c_t, \sim{q})/\kappa)) logits = logits.transpose(0, 2).reshape(-1, logits.size(0)) target = ((1 - mask_time_indices.long()) * -100).transpose(0, 1).flatten() contrastive_loss = nn.functional.cross_entropy(logits.float(), target, reduction="sum") # 7. compute diversity loss: \mathbf{L}_d num_codevectors = self.config.num_codevectors_per_group * self.config.num_codevector_groups diversity_loss = ((num_codevectors - codevector_perplexity) / num_codevectors) * mask_time_indices.sum() # 8. \mathbf{L} = \mathbf{L}_m + \alpha * \mathbf{L}_d loss = contrastive_loss + self.config.diversity_loss_weight * diversity_loss if not return_dict: if loss is not None: return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return Wav2Vec2ForPreTrainingOutput( loss=loss, projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, contrastive_loss=contrastive_loss, diversity_loss=diversity_loss, ) @add_start_docstrings("""Wav2Vec2 Model with a `language modeling` head on top.""", WAV_2_VEC_2_START_DOCSTRING) class Wav2Vec2ForMaskedLM(Wav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) warnings.warn( "The class `Wav2Vec2ForMaskedLM` is deprecated. Please use `Wav2Vec2ForCTC` instead.", FutureWarning ) self.wav2vec2 = Wav2Vec2Model(config) self.dropout = nn.Dropout(config.final_dropout) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) def forward( self, input_values: torch.FloatTensor, attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, MaskedLMOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wav2vec2( input_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) if not return_dict: output = (logits,) + outputs[2:] return output return MaskedLMOutput(logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) @add_start_docstrings( """Wav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", WAV_2_VEC_2_START_DOCSTRING, """ target_lang (`str`, *optional*): Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or adapter.<lang>.bin. Only relevant when using an instance of [`Wav2Vec2ForCTC`] with adapters. Uses 'eng' by default. """, ) class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.wav2vec2 = Wav2Vec2Model(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `Wav2Vec2ForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for Wav2Vec2 so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, Wav2Vec2 never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ Wav2Vec2 Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, WAV_2_VEC_2_START_DOCSTRING, ) class Wav2Vec2ForSequenceClassification(Wav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)" ) self.wav2vec2 = Wav2Vec2Model(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_SEQ_CLASS_CHECKPOINT, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Wav2Vec2 Model with a frame classification head on top for tasks like Speaker Diarization. """, WAV_2_VEC_2_START_DOCSTRING, ) class Wav2Vec2ForAudioFrameClassification(Wav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Audio frame classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)" ) self.wav2vec2 = Wav2Vec2Model(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.num_labels = config.num_labels self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_FRAME_CLASS_CHECKPOINT, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_FRAME_EXPECTED_OUTPUT, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): super(AMSoftmaxLoss, self).__init__() self.scale = scale self.margin = margin self.num_labels = num_labels self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) self.loss = nn.CrossEntropyLoss() def forward(self, hidden_states, labels): labels = labels.flatten() weight = nn.functional.normalize(self.weight, dim=0) hidden_states = nn.functional.normalize(hidden_states, dim=1) cos_theta = torch.mm(hidden_states, weight) psi = cos_theta - self.margin onehot = nn.functional.one_hot(labels, self.num_labels) logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) loss = self.loss(logits, labels) return loss class TDNNLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] self.out_conv_dim = config.tdnn_dim[layer_id] self.kernel_size = config.tdnn_kernel[layer_id] self.dilation = config.tdnn_dilation[layer_id] self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) self.activation = nn.ReLU() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if is_peft_available(): from peft.tuners.lora import LoraLayer if isinstance(self.kernel, LoraLayer): warnings.warn( "Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. " "You should exclude TDNNLayer from LoRA's target modules.", ) # for backward compatibility, we keep nn.Linear but call F.conv1d for speed up hidden_states = hidden_states.transpose(1, 2) weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2) hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.activation(hidden_states) return hidden_states @add_start_docstrings( """ Wav2Vec2 Model with an XVector feature extraction head on top for tasks like Speaker Verification. """, WAV_2_VEC_2_START_DOCSTRING, ) class Wav2Vec2ForXVector(Wav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) self.wav2vec2 = Wav2Vec2Model(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] self.tdnn = nn.ModuleList(tdnn_layers) self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2.parameters(): param.requires_grad = False def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the TDNN layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size in self.config.tdnn_kernel: input_lengths = _conv_out_length(input_lengths, kernel_size, 1) return input_lengths @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_XVECTOR_CHECKPOINT, output_type=XVectorOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_XVECTOR_EXPECTED_OUTPUT, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, XVectorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) for tdnn_layer in self.tdnn: hidden_states = tdnn_layer(hidden_states) # Statistic Pooling if attention_mask is None: mean_features = hidden_states.mean(dim=1) std_features = hidden_states.std(dim=1) else: feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) mean_features = [] std_features = [] for i, length in enumerate(tdnn_output_lengths): mean_features.append(hidden_states[i, :length].mean(dim=0)) std_features.append(hidden_states[i, :length].std(dim=0)) mean_features = torch.stack(mean_features) std_features = torch.stack(std_features) statistic_pooling = torch.cat([mean_features, std_features], dim=-1) output_embeddings = self.feature_extractor(statistic_pooling) logits = self.classifier(output_embeddings) loss = None if labels is not None: loss = self.objective(logits, labels) if not return_dict: output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return XVectorOutput( loss=loss, logits=logits, embeddings=output_embeddings, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/wav2vec2/modeling_wav2vec2.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2/modeling_wav2vec2.py", "repo_id": "transformers", "token_count": 46050 }
140
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Whisper.""" import json import os import re import warnings from functools import lru_cache from typing import List, Optional, Tuple import numpy as np from tokenizers import AddedToken, pre_tokenizers, processors from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .english_normalizer import BasicTextNormalizer, EnglishTextNormalizer from .tokenization_whisper import LANGUAGES, TASK_IDS, TO_LANGUAGE_CODE, WhisperTokenizer, _decode_asr logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "tokenizer_file": "tokenizer.json", "merges_file": "merges.txt", "normalizer_file": "normalizer.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "openai/whisper-tiny": "https://huggingface.co/openai/whisper-tiny/resolve/main/vocab.json", "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/vocab.json", "openai/whisper-small": "https://huggingface.co/openai/whisper-small/resolve/main/vocab.json", "openai/whisper-medium": "https://huggingface.co/openai/whisper-medium/resolve/main/vocab.json", "openai/whisper-large": "https://huggingface.co/openai/whisper-large/resolve/main/vocab.json", "openai/whisper-tiny.en": "https://huggingface.co/openai/whisper-tiny.en/resolve/main/vocab.json", "openai/whisper-base.en": "https://huggingface.co/openai/whisper-base.en/resolve/main/vocab.json", "openai/whisper-small.en": "https://huggingface.co/openai/whisper-small.en/resolve/main/vocab.json", "openai/whisper-medium.en": "https://huggingface.co/openai/whisper-medium.en/resolve/main/vocab.json", }, "merges_file": { "openai/whisper-tiny": "https://huggingface.co/openai/whisper-tiny/resolve/main/merges.txt", "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/merges.txt", "openai/whisper-small": "https://huggingface.co/openai/whisper-small/resolve/main/merges.txt", "openai/whisper-medium": "https://huggingface.co/openai/whisper-medium/resolve/main/merges.txt", "openai/whisper-large": "https://huggingface.co/openai/whisper-large/resolve/main/merges.txt", "openai/whisper-tiny.en": "https://huggingface.co/openai/whisper-tiny.en/resolve/main/merges.txt", "openai/whisper-base.en": "https://huggingface.co/openai/whisper-base.en/resolve/main/merges.txt", "openai/whisper-small.en": "https://huggingface.co/openai/whisper-small.en/resolve/main/merges.txt", "openai/whisper-medium.en": "https://huggingface.co/openai/whisper-medium.en/resolve/main/merges.txt", }, "tokenizer_file": { "openai/whisper-tiny": "https://huggingface.co/openai/whisper-tiny/resolve/main/tokenizer.json", "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/tokenizer.json", "openai/whisper-small": "https://huggingface.co/openai/whisper-small/resolve/main/tokenizer.json", "openai/whisper-medium": "https://huggingface.co/openai/whisper-medium/resolve/main/tokenizer.json", "openai/whisper-large": "https://huggingface.co/openai/whisper-large/resolve/main/tokenizer.json", "openai/whisper-tiny.en": "https://huggingface.co/openai/whisper-tiny.en/resolve/main/tokenizer.json", "openai/whisper-base.en": "https://huggingface.co/openai/whisper-base.en/resolve/main/tokenizer.json", "openai/whisper-small.en": "https://huggingface.co/openai/whisper-small.en/resolve/main/tokenizer.json", "openai/whisper-medium.en": "https://huggingface.co/openai/whisper-medium.en/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "openai/whisper-tiny": 1500, "openai/whisper-base": 1500, "openai/whisper-small": 1500, "openai/whisper-medium": 1500, "openai/whisper-large": 1500, "openai/whisper-tiny.en": 1500, "openai/whisper-base.en": 1500, "openai/whisper-small.en": 1500, "openai/whisper-medium.en": 1500, } class WhisperTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" Whisper tokenizer (backed by HuggingFace's *tokenizers* library). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`, *optional*): Path to the vocabulary file. merges_file (`str`, *optional*): Path to the merges file. normalizer_file (`str`, *optional*): Path to the normalizer_file file. tokenizer_file (`str`, *optional*): Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that contains everything needed to load the tokenizer. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The beginning of sequence token. The `decoder_start_token_id` is used to set the first token as `"<|startoftranscript|>"` when generating. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (Whisper tokenizer detect beginning of words by the preceding space). language (`str`, *optional*): The language of the transcription text. The corresponding language id token is appended to the start of the sequence for multilingual speech recognition and speech translation tasks, e.g. for Spanish the token `"<|es|>"` is appended to the start of sequence. This should be used for multilingual fine-tuning only. task (`str`, *optional*): Task identifier to append at the start of sequence (if any). This should be used for mulitlingual fine-tuning, with `"transcribe"` for speech recognition and `"translate"` for speech translation. predict_timestamps (`bool`, *optional*, defaults to `False`): Whether to omit the `<|notimestamps|>` token at the start of the sequence. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = WhisperTokenizer def __init__( self, vocab_file=None, merges_file=None, normalizer_file=None, tokenizer_file=None, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", add_prefix_space=False, language=None, task=None, predict_timestamps=False, **kwargs, ): bos_token = ( AddedToken(bos_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(bos_token, str) else bos_token ) eos_token = ( AddedToken(eos_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(eos_token, str) else eos_token ) unk_token = ( AddedToken(unk_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(unk_token, str) else unk_token ) super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, add_prefix_space=add_prefix_space, **kwargs, ) self.add_bos_token = kwargs.pop("add_bos_token", False) pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) pre_tok_state["add_prefix_space"] = add_prefix_space self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) if normalizer_file is not None: with open(normalizer_file, encoding="utf-8") as vocab_handle: self.english_spelling_normalizer = json.load(vocab_handle) else: self.english_spelling_normalizer = None self.add_prefix_space = add_prefix_space self.timestamp_pat = re.compile(r"<\|(\d+\.\d+)\|>") self.language = language self.task = task self.predict_timestamps = predict_timestamps # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._batch_encode_plus def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._encode_plus def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._decode_with_timestamps def _decode_with_timestamps(self, token_ids, skip_special_tokens=False, time_precision=0.02) -> str: """ Timestamp tokens are above the special tokens' id range and are ignored by `decode()`. This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>". """ timestamp_begin = self.all_special_ids[-1] + 1 outputs = [[]] cur_max_timestamp = 0.0 prev_segments_len = 0.0 for token in token_ids: if token >= timestamp_begin: timestamp = float((token - timestamp_begin) * time_precision) if timestamp < cur_max_timestamp: # next segment has started prev_segments_len += cur_max_timestamp cur_max_timestamp = timestamp outputs.append(f"<|{(timestamp + prev_segments_len):.2f}|>") outputs.append([]) else: outputs[-1].append(token) outputs = [ s if isinstance(s, str) else self.decode(s, skip_special_tokens=skip_special_tokens) for s in outputs ] return "".join(outputs) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._compute_offsets def _compute_offsets(self, token_ids, time_precision=0.02): """ Compute offsets for a given tokenized input Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. time_precision (`float`, `optional`, defaults to 0.02): The time ratio to convert from token to time. """ offsets = [] # ensure torch tensor of token ids is placed on cpu if "torch" in str(type(token_ids)) and (hasattr(token_ids, "cpu") and callable(token_ids.cpu)): token_ids = token_ids.cpu() token_ids = np.array(token_ids) if token_ids.shape[0] > 1 and len(token_ids.shape) > 1: raise ValueError("Can only process a single input at a time") timestamp_begin = self.all_special_ids[-1] + 1 timestamp_tokens = token_ids >= timestamp_begin consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1 if consecutive.shape[0] == 0 and timestamp_tokens.sum() <= 1: # either there are no timestamps or there are no consecutive ones return [] elif np.where(timestamp_tokens)[0][-1] + 1 not in consecutive: # we add the final timestamp if it is not already in the list consecutive = np.append(consecutive, np.where(timestamp_tokens)[0][-1] + 1) last_slice = np.where(timestamp_tokens)[0][0] for current_slice in consecutive: sliced_tokens = token_ids[last_slice:current_slice] if len(sliced_tokens) > 1: start_timestamp_position = sliced_tokens[0].item() - timestamp_begin end_timestamp_position = sliced_tokens[-1].item() - timestamp_begin # strip timestamp tokens from the text output sliced_tokens = self._preprocess_token_ids(sliced_tokens) text = self._decode(sliced_tokens) text = self._filter_timestamp_ids(text) offsets.append( { "text": text, "timestamp": ( start_timestamp_position * time_precision, end_timestamp_position * time_precision, ), } ) last_slice = current_slice return offsets @lru_cache # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.timestamp_ids def timestamp_ids(self, time_precision=0.02): """ Compute the timestamp token ids for a given precision and save to least-recently used (LRU) cache. Args: time_precision (`float`, `optional`, defaults to 0.02): The time ratio to convert from token to time. """ return self.convert_tokens_to_ids([("<|%.2f|>" % (i * time_precision)) for i in range(1500 + 1)]) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._preprocess_token_ids def _preprocess_token_ids(self, token_ids, skip_special_tokens: bool = False): """ Pre-process the token ids for decoding by removing the prompt tokens ids and timestamp token ids. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Typically, obtained using the `__call__` method of the tokenizer. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens from the token ids. If `True`, the prompt token ids will be removed. """ if skip_special_tokens: prompt_token_id = self.convert_tokens_to_ids("<|startofprev|>") decoder_start_token_id = self.convert_tokens_to_ids("<|startoftranscript|>") token_ids = self._strip_prompt(token_ids, prompt_token_id, decoder_start_token_id) return token_ids # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._filter_timestamp_ids def _filter_timestamp_ids(self, token_ids): return re.sub(self.timestamp_pat, "", token_ids) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.decode def decode( self, token_ids, skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_offsets: bool = False, time_precision: float = 0.02, decode_with_timestamps: bool = False, normalize: bool = False, basic_normalize: bool = False, remove_diacritics: bool = False, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). output_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output the offsets of the tokens. This should only be set if the model predicted timestamps. time_precision (`float`, `optional`, defaults to 0.02): The time ratio to convert from token to time. decode_with_timestamps (`bool`, *optional*, defaults to `False`): Whether or not to decode with timestamps included in the raw text. normalize (`bool`, *optional*, defaults to `False`): Whether or not to apply the English text normalizer to the decoded text. Only applicable when the target text is in English. Otherwise, the basic text normalizer should be applied. basic_normalize (`bool`, *optional*, defaults to `False`): Whether or not to apply the Basic text normalizer to the decoded text. Applicable to multilingual target text. remove_diacritics (`bool`, *optional*, defaults to `False`): Whether or not to remove diacritics when applying the Basic text normalizer. Removing diacritics may destroy information in the decoded text, hence it should be used with caution. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ filtered_ids = self._preprocess_token_ids( token_ids, skip_special_tokens=skip_special_tokens, ) text = super().decode( filtered_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, normalize=normalize, basic_normalize=basic_normalize, remove_diacritics=remove_diacritics, **kwargs, ) if decode_with_timestamps: # legacy method to decode timestamps when not included in the tokenizer vocabulary text = self._decode_with_timestamps( filtered_ids, time_precision=time_precision, skip_special_tokens=skip_special_tokens ) else: text = self._filter_timestamp_ids(text) # retrieve offsets if output_offsets: offsets = self._compute_offsets(token_ids, time_precision=time_precision) return {"text": text, "offsets": offsets} return text def _decode( self, *args, normalize: bool = False, basic_normalize: bool = False, remove_diacritics: bool = False, **kwargs ) -> str: text = super()._decode(*args, **kwargs) if normalize: clean_text = self._normalize(text) return clean_text elif basic_normalize: clean_text = self._basic_normalize(text, remove_diacritics=remove_diacritics) return clean_text else: return text # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._normalize def _normalize(self, text): warnings.warn( "The private method `_normalize` is deprecated and will be removed in v5 of Transformers." "You can normalize an input string using the Whisper English normalizer using the `normalize` method." ) return self.normalize(text) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._basic_normalize def _basic_normalize(self, text, remove_diacritics=False): warnings.warn( "The private method `_basic_normalize` is deprecated and will be removed in v5 of Transformers." "You can normalize an input string using the Whisper basic normalizer using the `basic_normalize` method." ) return self.basic_normalize(text, remove_diacritics=remove_diacritics) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.normalize def normalize(self, text): """ Normalize a given string using the `EnglishTextNormalizer` class, which preforms commons transformation on english text. """ normalizer = EnglishTextNormalizer(self.english_spelling_normalizer) return normalizer(text) @staticmethod # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.basic_normalize def basic_normalize(text, remove_diacritics=False): """ Normalize a given string using the `BasicTextNormalizer` class, which preforms commons transformation on multilingual text. """ normalizer = BasicTextNormalizer(remove_diacritics=remove_diacritics) return normalizer(text) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) normalizer_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["normalizer_file"] ) if self.english_spelling_normalizer is not None: with open(normalizer_file, "w", encoding="utf-8") as f: f.write( json.dumps(self.english_spelling_normalizer, indent=2, sort_keys=True, ensure_ascii=False) + "\n" ) return tuple(files) + (normalizer_file,) def set_prefix_tokens(self, language: str = None, task: str = None, predict_timestamps: bool = None): """ Override the prefix tokens appended to the start of the label sequence. This method can be used standalone to update the prefix tokens as required when fine-tuning. Example: ```python >>> # instantiate the tokenizer and set the prefix token to Spanish >>> tokenizer = WhisperTokenizerFast.from_pretrained("openai/whisper-tiny", language="spanish") >>> # now switch the prefix token from Spanish to French >>> tokenizer.set_prefix_tokens(language="french") ``` Args: language (`str`, *optional*, defaults to `None`): The language of the transcription text. task (`str`, *optional*, defaults to `None`): Task identifier to append at the start of sequence (if any). predict_timestamps (`bool`, *optional*, defaults to `None`): Whether to omit the `<|notimestamps|>` token at the start of the sequence. """ self.language = language if language is not None else self.language self.task = task if task is not None else self.task self.predict_timestamps = predict_timestamps if predict_timestamps is not None else self.predict_timestamps prefix_token_ids = self.prefix_tokens prefixes = self.convert_ids_to_tokens(prefix_token_ids) eos = self.eos_token eos_token_id = self.eos_token_id prefix_template = " ".join([f"{token}:0" for token in prefixes]) self.backend_tokenizer.post_processor = processors.TemplateProcessing( single=f"{prefix_template} $A:0 {eos}:0", pair=f"{prefix_template} $A:0 $B:1 {eos}:1", special_tokens=[ (eos, eos_token_id), *zip(prefixes, prefix_token_ids), ], ) @property # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.prefix_tokens def prefix_tokens(self) -> List[int]: bos_token_id = self.convert_tokens_to_ids("<|startoftranscript|>") translate_token_id = self.convert_tokens_to_ids("<|translate|>") transcribe_token_id = self.convert_tokens_to_ids("<|transcribe|>") notimestamps_token_id = self.convert_tokens_to_ids("<|notimestamps|>") langs = tuple(LANGUAGES.keys()) if self.language is not None: self.language = self.language.lower() if self.language in TO_LANGUAGE_CODE: language_id = TO_LANGUAGE_CODE[self.language] elif self.language in TO_LANGUAGE_CODE.values(): language_id = self.language else: is_language_code = len(self.language) == 2 raise ValueError( f"Unsupported language: {self.language}. Language should be one of:" f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." ) if self.task is not None: if self.task not in TASK_IDS: raise ValueError(f"Unsupported task: {self.task}. Task should be in: {TASK_IDS}") bos_sequence = [bos_token_id] if self.language is not None: bos_sequence.append(bos_token_id + 1 + langs.index(language_id)) if self.task is not None: bos_sequence.append(transcribe_token_id if self.task == "transcribe" else translate_token_id) if not self.predict_timestamps: bos_sequence.append(notimestamps_token_id) return bos_sequence # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """Build model inputs from a sequence by appending eos_token_id.""" if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + [self.eos_token_id] # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones @property # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template def default_chat_template(self): """ A simple chat template that ignores role information and just concatenates messages with EOS tokens. """ logger.warning_once( "\nNo chat template is defined for this tokenizer - using the default template " f"for the {self.__class__.__name__} class. If the default is not appropriate for " "your model, please set `tokenizer.chat_template` to an appropriate template. " "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" ) return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}" # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_decoder_prompt_ids def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): self.set_prefix_tokens(task=task, language=language, predict_timestamps=not no_timestamps) # prefix tokens are of the form: <|startoftranscript|> <|lang_id|> <|task|> <|notimestamps|> # we don't want to force the bos token at position 1, as this is the starting token # when we generate, so we slice the prefix tokens to: <|lang_id|> <|task|> <|notimestamps|> # to get the forced tokens forced_tokens = self.prefix_tokens[1:] forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_tokens)] return forced_decoder_ids def _decode_asr(self, model_outputs, *, return_timestamps, return_language, time_precision): return _decode_asr( self, model_outputs, return_timestamps=return_timestamps, return_language=return_language, time_precision=time_precision, ) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_prompt_ids def get_prompt_ids(self, text: str, return_tensors="np"): """Converts prompt text to IDs that can be passed to [`~WhisperForConditionalGeneration.generate`].""" batch_encoding = self("<|startofprev|>", " " + text.strip(), add_special_tokens=False) # Check for special tokens prompt_text_ids = batch_encoding["input_ids"][1:] special_token_id = next((x for x in prompt_text_ids if x >= self.all_special_ids[0]), None) if special_token_id is not None: token = self.convert_ids_to_tokens(special_token_id) raise ValueError(f"Encountered text in the prompt corresponding to disallowed special token: {token}.") batch_encoding.convert_to_tensors(tensor_type=return_tensors) return batch_encoding["input_ids"] @staticmethod # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._strip_prompt def _strip_prompt(token_ids: List[int], prompt_token_id: int, decoder_start_token_id: int): has_prompt = isinstance(token_ids, list) and token_ids and token_ids[0] == prompt_token_id if has_prompt: if decoder_start_token_id in token_ids: return token_ids[token_ids.index(decoder_start_token_id) :] else: return [] return token_ids
transformers/src/transformers/models/whisper/tokenization_whisper_fast.py/0
{ "file_path": "transformers/src/transformers/models/whisper/tokenization_whisper_fast.py", "repo_id": "transformers", "token_count": 13837 }
141
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert OpenAI GPT checkpoint.""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def convert_xlm_checkpoint_to_pytorch(xlm_checkpoint_path, pytorch_dump_folder_path): # Load checkpoint chkpt = torch.load(xlm_checkpoint_path, map_location="cpu") state_dict = chkpt["model"] # We have the base model one level deeper than the original XLM repository two_levels_state_dict = {} for k, v in state_dict.items(): if "pred_layer" in k: two_levels_state_dict[k] = v else: two_levels_state_dict["transformer." + k] = v config = chkpt["params"] config = {n: v for n, v in config.items() if not isinstance(v, (torch.FloatTensor, numpy.ndarray))} vocab = chkpt["dico_word2id"] vocab = {s + "</w>" if s.find("@@") == -1 and i > 13 else s.replace("@@", ""): i for s, i in vocab.items()} # Save pytorch-model pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME pytorch_vocab_dump_path = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(f"Save PyTorch model to {pytorch_weights_dump_path}") torch.save(two_levels_state_dict, pytorch_weights_dump_path) print(f"Save configuration file to {pytorch_config_dump_path}") with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: f.write(json.dumps(config, indent=2) + "\n") print(f"Save vocab file to {pytorch_config_dump_path}") with open(pytorch_vocab_dump_path, "w", encoding="utf-8") as f: f.write(json.dumps(vocab, indent=2) + "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
transformers/src/transformers/models/xlm/convert_xlm_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/xlm/convert_xlm_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1106 }
142
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ XLM_ROBERTa_XL configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class XLMRobertaXLConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`XLMRobertaXLModel`] or a [`TFXLMRobertaXLModel`]. It is used to instantiate a XLM_ROBERTA_XL model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the XLM_ROBERTA_XL [facebook/xlm-roberta-xl](https://huggingface.co/facebook/xlm-roberta-xl) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 250880): Vocabulary size of the XLM_ROBERTA_XL model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XLMRobertaXLModel`]. hidden_size (`int`, *optional*, defaults to 2560): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 36): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 10240): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 514): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 1): The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaXLModel`] or [`TFXLMRobertaXLModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import XLMRobertaXLConfig, XLMRobertaXLModel >>> # Initializing a XLM_ROBERTA_XL google-bert/bert-base-uncased style configuration >>> configuration = XLMRobertaXLConfig() >>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration >>> model = XLMRobertaXLModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xlm-roberta-xl" def __init__( self, vocab_size=250880, hidden_size=2560, num_hidden_layers=36, num_attention_heads=32, intermediate_size=10240, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=514, type_vocab_size=1, initializer_range=0.02, layer_norm_eps=1e-05, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout # Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->XLMRobertaXL class XLMRobertaXLOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
transformers/src/transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py/0
{ "file_path": "transformers/src/transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py", "repo_id": "transformers", "token_count": 2941 }
143
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert YOLOS checkpoints from the original repository. URL: https://github.com/hustvl/YOLOS""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_yolos_config(yolos_name: str) -> YolosConfig: config = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: config.hidden_size = 192 config.intermediate_size = 768 config.num_hidden_layers = 12 config.num_attention_heads = 3 config.image_size = [800, 1333] config.use_mid_position_embeddings = False elif yolos_name == "yolos_s_dWr": config.hidden_size = 330 config.num_hidden_layers = 14 config.num_attention_heads = 6 config.intermediate_size = 1320 elif "yolos_s" in yolos_name: config.hidden_size = 384 config.intermediate_size = 1536 config.num_hidden_layers = 12 config.num_attention_heads = 6 elif "yolos_b" in yolos_name: config.image_size = [800, 1344] config.num_labels = 91 repo_id = "huggingface/label-files" filename = "coco-detection-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict: dict, config: YolosConfig, base_model: bool = False): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :] state_dict[f"encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-config.hidden_size :, :] state_dict[f"encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] def rename_key(name: str) -> str: if "backbone" in name: name = name.replace("backbone", "vit") if "cls_token" in name: name = name.replace("cls_token", "embeddings.cls_token") if "det_token" in name: name = name.replace("det_token", "embeddings.detection_tokens") if "mid_pos_embed" in name: name = name.replace("mid_pos_embed", "encoder.mid_position_embeddings") if "pos_embed" in name: name = name.replace("pos_embed", "embeddings.position_embeddings") if "patch_embed.proj" in name: name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection") if "blocks" in name: name = name.replace("blocks", "encoder.layer") if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "attn" in name: name = name.replace("attn", "attention.self") if "norm1" in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if "class_embed" in name: name = name.replace("class_embed", "class_labels_classifier") if "bbox_embed" in name: name = name.replace("bbox_embed", "bbox_predictor") if "vit.norm" in name: name = name.replace("vit.norm", "vit.layernorm") return name def convert_state_dict(orig_state_dict: dict, model: YolosForObjectDetection) -> dict: for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if "qkv" in key: key_split = key.split(".") layer_num = int(key_split[2]) dim = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.query.weight"] = val[:dim, :] orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.key.weight"] = val[ dim : dim * 2, : ] orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.value.weight"] = val[-dim:, :] else: orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.query.bias"] = val[:dim] orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.key.bias"] = val[dim : dim * 2] orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.value.bias"] = val[-dim:] else: orig_state_dict[rename_key(key)] = val return orig_state_dict # We will verify our results on an image of cute cats def prepare_img() -> torch.Tensor: url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_yolos_checkpoint( yolos_name: str, checkpoint_path: str, pytorch_dump_folder_path: str, push_to_hub: bool = False ): """ Copy/paste/tweak model's weights to our YOLOS structure. """ config = get_yolos_config(yolos_name) # load original state_dict state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] # load 🤗 model model = YolosForObjectDetection(config) model.eval() new_state_dict = convert_state_dict(state_dict, model) model.load_state_dict(new_state_dict) # Check outputs on an image, prepared by YolosImageProcessor size = 800 if yolos_name != "yolos_ti" else 512 image_processor = YolosImageProcessor(format="coco_detection", size=size) encoding = image_processor(images=prepare_img(), return_tensors="pt") outputs = model(**encoding) logits, pred_boxes = outputs.logits, outputs.pred_boxes expected_slice_logits, expected_slice_boxes = None, None if yolos_name == "yolos_ti": expected_slice_logits = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) expected_slice_boxes = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": expected_slice_logits = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) expected_slice_boxes = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": expected_slice_logits = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) expected_slice_boxes = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": expected_slice_logits = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) expected_slice_boxes = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": expected_slice_logits = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) expected_slice_boxes = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}") assert torch.allclose(logits[0, :3, :3], expected_slice_logits, atol=1e-4) assert torch.allclose(pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: model_mapping = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub...") model_name = model_mapping[yolos_name] image_processor.push_to_hub(model_name, organization="hustvl") model.push_to_hub(model_name, organization="hustvl") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/yolos/convert_yolos_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/yolos/convert_yolos_to_pytorch.py", "repo_id": "transformers", "token_count": 5081 }
144
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import warnings from pathlib import Path from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union from huggingface_hub import model_info from ..configuration_utils import PretrainedConfig from ..dynamic_module_utils import get_class_from_dynamic_module from ..feature_extraction_utils import PreTrainedFeatureExtractor from ..image_processing_utils import BaseImageProcessor from ..models.auto.configuration_auto import AutoConfig from ..models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor from ..models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor from ..models.auto.modeling_auto import AutoModelForDepthEstimation, AutoModelForImageToImage from ..models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer from ..tokenization_utils import PreTrainedTokenizer from ..utils import ( CONFIG_NAME, HUGGINGFACE_CO_RESOLVE_ENDPOINT, cached_file, extract_commit_hash, find_adapter_config_file, is_kenlm_available, is_offline_mode, is_peft_available, is_pyctcdecode_available, is_tf_available, is_torch_available, logging, ) from .audio_classification import AudioClassificationPipeline from .automatic_speech_recognition import AutomaticSpeechRecognitionPipeline from .base import ( ArgumentHandler, CsvPipelineDataFormat, JsonPipelineDataFormat, PipedPipelineDataFormat, Pipeline, PipelineDataFormat, PipelineException, PipelineRegistry, get_default_model_and_revision, infer_framework_load_model, ) from .conversational import Conversation, ConversationalPipeline from .depth_estimation import DepthEstimationPipeline from .document_question_answering import DocumentQuestionAnsweringPipeline from .feature_extraction import FeatureExtractionPipeline from .fill_mask import FillMaskPipeline from .image_classification import ImageClassificationPipeline from .image_feature_extraction import ImageFeatureExtractionPipeline from .image_segmentation import ImageSegmentationPipeline from .image_to_image import ImageToImagePipeline from .image_to_text import ImageToTextPipeline from .mask_generation import MaskGenerationPipeline from .object_detection import ObjectDetectionPipeline from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline from .text2text_generation import SummarizationPipeline, Text2TextGenerationPipeline, TranslationPipeline from .text_classification import TextClassificationPipeline from .text_generation import TextGenerationPipeline from .text_to_audio import TextToAudioPipeline from .token_classification import ( AggregationStrategy, NerPipeline, TokenClassificationArgumentHandler, TokenClassificationPipeline, ) from .video_classification import VideoClassificationPipeline from .visual_question_answering import VisualQuestionAnsweringPipeline from .zero_shot_audio_classification import ZeroShotAudioClassificationPipeline from .zero_shot_classification import ZeroShotClassificationArgumentHandler, ZeroShotClassificationPipeline from .zero_shot_image_classification import ZeroShotImageClassificationPipeline from .zero_shot_object_detection import ZeroShotObjectDetectionPipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForImageClassification, TFAutoModelForMaskedLM, TFAutoModelForQuestionAnswering, TFAutoModelForSeq2SeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelForVision2Seq, TFAutoModelForZeroShotImageClassification, ) if is_torch_available(): import torch from ..models.auto.modeling_auto import ( AutoModel, AutoModelForAudioClassification, AutoModelForCausalLM, AutoModelForCTC, AutoModelForDocumentQuestionAnswering, AutoModelForImageClassification, AutoModelForImageSegmentation, AutoModelForMaskedLM, AutoModelForMaskGeneration, AutoModelForObjectDetection, AutoModelForQuestionAnswering, AutoModelForSemanticSegmentation, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForSpeechSeq2Seq, AutoModelForTableQuestionAnswering, AutoModelForTextToSpectrogram, AutoModelForTextToWaveform, AutoModelForTokenClassification, AutoModelForVideoClassification, AutoModelForVision2Seq, AutoModelForVisualQuestionAnswering, AutoModelForZeroShotImageClassification, AutoModelForZeroShotObjectDetection, ) if TYPE_CHECKING: from ..modeling_tf_utils import TFPreTrainedModel from ..modeling_utils import PreTrainedModel from ..tokenization_utils_fast import PreTrainedTokenizerFast logger = logging.get_logger(__name__) # Register all the supported tasks here TASK_ALIASES = { "sentiment-analysis": "text-classification", "ner": "token-classification", "vqa": "visual-question-answering", "text-to-speech": "text-to-audio", } SUPPORTED_TASKS = { "audio-classification": { "impl": AudioClassificationPipeline, "tf": (), "pt": (AutoModelForAudioClassification,) if is_torch_available() else (), "default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}}, "type": "audio", }, "automatic-speech-recognition": { "impl": AutomaticSpeechRecognitionPipeline, "tf": (), "pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (), "default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "55bb623")}}, "type": "multimodal", }, "text-to-audio": { "impl": TextToAudioPipeline, "tf": (), "pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (), "default": {"model": {"pt": ("suno/bark-small", "645cfba")}}, "type": "text", }, "feature-extraction": { "impl": FeatureExtractionPipeline, "tf": (TFAutoModel,) if is_tf_available() else (), "pt": (AutoModel,) if is_torch_available() else (), "default": { "model": { "pt": ("distilbert/distilbert-base-cased", "935ac13"), "tf": ("distilbert/distilbert-base-cased", "935ac13"), } }, "type": "multimodal", }, "text-classification": { "impl": TextClassificationPipeline, "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (), "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"), "tf": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"), }, }, "type": "text", }, "token-classification": { "impl": TokenClassificationPipeline, "tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (), "pt": (AutoModelForTokenClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"), "tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"), }, }, "type": "text", }, "question-answering": { "impl": QuestionAnsweringPipeline, "tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (), "pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (), "default": { "model": { "pt": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"), "tf": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"), }, }, "type": "text", }, "table-question-answering": { "impl": TableQuestionAnsweringPipeline, "pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (), "tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (), "default": { "model": { "pt": ("google/tapas-base-finetuned-wtq", "69ceee2"), "tf": ("google/tapas-base-finetuned-wtq", "69ceee2"), }, }, "type": "text", }, "visual-question-answering": { "impl": VisualQuestionAnsweringPipeline, "pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available() else (), "tf": (), "default": { "model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "4355f59")}, }, "type": "multimodal", }, "document-question-answering": { "impl": DocumentQuestionAnsweringPipeline, "pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (), "tf": (), "default": { "model": {"pt": ("impira/layoutlm-document-qa", "52e01b3")}, }, "type": "multimodal", }, "fill-mask": { "impl": FillMaskPipeline, "tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (), "pt": (AutoModelForMaskedLM,) if is_torch_available() else (), "default": { "model": { "pt": ("distilbert/distilroberta-base", "ec58a5b"), "tf": ("distilbert/distilroberta-base", "ec58a5b"), } }, "type": "text", }, "summarization": { "impl": SummarizationPipeline, "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (), "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (), "default": { "model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("google-t5/t5-small", "d769bba")} }, "type": "text", }, # This task is a special case as it's parametrized by SRC, TGT languages. "translation": { "impl": TranslationPipeline, "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (), "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (), "default": { ("en", "fr"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}}, ("en", "de"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}}, ("en", "ro"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}}, }, "type": "text", }, "text2text-generation": { "impl": Text2TextGenerationPipeline, "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (), "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (), "default": {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}}, "type": "text", }, "text-generation": { "impl": TextGenerationPipeline, "tf": (TFAutoModelForCausalLM,) if is_tf_available() else (), "pt": (AutoModelForCausalLM,) if is_torch_available() else (), "default": {"model": {"pt": ("openai-community/gpt2", "6c0e608"), "tf": ("openai-community/gpt2", "6c0e608")}}, "type": "text", }, "zero-shot-classification": { "impl": ZeroShotClassificationPipeline, "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (), "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("facebook/bart-large-mnli", "c626438"), "tf": ("FacebookAI/roberta-large-mnli", "130fb28"), }, "config": { "pt": ("facebook/bart-large-mnli", "c626438"), "tf": ("FacebookAI/roberta-large-mnli", "130fb28"), }, }, "type": "text", }, "zero-shot-image-classification": { "impl": ZeroShotImageClassificationPipeline, "tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (), "pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("openai/clip-vit-base-patch32", "f4881ba"), "tf": ("openai/clip-vit-base-patch32", "f4881ba"), } }, "type": "multimodal", }, "zero-shot-audio-classification": { "impl": ZeroShotAudioClassificationPipeline, "tf": (), "pt": (AutoModel,) if is_torch_available() else (), "default": { "model": { "pt": ("laion/clap-htsat-fused", "973b6e5"), } }, "type": "multimodal", }, "conversational": { "impl": ConversationalPipeline, "tf": (TFAutoModelForSeq2SeqLM, TFAutoModelForCausalLM) if is_tf_available() else (), "pt": (AutoModelForSeq2SeqLM, AutoModelForCausalLM) if is_torch_available() else (), "default": { "model": {"pt": ("microsoft/DialoGPT-medium", "8bada3b"), "tf": ("microsoft/DialoGPT-medium", "8bada3b")} }, "type": "text", }, "image-classification": { "impl": ImageClassificationPipeline, "tf": (TFAutoModelForImageClassification,) if is_tf_available() else (), "pt": (AutoModelForImageClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("google/vit-base-patch16-224", "5dca96d"), "tf": ("google/vit-base-patch16-224", "5dca96d"), } }, "type": "image", }, "image-feature-extraction": { "impl": ImageFeatureExtractionPipeline, "tf": (TFAutoModel,) if is_tf_available() else (), "pt": (AutoModel,) if is_torch_available() else (), "default": { "model": { "pt": ("google/vit-base-patch16-224", "29e7a1e183"), "tf": ("google/vit-base-patch16-224", "29e7a1e183"), } }, "type": "image", }, "image-segmentation": { "impl": ImageSegmentationPipeline, "tf": (), "pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (), "default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}}, "type": "multimodal", }, "image-to-text": { "impl": ImageToTextPipeline, "tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (), "pt": (AutoModelForVision2Seq,) if is_torch_available() else (), "default": { "model": { "pt": ("ydshieh/vit-gpt2-coco-en", "65636df"), "tf": ("ydshieh/vit-gpt2-coco-en", "65636df"), } }, "type": "multimodal", }, "object-detection": { "impl": ObjectDetectionPipeline, "tf": (), "pt": (AutoModelForObjectDetection,) if is_torch_available() else (), "default": {"model": {"pt": ("facebook/detr-resnet-50", "2729413")}}, "type": "multimodal", }, "zero-shot-object-detection": { "impl": ZeroShotObjectDetectionPipeline, "tf": (), "pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (), "default": {"model": {"pt": ("google/owlvit-base-patch32", "17740e1")}}, "type": "multimodal", }, "depth-estimation": { "impl": DepthEstimationPipeline, "tf": (), "pt": (AutoModelForDepthEstimation,) if is_torch_available() else (), "default": {"model": {"pt": ("Intel/dpt-large", "e93beec")}}, "type": "image", }, "video-classification": { "impl": VideoClassificationPipeline, "tf": (), "pt": (AutoModelForVideoClassification,) if is_torch_available() else (), "default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "4800870")}}, "type": "video", }, "mask-generation": { "impl": MaskGenerationPipeline, "tf": (), "pt": (AutoModelForMaskGeneration,) if is_torch_available() else (), "default": {"model": {"pt": ("facebook/sam-vit-huge", "997b15")}}, "type": "multimodal", }, "image-to-image": { "impl": ImageToImagePipeline, "tf": (), "pt": (AutoModelForImageToImage,) if is_torch_available() else (), "default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "4aaedcb")}}, "type": "image", }, } NO_FEATURE_EXTRACTOR_TASKS = set() NO_IMAGE_PROCESSOR_TASKS = set() NO_TOKENIZER_TASKS = set() # Those model configs are special, they are generic over their task, meaning # any tokenizer/feature_extractor might be use for a given model so we cannot # use the statically defined TOKENIZER_MAPPING and FEATURE_EXTRACTOR_MAPPING to # see if the model defines such objects or not. MULTI_MODEL_AUDIO_CONFIGS = {"SpeechEncoderDecoderConfig"} MULTI_MODEL_VISION_CONFIGS = {"VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig"} for task, values in SUPPORTED_TASKS.items(): if values["type"] == "text": NO_FEATURE_EXTRACTOR_TASKS.add(task) NO_IMAGE_PROCESSOR_TASKS.add(task) elif values["type"] in {"image", "video"}: NO_TOKENIZER_TASKS.add(task) elif values["type"] in {"audio"}: NO_TOKENIZER_TASKS.add(task) NO_IMAGE_PROCESSOR_TASKS.add(task) elif values["type"] != "multimodal": raise ValueError(f"SUPPORTED_TASK {task} contains invalid type {values['type']}") PIPELINE_REGISTRY = PipelineRegistry(supported_tasks=SUPPORTED_TASKS, task_aliases=TASK_ALIASES) def get_supported_tasks() -> List[str]: """ Returns a list of supported task strings. """ return PIPELINE_REGISTRY.get_supported_tasks() def get_task(model: str, token: Optional[str] = None, **deprecated_kwargs) -> str: use_auth_token = deprecated_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token if is_offline_mode(): raise RuntimeError("You cannot infer task automatically within `pipeline` when using offline mode") try: info = model_info(model, token=token) except Exception as e: raise RuntimeError(f"Instantiating a pipeline without a task set raised an error: {e}") if not info.pipeline_tag: raise RuntimeError( f"The model {model} does not seem to have a correct `pipeline_tag` set to infer the task automatically" ) if getattr(info, "library_name", "transformers") != "transformers": raise RuntimeError(f"This model is meant to be used with {info.library_name} not with transformers") task = info.pipeline_tag return task def check_task(task: str) -> Tuple[str, Dict, Any]: """ Checks an incoming task string, to validate it's correct and return the default Pipeline and Model classes, and default models if they exist. Args: task (`str`): The task defining which pipeline will be returned. Currently accepted tasks are: - `"audio-classification"` - `"automatic-speech-recognition"` - `"conversational"` - `"depth-estimation"` - `"document-question-answering"` - `"feature-extraction"` - `"fill-mask"` - `"image-classification"` - `"image-feature-extraction"` - `"image-segmentation"` - `"image-to-text"` - `"image-to-image"` - `"object-detection"` - `"question-answering"` - `"summarization"` - `"table-question-answering"` - `"text2text-generation"` - `"text-classification"` (alias `"sentiment-analysis"` available) - `"text-generation"` - `"text-to-audio"` (alias `"text-to-speech"` available) - `"token-classification"` (alias `"ner"` available) - `"translation"` - `"translation_xx_to_yy"` - `"video-classification"` - `"visual-question-answering"` (alias `"vqa"` available) - `"zero-shot-classification"` - `"zero-shot-image-classification"` - `"zero-shot-object-detection"` Returns: (normalized_task: `str`, task_defaults: `dict`, task_options: (`tuple`, None)) The normalized task name (removed alias and options). The actual dictionary required to initialize the pipeline and some extra task options for parametrized tasks like "translation_XX_to_YY" """ return PIPELINE_REGISTRY.check_task(task) def clean_custom_task(task_info): import transformers if "impl" not in task_info: raise RuntimeError("This model introduces a custom pipeline without specifying its implementation.") pt_class_names = task_info.get("pt", ()) if isinstance(pt_class_names, str): pt_class_names = [pt_class_names] task_info["pt"] = tuple(getattr(transformers, c) for c in pt_class_names) tf_class_names = task_info.get("tf", ()) if isinstance(tf_class_names, str): tf_class_names = [tf_class_names] task_info["tf"] = tuple(getattr(transformers, c) for c in tf_class_names) return task_info, None def pipeline( task: str = None, model: Optional[Union[str, "PreTrainedModel", "TFPreTrainedModel"]] = None, config: Optional[Union[str, PretrainedConfig]] = None, tokenizer: Optional[Union[str, PreTrainedTokenizer, "PreTrainedTokenizerFast"]] = None, feature_extractor: Optional[Union[str, PreTrainedFeatureExtractor]] = None, image_processor: Optional[Union[str, BaseImageProcessor]] = None, framework: Optional[str] = None, revision: Optional[str] = None, use_fast: bool = True, token: Optional[Union[str, bool]] = None, device: Optional[Union[int, str, "torch.device"]] = None, device_map=None, torch_dtype=None, trust_remote_code: Optional[bool] = None, model_kwargs: Dict[str, Any] = None, pipeline_class: Optional[Any] = None, **kwargs, ) -> Pipeline: """ Utility factory method to build a [`Pipeline`]. Pipelines are made of: - A [tokenizer](tokenizer) in charge of mapping raw textual input to token. - A [model](model) to make predictions from the inputs. - Some (optional) post processing for enhancing model's output. Args: task (`str`): The task defining which pipeline will be returned. Currently accepted tasks are: - `"audio-classification"`: will return a [`AudioClassificationPipeline`]. - `"automatic-speech-recognition"`: will return a [`AutomaticSpeechRecognitionPipeline`]. - `"conversational"`: will return a [`ConversationalPipeline`]. - `"depth-estimation"`: will return a [`DepthEstimationPipeline`]. - `"document-question-answering"`: will return a [`DocumentQuestionAnsweringPipeline`]. - `"feature-extraction"`: will return a [`FeatureExtractionPipeline`]. - `"fill-mask"`: will return a [`FillMaskPipeline`]:. - `"image-classification"`: will return a [`ImageClassificationPipeline`]. - `"image-feature-extraction"`: will return an [`ImageFeatureExtractionPipeline`]. - `"image-segmentation"`: will return a [`ImageSegmentationPipeline`]. - `"image-to-image"`: will return a [`ImageToImagePipeline`]. - `"image-to-text"`: will return a [`ImageToTextPipeline`]. - `"mask-generation"`: will return a [`MaskGenerationPipeline`]. - `"object-detection"`: will return a [`ObjectDetectionPipeline`]. - `"question-answering"`: will return a [`QuestionAnsweringPipeline`]. - `"summarization"`: will return a [`SummarizationPipeline`]. - `"table-question-answering"`: will return a [`TableQuestionAnsweringPipeline`]. - `"text2text-generation"`: will return a [`Text2TextGenerationPipeline`]. - `"text-classification"` (alias `"sentiment-analysis"` available): will return a [`TextClassificationPipeline`]. - `"text-generation"`: will return a [`TextGenerationPipeline`]:. - `"text-to-audio"` (alias `"text-to-speech"` available): will return a [`TextToAudioPipeline`]:. - `"token-classification"` (alias `"ner"` available): will return a [`TokenClassificationPipeline`]. - `"translation"`: will return a [`TranslationPipeline`]. - `"translation_xx_to_yy"`: will return a [`TranslationPipeline`]. - `"video-classification"`: will return a [`VideoClassificationPipeline`]. - `"visual-question-answering"`: will return a [`VisualQuestionAnsweringPipeline`]. - `"zero-shot-classification"`: will return a [`ZeroShotClassificationPipeline`]. - `"zero-shot-image-classification"`: will return a [`ZeroShotImageClassificationPipeline`]. - `"zero-shot-audio-classification"`: will return a [`ZeroShotAudioClassificationPipeline`]. - `"zero-shot-object-detection"`: will return a [`ZeroShotObjectDetectionPipeline`]. model (`str` or [`PreTrainedModel`] or [`TFPreTrainedModel`], *optional*): The model that will be used by the pipeline to make predictions. This can be a model identifier or an actual instance of a pretrained model inheriting from [`PreTrainedModel`] (for PyTorch) or [`TFPreTrainedModel`] (for TensorFlow). If not provided, the default for the `task` will be loaded. config (`str` or [`PretrainedConfig`], *optional*): The configuration that will be used by the pipeline to instantiate the model. This can be a model identifier or an actual pretrained model configuration inheriting from [`PretrainedConfig`]. If not provided, the default configuration file for the requested model will be used. That means that if `model` is given, its default configuration will be used. However, if `model` is not supplied, this `task`'s default model's config is used instead. tokenizer (`str` or [`PreTrainedTokenizer`], *optional*): The tokenizer that will be used by the pipeline to encode data for the model. This can be a model identifier or an actual pretrained tokenizer inheriting from [`PreTrainedTokenizer`]. If not provided, the default tokenizer for the given `model` will be loaded (if it is a string). If `model` is not specified or not a string, then the default tokenizer for `config` is loaded (if it is a string). However, if `config` is also not given or not a string, then the default tokenizer for the given `task` will be loaded. feature_extractor (`str` or [`PreTrainedFeatureExtractor`], *optional*): The feature extractor that will be used by the pipeline to encode data for the model. This can be a model identifier or an actual pretrained feature extractor inheriting from [`PreTrainedFeatureExtractor`]. Feature extractors are used for non-NLP models, such as Speech or Vision models as well as multi-modal models. Multi-modal models will also require a tokenizer to be passed. If not provided, the default feature extractor for the given `model` will be loaded (if it is a string). If `model` is not specified or not a string, then the default feature extractor for `config` is loaded (if it is a string). However, if `config` is also not given or not a string, then the default feature extractor for the given `task` will be loaded. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. revision (`str`, *optional*, defaults to `"main"`): When passing a task name or a string model identifier: The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. use_fast (`bool`, *optional*, defaults to `True`): Whether or not to use a Fast tokenizer if possible (a [`PreTrainedTokenizerFast`]). use_auth_token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). device (`int` or `str` or `torch.device`): Defines the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank like `1`) on which this pipeline will be allocated. device_map (`str` or `Dict[str, Union[int, str, torch.device]`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut). When `accelerate` library is present, set `device_map="auto"` to compute the most optimized `device_map` automatically (see [here](https://huggingface.co/docs/accelerate/main/en/package_reference/big_modeling#accelerate.cpu_offload) for more information). <Tip warning={true}> Do not use `device_map` AND `device` at the same time as they will conflict </Tip> torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`). trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom code defined on the Hub in their own modeling, configuration, tokenization or even pipeline files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. model_kwargs (`Dict[str, Any]`, *optional*): Additional dictionary of keyword arguments passed along to the model's `from_pretrained(..., **model_kwargs)` function. kwargs (`Dict[str, Any]`, *optional*): Additional keyword arguments passed along to the specific pipeline init (see the documentation for the corresponding pipeline class for possible values). Returns: [`Pipeline`]: A suitable pipeline for the task. Examples: ```python >>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer >>> # Sentiment analysis pipeline >>> analyzer = pipeline("sentiment-analysis") >>> # Question answering pipeline, specifying the checkpoint identifier >>> oracle = pipeline( ... "question-answering", model="distilbert/distilbert-base-cased-distilled-squad", tokenizer="google-bert/bert-base-cased" ... ) >>> # Named entity recognition pipeline, passing in a specific model and tokenizer >>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english") >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased") >>> recognizer = pipeline("ner", model=model, tokenizer=tokenizer) ```""" if model_kwargs is None: model_kwargs = {} # Make sure we only pass use_auth_token once as a kwarg (it used to be possible to pass it in model_kwargs, # this is to keep BC). use_auth_token = model_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token code_revision = kwargs.pop("code_revision", None) commit_hash = kwargs.pop("_commit_hash", None) hub_kwargs = { "revision": revision, "token": token, "trust_remote_code": trust_remote_code, "_commit_hash": commit_hash, } if task is None and model is None: raise RuntimeError( "Impossible to instantiate a pipeline without either a task or a model " "being specified. " "Please provide a task class or a model" ) if model is None and tokenizer is not None: raise RuntimeError( "Impossible to instantiate a pipeline with tokenizer specified but not the model as the provided tokenizer" " may not be compatible with the default model. Please provide a PreTrainedModel class or a" " path/identifier to a pretrained model when providing tokenizer." ) if model is None and feature_extractor is not None: raise RuntimeError( "Impossible to instantiate a pipeline with feature_extractor specified but not the model as the provided" " feature_extractor may not be compatible with the default model. Please provide a PreTrainedModel class" " or a path/identifier to a pretrained model when providing feature_extractor." ) if isinstance(model, Path): model = str(model) if commit_hash is None: pretrained_model_name_or_path = None if isinstance(config, str): pretrained_model_name_or_path = config elif config is None and isinstance(model, str): pretrained_model_name_or_path = model if not isinstance(config, PretrainedConfig) and pretrained_model_name_or_path is not None: # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible resolved_config_file = cached_file( pretrained_model_name_or_path, CONFIG_NAME, _raise_exceptions_for_gated_repo=False, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, **hub_kwargs, ) hub_kwargs["_commit_hash"] = extract_commit_hash(resolved_config_file, commit_hash) else: hub_kwargs["_commit_hash"] = getattr(config, "_commit_hash", None) # Config is the primordial information item. # Instantiate config if needed if isinstance(config, str): config = AutoConfig.from_pretrained( config, _from_pipeline=task, code_revision=code_revision, **hub_kwargs, **model_kwargs ) hub_kwargs["_commit_hash"] = config._commit_hash elif config is None and isinstance(model, str): # Check for an adapter file in the model path if PEFT is available if is_peft_available(): # `find_adapter_config_file` doesn't accept `trust_remote_code` _hub_kwargs = {k: v for k, v in hub_kwargs.items() if k != "trust_remote_code"} maybe_adapter_path = find_adapter_config_file( model, token=hub_kwargs["token"], revision=hub_kwargs["revision"], _commit_hash=hub_kwargs["_commit_hash"], ) if maybe_adapter_path is not None: with open(maybe_adapter_path, "r", encoding="utf-8") as f: adapter_config = json.load(f) model = adapter_config["base_model_name_or_path"] config = AutoConfig.from_pretrained( model, _from_pipeline=task, code_revision=code_revision, **hub_kwargs, **model_kwargs ) hub_kwargs["_commit_hash"] = config._commit_hash custom_tasks = {} if config is not None and len(getattr(config, "custom_pipelines", {})) > 0: custom_tasks = config.custom_pipelines if task is None and trust_remote_code is not False: if len(custom_tasks) == 1: task = list(custom_tasks.keys())[0] else: raise RuntimeError( "We can't infer the task automatically for this model as there are multiple tasks available. Pick " f"one in {', '.join(custom_tasks.keys())}" ) if task is None and model is not None: if not isinstance(model, str): raise RuntimeError( "Inferring the task automatically requires to check the hub with a model_id defined as a `str`. " f"{model} is not a valid model_id." ) task = get_task(model, token) # Retrieve the task if task in custom_tasks: normalized_task = task targeted_task, task_options = clean_custom_task(custom_tasks[task]) if pipeline_class is None: if not trust_remote_code: raise ValueError( "Loading this pipeline requires you to execute the code in the pipeline file in that" " repo on your local machine. Make sure you have read the code there to avoid malicious use, then" " set the option `trust_remote_code=True` to remove this error." ) class_ref = targeted_task["impl"] pipeline_class = get_class_from_dynamic_module( class_ref, model, code_revision=code_revision, **hub_kwargs, ) else: normalized_task, targeted_task, task_options = check_task(task) if pipeline_class is None: pipeline_class = targeted_task["impl"] # Use default model/config/tokenizer for the task if no model is provided if model is None: # At that point framework might still be undetermined model, default_revision = get_default_model_and_revision(targeted_task, framework, task_options) revision = revision if revision is not None else default_revision logger.warning( f"No model was supplied, defaulted to {model} and revision" f" {revision} ({HUGGINGFACE_CO_RESOLVE_ENDPOINT}/{model}).\n" "Using a pipeline without specifying a model name and revision in production is not recommended." ) if config is None and isinstance(model, str): config = AutoConfig.from_pretrained(model, _from_pipeline=task, **hub_kwargs, **model_kwargs) hub_kwargs["_commit_hash"] = config._commit_hash if device_map is not None: if "device_map" in model_kwargs: raise ValueError( 'You cannot use both `pipeline(... device_map=..., model_kwargs={"device_map":...})` as those' " arguments might conflict, use only one.)" ) if device is not None: logger.warning( "Both `device` and `device_map` are specified. `device` will override `device_map`. You" " will most likely encounter unexpected behavior. Please remove `device` and keep `device_map`." ) model_kwargs["device_map"] = device_map if torch_dtype is not None: if "torch_dtype" in model_kwargs: raise ValueError( 'You cannot use both `pipeline(... torch_dtype=..., model_kwargs={"torch_dtype":...})` as those' " arguments might conflict, use only one.)" ) if isinstance(torch_dtype, str) and hasattr(torch, torch_dtype): torch_dtype = getattr(torch, torch_dtype) model_kwargs["torch_dtype"] = torch_dtype model_name = model if isinstance(model, str) else None # Load the correct model if possible # Infer the framework from the model if not already defined if isinstance(model, str) or framework is None: model_classes = {"tf": targeted_task["tf"], "pt": targeted_task["pt"]} framework, model = infer_framework_load_model( model, model_classes=model_classes, config=config, framework=framework, task=task, **hub_kwargs, **model_kwargs, ) model_config = model.config hub_kwargs["_commit_hash"] = model.config._commit_hash load_tokenizer = type(model_config) in TOKENIZER_MAPPING or model_config.tokenizer_class is not None load_feature_extractor = type(model_config) in FEATURE_EXTRACTOR_MAPPING or feature_extractor is not None load_image_processor = type(model_config) in IMAGE_PROCESSOR_MAPPING or image_processor is not None # If `model` (instance of `PretrainedModel` instead of `str`) is passed (and/or same for config), while # `image_processor` or `feature_extractor` is `None`, the loading will fail. This happens particularly for some # vision tasks when calling `pipeline()` with `model` and only one of the `image_processor` and `feature_extractor`. # TODO: we need to make `NO_IMAGE_PROCESSOR_TASKS` and `NO_FEATURE_EXTRACTOR_TASKS` more robust to avoid such issue. # This block is only temporarily to make CI green. if load_image_processor and load_feature_extractor: load_feature_extractor = False if ( tokenizer is None and not load_tokenizer and normalized_task not in NO_TOKENIZER_TASKS # Using class name to avoid importing the real class. and ( model_config.__class__.__name__ in MULTI_MODEL_AUDIO_CONFIGS or model_config.__class__.__name__ in MULTI_MODEL_VISION_CONFIGS ) ): # This is a special category of models, that are fusions of multiple models # so the model_config might not define a tokenizer, but it seems to be # necessary for the task, so we're force-trying to load it. load_tokenizer = True if ( image_processor is None and not load_image_processor and normalized_task not in NO_IMAGE_PROCESSOR_TASKS # Using class name to avoid importing the real class. and model_config.__class__.__name__ in MULTI_MODEL_VISION_CONFIGS ): # This is a special category of models, that are fusions of multiple models # so the model_config might not define a tokenizer, but it seems to be # necessary for the task, so we're force-trying to load it. load_image_processor = True if ( feature_extractor is None and not load_feature_extractor and normalized_task not in NO_FEATURE_EXTRACTOR_TASKS # Using class name to avoid importing the real class. and model_config.__class__.__name__ in MULTI_MODEL_AUDIO_CONFIGS ): # This is a special category of models, that are fusions of multiple models # so the model_config might not define a tokenizer, but it seems to be # necessary for the task, so we're force-trying to load it. load_feature_extractor = True if task in NO_TOKENIZER_TASKS: # These will never require a tokenizer. # the model on the other hand might have a tokenizer, but # the files could be missing from the hub, instead of failing # on such repos, we just force to not load it. load_tokenizer = False if task in NO_FEATURE_EXTRACTOR_TASKS: load_feature_extractor = False if task in NO_IMAGE_PROCESSOR_TASKS: load_image_processor = False if load_tokenizer: # Try to infer tokenizer from model or config name (if provided as str) if tokenizer is None: if isinstance(model_name, str): tokenizer = model_name elif isinstance(config, str): tokenizer = config else: # Impossible to guess what is the right tokenizer here raise Exception( "Impossible to guess which tokenizer to use. " "Please provide a PreTrainedTokenizer class or a path/identifier to a pretrained tokenizer." ) # Instantiate tokenizer if needed if isinstance(tokenizer, (str, tuple)): if isinstance(tokenizer, tuple): # For tuple we have (tokenizer name, {kwargs}) use_fast = tokenizer[1].pop("use_fast", use_fast) tokenizer_identifier = tokenizer[0] tokenizer_kwargs = tokenizer[1] else: tokenizer_identifier = tokenizer tokenizer_kwargs = model_kwargs.copy() tokenizer_kwargs.pop("torch_dtype", None) tokenizer = AutoTokenizer.from_pretrained( tokenizer_identifier, use_fast=use_fast, _from_pipeline=task, **hub_kwargs, **tokenizer_kwargs ) if load_image_processor: # Try to infer image processor from model or config name (if provided as str) if image_processor is None: if isinstance(model_name, str): image_processor = model_name elif isinstance(config, str): image_processor = config # Backward compatibility, as `feature_extractor` used to be the name # for `ImageProcessor`. elif feature_extractor is not None and isinstance(feature_extractor, BaseImageProcessor): image_processor = feature_extractor else: # Impossible to guess what is the right image_processor here raise Exception( "Impossible to guess which image processor to use. " "Please provide a PreTrainedImageProcessor class or a path/identifier " "to a pretrained image processor." ) # Instantiate image_processor if needed if isinstance(image_processor, (str, tuple)): image_processor = AutoImageProcessor.from_pretrained( image_processor, _from_pipeline=task, **hub_kwargs, **model_kwargs ) if load_feature_extractor: # Try to infer feature extractor from model or config name (if provided as str) if feature_extractor is None: if isinstance(model_name, str): feature_extractor = model_name elif isinstance(config, str): feature_extractor = config else: # Impossible to guess what is the right feature_extractor here raise Exception( "Impossible to guess which feature extractor to use. " "Please provide a PreTrainedFeatureExtractor class or a path/identifier " "to a pretrained feature extractor." ) # Instantiate feature_extractor if needed if isinstance(feature_extractor, (str, tuple)): feature_extractor = AutoFeatureExtractor.from_pretrained( feature_extractor, _from_pipeline=task, **hub_kwargs, **model_kwargs ) if ( feature_extractor._processor_class and feature_extractor._processor_class.endswith("WithLM") and isinstance(model_name, str) ): try: import kenlm # to trigger `ImportError` if not installed from pyctcdecode import BeamSearchDecoderCTC if os.path.isdir(model_name) or os.path.isfile(model_name): decoder = BeamSearchDecoderCTC.load_from_dir(model_name) else: language_model_glob = os.path.join( BeamSearchDecoderCTC._LANGUAGE_MODEL_SERIALIZED_DIRECTORY, "*" ) alphabet_filename = BeamSearchDecoderCTC._ALPHABET_SERIALIZED_FILENAME allow_patterns = [language_model_glob, alphabet_filename] decoder = BeamSearchDecoderCTC.load_from_hf_hub(model_name, allow_patterns=allow_patterns) kwargs["decoder"] = decoder except ImportError as e: logger.warning(f"Could not load the `decoder` for {model_name}. Defaulting to raw CTC. Error: {e}") if not is_kenlm_available(): logger.warning("Try to install `kenlm`: `pip install kenlm") if not is_pyctcdecode_available(): logger.warning("Try to install `pyctcdecode`: `pip install pyctcdecode") if task == "translation" and model.config.task_specific_params: for key in model.config.task_specific_params: if key.startswith("translation"): task = key warnings.warn( f'"translation" task was used, instead of "translation_XX_to_YY", defaulting to "{task}"', UserWarning, ) break if tokenizer is not None: kwargs["tokenizer"] = tokenizer if feature_extractor is not None: kwargs["feature_extractor"] = feature_extractor if torch_dtype is not None: kwargs["torch_dtype"] = torch_dtype if image_processor is not None: kwargs["image_processor"] = image_processor if device is not None: kwargs["device"] = device return pipeline_class(model=model, framework=framework, task=task, **kwargs)
transformers/src/transformers/pipelines/__init__.py/0
{ "file_path": "transformers/src/transformers/pipelines/__init__.py", "repo_id": "transformers", "token_count": 21563 }
145
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import Pipeline, build_pipeline_init_args if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import ( MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, ) logger = logging.get_logger(__name__) Prediction = Dict[str, Any] Predictions = List[Prediction] @add_end_docstrings(build_pipeline_init_args(has_image_processor=True)) class ObjectDetectionPipeline(Pipeline): """ Object detection pipeline using any `AutoModelForObjectDetection`. This pipeline predicts bounding boxes of objects and their classes. Example: ```python >>> from transformers import pipeline >>> detector = pipeline(model="facebook/detr-resnet-50") >>> detector("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") [{'score': 0.997, 'label': 'bird', 'box': {'xmin': 69, 'ymin': 171, 'xmax': 396, 'ymax': 507}}, {'score': 0.999, 'label': 'bird', 'box': {'xmin': 398, 'ymin': 105, 'xmax': 767, 'ymax': 507}}] >>> # x, y are expressed relative to the top left hand corner. ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"object-detection"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=object-detection). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch.") requires_backends(self, "vision") mapping = MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES.copy() mapping.update(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES) self.check_model_type(mapping) def _sanitize_parameters(self, **kwargs): preprocess_params = {} if "timeout" in kwargs: preprocess_params["timeout"] = kwargs["timeout"] postprocess_kwargs = {} if "threshold" in kwargs: postprocess_kwargs["threshold"] = kwargs["threshold"] return preprocess_params, {}, postprocess_kwargs def __call__(self, *args, **kwargs) -> Union[Predictions, List[Prediction]]: """ Detect objects (bounding boxes & classes) in the image(s) passed as inputs. Args: images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing an HTTP(S) link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images. Images in a batch must all be in the same format: all as HTTP(S) links, all as local paths, or all as PIL images. threshold (`float`, *optional*, defaults to 0.9): The probability necessary to make a prediction. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: A list of dictionaries or a list of list of dictionaries containing the result. If the input is a single image, will return a list of dictionaries, if the input is a list of several images, will return a list of list of dictionaries corresponding to each image. The dictionaries contain the following keys: - **label** (`str`) -- The class label identified by the model. - **score** (`float`) -- The score attributed by the model for that label. - **box** (`List[Dict[str, int]]`) -- The bounding box of detected object in image's original size. """ return super().__call__(*args, **kwargs) def preprocess(self, image, timeout=None): image = load_image(image, timeout=timeout) target_size = torch.IntTensor([[image.height, image.width]]) inputs = self.image_processor(images=[image], return_tensors="pt") if self.tokenizer is not None: inputs = self.tokenizer(text=inputs["words"], boxes=inputs["boxes"], return_tensors="pt") inputs["target_size"] = target_size return inputs def _forward(self, model_inputs): target_size = model_inputs.pop("target_size") outputs = self.model(**model_inputs) model_outputs = outputs.__class__({"target_size": target_size, **outputs}) if self.tokenizer is not None: model_outputs["bbox"] = model_inputs["bbox"] return model_outputs def postprocess(self, model_outputs, threshold=0.9): target_size = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. height, width = target_size[0].tolist() def unnormalize(bbox): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) scores, classes = model_outputs["logits"].squeeze(0).softmax(dim=-1).max(dim=-1) labels = [self.model.config.id2label[prediction] for prediction in classes.tolist()] boxes = [unnormalize(bbox) for bbox in model_outputs["bbox"].squeeze(0)] keys = ["score", "label", "box"] annotation = [dict(zip(keys, vals)) for vals in zip(scores.tolist(), labels, boxes) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel raw_annotations = self.image_processor.post_process_object_detection(model_outputs, threshold, target_size) raw_annotation = raw_annotations[0] scores = raw_annotation["scores"] labels = raw_annotation["labels"] boxes = raw_annotation["boxes"] raw_annotation["scores"] = scores.tolist() raw_annotation["labels"] = [self.model.config.id2label[label.item()] for label in labels] raw_annotation["boxes"] = [self._get_bounding_box(box) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] keys = ["score", "label", "box"] annotation = [ dict(zip(keys, vals)) for vals in zip(raw_annotation["scores"], raw_annotation["labels"], raw_annotation["boxes"]) ] return annotation def _get_bounding_box(self, box: "torch.Tensor") -> Dict[str, int]: """ Turns list [xmin, xmax, ymin, ymax] into dict { "xmin": xmin, ... } Args: box (`torch.Tensor`): Tensor containing the coordinates in corners format. Returns: bbox (`Dict[str, int]`): Dict containing the coordinates in corners format. """ if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch.") xmin, ymin, xmax, ymax = box.int().tolist() bbox = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
transformers/src/transformers/pipelines/object_detection.py/0
{ "file_path": "transformers/src/transformers/pipelines/object_detection.py", "repo_id": "transformers", "token_count": 3401 }
146
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import Callable, List, Optional, Set, Tuple, Union import torch from packaging import version from safetensors.torch import storage_ptr, storage_size from torch import nn from .utils import is_torch_tpu_available, logging ALL_LAYERNORM_LAYERS = [nn.LayerNorm] logger = logging.get_logger(__name__) parsed_torch_version_base = version.parse(version.parse(torch.__version__).base_version) is_torch_greater_or_equal_than_2_2 = parsed_torch_version_base >= version.parse("2.2") is_torch_greater_or_equal_than_2_1 = parsed_torch_version_base >= version.parse("2.1") is_torch_greater_or_equal_than_2_0 = parsed_torch_version_base >= version.parse("2.0") is_torch_greater_or_equal_than_1_13 = parsed_torch_version_base >= version.parse("1.13") is_torch_greater_or_equal_than_1_12 = parsed_torch_version_base >= version.parse("1.12") def softmax_backward_data(parent, grad_output, output, dim, self): """ A function that calls the internal `_softmax_backward_data` PyTorch method and that adjusts the arguments according to the torch version detected. """ from torch import _softmax_backward_data return _softmax_backward_data(grad_output, output, parent.dim, self.dtype) def prune_linear_layer(layer: nn.Linear, index: torch.LongTensor, dim: int = 0) -> nn.Linear: """ Prune a linear layer to keep only entries in index. Used to remove heads. Args: layer (`torch.nn.Linear`): The layer to prune. index (`torch.LongTensor`): The indices to keep in the layer. dim (`int`, *optional*, defaults to 0): The dimension on which to keep the indices. Returns: `torch.nn.Linear`: The pruned layer as a new layer with `requires_grad=True`. """ index = index.to(layer.weight.device) W = layer.weight.index_select(dim, index).clone().detach() if layer.bias is not None: if dim == 1: b = layer.bias.clone().detach() else: b = layer.bias[index].clone().detach() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True if layer.bias is not None: new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer class Conv1D(nn.Module): """ 1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2). Basically works like a linear layer but the weights are transposed. Args: nf (`int`): The number of output features. nx (`int`): The number of input features. """ def __init__(self, nf, nx): super().__init__() self.nf = nf self.weight = nn.Parameter(torch.empty(nx, nf)) self.bias = nn.Parameter(torch.zeros(nf)) nn.init.normal_(self.weight, std=0.02) def forward(self, x): size_out = x.size()[:-1] + (self.nf,) x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) x = x.view(size_out) return x def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D: """ Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed. Used to remove heads. Args: layer ([`~pytorch_utils.Conv1D`]): The layer to prune. index (`torch.LongTensor`): The indices to keep in the layer. dim (`int`, *optional*, defaults to 1): The dimension on which to keep the indices. Returns: [`~pytorch_utils.Conv1D`]: The pruned layer as a new layer with `requires_grad=True`. """ index = index.to(layer.weight.device) W = layer.weight.index_select(dim, index).clone().detach() if dim == 0: b = layer.bias.clone().detach() else: b = layer.bias[index].clone().detach() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer def prune_layer( layer: Union[nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None ) -> Union[nn.Linear, Conv1D]: """ Prune a Conv1D or linear layer to keep only entries in index. Used to remove heads. Args: layer (`Union[torch.nn.Linear, Conv1D]`): The layer to prune. index (`torch.LongTensor`): The indices to keep in the layer. dim (`int`, *optional*): The dimension on which to keep the indices. Returns: `torch.nn.Linear` or [`~pytorch_utils.Conv1D`]: The pruned layer as a new layer with `requires_grad=True`. """ if isinstance(layer, nn.Linear): return prune_linear_layer(layer, index, dim=0 if dim is None else dim) elif isinstance(layer, Conv1D): return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim) else: raise ValueError(f"Can't prune layer of class {layer.__class__}") def apply_chunking_to_forward( forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors ) -> torch.Tensor: """ This function chunks the `input_tensors` into smaller input tensor parts of size `chunk_size` over the dimension `chunk_dim`. It then applies a layer `forward_fn` to each chunk independently to save memory. If the `forward_fn` is independent across the `chunk_dim` this function will yield the same result as directly applying `forward_fn` to `input_tensors`. Args: forward_fn (`Callable[..., torch.Tensor]`): The forward function of the model. chunk_size (`int`): The chunk size of a chunked tensor: `num_chunks = len(input_tensors[0]) / chunk_size`. chunk_dim (`int`): The dimension over which the `input_tensors` should be chunked. input_tensors (`Tuple[torch.Tensor]`): The input tensors of `forward_fn` which will be chunked Returns: `torch.Tensor`: A tensor with the same shape as the `forward_fn` would have given if applied`. Examples: ```python # rename the usual forward() fn to forward_chunk() def forward_chunk(self, hidden_states): hidden_states = self.decoder(hidden_states) return hidden_states # implement a chunked forward function def forward(self, hidden_states): return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states) ```""" assert len(input_tensors) > 0, f"{input_tensors} has to be a tuple/list of tensors" # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters) if num_args_in_forward_chunk_fn != len(input_tensors): raise ValueError( f"forward_chunk_fn expects {num_args_in_forward_chunk_fn} arguments, but only {len(input_tensors)} input " "tensors are given" ) if chunk_size > 0: tensor_shape = input_tensors[0].shape[chunk_dim] for input_tensor in input_tensors: if input_tensor.shape[chunk_dim] != tensor_shape: raise ValueError( f"All input tenors have to be of the same shape: {tensor_shape}, " f"found shape {input_tensor.shape[chunk_dim]}" ) if input_tensors[0].shape[chunk_dim] % chunk_size != 0: raise ValueError( f"The dimension to be chunked {input_tensors[0].shape[chunk_dim]} has to be a multiple of the chunk " f"size {chunk_size}" ) num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size # chunk input tensor into tuples input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors) # apply forward fn to every tuple output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks)) # concatenate output at same dimension return torch.cat(output_chunks, dim=chunk_dim) return forward_fn(*input_tensors) def find_pruneable_heads_and_indices( heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int] ) -> Tuple[Set[int], torch.LongTensor]: """ Finds the heads and their indices taking `already_pruned_heads` into account. Args: heads (`List[int]`): List of the indices of heads to prune. n_heads (`int`): The number of heads in the model. head_size (`int`): The size of each head. already_pruned_heads (`Set[int]`): A set of already pruned heads. Returns: `Tuple[Set[int], torch.LongTensor]`: A tuple with the indices of heads to prune taking `already_pruned_heads` into account and the indices of rows/columns to keep in the layer weight. """ mask = torch.ones(n_heads, head_size) heads = set(heads) - already_pruned_heads # Convert to set and remove already pruned heads for head in heads: # Compute how many pruned heads are before the head and move the index accordingly head = head - sum(1 if h < head else 0 for h in already_pruned_heads) mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index: torch.LongTensor = torch.arange(len(mask))[mask].long() return heads, index def meshgrid( *tensors: Union[torch.Tensor, List[torch.Tensor]], indexing: Optional[str] = None ) -> Tuple[torch.Tensor, ...]: """ Wrapper around torch.meshgrid to avoid warning messages about the introduced `indexing` argument. Reference: https://pytorch.org/docs/1.13/generated/torch.meshgrid.html """ return torch.meshgrid(*tensors, indexing=indexing) def id_tensor_storage(tensor: torch.Tensor) -> Tuple[torch.device, int, int]: """ Unique identifier to a tensor storage. Multiple different tensors can share the same underlying storage. For example, "meta" tensors all share the same storage, and thus their identifier will all be equal. This identifier is guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with non-overlapping lifetimes may have the same id. """ if tensor.device.type == "xla" and is_torch_tpu_available(): # NOTE: xla tensors dont have storage # use some other unique id to distinguish. # this is a XLA tensor, it must be created using torch_xla's # device. So the following import is safe: import torch_xla unique_id = torch_xla._XLAC._xla_get_tensor_id(tensor) else: unique_id = storage_ptr(tensor) return tensor.device, unique_id, storage_size(tensor)
transformers/src/transformers/pytorch_utils.py/0
{ "file_path": "transformers/src/transformers/pytorch_utils.py", "repo_id": "transformers", "token_count": 4640 }
147
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Time series distributional output classes and utilities. """ from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class AffineTransformed(TransformedDistribution): def __init__(self, base_distribution: Distribution, loc=None, scale=None, event_dim=0): self.scale = 1.0 if scale is None else scale self.loc = 0.0 if loc is None else loc super().__init__(base_distribution, [AffineTransform(loc=self.loc, scale=self.scale, event_dim=event_dim)]) @property def mean(self): """ Returns the mean of the distribution. """ return self.base_dist.mean * self.scale + self.loc @property def variance(self): """ Returns the variance of the distribution. """ return self.base_dist.variance * self.scale**2 @property def stddev(self): """ Returns the standard deviation of the distribution. """ return self.variance.sqrt() class ParameterProjection(nn.Module): def __init__( self, in_features: int, args_dim: Dict[str, int], domain_map: Callable[..., Tuple[torch.Tensor]], **kwargs ) -> None: super().__init__(**kwargs) self.args_dim = args_dim self.proj = nn.ModuleList([nn.Linear(in_features, dim) for dim in args_dim.values()]) self.domain_map = domain_map def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]: params_unbounded = [proj(x) for proj in self.proj] return self.domain_map(*params_unbounded) class LambdaLayer(nn.Module): def __init__(self, function): super().__init__() self.function = function def forward(self, x, *args): return self.function(x, *args) class DistributionOutput: distribution_class: type in_features: int args_dim: Dict[str, int] def __init__(self, dim: int = 1) -> None: self.dim = dim self.args_dim = {k: dim * self.args_dim[k] for k in self.args_dim} def _base_distribution(self, distr_args): if self.dim == 1: return self.distribution_class(*distr_args) else: return Independent(self.distribution_class(*distr_args), 1) def distribution( self, distr_args, loc: Optional[torch.Tensor] = None, scale: Optional[torch.Tensor] = None, ) -> Distribution: distr = self._base_distribution(distr_args) if loc is None and scale is None: return distr else: return AffineTransformed(distr, loc=loc, scale=scale, event_dim=self.event_dim) @property def event_shape(self) -> Tuple: r""" Shape of each individual event contemplated by the distributions that this object constructs. """ return () if self.dim == 1 else (self.dim,) @property def event_dim(self) -> int: r""" Number of event dimensions, i.e., length of the `event_shape` tuple, of the distributions that this object constructs. """ return len(self.event_shape) @property def value_in_support(self) -> float: r""" A float that will have a valid numeric value when computing the log-loss of the corresponding distribution. By default 0.0. This value will be used when padding data series. """ return 0.0 def get_parameter_projection(self, in_features: int) -> nn.Module: r""" Return the parameter projection layer that maps the input to the appropriate parameters of the distribution. """ return ParameterProjection( in_features=in_features, args_dim=self.args_dim, domain_map=LambdaLayer(self.domain_map), ) def domain_map(self, *args: torch.Tensor): r""" Converts arguments to the right shape and domain. The domain depends on the type of distribution, while the correct shape is obtained by reshaping the trailing axis in such a way that the returned tensors define a distribution of the right event_shape. """ raise NotImplementedError() @staticmethod def squareplus(x: torch.Tensor) -> torch.Tensor: r""" Helper to map inputs to the positive orthant by applying the square-plus operation. Reference: https://twitter.com/jon_barron/status/1387167648669048833 """ return (x + torch.sqrt(torch.square(x) + 4.0)) / 2.0 class StudentTOutput(DistributionOutput): """ Student-T distribution output class. """ args_dim: Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} distribution_class: type = StudentT @classmethod def domain_map(cls, df: torch.Tensor, loc: torch.Tensor, scale: torch.Tensor): scale = cls.squareplus(scale).clamp_min(torch.finfo(scale.dtype).eps) df = 2.0 + cls.squareplus(df) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class NormalOutput(DistributionOutput): """ Normal distribution output class. """ args_dim: Dict[str, int] = {"loc": 1, "scale": 1} distribution_class: type = Normal @classmethod def domain_map(cls, loc: torch.Tensor, scale: torch.Tensor): scale = cls.squareplus(scale).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class NegativeBinomialOutput(DistributionOutput): """ Negative Binomial distribution output class. """ args_dim: Dict[str, int] = {"total_count": 1, "logits": 1} distribution_class: type = NegativeBinomial @classmethod def domain_map(cls, total_count: torch.Tensor, logits: torch.Tensor): total_count = cls.squareplus(total_count) return total_count.squeeze(-1), logits.squeeze(-1) def _base_distribution(self, distr_args) -> Distribution: total_count, logits = distr_args if self.dim == 1: return self.distribution_class(total_count=total_count, logits=logits) else: return Independent(self.distribution_class(total_count=total_count, logits=logits), 1) # Overwrites the parent class method. We cannot scale using the affine # transformation since negative binomial should return integers. Instead # we scale the parameters. def distribution( self, distr_args, loc: Optional[torch.Tensor] = None, scale: Optional[torch.Tensor] = None ) -> Distribution: total_count, logits = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
transformers/src/transformers/time_series_utils.py/0
{ "file_path": "transformers/src/transformers/time_series_utils.py", "repo_id": "transformers", "token_count": 2916 }
148
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class TextClassificationTool(PipelineTool): """ Example: ```py from transformers.tools import TextClassificationTool classifier = TextClassificationTool() classifier("This is a super nice API!", labels=["positive", "negative"]) ``` """ default_checkpoint = "facebook/bart-large-mnli" description = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) name = "text_classifier" pre_processor_class = AutoTokenizer model_class = AutoModelForSequenceClassification inputs = ["text", ["text"]] outputs = ["text"] def setup(self): super().setup() config = self.model.config self.entailment_id = -1 for idx, label in config.id2label.items(): if label.lower().startswith("entail"): self.entailment_id = int(idx) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init.") def encode(self, text, labels): self._labels = labels return self.pre_processor( [text] * len(labels), [f"This example is {label}" for label in labels], return_tensors="pt", padding="max_length", ) def decode(self, outputs): logits = outputs.logits label_id = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
transformers/src/transformers/tools/text_classification.py/0
{ "file_path": "transformers/src/transformers/tools/text_classification.py", "repo_id": "transformers", "token_count": 874 }
149
IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406] IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225] IMAGENET_STANDARD_MEAN = [0.5, 0.5, 0.5] IMAGENET_STANDARD_STD = [0.5, 0.5, 0.5] OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073] OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711]
transformers/src/transformers/utils/constants.py/0
{ "file_path": "transformers/src/transformers/utils/constants.py", "repo_id": "transformers", "token_count": 162 }
150
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Generic utilities """ import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields, is_dataclass from enum import Enum from functools import partial from typing import Any, ContextManager, Iterable, List, Tuple import numpy as np from packaging import version from .import_utils import get_torch_version, is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class cached_property(property): """ Descriptor that mimics @property but caches output in member variable. From tensorflow_datasets Built-in in functools from Python 3.8. """ def __get__(self, obj, objtype=None): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute") attr = "__cached_" + self.fget.__name__ cached = getattr(obj, attr, None) if cached is None: cached = self.fget(obj) setattr(obj, attr, cached) return cached # vendored from distutils.util def strtobool(val): """Convert a string representation of truth to true (1) or false (0). True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if 'val' is anything else. """ val = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"invalid truth value {val!r}") def infer_framework_from_repr(x): """ Tries to guess the framework of an object `x` from its repr (brittle but will help in `is_tensor` to try the frameworks in a smart order, without the need to import the frameworks). """ representation = str(type(x)) if representation.startswith("<class 'torch."): return "pt" elif representation.startswith("<class 'tensorflow."): return "tf" elif representation.startswith("<class 'jax"): return "jax" elif representation.startswith("<class 'numpy."): return "np" def _get_frameworks_and_test_func(x): """ Returns an (ordered since we are in Python 3.7+) dictionary framework to test function, which places the framework we can guess from the repr first, then Numpy, then the others. """ framework_to_test = { "pt": is_torch_tensor, "tf": is_tf_tensor, "jax": is_jax_tensor, "np": is_numpy_array, } preferred_framework = infer_framework_from_repr(x) # We will test this one first, then numpy, then the others. frameworks = [] if preferred_framework is None else [preferred_framework] if preferred_framework != "np": frameworks.append("np") frameworks.extend([f for f in framework_to_test if f not in [preferred_framework, "np"]]) return {f: framework_to_test[f] for f in frameworks} def is_tensor(x): """ Tests if `x` is a `torch.Tensor`, `tf.Tensor`, `jaxlib.xla_extension.DeviceArray` or `np.ndarray` in the order defined by `infer_framework_from_repr` """ # This gives us a smart order to test the frameworks with the corresponding tests. framework_to_test_func = _get_frameworks_and_test_func(x) for test_func in framework_to_test_func.values(): if test_func(x): return True # Tracers if is_torch_fx_proxy(x): return True if is_flax_available(): from jax.core import Tracer if isinstance(x, Tracer): return True return False def _is_numpy(x): return isinstance(x, np.ndarray) def is_numpy_array(x): """ Tests if `x` is a numpy array or not. """ return _is_numpy(x) def _is_torch(x): import torch return isinstance(x, torch.Tensor) def is_torch_tensor(x): """ Tests if `x` is a torch tensor or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch(x) def _is_torch_device(x): import torch return isinstance(x, torch.device) def is_torch_device(x): """ Tests if `x` is a torch device or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch_device(x) def _is_torch_dtype(x): import torch if isinstance(x, str): if hasattr(torch, x): x = getattr(torch, x) else: return False return isinstance(x, torch.dtype) def is_torch_dtype(x): """ Tests if `x` is a torch dtype or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch_dtype(x) def _is_tensorflow(x): import tensorflow as tf return isinstance(x, tf.Tensor) def is_tf_tensor(x): """ Tests if `x` is a tensorflow tensor or not. Safe to call even if tensorflow is not installed. """ return False if not is_tf_available() else _is_tensorflow(x) def _is_tf_symbolic_tensor(x): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(tf, "is_symbolic_tensor"): return tf.is_symbolic_tensor(x) return type(x) == tf.Tensor def is_tf_symbolic_tensor(x): """ Tests if `x` is a tensorflow symbolic tensor or not (ie. not eager). Safe to call even if tensorflow is not installed. """ return False if not is_tf_available() else _is_tf_symbolic_tensor(x) def _is_jax(x): import jax.numpy as jnp # noqa: F811 return isinstance(x, jnp.ndarray) def is_jax_tensor(x): """ Tests if `x` is a Jax tensor or not. Safe to call even if jax is not installed. """ return False if not is_flax_available() else _is_jax(x) def to_py_obj(obj): """ Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a python list. """ framework_to_py_obj = { "pt": lambda obj: obj.detach().cpu().tolist(), "tf": lambda obj: obj.numpy().tolist(), "jax": lambda obj: np.asarray(obj).tolist(), "np": lambda obj: obj.tolist(), } if isinstance(obj, (dict, UserDict)): return {k: to_py_obj(v) for k, v in obj.items()} elif isinstance(obj, (list, tuple)): return [to_py_obj(o) for o in obj] # This gives us a smart order to test the frameworks with the corresponding tests. framework_to_test_func = _get_frameworks_and_test_func(obj) for framework, test_func in framework_to_test_func.items(): if test_func(obj): return framework_to_py_obj[framework](obj) # tolist also works on 0d np arrays if isinstance(obj, np.number): return obj.tolist() else: return obj def to_numpy(obj): """ Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a Numpy array. """ framework_to_numpy = { "pt": lambda obj: obj.detach().cpu().numpy(), "tf": lambda obj: obj.numpy(), "jax": lambda obj: np.asarray(obj), "np": lambda obj: obj, } if isinstance(obj, (dict, UserDict)): return {k: to_numpy(v) for k, v in obj.items()} elif isinstance(obj, (list, tuple)): return np.array(obj) # This gives us a smart order to test the frameworks with the corresponding tests. framework_to_test_func = _get_frameworks_and_test_func(obj) for framework, test_func in framework_to_test_func.items(): if test_func(obj): return framework_to_numpy[framework](obj) return obj class ModelOutput(OrderedDict): """ Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular python dictionary. <Tip warning={true}> You can't unpack a `ModelOutput` directly. Use the [`~utils.ModelOutput.to_tuple`] method to convert it to a tuple before. </Tip> """ def __init_subclass__(cls) -> None: """Register subclasses as pytree nodes. This is necessary to synchronize gradients when using `torch.nn.parallel.DistributedDataParallel` with `static_graph=True` with modules that output `ModelOutput` subclasses. """ if is_torch_available(): if version.parse(get_torch_version()) >= version.parse("2.2"): _torch_pytree.register_pytree_node( cls, _model_output_flatten, partial(_model_output_unflatten, output_type=cls), serialized_type_name=f"{cls.__module__}.{cls.__name__}", ) else: _torch_pytree._register_pytree_node( cls, _model_output_flatten, partial(_model_output_unflatten, output_type=cls), ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Subclasses of ModelOutput must use the @dataclass decorator # This check is done in __init__ because the @dataclass decorator operates after __init_subclass__ # issubclass() would return True for issubclass(ModelOutput, ModelOutput) when False is needed # Just need to check that the current class is not ModelOutput is_modeloutput_subclass = self.__class__ != ModelOutput if is_modeloutput_subclass and not is_dataclass(self): raise TypeError( f"{self.__module__}.{self.__class__.__name__} is not a dataclasss." " This is a subclass of ModelOutput and so must use the @dataclass decorator." ) def __post_init__(self): """Check the ModelOutput dataclass. Only occurs if @dataclass decorator has been used. """ class_fields = fields(self) # Safety and consistency checks if not len(class_fields): raise ValueError(f"{self.__class__.__name__} has no fields.") if not all(field.default is None for field in class_fields[1:]): raise ValueError(f"{self.__class__.__name__} should not have more than one required field.") first_field = getattr(self, class_fields[0].name) other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(first_field): if isinstance(first_field, dict): iterator = first_field.items() first_field_iterator = True else: try: iterator = iter(first_field) first_field_iterator = True except TypeError: first_field_iterator = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(iterator): if ( not isinstance(element, (list, tuple)) or not len(element) == 2 or not isinstance(element[0], str) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute self[class_fields[0].name] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self, element[0], element[1]) if element[1] is not None: self[element[0]] = element[1] elif first_field is not None: self[class_fields[0].name] = first_field else: for field in class_fields: v = getattr(self, field.name) if v is not None: self[field.name] = v def __delitem__(self, *args, **kwargs): raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") def setdefault(self, *args, **kwargs): raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") def pop(self, *args, **kwargs): raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") def update(self, *args, **kwargs): raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") def __getitem__(self, k): if isinstance(k, str): inner_dict = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__(self, name, value): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(name, value) super().__setattr__(name, value) def __setitem__(self, key, value): # Will raise a KeyException if needed super().__setitem__(key, value) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(key, value) def __reduce__(self): if not is_dataclass(self): return super().__reduce__() callable, _args, *remaining = super().__reduce__() args = tuple(getattr(self, field.name) for field in fields(self)) return callable, args, *remaining def to_tuple(self) -> Tuple[Any]: """ Convert self to a tuple containing all the attributes/keys that are not `None`. """ return tuple(self[k] for k in self.keys()) if is_torch_available(): import torch.utils._pytree as _torch_pytree def _model_output_flatten(output: ModelOutput) -> Tuple[List[Any], "_torch_pytree.Context"]: return list(output.values()), list(output.keys()) def _model_output_unflatten( values: Iterable[Any], context: "_torch_pytree.Context", output_type=None, ) -> ModelOutput: return output_type(**dict(zip(context, values))) if version.parse(get_torch_version()) >= version.parse("2.2"): _torch_pytree.register_pytree_node( ModelOutput, _model_output_flatten, partial(_model_output_unflatten, output_type=ModelOutput), serialized_type_name=f"{ModelOutput.__module__}.{ModelOutput.__name__}", ) else: _torch_pytree._register_pytree_node( ModelOutput, _model_output_flatten, partial(_model_output_unflatten, output_type=ModelOutput), ) class ExplicitEnum(str, Enum): """ Enum with more explicit error message for missing values. """ @classmethod def _missing_(cls, value): raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._value2member_map_.keys())}" ) class PaddingStrategy(ExplicitEnum): """ Possible values for the `padding` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in an IDE. """ LONGEST = "longest" MAX_LENGTH = "max_length" DO_NOT_PAD = "do_not_pad" class TensorType(ExplicitEnum): """ Possible values for the `return_tensors` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in an IDE. """ PYTORCH = "pt" TENSORFLOW = "tf" NUMPY = "np" JAX = "jax" class ContextManagers: """ Wrapper for `contextlib.ExitStack` which enters a collection of context managers. Adaptation of `ContextManagers` in the `fastcore` library. """ def __init__(self, context_managers: List[ContextManager]): self.context_managers = context_managers self.stack = ExitStack() def __enter__(self): for context_manager in self.context_managers: self.stack.enter_context(context_manager) def __exit__(self, *args, **kwargs): self.stack.__exit__(*args, **kwargs) def can_return_loss(model_class): """ Check if a given model can return loss. Args: model_class (`type`): The class of the model. """ framework = infer_framework(model_class) if framework == "tf": signature = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": signature = inspect.signature(model_class.forward) # PyTorch models else: signature = inspect.signature(model_class.__call__) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def find_labels(model_class): """ Find the labels used by a given model. Args: model_class (`type`): The class of the model. """ model_name = model_class.__name__ framework = infer_framework(model_class) if framework == "tf": signature = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": signature = inspect.signature(model_class.forward) # PyTorch models else: signature = inspect.signature(model_class.__call__) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def flatten_dict(d: MutableMapping, parent_key: str = "", delimiter: str = "."): """Flatten a nested dict into a single level dict.""" def _flatten_dict(d, parent_key="", delimiter="."): for k, v in d.items(): key = str(parent_key) + delimiter + str(k) if parent_key else k if v and isinstance(v, MutableMapping): yield from flatten_dict(v, key, delimiter=delimiter).items() else: yield key, v return dict(_flatten_dict(d, parent_key, delimiter)) @contextmanager def working_or_temp_dir(working_dir, use_temp_dir: bool = False): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def transpose(array, axes=None): """ Framework-agnostic version of `numpy.transpose` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.transpose(array, axes=axes) elif is_torch_tensor(array): return array.T if axes is None else array.permute(*axes) elif is_tf_tensor(array): import tensorflow as tf return tf.transpose(array, perm=axes) elif is_jax_tensor(array): return jnp.transpose(array, axes=axes) else: raise ValueError(f"Type not supported for transpose: {type(array)}.") def reshape(array, newshape): """ Framework-agnostic version of `numpy.reshape` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.reshape(array, newshape) elif is_torch_tensor(array): return array.reshape(*newshape) elif is_tf_tensor(array): import tensorflow as tf return tf.reshape(array, newshape) elif is_jax_tensor(array): return jnp.reshape(array, newshape) else: raise ValueError(f"Type not supported for reshape: {type(array)}.") def squeeze(array, axis=None): """ Framework-agnostic version of `numpy.squeeze` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.squeeze(array, axis=axis) elif is_torch_tensor(array): return array.squeeze() if axis is None else array.squeeze(dim=axis) elif is_tf_tensor(array): import tensorflow as tf return tf.squeeze(array, axis=axis) elif is_jax_tensor(array): return jnp.squeeze(array, axis=axis) else: raise ValueError(f"Type not supported for squeeze: {type(array)}.") def expand_dims(array, axis): """ Framework-agnostic version of `numpy.expand_dims` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.expand_dims(array, axis) elif is_torch_tensor(array): return array.unsqueeze(dim=axis) elif is_tf_tensor(array): import tensorflow as tf return tf.expand_dims(array, axis=axis) elif is_jax_tensor(array): return jnp.expand_dims(array, axis=axis) else: raise ValueError(f"Type not supported for expand_dims: {type(array)}.") def tensor_size(array): """ Framework-agnostic version of `numpy.size` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.size(array) elif is_torch_tensor(array): return array.numel() elif is_tf_tensor(array): import tensorflow as tf return tf.size(array) elif is_jax_tensor(array): return array.size else: raise ValueError(f"Type not supported for tensor_size: {type(array)}.") def add_model_info_to_auto_map(auto_map, repo_id): """ Adds the information of the repo_id to a given auto map. """ for key, value in auto_map.items(): if isinstance(value, (tuple, list)): auto_map[key] = [f"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: auto_map[key] = f"{repo_id}--{value}" return auto_map def infer_framework(model_class): """ Infers the framework of a given model without using isinstance(), because we cannot guarantee that the relevant classes are imported or available. """ for base_class in inspect.getmro(model_class): module = base_class.__module__ name = base_class.__name__ if module.startswith("tensorflow") or module.startswith("keras") or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch") or name == "PreTrainedModel": return "pt" elif module.startswith("flax") or module.startswith("jax") or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"Could not infer framework from class {model_class}.")
transformers/src/transformers/utils/generic.py/0
{ "file_path": "transformers/src/transformers/utils/generic.py", "repo_id": "transformers", "token_count": 9888 }
151
{ "example_name": "text classification", "directory_name": "{{cookiecutter.example_name|lower|replace(' ', '-')}}", "example_shortcut": "{{cookiecutter.directory_name}}", "model_class": "AutoModel", "authors": "The HuggingFace Team", "can_train_from_scratch": ["True", "False"], "with_trainer": ["True", "False"] }
transformers/templates/adding_a_new_example_script/cookiecutter.json/0
{ "file_path": "transformers/templates/adding_a_new_example_script/cookiecutter.json", "repo_id": "transformers", "token_count": 115 }
152
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # {{cookiecutter.modelname}} ## Overview The {{cookiecutter.modelname}} model was proposed in [<INSERT PAPER NAME HERE>](<INSERT PAPER LINK HERE>) by <INSERT AUTHORS HERE>. <INSERT SHORT SUMMARY HERE> The abstract from the paper is the following: *<INSERT PAPER ABSTRACT HERE>* Tips: <INSERT TIPS ABOUT MODEL HERE> This model was contributed by [INSERT YOUR HF USERNAME HERE](<https://huggingface.co/<INSERT YOUR HF USERNAME HERE>). The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>). ## {{cookiecutter.camelcase_modelname}}Config [[autodoc]] {{cookiecutter.camelcase_modelname}}Config ## {{cookiecutter.camelcase_modelname}}Tokenizer [[autodoc]] {{cookiecutter.camelcase_modelname}}Tokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## {{cookiecutter.camelcase_modelname}}TokenizerFast [[autodoc]] {{cookiecutter.camelcase_modelname}}TokenizerFast {% if "PyTorch" in cookiecutter.generate_tensorflow_pytorch_and_flax -%} ## {{cookiecutter.camelcase_modelname}}Model [[autodoc]] {{cookiecutter.camelcase_modelname}}Model - forward {% if cookiecutter.is_encoder_decoder_model == "False" %} ## {{cookiecutter.camelcase_modelname}}ForCausalLM [[autodoc]] {{cookiecutter.camelcase_modelname}}ForCausalLM - forward ## {{cookiecutter.camelcase_modelname}}ForMaskedLM [[autodoc]] {{cookiecutter.camelcase_modelname}}ForMaskedLM - forward ## {{cookiecutter.camelcase_modelname}}ForSequenceClassification [[autodoc]] transformers.{{cookiecutter.camelcase_modelname}}ForSequenceClassification - forward ## {{cookiecutter.camelcase_modelname}}ForMultipleChoice [[autodoc]] transformers.{{cookiecutter.camelcase_modelname}}ForMultipleChoice - forward ## {{cookiecutter.camelcase_modelname}}ForTokenClassification [[autodoc]] transformers.{{cookiecutter.camelcase_modelname}}ForTokenClassification - forward ## {{cookiecutter.camelcase_modelname}}ForQuestionAnswering [[autodoc]] {{cookiecutter.camelcase_modelname}}ForQuestionAnswering - forward {%- else %} ## {{cookiecutter.camelcase_modelname}}ForConditionalGeneration [[autodoc]] {{cookiecutter.camelcase_modelname}}ForConditionalGeneration - forward ## {{cookiecutter.camelcase_modelname}}ForSequenceClassification [[autodoc]] {{cookiecutter.camelcase_modelname}}ForSequenceClassification - forward ## {{cookiecutter.camelcase_modelname}}ForQuestionAnswering [[autodoc]] {{cookiecutter.camelcase_modelname}}ForQuestionAnswering - forward ## {{cookiecutter.camelcase_modelname}}ForCausalLM [[autodoc]] {{cookiecutter.camelcase_modelname}}ForCausalLM - forward {% endif -%} {% endif -%} {% if "TensorFlow" in cookiecutter.generate_tensorflow_pytorch_and_flax -%} ## TF{{cookiecutter.camelcase_modelname}}Model [[autodoc]] TF{{cookiecutter.camelcase_modelname}}Model - call {% if cookiecutter.is_encoder_decoder_model == "False" %} ## TF{{cookiecutter.camelcase_modelname}}ForMaskedLM [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForMaskedLM - call ## TF{{cookiecutter.camelcase_modelname}}ForCausalLM [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForCausalLM - call ## TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification - call ## TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice - call ## TF{{cookiecutter.camelcase_modelname}}ForTokenClassification [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForTokenClassification - call ## TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering - call {%- else %} ## TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration - call {% endif -%} {% endif -%} {% if "Flax" in cookiecutter.generate_tensorflow_pytorch_and_flax -%} ## Flax{{cookiecutter.camelcase_modelname}}Model [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}Model - call {% if cookiecutter.is_encoder_decoder_model == "False" %} ## Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM - call ## Flax{{cookiecutter.camelcase_modelname}}ForCausalLM [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForCausalLM - call ## Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification - call ## Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice - call ## Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification - call ## Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering - call {%- else %} ## Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification - call ## Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering - call ## Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration - call {% endif -%} {% endif -%}
transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/{{cookiecutter.lowercase_modelname}}.md/0
{ "file_path": "transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/{{cookiecutter.lowercase_modelname}}.md", "repo_id": "transformers", "token_count": 2170 }
153
# coding=utf-8 # Copyright 2021 the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class AutoImageProcessorTest(unittest.TestCase): def setUp(self): transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0 def test_image_processor_from_model_shortcut(self): config = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32") self.assertIsInstance(config, CLIPImageProcessor) def test_image_processor_from_local_directory_from_key(self): with tempfile.TemporaryDirectory() as tmpdirname: processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" config_tmpfile = Path(tmpdirname) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) json.dump({"model_type": "clip"}, open(config_tmpfile, "w")) config = AutoImageProcessor.from_pretrained(tmpdirname) self.assertIsInstance(config, CLIPImageProcessor) def test_image_processor_from_local_directory_from_feature_extractor_key(self): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" config_tmpfile = Path(tmpdirname) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) json.dump({"model_type": "clip"}, open(config_tmpfile, "w")) config = AutoImageProcessor.from_pretrained(tmpdirname) self.assertIsInstance(config, CLIPImageProcessor) def test_image_processor_from_local_directory_from_config(self): with tempfile.TemporaryDirectory() as tmpdirname: model_config = CLIPConfig() # Create a dummy config file with image_proceesor_type processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" config_tmpfile = Path(tmpdirname) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) json.dump({"model_type": "clip"}, open(config_tmpfile, "w")) # remove image_processor_type to make sure config.json alone is enough to load image processor locally config_dict = AutoImageProcessor.from_pretrained(tmpdirname).to_dict() config_dict.pop("image_processor_type") config = CLIPImageProcessor(**config_dict) # save in new folder model_config.save_pretrained(tmpdirname) config.save_pretrained(tmpdirname) config = AutoImageProcessor.from_pretrained(tmpdirname) # make sure private variable is not incorrectly saved dict_as_saved = json.loads(config.to_json_string()) self.assertTrue("_processor_class" not in dict_as_saved) self.assertIsInstance(config, CLIPImageProcessor) def test_image_processor_from_local_file(self): with tempfile.TemporaryDirectory() as tmpdirname: processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) config = AutoImageProcessor.from_pretrained(processor_tmpfile) self.assertIsInstance(config, CLIPImageProcessor) def test_repo_not_found(self): with self.assertRaisesRegex( EnvironmentError, "clip-base is not a local folder and is not a valid model identifier" ): _ = AutoImageProcessor.from_pretrained("clip-base") def test_revision_not_found(self): with self.assertRaisesRegex( EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _ = AutoImageProcessor.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") def test_image_processor_not_found(self): with self.assertRaisesRegex( EnvironmentError, "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.", ): _ = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model") def test_from_pretrained_dynamic_image_processor(self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(ValueError): image_processor = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor") # If remote code is disabled, we can't load this config. with self.assertRaises(ValueError): image_processor = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=False ) image_processor = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True ) self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor") # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(tmp_dir) reloaded_image_processor = AutoImageProcessor.from_pretrained(tmp_dir, trust_remote_code=True) self.assertEqual(reloaded_image_processor.__class__.__name__, "NewImageProcessor") def test_new_image_processor_registration(self): try: AutoConfig.register("custom", CustomConfig) AutoImageProcessor.register(CustomConfig, CustomImageProcessor) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(ValueError): AutoImageProcessor.register(CLIPConfig, CLIPImageProcessor) with tempfile.TemporaryDirectory() as tmpdirname: processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" config_tmpfile = Path(tmpdirname) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) json.dump({"model_type": "clip"}, open(config_tmpfile, "w")) image_processor = CustomImageProcessor.from_pretrained(tmpdirname) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(tmp_dir) new_image_processor = AutoImageProcessor.from_pretrained(tmp_dir) self.assertIsInstance(new_image_processor, CustomImageProcessor) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def test_from_pretrained_dynamic_image_processor_conflict(self): class NewImageProcessor(CLIPImageProcessor): is_local = True try: AutoConfig.register("custom", CustomConfig) AutoImageProcessor.register(CustomConfig, NewImageProcessor) # If remote code is not set, the default is to use local image_processor = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor") self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor") self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. image_processor = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=False ) self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor") self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub image_processor = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True ) self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor") self.assertTrue(not hasattr(image_processor, "is_local")) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
transformers/tests/models/auto/test_image_processing_auto.py/0
{ "file_path": "transformers/tests/models/auto/test_image_processing_auto.py", "repo_id": "transformers", "token_count": 4164 }
154
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers import BartTokenizer, BartTokenizerFast, BatchEncoding from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class TestTokenizationBart(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = BartTokenizer rust_tokenizer_class = BartTokenizerFast test_rust_tokenizer = True from_pretrained_filter = filter_roberta_detectors # from_pretrained_kwargs = {'add_prefix_space': True} def setUp(self): super().setUp() vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): return "lower newer", "lower newer" @cached_property def default_tokenizer(self): return BartTokenizer.from_pretrained("facebook/bart-large") @cached_property def default_tokenizer_fast(self): return BartTokenizerFast.from_pretrained("facebook/bart-large") @require_torch def test_prepare_batch(self): src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] expected_src_tokens = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: batch = tokenizer(src_text, max_length=len(expected_src_tokens), padding=True, return_tensors="pt") self.assertIsInstance(batch, BatchEncoding) self.assertEqual((2, 9), batch.input_ids.shape) self.assertEqual((2, 9), batch.attention_mask.shape) result = batch.input_ids.tolist()[0] self.assertListEqual(expected_src_tokens, result) # Test that special tokens are reset @require_torch def test_prepare_batch_empty_target_text(self): src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: batch = tokenizer(src_text, padding=True, return_tensors="pt") # check if input_ids are returned and no labels self.assertIn("input_ids", batch) self.assertIn("attention_mask", batch) self.assertNotIn("labels", batch) self.assertNotIn("decoder_attention_mask", batch) @require_torch def test_tokenizer_as_target_length(self): tgt_text = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: targets = tokenizer(text_target=tgt_text, max_length=32, padding="max_length", return_tensors="pt") self.assertEqual(32, targets["input_ids"].shape[1]) @require_torch def test_prepare_batch_not_longer_than_maxlen(self): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: batch = tokenizer( ["I am a small frog" * 1024, "I am a small frog"], padding=True, truncation=True, return_tensors="pt" ) self.assertIsInstance(batch, BatchEncoding) self.assertEqual(batch.input_ids.shape, (2, 1024)) @require_torch def test_special_tokens(self): src_text = ["A long paragraph for summarization."] tgt_text = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: inputs = tokenizer(src_text, return_tensors="pt") targets = tokenizer(text_target=tgt_text, return_tensors="pt") input_ids = inputs["input_ids"] labels = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) def test_pretokenized_inputs(self): pass def test_embeded_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]), sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), ) tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
transformers/tests/models/bart/test_tokenization_bart.py/0
{ "file_path": "transformers/tests/models/bart/test_tokenization_bart.py", "repo_id": "transformers", "token_count": 3668 }
155
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class BertGenerationEncoderTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=50, initializer_range=0.02, use_labels=True, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.use_labels = use_labels self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: token_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() return config, input_ids, input_mask, token_labels def get_config(self): return BertGenerationConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, is_decoder=False, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_mask, token_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, input_mask, token_labels, **kwargs, ): model = BertGenerationEncoder(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, **kwargs, ): config.add_cross_attention = True model = BertGenerationEncoder(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, **kwargs, ): config.is_decoder = True config.add_cross_attention = True model = BertGenerationDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_causal_lm( self, config, input_ids, input_mask, token_labels, *args, ): model = BertGenerationDecoder(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def prepare_config_and_inputs_for_common(self): config, input_ids, input_mask, token_labels = self.prepare_config_and_inputs() inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class BertGenerationEncoderTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () all_generative_model_classes = (BertGenerationDecoder,) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def setUp(self): self.model_tester = BertGenerationEncoderTester(self) self.config_tester = ConfigTester(self, config_class=BertGenerationConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_bert(self): config, input_ids, input_mask, token_labels = self.model_tester.prepare_config_and_inputs() config.model_type = "bert" self.model_tester.create_and_check_model(config, input_ids, input_mask, token_labels) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) @slow def test_model_from_pretrained(self): model = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") self.assertIsNotNone(model) @require_torch class BertGenerationEncoderIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") input_ids = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size([1, 8, 1024]) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @require_torch class BertGenerationDecoderIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") input_ids = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size([1, 8, 50358]) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/bert_generation/test_modeling_bert_generation.py/0
{ "file_path": "transformers/tests/models/bert_generation/test_modeling_bert_generation.py", "repo_id": "transformers", "token_count": 5707 }
156
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import CLIPImageProcessor class CLIPImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, do_normalize=True, image_mean=[0.48145466, 0.4578275, 0.40821073], image_std=[0.26862954, 0.26130258, 0.27577711], do_convert_rgb=True, ): size = size if size is not None else {"shortest_edge": 20} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_convert_rgb = do_convert_rgb def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def expected_output_image_shape(self, images): return self.num_channels, self.crop_size["height"], self.crop_size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class CLIPImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = CLIPImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = CLIPImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "center_crop")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_convert_rgb")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 20}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
transformers/tests/models/clip/test_image_processing_clip.py/0
{ "file_path": "transformers/tests/models/clip/test_image_processing_clip.py", "repo_id": "transformers", "token_count": 1915 }
157
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow Data2VecVision model. """ from __future__ import annotations import collections.abc import inspect import unittest import numpy as np from transformers import Data2VecVisionConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFData2VecVisionForImageClassification, TFData2VecVisionForSemanticSegmentation, TFData2VecVisionModel, ) from transformers.modeling_tf_utils import keras from transformers.models.data2vec.modeling_tf_data2vec_vision import ( TF_DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class TFData2VecVisionModelTester: def __init__( self, parent, vocab_size=100, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, scope=None, out_indices=[0, 1, 2, 3], ): self.parent = parent self.vocab_size = 100 self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope self.out_indices = out_indices self.num_labels = num_labels def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None pixel_labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels, pixel_labels def get_config(self): return Data2VecVisionConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def create_and_check_model(self, config, pixel_values, labels, pixel_labels): model = TFData2VecVisionModel(config=config) result = model(pixel_values, training=False) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = ( self.image_size if isinstance(self.image_size, collections.abc.Iterable) else (self.image_size, self.image_size) ) patch_size = ( self.patch_size if isinstance(self.image_size, collections.abc.Iterable) else (self.patch_size, self.patch_size) ) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.type_sequence_label_size model = TFData2VecVisionForImageClassification(config) result = model(pixel_values, labels=labels, training=False) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def create_and_check_for_image_segmentation(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.num_labels model = TFData2VecVisionForSemanticSegmentation(config) result = model(pixel_values, training=False) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) result = model(pixel_values, labels=pixel_labels) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels, pixel_labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict def prepare_config_and_inputs_for_keras_fit(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, _, _ = config_and_inputs inputs_dict = {"pixel_values": pixel_values, "labels": tf.zeros((self.batch_size))} return config, inputs_dict @require_tf class TFData2VecVisionModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Data2VecVision does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( (TFData2VecVisionModel, TFData2VecVisionForImageClassification, TFData2VecVisionForSemanticSegmentation) if is_tf_available() else () ) pipeline_model_mapping = ( {"feature-extraction": TFData2VecVisionModel, "image-classification": TFData2VecVisionForImageClassification} if is_tf_available() else {} ) test_pruning = False test_onnx = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = TFData2VecVisionModelTester(self) self.config_tester = ConfigTester( self, config_class=Data2VecVisionConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Data2VecVision does not use inputs_embeds") def test_inputs_embeds(self): # Data2VecVision does not use inputs_embeds pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (keras.layers.Layer)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, keras.layers.Layer)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True # in Data2VecVision, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) patch_size = ( self.model_tester.patch_size if isinstance(self.model_tester.patch_size, collections.abc.Iterable) else (self.model_tester.patch_size, self.model_tester.patch_size) ) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_len = num_patches + 1 encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) chunk_length = getattr(self.model_tester, "chunk_length", None) if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # Data2VecVision has a different seq_length image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) patch_size = ( self.model_tester.patch_size if isinstance(self.model_tester.patch_size, collections.abc.Iterable) else (self.model_tester.patch_size, self.model_tester.patch_size) ) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_length = num_patches + 1 self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # Overriding this method since the base method won't be compatible with Data2VecVision. @slow def test_keras_fit(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Since `TFData2VecVisionModel` cannot operate with the default `fit()` method. if model_class.__name__ != "TFData2VecVisionModel": model = model_class(config) if getattr(model, "hf_compute_loss", None): # Test that model correctly compute the loss with kwargs _, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit() label_names = {"labels"} self.assertGreater(len(label_names), 0, msg="No matching label names found!") labels = {key: val for key, val in prepared_for_class.items() if key in label_names} inputs_minus_labels = { key: val for key, val in prepared_for_class.items() if key not in label_names } self.assertGreater(len(inputs_minus_labels), 0) model.compile(optimizer=keras.optimizers.SGD(0.0), run_eagerly=True) # Make sure the model fits without crashing regardless of where we pass the labels history1 = model.fit( prepared_for_class, validation_data=prepared_for_class, steps_per_epoch=1, validation_steps=1, shuffle=False, ) val_loss1 = history1.history["val_loss"][0] history2 = model.fit( inputs_minus_labels, labels, validation_data=(inputs_minus_labels, labels), steps_per_epoch=1, validation_steps=1, shuffle=False, ) val_loss2 = history2.history["val_loss"][0] self.assertTrue(np.allclose(val_loss1, val_loss2, atol=1e-2, rtol=1e-3)) def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=2e-4, name="outputs", attributes=None): # We override with a slightly higher tol value, as semseg models tend to diverge a bit more super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes) # Overriding this method since the base method won't be compatible with Data2VecVision. def test_loss_computation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Since `TFData2VecVisionModel` won't have labels against which we # could compute loss. if model_class.__name__ != "TFData2VecVisionModel": model = model_class(config) if getattr(model, "hf_compute_loss", None): # The number of elements in the loss should be the same as the number of elements in the label _, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit() added_label = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0] ] loss_size = tf.size(added_label) # Test that model correctly compute the loss with kwargs possible_input_names = {"input_ids", "pixel_values", "input_features"} input_name = possible_input_names.intersection(set(prepared_for_class)).pop() model_input = prepared_for_class.pop(input_name) loss = model(model_input, **prepared_for_class)[0] self.assertEqual(loss.shape, [loss_size]) # Test that model correctly compute the loss with a dict _, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit() loss = model(**prepared_for_class)[0] self.assertEqual(loss.shape, [loss_size]) # Test that model correctly compute the loss with a tuple label_keys = prepared_for_class.keys() - inputs_dict.keys() signature = inspect.signature(model.call).parameters signature_names = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple tuple_index_mapping = {0: input_name} for label_key in label_keys: label_key_index = signature_names.index(label_key) tuple_index_mapping[label_key_index] = label_key sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple list_input = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: list_input[index] = prepared_for_class[value] tuple_input = tuple(list_input) # Send to model loss = model(tuple_input[:-1])[0] self.assertEqual(loss.shape, [loss_size]) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFData2VecVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class TFData2VecVisionModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( BeitImageProcessor.from_pretrained("facebook/data2vec-vision-base-ft1k") if is_vision_available() else None ) @slow def test_inference_image_classification_head_imagenet_1k(self): model = TFData2VecVisionForImageClassification.from_pretrained("facebook/data2vec-vision-base-ft1k") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="tf") # forward pass outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = tf.convert_to_tensor([1, 1000]) self.assertEqual(logits.shape, expected_shape) expected_slice = tf.convert_to_tensor([0.3277, -0.1395, 0.0911]) tf.debugging.assert_near(logits[0, :3], expected_slice, atol=1e-4) expected_top2 = [model.config.label2id[i] for i in ["remote control, remote", "tabby, tabby cat"]] self.assertEqual(tf.nn.top_k(outputs.logits[0], 2).indices.numpy().tolist(), expected_top2)
transformers/tests/models/data2vec/test_modeling_tf_data2vec_vision.py/0
{ "file_path": "transformers/tests/models/data2vec/test_modeling_tf_data2vec_vision.py", "repo_id": "transformers", "token_count": 9984 }
158
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch DeiT model. """ import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_accelerator, require_torch_fp16, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class DeiTModelTester: def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, scope=None, encoder_stride=2, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope self.encoder_stride = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 2 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def create_and_check_model(self, config, pixel_values, labels): model = DeiTModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels): model = DeiTForMaskedImageModeling(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images config.num_channels = 1 model = DeiTForMaskedImageModeling(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = DeiTForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = DeiTForImageClassification(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, labels, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class DeiTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as DeiT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "image-feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = DeiTModelTester(self) self.config_tester = ConfigTester(self, config_class=DeiTConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_image_modeling(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) # special case for DeiTForImageClassificationWithTeacher model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def test_training(self): if not self.model_tester.is_training: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(MODEL_MAPPING) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return config.use_cache = False config.return_dict = True for model_class in self.all_model_classes: if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue model = model_class(config) model.gradient_checkpointing_enable() model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_problem_types(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() problem_types = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING), *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): config.problem_type = problem_type["title"] config.num_labels = problem_type["num_labels"] model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) if problem_type["num_labels"] > 1: inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=True) as warning_list: loss = model(**inputs).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def test_model_from_pretrained(self): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = DeiTModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class DeiTModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224").to( torch_device ) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-1.0266, 0.1912, -1.2861]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @slow @require_accelerate @require_torch_accelerator @require_torch_fp16 def test_inference_fp16(self): r""" A small test to make sure that inference work in half precision without any problem. """ model = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224", torch_dtype=torch.float16, device_map="auto" ) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) # forward pass to make sure inference works in fp16 with torch.no_grad(): _ = model(pixel_values)
transformers/tests/models/deit/test_modeling_deit.py/0
{ "file_path": "transformers/tests/models/deit/test_modeling_deit.py", "repo_id": "transformers", "token_count": 7230 }
159
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class FlaxDistilBertModelTester(unittest.TestCase): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_attention_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_choices=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_choices = num_choices def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = DistilBertConfig( vocab_size=self.vocab_size, dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, hidden_dim=self.intermediate_size, hidden_act=self.hidden_act, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, tie_weights_=True, ) return config, input_ids, attention_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class FlaxDistilBertModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def setUp(self): self.model_tester = FlaxDistilBertModelTester(self) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("distilbert-base-uncased") outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs) @require_flax class FlaxDistilBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased") input_ids = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = (1, 11, 768) self.assertEqual(output.shape, expected_shape) expected_slice = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
transformers/tests/models/distilbert/test_modeling_flax_distilbert.py/0
{ "file_path": "transformers/tests/models/distilbert/test_modeling_flax_distilbert.py", "repo_id": "transformers", "token_count": 2492 }
160
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch DPT model. """ import unittest from transformers import Dinov2Config, DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MODEL_MAPPING, DPTForDepthEstimation from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class DPTModelTester: def __init__( self, parent, batch_size=2, num_channels=3, image_size=32, patch_size=16, use_labels=True, num_labels=3, is_training=True, hidden_size=4, num_hidden_layers=2, num_attention_heads=2, intermediate_size=8, out_features=["stage1", "stage2"], apply_layernorm=False, reshape_hidden_states=False, neck_hidden_sizes=[2, 2], fusion_hidden_size=6, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.out_features = out_features self.apply_layernorm = apply_layernorm self.reshape_hidden_states = reshape_hidden_states self.use_labels = use_labels self.num_labels = num_labels self.is_training = is_training self.neck_hidden_sizes = neck_hidden_sizes self.fusion_hidden_size = fusion_hidden_size # DPT's sequence length self.seq_length = (self.image_size // self.patch_size) ** 2 + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return DPTConfig( backbone_config=self.get_backbone_config(), backbone=None, neck_hidden_sizes=self.neck_hidden_sizes, fusion_hidden_size=self.fusion_hidden_size, ) def get_backbone_config(self): return Dinov2Config( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, is_training=self.is_training, out_features=self.out_features, reshape_hidden_states=self.reshape_hidden_states, ) def create_and_check_for_depth_estimation(self, config, pixel_values, labels): config.num_labels = self.num_labels model = DPTForDepthEstimation(config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as DPT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (DPTForDepthEstimation,) if is_torch_available() else () pipeline_model_mapping = {"depth-estimation": DPTForDepthEstimation} if is_torch_available() else {} test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = DPTModelTester(self) self.config_tester = ConfigTester(self, config_class=DPTConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="DPT with AutoBackbone does not have a base model and hence no input_embeddings") def test_inputs_embeds(self): pass def test_for_depth_estimation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs) def test_training(self): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True if model_class in get_values(MODEL_MAPPING): continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing: continue model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) # Skip the check for the backbone backbone_params = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="DPT with AutoBackbone does not have a base model and hence no input_embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="DPT with AutoBackbone does not have a base model") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="DPT with AutoBackbone does not have a base model") def test_save_load_fast_init_to_base(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @slow def test_model_from_pretrained(self): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = DPTForDepthEstimation.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision @slow class DPTModelIntegrationTest(unittest.TestCase): def test_inference_depth_estimation_dinov2(self): image_processor = DPTImageProcessor.from_pretrained("facebook/dpt-dinov2-small-kitti") model = DPTForDepthEstimation.from_pretrained("facebook/dpt-dinov2-small-kitti").to(torch_device) image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # verify the predicted depth expected_shape = torch.Size((1, 576, 736)) self.assertEqual(predicted_depth.shape, expected_shape) expected_slice = torch.tensor( [[6.0433, 7.1636, 7.4268], [6.9047, 7.2471, 7.2355], [7.9261, 8.0631, 8.0244]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4)) def test_inference_depth_estimation_beit(self): image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-beit-base-384") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-beit-base-384").to(torch_device) image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # verify the predicted depth expected_shape = torch.Size((1, 384, 384)) self.assertEqual(predicted_depth.shape, expected_shape) expected_slice = torch.tensor( [[2669.7061, 2663.7144, 2674.9399], [2633.9326, 2650.9092, 2665.4270], [2621.8271, 2632.0129, 2637.2290]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4)) def test_inference_depth_estimation_swinv2(self): image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256").to(torch_device) image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # verify the predicted depth expected_shape = torch.Size((1, 256, 256)) self.assertEqual(predicted_depth.shape, expected_shape) expected_slice = torch.tensor( [[1032.7719, 1025.1886, 1030.2661], [1023.7619, 1021.0075, 1024.9121], [1022.5667, 1018.8522, 1021.4145]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/dpt/test_modeling_dpt_auto_backbone.py/0
{ "file_path": "transformers/tests/models/dpt/test_modeling_dpt_auto_backbone.py", "repo_id": "transformers", "token_count": 5415 }
161
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Encodec model. """ import copy import inspect import os import tempfile import unittest from typing import Dict, List, Tuple import numpy as np from datasets import Audio, load_dataset from transformers import AutoProcessor, EncodecConfig from transformers.testing_utils import ( is_torch_available, require_torch, slow, torch_device, ) from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EncodecModel def prepare_inputs_dict( config, input_ids=None, input_values=None, decoder_input_ids=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if input_ids is not None: encoder_dict = {"input_ids": input_ids} else: encoder_dict = {"input_values": input_values} decoder_dict = {"decoder_input_ids": decoder_input_ids} if decoder_input_ids is not None else {} return {**encoder_dict, **decoder_dict} @require_torch class EncodecModelTester: def __init__( self, parent, # `batch_size` needs to be an even number if the model has some outputs with batch dim != 0. batch_size=12, num_channels=2, is_training=False, intermediate_size=40, hidden_size=32, num_filters=8, num_residual_layers=1, upsampling_ratios=[8, 4], num_lstm_layers=1, codebook_size=64, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.is_training = is_training self.intermediate_size = intermediate_size self.hidden_size = hidden_size self.num_filters = num_filters self.num_residual_layers = num_residual_layers self.upsampling_ratios = upsampling_ratios self.num_lstm_layers = num_lstm_layers self.codebook_size = codebook_size def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0) config = self.get_config() inputs_dict = {"input_values": input_values} return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def get_config(self): return EncodecConfig( audio_channels=self.num_channels, chunk_in_sec=None, hidden_size=self.hidden_size, num_filters=self.num_filters, num_residual_layers=self.num_residual_layers, upsampling_ratios=self.upsampling_ratios, num_lstm_layers=self.num_lstm_layers, codebook_size=self.codebook_size, ) def create_and_check_model_forward(self, config, inputs_dict): model = EncodecModel(config=config).to(torch_device).eval() input_values = inputs_dict["input_values"] result = model(input_values) self.parent.assertEqual( result.audio_values.shape, (self.batch_size, self.num_channels, self.intermediate_size) ) @require_torch class EncodecModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (EncodecModel,) if is_torch_available() else () is_encoder_decoder = True test_pruning = False test_headmasking = False test_resize_embeddings = False pipeline_model_mapping = {"feature-extraction": EncodecModel} if is_torch_available() else {} input_name = "input_values" def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): # model does not have attention and does not support returning hidden states inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if "output_attentions" in inputs_dict: inputs_dict.pop("output_attentions") if "output_hidden_states" in inputs_dict: inputs_dict.pop("output_hidden_states") return inputs_dict def setUp(self): self.model_tester = EncodecModelTester(self) self.config_tester = ConfigTester( self, config_class=EncodecConfig, hidden_size=37, common_properties=[], has_text_modality=False ) def test_config(self): self.config_tester.run_common_tests() def test_model_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_forward(*config_and_inputs) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_values", "padding_mask", "bandwidth"] self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) @unittest.skip("The EncodecModel is not transformers based, thus it does not have `inputs_embeds` logics") def test_inputs_embeds(self): pass @unittest.skip("The EncodecModel is not transformers based, thus it does not have `inputs_embeds` logics") def test_model_common_attributes(self): pass @unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `attention` logic") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `attention` logic") def test_torchscript_output_attentions(self): pass @unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `hidden_states` logic") def test_torchscript_output_hidden_state(self): pass def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) main_input_name = model_class.main_input_name try: main_input = inputs[main_input_name] model(main_input) traced_model = torch.jit.trace(model, main_input) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): if layer_name in loaded_model_state_dict: p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) # Avoid memory leak. Without this, each call increase RAM usage by ~20MB. # (Even with this call, there are still memory leak by ~0.04MB) self.clear_torch_jit_class_registry() @unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `attention` logic") def test_attention_outputs(self): pass def test_feed_forward_chunking(self): (original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: torch.manual_seed(0) config = copy.deepcopy(original_config) config.chunk_length_s = None config.overlap = None config.sampling_rate = 10 model = model_class(config) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) inputs["input_values"] = inputs["input_values"].repeat(1, 1, 10) hidden_states_no_chunk = model(**inputs)[0] torch.manual_seed(0) config.chunk_length_s = 1 config.overlap = 0 config.sampling_rate = 10 model = model_class(config) model.to(torch_device) model.eval() hidden_states_with_chunk = model(**inputs)[0] self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3)) @unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `hidden_states` logic") def test_hidden_states_output(self): pass def test_determinism(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_determinism(first, second): # outputs are not tensors but list (since each sequence don't have the same frame_length) out_1 = first.cpu().numpy() out_2 = second.cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): first = model(**self._prepare_for_class(inputs_dict, model_class))[0] second = model(**self._prepare_for_class(inputs_dict, model_class))[0] if isinstance(first, tuple) and isinstance(second, tuple): for tensor1, tensor2 in zip(first, second): check_determinism(tensor1, tensor2) else: check_determinism(first, second) def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs) def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = ["conv"] ignore_init = ["lstm"] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) elif not any(x in name for x in ignore_init): self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_identity_shortcut(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() config.use_conv_shortcut = False self.model_tester.create_and_check_model_forward(config, inputs_dict) def normalize(arr): norm = np.linalg.norm(arr) normalized_arr = arr / norm return normalized_arr def compute_rmse(arr1, arr2): arr1_normalized = normalize(arr1) arr2_normalized = normalize(arr2) return np.sqrt(((arr1_normalized - arr2_normalized) ** 2).mean()) @slow @require_torch class EncodecIntegrationTest(unittest.TestCase): def test_integration_24kHz(self): expected_rmse = { "1.5": 0.0025, "24.0": 0.0015, } expected_codesums = { "1.5": [371955], "24.0": [6659962], } librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") model_id = "facebook/encodec_24khz" model = EncodecModel.from_pretrained(model_id).to(torch_device) processor = AutoProcessor.from_pretrained(model_id) librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate)) audio_sample = librispeech_dummy[-1]["audio"]["array"] inputs = processor( raw_audio=audio_sample, sampling_rate=processor.sampling_rate, return_tensors="pt", ).to(torch_device) for bandwidth, expected_rmse in expected_rmse.items(): with torch.no_grad(): # use max bandwith for best possible reconstruction encoder_outputs = model.encode(inputs["input_values"], bandwidth=float(bandwidth)) audio_code_sums = [a[0].sum().cpu().item() for a in encoder_outputs[0]] # make sure audio encoded codes are correct self.assertListEqual(audio_code_sums, expected_codesums[bandwidth]) audio_codes, scales = encoder_outputs.to_tuple() input_values_dec = model.decode(audio_codes, scales, inputs["padding_mask"])[0] input_values_enc_dec = model( inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth) )[-1] # make sure forward and decode gives same result self.assertTrue(torch.allclose(input_values_dec, input_values_enc_dec, atol=1e-3)) # make sure shape matches self.assertTrue(inputs["input_values"].shape == input_values_enc_dec.shape) arr = inputs["input_values"][0].cpu().numpy() arr_enc_dec = input_values_enc_dec[0].cpu().numpy() # make sure audios are more or less equal # the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0 rmse = compute_rmse(arr, arr_enc_dec) self.assertTrue(rmse < expected_rmse) def test_integration_48kHz(self): expected_rmse = { "3.0": 0.001, "24.0": 0.0005, } expected_codesums = { "3.0": [144259, 146765, 156435, 176871, 161971], "24.0": [1568553, 1294948, 1306190, 1464747, 1663150], } librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") model_id = "facebook/encodec_48khz" model = EncodecModel.from_pretrained(model_id).to(torch_device) model = model.eval() processor = AutoProcessor.from_pretrained(model_id) librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate)) audio_sample = librispeech_dummy[-1]["audio"]["array"] # transform mono to stereo audio_sample = np.array([audio_sample, audio_sample]) inputs = processor(raw_audio=audio_sample, sampling_rate=processor.sampling_rate, return_tensors="pt").to( torch_device ) for bandwidth, expected_rmse in expected_rmse.items(): with torch.no_grad(): # use max bandwith for best possible reconstruction encoder_outputs = model.encode( inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth), return_dict=False ) audio_code_sums = [a[0].sum().cpu().item() for a in encoder_outputs[0]] # make sure audio encoded codes are correct self.assertListEqual(audio_code_sums, expected_codesums[bandwidth]) audio_codes, scales = encoder_outputs input_values_dec = model.decode(audio_codes, scales, inputs["padding_mask"])[0] input_values_enc_dec = model( inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth) )[-1] # make sure forward and decode gives same result self.assertTrue(torch.allclose(input_values_dec, input_values_enc_dec, atol=1e-3)) # make sure shape matches self.assertTrue(inputs["input_values"].shape == input_values_enc_dec.shape) arr = inputs["input_values"][0].cpu().numpy() arr_enc_dec = input_values_enc_dec[0].cpu().numpy() # make sure audios are more or less equal # the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0 rmse = compute_rmse(arr, arr_enc_dec) self.assertTrue(rmse < expected_rmse) def test_batch_48kHz(self): expected_rmse = { "3.0": 0.001, "24.0": 0.0005, } expected_codesums = { "3.0": [ [72410, 79137, 76694, 90854, 73023, 82980, 72707, 54842], [85561, 81870, 76953, 48967, 79315, 85442, 81479, 107241], ], "24.0": [ [72410, 79137, 76694, 90854, 73023, 82980, 72707, 54842], [85561, 81870, 76953, 48967, 79315, 85442, 81479, 107241], ], } librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") model_id = "facebook/encodec_48khz" model = EncodecModel.from_pretrained(model_id).to(torch_device) processor = AutoProcessor.from_pretrained(model_id, chunk_length_s=1, overlap=0.01) librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate)) audio_samples = [ np.array([audio_sample["array"], audio_sample["array"]]) for audio_sample in librispeech_dummy[-2:]["audio"] ] inputs = processor(raw_audio=audio_samples, sampling_rate=processor.sampling_rate, return_tensors="pt") input_values = inputs["input_values"].to(torch_device) for bandwidth, expected_rmse in expected_rmse.items(): with torch.no_grad(): # use max bandwith for best possible reconstruction encoder_outputs = model.encode(input_values, bandwidth=float(bandwidth), return_dict=False) audio_code_sums_0 = [a[0][0].sum().cpu().item() for a in encoder_outputs[0]] audio_code_sums_1 = [a[0][1].sum().cpu().item() for a in encoder_outputs[0]] # make sure audio encoded codes are correct self.assertListEqual(audio_code_sums_0, expected_codesums[bandwidth][0]) self.assertListEqual(audio_code_sums_1, expected_codesums[bandwidth][1]) audio_codes, scales = encoder_outputs input_values_dec = model.decode(audio_codes, scales)[0] input_values_enc_dec = model(input_values, bandwidth=float(bandwidth))[-1] # make sure forward and decode gives same result self.assertTrue(torch.allclose(input_values_dec, input_values_enc_dec, atol=1e-3)) # make sure shape matches self.assertTrue(input_values.shape == input_values_enc_dec.shape) arr = input_values[0].cpu().numpy() arr_enc_dec = input_values_enc_dec[0].cpu().numpy() # make sure audios are more or less equal # the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0 rmse = compute_rmse(arr, arr_enc_dec) self.assertTrue(rmse < expected_rmse)
transformers/tests/models/encodec/test_modeling_encodec.py/0
{ "file_path": "transformers/tests/models/encodec/test_modeling_encodec.py", "repo_id": "transformers", "token_count": 11774 }
162
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Falcon model. """ import tempfile import unittest from parameterized import parameterized from transformers import ( AutoModelForCausalLM, AutoTokenizer, FalconConfig, is_torch_available, set_seed, ) from transformers.testing_utils import require_bitsandbytes, require_torch, require_torch_sdpa, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class FalconModelTester: def __init__( self, parent, batch_size=3, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return FalconConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=1, new_decoder_architecture=True, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = FalconModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = FalconModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = FalconForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = FalconForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class FalconModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (FalconForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": FalconModel, "question-answering": FalconForQuestionAnswering, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) test_headmasking = False test_pruning = False # TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146 def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return True def setUp(self): self.model_tester = FalconModelTester(self) self.config_tester = ConfigTester(self, config_class=FalconConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_position_embedding_types(self): config, *inputs = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: config.alibi = alibi self.model_tester.create_and_check_model(config, *inputs) def test_falcon_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = FalconForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_falcon_sequence_classification_model_for_single_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "single_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = FalconForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_falcon_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = FalconForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_past_key_values_format(self): # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: config, inputs = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(config, "use_cache"): return model = model_class(config).to(torch_device) if "use_cache" not in inputs: inputs["use_cache"] = True outputs = model(**inputs) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return num_hidden_layers = ( getattr(config, "decoder_layers", None) or getattr(config, "num_decoder_layers", None) or config.num_hidden_layers ) num_attention_heads = getattr(config, "num_kv_heads", config.num_attention_heads) embed_dim = getattr(config, "d_model", config.hidden_size) per_head_embed_dim = embed_dim // num_attention_heads past_kv = outputs["past_key_values"] self.assertEqual(len(past_kv), num_hidden_layers) batch_size, seq_length = inputs["input_ids"].shape for i in range(num_hidden_layers): if config.new_decoder_architecture: num_attention_heads = config.num_attention_heads elif config.multi_query: num_attention_heads = 1 self.assertEqual(len(past_kv[0]), 2) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @parameterized.expand([("linear",), ("dynamic",)]) def test_model_rope_scaling(self, scaling_type): config, _ = self.model_tester.prepare_config_and_inputs_for_common() short_input = ids_tensor([1, 10], config.vocab_size) long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights original_model = FalconModel(config) original_model.to(torch_device) original_model.eval() original_short_output = original_model(short_input).last_hidden_state original_long_output = original_model(long_input).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights config.rope_scaling = {"type": scaling_type, "factor": 10.0} scaled_model = FalconModel(config) scaled_model.to(torch_device) scaled_model.eval() scaled_short_output = scaled_model(short_input).last_hidden_state scaled_long_output = scaled_model(long_input).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) else: self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5)) @require_torch_sdpa @slow def test_eager_matches_sdpa_generate(self): max_new_tokens = 30 if len(self.all_generative_model_classes) == 0: self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test") for model_class in self.all_generative_model_classes: if not model_class._supports_sdpa: self.skipTest(f"{model_class.__name__} does not support SDPA") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() dummy_input = inputs_dict[model_class.main_input_name] if dummy_input.dtype in [torch.float32, torch.bfloat16]: dummy_input = dummy_input.to(torch.float16) # make sure that all models have enough positions for generation if hasattr(config, "max_position_embeddings"): config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1 model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) model_sdpa = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(torch_device) self.assertTrue(model_sdpa.config._attn_implementation == "sdpa") model_eager = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True, attn_implementation="eager", ).to(torch_device) self.assertTrue(model_eager.config._attn_implementation == "eager") # NOTE: This check is disabled for Falcon as the non-SDPA/SDPA implementation is in the same class (legacy reason). # for name, submodule in model_eager.named_modules(): # if "SdpaAttention" in submodule.__class__.__name__: # raise ValueError("The eager model should not have SDPA attention layers") # has_sdpa = False # for name, submodule in model_sdpa.named_modules(): # if "SdpaAttention" in submodule.__class__.__name__: # has_sdpa = True # break # if not has_sdpa: # raise ValueError("The SDPA model should have SDPA attention layers") # Just test that a large cache works as expected res_eager = model_eager.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False ) res_sdpa = model_sdpa.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False ) self.assertTrue(torch.allclose(res_eager, res_sdpa)) @require_torch class FalconLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_falcon(self): tokenizer = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b") model = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b") model.eval() model.to(torch_device) inputs = tokenizer("My favorite food is", return_tensors="pt").to(torch_device) EXPECTED_OUTPUT = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) output_ids = model.generate(**inputs, do_sample=False, max_new_tokens=19) output_str = tokenizer.batch_decode(output_ids)[0] self.assertEqual(output_str, EXPECTED_OUTPUT) @slow def test_lm_generation_big_models(self): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: tokenizer = AutoTokenizer.from_pretrained(repo) model = FalconForCausalLM.from_pretrained(repo) model.eval() model.to(torch_device) inputs = tokenizer("My favorite food is", return_tensors="pt").to(torch_device) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**inputs, do_sample=False, max_new_tokens=4) model.generate(**inputs, do_sample=True, max_new_tokens=4) model.generate(**inputs, num_beams=2, max_new_tokens=4) @slow def test_lm_generation_use_cache(self): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: tokenizer = AutoTokenizer.from_pretrained(repo) model = FalconForCausalLM.from_pretrained(repo) model.eval() model.to(device=torch_device) inputs = tokenizer("My favorite food is", return_tensors="pt").to(torch_device) # Test results are the same with and without cache outputs_no_cache = model.generate(**inputs, do_sample=False, max_new_tokens=20, use_cache=False) outputs_cache = model.generate(**inputs, do_sample=False, max_new_tokens=20, use_cache=True) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0) @require_bitsandbytes @slow def test_batched_generation(self): tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b", padding_side="left") tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( "tiiuae/falcon-7b", device_map="auto", load_in_4bit=True, ) test_text = "A sequence: 1, 2" # should generate the rest of the sequence unpadded_inputs = tokenizer([test_text], return_tensors="pt").to("cuda:0") unpadded_gen_out = model.generate(**unpadded_inputs, max_new_tokens=20) unpadded_gen_text = tokenizer.batch_decode(unpadded_gen_out, skip_special_tokens=True) dummy_text = "This is a longer text " * 2 # forces left-padding on `test_text` padded_inputs = tokenizer([test_text, dummy_text], return_tensors="pt", padding=True).to("cuda:0") padded_gen_out = model.generate(**padded_inputs, max_new_tokens=20) padded_gen_text = tokenizer.batch_decode(padded_gen_out, skip_special_tokens=True) expected_output = "A sequence: 1, 2, 3, 4, 5, 6, 7, 8, " self.assertLess(unpadded_inputs.input_ids.shape[-1], padded_inputs.input_ids.shape[-1]) # left-padding exists self.assertEqual(unpadded_gen_text[0], expected_output) self.assertEqual(padded_gen_text[0], expected_output)
transformers/tests/models/falcon/test_modeling_falcon.py/0
{ "file_path": "transformers/tests/models/falcon/test_modeling_falcon.py", "repo_id": "transformers", "token_count": 11320 }
163
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest from huggingface_hub import hf_hub_download from transformers import GitConfig, GitProcessor, GitVisionConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, GitForCausalLM, GitModel, GitVisionModel from transformers.models.git.modeling_git import GIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class GitVisionModelTester: def __init__( self, parent, batch_size=12, image_size=32, patch_size=16, num_channels=3, is_training=True, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return GitVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values): model = GitVisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class GitVisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as GIT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (GitVisionModel,) if is_torch_available() else () fx_compatible = True test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = GitVisionModelTester(self) self.config_tester = ConfigTester(self, config_class=GitVisionConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="GIT does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="GitVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="GitVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in GIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = GitVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) class GitModelTester: def __init__( self, parent, num_channels=3, image_size=32, patch_size=16, batch_size=13, text_seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, initializer_range=0.02, num_labels=3, scope=None, ): self.parent = parent self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.batch_size = batch_size self.text_seq_length = text_seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope # make sure the BOS, EOS and PAD tokens are within the vocab self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 # for GIT, the sequence length is the sum of the text and patch tokens, + 1 due to the CLS token self.seq_length = self.text_seq_length + int((self.image_size / self.patch_size) ** 2) + 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.text_seq_length]) pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, input_ids, input_mask, pixel_values def get_config(self): """ Returns a tiny configuration by default. """ return GitConfig( vision_config={ "num_channels": self.num_channels, "image_size": self.image_size, "patch_size": self.patch_size, "hidden_size": self.hidden_size, "projection_dim": 32, "num_hidden_layers": self.num_hidden_layers, "num_attention_heads": self.num_attention_heads, }, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, ) def create_and_check_model(self, config, input_ids, input_mask, pixel_values): model = GitModel(config=config) model.to(torch_device) model.eval() # inference with pixel values result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # inference without pixel values result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) def create_and_check_for_causal_lm(self, config, input_ids, input_mask, pixel_values): model = GitForCausalLM(config=config) model.to(torch_device) model.eval() # inference with pixel values result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) # inference without pixel values result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.vocab_size)) # training result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values, labels=input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertTrue(result.loss.item() > 0) def _test_beam_search_generate(self, config, input_ids, input_mask, pixel_values): model = GitForCausalLM(config=config) model.to(torch_device) model.eval() # generate generated_ids = model.generate( input_ids, attention_mask=input_mask, pixel_values=pixel_values, do_sample=False, max_length=20, num_beams=2, num_return_sequences=2, ) self.parent.assertEqual(generated_ids.shape, (self.batch_size * 2, 20)) def _test_batched_generate_captioning(self, config, input_ids, input_mask, pixel_values): model = GitForCausalLM(config=config) model.to(torch_device) model.eval() # generate generated_ids = model.generate( input_ids=None, # captioning -> no input_ids attention_mask=None, pixel_values=pixel_values, do_sample=False, max_length=20, num_beams=2, num_return_sequences=2, ) self.parent.assertEqual(generated_ids.shape, (self.batch_size * 2, 20)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, pixel_values, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": input_mask, "pixel_values": pixel_values, } return config, inputs_dict @require_torch class GitModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (GitModel, GitForCausalLM) if is_torch_available() else () all_generative_model_classes = (GitForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": GitModel, "image-to-text": GitForCausalLM, "text-generation": GitForCausalLM} if is_torch_available() else {} ) fx_compatible = False test_torchscript = False # special case for GitForCausalLM model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_CAUSAL_LM_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=torch.long, device=torch_device, ) return inputs_dict def setUp(self): self.model_tester = GitModelTester(self) self.config_tester = ConfigTester(self, config_class=GitConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_beam_search_generate(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester._test_beam_search_generate(*config_and_inputs) def test_batched_generate_captioning(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester._test_batched_generate_captioning(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in GIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = GitModel.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip(reason="GIT has pixel values as additional input") def test_beam_search_generate_dict_outputs_use_cache(self): pass @unittest.skip(reason="GIT has pixel values as additional input") def test_contrastive_generate(self): pass @unittest.skip(reason="GIT has pixel values as additional input") def test_contrastive_generate_dict_outputs_use_cache(self): pass @unittest.skip(reason="GIT has pixel values as additional input") def test_greedy_generate_dict_outputs_use_cache(self): pass @require_torch @require_vision @slow class GitModelIntegrationTest(unittest.TestCase): def test_forward_pass(self): processor = GitProcessor.from_pretrained("microsoft/git-base") model = GitForCausalLM.from_pretrained("microsoft/git-base") model.to(torch_device) image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor(images=image, text="hello world", return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) expected_shape = torch.Size((1, 201, 30522)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [[-0.9514, -0.9512, -0.9507], [-0.5454, -0.5453, -0.5453], [-0.8862, -0.8857, -0.8848]], device=torch_device, ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4)) def test_inference_image_captioning(self): processor = GitProcessor.from_pretrained("microsoft/git-base") model = GitForCausalLM.from_pretrained("microsoft/git-base") model.to(torch_device) image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) outputs = model.generate( pixel_values=pixel_values, max_length=20, output_scores=True, return_dict_in_generate=True ) generated_caption = processor.batch_decode(outputs.sequences, skip_special_tokens=True)[0] expected_shape = torch.Size((1, 9)) self.assertEqual(outputs.sequences.shape, expected_shape) self.assertEquals(generated_caption, "two cats laying on a pink blanket") self.assertTrue(outputs.scores[-1].shape, expected_shape) expected_slice = torch.tensor([[-0.8805, -0.8803, -0.8799]], device=torch_device) self.assertTrue(torch.allclose(outputs.scores[-1][0, :3], expected_slice, atol=1e-4)) def test_visual_question_answering(self): processor = GitProcessor.from_pretrained("microsoft/git-base-textvqa") model = GitForCausalLM.from_pretrained("microsoft/git-base-textvqa") model.to(torch_device) # prepare image file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset") image = Image.open(file_path).convert("RGB") inputs = processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) # prepare question question = "what does the front of the bus say at the top?" input_ids = processor(text=question, add_special_tokens=False).input_ids input_ids = [processor.tokenizer.cls_token_id] + input_ids input_ids = torch.tensor(input_ids).unsqueeze(0).to(torch_device) generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=20) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] expected_shape = torch.Size((1, 15)) self.assertEqual(generated_ids.shape, expected_shape) self.assertEquals(generated_caption, "what does the front of the bus say at the top? special") def test_batched_generation(self): processor = GitProcessor.from_pretrained("microsoft/git-base-coco") model = GitForCausalLM.from_pretrained("microsoft/git-base-coco") model.to(torch_device) # create batch of size 2 image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor(images=[image, image], return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) # we have to prepare `input_ids` with the same batch size as `pixel_values` start_token_id = model.config.bos_token_id input_ids = torch.tensor([[start_token_id], [start_token_id]], device=torch_device) generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50) generated_captions = processor.batch_decode(generated_ids, skip_special_tokens=True) self.assertEquals(generated_captions, ["two cats sleeping on a pink blanket next to remotes."] * 2)
transformers/tests/models/git/test_modeling_git.py/0
{ "file_path": "transformers/tests/models/git/test_modeling_git.py", "repo_id": "transformers", "token_count": 9579 }
164
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import inspect import os import tempfile import unittest from transformers import ImageGPTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST, ImageGPTForCausalImageModeling, ImageGPTForImageClassification, ImageGPTModel, ) if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class ImageGPTModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_token_type_ids=True, use_input_mask=True, use_labels=True, use_mc_token_ids=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_input_mask = use_input_mask self.use_labels = use_labels self.use_mc_token_ids = use_mc_token_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = None def get_large_model_config(self): return ImageGPTConfig.from_pretrained("imagegpt") def prepare_config_and_inputs( self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False ): pixel_values = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config( gradient_checkpointing=gradient_checkpointing, scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, reorder_and_upcast_attn=reorder_and_upcast_attn, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, pixel_values, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def get_config( self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False ): return ImageGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_inner=self.intermediate_size, activation_function=self.hidden_act, resid_pdrop=self.hidden_dropout_prob, attn_pdrop=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, use_cache=True, gradient_checkpointing=gradient_checkpointing, scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, reorder_and_upcast_attn=reorder_and_upcast_attn, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 513 config.max_position_embeddings = 1024 return config def prepare_config_and_inputs_for_decoder(self): ( config, pixel_values, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, pixel_values, input_mask, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_imagegpt_model(self, config, pixel_values, input_mask, head_mask, token_type_ids, *args): model = ImageGPTModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values, token_type_ids=token_type_ids, head_mask=head_mask) result = model(pixel_values, token_type_ids=token_type_ids) result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values), config.n_layer) def create_and_check_lm_head_model(self, config, pixel_values, input_mask, head_mask, token_type_ids, *args): model = ImageGPTForCausalImageModeling(config) model.to(torch_device) model.eval() labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1) result = model(pixel_values, token_type_ids=token_type_ids, labels=labels) self.parent.assertEqual(result.loss.shape, ()) # ImageGPTForCausalImageModeling doens't have tied input- and output embeddings self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size - 1)) def create_and_check_imagegpt_for_image_classification( self, config, pixel_values, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args ): config.num_labels = self.num_labels model = ImageGPTForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "pixel_values": pixel_values, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class ImageGPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (ImageGPTForCausalImageModeling, ImageGPTForImageClassification, ImageGPTModel) if is_torch_available() else () ) all_generative_model_classes = (ImageGPTForCausalImageModeling,) if is_torch_available() else () pipeline_model_mapping = ( {"image-feature-extraction": ImageGPTModel, "image-classification": ImageGPTForImageClassification} if is_torch_available() else {} ) test_missing_keys = False input_name = "pixel_values" # as ImageGPTForImageClassification isn't included in any auto mapping, we add labels here def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "ImageGPTForImageClassification": inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict # we overwrite the _check_scores method of GenerationTesterMixin, as ImageGPTForCausalImageModeling doesn't have tied input- and output embeddings def _check_scores(self, batch_size, scores, length, config): expected_shape = (batch_size, config.vocab_size - 1) self.assertIsInstance(scores, tuple) self.assertEqual(len(scores), length) self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores)) def setUp(self): self.model_tester = ImageGPTModelTester(self) self.config_tester = ConfigTester(self, config_class=ImageGPTConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_imagegpt_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_imagegpt_model(*config_and_inputs) def test_imagegpt_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) def test_imagegpt_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_imagegpt_for_image_classification(*config_and_inputs) @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @slow def test_model_from_pretrained(self): for model_name in IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ImageGPTModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_ids"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_resize_tokens_embeddings(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary inputs_dict["pixel_values"].clamp_(max=model_vocab_size - 15 - 1) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_resize_embeddings_untied(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return original_config.tie_word_embeddings = False # if model cannot untied embeddings -> leave test if original_config.tie_word_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config).to(torch_device) # if no output embeddings -> leave test if model.get_output_embeddings() is None: continue # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_vocab_size = config.vocab_size model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary inputs_dict["pixel_values"].clamp_(max=model_vocab_size - 15 - 1) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) pixel_values = inputs["pixel_values"] del inputs["pixel_values"] wte = model.get_input_embeddings() inputs["inputs_embeds"] = wte(pixel_values) with torch.no_grad(): model(**inputs)[0] def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) try: pixel_values = inputs["pixel_values"] traced_model = torch.jit.trace(model, pixel_values) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): if layer_name in loaded_model_state_dict: p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ImageGPTModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small") if is_vision_available() else None @slow def test_inference_causal_lm_head(self): model = ImageGPTForCausalImageModeling.from_pretrained("openai/imagegpt-small").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1024, 512)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [[2.3445, 2.6889, 2.7313], [1.0530, 1.2416, 0.5699], [0.2205, 0.7749, 0.3953]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/imagegpt/test_modeling_imagegpt.py/0
{ "file_path": "transformers/tests/models/imagegpt/test_modeling_imagegpt.py", "repo_id": "transformers", "token_count": 10627 }
165
# coding=utf-8 # Copyright Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class TFLEDModelTester: config_cls = LEDConfig config_updates = {} hidden_act = "gelu" def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, attention_window=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.attention_window = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after self.key_length = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests self.encoder_seq_length = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def prepare_config_and_inputs_for_common(self): input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) input_ids = tf.concat([input_ids, eos_tensor], axis=1) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, attention_window=self.attention_window, **self.config_updates, ) inputs_dict = prepare_led_inputs_dict(config, input_ids, decoder_input_ids) global_attention_mask = tf.concat( [tf.zeros_like(input_ids)[:, :-1], tf.ones_like(input_ids)[:, -1:]], axis=-1, ) inputs_dict["global_attention_mask"] = global_attention_mask return config, inputs_dict def check_decoder_model_past_large_inputs(self, config, inputs_dict): model = TFLEDModel(config=config).get_decoder() input_ids = inputs_dict["input_ids"] input_ids = input_ids[:1, :] attention_mask = inputs_dict["attention_mask"][:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def prepare_led_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, ): if attention_mask is None: attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8) if decoder_attention_mask is None: decoder_attention_mask = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8), ], axis=-1, ) if head_mask is None: head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class TFLEDModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () all_generative_model_classes = (TFLEDForConditionalGeneration,) if is_tf_available() else () pipeline_model_mapping = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) is_encoder_decoder = True test_pruning = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFLEDModelTester(self) self.config_tester = ConfigTester(self, config_class=LEDConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() inputs_dict["global_attention_mask"] = tf.zeros_like(inputs_dict["attention_mask"]) num_global_attn_indices = 2 inputs_dict["global_attention_mask"] = tf.where( tf.range(self.model_tester.seq_length)[None, :] < num_global_attn_indices, 1, inputs_dict["global_attention_mask"], ) config.return_dict = True seq_length = self.model_tester.seq_length encoder_seq_length = self.model_tester.encoder_seq_length def check_decoder_attentions_output(outputs): decoder_attentions = outputs.decoder_attentions self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length, seq_length], ) def check_encoder_attentions_output(outputs): attentions = [t.numpy() for t in outputs.encoder_attentions] global_attentions = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertEqual(len(global_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length, seq_length], ) self.assertListEqual( list(global_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices], ) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["use_cache"] = False config.output_hidden_states = False model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) out_len = len(outputs) self.assertEqual(config.output_hidden_states, False) check_encoder_attentions_output(outputs) if self.is_encoder_decoder: model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(config.output_hidden_states, False) check_decoder_attentions_output(outputs) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(config.output_hidden_states, False) check_encoder_attentions_output(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True config.output_hidden_states = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs)) self.assertEqual(model.config.output_hidden_states, True) check_encoder_attentions_output(outputs) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing.") def test_saved_model_creation(self): pass def test_generate_with_headmasking(self): # TODO: Head-masking not yet implement pass def _long_tensor(tok_lst): return tf.constant(tok_lst, dtype=tf.int32) TOLERANCE = 1e-4 @slow @require_tf class TFLEDModelIntegrationTest(unittest.TestCase): def test_inference_no_head(self): model = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384").led # change to intended input here input_ids = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]]) decoder_input_ids = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]]) inputs_dict = prepare_led_inputs_dict(model.config, input_ids, decoder_input_ids) output = model(**inputs_dict)[0] expected_shape = (1, 1024, 768) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]], ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-3) def test_inference_with_head(self): model = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384") # change to intended input here input_ids = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]]) decoder_input_ids = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]]) inputs_dict = prepare_led_inputs_dict(model.config, input_ids, decoder_input_ids) output = model(**inputs_dict)[0] expected_shape = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]], ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-3, rtol=1e-3)
transformers/tests/models/led/test_modeling_tf_led.py/0
{ "file_path": "transformers/tests/models/led/test_modeling_tf_led.py", "repo_id": "transformers", "token_count": 6455 }
166
# coding=utf-8 # Copyright 2022 Tsimur Hadeliya. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the Longformer tokenizer. """ import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers # Copied from tests.models.roberta.test_tokenization_roberta.RobertaTokenizationTest with FacebookAI/roberta-base->allenai/longformer-base-4096,Roberta->Longformer,roberta->longformer, class LongformerTokenizationTest(TokenizerTesterMixin, unittest.TestCase): # Ignore copy tokenizer_class = LongformerTokenizer test_slow_tokenizer = True rust_tokenizer_class = LongformerTokenizerFast test_rust_tokenizer = True def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map) text = "lower newer" bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] tokens = tokenizer.tokenize(text) # , add_prefix_space=True) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) def longformer_dict_integration_testing(self): tokenizer = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!", add_special_tokens=False), [0, 31414, 232, 328, 2]) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418", add_special_tokens=False), [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2], ) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_text_from_decode = tokenizer.encode( "sequence builders", add_special_tokens=True, add_prefix_space=False ) encoded_pair_from_decode = tokenizer.encode( "sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False ) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def test_space_encoding(self): tokenizer = self.get_tokenizer() sequence = "Encode this sequence." space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]] # Testing encoder arguments encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False) first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(first_char, space_encoding) encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True) first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(first_char, space_encoding) tokenizer.add_special_tokens({"bos_token": "<s>"}) encoded = tokenizer.encode(sequence, add_special_tokens=True) first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(first_char, space_encoding) # Testing spaces after special tokens mask = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(mask, lstrip=True, rstrip=False)} ) # mask token has a left space mask_ind = tokenizer.convert_tokens_to_ids(mask) sequence = "Encode <mask> sequence" sequence_nospace = "Encode <mask>sequence" encoded = tokenizer.encode(sequence) mask_loc = encoded.index(mask_ind) first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(first_char, space_encoding) encoded = tokenizer.encode(sequence_nospace) mask_loc = encoded.index(mask_ind) first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(first_char, space_encoding) def test_pretokenized_inputs(self): pass def test_embeded_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]), sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), ) tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def test_change_add_prefix_space_and_trim_offsets_args(self): for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2): tokenizer_r = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=True, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets ) pre_tokenizer_state = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__()) post_processor_state = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__()) self.assertEqual(pre_tokenizer_state["add_prefix_space"], add_prefix_space) self.assertEqual(post_processor_state["add_prefix_space"], add_prefix_space) self.assertEqual(post_processor_state["trim_offsets"], trim_offsets) def test_offsets_mapping_with_different_add_prefix_space_and_trim_space_arguments(self): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): text_of_1_token = "hello" # `hello` is a token in the vocabulary of `pretrained_name` text = f"{text_of_1_token} {text_of_1_token}" tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True ) encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token))) self.assertEqual( encoding.offset_mapping[1], (len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)), ) tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=True ) encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token))) self.assertEqual( encoding.offset_mapping[1], (len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)), ) tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=False ) encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token))) self.assertEqual( encoding.offset_mapping[1], (len(text_of_1_token), len(text_of_1_token) + 1 + len(text_of_1_token)), ) tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=False ) encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token))) self.assertEqual( encoding.offset_mapping[1], (len(text_of_1_token), len(text_of_1_token) + 1 + len(text_of_1_token)), ) text = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=True ) encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) self.assertEqual( encoding.offset_mapping[1], (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), ) tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=False ) encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(text_of_1_token))) self.assertEqual( encoding.offset_mapping[1], (1 + len(text_of_1_token), 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), ) tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=False ) encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(text_of_1_token))) self.assertEqual( encoding.offset_mapping[1], (1 + len(text_of_1_token), 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), )
transformers/tests/models/longformer/test_tokenization_longformer.py/0
{ "file_path": "transformers/tests/models/longformer/test_tokenization_longformer.py", "repo_id": "transformers", "token_count": 7085 }
167
# coding=utf-8 # Copyright 2021, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Marian model. """ import tempfile import unittest from huggingface_hub.hf_api import list_models from transformers import MarianConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AutoConfig, AutoModelWithLMHead, AutoTokenizer, MarianModel, MarianMTModel, TranslationPipeline, ) from transformers.models.marian.convert_marian_to_pytorch import ( ORG_NAME, convert_hf_name_to_opus_name, convert_opus_name_to_hf_name, ) from transformers.models.marian.modeling_marian import ( MarianDecoder, MarianEncoder, MarianForCausalLM, shift_tokens_right, ) def prepare_marian_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class MarianModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, decoder_start_token_id=3, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.decoder_start_token_id = decoder_start_token_id # forcing a certain token to be generated, sets all other tokens to -inf # if however the token to be generated is already at -inf then it can lead token # `nan` values and thus break generation self.forced_bos_token_id = None self.forced_eos_token_id = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( 3, ) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return MarianConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, forced_bos_token_id=self.forced_bos_token_id, forced_eos_token_id=self.forced_eos_token_id, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = MarianModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = MarianModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = MarianEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = MarianDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class MarianModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (MarianModel, MarianMTModel) if is_torch_available() else () all_generative_model_classes = (MarianMTModel,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": MarianMTModel, "feature-extraction": MarianModel, "summarization": MarianMTModel, "text-generation": MarianForCausalLM, "text2text-generation": MarianMTModel, "translation": MarianMTModel, } if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = True test_pruning = False test_missing_keys = False def setUp(self): self.model_tester = MarianModelTester(self) self.config_tester = ConfigTester(self, config_class=MarianConfig) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = MarianMTModel(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def test_share_encoder_decoder_embeddings(self): config, input_dict = self.model_tester.prepare_config_and_inputs() # check if embeddings are shared by default for model_class in self.all_model_classes: model = model_class(config) self.assertIs(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens) self.assertIs(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight) # check if embeddings are not shared when config.share_encoder_decoder_embeddings = False config.share_encoder_decoder_embeddings = False for model_class in self.all_model_classes: model = model_class(config) self.assertIsNot(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens) self.assertIsNot(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight) # check if a model with shared embeddings can be saved and loaded with share_encoder_decoder_embeddings = False config, _ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname, share_encoder_decoder_embeddings=False) self.assertIsNot(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens) self.assertIsNot(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight) def test_resize_decoder_token_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs() # check if resize_decoder_token_embeddings raises an error when embeddings are shared for model_class in self.all_model_classes: model = model_class(config) with self.assertRaises(ValueError): model.resize_decoder_token_embeddings(config.vocab_size + 1) # check if decoder embeddings are resized when config.share_encoder_decoder_embeddings = False config.share_encoder_decoder_embeddings = False for model_class in self.all_model_classes: model = model_class(config) model.resize_decoder_token_embeddings(config.vocab_size + 1) self.assertEqual(model.get_decoder().embed_tokens.weight.shape, (config.vocab_size + 1, config.d_model)) # check if lm_head is also resized config, _ = self.model_tester.prepare_config_and_inputs() config.share_encoder_decoder_embeddings = False model = MarianMTModel(config) model.resize_decoder_token_embeddings(config.vocab_size + 1) self.assertEqual(model.lm_head.weight.shape, (config.vocab_size + 1, config.d_model)) def test_tie_word_embeddings_decoder(self): pass @unittest.skip("Skipping for now, to fix @ArthurZ or @ydshieh") def test_pipeline_conversational(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def assert_tensors_close(a, b, atol=1e-12, prefix=""): """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() if a.numel() > 100: msg = f"tensor values are {pct_different:.1%} percent different." else: msg = f"{a} != {b}" if prefix: msg = prefix + ": " + msg raise AssertionError(msg) def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) class ModelManagementTests(unittest.TestCase): @slow @require_torch def test_model_names(self): model_list = list_models() model_ids = [x.modelId for x in model_list if x.modelId.startswith(ORG_NAME)] bad_model_ids = [mid for mid in model_ids if "+" in model_ids] self.assertListEqual([], bad_model_ids) self.assertGreater(len(model_ids), 500) @require_torch @require_sentencepiece @require_tokenizers class MarianIntegrationTest(unittest.TestCase): src = "en" tgt = "de" src_text = [ "I am a small frog.", "Now I can forget the 100 words of german that I know.", "Tom asked his teacher for advice.", "That's how I would do it.", "Tom really admired Mary's courage.", "Turn around and close your eyes.", ] expected_text = [ "Ich bin ein kleiner Frosch.", "Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.", "Tom bat seinen Lehrer um Rat.", "So würde ich das machen.", "Tom bewunderte Marias Mut wirklich.", "Drehen Sie sich um und schließen Sie die Augen.", ] # ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen @classmethod def setUpClass(cls) -> None: cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}" return cls @cached_property def tokenizer(self): return AutoTokenizer.from_pretrained(self.model_name) @property def eos_token_id(self) -> int: return self.tokenizer.eos_token_id @cached_property def model(self): model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device) c = model.config self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]]) self.assertEqual(c.max_length, 512) self.assertEqual(c.decoder_start_token_id, c.pad_token_id) if torch_device == "cuda": return model.half() else: return model def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs): generated_words = self.translate_src_text(**tokenizer_kwargs) self.assertListEqual(self.expected_text, generated_words) def translate_src_text(self, **tokenizer_kwargs): model_inputs = self.tokenizer(self.src_text, padding=True, return_tensors="pt", **tokenizer_kwargs).to( torch_device ) self.assertEqual(self.model.device, model_inputs.input_ids.device) generated_ids = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128, renormalize_logits=True, # Marian should always renormalize its logits. See #25459 ) generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return generated_words @require_sentencepiece @require_tokenizers class TestMarian_EN_DE_More(MarianIntegrationTest): @slow def test_forward(self): src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."] expected_ids = [38, 121, 14, 697, 38848, 0] model_inputs = self.tokenizer(src, text_target=tgt, return_tensors="pt").to(torch_device) self.assertListEqual(expected_ids, model_inputs.input_ids[0].tolist()) desired_keys = { "input_ids", "attention_mask", "labels", } self.assertSetEqual(desired_keys, set(model_inputs.keys())) model_inputs["decoder_input_ids"] = shift_tokens_right( model_inputs.labels, self.tokenizer.pad_token_id, self.model.config.decoder_start_token_id ) model_inputs["return_dict"] = True model_inputs["use_cache"] = False with torch.no_grad(): outputs = self.model(**model_inputs) max_indices = outputs.logits.argmax(-1) self.tokenizer.batch_decode(max_indices) def test_unk_support(self): t = self.tokenizer ids = t(["||"], return_tensors="pt").to(torch_device).input_ids[0].tolist() expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id] self.assertEqual(expected, ids) def test_pad_not_split(self): input_ids_w_pad = self.tokenizer(["I am a small frog <pad>"], return_tensors="pt").input_ids[0].tolist() expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0] # pad self.assertListEqual(expected_w_pad, input_ids_w_pad) @slow def test_batch_generation_en_de(self): self._assert_generated_batch_equal_expected() def test_auto_config(self): config = AutoConfig.from_pretrained(self.model_name) self.assertIsInstance(config, MarianConfig) @require_sentencepiece @require_tokenizers class TestMarian_EN_FR(MarianIntegrationTest): src = "en" tgt = "fr" src_text = [ "I am a small frog.", "Now I can forget the 100 words of german that I know.", ] expected_text = [ "Je suis une petite grenouille.", "Maintenant, je peux oublier les 100 mots d'allemand que je connais.", ] @slow def test_batch_generation_en_fr(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers class TestMarian_FR_EN(MarianIntegrationTest): src = "fr" tgt = "en" src_text = [ "Donnez moi le micro.", "Tom et Mary étaient assis à une table.", # Accents ] expected_text = [ "Give me the microphone.", "Tom and Mary were sitting at a table.", ] @slow def test_batch_generation_fr_en(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers class TestMarian_RU_FR(MarianIntegrationTest): src = "ru" tgt = "fr" src_text = ["Он показал мне рукопись своей новой пьесы."] expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."] @slow def test_batch_generation_ru_fr(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers class TestMarian_MT_EN(MarianIntegrationTest): """Cover low resource/high perplexity setting. This breaks without adjust_logits_generation overwritten""" src = "mt" tgt = "en" src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."] expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."] @slow def test_batch_generation_mt_en(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers class TestMarian_en_zh(MarianIntegrationTest): src = "en" tgt = "zh" src_text = ["My name is Wolfgang and I live in Berlin"] expected_text = ["我叫沃尔夫冈 我住在柏林"] @slow def test_batch_generation_eng_zho(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers class TestMarian_en_ROMANCE(MarianIntegrationTest): """Multilingual on target side.""" src = "en" tgt = "ROMANCE" src_text = [ ">>fr<< Don't spend so much time watching TV.", ">>pt<< Your message has been sent.", ">>es<< He's two years older than me.", ] expected_text = [ "Ne passez pas autant de temps à regarder la télé.", "A sua mensagem foi enviada.", "Es dos años más viejo que yo.", ] @slow def test_batch_generation_en_ROMANCE_multi(self): self._assert_generated_batch_equal_expected() @slow @require_torch def test_pipeline(self): pipeline = TranslationPipeline(self.model, self.tokenizer, framework="pt", device=torch_device) output = pipeline(self.src_text) self.assertEqual(self.expected_text, [x["translation_text"] for x in output]) @require_sentencepiece @require_tokenizers class TestMarian_FI_EN_V2(MarianIntegrationTest): src = "fi" tgt = "en" src_text = [ "minä tykkään kirjojen lukemisesta", "Pidän jalkapallon katsomisesta", ] expected_text = ["I like to read books", "I like watching football"] @classmethod def setUpClass(cls) -> None: cls.model_name = "hf-internal-testing/test-opus-tatoeba-fi-en-v2" return cls @slow def test_batch_generation_fi_en(self): self._assert_generated_batch_equal_expected() @require_torch class TestConversionUtils(unittest.TestCase): def test_renaming_multilingual(self): old_names = [ "opus-mt-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi", "opus-mt-cmn+cn-fi", # no group "opus-mt-en-de", # standard name "opus-mt-en-de", # standard name ] expected = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"] self.assertListEqual(expected, [convert_opus_name_to_hf_name(x) for x in old_names]) def test_undoing_renaming(self): hf_names = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"] converted_opus_names = [convert_hf_name_to_opus_name(x) for x in hf_names] expected_opus_names = [ "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi", "cmn+cn-fi", "en-de", # standard name "en-de", ] self.assertListEqual(expected_opus_names, converted_opus_names) class MarianStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, d_model=16, decoder_seq_length=7, is_training=True, is_decoder=True, use_attention_mask=True, use_cache=False, use_labels=True, decoder_start_token_id=2, decoder_ffn_dim=32, decoder_layers=2, encoder_attention_heads=4, decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, scope=None, ): self.parent = parent self.batch_size = batch_size self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.d_model = d_model self.hidden_size = d_model self.num_hidden_layers = decoder_layers self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.num_attention_heads = decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.max_position_embeddings = max_position_embeddings self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = MarianConfig( vocab_size=self.vocab_size, d_model=self.d_model, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_attention_heads=self.encoder_attention_heads, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, lm_labels, ) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = MarianDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, attention_mask, lm_labels, ): model = MarianDecoder(config=config).to(torch_device).eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class MarianStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (MarianDecoder, MarianForCausalLM) if is_torch_available() else () all_generative_model_classes = (MarianForCausalLM,) if is_torch_available() else () test_pruning = False is_encoder_decoder = False def setUp( self, ): self.model_tester = MarianStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=MarianConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_attn_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) def test_retain_grad_hidden_states_attentions(self): # decoder cannot keep gradients return @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass
transformers/tests/models/marian/test_modeling_marian.py/0
{ "file_path": "transformers/tests/models/marian/test_modeling_marian.py", "repo_id": "transformers", "token_count": 15231 }
168
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import timeout_decorator # noqa from transformers import MBartConfig, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" import jax import jax.numpy as jnp from transformers import AutoTokenizer from transformers.models.mbart.modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, shift_tokens_right, ) def prepare_mbart_inputs_dict( config, input_ids, decoder_input_ids=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = np.where(input_ids != config.pad_token_id, 1, 0) if decoder_attention_mask is None: decoder_attention_mask = np.where(decoder_input_ids != config.pad_token_id, 1, 0) if head_mask is None: head_mask = np.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } class FlaxMBartModelTester(unittest.TestCase): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=32, eos_token_id=2, pad_token_id=1, bos_token_id=0, decoder_start_token_id=2, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.decoder_start_token_id = decoder_start_token_id self.initializer_range = initializer_range def prepare_config_and_inputs(self): input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size) input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1) decoder_input_ids = shift_tokens_right(input_ids, 1) config = MBartConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, initializer_range=self.initializer_range, use_cache=False, ) inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def check_use_cache_forward(self, model_class_name, config, inputs_dict): max_decoder_length = 20 model = model_class_name(config) encoder_outputs = model.encode(inputs_dict["input_ids"]) decoder_input_ids, decoder_attention_mask = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs) decoder_attention_mask = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype="i4") decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) outputs_cache = model.decode( decoder_input_ids[:, :-1], encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, decoder_position_ids=decoder_position_ids, ) decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model.decode( decoder_input_ids[:, -1:], encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=outputs_cache.past_key_values, decoder_position_ids=decoder_position_ids, ) outputs = model.decode(decoder_input_ids, encoder_outputs) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict): max_decoder_length = 20 model = model_class_name(config) encoder_outputs = model.encode(inputs_dict["input_ids"]) decoder_input_ids, decoder_attention_mask = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) decoder_attention_mask_cache = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ], axis=-1, ) past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs) decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) outputs_cache = model.decode( decoder_input_ids[:, :-1], encoder_outputs, decoder_attention_mask=decoder_attention_mask_cache, past_key_values=past_key_values, decoder_position_ids=decoder_position_ids, ) decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model.decode( decoder_input_ids[:, -1:], encoder_outputs, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=decoder_attention_mask_cache, decoder_position_ids=decoder_position_ids, ) outputs = model.decode(decoder_input_ids, encoder_outputs, decoder_attention_mask=decoder_attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") @require_flax class MBartHeadTests(unittest.TestCase): vocab_size = 99 def _get_config_and_data(self): input_ids = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.int64, ) batch_size = input_ids.shape[0] config = MBartConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def test_sequence_classification_forward(self): config, input_ids, batch_size = self._get_config_and_data() model = FlaxMBartForSequenceClassification(config) outputs = model(input_ids=input_ids, decoder_input_ids=input_ids) expected_shape = (batch_size, config.num_labels) self.assertEqual(outputs["logits"].shape, expected_shape) def test_question_answering_forward(self): config, input_ids, batch_size = self._get_config_and_data() model = FlaxMBartForQuestionAnswering(config) outputs = model(input_ids=input_ids) self.assertEqual(outputs["start_logits"].shape, input_ids.shape) self.assertEqual(outputs["end_logits"].shape, input_ids.shape) # @timeout_decorator.timeout(1) # not working with the decorator so far def test_lm_forward(self): config, input_ids, batch_size = self._get_config_and_data() lm_model = FlaxMBartForConditionalGeneration(config) outputs = lm_model(input_ids=input_ids) expected_shape = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape, expected_shape) def test_lm_uneven_forward(self): config = MBartConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) lm_model = FlaxMBartForConditionalGeneration(config) context = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.int64) summary = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.int64) outputs = lm_model(input_ids=context, decoder_input_ids=summary) expected_shape = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape, expected_shape) def test_shift_tokens_right(self): input_ids = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.int64) shifted = shift_tokens_right(input_ids, 1) n_pad_before = np.equal(input_ids, 1).astype(np.float32).sum() n_pad_after = np.equal(shifted, 1).astype(np.float32).sum() self.assertEqual(shifted.shape, input_ids.shape) self.assertEqual(n_pad_after, n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0], 2).all()) @require_flax class FlaxMBartModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin): is_encoder_decoder = True all_model_classes = ( ( FlaxMBartModel, FlaxMBartForConditionalGeneration, FlaxMBartForSequenceClassification, FlaxMBartForQuestionAnswering, ) if is_flax_available() else () ) all_generative_model_classes = (FlaxMBartForConditionalGeneration,) if is_flax_available() else () def setUp(self): self.model_tester = FlaxMBartModelTester(self) def test_use_cache_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(model_class, config, inputs_dict) def test_use_cache_forward_with_attn_mask(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict) def test_encode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def encode_jitted(input_ids, attention_mask=None, **kwargs): return model.encode(input_ids=input_ids, attention_mask=attention_mask) with self.subTest("JIT Enabled"): jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = encode_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) def test_decode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): model = model_class(config) encoder_outputs = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"]) prepared_inputs_dict = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(decoder_input_ids, decoder_attention_mask, encoder_outputs): return model.decode( decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, ) with self.subTest("JIT Enabled"): jitted_outputs = decode_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = decode_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("facebook/mbart-large-cc25", from_pt=True) # FlaxMBartForSequenceClassification expects eos token in input_ids input_ids = np.ones((1, 1)) * model.config.eos_token_id outputs = model(input_ids) self.assertIsNotNone(outputs) @require_flax @require_sentencepiece @require_tokenizers class FlaxMBartModelIntegrationTest(unittest.TestCase): src_text = [ " UN Chief Says There Is No Military Solution in Syria", ] expected_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] model_name = "facebook/mbart-large-en-ro" @cached_property def tokenizer(self): return AutoTokenizer.from_pretrained(self.model_name) @cached_property def model(self): model = FlaxMBartForConditionalGeneration.from_pretrained(self.model_name, from_pt=True) return model def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs): generated_words = self.translate_src_text(**tokenizer_kwargs) self.assertListEqual(self.expected_text, generated_words) def translate_src_text(self, **tokenizer_kwargs): model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, return_tensors="np") generated_ids = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, decoder_start_token_id=self.tokenizer.lang_code_to_id["ro_RO"], early_stopping=True, num_beams=2, ).sequences generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return generated_words @slow def test_batch_generation_en_ro(self): self._assert_generated_batch_equal_expected()
transformers/tests/models/mbart/test_modeling_flax_mbart.py/0
{ "file_path": "transformers/tests/models/mbart/test_modeling_flax_mbart.py", "repo_id": "transformers", "token_count": 8921 }
169
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch MobileNetV2 model. """ import unittest from transformers import MobileNetV2Config from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation, MobileNetV2Model from transformers.models.mobilenet_v2.modeling_mobilenet_v2 import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetV2ImageProcessor class MobileNetV2ConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "tf_padding")) self.parent.assertTrue(hasattr(config, "depth_multiplier")) class MobileNetV2ModelTester: def __init__( self, parent, batch_size=13, num_channels=3, image_size=32, depth_multiplier=0.25, depth_divisible_by=8, min_depth=8, expand_ratio=6, output_stride=32, first_layer_is_expansion=True, finegrained_output=True, tf_padding=True, hidden_act="relu6", last_hidden_size=1280, classifier_dropout_prob=0.1, initializer_range=0.02, is_training=True, use_labels=True, num_labels=10, scope=None, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.depth_multiplier = depth_multiplier self.depth_divisible_by = depth_divisible_by self.min_depth = min_depth self.expand_ratio = expand_ratio self.tf_padding = tf_padding self.output_stride = output_stride self.first_layer_is_expansion = first_layer_is_expansion self.finegrained_output = finegrained_output self.hidden_act = hidden_act self.last_hidden_size = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier) self.classifier_dropout_prob = classifier_dropout_prob self.use_labels = use_labels self.is_training = is_training self.num_labels = num_labels self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None pixel_labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels, pixel_labels def get_config(self): return MobileNetV2Config( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels, pixel_labels): model = MobileNetV2Model(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) self.parent.assertEqual( result.pooler_output.shape, (self.batch_size, self.last_hidden_size), ) def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.num_labels model = MobileNetV2ForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.num_labels model = MobileNetV2ForSemanticSegmentation(config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) result = model(pixel_values, labels=pixel_labels) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels, pixel_labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class MobileNetV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as MobileNetV2 does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( (MobileNetV2Model, MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation) if is_torch_available() else () ) pipeline_model_mapping = ( { "image-feature-extraction": MobileNetV2Model, "image-classification": MobileNetV2ForImageClassification, "image-segmentation": MobileNetV2ForSemanticSegmentation, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = MobileNetV2ModelTester(self) self.config_tester = MobileNetV2ConfigTester(self, config_class=MobileNetV2Config, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="MobileNetV2 does not output attentions") def test_attention_outputs(self): pass def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_stages = 16 self.assertEqual(len(hidden_states), expected_num_stages) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) def test_for_semantic_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = MobileNetV2Model.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class MobileNetV2ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( MobileNetV2ImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224") if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = MobileNetV2ForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1001)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([0.2445, -1.1993, 0.1905]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @slow def test_inference_semantic_segmentation(self): model = MobileNetV2ForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") model = model.to(torch_device) image_processor = MobileNetV2ImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = torch.Size((1, 21, 65, 65)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ], device=torch_device, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/mobilenet_v2/test_modeling_mobilenet_v2.py/0
{ "file_path": "transformers/tests/models/mobilenet_v2/test_modeling_mobilenet_v2.py", "repo_id": "transformers", "token_count": 5513 }
170
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMT5ForConditionalGeneration from transformers.models.t5.modeling_flax_t5 import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class MT5IntegrationTest(unittest.TestCase): @slow def test_small_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_mt5_checkpoint = '<fill_in>' >>> path_to_mtf_small_mt5_spm_model_path = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = FlaxMT5ForConditionalGeneration.from_pretrained("google/mt5-small") tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") input_ids = tokenizer("Hello there", return_tensors="np").input_ids labels = tokenizer("Hi I am", return_tensors="np").input_ids decoder_input_ids = shift_tokens_right(labels, model.config.pad_token_id, model.config.decoder_start_token_id) logits = model(input_ids, decoder_input_ids=decoder_input_ids).logits loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean() mtf_score = -(labels.shape[-1] * loss.item()) EXPECTED_SCORE = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
transformers/tests/models/mt5/test_modeling_flax_mt5.py/0
{ "file_path": "transformers/tests/models/mt5/test_modeling_flax_mt5.py", "repo_id": "transformers", "token_count": 950 }
171
# coding=utf-8 # Copyright 2021, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch OPT model. """ import copy import tempfile import unittest import timeout_decorator # noqa from transformers import OPTConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_accelerator, require_torch_fp16, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPT2Tokenizer, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, ) def prepare_opt_inputs_dict( config, input_ids, decoder_input_ids=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) return { "input_ids": input_ids, "attention_mask": attention_mask, "head_mask": head_mask, } class OPTModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, embed_dim=16, num_labels=3, word_embed_proj_dim=16, type_sequence_label_size=2, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.embed_dim = embed_dim self.num_labels = num_labels self.type_sequence_label_size = type_sequence_label_size self.word_embed_proj_dim = word_embed_proj_dim self.is_encoder_decoder = False def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( 3, ) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() inputs_dict = prepare_opt_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return OPTConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, embed_dim=self.embed_dim, is_encoder_decoder=False, word_embed_proj_dim=self.word_embed_proj_dim, ) def get_pipeline_config(self): config = self.get_config() config.max_position_embeddings = 100 return config def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = OPTModel(config=config).to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) # test no attention_mask works outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) _, past_key_values = outputs.to_tuple() output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) @require_torch class OPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (OPTModel, OPTForCausalLM, OPTForSequenceClassification, OPTForQuestionAnswering) if is_torch_available() else () ) all_generative_model_classes = (OPTForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": OPTModel, "question-answering": OPTForQuestionAnswering, "text-classification": OPTForSequenceClassification, "text-generation": OPTForCausalLM, "zero-shot": OPTForSequenceClassification, } if is_torch_available() else {} ) is_encoder_decoder = False fx_compatible = True test_pruning = False test_missing_keys = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def setUp(self): self.model_tester = OPTModelTester(self) self.config_tester = ConfigTester(self, config_class=OPTConfig) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (OPTModel,): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = OPTForCausalLM(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def test_opt_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs() config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = OPTForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_opt_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = OPTForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.") def test_model_parallelism(self): super().test_model_parallelism() def assert_tensors_close(a, b, atol=1e-12, prefix=""): """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() if a.numel() > 100: msg = f"tensor values are {pct_different:.1%} percent different." else: msg = f"{a} != {b}" if prefix: msg = prefix + ": " + msg raise AssertionError(msg) def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) @require_torch class OPTModelIntegrationTests(unittest.TestCase): @slow def test_inference_no_head(self): model = OPTModel.from_pretrained("facebook/opt-350m").to(torch_device) input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids=input_ids).last_hidden_state expected_shape = torch.Size((1, 11, 512)) self.assertEqual(output.shape, expected_shape) # expected value works for CPU, as well as GPU (with TF32 disabled) expected_slice = torch.tensor( [ [-0.28726277, -1.9241608, -0.3058734], [-1.2737825, -0.13332152, -0.18766522], [0.41159445, 0.1191957, -1.3107123], ], device=torch_device, ) assert_tensors_close(output[0, :3, :3], expected_slice, atol=5e-5) @require_torch @slow class OPTEmbeddingsTest(unittest.TestCase): def setUp(self): super().setUp() self.path_model = "facebook/opt-350m" def test_load_model(self): try: _ = OPTForCausalLM.from_pretrained(self.path_model) except BaseException: self.fail("Failed loading model") def test_logits(self): model = OPTForCausalLM.from_pretrained(self.path_model) model = model.eval() tokenizer = GPT2Tokenizer.from_pretrained(self.path_model) prompts = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False inputs = tokenizer(prompts, return_tensors="pt", padding=True, add_special_tokens=False) logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(dim=-1) # logits_meta = torch.load(self.path_logits_meta) logits_meta = torch.Tensor( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) assert torch.allclose(logits, logits_meta, atol=1e-4) @slow class OPTGenerationTest(unittest.TestCase): @property def prompts(self): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def test_generation_pre_attn_layer_norm(self): model_id = "facebook/opt-125m" EXPECTED_OUTPUTS = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] predicted_outputs = [] tokenizer = GPT2Tokenizer.from_pretrained(model_id) model = OPTForCausalLM.from_pretrained(model_id) for prompt in self.prompts: input_ids = tokenizer(prompt, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=10) generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) predicted_outputs += generated_string self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS) def test_batch_generation(self): model_id = "facebook/opt-350m" tokenizer = GPT2Tokenizer.from_pretrained(model_id) model = OPTForCausalLM.from_pretrained(model_id) model.to(torch_device) tokenizer.padding_side = "left" # use different length sentences to test batching sentences = [ "Hello, my dog is a little", "Today, I", ] inputs = tokenizer(sentences, return_tensors="pt", padding=True) input_ids = inputs["input_ids"].to(torch_device) outputs = model.generate( input_ids=input_ids, attention_mask=inputs["attention_mask"].to(torch_device), ) inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) output_non_padded = model.generate(input_ids=inputs_non_padded) num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) expected_output_sentence = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence]) def test_generation_post_attn_layer_norm(self): model_id = "facebook/opt-350m" EXPECTED_OUTPUTS = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] predicted_outputs = [] tokenizer = GPT2Tokenizer.from_pretrained(model_id) model = OPTForCausalLM.from_pretrained(model_id) for prompt in self.prompts: input_ids = tokenizer(prompt, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=10) generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) predicted_outputs += generated_string self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS) @require_torch_accelerator @require_torch_fp16 def test_batched_nan_fp16(self): # a bug manifested starting at models facebook/opt-1.3 and larger when running batched generations, # therefore not using a tiny model, but the smallest model the problem was seen with which is opt-1.3b. # please refer to this github thread: https://github.com/huggingface/transformers/pull/17437 for more details model_name = "facebook/opt-1.3b" tokenizer = GPT2Tokenizer.from_pretrained(model_name, use_fast=False, padding_side="left") model = OPTForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_cache=True).to(torch_device) model = model.eval() batch = tokenizer(["Who are you?", "Joe Biden is the president of"], padding=True, return_tensors="pt") input_ids = batch["input_ids"].to(torch_device) attention_mask = batch["attention_mask"].to(torch_device) with torch.no_grad(): outputs = model(input_ids, attention_mask=attention_mask) self.assertFalse( torch.isnan(outputs.logits[0]).any().item() ) # the first logits could contain NaNs if it fails @slow def test_contrastive_search_opt(self): article = ( "A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I am the " "Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have you lived " "there?" ) opt_tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-1.3b") opt_model = OPTForCausalLM.from_pretrained("facebook/opt-1.3b").to(torch_device) input_ids = opt_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) outputs = opt_model.generate(input_ids, penalty_alpha=0.6, top_k=5, max_length=256) generated_text = opt_tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I " "am the Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have " "you lived there?\nStatue: A hundred years.\nHuman: And you’re from what country?\nStatue: The United " "States of America.\nHuman: Why did you come to America?\nStatue: I came to escape the tyranny of my " "country.\nHuman: What tyranny?\nStatue: They didn’t let me speak my mind.\nHuman: What was your " "country?\nStatue: It was a country of immigrants.\nHuman: Who were the immigrants?\nStatue: They " "were from all over the world.\nHuman: What language did they speak?\nStatue: French, Spanish, " "Italian, German, English—you name it.\nHuman: And where did they come from?\nStatue: They came from " "every country in the world.\nHuman: And you were born in what country?\nStatue: I was born in " "France.\nHuman: And your parents were French?\nStatue" ], )
transformers/tests/models/opt/test_modeling_opt.py/0
{ "file_path": "transformers/tests/models/opt/test_modeling_opt.py", "repo_id": "transformers", "token_count": 10425 }
172
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, Pix2StructImageProcessor, Pix2StructProcessor, PreTrainedTokenizerFast, T5Tokenizer, ) @require_vision @require_torch class Pix2StructProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() image_processor = Pix2StructImageProcessor() tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") processor = Pix2StructProcessor(image_processor, tokenizer) processor.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """ This function prepares a list of random PIL images of the same fixed size. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_additional_features(self): processor = Pix2StructProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = Pix2StructProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, Pix2StructImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str, return_token_type_ids=False, add_special_tokens=True) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual( list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"] ) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_processor_max_patches(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) max_patches = [512, 1024, 2048, 4096] expected_hidden_size = [770, 770, 770, 770] # with text for i, max_patch in enumerate(max_patches): inputs = processor(text=input_str, images=image_input, max_patches=max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i]) # without text input for i, max_patch in enumerate(max_patches): inputs = processor(images=image_input, max_patches=max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i]) def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) # For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"] self.assertListEqual( list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"] ) inputs = processor(text=input_str) # For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"] self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"])
transformers/tests/models/pix2struct/test_processor_pix2struct.py/0
{ "file_path": "transformers/tests/models/pix2struct/test_processor_pix2struct.py", "repo_id": "transformers", "token_count": 2862 }
173
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class FlaxRobertaModelTester(unittest.TestCase): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_attention_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_choices=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_choices = num_choices def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) config = RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, token_type_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def prepare_config_and_inputs_for_decoder(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, token_type_ids, attention_mask = config_and_inputs config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class FlaxRobertaModelTest(FlaxModelTesterMixin, unittest.TestCase): test_head_masking = True all_model_classes = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def setUp(self): self.model_tester = FlaxRobertaModelTester(self) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("FacebookAI/roberta-base", from_pt=True) outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs)
transformers/tests/models/roberta/test_modeling_flax_roberta.py/0
{ "file_path": "transformers/tests/models/roberta/test_modeling_flax_roberta.py", "repo_id": "transformers", "token_count": 2564 }
174
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow SegFormer model. """ from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import SegformerConfig from transformers.file_utils import is_tf_available, is_vision_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFSegformerForImageClassification, TFSegformerForSemanticSegmentation, TFSegformerModel from transformers.models.segformer.modeling_tf_segformer import TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class TFSegformerConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "hidden_sizes")) self.parent.assertTrue(hasattr(config, "num_attention_heads")) self.parent.assertTrue(hasattr(config, "num_encoder_blocks")) class TFSegformerModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, num_encoder_blocks=4, depths=[1, 1, 1, 1], sr_ratios=[8, 4, 2, 1], hidden_sizes=[8, 8, 16, 16], downsampling_rates=[1, 4, 8, 16], num_attention_heads=[1, 1, 2, 2], is_training=True, use_labels=True, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_encoder_blocks = num_encoder_blocks self.sr_ratios = sr_ratios self.depths = depths self.hidden_sizes = hidden_sizes self.downsampling_rates = downsampling_rates self.num_attention_heads = num_attention_heads self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return SegformerConfig( image_size=self.image_size, num_channels=self.num_channels, num_encoder_blocks=self.num_encoder_blocks, depths=self.depths, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, num_labels=self.num_labels, ) def create_and_check_model(self, config, pixel_values, labels): model = TFSegformerModel(config=config) result = model(pixel_values, training=False) expected_height = expected_width = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def create_and_check_for_image_segmentation(self, config, pixel_values, labels): config.num_labels = self.num_labels model = TFSegformerForSemanticSegmentation(config) result = model(pixel_values, training=False) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) result = model(pixel_values, labels=labels, training=False) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict def prepare_config_and_inputs_for_keras_fit(self, for_segmentation: bool = False): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, seg_labels = config_and_inputs if for_segmentation: inputs_dict = {"pixel_values": pixel_values, "labels": seg_labels} else: inputs_dict = {"pixel_values": pixel_values, "labels": tf.zeros((self.batch_size))} return config, inputs_dict @require_tf class TFSegformerModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (TFSegformerModel, TFSegformerForImageClassification, TFSegformerForSemanticSegmentation) if is_tf_available() else () ) pipeline_model_mapping = ( {"feature-extraction": TFSegformerModel, "image-classification": TFSegformerForImageClassification} if is_tf_available() else {} ) test_head_masking = False test_onnx = False test_pruning = False test_resize_embeddings = False def setUp(self): self.model_tester = TFSegformerModelTester(self) self.config_tester = TFSegformerConfigTester(self, config_class=SegformerConfig, has_text_modality=False) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip("SegFormer does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions expected_num_attentions = sum(self.model_tester.depths) self.assertEqual(len(attentions), expected_num_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), expected_num_attentions) # verify the first attentions (first block, first layer) expected_seq_len = (self.model_tester.image_size // 4) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) # verify the last attentions (last block, last layer) expected_seq_len = (self.model_tester.image_size // 32) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]), [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_attentions) # verify the first attentions (first block, first layer) expected_seq_len = (self.model_tester.image_size // 4) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_encoder_blocks self.assertEqual(len(hidden_states), expected_num_layers) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]), [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(tuple_object, dict_object)), msg=( "Tuple and dict output are not equal. Difference:" f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}" ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) if self.has_attentions: tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) # todo: incorporate label support for semantic segmentation in `test_modeling_tf_common.py`. @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) def test_dataset_conversion(self): super().test_dataset_conversion() def check_keras_fit_results(self, val_loss1, val_loss2, atol=2e-1, rtol=2e-1): self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol)) @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) @slow def test_keras_fit(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Since `TFSegformerModel` cannot operate with the default `fit()` method. if model_class.__name__ != "TFSegformerModel": model = model_class(config) if getattr(model, "hf_compute_loss", None): super().test_keras_fit() def test_loss_computation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def apply(model): for_segmentation = True if model_class.__name__ == "TFSegformerForSemanticSegmentation" else False # The number of elements in the loss should be the same as the number of elements in the label _, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit( for_segmentation=for_segmentation ) added_label = prepared_for_class[sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0]] loss_size = tf.size(added_label) # Test that model correctly compute the loss with kwargs possible_input_names = {"input_ids", "pixel_values", "input_features"} input_name = possible_input_names.intersection(set(prepared_for_class)).pop() model_input = prepared_for_class.pop(input_name) loss = model(model_input, **prepared_for_class)[0] if model_class.__name__ == "TFSegformerForSemanticSegmentation": # Semantic segmentation loss is computed similarly as # https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_utils.py#L210. self.assertEqual(loss.shape, (1,)) else: self.assertEqual(loss.shape, [loss_size]) # Test that model correctly compute the loss with a dict _, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit( for_segmentation=for_segmentation ) loss = model(**prepared_for_class)[0] if model_class.__name__ == "TFSegformerForSemanticSegmentation": self.assertEqual(loss.shape, (1,)) else: self.assertEqual(loss.shape, [loss_size]) # Test that model correctly compute the loss with a tuple label_keys = prepared_for_class.keys() - inputs_dict.keys() signature = inspect.signature(model.call).parameters signature_names = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple tuple_index_mapping = {0: input_name} for label_key in label_keys: label_key_index = signature_names.index(label_key) tuple_index_mapping[label_key_index] = label_key sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple list_input = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: list_input[index] = prepared_for_class[value] tuple_input = tuple(list_input) # Send to model loss = model(tuple_input[:-1])[0] if model_class.__name__ == "TFSegformerForSemanticSegmentation": self.assertEqual(loss.shape, (1,)) else: self.assertEqual(loss.shape, [loss_size]) for model_class in self.all_model_classes: # Since `TFSegformerModel` won't have labels against which we # could compute loss. if model_class.__name__ != "TFSegformerModel": model = model_class(config) apply(model) def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=2e-4, name="outputs", attributes=None): # We override with a slightly higher tol value, as semseg models tend to diverge a bit more super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes) @slow def test_model_from_pretrained(self): for model_name in TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFSegformerModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf class TFSegformerModelIntegrationTest(unittest.TestCase): @slow def test_inference_image_segmentation_ade(self): # only resize + normalize image_processor = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False ) model = TFSegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") image = prepare_img() encoded_inputs = image_processor(images=image, return_tensors="tf") pixel_values = encoded_inputs.pixel_values outputs = model(pixel_values, training=False) expected_shape = tf.TensorShape((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = tf.constant( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) tf.debugging.assert_near(outputs.logits[0, :3, :3, :3], expected_slice, atol=1e-4) @slow def test_inference_image_segmentation_city(self): # only resize + normalize image_processor = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False ) model = TFSegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ) image = prepare_img() encoded_inputs = image_processor(images=image, return_tensors="tf") pixel_values = encoded_inputs.pixel_values outputs = model(pixel_values, training=False) expected_shape = tf.TensorShape((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = tf.constant( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) tf.debugging.assert_near(outputs.logits[0, :3, :3, :3], expected_slice, atol=1e-1)
transformers/tests/models/segformer/test_modeling_tf_segformer.py/0
{ "file_path": "transformers/tests/models/segformer/test_modeling_tf_segformer.py", "repo_id": "transformers", "token_count": 9892 }
175
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import Speech2TextFeatureExtractor, Speech2TextProcessor, Speech2TextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, require_torchaudio from transformers.utils import FEATURE_EXTRACTOR_NAME from .test_feature_extraction_speech_to_text import floats_list SAMPLE_SP = get_tests_dir("fixtures/test_sentencepiece.model") @require_torch @require_torchaudio @require_sentencepiece class Speech2TextProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() vocab = ["<s>", "<pad>", "</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) save_dir = Path(self.tmpdirname) save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"]) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"]) tokenizer = Speech2TextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) feature_extractor_map = { "feature_size": 24, "num_mel_bins": 24, "padding_value": 0.0, "sampling_rate": 16000, "return_attention_mask": False, "do_normalize": True, } save_json(feature_extractor_map, save_dir / FEATURE_EXTRACTOR_NAME) def get_tokenizer(self, **kwargs): return Speech2TextTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_feature_extractor(self, **kwargs): return Speech2TextFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() feature_extractor = self.get_feature_extractor() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) processor.save_pretrained(self.tmpdirname) processor = Speech2TextProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, Speech2TextTokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, Speech2TextFeatureExtractor) def test_save_load_pretrained_additional_features(self): processor = Speech2TextProcessor( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0) processor = Speech2TextProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, Speech2TextTokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, Speech2TextFeatureExtractor) def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(raw_speech, return_tensors="np") input_processor = processor(raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "This is a test string" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_tokenizer_decode(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg="`processor` and `feature_extractor` model input names do not match", )
transformers/tests/models/speech_to_text/test_processor_speech_to_text.py/0
{ "file_path": "transformers/tests/models/speech_to_text/test_processor_speech_to_text.py", "repo_id": "transformers", "token_count": 2448 }
176
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch StableLm model. """ import unittest from parameterized import parameterized from transformers import StableLmConfig, is_torch_available, set_seed from transformers.testing_utils import ( require_bitsandbytes, require_flash_attn, require_torch, require_torch_sdpa, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AutoTokenizer, StableLmForCausalLM, StableLmForSequenceClassification, StableLmModel, ) # Copied from transformers.tests.models.persimmon.test_modeling_persimmon.PersimmonModelTester with Persimmon -> StableLm class StableLmModelTester: # Ignore copy def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=64, num_hidden_layers=2, num_attention_heads=4, num_key_value_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return StableLmConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, num_key_value_heads=self.num_key_value_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = StableLmModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = StableLmModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = StableLmForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = StableLmForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch # Copied from transformers.tests.persimmon.test_modeling_persimmon.PersimmonModelTest with Persimmon -> StableLm class StableLmModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (StableLmModel, StableLmForCausalLM, StableLmForSequenceClassification) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": StableLmModel, "text-classification": StableLmForSequenceClassification, # TODO (ydshieh): check why these two fail. Fix them or skip them in a better way. # "text-generation": StableLmForCausalLM, # "zero-shot": StableLmForSequenceClassification, } if is_torch_available() else {} ) all_generative_model_classes = (StableLmForCausalLM,) if is_torch_available() else () test_headmasking = False test_pruning = False def setUp(self): self.model_tester = StableLmModelTester(self) self.config_tester = ConfigTester(self, config_class=StableLmConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_stablelm_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = StableLmForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_stablelm_sequence_classification_model_for_single_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "single_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = StableLmForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_stablelm_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = StableLmForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @parameterized.expand([("linear",), ("dynamic",)]) def test_model_rope_scaling(self, scaling_type): config, _ = self.model_tester.prepare_config_and_inputs_for_common() short_input = ids_tensor([1, 10], config.vocab_size) long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights original_model = StableLmModel(config) original_model.to(torch_device) original_model.eval() original_short_output = original_model(short_input).last_hidden_state original_long_output = original_model(long_input).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights config.rope_scaling = {"type": scaling_type, "factor": 10.0} scaled_model = StableLmModel(config) scaled_model.to(torch_device) scaled_model.eval() scaled_short_output = scaled_model(short_input).last_hidden_state scaled_long_output = scaled_model(long_input).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) else: self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5)) @require_torch class StableLmModelIntegrationTest(unittest.TestCase): @slow def test_model_stablelm_3b_4e1t_logits(self): input_ids = {"input_ids": torch.tensor([[510, 8588, 310, 1900, 9386]], dtype=torch.long, device=torch_device)} model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t").to(torch_device) model.eval() output = model(**input_ids).logits # Expected mean on dim = -1 EXPECTED_MEAN = torch.tensor([[2.7146, 2.4245, 1.5616, 1.4424, 2.6790]]).to(torch_device) self.assertTrue(torch.allclose(output.mean(dim=-1), EXPECTED_MEAN, atol=1e-4, rtol=1e-4)) # Expected logits sliced from [0, 0, 0:30] EXPECTED_SLICE = torch.tensor([7.1030, -1.4195, 9.9206, 7.7008, 4.9891, 4.2169, 5.5426, 3.7878, 6.7593, 5.7360, 8.4691, 5.5448, 5.0544, 10.4129, 8.5573, 13.0405, 7.3265, 3.5868, 6.1106, 5.9406, 5.6376, 5.7490, 5.4850, 4.8124, 5.1991, 4.6419, 4.5719, 9.9588, 6.7222, 4.5070]).to(torch_device) # fmt: skip self.assertTrue(torch.allclose(output[0, 0, :30], EXPECTED_SLICE, atol=1e-4, rtol=1e-4)) @slow def test_model_stablelm_3b_4e1t_generation(self): tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t") model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t") input_ids = tokenizer.encode( "My favorite food has always been pizza, but lately", return_tensors="pt", ) outputs = model.generate(input_ids, max_new_tokens=20, temperature=0) text = tokenizer.decode(outputs[0], skip_special_tokens=True) EXPECTED_TEXT_COMPLETION = """My favorite food has always been pizza, but lately I’ve been craving something different. I’ve been trying to eat healthier and I’ve""" self.assertEqual(text, EXPECTED_TEXT_COMPLETION) @require_bitsandbytes @slow @require_flash_attn def test_model_3b_long_prompt(self): EXPECTED_OUTPUT_TOKEN_IDS = [3, 3, 3] input_ids = [306, 338] * 2047 model = StableLmForCausalLM.from_pretrained( "stabilityai/stablelm-3b-4e1t", device_map="auto", torch_dtype="auto", load_in_4bit=True, attn_implementation="flash_attention_2", ) input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device) generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0) self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-3:].tolist()) # Copied from transformers.tests.models.llama.test_modeling_llama.LlamaModelTest.test_eager_matches_sdpa_generate with Llama->StableLm,saibo/llama-1B->stabilityai/stablelm-3b-4e1t @require_torch_sdpa @slow def test_eager_matches_sdpa_generate(self): """ Overwritting the common test as the test is flaky on tiny models """ max_new_tokens = 30 tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t") model_sdpa = StableLmForCausalLM.from_pretrained( "stabilityai/stablelm-3b-4e1t", torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(torch_device) self.assertTrue(model_sdpa.config._attn_implementation == "sdpa") model_eager = StableLmForCausalLM.from_pretrained( "stabilityai/stablelm-3b-4e1t", torch_dtype=torch.float16, low_cpu_mem_usage=True, attn_implementation="eager", ).to(torch_device) self.assertTrue(model_eager.config._attn_implementation == "eager") for name, submodule in model_eager.named_modules(): if "SdpaAttention" in submodule.__class__.__name__: raise ValueError("The eager model should not have SDPA attention layers") has_sdpa = False for name, submodule in model_sdpa.named_modules(): if "SdpaAttention" in submodule.__class__.__name__: has_sdpa = True break if not has_sdpa: raise ValueError("The SDPA model should have SDPA attention layers") texts = [ "hi here's a longer context, getting longer and", "Hello this is a very long sentence my friend, very long for real", "Today I am in Paris and", ] for padding_side in ["left", "right"]: tokenizer.padding_side = padding_side tokenizer.pad_token = tokenizer.eos_token inputs = tokenizer(texts, return_tensors="pt", padding=True).to(torch_device) res_eager = model_eager.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False) res_sdpa = model_sdpa.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False) with self.subTest(f"{padding_side}"): torch.testing.assert_close( res_eager, res_sdpa, msg=f"\n{tokenizer.batch_decode(res_eager)} \nvs\n{tokenizer.batch_decode(res_sdpa)}", )
transformers/tests/models/stablelm/test_modeling_stablelm.py/0
{ "file_path": "transformers/tests/models/stablelm/test_modeling_stablelm.py", "repo_id": "transformers", "token_count": 9254 }
177
# coding=utf-8 # Copyright 2018 Google T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import T5Config, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ByT5Tokenizer, T5Tokenizer, TFT5EncoderModel, TFT5ForConditionalGeneration, TFT5Model class TFT5ModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_labels = True self.vocab_size = 99 self.n_positions = 14 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.d_ff = 37 self.relative_attention_num_buckets = 8 self.dropout_rate = 0.1 self.initializer_factor = 0.002 self.eos_token_id = 1 self.pad_token_id = 0 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_labels = None if self.use_labels: token_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = T5Config( vocab_size=self.vocab_size, n_positions=self.n_positions, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, ) return (config, input_ids, input_mask, token_labels) def create_and_check_t5_model(self, config, input_ids, input_mask, token_labels): model = TFT5Model(config=config) inputs = { "input_ids": input_ids, "decoder_input_ids": input_ids, "decoder_attention_mask": input_mask, } result = model(inputs) result = model(input_ids, decoder_attention_mask=input_mask, decoder_input_ids=input_ids) decoder_output = result.last_hidden_state decoder_past = result.past_key_values encoder_output = result.encoder_last_hidden_state self.parent.assertListEqual(list(encoder_output.shape), [self.batch_size, self.seq_length, self.hidden_size]) self.parent.assertListEqual(list(decoder_output.shape), [self.batch_size, self.seq_length, self.hidden_size]) # There should be `num_layers` key value embeddings stored in decoder_past[1] self.parent.assertEqual(len(decoder_past), config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past[1] tuple self.parent.assertEqual(len(decoder_past[0]), 4) def create_and_check_t5_with_lm_head(self, config, input_ids, input_mask, token_labels): model = TFT5ForConditionalGeneration(config=config) inputs_dict = { "input_ids": input_ids, "decoder_input_ids": input_ids, "decoder_attention_mask": input_mask, } result = model(inputs_dict) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_t5_decoder_model_past(self, config, input_ids, decoder_input_ids, attention_mask): model = TFT5Model(config=config).get_decoder() input_ids = input_ids[:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) output_from_no_past = model(next_input_ids)[0] output_from_past = model(next_tokens, past_key_values=outputs.past_key_values)[0] # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_t5_decoder_model_attention_mask_past( self, config, input_ids, decoder_input_ids, attention_mask ): model = TFT5Model(config=config).get_decoder() # create attention mask half_seq_length = self.seq_length // 2 attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) # first forward pass outputs = model(input_ids, attention_mask=attn_mask, use_cache=True) # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) condition = tf.transpose( tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) ) input_ids = tf.where(condition, random_other_next_tokens, input_ids) # append to next input_ids and attn_mask next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) attn_mask = tf.concat( [attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)], axis=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)[0] output_from_past = model(next_tokens, past_key_values=outputs.past_key_values, attention_mask=attn_mask)[0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).numpy().item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_t5_decoder_model_past_large_inputs( self, config, input_ids, decoder_input_ids, attention_mask ): model = TFT5Model(config=config).get_decoder() input_ids = input_ids[:1, :] attention_mask = attention_mask[:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, past_key_values=outputs.past_key_values )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, input_mask, token_labels) = config_and_inputs inputs_dict = { "input_ids": input_ids, "decoder_input_ids": input_ids, "decoder_attention_mask": input_mask, } return config, inputs_dict @require_tf class TFT5ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): is_encoder_decoder = True all_model_classes = (TFT5Model, TFT5ForConditionalGeneration) if is_tf_available() else () all_generative_model_classes = (TFT5ForConditionalGeneration,) if is_tf_available() else () pipeline_model_mapping = ( { "conversational": TFT5ForConditionalGeneration, "feature-extraction": TFT5Model, "summarization": TFT5ForConditionalGeneration, "text2text-generation": TFT5ForConditionalGeneration, "translation": TFT5ForConditionalGeneration, } if is_tf_available() else {} ) test_onnx = False def setUp(self): self.model_tester = TFT5ModelTester(self) self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37) def test_config(self): self.config_tester.run_common_tests() def test_t5_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_t5_model(*config_and_inputs) def test_t5_model_v1_1(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() config = config_and_inputs[0] config.tie_word_embeddings = False config.feed_forward_proj = "gated-gelu" self.model_tester.create_and_check_t5_model(config, *config_and_inputs[1:]) def test_with_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_t5_with_lm_head(*config_and_inputs) def test_t5_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_t5_decoder_model_past(*config_and_inputs) def test_t5_decoder_model_past_with_attn_mask(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_t5_decoder_model_attention_mask_past(*config_and_inputs) def test_t5_decoder_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() # `create_and_check_t5_decoder_model_past_large_inputs` has special inputs: # (config, input_ids, decoder_input_ids, attention_mask) # and we have to prepare it correctly here. config, input_ids, input_mask, token_labels = config_and_inputs config_and_inputs = (config, input_ids, None, input_mask) self.model_tester.create_and_check_t5_decoder_model_past_large_inputs(*config_and_inputs) @slow def test_model_from_pretrained(self): model = TFT5Model.from_pretrained("google-t5/t5-small") self.assertIsNotNone(model) def test_generate_with_headmasking(self): # TODO: Fix head-masking according to PyTorch T5 model pass # This test is run in `TFT5EncoderOnlyModelTest`, where the main layer has the same inputs as the model @unittest.skip(reason="The inputs of the Main Layer are different.") def test_keras_save_load(self): pass @unittest.skip("Does not support conversations.") def test_pipeline_conversational(self): pass class TFT5EncoderOnlyModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, encoder_seq_length=7, # For common tests use_attention_mask=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=8, is_training=False, dropout_rate=0.1, initializer_factor=0.002, is_encoder_decoder=False, eos_token_id=1, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length # For common tests self.seq_length = self.encoder_seq_length self.use_attention_mask = use_attention_mask self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.is_encoder_decoder = is_encoder_decoder self.scope = None self.is_training = is_training def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) config = T5Config( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, ) def create_and_check_model( self, config, input_ids, attention_mask, ): model = TFT5EncoderModel(config=config) result = model( input_ids=input_ids, attention_mask=attention_mask, ) result = model(input_ids=input_ids) encoder_output = result.last_hidden_state self.parent.assertEqual(encoder_output.shape, (self.batch_size, self.encoder_seq_length, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict class TFT5EncoderOnlyModelTest(TFModelTesterMixin, unittest.TestCase): is_encoder_decoder = False all_model_classes = (TFT5EncoderModel,) if is_tf_available() else () test_onnx = False def setUp(self): self.model_tester = TFT5EncoderOnlyModelTester(self) self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) # is not able to be part of a pipeline def test_train_pipeline_custom_model(self): pass @require_tf @require_sentencepiece @require_tokenizers class TFT5GenerationIntegrationTests(unittest.TestCase): @slow def test_greedy_xla_generate_simple(self): model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") # two examples with different lengths to confirm that attention masks are operational in XLA sentences = [ "Translate English to German: Today is a beautiful day.", "Translate English to German: I have four cats, three dogs, two birds, and a horse.", ] input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids xla_generate = tf.function(model.generate, jit_compile=True) output_ids = model.generate(input_ids) output_ids_xla = xla_generate(input_ids) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) output_strings_xla = tokenizer.batch_decode(output_ids_xla, skip_special_tokens=True) expected_output_string = [ "Heute ist ein schöner Tag.", "Ich habe vier Katzen, drei Hunde, zwei Vögel und ein Pferd.", ] self.assertListEqual(expected_output_string, output_strings) self.assertListEqual(expected_output_string, output_strings_xla) @slow def test_greedy_generate(self): model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") sentences = ["Yesterday, my name was", "Today is a beautiful day and"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids generation_kwargs = { "bad_words_ids": [tokenizer("my").input_ids, tokenizer("ein schöner").input_ids], "no_repeat_ngram_size": 3, "do_sample": False, "repetition_penalty": 2.2, } output_ids = model.generate(input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = ["Yesterday, my name was", "Heute ist ein schöne Tag und"] self.assertListEqual(expected_output_string, output_strings) @slow def test_sample_xla_generate_simple(self): # NOTE: due to the small numerical differences that are natural when we compile to XLA, sampling the same # output out of the same seed is far from guaranteed. We can, however, confirm that the results are sensible # and that we can seed both versions. # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") sentence = "Translate English to German: I have two bananas" input_ids = tokenizer(sentence, return_tensors="tf", padding=True).input_ids expected_output_string = ["Ich habe zwei Bananen"] expected_output_string_xla = ["Ich habe 2 Bananen"] # seed set -> deterministic sampling sequence -> deterministic generation output_ids = model.generate(input_ids, do_sample=True, seed=[42, 0]) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(expected_output_string, output_strings) xla_generate = tf.function(model.generate, jit_compile=True) # seed set -> deterministic sampling sequence -> deterministic generation output_ids_xla = xla_generate(input_ids, do_sample=True, seed=[42, 0]) output_strings_xla = tokenizer.batch_decode(output_ids_xla, skip_special_tokens=True) self.assertListEqual(expected_output_string_xla, output_strings_xla) @slow def test_sample_generate(self): model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") sentences = ["I really love my", "Translate English to German: the transformers are truly amazing"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids generation_kwargs = { "do_sample": True, "bad_words_ids": [tokenizer("my").input_ids, tokenizer("ein schöner").input_ids], "no_repeat_ngram_size": 3, "repetition_penalty": 2.2, "temperature": 0.8, "top_k": 500, "top_p": 0.9, "seed": [20, 0], # seed set -> deterministic sampling sequence -> deterministic generation } # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): output_ids = model.generate(input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = ["- I really love my way of this.", "die Transformatoren sind wirklich erstaunlich"] self.assertListEqual(expected_output_string, output_strings) # TODO (ydshieh): undo skip once a fix is done on TF side. @unittest.skip("Skip for now as TF 2.13 breaks it on GPU") @slow def test_beam_search_xla_generate_simple(self): model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") # tests XLA with task specific arguments task_specific_config = getattr(model.config, "task_specific_params", {}) translation_config = task_specific_config.get("translation_en_to_fr", {}) model.config.update(translation_config) # two examples with different lengths to confirm that attention masks are operational in XLA sentences = [ model.config.prefix + "Today is a beautiful day.", model.config.prefix + "I have four cats, three dogs, two birds, and a horse.", ] input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids xla_generate = tf.function(model.generate, jit_compile=True) output_ids = model.generate(input_ids, num_beams=2) output_ids_xla = xla_generate(input_ids, num_beams=2) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) output_strings_xla = tokenizer.batch_decode(output_ids_xla, skip_special_tokens=True) expected_output_string = [ "Aujourd'hui est une belle journée.", "J'ai quatre chats, trois chiens, deux oiseaux et un cheval.", ] self.assertListEqual(expected_output_string, output_strings) self.assertListEqual(expected_output_string, output_strings_xla) @slow def test_beam_search_generate(self): model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") sentences = ["I really love my", "Translate English to German: the transformers are truly amazing"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids generation_kwargs = { "bad_words_ids": [tokenizer("my").input_ids, tokenizer("ein schöner").input_ids], "no_repeat_ngram_size": 3, "do_sample": False, "repetition_penalty": 2.2, "num_beams": 4, } output_ids = model.generate(input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = ["Ich liebe es so sehr!", "die Transformatoren sind wirklich erstaunlich"] self.assertListEqual(expected_output_string, output_strings) @unittest.skip("Does not support conversations.") def test_pipeline_conversational(self): pass @require_tf @require_sentencepiece @require_tokenizers class TFT5ModelIntegrationTests(unittest.TestCase): @cached_property def model(self): return TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-base") @slow def test_small_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_t5_checkpoint = '<fill_in>' >>> path_to_mtf_small_spm_model_path = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = TFT5ForConditionalGeneration.from_pretrained("google-t5/t5-small") tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") input_ids = tokenizer("Hello there", return_tensors="tf").input_ids labels = tokenizer("Hi I am", return_tensors="tf").input_ids loss = model(input_ids, labels=labels).loss mtf_score = -tf.math.reduce_mean(loss).numpy() EXPECTED_SCORE = -4.771147 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_small_v1_1_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_t5_v1.1_checkpoint = '<fill_in>' >>> path_to_mtf_small_spm_model_path = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_v1.1_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = TFT5ForConditionalGeneration.from_pretrained("google/t5-v1_1-small") tokenizer = T5Tokenizer.from_pretrained("google/t5-v1_1-small") input_ids = tokenizer("Hello there", return_tensors="tf").input_ids labels = tokenizer("Hi I am", return_tensors="tf").input_ids loss = model(input_ids, labels=labels).loss mtf_score = -tf.math.reduce_mean(loss).numpy() EXPECTED_SCORE = -14.757326 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_small_byt5_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.9.1 >>> path_to_byt5_small_checkpoint = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_tf_checkpoint, batch_size=1, tpu=None) >>> vocab = t5.data.ByteVocabulary() >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = TFT5ForConditionalGeneration.from_pretrained("google/byt5-small") tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small") input_ids = tokenizer("Hello there", return_tensors="tf").input_ids labels = tokenizer("Hi I am", return_tensors="tf").input_ids loss = model(input_ids, labels=labels).loss mtf_score = -tf.math.reduce_mean(loss).numpy() EXPECTED_SCORE = -7.592465 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_summarization(self): model = self.model tok = T5Tokenizer.from_pretrained("google-t5/t5-base") FRANCE_ARTICLE = ( # @noqa "Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings" " Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane." ' Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation."' ' He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s' " comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video" " showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French" " Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a" " phone at the wreckage site. The two publications described the supposed video, but did not post it on" " their websites. The publications said that they watched the video, which was found by a source close to" " the investigation. \"One can hear cries of 'My God' in several languages,\" Paris Match reported." ' "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the' " cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the" ' screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt,' " editor-in-chief of Bild online. An official with France's accident investigation agency, the BEA, said" " the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman" " in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the" ' reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said,' ' but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be' " sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by" " specialized technicians working hand-in-hand with investigators. But none of the cell phones found so" " far have been sent to the institute, Menichini said. Asked whether staff involved in the search could" ' have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin' ' Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match' ' are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered' ' cell phones from the crash site after Bild and Paris Match published their reports. "That is something' " we did not know before. ... Overall we can say many things of the investigation weren't revealed by the" ' investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline' " Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the" " controls of Germanwings Flight 9525, which he's accused of deliberately crashing last week in the" ' French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of' ' severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school' " discovered in an internal investigation, Lufthansa said, included medical documents he submitted in" " connection with resuming his flight training. The announcement indicates that Lufthansa, the parent" " company of Germanwings, knew of Lubitz's battle with depression, allowed him to continue training and" " ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100%" ' fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was' " sharing the information and documents -- including training and medical records -- with public" " prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the" " past week to recover human remains and plane debris scattered across a steep mountainside. He saw the" " crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash" " site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late" " Tuesday that no visible human remains were left at the site but recovery teams would keep searching." " French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all" " the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested." " In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini said." " Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew" " on board. Check out the latest from our correspondents . The details about Lubitz's correspondence with" " the flight school during his training were among several developments as investigators continued to" " delve into what caused the crash and Lubitz's possible motive for downing the jet. A Lufthansa" " spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his" ' examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in' " Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at" " some point before his aviation career and underwent psychotherapy before he got his pilot's license." " Kumpa emphasized there's no evidence suggesting Lubitz was suicidal or acting aggressively before the" " crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to" " lose his pilot's license, a European government official briefed on the investigation told CNN on" ' Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being' " considered. Another source, a law enforcement official briefed on the investigation, also told CNN that" " authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would" " not be allowed to fly because of his medical problems. Lubitz's girlfriend told investigators he had" " seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded" " he had psychological issues, the European government official said. But no matter what details emerge" " about his previous mental health struggles, there's more to the story, said Brian Russell, a forensic" ' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact' " that maybe they weren't going to keep doing their job and they're upset about that and so they're" ' suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to' " also take that rage and turn it outward on 149 other people who had nothing to do with the person's" ' problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight' " 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura" " Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine" " Amiel and Anna-Maja Rappard contributed to this report." ) SHORTER_ARTICLE = ( "(CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The" " formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based." " The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its" ' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East' ' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the' " situation in Palestinian territories, paving the way for possible war crimes investigations against" " Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and" " the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the" " body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a" ' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the' ' world is also a step closer to ending a long era of impunity and injustice," he said, according to an' ' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge' " Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the" ' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine' " acquires all the rights as well as responsibilities that come with being a State Party to the Statute." ' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights' ' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should' " immediately end their pressure, and countries that support universal acceptance of the court's treaty" ' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the' " group. \"What's objectionable is the attempts to undermine international justice, not Palestine's" ' decision to join a treaty to which over 100 countries around the world are members." In January, when' " the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an" ' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"' " disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a" ' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in' ' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We' ' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"' " it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the' " court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou" ' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war' " between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry" " will include alleged war crimes committed since June. The International Criminal Court was set up in" " 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder" " and Faith Karimi contributed to this report." ) IRAN_ARTICLE = ( "(CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran" " in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively" " block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger." " Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli" " Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a" " letter to the Iranian leadership warning them away from a deal. The debate that has already begun since" " the announcement of the new framework will likely result in more heat than light. It will not be helped" " by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: ." " The most misleading assertion, despite universal rejection by experts, is that the negotiations'" " objective at the outset was the total elimination of any nuclear program in Iran. That is the position" " of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it" " had been, there would have been no Iranian team at the negotiating table. Rather, the objective has" " always been to structure an agreement or series of agreements so that Iran could not covertly develop a" " nuclear arsenal before the United States and its allies could respond. The new framework has exceeded" " expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by" " two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another" " dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite" " sharp accusations by some in the United States and its allies, Iran denies having such a program, and" " U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's" " continued cooperation with International Atomic Energy Agency inspections is further evidence on this" " point, and we'll know even more about Iran's program in the coming months and years because of the deal." " In fact, the inspections provisions that are part of this agreement are designed to protect against any" " covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that" " the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter" " warning that a deal might be killed by Congress or a future president). This of course is not the case." " The talks were between Iran and the five permanent members of the U.N. Security Council (United States," " United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has" " played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement" " reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran" " and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement" " contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the" " case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased" " or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes" " Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear" " sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going" " forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such" " a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the" ' agreement should be a formal treaty requiring the Senate to "advise and consent." But the issue is not' " suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New" " START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement" " with Iran will not be so balanced. The restrictions and obligations in the final framework agreement" " will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove" " most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally" " some insist that any agreement must address Iranian missile programs, human rights violations or support" " for Hamas or Hezbollah. As important as these issues are, and they must indeed be addressed, they are" " unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran. To include them in" " the negotiations would be a poison pill. This agreement should be judged on its merits and on how it" " affects the security of our negotiating partners and allies, including Israel. Those judgments should be" " fact-based, not based on questionable assertions or dubious assumptions." ) ARTICLE_SUBWAY = ( "New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A" " year later, she got married again in Westchester County, but to a different man and without divorcing" " her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos" ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married' " once more, this time in the Bronx. In an application for a marriage license, she stated it was her" ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false' ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage' " license application, according to court documents. Prosecutors said the marriages were part of an" " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to" " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was" " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New" " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total," " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All" " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be" " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors" " said the immigration scam involved some of her husbands, who filed for permanent residence status" " shortly after the marriages. Any divorces happened only after such filings were approved. It was" " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District" " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's" ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,' " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his" " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces" " up to four years in prison. Her next court appearance is scheduled for May 18." ) expected_summaries = [ 'prosecutor: "so far no videos were used in the crash investigation" two magazines claim to have found a' " cell phone video of the final seconds . \"one can hear cries of 'My God' in several languages,\" one" " magazine says .", "the formal accession was marked by a ceremony at The Hague, in the Netherlands . the ICC opened a" " preliminary examination into the situation in the occupied Palestinian territory . as members of the" " court, Palestinians may be subject to counter-charges as well .", "the u.s. and its negotiating partners reached a very strong framework agreement with Iran . aaron miller:" " the debate that has already begun since the announcement of the new framework will likely result in more" " heat than light . the deal would reduce Iran's low-enriched uranium stockpile, cut centrifuges and" " implement a rigorous inspection regime .", "prosecutors say the marriages were part of an immigration scam . if convicted, barrientos faces two" ' criminal counts of "offering a false instrument for filing in the first degree" she has been married 10' " times, with nine of her marriages occurring between 1999 and 2002 .", ] task_specific_config = getattr(model.config, "task_specific_params", {}) summarization_config = task_specific_config.get("summarization", {}) model.config.update(summarization_config) dct = tok( [model.config.prefix + x for x in [FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY]], max_length=512, padding="max_length", truncation=True, return_tensors="tf", ) self.assertEqual(512, dct["input_ids"].shape[1]) hypotheses_batch = model.generate( input_ids=dct["input_ids"], attention_mask=dct["attention_mask"], num_beams=4, length_penalty=2.0, max_length=142, min_length=56, no_repeat_ngram_size=3, do_sample=False, early_stopping=True, ) decoded = [ tok.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in hypotheses_batch ] self.assertListEqual( expected_summaries, decoded, ) @slow def test_translation_en_to_de(self): tok = T5Tokenizer.from_pretrained("google-t5/t5-base") model = self.model task_specific_config = getattr(model.config, "task_specific_params", {}) translation_config = task_specific_config.get("translation_en_to_de", {}) self.model.config.update(translation_config) original_input = '"Luigi often said to me that he never wanted the brothers to end up in court", she wrote.' expected_translation = ( '"Luigi sagte mir oft, dass er nie wollte, dass die Brüder am Gericht sitzen", schrieb sie.' ) input_ids = tok.encode(model.config.prefix + original_input, return_tensors="tf") output = model.generate( input_ids=input_ids, num_beams=4, length_penalty=2.0, max_length=50, no_repeat_ngram_size=3, do_sample=False, early_stopping=True, ) translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) self.assertEqual(translation, expected_translation) @slow def test_translation_en_to_fr(self): model = self.model tok = T5Tokenizer.from_pretrained("google-t5/t5-base") task_specific_config = getattr(model.config, "task_specific_params", {}) translation_config = task_specific_config.get("translation_en_to_fr", {}) model.config.update(translation_config) en_text = ( ' This image section from an infrared recording by the Spitzer telescope shows a "family portrait" of' " countless generations of stars: the oldest stars are seen as blue dots. " ) new_truncated_translation = ( "Cette section d'images provenant de l'enregistrement infrarouge effectué par le télescope Spitzer montre " "un " "« portrait familial » de générations innombrables d’étoiles : les plus anciennes sont observées " "sous forme " "de points bleus." ) input_ids = tok(model.config.prefix + en_text, return_tensors="tf").input_ids output = model.generate( input_ids=input_ids, num_beams=4, length_penalty=2.0, max_length=100, no_repeat_ngram_size=3, do_sample=False, early_stopping=True, ) translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) self.assertEqual(translation, new_truncated_translation) @slow def test_translation_en_to_ro(self): model = self.model tok = T5Tokenizer.from_pretrained("google-t5/t5-base") task_specific_config = getattr(model.config, "task_specific_params", {}) translation_config = task_specific_config.get("translation_en_to_ro", {}) model.config.update(translation_config) original_input = "Taco Bell said it plans to add 2,000 locations in the US by 2022." expected_translation = "Taco Bell a declarat că intenţionează să adauge 2 000 de locaţii în SUA până în 2022." input_ids = tok.encode(model.config.prefix + original_input, return_tensors="tf") output = model.generate( input_ids=input_ids, num_beams=4, length_penalty=2.0, max_length=50, no_repeat_ngram_size=3, do_sample=False, early_stopping=True, ) translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) self.assertEqual(translation, expected_translation)
transformers/tests/models/t5/test_modeling_tf_t5.py/0
{ "file_path": "transformers/tests/models/t5/test_modeling_tf_t5.py", "repo_id": "transformers", "token_count": 21625 }
178
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import inspect import random import unittest from datasets import Audio, load_dataset from transformers import UnivNetConfig, UnivNetFeatureExtractor from transformers.testing_utils import ( is_torch_available, require_torch, require_torch_gpu, slow, torch_device, ) from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, floats_tensor, ) if is_torch_available(): import torch from transformers import UnivNetModel class UnivNetModelTester: def __init__( self, parent, batch_size=2, seq_length=7, in_channels=8, hidden_channels=8, num_mel_bins=20, kernel_predictor_hidden_channels=8, seed=0, is_training=False, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.in_channels = in_channels self.hidden_channels = hidden_channels self.num_mel_bins = num_mel_bins self.kernel_predictor_hidden_channels = kernel_predictor_hidden_channels self.seed = seed self.is_training = is_training def prepare_noise_sequence(self): generator = torch.manual_seed(self.seed) noise_shape = (self.seq_length, self.in_channels) # Create noise on CPU for reproducibility noise_sequence = torch.randn(noise_shape, generator=generator, dtype=torch.float) return noise_sequence def prepare_config_and_inputs(self): spectrogram = floats_tensor([self.seq_length, self.num_mel_bins], scale=1.0) noise_sequence = self.prepare_noise_sequence() noise_sequence = noise_sequence.to(spectrogram.device) config = self.get_config() return config, spectrogram, noise_sequence def get_config(self): return UnivNetConfig( model_in_channels=self.in_channels, model_hidden_channels=self.hidden_channels, num_mel_bins=self.num_mel_bins, kernel_predictor_hidden_channels=self.kernel_predictor_hidden_channels, ) def create_and_check_model(self, config, spectrogram, noise_sequence): model = UnivNetModel(config=config).to(torch_device).eval() result = model(spectrogram, noise_sequence)[0] self.parent.assertEqual(result.shape, (1, self.seq_length * 256)) def prepare_config_and_inputs_for_common(self): config, spectrogram, noise_sequence = self.prepare_config_and_inputs() inputs_dict = {"input_features": spectrogram, "noise_sequence": noise_sequence} return config, inputs_dict @require_torch class UnivNetModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (UnivNetModel,) if is_torch_available() else () # UnivNetModel currently cannot be traced with torch.jit.trace. test_torchscript = False # The UnivNetModel is not a transformer and does not use any attention mechanisms, so skip transformer/attention # related tests. test_pruning = False test_resize_embeddings = False test_resize_position_embeddings = False test_head_masking = False # UnivNetModel is not a sequence classification model. test_mismatched_shapes = False # UnivNetModel does not have a base_model_prefix attribute. test_missing_keys = False # UnivNetModel does not implement a parallelize method. test_model_parallel = False is_encoder_decoder = False has_attentions = False input_name = "input_features" def setUp(self): self.model_tester = UnivNetModelTester(self) self.config_tester = ConfigTester(self, config_class=UnivNetConfig) @unittest.skip(reason="fix this once it gets more usage") def test_multi_gpu_data_parallel_forward(self): super().test_multi_gpu_data_parallel_forward() def test_config(self): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_from_and_save_pretrained_subfolder() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "input_features", ] self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) @unittest.skip(reason="UnivNetModel does not output hidden_states.") def test_hidden_states_output(self): pass @unittest.skip(reason="UnivNetModel.forward does not accept an inputs_embeds argument.") def test_inputs_embeds(self): pass @unittest.skip(reason="UnivNetModel does not use input embeddings and thus has no get_input_embeddings method.") def test_model_common_attributes(self): pass @unittest.skip(reason="UnivNetModel does not support all arguments tested, such as output_hidden_states.") def test_model_outputs_equivalence(self): pass @unittest.skip(reason="UnivNetModel does not output hidden_states.") def test_retain_grad_hidden_states_attentions(self): pass def test_batched_inputs_outputs(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() batched_spectrogram = inputs["input_features"].unsqueeze(0).repeat(2, 1, 1) batched_noise_sequence = inputs["noise_sequence"].unsqueeze(0).repeat(2, 1, 1) with torch.no_grad(): batched_outputs = model( batched_spectrogram.to(torch_device), batched_noise_sequence.to(torch_device), )[0] self.assertEqual( batched_spectrogram.shape[0], batched_outputs.shape[0], msg="Got different batch dims for input and output", ) def test_unbatched_inputs_outputs(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(inputs["input_features"].to(torch_device), inputs["noise_sequence"].to(torch_device))[ 0 ] self.assertTrue(outputs.shape[0] == 1, msg="Unbatched input should create batched output with bsz = 1") def test_unbatched_batched_outputs_consistency(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() unbatched_spectrogram = inputs["input_features"].detach().clone() unbatched_noise_sequence = inputs["noise_sequence"].detach().clone() batched_spectrogram = inputs["input_features"].unsqueeze(0) batched_noise_sequence = inputs["noise_sequence"].unsqueeze(0) with torch.no_grad(): unbatched_outputs = model( unbatched_spectrogram.to(torch_device), unbatched_noise_sequence.to(torch_device), )[0] batched_outputs = model( batched_spectrogram.to(torch_device), batched_noise_sequence.to(torch_device), )[0] torch.testing.assert_close(unbatched_outputs, batched_outputs) @require_torch_gpu @slow class UnivNetModelIntegrationTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def _load_datasamples(self, num_samples, sampling_rate=24000): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") ds = ds.cast_column("audio", Audio(sampling_rate=sampling_rate)) # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples], [x["sampling_rate"] for x in speech_samples] def get_inputs(self, device, num_samples: int = 3, noise_length: int = 10, seed: int = 0): generator = torch.manual_seed(seed) # Note: hardcode model_in_channels -> 64 if num_samples == 1: noise_sequence_shape = (64, noise_length) else: noise_sequence_shape = (num_samples, 64, noise_length) # Explicity generate noise_sequence on CPU for consistency. noise_sequence = torch.randn(noise_sequence_shape, generator=generator, dtype=torch.float32, device="cpu") # Put noise_sequence on the desired device. noise_sequence = noise_sequence.to(device) # Note: hardcode num_mel_channels -> 100 if num_samples == 1: spectrogram_shape = [100, noise_length] else: spectrogram_shape = [num_samples, 100, noise_length] spectrogram = floats_tensor(spectrogram_shape, scale=1.0, rng=random.Random(seed)) # Note: spectrogram should already be on torch_device # Permute to match diffusers implementation if num_samples == 1: noise_sequence = noise_sequence.transpose(1, 0) spectrogram = spectrogram.transpose(1, 0) else: noise_sequence = noise_sequence.transpose(2, 1) spectrogram = spectrogram.transpose(2, 1) inputs = { "input_features": spectrogram, "noise_sequence": noise_sequence, "generator": generator, } return inputs def test_model_inference_batched(self): # Load sample checkpoint from Tortoise TTS model = UnivNetModel.from_pretrained("dg845/univnet-dev") model.eval().to(torch_device) # Get batched noise and spectrogram inputs. input_speech = self.get_inputs(torch_device, num_samples=3) with torch.no_grad(): waveform = model(**input_speech)[0] waveform = waveform.cpu() waveform_mean = torch.mean(waveform) waveform_stddev = torch.std(waveform) waveform_slice = waveform[-1, -9:].flatten() EXPECTED_MEAN = torch.tensor(-0.19989729) EXPECTED_STDDEV = torch.tensor(0.35230172) EXPECTED_SLICE = torch.tensor([-0.3408, -0.6045, -0.5052, 0.1160, -0.1556, -0.0405, -0.3024, -0.5290, -0.5019]) torch.testing.assert_close(waveform_mean, EXPECTED_MEAN, atol=1e-4, rtol=1e-5) torch.testing.assert_close(waveform_stddev, EXPECTED_STDDEV, atol=1e-4, rtol=1e-5) torch.testing.assert_close(waveform_slice, EXPECTED_SLICE, atol=5e-4, rtol=1e-5) def test_model_inference_unbatched(self): # Load sample checkpoint from Tortoise TTS model = UnivNetModel.from_pretrained("dg845/univnet-dev") model.eval().to(torch_device) # Get unbatched noise and spectrogram inputs. input_speech = self.get_inputs(torch_device, num_samples=1) with torch.no_grad(): waveform = model(**input_speech)[0] waveform = waveform.cpu() waveform_mean = torch.mean(waveform) waveform_stddev = torch.std(waveform) waveform_slice = waveform[-1, -9:].flatten() EXPECTED_MEAN = torch.tensor(-0.22895093) EXPECTED_STDDEV = torch.tensor(0.33986747) EXPECTED_SLICE = torch.tensor([-0.3276, -0.5504, -0.3484, 0.3574, -0.0373, -0.1826, -0.4880, -0.6431, -0.5162]) torch.testing.assert_close(waveform_mean, EXPECTED_MEAN, atol=1e-4, rtol=1e-5) torch.testing.assert_close(waveform_stddev, EXPECTED_STDDEV, atol=1e-4, rtol=1e-5) torch.testing.assert_close(waveform_slice, EXPECTED_SLICE, atol=1e-3, rtol=1e-5) def test_integration(self): feature_extractor = UnivNetFeatureExtractor.from_pretrained("dg845/univnet-dev") model = UnivNetModel.from_pretrained("dg845/univnet-dev") model.eval().to(torch_device) audio, sr = self._load_datasamples(1, sampling_rate=feature_extractor.sampling_rate) input_features = feature_extractor(audio, sampling_rate=sr[0], return_tensors="pt").input_features input_features = input_features.to(device=torch_device) input_speech = self.get_inputs(torch_device, num_samples=1, noise_length=input_features.shape[1]) input_speech["input_features"] = input_features with torch.no_grad(): waveform = model(**input_speech)[0] waveform = waveform.cpu() waveform_mean = torch.mean(waveform) waveform_stddev = torch.std(waveform) waveform_slice = waveform[-1, -9:].flatten() EXPECTED_MEAN = torch.tensor(0.00051374) EXPECTED_STDDEV = torch.tensor(0.058105603) # fmt: off EXPECTED_SLICE = torch.tensor([-4.3934e-04, -1.8203e-04, -3.3033e-04, -3.8716e-04, -1.6125e-04, 3.5389e-06, -3.3149e-04, -3.7613e-04, -2.3331e-04]) # fmt: on torch.testing.assert_close(waveform_mean, EXPECTED_MEAN, atol=5e-6, rtol=1e-5) torch.testing.assert_close(waveform_stddev, EXPECTED_STDDEV, atol=1e-4, rtol=1e-5) torch.testing.assert_close(waveform_slice, EXPECTED_SLICE, atol=5e-6, rtol=1e-5)
transformers/tests/models/univnet/test_modeling_univnet.py/0
{ "file_path": "transformers/tests/models/univnet/test_modeling_univnet.py", "repo_id": "transformers", "token_count": 6460 }
179
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch VisionTextDualEncoder model. """ import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image # Inspired by # https://github.com/rwightman/pytorch-image-models/blob/b9bd960a032c75ca6b808ddeed76bee5f3ed4972/timm/models/layers/helpers.py # From PyTorch internals def to_2tuple(x): if isinstance(x, collections.abc.Iterable): return x return (x, x) @require_flax class VisionTextDualEncoderMixin: def get_vision_text_model(self, config, text_config): pass def prepare_config_and_inputs(self): pass def get_pretrained_model_and_inputs(self): pass def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float): diff = np.abs((a - b)).max() self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).") def check_model_from_pretrained_configs( self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs ): config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_config, text_config) model = FlaxVisionTextDualEncoderModel(config) output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask) self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], config.projection_dim)) def check_vision_text_dual_encoder_from_pretrained( self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs ): vision_model, text_model = self.get_vision_text_model(vision_config, text_config) kwargs = {"vision_model": vision_model, "text_model": text_model} model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**kwargs) output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask) self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], model.config.projection_dim)) def check_save_load(self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs): vision_model, text_model = self.get_vision_text_model(vision_config, text_config) kwargs = {"vision_model": vision_model, "text_model": text_model} model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**kwargs) output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask) out_1 = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = FlaxVisionTextDualEncoderModel.from_pretrained(tmpdirname) after_output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask) out_2 = after_output[0] max_diff = np.amax(np.abs(out_2 - out_1)) self.assertLessEqual(max_diff, 1e-3) def check_vision_text_output_attention( self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs ): vision_model, text_model = self.get_vision_text_model(vision_config, text_config) kwargs = {"vision_model": vision_model, "text_model": text_model} model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**kwargs) output = model( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, output_attentions=True ) vision_attentions = output.vision_model_output.attentions self.assertEqual(len(vision_attentions), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) image_size = to_2tuple(vision_model.config.image_size) patch_size = to_2tuple(vision_model.config.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_len = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) text_attentions = output.text_model_output.attentions self.assertEqual(len(text_attentions), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def check_pt_flax_equivalence(self, pt_model, fx_model, inputs_dict): pt_model.to(torch_device) pt_model.eval() # prepare inputs flax_inputs = inputs_dict pt_inputs = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**inputs_dict).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = FlaxVisionTextDualEncoderModel.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**inputs_dict).to_tuple() self.assertEqual(len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = VisionTextDualEncoderModel.from_pretrained(tmpdirname, from_flax=True) pt_model_loaded.to(torch_device) pt_model_loaded.eval() with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(fx_output, pt_output_loaded.numpy(), 4e-2) def check_equivalence_pt_to_flax(self, vision_config, text_config, inputs_dict): config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_config, text_config) pt_model = VisionTextDualEncoderModel(config) fx_model = FlaxVisionTextDualEncoderModel(config) fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) fx_model.params = fx_state self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict) def check_equivalence_flax_to_pt(self, vision_config, text_config, inputs_dict): config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_config, text_config) pt_model = VisionTextDualEncoderModel(config) fx_model = FlaxVisionTextDualEncoderModel(config) pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict) def test_model_from_pretrained_configs(self): inputs_dict = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**inputs_dict) def test_vision_text_dual_encoder_from_pretrained(self): inputs_dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**inputs_dict) def test_save_load(self): inputs_dict = self.prepare_config_and_inputs() self.check_save_load(**inputs_dict) def test_vision_text_output_attention(self): inputs_dict = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**inputs_dict) @is_pt_flax_cross_test def test_pt_flax_equivalence(self): config_inputs_dict = self.prepare_config_and_inputs() vision_config = config_inputs_dict.pop("vision_config") text_config = config_inputs_dict.pop("text_config") inputs_dict = config_inputs_dict self.check_equivalence_pt_to_flax(vision_config, text_config, inputs_dict) self.check_equivalence_flax_to_pt(vision_config, text_config, inputs_dict) @slow def test_real_model_save_load_from_pretrained(self): model_2, inputs = self.get_pretrained_model_and_inputs() outputs = model_2(**inputs) out_2 = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_2.save_pretrained(tmp_dirname) model_1 = FlaxVisionTextDualEncoderModel.from_pretrained(tmp_dirname) after_outputs = model_1(**inputs) out_1 = after_outputs[0] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) @require_flax class FlaxViTBertModelTest(VisionTextDualEncoderMixin, unittest.TestCase): def get_pretrained_model_and_inputs(self): model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit", "hf-internal-testing/tiny-bert", vision_from_pt=True, text_from_pt=True, ) batch_size = 13 pixel_values = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) input_ids = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) attention_mask = random_attention_mask([batch_size, 4]) inputs = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def get_vision_text_model(self, vision_config, text_config): vision_model = FlaxViTModel(vision_config) text_model = FlaxBertModel(text_config) return vision_model, text_model def prepare_config_and_inputs(self): vit_model_tester = FlaxViTModelTester(self) bert_model_tester = FlaxBertModelTester(self) vision_config_and_inputs = vit_model_tester.prepare_config_and_inputs() text_config_and_inputs = bert_model_tester.prepare_config_and_inputs() vision_config, pixel_values = vision_config_and_inputs text_config, input_ids, token_type_ids, attention_mask = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class FlaxCLIPVisionBertModelTest(VisionTextDualEncoderMixin, unittest.TestCase): def get_pretrained_model_and_inputs(self): model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip", "hf-internal-testing/tiny-bert", vision_from_pt=True, text_from_pt=True, ) batch_size = 13 pixel_values = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) input_ids = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) attention_mask = random_attention_mask([batch_size, 4]) inputs = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def get_vision_text_model(self, vision_config, text_config): vision_model = FlaxCLIPVisionModel(vision_config) text_model = FlaxBertModel(text_config) return vision_model, text_model def prepare_config_and_inputs(self): clip_model_tester = FlaxCLIPVisionModelTester(self) bert_model_tester = FlaxBertModelTester(self) vision_config_and_inputs = clip_model_tester.prepare_config_and_inputs() text_config_and_inputs = bert_model_tester.prepare_config_and_inputs() vision_config, pixel_values = vision_config_and_inputs text_config, input_ids, token_type_ids, attention_mask = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class FlaxVisionTextDualEncoderIntegrationTest(unittest.TestCase): @slow def test_inference(self): model = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian", logit_scale_init_value=1.0) processor = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian") image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor( text=["una foto di un gatto", "una foto di un cane"], images=image, padding=True, return_tensors="np" ) outputs = model(**inputs) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) expected_logits = np.array([[1.2284727, 0.3104122]]) self.assertTrue(np.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))
transformers/tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py/0
{ "file_path": "transformers/tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py", "repo_id": "transformers", "token_count": 6782 }
180
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import copy import gc import glob import inspect import math import multiprocessing import os import tempfile import traceback import unittest import numpy as np import pytest from datasets import load_dataset from huggingface_hub import snapshot_download from transformers import Wav2Vec2Config, is_tf_available from transformers.testing_utils import ( CaptureLogger, is_flaky, is_pt_tf_cross_test, require_librosa, require_pyctcdecode, require_tf, run_test_in_subprocess, slow, ) from transformers.utils import is_librosa_available, is_pyctcdecode_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoFeatureExtractor, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification, TFWav2Vec2Model, Wav2Vec2Processor, ) from transformers.models.wav2vec2.modeling_tf_wav2vec2 import _compute_mask_indices if is_pyctcdecode_available(): import pyctcdecode.decoder from transformers import Wav2Vec2ProcessorWithLM from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm if is_librosa_available(): import librosa def _test_wav2vec2_with_lm_invalid_pool(in_queue, out_queue, timeout): error = None try: _ = in_queue.get(timeout=timeout) downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample") file_path = glob.glob(downloaded_folder + "/*")[0] sample = librosa.load(file_path, sr=16_000)[0] model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") input_values = processor(sample, return_tensors="tf").input_values logits = model(input_values).logits # use a spawn pool, which should trigger a warning if different than fork with CaptureLogger(pyctcdecode.decoder.logger) as cl, multiprocessing.get_context("spawn").Pool(1) as pool: transcription = processor.batch_decode(logits.numpy(), pool).text unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out) unittest.TestCase().assertEqual(transcription[0], "el libro ha sido escrito por cervantes") # force batch_decode to internally create a spawn pool, which should trigger a warning if different than fork multiprocessing.set_start_method("spawn", force=True) with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl: transcription = processor.batch_decode(logits.numpy()).text unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out) unittest.TestCase().assertEqual(transcription[0], "el libro ha sido escrito por cervantes") except Exception: error = f"{traceback.format_exc()}" results = {"error": error} out_queue.put(results, timeout=timeout) out_queue.join() @require_tf class TFWav2Vec2ModelTester: def __init__( self, parent, batch_size=3, seq_length=1024, is_training=False, hidden_size=16, feat_extract_norm="group", feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, num_hidden_layers=2, num_attention_heads=2, hidden_dropout_prob=0.1, # this is most likely not correctly set yet intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, vocab_size=32, do_stable_layer_norm=False, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.scope = scope output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length def prepare_config_and_inputs(self): input_values = tf.cast(ids_tensor([self.batch_size, self.seq_length], 32768), tf.float32) / 32768.0 attention_mask = tf.ones_like(input_values) config = Wav2Vec2Config( hidden_size=self.hidden_size, feat_extract_norm=self.feat_extract_norm, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout_prob=self.hidden_dropout_prob, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, do_stable_layer_norm=self.do_stable_layer_norm, ) return config, input_values, attention_mask def create_and_check_model(self, config, input_values, attention_mask): model = TFWav2Vec2Model(config) result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 config.layerdrop = 0.0 model = TFWav2Vec2Model(config) input_values = input_values[:3] attention_mask = tf.ones_like(input_values) input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) # convert values that are over input_lengths to padding input_values = input_values * length_mask attention_mask = attention_mask * length_mask batch_outputs = model(input_values, attention_mask=attention_mask, training=False).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice, training=False).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(np.allclose(output, batch_output, atol=1e-3)) def check_ctc_loss(self, config, input_values, *args): model = TFWav2Vec2ForCTC(config) input_values = input_values[:3] attention_mask = tf.ones_like(input_values) input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) # convert values that are over input_lengths to padding input_values = input_values * length_mask attention_mask = attention_mask * length_mask model.config.ctc_loss_reduction = "sum" sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss model.config.ctc_loss_reduction = "mean" mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss self.parent.assertTrue(abs(labels.shape[0] * mean_loss - sum_loss) < 1e-2) def check_seq_classifier_loss(self, loss, config, input_values, *args): model = TFWav2Vec2ForSequenceClassification(config) input_values = input_values[:3] attention_mask = tf.ones(input_values.shape, dtype=tf.int32) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = tf.random.uniform((input_values.shape[0],), maxval=len(model.config.id2label), dtype=tf.int32) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 training = False masked_loss = ( model(input_values, attention_mask=attention_mask, labels=labels, training=training).loss.numpy().item() ) unmasked_loss = model(input_values, labels=labels, training=training).loss.numpy().item() assert isinstance(masked_loss, float) assert isinstance(unmasked_loss, float) assert masked_loss != unmasked_loss def check_training(self, config, input_values, *args): model = TFWav2Vec2ForCTC(config) # freeze feature encoder model.freeze_feature_encoder() input_values = input_values[:3] input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) input_values = input_values * length_mask pad_size = max(max_length_labels) - labels.shape[1] labels = tf.pad(labels, ((0, 0), (0, pad_size)), constant_values=-100) loss = model(input_values, labels=labels, training=True).loss self.parent.assertFalse(tf.math.is_inf(loss)) def check_labels_out_of_vocab(self, config, input_values, *args): model = TFWav2Vec2ForCTC(config) input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size + 500) with pytest.raises(ValueError): model(input_values, labels=labels) def prepare_config_and_inputs_for_common(self): config, input_values, attention_mask = self.prepare_config_and_inputs() inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_tf class TFWav2Vec2ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (TFWav2Vec2Model, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification) if is_tf_available() else () ) pipeline_model_mapping = ( {"audio-classification": TFWav2Vec2ForSequenceClassification, "feature-extraction": TFWav2Vec2Model} if is_tf_available() else {} ) test_resize_embeddings = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFWav2Vec2ModelTester(self) self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() # overwrite because input_values != input_ids def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_values"] self.assertListEqual(arg_names[:1], expected_arg_names) # overwrite because input_values != input_ids def test_keyword_and_dict_args(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) outputs_dict = model(inputs) inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) input_values = inputs_keywords.pop("input_values", None) outputs_keywords = model(input_values, **inputs_keywords) output_dict = outputs_dict[0].numpy() output_keywords = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_hidden_states_output(config, inputs_dict, model_class): model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) hidden_states = outputs.hidden_states self.assertEqual(config.output_attentions, False) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.output_seq_length, self.model_tester.hidden_size], ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(config, inputs_dict, model_class) del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(config, inputs_dict, model_class) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) @is_flaky() def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) def test_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_training(*config_and_inputs) @unittest.skip(reason="Wav2Vec2 has no input embeddings") def test_inputs_embeds(self): pass @unittest.skip(reason="Wav2Vec2 has no tokens embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip(reason="Wav2Vec2 has no input embeddings") def test_model_common_attributes(self): pass @slow def test_model_from_pretrained(self): model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h") self.assertIsNotNone(model) @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch") def test_dataset_conversion(self): # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC pass @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch") def test_keras_fit(self): # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC pass @is_pt_tf_cross_test def test_pt_tf_model_equivalence(self, allow_missing_keys=False): # We override the base test here to skip loss calculation for Wav2Vec2 models because the loss is massive with # the default labels and frequently overflows to inf or exceeds numerical tolerances between TF/PT import torch import transformers for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Output all for aggressive testing config.output_hidden_states = True config.output_attentions = self.has_attentions # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`. # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it. self._make_attention_mask_non_null(inputs_dict) pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) tf_model = model_class(config) pt_model = pt_model_class(config) tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class) # Check we can load pt model in tf and vice-versa with model => model functions tf_model = transformers.load_pytorch_model_in_tf2_model( tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys ) pt_model = transformers.load_tf2_model_in_pytorch_model( pt_model, tf_model, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) # Check we can load pt model in tf and vice-versa with checkpoint => model functions with tempfile.TemporaryDirectory() as tmpdirname: pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") torch.save(pt_model.state_dict(), pt_checkpoint_path) tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys ) tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") tf_model.save_weights(tf_checkpoint_path) pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) @require_tf class TFWav2Vec2RobustModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = ( (TFWav2Vec2Model, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification) if is_tf_available() else () ) test_resize_embeddings = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFWav2Vec2ModelTester( self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True, scope="robust", ) self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37) # overwrite because input_values != input_ids def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_values"] self.assertListEqual(arg_names[:1], expected_arg_names) # overwrite because input_values != input_ids def test_keyword_and_dict_args(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) outputs_dict = model(inputs) inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) input_values = inputs_keywords.pop("input_values", None) outputs_keywords = model(input_values, **inputs_keywords) output_dict = outputs_dict[0].numpy() output_keywords = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_hidden_states_output(config, inputs_dict, model_class): model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) hidden_states = outputs.hidden_states self.assertEqual(config.output_attentions, False) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.output_seq_length, self.model_tester.hidden_size], ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(config, inputs_dict, model_class) del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(config, inputs_dict, model_class) def test_batched_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_batch_inference(*config_and_inputs) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) # TODO (Joao): fix me @unittest.skip("Broke with TF 2.10") def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) def test_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_training(*config_and_inputs) @unittest.skip(reason="Wav2Vec2 has no input embeddings") def test_inputs_embeds(self): pass @unittest.skip(reason="Wav2Vec2 has no tokens embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip(reason="Wav2Vec2 has no input embeddings") def test_model_common_attributes(self): pass @slow def test_model_from_pretrained(self): model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h") self.assertIsNotNone(model) @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch") def test_dataset_conversion(self): # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC pass @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch") def test_keras_fit(self): # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC pass @is_pt_tf_cross_test def test_pt_tf_model_equivalence(self, allow_missing_keys=False): # We override the base test here to skip loss calculation for Wav2Vec2 models because the loss is massive with # the default labels and frequently overflows to inf or exceeds numerical tolerances between TF/PT import torch import transformers for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Output all for aggressive testing config.output_hidden_states = True config.output_attentions = self.has_attentions # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`. # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it. self._make_attention_mask_non_null(inputs_dict) pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) tf_model = model_class(config) pt_model = pt_model_class(config) tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class) # Check we can load pt model in tf and vice-versa with model => model functions tf_model = transformers.load_pytorch_model_in_tf2_model( tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys ) pt_model = transformers.load_tf2_model_in_pytorch_model( pt_model, tf_model, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) # Check we can load pt model in tf and vice-versa with checkpoint => model functions with tempfile.TemporaryDirectory() as tmpdirname: pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") torch.save(pt_model.state_dict(), pt_checkpoint_path) tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys ) tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") tf_model.save_weights(tf_checkpoint_path) pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) @require_tf class TFWav2Vec2UtilsTest(unittest.TestCase): def test_compute_mask_indices(self): batch_size = 4 sequence_length = 60 mask_prob = 0.5 mask_length = 1 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) self.assertListEqual( tf.reduce_sum(mask, -1).numpy().tolist(), [mask_prob * sequence_length for _ in range(batch_size)] ) def test_compute_mask_indices_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal for batch_sum in tf.reduce_sum(mask, -1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) @require_tf @slow class TFWav2Vec2ModelIntegrationTest(unittest.TestCase): def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter( lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _load_superb(self, task, num_samples): ds = load_dataset("anton-l/superb_dummy", task, split="test") return ds[:num_samples] def test_inference_ctc_normal(self): model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True) input_speech = self._load_datasamples(1) input_values = processor(input_speech, return_tensors="tf", sampling_rate=16000).input_values logits = model(input_values).logits predicted_ids = tf.argmax(logits, axis=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_ctc_normal_batched(self): model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True) input_speech = self._load_datasamples(2) input_values = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000).input_values logits = model(input_values).logits predicted_ids = tf.argmax(logits, axis=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_ctc_robust_batched(self): model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True) input_speech = self._load_datasamples(4) inputs = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000) input_values = inputs.input_values attention_mask = inputs.attention_mask logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = tf.argmax(logits, axis=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore", "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around" " him with the thousands of spectators were trivialities not worth thinking about", "his instant panic was followed by a small sharp blow high on his chest", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) @require_pyctcdecode @require_librosa def test_wav2vec2_with_lm(self): downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample") file_path = glob.glob(downloaded_folder + "/*")[0] sample = librosa.load(file_path, sr=16_000)[0] model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") input_values = processor(sample, return_tensors="tf").input_values logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes") @require_pyctcdecode @require_librosa def test_wav2vec2_with_lm_pool(self): downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample") file_path = glob.glob(downloaded_folder + "/*")[0] sample = librosa.load(file_path, sr=16_000)[0] model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") input_values = processor(sample, return_tensors="tf").input_values logits = model(input_values).logits # test user-managed pool with multiprocessing.get_context("fork").Pool(2) as pool: transcription = processor.batch_decode(logits.numpy(), pool).text self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes") # user-managed pool + num_processes should trigger a warning with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool( 2 ) as pool: transcription = processor.batch_decode(logits.numpy(), pool, num_processes=2).text self.assertIn("num_process", cl.out) self.assertIn("it will be ignored", cl.out) self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes") @require_pyctcdecode @require_librosa def test_wav2vec2_with_lm_invalid_pool(self): run_test_in_subprocess(test_case=self, target_func=_test_wav2vec2_with_lm_invalid_pool, inputs=None) def test_inference_keyword_spotting(self): model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks", from_pt=True) processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks") input_data = self._load_superb("ks", 4) inputs = processor(input_data["speech"], return_tensors="tf", padding=True) input_values = inputs.input_values attention_mask = inputs.attention_mask outputs = model(input_values, attention_mask) predicted_logits, predicted_ids = ( tf.math.reduce_max(outputs.logits, axis=-1), tf.argmax(outputs.logits, axis=-1), ) expected_labels = [7, 6, 10, 9] expected_logits = tf.convert_to_tensor([6.1186, 11.8961, 10.2931, 6.0898]) self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels) self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2)) def test_inference_intent_classification(self): model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic", from_pt=True) processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic") input_data = self._load_superb("ic", 4) inputs = processor(input_data["speech"], return_tensors="tf", padding=True) input_values = inputs.input_values attention_mask = inputs.attention_mask outputs = model(input_values, attention_mask=attention_mask) predicted_logits_action, predicted_ids_action = ( tf.math.reduce_max(outputs.logits[:, :6], axis=-1), tf.argmax(outputs.logits[:, :6], axis=-1), ) predicted_logits_object, predicted_ids_object = ( tf.math.reduce_max(outputs.logits[:, 6:20], axis=-1), tf.argmax(outputs.logits[:, 6:20], axis=-1), ) predicted_logits_location, predicted_ids_location = ( tf.math.reduce_max(outputs.logits[:, 20:24], axis=-1), tf.argmax(outputs.logits[:, 20:24], axis=-1), ) expected_labels_action = [0, 0, 2, 3] expected_logits_action = tf.convert_to_tensor([0.4568, 11.0848, 1.6621, 9.3841]) expected_labels_object = [3, 10, 3, 4] expected_logits_object = tf.convert_to_tensor([1.5322, 10.7094, 5.2469, 22.1318]) expected_labels_location = [0, 0, 0, 1] expected_logits_location = tf.convert_to_tensor([1.5335, 6.5096, 10.5704, 11.0569]) self.assertListEqual(predicted_ids_action.numpy().tolist(), expected_labels_action) self.assertListEqual(predicted_ids_object.numpy().tolist(), expected_labels_object) self.assertListEqual(predicted_ids_location.numpy().tolist(), expected_labels_location) self.assertTrue(np.allclose(predicted_logits_action, expected_logits_action, atol=1e-2)) self.assertTrue(np.allclose(predicted_logits_object, expected_logits_object, atol=1e-2)) self.assertTrue(np.allclose(predicted_logits_location, expected_logits_location, atol=1e-2)) def test_inference_speaker_identification(self): model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid", from_pt=True) processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid") input_data = self._load_superb("si", 4) output_logits = [] for example in input_data["speech"]: input = processor(example, return_tensors="tf", padding=True) output = model(input.input_values, attention_mask=None) output_logits.append(output.logits[0]) output_logits = tf.stack(output_logits) predicted_logits, predicted_ids = tf.math.reduce_max(output_logits, axis=-1), tf.argmax(output_logits, axis=-1) expected_labels = [251, 1, 1, 3] expected_logits = tf.convert_to_tensor([37.5627, 71.6362, 64.2419, 31.7778]) self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels) self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2)) def test_inference_emotion_recognition(self): model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er", from_pt=True) processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er") input_data = self._load_superb("er", 4) inputs = processor(input_data["speech"], return_tensors="tf", padding=True) input_values = inputs.input_values attention_mask = inputs.attention_mask outputs = model(input_values, attention_mask=attention_mask) predicted_logits, predicted_ids = ( tf.math.reduce_max(outputs.logits, axis=-1), tf.argmax(outputs.logits, axis=-1), ) expected_labels = [1, 1, 2, 2] # s3prl logits for the same batch expected_logits = tf.convert_to_tensor([2.1722, 3.0779, 8.0287, 6.6797]) self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels) self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2))
transformers/tests/models/wav2vec2/test_modeling_tf_wav2vec2.py/0
{ "file_path": "transformers/tests/models/wav2vec2/test_modeling_tf_wav2vec2.py", "repo_id": "transformers", "token_count": 17501 }
181
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import WhisperFeatureExtractor from transformers.testing_utils import check_json_file_has_correct_format, require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch global_rng = random.Random() def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class WhisperFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, min_seq_length=400, max_seq_length=2000, feature_size=10, hop_length=160, chunk_length=8, padding_value=0.0, sampling_rate=4_000, return_attention_mask=False, do_normalize=True, ): self.parent = parent self.batch_size = batch_size self.min_seq_length = min_seq_length self.max_seq_length = max_seq_length self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) self.padding_value = padding_value self.sampling_rate = sampling_rate self.return_attention_mask = return_attention_mask self.do_normalize = do_normalize self.feature_size = feature_size self.chunk_length = chunk_length self.hop_length = hop_length def prepare_feat_extract_dict(self): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def prepare_inputs_for_common(self, equal_length=False, numpify=False): def _flatten(list_of_lists): return list(itertools.chain(*list_of_lists)) if equal_length: speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size speech_inputs = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) ] if numpify: speech_inputs = [np.asarray(x) for x in speech_inputs] return speech_inputs class WhisperFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): feature_extraction_class = WhisperFeatureExtractor def setUp(self): self.feat_extract_tester = WhisperFeatureExtractionTester(self) def test_feat_extract_from_and_save_pretrained(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: saved_file = feat_extract_first.save_pretrained(tmpdirname)[0] check_json_file_has_correct_format(saved_file) feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() mel_1 = feat_extract_first.mel_filters mel_2 = feat_extract_second.mel_filters self.assertTrue(np.allclose(mel_1, mel_2)) self.assertEqual(dict_first, dict_second) def test_feat_extract_to_json_file(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "feat_extract.json") feat_extract_first.to_json_file(json_file_path) feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() mel_1 = feat_extract_first.mel_filters mel_2 = feat_extract_second.mel_filters self.assertTrue(np.allclose(mel_1, mel_2)) self.assertEqual(dict_first, dict_second) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] # Test feature size input_features = feature_extractor(np_speech_inputs, padding="max_length", return_tensors="np").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size) # Test not batched input encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) # Test batched encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test 2-D numpy arrays are batched. speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)] np_speech_inputs = np.asarray(speech_inputs) encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test truncation required speech_inputs = [floats_list((1, x))[0] for x in range(200, (feature_extractor.n_samples + 500), 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] speech_inputs_truncated = [x[: feature_extractor.n_samples] for x in speech_inputs] np_speech_inputs_truncated = [np.asarray(speech_input) for speech_input in speech_inputs_truncated] encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs_truncated, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) @require_torch def test_double_precision_pad(self): import torch feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) np_speech_inputs = np.random.rand(100, 32).astype(np.float64) py_speech_inputs = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np") self.assertTrue(np_processed.input_features.dtype == np.float32) pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt") self.assertTrue(pt_processed.input_features.dtype == torch.float32) def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def test_torch_integration(self): # fmt: off EXPECTED_INPUT_FEATURES = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on input_speech = self._load_datasamples(1) feature_extractor = WhisperFeatureExtractor() input_features = feature_extractor(input_speech, return_tensors="pt").input_features self.assertEqual(input_features.shape, (1, 80, 3000)) self.assertTrue(torch.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4)) @unittest.mock.patch("transformers.models.whisper.feature_extraction_whisper.is_torch_available", lambda: False) def test_numpy_integration(self): # fmt: off EXPECTED_INPUT_FEATURES = np.array( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on input_speech = self._load_datasamples(1) feature_extractor = WhisperFeatureExtractor() input_features = feature_extractor(input_speech, return_tensors="np").input_features self.assertEqual(input_features.shape, (1, 80, 3000)) self.assertTrue(np.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4)) def test_zero_mean_unit_variance_normalization_trunc_np_longest(self): feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) audio = self._load_datasamples(1)[0] audio = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue audio = feat_extract.zero_mean_unit_var_norm([audio], attention_mask=None)[0] self.assertTrue(np.all(np.mean(audio) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(audio) - 1) < 1e-3))
transformers/tests/models/whisper/test_feature_extraction_whisper.py/0
{ "file_path": "transformers/tests/models/whisper/test_feature_extraction_whisper.py", "repo_id": "transformers", "token_count": 5032 }
182
# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import XLMRobertaTokenizer, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XmodConfig, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, ) from transformers.models.xmod.modeling_xmod import XmodEmbeddings, create_position_ids_from_input_ids class XmodModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return XmodConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, default_language="en_XX", ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = XmodModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = XmodModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = XmodForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = XmodForCausalLM(config=config).to(torch_device).eval() # make sure that ids don't start with pad token mask = input_ids.ne(config.pad_token_id).long() input_ids = input_ids * mask # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) # make sure that ids don't start with pad token mask = next_tokens.ne(config.pad_token_id).long() next_tokens = next_tokens * mask next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = XmodForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = XmodForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = XmodForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = XmodForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class XmodModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( XmodForCausalLM, XmodForMaskedLM, XmodModel, XmodForSequenceClassification, XmodForTokenClassification, XmodForMultipleChoice, XmodForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (XmodForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": XmodModel, "fill-mask": XmodForMaskedLM, "question-answering": XmodForQuestionAnswering, "text-classification": XmodForSequenceClassification, "text-generation": XmodForCausalLM, "token-classification": XmodForTokenClassification, "zero-shot": XmodForSequenceClassification, } if is_torch_available() else {} ) # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"): return True return False def setUp(self): self.model_tester = XmodModelTester(self) self.config_tester = ConfigTester(self, config_class=XmodConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_decoder_model_past_with_large_inputs_relative_pos_emb(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() config_and_inputs[0].position_embedding_type = "relative_key" self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_create_position_ids_respects_padding_index(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is XmodEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] model = XmodEmbeddings(config=config) input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) expected_positions = torch.as_tensor( [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]] ) position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) def test_create_position_ids_from_inputs_embeds(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is XmodEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] embeddings = XmodEmbeddings(config=config) inputs_embeds = torch.empty(2, 4, 30) expected_single_positions = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) def test_set_default_language(self): config = self.model_tester.prepare_config_and_inputs()[0] model = XmodForMaskedLM(config=config) model.set_default_language("en_XX") self.assertEqual(model.config.default_language, "en_XX") with self.assertRaises(ValueError): model.set_default_language("xx_XX") def test_freeze_embeddings_and_language_adapters(self): config = self.model_tester.prepare_config_and_inputs()[0] model = XmodForMaskedLM(config=config) num_trainable_params_before = sum(p.numel() for p in model.parameters() if p.requires_grad) model.freeze_embeddings_and_language_adapters() num_trainable_params_after = sum(p.numel() for p in model.parameters() if p.requires_grad) self.assertLess(num_trainable_params_after, num_trainable_params_before) @require_sentencepiece @require_tokenizers @require_torch class XmodModelIntegrationTest(unittest.TestCase): @slow def test_xmod_base(self): model = XmodModel.from_pretrained("facebook/xmod-base") # language en_XX model.set_default_language("en_XX") input_ids = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house expected_output_shape = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim expected_output_values_last_dim = torch.tensor( [[-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724]] ) output = model(input_ids)["last_hidden_state"].detach() self.assertEqual(output.shape, expected_output_shape) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) # language de_DE model.set_default_language("de_DE") input_ids = torch.tensor([[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2315, 58761, 18391, 5, 2]]) # Der Hund ist niedlich und wohnt in einem Gartenhaus. expected_output_shape = torch.Size((1, 16, 768)) # batch_size, sequence_length, embedding_vector_dim # fmt: off expected_output_values_last_dim = torch.tensor( [[0.0162, 0.0075, -0.1882, 0.2335, -0.0952, -0.3994, -0.0317, -0.1174, 0.0177, 0.4280, -0.0240, -0.2138, 0.0785, -0.1045, -0.2811, -0.3220]] ) # fmt: on output = model(input_ids)["last_hidden_state"].detach() self.assertEqual(output.shape, expected_output_shape) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) @slow def test_xmod_large_prenorm(self): model = XmodModel.from_pretrained("facebook/xmod-large-prenorm") # language en_XX model.set_default_language("en_XX") input_ids = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house expected_output_shape = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim # fmt: off expected_output_values_last_dim = torch.tensor( [[-0.0121, -0.0194, -0.0240, -0.0160, -0.0205, -0.0159, -0.0243, -0.0206, -0.0161, -0.0335, -0.0196, -0.0141]] ) # fmt: on output = model(input_ids)["last_hidden_state"].detach() self.assertEqual(output.shape, expected_output_shape) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) # language de_DE model.set_default_language("de_DE") input_ids = torch.tensor([[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2315, 58761, 18391, 5, 2]]) # Der Hund ist niedlich und wohnt in einem Gartenhaus. expected_output_shape = torch.Size((1, 16, 1024)) # batch_size, sequence_length, embedding_vector_dim # fmt: off expected_output_values_last_dim = torch.tensor( [[-0.0120, -0.0262, -0.0253, -0.0112, -0.0128, -0.0164, -0.0080, -0.0081, -0.0192, -0.0117, -0.0170, -0.0120, -0.0210, -0.0173, -0.0078, -0.0122]] ) # fmt: on output = model(input_ids)["last_hidden_state"].detach() self.assertEqual(output.shape, expected_output_shape) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) @slow def test_multilingual_batch(self): model = XmodModel.from_pretrained("facebook/xmod-base") # fmt: off input_ids = torch.tensor([ [0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2], [0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2], [0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2], [0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2], ]) # fmt: on lang_ids = torch.LongTensor([0, 8, 8, 0]) expected_output_shape = torch.Size((4, 12, 768)) # batch_size, sequence_length, embedding_vector_dim # fmt: off expected_output_values_last_dim = torch.tensor([ [-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724], [-0.2668, -0.0235, -0.1739, 0.2266, -0.0901, -0.3482, 0.0105, -0.1915, 0.0397, 0.3822, 0.1836, -0.3407], [-0.2668, -0.0235, -0.1739, 0.2266, -0.0901, -0.3482, 0.0105, -0.1915, 0.0397, 0.3822, 0.1836, -0.3407], [-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724], ]) # fmt: on output = model(input_ids, lang_ids=lang_ids)["last_hidden_state"].detach() self.assertEqual(output.shape, expected_output_shape) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) @slow def test_end_to_end_mask_fill(self): tokenizer = XLMRobertaTokenizer.from_pretrained("FacebookAI/xlm-roberta-base") model = XmodForMaskedLM.from_pretrained("facebook/xmod-base", default_language="en_XX") model.to(torch_device) sentences = [ "Hello, my dog is a little <mask>.", "Hi <mask>!", ] inputs = tokenizer(sentences, return_tensors="pt", padding=True) input_ids = inputs["input_ids"].to(torch_device) outputs = model( input_ids=input_ids, attention_mask=inputs["attention_mask"].to(torch_device), ) probs = outputs.logits.softmax(dim=-1) _, predictions = probs.topk(1) predictions = predictions.squeeze(-1) inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) output_non_padded = model(input_ids=inputs_non_padded) probs_non_padded = output_non_padded.logits.softmax(dim=-1) _, predictions_non_padded = probs_non_padded.topk(1) predictions_non_padded = predictions_non_padded.squeeze(-1) inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) output_padded = model(input_ids=inputs_padded) probs_padded = output_padded.logits.softmax(dim=-1) _, predictions_padded = probs_padded.topk(1) predictions_padded = predictions_padded.squeeze(-1) batch_out_sentence = tokenizer.batch_decode(predictions, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(predictions_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(predictions_padded[0], skip_special_tokens=True) expected_output_sentence = [ "Hello, my dog is a little girl.", "Hi everyone!", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
transformers/tests/models/xmod/test_modeling_xmod.py/0
{ "file_path": "transformers/tests/models/xmod/test_modeling_xmod.py", "repo_id": "transformers", "token_count": 13214 }
183
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectron2, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class Image: @staticmethod def open(*args, **kwargs): pass def load_image(_): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. INVOICE_URL = ( "https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png" ) @is_pipeline_test @require_torch @require_vision class DocumentQuestionAnsweringPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def get_test_pipeline(self, model, tokenizer, processor): dqa_pipeline = pipeline( "document-question-answering", model=model, tokenizer=tokenizer, image_processor=processor ) image = INVOICE_URL word_boxes = list(zip(*apply_tesseract(load_image(image), None, ""))) question = "What is the placebo?" examples = [ { "image": load_image(image), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def run_pipeline_test(self, dqa_pipeline, examples): outputs = dqa_pipeline(examples, top_k=2) self.assertEqual( outputs, [ [ {"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)}, {"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)}, ] ] * 3, ) @require_torch @require_detectron2 @require_pytesseract def test_small_model_pt(self): dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2") image = INVOICE_URL question = "How many cats are there?" expected_output = [ {"score": 0.0001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] outputs = dqa_pipeline(image=image, question=question, top_k=2) self.assertEqual(nested_simplify(outputs, decimals=4), expected_output) outputs = dqa_pipeline({"image": image, "question": question}, top_k=2) self.assertEqual(nested_simplify(outputs, decimals=4), expected_output) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably image = "./tests/fixtures/tests_samples/COCO/000000039769.png" outputs = dqa_pipeline(image=image, question=question, top_k=2) self.assertEqual(outputs, []) # We can optionnally pass directly the words and bounding boxes image = "./tests/fixtures/tests_samples/COCO/000000039769.png" words = [] boxes = [] outputs = dqa_pipeline(image=image, question=question, words=words, boxes=boxes, top_k=2) self.assertEqual(outputs, []) # TODO: Enable this once hf-internal-testing/tiny-random-donut is implemented # @require_torch # def test_small_model_pt_donut(self): # dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-donut") # # dqa_pipeline = pipeline("document-question-answering", model="../tiny-random-donut") # image = "https://templates.invoicehome.com/invoice-template-us-neat-750px.png" # question = "How many cats are there?" # # outputs = dqa_pipeline(image=image, question=question, top_k=2) # self.assertEqual( # nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] # ) @slow @require_torch @require_detectron2 @require_pytesseract def test_large_model_pt(self): dqa_pipeline = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) image = INVOICE_URL question = "What is the invoice number?" outputs = dqa_pipeline(image=image, question=question, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ], ) outputs = dqa_pipeline({"image": image, "question": question}, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ], ) outputs = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2, ) @slow @require_torch @require_detectron2 @require_pytesseract def test_large_model_pt_chunk(self): dqa_pipeline = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=50, ) image = INVOICE_URL question = "What is the invoice number?" outputs = dqa_pipeline(image=image, question=question, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ], ) outputs = dqa_pipeline({"image": image, "question": question}, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ], ) outputs = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def test_large_model_pt_layoutlm(self): tokenizer = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True ) dqa_pipeline = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=tokenizer, revision="3dc6de3", ) image = INVOICE_URL question = "What is the invoice number?" outputs = dqa_pipeline(image=image, question=question, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ], ) outputs = dqa_pipeline({"image": image, "question": question}, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ], ) outputs = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2, ) word_boxes = list(zip(*apply_tesseract(load_image(image), None, ""))) # This model should also work if `image` is set to None outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ], ) @slow @require_torch @require_pytesseract @require_vision def test_large_model_pt_layoutlm_chunk(self): tokenizer = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True ) dqa_pipeline = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=tokenizer, revision="3dc6de3", max_seq_len=50, ) image = INVOICE_URL question = "What is the invoice number?" outputs = dqa_pipeline(image=image, question=question, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ], ) outputs = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2, ) word_boxes = list(zip(*apply_tesseract(load_image(image), None, ""))) # This model should also work if `image` is set to None outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ], ) @slow @require_torch def test_large_model_pt_donut(self): dqa_pipeline = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa"), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) image = INVOICE_URL question = "What is the invoice number?" outputs = dqa_pipeline(image=image, question=question, top_k=2) self.assertEqual(nested_simplify(outputs, decimals=4), [{"answer": "us-001"}]) @require_tf @unittest.skip("Document question answering not implemented in TF") def test_small_model_tf(self): pass
transformers/tests/pipelines/test_pipelines_document_question_answering.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_document_question_answering.py", "repo_id": "transformers", "token_count": 6554 }
184
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import ( MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING, AutoProcessor, TextToAudioPipeline, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, require_torch, require_torch_accelerator, require_torch_or_tf, slow, torch_device, ) from transformers.trainer_utils import set_seed from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class TextToAudioPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING # for now only test text_to_waveform and not text_to_spectrogram @slow @require_torch def test_small_musicgen_pt(self): music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt") forward_params = { "do_sample": False, "max_new_tokens": 250, } outputs = music_generator("This is a test", forward_params=forward_params) self.assertEqual({"audio": ANY(np.ndarray), "sampling_rate": 32000}, outputs) # test two examples side-by-side outputs = music_generator(["This is a test", "This is a second test"], forward_params=forward_params) audio = [output["audio"] for output in outputs] self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio) # test batching outputs = music_generator( ["This is a test", "This is a second test"], forward_params=forward_params, batch_size=2 ) audio = [output["audio"] for output in outputs] self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio) @slow @require_torch def test_small_bark_pt(self): speech_generator = pipeline(task="text-to-audio", model="suno/bark-small", framework="pt") forward_params = { # Using `do_sample=False` to force deterministic output "do_sample": False, "semantic_max_new_tokens": 100, } outputs = speech_generator("This is a test", forward_params=forward_params) self.assertEqual( {"audio": ANY(np.ndarray), "sampling_rate": 24000}, outputs, ) # test two examples side-by-side outputs = speech_generator( ["This is a test", "This is a second test"], forward_params=forward_params, ) audio = [output["audio"] for output in outputs] self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio) # test other generation strategy forward_params = { "do_sample": True, "semantic_max_new_tokens": 100, "semantic_num_return_sequences": 2, } outputs = speech_generator("This is a test", forward_params=forward_params) audio = outputs["audio"] self.assertEqual(ANY(np.ndarray), audio) # test using a speaker embedding processor = AutoProcessor.from_pretrained("suno/bark-small") temp_inp = processor("hey, how are you?", voice_preset="v2/en_speaker_5") history_prompt = temp_inp["history_prompt"] forward_params["history_prompt"] = history_prompt outputs = speech_generator( ["This is a test", "This is a second test"], forward_params=forward_params, batch_size=2, ) audio = [output["audio"] for output in outputs] self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio) @slow @require_torch_accelerator def test_conversion_additional_tensor(self): speech_generator = pipeline(task="text-to-audio", model="suno/bark-small", framework="pt", device=torch_device) processor = AutoProcessor.from_pretrained("suno/bark-small") forward_params = { "do_sample": True, "semantic_max_new_tokens": 100, } # atm, must do to stay coherent with BarkProcessor preprocess_params = { "max_length": 256, "add_special_tokens": False, "return_attention_mask": True, "return_token_type_ids": False, "padding": "max_length", } outputs = speech_generator( "This is a test", forward_params=forward_params, preprocess_params=preprocess_params, ) temp_inp = processor("hey, how are you?", voice_preset="v2/en_speaker_5") history_prompt = temp_inp["history_prompt"] forward_params["history_prompt"] = history_prompt # history_prompt is a torch.Tensor passed as a forward_param # if generation is successful, it means that it was passed to the right device outputs = speech_generator( "This is a test", forward_params=forward_params, preprocess_params=preprocess_params ) self.assertEqual( {"audio": ANY(np.ndarray), "sampling_rate": 24000}, outputs, ) @slow @require_torch def test_vits_model_pt(self): speech_generator = pipeline(task="text-to-audio", model="facebook/mms-tts-eng", framework="pt") outputs = speech_generator("This is a test") self.assertEqual(outputs["sampling_rate"], 16000) audio = outputs["audio"] self.assertEqual(ANY(np.ndarray), audio) # test two examples side-by-side outputs = speech_generator(["This is a test", "This is a second test"]) audio = [output["audio"] for output in outputs] self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio) # test batching outputs = speech_generator(["This is a test", "This is a second test"], batch_size=2) self.assertEqual(ANY(np.ndarray), outputs[0]["audio"]) @slow @require_torch def test_forward_model_kwargs(self): # use vits - a forward model speech_generator = pipeline(task="text-to-audio", model="kakao-enterprise/vits-vctk", framework="pt") # for reproducibility set_seed(555) outputs = speech_generator("This is a test", forward_params={"speaker_id": 5}) audio = outputs["audio"] with self.assertRaises(TypeError): # assert error if generate parameter outputs = speech_generator("This is a test", forward_params={"speaker_id": 5, "do_sample": True}) forward_params = {"speaker_id": 5} generate_kwargs = {"do_sample": True} with self.assertRaises(ValueError): # assert error if generate_kwargs with forward-only models outputs = speech_generator( "This is a test", forward_params=forward_params, generate_kwargs=generate_kwargs ) self.assertTrue(np.abs(outputs["audio"] - audio).max() < 1e-5) @slow @require_torch def test_generative_model_kwargs(self): # use musicgen - a generative model music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt") forward_params = { "do_sample": True, "max_new_tokens": 250, } # for reproducibility set_seed(555) outputs = music_generator("This is a test", forward_params=forward_params) audio = outputs["audio"] self.assertEqual(ANY(np.ndarray), audio) # make sure generate kwargs get priority over forward params forward_params = { "do_sample": False, "max_new_tokens": 250, } generate_kwargs = {"do_sample": True} # for reproducibility set_seed(555) outputs = music_generator("This is a test", forward_params=forward_params, generate_kwargs=generate_kwargs) self.assertListEqual(outputs["audio"].tolist(), audio.tolist()) def get_test_pipeline(self, model, tokenizer, processor): speech_generator = TextToAudioPipeline(model=model, tokenizer=tokenizer) return speech_generator, ["This is a test", "Another test"] def run_pipeline_test(self, speech_generator, _): outputs = speech_generator("This is a test") self.assertEqual(ANY(np.ndarray), outputs["audio"]) forward_params = ( {"num_return_sequences": 2, "do_sample": True} if speech_generator.model.can_generate() else {} ) outputs = speech_generator(["This is great !", "Something else"], forward_params=forward_params) audio = [output["audio"] for output in outputs] self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
transformers/tests/pipelines/test_pipelines_text_to_audio.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_text_to_audio.py", "repo_id": "transformers", "token_count": 3815 }
185
# coding=utf-8 # Copyright 2022 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_accelerate_available, is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def get_some_linear_layer(model): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_4h_to_h if is_accelerate_available(): from accelerate import PartialState from accelerate.logging import get_logger logger = get_logger(__name__) _ = PartialState() if is_torch_available(): import torch import torch.nn as nn class LoRALayer(nn.Module): """Wraps a linear layer with LoRA-like adapter - Used for testing purposes only""" def __init__(self, module: nn.Module, rank: int): super().__init__() self.module = module self.adapter = nn.Sequential( nn.Linear(module.in_features, rank, bias=False), nn.Linear(rank, module.out_features, bias=False), ) small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5 nn.init.normal_(self.adapter[0].weight, std=small_std) nn.init.zeros_(self.adapter[1].weight) self.adapter.to(module.weight.device) def forward(self, input, *args, **kwargs): return self.module(input, *args, **kwargs) + self.adapter(input) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class BaseMixedInt8Test(unittest.TestCase): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module model_name = "bigscience/bloom-1b7" # Constant values EXPECTED_RELATIVE_DIFFERENCE = ( 1.540025 # This was obtained on a Quadro RTX 8000 so the number might slightly change ) input_text = "Hello my name is" EXPECTED_OUTPUTS = set() EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of the family.\n") # Expected values on a A10 EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n") MAX_NEW_TOKENS = 10 def setUp(self): # Models and tokenizer self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) class MixedInt8Test(BaseMixedInt8Test): def setUp(self): super().setUp() # Models and tokenizer self.model_fp16 = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.float16, device_map="auto" ) self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.model_fp16 del self.model_8bit gc.collect() torch.cuda.empty_cache() def test_get_keys_to_not_convert_trust_remote_code(self): r""" Test the `get_keys_to_not_convert` function with `trust_remote_code` models. """ from accelerate import init_empty_weights from transformers.integrations.bitsandbytes import get_keys_to_not_convert model_id = "mosaicml/mpt-7b" config = AutoConfig.from_pretrained( model_id, trust_remote_code=True, revision="ada218f9a93b5f1c6dce48a4cc9ff01fcba431e7" ) with init_empty_weights(): model = AutoModelForCausalLM.from_config( config, trust_remote_code=True, code_revision="ada218f9a93b5f1c6dce48a4cc9ff01fcba431e7" ) self.assertEqual(get_keys_to_not_convert(model), ["transformer.wte"]) def test_get_keys_to_not_convert(self): r""" Test the `get_keys_to_not_convert` function. """ from accelerate import init_empty_weights from transformers import AutoModelForMaskedLM, Blip2ForConditionalGeneration, MptForCausalLM, OPTForCausalLM from transformers.integrations.bitsandbytes import get_keys_to_not_convert model_id = "mosaicml/mpt-7b" config = AutoConfig.from_pretrained(model_id, revision="72e5f594ce36f9cabfa2a9fd8f58b491eb467ee7") with init_empty_weights(): model = MptForCausalLM(config) # The order of the keys does not matter, so we sort them before comparing, same for the other tests. self.assertEqual(get_keys_to_not_convert(model).sort(), ["lm_head", "transformer.wte"].sort()) model_id = "Salesforce/blip2-opt-2.7b" config = AutoConfig.from_pretrained(model_id, revision="1ef7f63a8f0a144c13fdca8103eb7b4691c74cec") with init_empty_weights(): model = Blip2ForConditionalGeneration(config) self.assertEqual( get_keys_to_not_convert(model).sort(), ["language_model.lm_head", "language_model.model.decoder.embed_tokens"].sort(), ) model_id = "facebook/opt-350m" config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5") with init_empty_weights(): model = OPTForCausalLM(config) self.assertEqual(get_keys_to_not_convert(model).sort(), ["lm_head", "model.decoder.embed_tokens"].sort()) model_id = "FacebookAI/roberta-large" config = AutoConfig.from_pretrained(model_id, revision="716877d372b884cad6d419d828bac6c85b3b18d9") with init_empty_weights(): model = AutoModelForMaskedLM.from_config(config) self.assertEqual( get_keys_to_not_convert(model).sort(), ["'roberta.embeddings.word_embeddings', 'lm_head', 'lm_head.decoder"].sort(), ) def test_quantization_config_json_serialization(self): r""" A simple test to check if the quantization config is correctly serialized and deserialized """ config = self.model_8bit.config self.assertTrue(hasattr(config, "quantization_config")) _ = config.to_dict() _ = config.to_diff_dict() _ = config.to_json_string() def test_original_dtype(self): r""" A simple test to check if the model succesfully stores the original dtype """ self.assertTrue(hasattr(self.model_8bit.config, "_pre_quantization_dtype")) self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype")) self.assertTrue(self.model_8bit.config._pre_quantization_dtype == torch.float16) def test_memory_footprint(self): r""" A simple test to check if the model conversion has been done correctly by checking on the memory footprint of the converted model and the class type of the linear layers of the converted models """ from bitsandbytes.nn import Int8Params mem_fp16 = self.model_fp16.get_memory_footprint() mem_8bit = self.model_8bit.get_memory_footprint() self.assertAlmostEqual(mem_fp16 / mem_8bit, self.EXPECTED_RELATIVE_DIFFERENCE) self.assertTrue(get_some_linear_layer(self.model_8bit).weight.__class__ == Int8Params) def test_linear_are_8bit(self): r""" A simple test to check if the model conversion has been done correctly by checking on the memory footprint of the converted model and the class type of the linear layers of the converted models """ from transformers import T5PreTrainedModel self.model_fp16.get_memory_footprint() self.model_8bit.get_memory_footprint() for name, module in self.model_8bit.named_modules(): if isinstance(module, torch.nn.Linear): if name not in ["lm_head"] + T5PreTrainedModel._keep_in_fp32_modules: self.assertTrue(module.weight.dtype == torch.int8) def test_llm_skip(self): r""" A simple test to check if `llm_int8_skip_modules` works as expected """ import bitsandbytes as bnb quantization_config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_skip_modules=["classifier"]) seq_classification_model = AutoModelForSequenceClassification.from_pretrained( "FacebookAI/roberta-large-mnli", quantization_config=quantization_config ) self.assertTrue(seq_classification_model.roberta.encoder.layer[0].output.dense.weight.dtype == torch.int8) self.assertTrue( isinstance(seq_classification_model.roberta.encoder.layer[0].output.dense, bnb.nn.Linear8bitLt) ) self.assertTrue(isinstance(seq_classification_model.classifier.dense, nn.Linear)) self.assertTrue(seq_classification_model.classifier.dense.weight.dtype != torch.int8) self.assertTrue(isinstance(seq_classification_model.classifier.out_proj, nn.Linear)) self.assertTrue(seq_classification_model.classifier.out_proj != torch.int8) def test_generate_quality(self): r""" Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output. """ encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = self.model_8bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) def test_generate_quality_config(self): r""" Test that loading the model with the config is equivalent """ bnb_config = BitsAndBytesConfig() bnb_config.load_in_8bit = True model_8bit_from_config = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=bnb_config, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model_8bit_from_config.generate( input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) def test_raise_if_config_and_load_in_8bit(self): r""" Test that loading the model with the config and `load_in_8bit` raises an error """ bnb_config = BitsAndBytesConfig() with self.assertRaises(ValueError): _ = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=bnb_config, load_in_8bit=True, device_map="auto", llm_int8_enable_fp32_cpu_offload=True, ) def test_device_and_dtype_assignment(self): r""" Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error. Checks also if other models are casted correctly. """ with self.assertRaises(ValueError): # Tries with `str` self.model_8bit.to("cpu") with self.assertRaises(ValueError): # Tries with a `dtype`` self.model_8bit.to(torch.float16) with self.assertRaises(ValueError): # Tries with a `device` self.model_8bit.to(torch.device("cuda:0")) with self.assertRaises(ValueError): # Tries with a `device` self.model_8bit.float() with self.assertRaises(ValueError): # Tries with a `device` self.model_8bit.half() # Test if we did not break anything encoded_input = self.tokenizer(self.input_text, return_tensors="pt") self.model_fp16 = self.model_fp16.to(torch.float32) _ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) # Check this does not throw an error _ = self.model_fp16.to("cpu") # Check this does not throw an error _ = self.model_fp16.half() # Check this does not throw an error _ = self.model_fp16.float() def test_fp32_int8_conversion(self): r""" Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly. """ model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small", load_in_8bit=True, device_map="auto") self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32) def test_int8_serialization(self): r""" Test whether it is possible to serialize a model in 8-bit. """ from bitsandbytes.nn import Int8Params with tempfile.TemporaryDirectory() as tmpdirname: self.model_8bit.save_pretrained(tmpdirname) # check that the file `quantization_config` is present config = AutoConfig.from_pretrained(tmpdirname) self.assertTrue(hasattr(config, "quantization_config")) model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, load_in_8bit=True, device_map="auto") linear = get_some_linear_layer(model_from_saved) self.assertTrue(linear.weight.__class__ == Int8Params) self.assertTrue(hasattr(linear.weight, "SCB")) # generate encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) def test_int8_serialization_regression(self): r""" Test whether it is possible to serialize a model in 8-bit - using not safetensors """ from bitsandbytes.nn import Int8Params with tempfile.TemporaryDirectory() as tmpdirname: self.model_8bit.save_pretrained(tmpdirname, safe_serialization=False) # check that the file `quantization_config` is present config = AutoConfig.from_pretrained(tmpdirname) self.assertTrue(hasattr(config, "quantization_config")) model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, load_in_8bit=True, device_map="auto") linear = get_some_linear_layer(model_from_saved) self.assertTrue(linear.weight.__class__ == Int8Params) self.assertTrue(hasattr(linear.weight, "SCB")) # generate encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) def test_int8_serialization_sharded(self): r""" Test whether it is possible to serialize a model in 8-bit - sharded version. """ from bitsandbytes.nn import Int8Params with tempfile.TemporaryDirectory() as tmpdirname: self.model_8bit.save_pretrained(tmpdirname, max_shard_size="200MB") # check that the file `quantization_config` is present config = AutoConfig.from_pretrained(tmpdirname) self.assertTrue(hasattr(config, "quantization_config")) model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname) linear = get_some_linear_layer(model_from_saved) self.assertTrue(linear.weight.__class__ == Int8Params) self.assertTrue(hasattr(linear.weight, "SCB")) # generate encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) def test_int8_from_pretrained(self): r""" Test whether loading a 8bit model from the Hub works as expected """ from bitsandbytes.nn import Int8Params model_id = "ybelkada/bloom-1b7-8bit" model = AutoModelForCausalLM.from_pretrained(model_id) linear = get_some_linear_layer(model) self.assertTrue(linear.weight.__class__ == Int8Params) self.assertTrue(hasattr(linear.weight, "SCB")) # generate encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class MixedInt8T5Test(unittest.TestCase): @classmethod def setUpClass(cls): cls.model_name = "google-t5/t5-small" cls.dense_act_model_name = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name) cls.input_text = "Translate in German: Hello, my dog is cute" def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ gc.collect() torch.cuda.empty_cache() def test_inference_without_keep_in_fp32(self): r""" Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly. `flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test both cases. """ from transformers import T5ForConditionalGeneration modules = T5ForConditionalGeneration._keep_in_fp32_modules T5ForConditionalGeneration._keep_in_fp32_modules = None # test with `google-t5/t5-small` model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) # test with `flan-t5-small` model = T5ForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_8bit=True, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) T5ForConditionalGeneration._keep_in_fp32_modules = modules def test_inference_with_keep_in_fp32(self): r""" Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly. `flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test both cases. """ import bitsandbytes as bnb from transformers import T5ForConditionalGeneration # test with `google-t5/t5-small` model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear8bitLt)) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) # test with `flan-t5-small` model = T5ForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_8bit=True, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) def test_inference_with_keep_in_fp32_serialized(self): r""" Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly on a serialized model. `flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test both cases. """ import bitsandbytes as bnb from transformers import T5ForConditionalGeneration # test with `google-t5/t5-small` model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) model = T5ForConditionalGeneration.from_pretrained(tmp_dir) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear8bitLt)) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) # test with `flan-t5-small` model = T5ForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_8bit=True, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) class MixedInt8ModelClassesTest(BaseMixedInt8Test): def setUp(self): super().setUp() # model_name self.model_name = "bigscience/bloom-560m" self.seq_to_seq_name = "google-t5/t5-small" # Different types of model self.base_model = AutoModel.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") # Sequence classification model self.sequence_model = AutoModelForSequenceClassification.from_pretrained( self.model_name, load_in_8bit=True, device_map="auto" ) # CausalLM model self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") # Seq2seq model self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained( self.seq_to_seq_name, load_in_8bit=True, device_map="auto" ) def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.base_model del self.sequence_model del self.model_8bit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def test_correct_head_class(self): r""" A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification) are kept in their native class. """ from bitsandbytes.nn import Int8Params # last param of a base model should be a linear8bit module self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Int8Params) # Other heads should be nn.Parameter self.assertTrue(self.model_8bit.lm_head.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) class MixedInt8TestPipeline(BaseMixedInt8Test): def setUp(self): super().setUp() def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.pipe gc.collect() torch.cuda.empty_cache() def test_pipeline(self): r""" The aim of this test is to verify that the mixed int8 is compatible with `pipeline` from transformers. Since we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything on pipline. """ # self._clear_cuda_cache() self.pipe = pipeline( "text-generation", model=self.model_name, model_kwargs={"device_map": "auto", "load_in_8bit": True}, max_new_tokens=self.MAX_NEW_TOKENS, ) # Real second forward pass pipeline_output = self.pipe(self.input_text) self.assertIn(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUTS) @require_torch_multi_gpu class MixedInt8TestMultiGpu(BaseMixedInt8Test): def setUp(self): super().setUp() def test_multi_gpu_loading(self): r""" This tests that the model has been loaded and can be used correctly on a multi-GPU setup. Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice """ model_parallel = AutoModelForCausalLM.from_pretrained( self.model_name, load_in_8bit=True, device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1}) # Check that inference pass works on the model encoded_input = self.tokenizer(self.input_text, return_tensors="pt") # Second real batch output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) @require_torch_multi_gpu class MixedInt8TestCpuGpu(BaseMixedInt8Test): def setUp(self): super().setUp() def check_inference_correctness(self, model): # Check that inference pass works on the model encoded_input = self.tokenizer(self.input_text, return_tensors="pt") # Check the exactness of the results output_parallel = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) # Get the generation output_text = self.tokenizer.decode(output_parallel[0], skip_special_tokens=True) self.assertIn(output_text, self.EXPECTED_OUTPUTS) def test_cpu_gpu_loading_random_device_map(self): r""" A test to check is dispatching a model on cpu & gpu works correctly using a random `device_map`. """ device_map = { "transformer.word_embeddings": 0, "transformer.word_embeddings_layernorm": 0, "lm_head": 0, "transformer.h.0": "cpu", "transformer.h.1": "cpu", "transformer.h.2": 0, "transformer.h.3": 0, "transformer.h.4": 0, "transformer.h.5": 0, "transformer.h.6": 0, "transformer.h.7": 0, "transformer.h.8": 0, "transformer.h.9": 1, "transformer.h.10": 0, "transformer.h.11": 1, "transformer.h.12": 0, "transformer.h.13": 0, "transformer.h.14": 1, "transformer.h.15": 0, "transformer.h.16": 0, "transformer.h.17": 1, "transformer.h.18": 1, "transformer.h.19": 0, "transformer.h.20": 1, "transformer.h.21": 1, "transformer.h.22": 0, "transformer.h.23": 0, "transformer.ln_f": 1, } bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True, load_in_8bit=True) model_8bit = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=device_map, quantization_config=bnb_config, ) # Check that the model has been correctly set on device 0, 1, and `cpu`. self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu"}) self.check_inference_correctness(model_8bit) def test_cpu_gpu_loading_custom_device_map(self): r""" A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`. This time the device map is more organized than the test above and uses the abstraction `transformer.h` to encapsulate all the decoder layers. """ device_map = { "transformer.word_embeddings": "cpu", "transformer.word_embeddings_layernorm": "cpu", "lm_head": "cpu", "transformer.h": 0, "transformer.ln_f": 1, } bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True, load_in_8bit=True) # Load model model_8bit = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=device_map, quantization_config=bnb_config, ) # Check that the model has been correctly set on device 0, 1, and `cpu`. self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu"}) self.check_inference_correctness(model_8bit) def test_cpu_gpu_disk_loading_custom_device_map(self): r""" A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`. This time we also add `disk` on the device_map. """ device_map = { "transformer.word_embeddings": 0, "transformer.word_embeddings_layernorm": "cpu", "lm_head": 0, "transformer.h": 1, "transformer.ln_f": "disk", } bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True, load_in_8bit=True) with tempfile.TemporaryDirectory() as tmpdirname: # Load model model_8bit = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=device_map, quantization_config=bnb_config, offload_folder=tmpdirname, ) # Check that the model has been correctly set on device 0, 1, and `cpu`. self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"}) self.check_inference_correctness(model_8bit) def test_cpu_gpu_disk_loading_custom_device_map_kwargs(self): r""" A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`. This time we also add `disk` on the device_map - using the kwargs directly instead of the quantization config """ device_map = { "transformer.word_embeddings": 0, "transformer.word_embeddings_layernorm": "cpu", "lm_head": 0, "transformer.h": 1, "transformer.ln_f": "disk", } with tempfile.TemporaryDirectory() as tmpdirname: # Load model model_8bit = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=device_map, load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True, offload_folder=tmpdirname, ) # Check that the model has been correctly set on device 0, 1, and `cpu`. self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"}) self.check_inference_correctness(model_8bit) class MixedInt8TestTraining(BaseMixedInt8Test): def setUp(self): self.model_name = "facebook/opt-350m" super().setUp() def test_training(self): if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.0"): return # Step 1: freeze all parameters model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True) self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()}) for param in model.parameters(): param.requires_grad = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability param.data = param.data.to(torch.float32) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(module)): module.q_proj = LoRALayer(module.q_proj, rank=16) module.k_proj = LoRALayer(module.k_proj, rank=16) module.v_proj = LoRALayer(module.v_proj, rank=16) # Step 3: dummy batch batch = self.tokenizer("Test batch ", return_tensors="pt").to(0) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): out = model.forward(**batch) out.logits.norm().backward() for module in model.modules(): if isinstance(module, LoRALayer): self.assertTrue(module.adapter[1].weight.grad is not None) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) elif isinstance(module, nn.Embedding): self.assertTrue(module.weight.grad is None) class MixedInt8GPT2Test(MixedInt8Test): model_name = "openai-community/gpt2-xl" EXPECTED_RELATIVE_DIFFERENCE = 1.8720077507258357 EXPECTED_OUTPUTS = set() EXPECTED_OUTPUTS.add("Hello my name is John Doe, and I'm a big fan of") EXPECTED_OUTPUTS.add("Hello my name is John Doe, and I'm a fan of the") # Expected values on a A10 EXPECTED_OUTPUTS.add("Hello my name is John Doe, and I am a member of the") def test_int8_from_pretrained(self): r""" Test whether loading a 8bit model from the Hub works as expected """ from bitsandbytes.nn import Int8Params model_id = "ybelkada/gpt2-xl-8bit" model = AutoModelForCausalLM.from_pretrained(model_id) linear = get_some_linear_layer(model) self.assertTrue(linear.weight.__class__ == Int8Params) self.assertTrue(hasattr(linear.weight, "SCB")) # generate encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
transformers/tests/quantization/bnb/test_mixed_int8.py/0
{ "file_path": "transformers/tests/quantization/bnb/test_mixed_int8.py", "repo_id": "transformers", "token_count": 15675 }
186
import argparse import logging import os import sys import time import tensorflow as tf from datasets import load_dataset from tqdm import tqdm from transformers import AutoTokenizer, TFAutoModelForSequenceClassification from transformers.modeling_tf_utils import keras from transformers.utils import is_sagemaker_dp_enabled if os.environ.get("SDP_ENABLED") or is_sagemaker_dp_enabled(): SDP_ENABLED = True os.environ["SAGEMAKER_INSTANCE_TYPE"] = "p3dn.24xlarge" import smdistributed.dataparallel.tensorflow as sdp else: SDP_ENABLED = False def fit(model, loss, opt, train_dataset, epochs, train_batch_size, max_steps=None): pbar = tqdm(train_dataset) for i, batch in enumerate(pbar): with tf.GradientTape() as tape: inputs, targets = batch outputs = model(batch) loss_value = loss(targets, outputs.logits) if SDP_ENABLED: tape = sdp.DistributedGradientTape(tape, sparse_as_dense=True) grads = tape.gradient(loss_value, model.trainable_variables) opt.apply_gradients(zip(grads, model.trainable_variables)) pbar.set_description(f"Loss: {loss_value:.4f}") if SDP_ENABLED and i == 0: sdp.broadcast_variables(model.variables, root_rank=0) sdp.broadcast_variables(opt.variables(), root_rank=0) if max_steps and i >= max_steps: break train_results = {"loss": loss_value.numpy()} return train_results def get_datasets(tokenizer, train_batch_size, eval_batch_size): # Load dataset train_dataset, test_dataset = load_dataset("imdb", split=["train", "test"]) # Preprocess train dataset train_dataset = train_dataset.map( lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True ) train_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"]) train_features = { x: train_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length]) for x in ["input_ids", "attention_mask"] } tf_train_dataset = tf.data.Dataset.from_tensor_slices((train_features, train_dataset["label"])) # Preprocess test dataset test_dataset = test_dataset.map( lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True ) test_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"]) test_features = { x: test_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length]) for x in ["input_ids", "attention_mask"] } tf_test_dataset = tf.data.Dataset.from_tensor_slices((test_features, test_dataset["label"])) if SDP_ENABLED: tf_train_dataset = tf_train_dataset.shard(sdp.size(), sdp.rank()) tf_test_dataset = tf_test_dataset.shard(sdp.size(), sdp.rank()) tf_train_dataset = tf_train_dataset.batch(train_batch_size, drop_remainder=True) tf_test_dataset = tf_test_dataset.batch(eval_batch_size, drop_remainder=True) return tf_train_dataset, tf_test_dataset if __name__ == "__main__": parser = argparse.ArgumentParser() # Hyperparameters sent by the client are passed as command-line arguments to the script. parser.add_argument("--epochs", type=int, default=3) parser.add_argument("--per_device_train_batch_size", type=int, default=16) parser.add_argument("--per_device_eval_batch_size", type=int, default=8) parser.add_argument("--model_name_or_path", type=str) parser.add_argument("--learning_rate", type=str, default=5e-5) parser.add_argument("--do_train", type=bool, default=True) parser.add_argument("--do_eval", type=bool, default=True) parser.add_argument("--output_dir", type=str) parser.add_argument("--max_steps", type=int, default=None) # Data, model, and output directories parser.add_argument("--output_data_dir", type=str, default=os.environ["SM_OUTPUT_DATA_DIR"]) parser.add_argument("--model_dir", type=str, default=os.environ["SM_MODEL_DIR"]) parser.add_argument("--n_gpus", type=str, default=os.environ["SM_NUM_GPUS"]) args, _ = parser.parse_known_args() # Set up logging logger = logging.getLogger(__name__) logging.basicConfig( level=logging.getLevelName("INFO"), handlers=[logging.StreamHandler(sys.stdout)], format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) if SDP_ENABLED: sdp.init() gpus = tf.config.experimental.list_physical_devices("GPU") for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) if gpus: tf.config.experimental.set_visible_devices(gpus[sdp.local_rank()], "GPU") # Load model and tokenizer model = TFAutoModelForSequenceClassification.from_pretrained(args.model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) # get datasets tf_train_dataset, tf_test_dataset = get_datasets( tokenizer=tokenizer, train_batch_size=args.per_device_train_batch_size, eval_batch_size=args.per_device_eval_batch_size, ) # fine optimizer and loss optimizer = keras.optimizers.Adam(learning_rate=args.learning_rate) loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True) metrics = [keras.metrics.SparseCategoricalAccuracy()] model.compile(optimizer=optimizer, loss=loss, metrics=metrics) # Training if args.do_train: # train_results = model.fit(tf_train_dataset, epochs=args.epochs, batch_size=args.train_batch_size) start_train_time = time.time() train_results = fit( model, loss, optimizer, tf_train_dataset, args.epochs, args.per_device_train_batch_size, max_steps=args.max_steps, ) end_train_time = time.time() - start_train_time logger.info("*** Train ***") logger.info(f"train_runtime = {end_train_time}") output_eval_file = os.path.join(args.output_dir, "train_results.txt") if not SDP_ENABLED or sdp.rank() == 0: with open(output_eval_file, "w") as writer: logger.info("***** Train results *****") logger.info(train_results) for key, value in train_results.items(): logger.info(f" {key} = {value}") writer.write(f"{key} = {value}\n") # Evaluation if args.do_eval and (not SDP_ENABLED or sdp.rank() == 0): result = model.evaluate(tf_test_dataset, batch_size=args.per_device_eval_batch_size, return_dict=True) logger.info("*** Evaluate ***") output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") logger.info(result) for key, value in result.items(): logger.info(f" {key} = {value}") writer.write(f"{key} = {value}\n") # Save result if SDP_ENABLED: if sdp.rank() == 0: model.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) else: model.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir)
transformers/tests/sagemaker/scripts/tensorflow/run_tf_dist.py/0
{ "file_path": "transformers/tests/sagemaker/scripts/tensorflow/run_tf_dist.py", "repo_id": "transformers", "token_count": 3191 }
187
# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import copy import inspect import json import os import random import tempfile import unittest from importlib import import_module from math import isnan from typing import List, Tuple from datasets import Dataset from transformers import is_tf_available, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import ( # noqa: F401 CaptureLogger, _tf_gpu_memory_limit, is_pt_tf_cross_test, require_tf, require_tf2onnx, slow, torch_device, ) from transformers.utils import CONFIG_NAME, GENERATION_CONFIG_NAME, logging from transformers.utils.generic import ModelOutput logger = logging.get_logger(__name__) if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TFAutoModel, TFAutoModelForSequenceClassification, TFSharedEmbeddings, ) from transformers.generation import ( TFBeamSampleDecoderOnlyOutput, TFBeamSampleEncoderDecoderOutput, TFBeamSearchDecoderOnlyOutput, TFBeamSearchEncoderDecoderOutput, TFGreedySearchDecoderOnlyOutput, TFGreedySearchEncoderDecoderOutput, TFSampleDecoderOnlyOutput, TFSampleEncoderDecoderOutput, ) from transformers.modeling_tf_utils import keras tf.config.experimental.enable_tensor_float_32_execution(False) if _tf_gpu_memory_limit is not None: gpus = tf.config.list_physical_devices("GPU") for gpu in gpus: # Restrict TensorFlow to only allocate x GB of memory on the GPUs try: tf.config.set_logical_device_configuration( gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)] ) logical_gpus = tf.config.list_logical_devices("GPU") print("Logical GPUs", logical_gpus) except RuntimeError as e: # Virtual devices must be set before GPUs have been initialized print(e) if is_torch_available(): import torch def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key: setattr(configs_no_init, key, 0.0) return configs_no_init @require_tf class TFModelTesterMixin: model_tester = None all_model_classes = () all_generative_model_classes = () test_mismatched_shapes = True test_resize_embeddings = True test_head_masking = True is_encoder_decoder = False has_attentions = True def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict: inputs_dict = copy.deepcopy(inputs_dict) if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): inputs_dict = { k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) if isinstance(v, tf.Tensor) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32) elif model_class in [ *get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING), *get_values(TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING), ]: inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in [ *get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING), *get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING), ]: inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING): inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in [ *get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING), *get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING), *get_values(TF_MODEL_FOR_MASKED_LM_MAPPING), *get_values(TF_MODEL_FOR_PRETRAINING_MAPPING), *get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING), *get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING), ] and "labels" in dict(inspect.signature(model_class.call).parameters): inputs_dict["labels"] = tf.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32 ) elif model_class in get_values(TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING): num_patches = self.model_tester.image_size // self.model_tester.patch_size inputs_dict["bool_masked_pos"] = tf.zeros( (self.model_tester.batch_size, num_patches**2), dtype=tf.int32 ) elif model_class in get_values(TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING): batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape inputs_dict["labels"] = tf.zeros((self.model_tester.batch_size, height, width), dtype=tf.int32) elif model_class.__name__.endswith("ForCTC"): # When we have enough CTC models for an AutoClass, we should use their mapping instead of name checks inputs_dict["labels"] = tf.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32 ) return inputs_dict def test_initialization(self): pass def test_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=False) # the config file (and the generation config file, if it can generate) should be saved self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME))) self.assertEqual( model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME)) ) model = model_class.from_pretrained(tmpdirname) after_outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assert_outputs_same(after_outputs, outputs) def test_save_load_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) model_config = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(model_config) new_model = model_class.from_config(model.get_config()) # make sure it also accepts a normal config _ = model_class.from_config(model.config) _ = new_model(self._prepare_for_class(inputs_dict, model_class)) # Build model new_model.set_weights(model.get_weights()) after_outputs = new_model(self._prepare_for_class(inputs_dict, model_class)) self.assert_outputs_same(after_outputs, outputs) @slow def test_saved_model_creation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = False config.output_attentions = False if hasattr(config, "use_cache"): config.use_cache = False model_class = self.all_model_classes[0] class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) model(class_inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=True) saved_model_dir = os.path.join(tmpdirname, "saved_model", "1") self.assertTrue(os.path.exists(saved_model_dir)) def test_prepare_serving_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = self.has_attentions for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(inputs) serving_outputs = model.serving_output(outputs) for k, v in serving_outputs.items(): # Check that we have one of three possible outputs: None, tuple of tensors or a tensor if isinstance(v, tuple): self.assertTrue(all(isinstance(elem, tf.Tensor) for elem in v)) elif v is not None: self.assertIsInstance(v, tf.Tensor) else: self.assertIsNone(v) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = [ "input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] expected_arg_names.extend(["decoder_position_ids"] if "decoder_position_ids" in arg_names else []) expected_arg_names.extend( ["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else [] ) expected_arg_names.extend( ["cross_attn_head_mask", "encoder_outputs"] if "cross_attn_head_mask" in arg_names else ["encoder_outputs"] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) else: expected_arg_names = ["input_ids"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_onnx_compliancy(self): if not self.test_onnx: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() INTERNAL_OPS = [ "Assert", "AssignVariableOp", "EmptyTensorList", "ReadVariableOp", "ResourceGather", "TruncatedNormal", "VarHandleOp", "VarIsInitializedOp", ] onnx_ops = [] with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f: onnx_opsets = json.load(f)["opsets"] for i in range(1, self.onnx_min_opset + 1): onnx_ops.extend(onnx_opsets[str(i)]) for model_class in self.all_model_classes: model_op_names = set() with tf.Graph().as_default() as g: model = model_class(config) model.build_in_name_scope() for op in g.get_operations(): model_op_names.add(op.node_def.op) model_op_names = sorted(model_op_names) incompatible_ops = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(op) self.assertEqual(len(incompatible_ops), 0, incompatible_ops) # `tf2onnx` issue page: https://github.com/onnx/tensorflow-onnx/issues/2172 # TODO: undo skip once a fix is done in `tf2onnx` @unittest.skip("`tf2onnx` broke with TF 2.13") @require_tf2onnx @slow def test_onnx_runtime_optimize(self): if not self.test_onnx: return import onnxruntime import tf2onnx config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:2]: model = model_class(config) model.build_in_name_scope() onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset) onnxruntime.InferenceSession(onnx_model_proto.SerializeToString()) def test_keras_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() tf_main_layer_classes = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__),) for module_member_name in dir(module) if module_member_name.endswith("MainLayer") # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")] for module_member in (getattr(module, module_member_name),) if isinstance(module_member, type) and keras.layers.Layer in module_member.__bases__ and getattr(module_member, "_keras_serializable", False) } for main_layer_class in tf_main_layer_classes: # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter if "T5" in main_layer_class.__name__: # Take the same values than in TFT5ModelTester for this shared layer shared = TFSharedEmbeddings(99, 32, name="shared") config.use_cache = inputs_dict.pop("use_cache", None) main_layer = main_layer_class(config, embed_tokens=shared) else: main_layer = main_layer_class(config) symbolic_inputs = { name: keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items() } model = keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs)) outputs = model(inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "keras_model.h5") model.save(filepath) if "T5" in main_layer_class.__name__: model = keras.models.load_model( filepath, custom_objects={ main_layer_class.__name__: main_layer_class, "TFSharedEmbeddings": TFSharedEmbeddings, }, ) else: model = keras.models.load_model( filepath, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(model, keras.Model) after_outputs = model(inputs_dict) self.assert_outputs_same(after_outputs, outputs) def assert_outputs_same(self, after_outputs, outputs): # Make sure we don't have nans if isinstance(after_outputs, tf.Tensor): out_1 = after_outputs.numpy() elif isinstance(after_outputs, dict): out_1 = after_outputs[list(after_outputs.keys())[0]].numpy() else: out_1 = after_outputs[0].numpy() out_2 = outputs[0].numpy() self.assertEqual(out_1.shape, out_2.shape) out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) # Don't copy this method to model specific test file! # TODO: remove this method once the issues are all fixed! def _make_attention_mask_non_null(self, inputs_dict): """Make sure no sequence has all zeros as attention mask""" for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]: if k in inputs_dict: attention_mask = inputs_dict[k] # Make sure no all 0s attention masks - to avoid failure at this moment. # Put `1` at the beginning of sequences to make it still work when combining causal attention masks. # TODO: remove this line once a fix regarding large negative values for attention mask is done. attention_mask = tf.concat( [tf.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], axis=-1 ) # Here we make the first sequence with all 0s as attention mask. # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks. # TODO: enable this block once the large negative values thing is cleaned up. # (see https://github.com/huggingface/transformers/issues/14859) # attention_mask = tf.concat( # [ # tf.zeros_like(attention_mask[:1], dtype=tf.int32), # tf.cast(attention_mask[1:], dtype=tf.int32) # ], # axis=0 # ) inputs_dict[k] = attention_mask # Don't copy this method to model specific test file! # TODO: remove this method once the issues are all fixed! def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class): """For temporarily ignoring some failed test cases (issues to be fixed)""" tf_keys = {k for k, v in tf_outputs.items() if v is not None} pt_keys = {k for k, v in pt_outputs.items() if v is not None} key_differences = tf_keys.symmetric_difference(pt_keys) if model_class.__name__ in [ "TFFlaubertWithLMHeadModel", "TFFunnelForPreTraining", "TFElectraForPreTraining", "TFXLMWithLMHeadModel", ]: for k in key_differences: if k in ["loss", "losses"]: tf_keys.discard(k) pt_keys.discard(k) elif model_class.__name__.startswith("TFGPT2"): # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple. tf_keys.discard("past_key_values") pt_keys.discard("past_key_values") # create new outputs from the remaining fields new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys}) new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys}) return new_tf_outputs, new_pt_outputs def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None): """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way. Args: model_class: The class of the model that is currently testing. For example, `TFBertModel`, TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative error messages. name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc. attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element being a named field in the output. """ self.assertEqual(type(name), str) if attributes is not None: self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`") # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`). if isinstance(tf_outputs, ModelOutput): self.assertTrue( isinstance(pt_outputs, ModelOutput), f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is", ) # Don't copy this block to model specific test file! # TODO: remove this method and this line after issues are fixed tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class) tf_keys = [k for k, v in tf_outputs.items() if v is not None] pt_keys = [k for k, v in pt_outputs.items() if v is not None] self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch") # convert to the case of `tuple` # appending each key to the current (string) `names` attributes = tuple([f"{name}.{k}" for k in tf_keys]) self.check_pt_tf_outputs( tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes ) # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.) elif type(tf_outputs) in [tuple, list]: self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch") self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch") if attributes is not None: # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`) self.assertEqual( len(attributes), len(tf_outputs), f"{name}: The tuple `names` should have the same length as `tf_outputs`", ) else: # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `names` attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))]) for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes): self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr) elif isinstance(tf_outputs, tf.Tensor): self.assertTrue( isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is" ) tf_outputs = tf_outputs.numpy() pt_outputs = pt_outputs.detach().to("cpu").numpy() self.assertEqual( tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch" ) # deal with NumPy's scalars to make replacing nan values by 0 work. if np.isscalar(tf_outputs): tf_outputs = np.array([tf_outputs]) pt_outputs = np.array([pt_outputs]) tf_nans = np.isnan(tf_outputs) pt_nans = np.isnan(pt_outputs) pt_outputs[tf_nans] = 0 tf_outputs[tf_nans] = 0 pt_outputs[pt_nans] = 0 tf_outputs[pt_nans] = 0 max_diff = np.amax(np.abs(tf_outputs - pt_outputs)) self.assertLessEqual(max_diff, tol, f"{name}: Difference between torch and tf is {max_diff} (>= {tol}).") else: raise ValueError( "`tf_outputs` should be an instance of `tf.Tensor`, a `tuple`, or an instance of `tf.Tensor`. Got" f" {type(tf_outputs)} instead." ) def prepare_pt_inputs_from_tf_inputs(self, tf_inputs_dict): pt_inputs_dict = {} for name, key in tf_inputs_dict.items(): if isinstance(key, bool): pt_inputs_dict[name] = key elif name == "input_values": pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32) elif name == "pixel_values": pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32) elif name == "input_features": pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32) # other general float inputs elif tf_inputs_dict[name].dtype.is_floating: pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32) else: pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long) return pt_inputs_dict def check_pt_tf_models(self, tf_model, pt_model, tf_inputs_dict): pt_inputs_dict = self.prepare_pt_inputs_from_tf_inputs(tf_inputs_dict) # send pytorch inputs to the correct device pt_inputs_dict = { k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items() } # send pytorch model to the correct device pt_model.to(torch_device) # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences pt_model.eval() with torch.no_grad(): pt_outputs = pt_model(**pt_inputs_dict) tf_outputs = tf_model(tf_inputs_dict) # tf models returned loss is usually a tensor rather than a scalar. # (see `hf_compute_loss`: it uses `keras.losses.Reduction.NONE`) # Change it here to a scalar to match PyTorch models' loss tf_loss = getattr(tf_outputs, "loss", None) if tf_loss is not None: tf_outputs.loss = tf.math.reduce_mean(tf_loss) self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(tf_model)) @is_pt_tf_cross_test def test_pt_tf_model_equivalence(self, allow_missing_keys=False): import transformers for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Output all for aggressive testing config.output_hidden_states = True config.output_attentions = self.has_attentions # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`. # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it. self._make_attention_mask_non_null(inputs_dict) pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) tf_model = model_class(config) pt_model = pt_model_class(config) tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class) tf_inputs_dict_with_labels = self._prepare_for_class( inputs_dict, model_class, # Not all models accept "labels" in the forward pass (yet :) ) return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False, ) # For some models (e.g. base models), there is no label returned. # Set the input dict to `None` to avoid check outputs twice for the same input dicts. if not set(tf_inputs_dict_with_labels.keys()).symmetric_difference(tf_inputs_dict.keys()): tf_inputs_dict_with_labels = None # Check we can load pt model in tf and vice-versa with model => model functions tf_model = transformers.load_pytorch_model_in_tf2_model( tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys ) pt_model = transformers.load_tf2_model_in_pytorch_model( pt_model, tf_model, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) # check with `labels` if tf_inputs_dict_with_labels: self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels) # Check we can load pt model in tf and vice-versa with checkpoint => model functions with tempfile.TemporaryDirectory() as tmpdirname: pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") torch.save(pt_model.state_dict(), pt_checkpoint_path) tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys ) tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") tf_model.save_weights(tf_checkpoint_path) pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) # check with `labels` if tf_inputs_dict_with_labels: self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels) @slow def test_compile_tf_model(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:2]: # Prepare our model model = model_class(config) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes functional_inputs = { key: keras.Input(shape=val.shape[1:], dtype=val.dtype, name=key) for key, val in model.input_signature.items() if key in model.dummy_inputs } outputs_dict = model(functional_inputs) hidden_states = outputs_dict[0] # Compile extended model functional_model = keras.Model(inputs=functional_inputs, outputs=hidden_states) model_out = functional_model.predict(model.dummy_inputs) # Check we can pass inputs with the Keras API self.assertTrue(model_out is not None) with tempfile.TemporaryDirectory() as tmpdirname: functional_model.save(tmpdirname) # Ensure we can save/export the whole functional model def test_keyword_and_dict_args(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) outputs_dict = model(inputs) inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) outputs_keywords = model(**inputs_keywords) output_dict = outputs_dict[0].numpy() output_keywords = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) def test_attention_outputs(self): if not self.has_attentions: self.skipTest(reason="Model does not output attentions") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) def check_decoder_attentions_output(outputs): out_len = len(outputs) self.assertEqual(min(out_len % 2, out_len % 5), 0) # differentiation due to newly added cross_attentions decoder_attentions = outputs.decoder_attentions self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) def check_encoder_attentions_output(outputs): attentions = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True config.output_hidden_states = False model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) out_len = len(outputs) self.assertEqual(config.output_hidden_states, False) check_encoder_attentions_output(outputs) if self.is_encoder_decoder: model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(config.output_hidden_states, False) check_decoder_attentions_output(outputs) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(config.output_hidden_states, False) check_encoder_attentions_output(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True config.output_hidden_states = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs)) self.assertEqual(model.config.output_hidden_states, True) check_encoder_attentions_output(outputs) def test_headmasking(self): if not self.test_head_masking: return random.Random().seed(42) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() random.Random().seed() inputs_dict["output_attentions"] = True config.output_hidden_states = True configs_no_init = _config_zero_init(config) # To be sure we have no Nan for model_class in self.all_model_classes: model = model_class(config=configs_no_init) # Prepare head_mask def prepare_layer_head_mask(i, attention_heads, num_hidden_layers): if i == 0: return tf.concat( (tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0 ) elif i == num_hidden_layers - 1: return tf.concat( (tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0 ) else: return tf.ones(attention_heads, dtype=tf.float32) head_mask = tf.stack( [ prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers) for i in range(config.num_hidden_layers) ], 0, ) inputs = self._prepare_for_class(inputs_dict, model_class).copy() inputs["head_mask"] = head_mask if model.config.is_encoder_decoder: signature = inspect.signature(model.call) arg_names = [*signature.parameters.keys()] if "decoder_head_mask" in arg_names: # necessary diferentiation because of T5 model inputs["decoder_head_mask"] = head_mask if "cross_attn_head_mask" in arg_names: inputs["cross_attn_head_mask"] = head_mask outputs = model(**inputs, return_dict=True) def check_attentions_validity(attentions): # Remove Nan for t in attentions: self.assertLess( (tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy() ) # Check we don't have more than 25% nans (arbitrary) attentions = [ tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions ] # remove them (the test is less complete) self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0) self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0) if len(attentions) > 2: # encoder-decodere models have only 2 layers in each modules self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0) self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0) self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0) if model.config.is_encoder_decoder: check_attentions_validity(outputs.encoder_attentions) check_attentions_validity(outputs.decoder_attentions) if "cross_attn_head_mask" in arg_names: check_attentions_validity(outputs.cross_attentions) else: check_attentions_validity(outputs.attentions) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_hidden_states_output(config, inputs_dict, model_class): model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) if model.config.is_encoder_decoder: encoder_hidden_states = outputs.encoder_hidden_states decoder_hidden_states = outputs.decoder_hidden_states self.assertEqual(config.output_attentions, False) self.assertEqual(len(encoder_hidden_states), expected_num_layers) self.assertListEqual( list(encoder_hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) self.assertEqual(len(decoder_hidden_states), expected_num_layers) self.assertListEqual( list(decoder_hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) else: hidden_states = outputs.hidden_states self.assertEqual(config.output_attentions, False) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(config, inputs_dict, model_class) del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(config, inputs_dict, model_class) def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() text_in_text_out_models = ( get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING) + get_values(TF_MODEL_FOR_MASKED_LM_MAPPING) + get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING) ) speech_in_text_out_models = get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING) for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), keras.layers.Layer) legacy_text_in_text_out = model.get_lm_head() is not None if model_class in text_in_text_out_models or legacy_text_in_text_out: out_embeddings = model.get_output_embeddings() self.assertIsInstance(out_embeddings, keras.layers.Layer) bias = model.get_bias() if bias is not None: self.assertIsInstance(bias, dict) for _, v in bias.items(): self.assertIsInstance(v, tf.Variable) elif model_class in speech_in_text_out_models: out_embeddings = model.get_output_embeddings() self.assertIsInstance(out_embeddings, keras.layers.Layer) bias = model.get_bias() self.assertIsNone(bias) else: out_embeddings = model.get_output_embeddings() assert out_embeddings is None bias = model.get_bias() self.assertIsNone(bias) def test_determinism(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) first, second = ( model(self._prepare_for_class(inputs_dict, model_class), training=False)[0], model(self._prepare_for_class(inputs_dict, model_class), training=False)[0], ) out_1 = first.numpy() out_2 = second.numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(tuple_object, dict_object)), msg=( "Tuple and dict output are not equal. Difference:" f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}" ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) if self.has_attentions: tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) # Not all models accept "labels" in the forward pass (yet :) ) if "labels" in inspect.signature(model.call).parameters.keys(): tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) if self.has_attentions: tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence( model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} ) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) inputs = copy.deepcopy(inputs_dict) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) if not self.is_encoder_decoder: inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids) else: inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids) inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids) inputs = self._prepare_for_class(inputs, model_class) model(inputs) def test_numpy_arrays_inputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def prepare_numpy_arrays(inputs_dict): inputs_np_dict = {} for k, v in inputs_dict.items(): if tf.is_tensor(v): inputs_np_dict[k] = v.numpy() else: inputs_np_dict[k] = np.array(k) return inputs_np_dict for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) inputs_np = prepare_numpy_arrays(inputs) output_for_dict_input = model(inputs_np) output_for_kw_input = model(**inputs_np) self.assert_outputs_same(output_for_dict_input, output_for_kw_input) def test_valid_input_signature_and_dummies(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) call_args = inspect.signature(model.call).parameters for key in model.input_signature: self.assertIn(key, call_args) for key in model.dummy_inputs: self.assertIn(key, call_args) def test_resize_token_embeddings(self): # TODO (joao): after the embeddings refactor is complete, rework this test so as to rely exclusively on # keras.layers.Embedding if not self.test_resize_embeddings: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(model, embedding_layer): if isinstance(embedding_layer, keras.layers.Embedding): # builds the embeddings layer model.build_in_name_scope() return embedding_layer.embeddings else: return model._get_word_embedding_weight(embedding_layer) for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10, None]: # build the embeddings model = model_class(config=copy.deepcopy(config)) # `resize_token_embeddings` mutates `config` old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings()) old_bias = model.get_bias() old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings()) # reshape the embeddings model.resize_token_embeddings(size) new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings()) new_bias = model.get_bias() new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings()) # check that the resized embeddings size matches the desired size. assert_size = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0], assert_size) # check that weights remain the same after resizing models_equal = True for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: models_equal = False self.assertTrue(models_equal) if old_bias is not None and new_bias is not None: for old_weight, new_weight in zip(old_bias.values(), new_bias.values()): self.assertEqual(new_weight.shape[-1], assert_size) models_equal = True for p1, p2 in zip(tf.squeeze(old_weight), tf.squeeze(new_weight)): if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: models_equal = False self.assertTrue(models_equal) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0], assert_size) self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1]) models_equal = True for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: models_equal = False self.assertTrue(models_equal) # TODO (Joao): this test is not slow, but it's tagged as such to keep track of failures on the scheduled CI runs, # while passing push CI. Fix the underlying issues and remove the tag. @slow def test_save_load_after_resize_token_embeddings(self): if not self.test_resize_embeddings: return config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # create a model with resized (expended) embeddings new_tokens_size = 10 old_total_size = config.vocab_size new_total_size = old_total_size + new_tokens_size model = model_class(config=copy.deepcopy(config)) # `resize_token_embeddings` mutates `config` model.build_in_name_scope() model.resize_token_embeddings(new_total_size) # fetch the output for an input exclusively made of new members of the vocabulary inputs_dict = copy.deepcopy(original_inputs_dict) ids_feat_name = None if "input_ids" in inputs_dict: ids_feat_name = "input_ids" elif "decoder_input_ids" in inputs_dict: ids_feat_name = "decoder_input_ids" else: assert False, "No input ids feature found in the inputs dict" new_vocab_input_ids = ids_tensor(inputs_dict[ids_feat_name].shape, new_tokens_size) new_vocab_input_ids += old_total_size inputs_dict[ids_feat_name] = new_vocab_input_ids if "input_ids" in inputs_dict: inputs_dict["input_ids"] = new_vocab_input_ids if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"] = new_vocab_input_ids prepared_inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**prepared_inputs) # save and load the model with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=False) model = model_class.from_pretrained(tmpdirname) restored_model_outputs = model(**prepared_inputs) # check that the output for the restored model is the same self.assert_outputs_same(restored_model_outputs, outputs) @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, reason="This test always passes on CPU.", ) def test_embeddings_out_of_bounds_raise_exception(self): # TF embeddings layers don't raise an exception when an index is out of bounds on GPU, so we manually raise it. # This test should only fail on GPU for models where we haven't added the safety check. if not self.test_resize_embeddings: return config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config=config) inputs_dict = copy.deepcopy(original_inputs_dict) if "input_ids" in inputs_dict: inputs_dict["input_ids"] = inputs_dict["input_ids"] * int(1e9) if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"] = inputs_dict["decoder_input_ids"] * int(1e9) prepared_inputs = self._prepare_for_class(inputs_dict, model_class) with self.assertRaises(tf.errors.InvalidArgumentError): model(**prepared_inputs) def test_lm_head_model_random_no_beam_search_generate(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict.get("input_ids", None) # iterate over all generative models for model_class in self.all_generative_model_classes: model = model_class(config) if config.bos_token_id is None: # if bos token id is not defined model needs input_ids with self.assertRaises(ValueError): model.generate(do_sample=True, max_length=5) # num_return_sequences = 1 self._check_generated_ids(model.generate(input_ids, do_sample=True)) elif model_class.__name__ not in ["TFSpeech2TextForConditionalGeneration"]: # Models with non-text inputs won't work here; num_return_sequences = 1 self._check_generated_ids(model.generate(do_sample=True, max_length=5)) with self.assertRaises(ValueError): # generating multiple sequences when no beam search generation # is not allowed as it would always generate the same sequences model.generate(input_ids, do_sample=False, num_return_sequences=2) # num_return_sequences > 1, sample self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2)) # check bad words tokens language generation # create list of 1-seq bad token and list of 2-seq of bad tokens bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] output_tokens = model.generate( input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2 ) # only count generated tokens generated_ids = output_tokens[:, input_ids.shape[-1] :] self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) def test_lm_head_model_no_beam_search_generate_dict_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict.get("input_ids", None) if input_ids is None: input_ids = inputs_dict.get("input_features", None) # iterate over all generative models for model_class in self.all_generative_model_classes: model = model_class(config) output_greedy = model.generate( input_ids, do_sample=False, output_scores=True, output_hidden_states=True, output_attentions=True, return_dict_in_generate=True, ) output_sample = model.generate( input_ids, do_sample=True, output_scores=True, output_hidden_states=True, output_attentions=True, return_dict_in_generate=True, ) if model.config.is_encoder_decoder: self.assertIsInstance(output_greedy, TFGreedySearchEncoderDecoderOutput) self.assertIsInstance(output_sample, TFSampleEncoderDecoderOutput) else: self.assertIsInstance(output_greedy, TFGreedySearchDecoderOnlyOutput) self.assertIsInstance(output_sample, TFSampleDecoderOnlyOutput) def test_lm_head_model_random_beam_search_generate(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict.get("input_ids", None) for model_class in self.all_generative_model_classes: model = model_class(config) if config.bos_token_id is None: # if bos token id is not defined model needs input_ids, num_return_sequences = 1 self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2)) else: # num_return_sequences = 1 self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2)) with self.assertRaises(ValueError): # generating more sequences than having beams leads is not possible model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2) # num_return_sequences > 1, sample self._check_generated_ids( model.generate( input_ids, do_sample=True, num_beams=2, num_return_sequences=2, ) ) # num_return_sequences > 1, greedy self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2)) # check bad words tokens language generation # create list of 1-seq bad token and list of 2-seq of bad tokens bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] output_tokens = model.generate( input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2 ) # only count generated tokens generated_ids = output_tokens[:, input_ids.shape[-1] :] self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) def test_lm_head_model_beam_search_generate_dict_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict.get("input_ids", None) if input_ids is None: input_ids = inputs_dict.get("input_features", None) # iterate over all generative models for model_class in self.all_generative_model_classes: model = model_class(config) output_beam_search = model.generate( input_ids, num_beams=2, do_sample=False, output_scores=True, output_hidden_states=True, output_attentions=True, return_dict_in_generate=True, ) output_beam_sample = model.generate( input_ids, num_beams=2, do_sample=True, output_scores=True, output_hidden_states=True, output_attentions=True, return_dict_in_generate=True, ) if model.config.is_encoder_decoder: self.assertIsInstance(output_beam_search, TFBeamSearchEncoderDecoderOutput) self.assertIsInstance(output_beam_sample, TFBeamSampleEncoderDecoderOutput) else: self.assertIsInstance(output_beam_search, TFBeamSearchDecoderOnlyOutput) self.assertIsInstance(output_beam_sample, TFBeamSampleDecoderOnlyOutput) def test_loss_computation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) # The number of elements in the loss should be the same as the number of elements in the label prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) added_label_names = sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True) if not added_label_names: continue # This test is only for models with easily-separable labels added_label = prepared_for_class[added_label_names[0]] expected_loss_size = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) possible_input_names = {"input_ids", "pixel_values", "input_features", "input_values"} input_name = possible_input_names.intersection(set(prepared_for_class)).pop() model_input = prepared_for_class.pop(input_name) outputs = model(model_input, **prepared_for_class) if not isinstance(outputs, ModelOutput) or not hasattr(outputs, "loss"): continue loss = outputs.loss self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss when we mask some positions prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) possible_input_names = {"input_ids", "pixel_values", "input_features", "input_values"} input_name = possible_input_names.intersection(set(prepared_for_class)).pop() model_input = prepared_for_class.pop(input_name) if "labels" in prepared_for_class: labels = prepared_for_class["labels"].numpy() if len(labels.shape) > 1 and labels.shape[1] != 1: labels[0] = -100 prepared_for_class["labels"] = tf.convert_to_tensor(labels) loss = model(model_input, **prepared_for_class)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) self.assertTrue(not np.any(np.isnan(loss.numpy()))) # Test that model correctly compute the loss with a dict prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) loss = model(prepared_for_class)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss with a tuple prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) # Get keys that were added with the _prepare_for_class function label_keys = prepared_for_class.keys() - inputs_dict.keys() signature = inspect.signature(model.call).parameters signature_names = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple tuple_index_mapping = {0: input_name} for label_key in label_keys: label_key_index = signature_names.index(label_key) tuple_index_mapping[label_key_index] = label_key sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple list_input = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: list_input[index] = prepared_for_class[value] tuple_input = tuple(list_input) # Send to model loss = model(tuple_input[:-1])[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) def check_keras_fit_results(self, val_loss1, val_loss2, atol=1e-2, rtol=1e-3): self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol)) @slow def test_keras_fit(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) # Test that model correctly compute the loss with kwargs prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) # We also remove "return_loss" as this is covered by the train_step when using fit() prepared_for_class = { key: val for key, val in prepared_for_class.items() if key not in ("head_mask", "decoder_head_mask", "cross_attn_head_mask", "return_loss") } if "labels" in prepared_for_class and "decoder_input_ids" in prepared_for_class: del prepared_for_class["decoder_input_ids"] accuracy_classes = [ "ForPreTraining", "ForCausalLM", "ForMaskedLM", "ForQuestionAnswering", "ForMultipleChoice", "ForSequenceClassification", "ForTokenClassification", "ForNextSentencePrediction", "LMHeadModel", ] for accuracy_class in accuracy_classes: if model.__class__.__name__.endswith(accuracy_class): metrics = [keras.metrics.SparseCategoricalAccuracy()] break else: metrics = [] if hasattr(self.model_tester, "batch_size"): sample_weight = tf.convert_to_tensor([0.5] * self.model_tester.batch_size, dtype=tf.float32) else: sample_weight = None # Build the model so we can get some constant weights and check outputs outputs = model(prepared_for_class) if getattr(outputs, "loss", None) is None: continue model_weights = model.get_weights() # Run eagerly to save some expensive compilation times model.compile(optimizer=keras.optimizers.SGD(0.0), run_eagerly=True, metrics=metrics) # Make sure the model fits without crashing regardless of where we pass the labels history1 = model.fit( prepared_for_class, validation_data=prepared_for_class, sample_weight=sample_weight, steps_per_epoch=1, validation_steps=1, shuffle=False, ) val_loss1 = history1.history["val_loss"][0] self.assertTrue(not isnan(val_loss1)) accuracy1 = {key: val[0] for key, val in history1.history.items() if key.endswith("accuracy")} possible_label_cols = { "labels", "label", "label_ids", "start_positions", "start_position", "end_positions", "end_position", "next_sentence_label", } label_names = possible_label_cols.intersection(set(prepared_for_class)) if len(label_names) == 0: # The next tests only make sense for models with separate inputs and labels, and do not make # sense for models that don't clearly distinguish between the two (e.g. CLIP) return labels = {key: val for key, val in prepared_for_class.items() if key in label_names} inputs_minus_labels = {key: val for key, val in prepared_for_class.items() if key not in label_names} self.assertGreater(len(inputs_minus_labels), 0) # We reinitialize the model here even though our learning rate was zero # because BatchNorm updates weights by means other than gradient descent. model.set_weights(model_weights) history2 = model.fit( inputs_minus_labels, labels, validation_data=(inputs_minus_labels, labels), sample_weight=sample_weight, steps_per_epoch=1, validation_steps=1, shuffle=False, ) val_loss2 = history2.history["val_loss"][0] self.assertTrue(not isnan(val_loss2)) accuracy2 = {key: val[0] for key, val in history2.history.items() if key.endswith("accuracy")} self.check_keras_fit_results(val_loss1, val_loss2) self.assertEqual(history1.history.keys(), history2.history.keys()) for key in history1.history.keys(): if not key.startswith("val_"): self.assertTrue("val_" + key in history1.history.keys(), "Outputs differ in train/test step!") if metrics: self.assertTrue(len(accuracy1) == len(accuracy2) > 0, "Missing metrics!") def test_int_support(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: prepared_for_class = self._prepare_for_class( inputs_dict.copy(), model_class, return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False, ) if not any( tensor.dtype.is_integer for tensor in prepared_for_class.values() if isinstance(tensor, tf.Tensor) ): return # No integer inputs means no need for this test prepared_for_class = { key: tf.cast(tensor, tf.int64) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor for key, tensor in prepared_for_class.items() } model = model_class(config) model(**prepared_for_class) # No assertion, we're just checking this doesn't throw an error int32_prepared_for_class = { key: tf.cast(tensor, tf.int32) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor for key, tensor in prepared_for_class.items() } model(**int32_prepared_for_class) # No assertion, we're just checking this doesn't throw an error # After testing that the model accepts all int inputs, confirm that its dummies are int32 for key, tensor in model.dummy_inputs.items(): self.assertTrue( isinstance(tensor, tf.Tensor) or keras.backend.is_keras_tensor(tensor), "Dummy inputs should be tf.Tensor!", ) if tensor.dtype.is_integer: self.assertTrue(tensor.dtype == tf.int32, "Integer dummy inputs should be tf.int32!") # Also confirm that the input_signature uses int32 for key, tensor_spec in model.input_signature.items(): if tensor_spec.dtype.is_integer: self.assertTrue(tensor_spec.dtype == tf.int32, "Input signatures should use tf.int32 for ints!") def test_generate_with_headmasking(self): attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"] config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_generative_model_classes: model = model_class(config) # We want to test only encoder-decoder models if not config.is_encoder_decoder: continue head_masking = { "head_mask": tf.zeros((config.encoder_layers, config.encoder_attention_heads)), "decoder_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)), "cross_attn_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)), } signature = inspect.signature(model.call) if set(head_masking.keys()) < {*signature.parameters.keys()}: continue for attn_name, (name, mask) in zip(attention_names, head_masking.items()): out = model.generate( inputs_dict["input_ids"], num_beams=1, max_length=inputs_dict["input_ids"] + 5, output_attentions=True, return_dict_in_generate=True, **{name: mask}, ) # We check the state of decoder_attentions and cross_attentions just from the last step attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([tf.reduce_sum(w).numpy() for w in attn_weights]), 0.0) def test_load_with_mismatched_shapes(self): if not self.test_mismatched_shapes: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if model_class not in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING): continue with self.subTest(msg=f"Testing {model_class}"): with tempfile.TemporaryDirectory() as tmp_dir: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) _ = model(**inputs) model.save_pretrained(tmp_dir) # Fails when we don't set ignore_mismatched_sizes=True with self.assertRaises(ValueError): new_model = TFAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42) with self.assertRaises(ValueError): new_model_without_prefix = TFAutoModel.from_pretrained(tmp_dir, vocab_size=10) logger = logging.get_logger("transformers.modeling_tf_utils") with CaptureLogger(logger) as cl: new_model = TFAutoModelForSequenceClassification.from_pretrained( tmp_dir, num_labels=42, ignore_mismatched_sizes=True ) self.assertIn("the shapes did not match", cl.out) logits = new_model(**inputs).logits self.assertEqual(logits.shape[1], 42) with CaptureLogger(logger) as cl: new_model_without_prefix = TFAutoModel.from_pretrained( tmp_dir, vocab_size=10, ignore_mismatched_sizes=True ) self.assertIn("the shapes did not match", cl.out) # Although Tf models always have a prefix pointing to `MainLayer`, # we still add this "without prefix" test to keep a consistency between tf and pt tests. input_ids = ids_tensor((2, 8), 10) if self.is_encoder_decoder: new_model_without_prefix(input_ids, decoder_input_ids=input_ids) else: new_model_without_prefix(input_ids) def test_model_main_input_name(self): for model_class in self.all_model_classes: model_signature = inspect.signature(getattr(model_class, "call")) # The main input is the name of the argument after `self` observed_main_input_name = list(model_signature.parameters.keys())[1] self.assertEqual(model_class.main_input_name, observed_main_input_name) def test_dataset_conversion(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=False) if "labels" in tf_inputs_dict: return # This is some kinda funky decoder model that needs labels in its forward pass tf_inputs_dict = { key: val for key, val in tf_inputs_dict.items() if "head_mask" not in key and isinstance(val, tf.Tensor) } tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0] # Use a random other tensor input_dataset = Dataset.from_dict(tf_inputs_dict) tf_dataset = model.prepare_tf_dataset( input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False ) test_batch = next(iter(tf_dataset)) if isinstance(test_batch, tf.Tensor): self.assertEqual(len(test_batch), len(input_dataset)) # Assert we didn't lose any data elif isinstance(test_batch, dict): # Assert we discarded the unwanted extra column but kept everything else self.assertEqual(len(test_batch), len(input_dataset.features) - 1) self.assertNotIn("extra_unwanted_column", test_batch) for tensor in test_batch.values(): self.assertTrue(isinstance(tensor, tf.Tensor)) self.assertEqual(len(tensor), len(input_dataset)) # Assert we didn't lose any data model(test_batch, training=False) if "labels" in inspect.signature(model_class.call).parameters.keys(): tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=True) if "labels" not in tf_inputs_dict: return # This model isn't giving us labels after all, don't try training with it tf_inputs_dict = {key: val for key, val in tf_inputs_dict.items() if "head_mask" not in key} tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0] # Use a random other tensor input_dataset = Dataset.from_dict(tf_inputs_dict) tf_dataset = model.prepare_tf_dataset( input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False ) test_batch, test_batch_labels = next(iter(tf_dataset)) self.assertGreater(len(test_batch_labels), 0) # Assert the labels are present feature_columns = 1 if isinstance(test_batch, tf.Tensor) else len(test_batch) label_columns = 1 if isinstance(test_batch_labels, tf.Tensor) else len(test_batch_labels) # Assert we discarded the unwanted extra column but kept everything else self.assertEqual(feature_columns + label_columns, len(input_dataset.features) - 1) if isinstance(test_batch, dict): self.assertNotIn("extra_unwanted_column", test_batch) if isinstance(test_batch_labels, dict): self.assertNotIn("extra_unwanted_column", test_batch_labels) model.compile(optimizer="sgd", run_eagerly=True) model.train_on_batch(test_batch, test_batch_labels) def _test_xla_generate(self, **generate_kwargs): def _generate_and_check_results(model, inputs_dict): if "input_ids" in inputs_dict: inputs = inputs_dict["input_ids"] # make sure there are no pad tokens in prompt, which may trigger unwanted behavior if model.generation_config.pad_token_id is not None: if config.pad_token_id == 0: new_pad_token = model.generation_config.pad_token_id + 1 else: new_pad_token = model.generation_config.pad_token_id - 1 else: new_pad_token = None inputs = tf.where(inputs != model.generation_config.pad_token_id, inputs, new_pad_token) elif "input_features" in inputs_dict: inputs = inputs_dict["input_features"] else: raise ValueError("No valid generate input found in inputs_dict") generated = model.generate(inputs, **generate_kwargs).numpy() generate_xla = tf.function(model.generate, jit_compile=True) generated_xla = generate_xla(inputs, **generate_kwargs).numpy() # Due to numerical instability, let's fail the test only if there are more than 10% of input sequences give # different outputs between XLA and non-XLA versions. If there are less than 10 examples, let's be strict # and not allow any difference. diff = [[], []] for _generated, _generated_xla in zip(generated.tolist(), generated_xla.tolist()): if _generated != _generated_xla: diff[0].append(_generated) diff[1].append(_generated_xla) ratio = len(diff[0]) / len(generated) if ratio > 0.1 or (len(diff[0]) > 0 and len(generated) < 10): self.assertListEqual(diff[0], diff[1]) for model_class in self.all_generative_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.eos_token_id = None # Generate until max length config.do_sample = False # fix config for models with additional sequence-length limiting settings for var_name in ["max_position_embeddings", "max_target_positions"]: attr = getattr(config, var_name, None) if attr is not None and attr < generate_kwargs["max_new_tokens"]: try: setattr(config, var_name, generate_kwargs["max_new_tokens"]) except NotImplementedError: # xlnet will raise an exception when trying to set # max_position_embeddings. pass model = model_class(config) if model.supports_xla_generation: _generate_and_check_results(model, inputs_dict) else: with self.assertRaises(ValueError): _generate_and_check_results(model, inputs_dict) def test_xla_generate_fast(self): """ Basic quick test for generate-compatible classes that confirms that XLA-generated tokens are the same as their non XLA counterparts. Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception """ self._test_xla_generate(num_beams=1, num_return_sequences=1, max_new_tokens=3) @slow def test_xla_generate_contrastive(self): """ Slow and challenging version of `test_xla_generate_fast` for contrastive search -- contrastive search directly manipulates the model cache and other outputs, and this test ensures that they are in a valid format that is also supported by XLA. Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception """ self._test_xla_generate(num_beams=1, num_return_sequences=1, max_new_tokens=16, penalty_alpha=0.5, top_k=4) @slow def test_xla_generate_slow(self): """ Slow and challenging version of `test_xla_generate_fast` -- this test asks for several long sequences using beam search, with and without XLA. The two outputs should match, and a failure in this test indicates that the model may need further analysis if it is to be used for XLA generation. Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception """ self._test_xla_generate(num_beams=8, num_return_sequences=2, max_new_tokens=128) def _generate_random_bad_tokens(self, num_bad_tokens, model): # special tokens cannot be bad tokens special_tokens = [] if model.config.bos_token_id is not None: special_tokens.append(model.config.bos_token_id) if model.config.pad_token_id is not None: special_tokens.append(model.config.pad_token_id) if model.config.eos_token_id is not None: special_tokens.append(model.config.eos_token_id) # create random bad tokens that are not special tokens bad_tokens = [] while len(bad_tokens) < num_bad_tokens: token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0] if token not in special_tokens: bad_tokens.append(token) return bad_tokens def _check_generated_ids(self, output_ids): for token_id in output_ids[0].numpy().tolist(): self.assertGreaterEqual(token_id, 0) self.assertLess(token_id, self.model_tester.vocab_size) def _check_match_tokens(self, generated_ids, bad_words_ids): # for all bad word tokens for bad_word_ids in bad_words_ids: # for all slices in batch for generated_ids_slice in generated_ids: # for all word idx for i in range(len(bad_word_ids), len(generated_ids_slice)): # if tokens match if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids: return True return False def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None): """Creates a random int32 tensor of the shape within the vocab size.""" if rng is None: rng = random.Random() total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.randint(0, vocab_size - 1)) output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32) return output def random_attention_mask(shape, rng=None, name=None, dtype=None): attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None, dtype=dtype) # make sure that at least one token is attended to for each batch attn_mask = tf.concat([attn_mask[:, :-1], tf.ones_like(attn_mask[:, -1:], dtype=dtype)], axis=-1) return attn_mask def floats_tensor(shape, scale=1.0, rng=None, name=None, dtype=None): """Creates a random float32 tensor""" if rng is None: rng = random.Random() total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.random() * scale) return tf.reshape(tf.constant(values, dtype=dtype if dtype is not None else tf.float32), shape=shape)
transformers/tests/test_modeling_tf_common.py/0
{ "file_path": "transformers/tests/test_modeling_tf_common.py", "repo_id": "transformers", "token_count": 43519 }
188
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from pathlib import Path from transformers import is_vision_available, load_tool from transformers.testing_utils import get_tests_dir from .test_tools_common import ToolTesterMixin if is_vision_available(): from PIL import Image class ImageSegmentationToolTester(unittest.TestCase, ToolTesterMixin): def setUp(self): self.tool = load_tool("image-segmentation") self.tool.setup() self.remote_tool = load_tool("image-segmentation", remote=True) def test_exact_match_arg(self): image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png") result = self.tool(image, "cat") self.assertTrue(isinstance(result, Image.Image)) def test_exact_match_arg_remote(self): image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png") result = self.remote_tool(image, "cat") self.assertTrue(isinstance(result, Image.Image)) def test_exact_match_kwarg(self): image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png") result = self.tool(image=image, label="cat") self.assertTrue(isinstance(result, Image.Image)) def test_exact_match_kwarg_remote(self): image = Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png") result = self.remote_tool(image=image, label="cat") self.assertTrue(isinstance(result, Image.Image))
transformers/tests/tools/test_image_segmentation.py/0
{ "file_path": "transformers/tests/tools/test_image_segmentation.py", "repo_id": "transformers", "token_count": 742 }
189
# coding=utf-8 # Copyright 2018 the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import unittest import numpy as np from transformers.data.data_collator import default_data_collator from transformers.testing_utils import require_accelerate, require_torch from transformers.trainer_utils import RemoveColumnsCollator, find_executable_batch_size from transformers.utils import is_torch_available if is_torch_available(): import torch from torch import nn from torch.utils.data import IterableDataset from transformers.modeling_outputs import SequenceClassifierOutput from transformers.tokenization_utils_base import BatchEncoding from transformers.trainer_pt_utils import ( DistributedLengthGroupedSampler, DistributedSamplerWithLoop, DistributedTensorGatherer, IterableDatasetShard, LabelSmoother, LengthGroupedSampler, SequentialDistributedSampler, ShardSampler, get_parameter_names, numpy_pad_and_concatenate, torch_pad_and_concatenate, ) class TstLayer(nn.Module): def __init__(self, hidden_size): super().__init__() self.linear1 = nn.Linear(hidden_size, hidden_size) self.ln1 = nn.LayerNorm(hidden_size) self.linear2 = nn.Linear(hidden_size, hidden_size) self.ln2 = nn.LayerNorm(hidden_size) self.bias = nn.Parameter(torch.zeros(hidden_size)) def forward(self, x): h = self.ln1(nn.functional.relu(self.linear1(x))) h = nn.functional.relu(self.linear2(x)) return self.ln2(x + h + self.bias) class RandomIterableDataset(IterableDataset): # For testing, an iterable dataset of random length def __init__(self, p_stop=0.01, max_length=1000): self.p_stop = p_stop self.max_length = max_length self.generator = torch.Generator() def __iter__(self): count = 0 stop = False while not stop and count < self.max_length: yield count count += 1 number = torch.rand(1, generator=self.generator).item() stop = number < self.p_stop @require_torch class TrainerUtilsTest(unittest.TestCase): def test_distributed_tensor_gatherer(self): # Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1 world_size = 4 num_samples = 21 input_indices = [ [0, 1, 6, 7, 12, 13, 18, 19], [2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1], [5, 11, 17, 2], ] predictions = np.random.normal(size=(num_samples, 13)) gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples) for indices in input_indices: gatherer.add_arrays(predictions[indices]) result = gatherer.finalize() self.assertTrue(np.array_equal(result, predictions)) # With nested tensors gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples) for indices in input_indices: gatherer.add_arrays([predictions[indices], [predictions[indices], predictions[indices]]]) result = gatherer.finalize() self.assertTrue(isinstance(result, list)) self.assertEqual(len(result), 2) self.assertTrue(isinstance(result[1], list)) self.assertEqual(len(result[1]), 2) self.assertTrue(np.array_equal(result[0], predictions)) self.assertTrue(np.array_equal(result[1][0], predictions)) self.assertTrue(np.array_equal(result[1][1], predictions)) def test_distributed_tensor_gatherer_different_shapes(self): # Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1 world_size = 4 num_samples = 21 input_indices = [ [0, 1, 6, 7, 12, 13, 18, 19], [2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1], [5, 11, 17, 2], ] sequence_lengths = [8, 10, 13] predictions = np.random.normal(size=(num_samples, 13)) gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples) for indices, seq_length in zip(input_indices, sequence_lengths): gatherer.add_arrays(predictions[indices, :seq_length]) result = gatherer.finalize() # Remove the extra samples added at the end for a round multiple of num processes. actual_indices = [input_indices[0], input_indices[1][:-2], input_indices[2][:-1]] for indices, seq_length in zip(actual_indices, sequence_lengths): self.assertTrue(np.array_equal(result[indices, :seq_length], predictions[indices, :seq_length])) # With nested tensors predictions = np.random.normal(size=(num_samples, 13)) gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples) for indices, seq_length in zip(input_indices, sequence_lengths): gatherer.add_arrays([predictions[indices, :seq_length], predictions[indices]]) result = gatherer.finalize() for indices, seq_length in zip(actual_indices, sequence_lengths): self.assertTrue(np.array_equal(result[0][indices, :seq_length], predictions[indices, :seq_length])) self.assertTrue(np.array_equal(result[1], predictions)) # Check if works if varying seq_length is second gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples) for indices, seq_length in zip(input_indices, sequence_lengths): gatherer.add_arrays([predictions[indices], predictions[indices, :seq_length]]) result = gatherer.finalize() self.assertTrue(np.array_equal(result[0], predictions)) for indices, seq_length in zip(actual_indices, sequence_lengths): self.assertTrue(np.array_equal(result[1][indices, :seq_length], predictions[indices, :seq_length])) def test_label_smoothing(self): epsilon = 0.1 num_labels = 12 random_logits = torch.randn(4, 5, num_labels) random_labels = torch.randint(0, num_labels, (4, 5)) loss = nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1)) model_output = SequenceClassifierOutput(logits=random_logits) label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels) log_probs = -nn.functional.log_softmax(random_logits, dim=-1) expected_loss = (1 - epsilon) * loss + epsilon * log_probs.mean() self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss)) # With a few -100 labels random_labels[0, 1] = -100 random_labels[2, 1] = -100 random_labels[2, 3] = -100 loss = nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1)) model_output = SequenceClassifierOutput(logits=random_logits) label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels) log_probs = -nn.functional.log_softmax(random_logits, dim=-1) # Mask the log probs with the -100 labels log_probs[0, 1] = 0.0 log_probs[2, 1] = 0.0 log_probs[2, 3] = 0.0 expected_loss = (1 - epsilon) * loss + epsilon * log_probs.sum() / (num_labels * 17) self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss)) def test_group_by_length(self): # Get some inputs of random lengths lengths = torch.randint(0, 25, (100,)).tolist() # Put one bigger than the others to check it ends up in first position lengths[32] = 50 indices = list(LengthGroupedSampler(4, lengths=lengths)) # The biggest element should be first self.assertEqual(lengths[indices[0]], 50) # The indices should be a permutation of range(100) self.assertEqual(sorted(indices), list(range(100))) def test_group_by_length_with_dict(self): # Get some inputs of random lengths data = [] for _ in range(6): input_ids = torch.randint(0, 25, (100,)).tolist() data.append({"input_ids": input_ids}) # Put one bigger than the others to check it ends up in first position data[3]["input_ids"] = torch.randint(0, 25, (105,)).tolist() indices = list(LengthGroupedSampler(4, dataset=data)) # The biggest element should be first self.assertEqual(len(data[indices[0]]["input_ids"]), 105) # The indices should be a permutation of range(6) self.assertEqual(sorted(indices), list(range(6))) def test_group_by_length_with_batch_encoding(self): # Get some inputs of random lengths data = [] for _ in range(6): input_ids = torch.randint(0, 25, (100,)).tolist() data.append(BatchEncoding({"input_ids": input_ids})) # Put one bigger than the others to check it ends up in first position data[3]["input_ids"] = torch.randint(0, 25, (105,)).tolist() indices = list(LengthGroupedSampler(4, dataset=data)) # The biggest element should be first self.assertEqual(len(data[indices[0]]["input_ids"]), 105) # The indices should be a permutation of range(6) self.assertEqual(sorted(indices), list(range(6))) def test_distributed_length_grouped(self): # Get some inputs of random lengths lengths = torch.randint(0, 25, (100,)).tolist() # Put one bigger than the others to check it ends up in first position lengths[32] = 50 indices_process_0 = list(DistributedLengthGroupedSampler(4, num_replicas=2, rank=0, lengths=lengths)) indices_process_1 = list(DistributedLengthGroupedSampler(4, num_replicas=2, rank=1, lengths=lengths)) # The biggest element should be first self.assertEqual(lengths[indices_process_0[0]], 50) # The indices should be a permutation of range(100) self.assertEqual(sorted(indices_process_0 + indices_process_1), list(range(100))) def test_get_parameter_names(self): model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)])) # fmt: off self.assertEqual( get_parameter_names(model, [nn.LayerNorm]), ['0.linear1.weight', '0.linear1.bias', '0.linear2.weight', '0.linear2.bias', '0.bias', '1.0.linear1.weight', '1.0.linear1.bias', '1.0.linear2.weight', '1.0.linear2.bias', '1.0.bias', '1.1.linear1.weight', '1.1.linear1.bias', '1.1.linear2.weight', '1.1.linear2.bias', '1.1.bias'] ) # fmt: on def test_distributed_sampler_with_loop(self): batch_size = 16 for length in [23, 64, 123]: dataset = list(range(length)) shard1 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=0) shard2 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=1) # Set seeds shard1.set_epoch(0) shard2.set_epoch(0) # Sample samples1 = list(shard1) samples2 = list(shard2) self.assertTrue(len(samples1) % batch_size == 0) self.assertTrue(len(samples2) % batch_size == 0) total = [] for sample1, sample2 in zip(samples1, samples2): total += [sample1, sample2] self.assertEqual(set(total[:length]), set(dataset)) self.assertEqual(set(total[length:]), set(total[: (len(total) - length)])) def test_sequential_distributed_sampler(self): batch_size = 16 for length in [23, 64, 123]: dataset = list(range(length)) shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0) shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1) # Sample samples1 = list(shard1) samples2 = list(shard2) total = samples1 + samples2 self.assertListEqual(total[:length], dataset) self.assertListEqual(total[length:], dataset[: (len(total) - length)]) # With a batch_size passed shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0, batch_size=batch_size) shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1, batch_size=batch_size) # Sample samples1 = list(shard1) samples2 = list(shard2) self.assertTrue(len(samples1) % batch_size == 0) self.assertTrue(len(samples2) % batch_size == 0) total = samples1 + samples2 self.assertListEqual(total[:length], dataset) self.assertListEqual(total[length:], dataset[: (len(total) - length)]) def check_iterable_dataset_shard(self, dataset, batch_size, drop_last, num_processes=2, epoch=0): # Set the seed for the base dataset to get the proper reference. dataset.generator.manual_seed(epoch) reference = list(dataset) shards = [ IterableDatasetShard( dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i ) for i in range(num_processes) ] for shard in shards: shard.set_epoch(epoch) shard_lists = [list(shard) for shard in shards] for shard in shard_lists: # All shards have a number of samples that is a round multiple of batch size self.assertTrue(len(shard) % batch_size == 0) # All shards have the same number of samples self.assertEqual(len(shard), len(shard_lists[0])) for shard in shards: # All shards know the total number of samples self.assertEqual(shard.num_examples, len(reference)) observed = [] for idx in range(0, len(shard_lists[0]), batch_size): for shard in shard_lists: observed += shard[idx : idx + batch_size] # If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of # batch_size if not drop_last: while len(reference) < len(observed): reference += reference self.assertListEqual(observed, reference[: len(observed)]) # Check equivalence between IterableDataset and ShardSampler dataset.generator.manual_seed(epoch) reference = list(dataset) sampler_shards = [ ShardSampler( reference, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i ) for i in range(num_processes) ] for shard, sampler_shard in zip(shard_lists, sampler_shards): self.assertListEqual(shard, list(sampler_shard)) def test_iterable_dataset_shard(self): dataset = RandomIterableDataset() self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=2, epoch=0) self.check_iterable_dataset_shard(dataset, 4, drop_last=False, num_processes=2, epoch=0) self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=3, epoch=42) self.check_iterable_dataset_shard(dataset, 4, drop_last=False, num_processes=3, epoch=42) def test_iterable_dataset_shard_with_length(self): sampler_shards = [ IterableDatasetShard(list(range(100)), batch_size=4, drop_last=True, num_processes=2, process_index=i) for i in range(2) ] # Build expected shards: each process will have batches of size 4 until there is not enough elements to # form two full batches (so we stop at 96 = (100 // (4 * 2)) * 4) expected_shards = [[], []] current_shard = 0 for i in range(0, 96, 4): expected_shards[current_shard].extend(list(range(i, i + 4))) current_shard = 1 - current_shard self.assertListEqual([list(shard) for shard in sampler_shards], expected_shards) self.assertListEqual([len(shard) for shard in sampler_shards], [len(shard) for shard in expected_shards]) sampler_shards = [ IterableDatasetShard(list(range(100)), batch_size=4, drop_last=False, num_processes=2, process_index=i) for i in range(2) ] # When drop_last=False, we get two last full batches by looping back to the beginning. expected_shards[0].extend(list(range(96, 100))) expected_shards[1].extend(list(range(0, 4))) self.assertListEqual([list(shard) for shard in sampler_shards], expected_shards) self.assertListEqual([len(shard) for shard in sampler_shards], [len(shard) for shard in expected_shards]) def check_shard_sampler(self, dataset, batch_size, drop_last, num_processes=2): shards = [ ShardSampler( dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i ) for i in range(num_processes) ] shard_lists = [list(shard) for shard in shards] for shard in shard_lists: # All shards have a number of samples that is a round multiple of batch size self.assertTrue(len(shard) % batch_size == 0) # All shards have the same number of samples self.assertEqual(len(shard), len(shard_lists[0])) observed = [] for idx in range(0, len(shard_lists[0]), batch_size): for shard in shard_lists: observed += shard[idx : idx + batch_size] # If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of # batch_size reference = copy.copy(dataset) if not drop_last: while len(reference) < len(observed): reference += reference self.assertListEqual(observed, reference[: len(observed)]) def test_shard_sampler(self): for n_elements in [64, 123]: dataset = list(range(n_elements)) self.check_shard_sampler(dataset, 4, drop_last=True, num_processes=2) self.check_shard_sampler(dataset, 4, drop_last=False, num_processes=2) self.check_shard_sampler(dataset, 4, drop_last=True, num_processes=3) self.check_shard_sampler(dataset, 4, drop_last=False, num_processes=3) @require_accelerate def test_executable_batch_size(self): batch_sizes = [] @find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=True) def mock_training_loop_function(batch_size): nonlocal batch_sizes batch_sizes.append(batch_size) if batch_size > 16: raise RuntimeError("CUDA out of memory.") mock_training_loop_function() self.assertEqual(batch_sizes, [64, 32, 16]) @require_accelerate def test_executable_batch_size_no_search(self): batch_sizes = [] @find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=False) def mock_training_loop_function(batch_size): nonlocal batch_sizes batch_sizes.append(batch_size) mock_training_loop_function() self.assertEqual(batch_sizes, [64]) @require_accelerate def test_executable_batch_size_with_error(self): @find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=False) def mock_training_loop_function(batch_size): raise RuntimeError("CUDA out of memory.") with self.assertRaises(RuntimeError) as cm: mock_training_loop_function() self.assertEqual("CUDA out of memory", cm.args[0]) def test_pad_and_concatenate_with_1d(self): """Tests whether pad_and_concatenate works with scalars.""" array1 = 1.0 array2 = 2.0 result = numpy_pad_and_concatenate(array1, array2) self.assertTrue(np.array_equal(np.array([1.0, 2.0]), result)) tensor1 = torch.tensor(1.0) tensor2 = torch.tensor(2.0) result = torch_pad_and_concatenate(tensor1, tensor2) self.assertTrue(torch.equal(result, torch.Tensor([1.0, 2.0]))) def test_remove_columns_collator(self): class MockLogger: def __init__(self) -> None: self.called = 0 def info(self, msg): self.called += 1 self.last_msg = msg data_batch = [ {"col1": 1, "col2": 2, "col3": 3}, {"col1": 1, "col2": 2, "col3": 3}, ] logger = MockLogger() remove_columns_collator = RemoveColumnsCollator( default_data_collator, ["col1", "col2"], logger, "model", "training" ) self.assertNotIn("col3", remove_columns_collator(data_batch)) # check that the logging message is printed out only once remove_columns_collator(data_batch) remove_columns_collator(data_batch) self.assertEqual(logger.called, 1) self.assertIn("col3", logger.last_msg)
transformers/tests/trainer/test_trainer_utils.py/0
{ "file_path": "transformers/tests/trainer/test_trainer_utils.py", "repo_id": "transformers", "token_count": 9624 }
190
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest import datasets import numpy as np import pytest from huggingface_hub.file_download import http_get from requests import ConnectTimeout, ReadTimeout from tests.pipelines.test_pipelines_document_question_answering import INVOICE_URL from transformers import is_torch_available, is_vision_available from transformers.image_utils import ChannelDimension, get_channel_dimension_axis, make_list_of_images from transformers.testing_utils import is_flaky, require_torch, require_vision if is_torch_available(): import torch if is_vision_available(): import PIL.Image from transformers import ImageFeatureExtractionMixin from transformers.image_utils import get_image_size, infer_channel_dimension_format, load_image def get_random_image(height, width): random_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8) return PIL.Image.fromarray(random_array) @require_vision class ImageFeatureExtractionTester(unittest.TestCase): def test_conversion_image_to_array(self): feature_extractor = ImageFeatureExtractionMixin() image = get_random_image(16, 32) # Conversion with defaults (rescale + channel first) array1 = feature_extractor.to_numpy_array(image) self.assertTrue(array1.dtype, np.float32) self.assertEqual(array1.shape, (3, 16, 32)) # Conversion with rescale and not channel first array2 = feature_extractor.to_numpy_array(image, channel_first=False) self.assertTrue(array2.dtype, np.float32) self.assertEqual(array2.shape, (16, 32, 3)) self.assertTrue(np.array_equal(array1, array2.transpose(2, 0, 1))) # Conversion with no rescale and channel first array3 = feature_extractor.to_numpy_array(image, rescale=False) self.assertTrue(array3.dtype, np.uint8) self.assertEqual(array3.shape, (3, 16, 32)) self.assertTrue(np.array_equal(array1, array3.astype(np.float32) * (1 / 255.0))) # Conversion with no rescale and not channel first array4 = feature_extractor.to_numpy_array(image, rescale=False, channel_first=False) self.assertTrue(array4.dtype, np.uint8) self.assertEqual(array4.shape, (16, 32, 3)) self.assertTrue(np.array_equal(array2, array4.astype(np.float32) * (1 / 255.0))) def test_conversion_array_to_array(self): feature_extractor = ImageFeatureExtractionMixin() array = np.random.randint(0, 256, (16, 32, 3), dtype=np.uint8) # By default, rescale (for an array of ints) and channel permute array1 = feature_extractor.to_numpy_array(array) self.assertTrue(array1.dtype, np.float32) self.assertEqual(array1.shape, (3, 16, 32)) self.assertTrue(np.array_equal(array1, array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0))) # Same with no permute array2 = feature_extractor.to_numpy_array(array, channel_first=False) self.assertTrue(array2.dtype, np.float32) self.assertEqual(array2.shape, (16, 32, 3)) self.assertTrue(np.array_equal(array2, array.astype(np.float32) * (1 / 255.0))) # Force rescale to False array3 = feature_extractor.to_numpy_array(array, rescale=False) self.assertTrue(array3.dtype, np.uint8) self.assertEqual(array3.shape, (3, 16, 32)) self.assertTrue(np.array_equal(array3, array.transpose(2, 0, 1))) # Force rescale to False and no channel permute array4 = feature_extractor.to_numpy_array(array, rescale=False, channel_first=False) self.assertTrue(array4.dtype, np.uint8) self.assertEqual(array4.shape, (16, 32, 3)) self.assertTrue(np.array_equal(array4, array)) # Now test the default rescale for a float array (defaults to False) array5 = feature_extractor.to_numpy_array(array2) self.assertTrue(array5.dtype, np.float32) self.assertEqual(array5.shape, (3, 16, 32)) self.assertTrue(np.array_equal(array5, array1)) def test_make_list_of_images_numpy(self): # Test a single image is converted to a list of 1 image images = np.random.randint(0, 256, (16, 32, 3)) images_list = make_list_of_images(images) self.assertEqual(len(images_list), 1) self.assertTrue(np.array_equal(images_list[0], images)) self.assertIsInstance(images_list, list) # Test a batch of images is converted to a list of images images = np.random.randint(0, 256, (4, 16, 32, 3)) images_list = make_list_of_images(images) self.assertEqual(len(images_list), 4) self.assertTrue(np.array_equal(images_list[0], images[0])) self.assertIsInstance(images_list, list) # Test a list of images is not modified images = [np.random.randint(0, 256, (16, 32, 3)) for _ in range(4)] images_list = make_list_of_images(images) self.assertEqual(len(images_list), 4) self.assertTrue(np.array_equal(images_list[0], images[0])) self.assertIsInstance(images_list, list) # Test batched masks with no channel dimension are converted to a list of masks masks = np.random.randint(0, 2, (4, 16, 32)) masks_list = make_list_of_images(masks, expected_ndims=2) self.assertEqual(len(masks_list), 4) self.assertTrue(np.array_equal(masks_list[0], masks[0])) self.assertIsInstance(masks_list, list) @require_torch def test_make_list_of_images_torch(self): # Test a single image is converted to a list of 1 image images = torch.randint(0, 256, (16, 32, 3)) images_list = make_list_of_images(images) self.assertEqual(len(images_list), 1) self.assertTrue(np.array_equal(images_list[0], images)) self.assertIsInstance(images_list, list) # Test a batch of images is converted to a list of images images = torch.randint(0, 256, (4, 16, 32, 3)) images_list = make_list_of_images(images) self.assertEqual(len(images_list), 4) self.assertTrue(np.array_equal(images_list[0], images[0])) self.assertIsInstance(images_list, list) # Test a list of images is left unchanged images = [torch.randint(0, 256, (16, 32, 3)) for _ in range(4)] images_list = make_list_of_images(images) self.assertEqual(len(images_list), 4) self.assertTrue(np.array_equal(images_list[0], images[0])) self.assertIsInstance(images_list, list) @require_torch def test_conversion_torch_to_array(self): feature_extractor = ImageFeatureExtractionMixin() tensor = torch.randint(0, 256, (16, 32, 3)) array = tensor.numpy() # By default, rescale (for a tensor of ints) and channel permute array1 = feature_extractor.to_numpy_array(array) self.assertTrue(array1.dtype, np.float32) self.assertEqual(array1.shape, (3, 16, 32)) self.assertTrue(np.array_equal(array1, array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0))) # Same with no permute array2 = feature_extractor.to_numpy_array(array, channel_first=False) self.assertTrue(array2.dtype, np.float32) self.assertEqual(array2.shape, (16, 32, 3)) self.assertTrue(np.array_equal(array2, array.astype(np.float32) * (1 / 255.0))) # Force rescale to False array3 = feature_extractor.to_numpy_array(array, rescale=False) self.assertTrue(array3.dtype, np.uint8) self.assertEqual(array3.shape, (3, 16, 32)) self.assertTrue(np.array_equal(array3, array.transpose(2, 0, 1))) # Force rescale to False and no channel permute array4 = feature_extractor.to_numpy_array(array, rescale=False, channel_first=False) self.assertTrue(array4.dtype, np.uint8) self.assertEqual(array4.shape, (16, 32, 3)) self.assertTrue(np.array_equal(array4, array)) # Now test the default rescale for a float tensor (defaults to False) array5 = feature_extractor.to_numpy_array(array2) self.assertTrue(array5.dtype, np.float32) self.assertEqual(array5.shape, (3, 16, 32)) self.assertTrue(np.array_equal(array5, array1)) def test_conversion_image_to_image(self): feature_extractor = ImageFeatureExtractionMixin() image = get_random_image(16, 32) # On an image, `to_pil_image1` is a noop. image1 = feature_extractor.to_pil_image(image) self.assertTrue(isinstance(image, PIL.Image.Image)) self.assertTrue(np.array_equal(np.array(image), np.array(image1))) def test_conversion_array_to_image(self): feature_extractor = ImageFeatureExtractionMixin() array = np.random.randint(0, 256, (16, 32, 3), dtype=np.uint8) # By default, no rescale (for an array of ints) image1 = feature_extractor.to_pil_image(array) self.assertTrue(isinstance(image1, PIL.Image.Image)) self.assertTrue(np.array_equal(np.array(image1), array)) # If the array is channel-first, proper reordering of the channels is done. image2 = feature_extractor.to_pil_image(array.transpose(2, 0, 1)) self.assertTrue(isinstance(image2, PIL.Image.Image)) self.assertTrue(np.array_equal(np.array(image2), array)) # If the array has floating type, it's rescaled by default. image3 = feature_extractor.to_pil_image(array.astype(np.float32) * (1 / 255.0)) self.assertTrue(isinstance(image3, PIL.Image.Image)) self.assertTrue(np.array_equal(np.array(image3), array)) # You can override the default to rescale. image4 = feature_extractor.to_pil_image(array.astype(np.float32), rescale=False) self.assertTrue(isinstance(image4, PIL.Image.Image)) self.assertTrue(np.array_equal(np.array(image4), array)) # And with floats + channel first. image5 = feature_extractor.to_pil_image(array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0)) self.assertTrue(isinstance(image5, PIL.Image.Image)) self.assertTrue(np.array_equal(np.array(image5), array)) @require_torch def test_conversion_tensor_to_image(self): feature_extractor = ImageFeatureExtractionMixin() tensor = torch.randint(0, 256, (16, 32, 3)) array = tensor.numpy() # By default, no rescale (for a tensor of ints) image1 = feature_extractor.to_pil_image(tensor) self.assertTrue(isinstance(image1, PIL.Image.Image)) self.assertTrue(np.array_equal(np.array(image1), array)) # If the tensor is channel-first, proper reordering of the channels is done. image2 = feature_extractor.to_pil_image(tensor.permute(2, 0, 1)) self.assertTrue(isinstance(image2, PIL.Image.Image)) self.assertTrue(np.array_equal(np.array(image2), array)) # If the tensor has floating type, it's rescaled by default. image3 = feature_extractor.to_pil_image(tensor.float() / 255.0) self.assertTrue(isinstance(image3, PIL.Image.Image)) self.assertTrue(np.array_equal(np.array(image3), array)) # You can override the default to rescale. image4 = feature_extractor.to_pil_image(tensor.float(), rescale=False) self.assertTrue(isinstance(image4, PIL.Image.Image)) self.assertTrue(np.array_equal(np.array(image4), array)) # And with floats + channel first. image5 = feature_extractor.to_pil_image(tensor.permute(2, 0, 1).float() * (1 / 255.0)) self.assertTrue(isinstance(image5, PIL.Image.Image)) self.assertTrue(np.array_equal(np.array(image5), array)) def test_resize_image_and_array(self): feature_extractor = ImageFeatureExtractionMixin() image = get_random_image(16, 32) array = np.array(image) # Size can be an int or a tuple of ints. resized_image = feature_extractor.resize(image, 8) self.assertTrue(isinstance(resized_image, PIL.Image.Image)) self.assertEqual(resized_image.size, (8, 8)) resized_image1 = feature_extractor.resize(image, (8, 16)) self.assertTrue(isinstance(resized_image1, PIL.Image.Image)) self.assertEqual(resized_image1.size, (8, 16)) # Passing an array converts it to a PIL Image. resized_image2 = feature_extractor.resize(array, 8) self.assertTrue(isinstance(resized_image2, PIL.Image.Image)) self.assertEqual(resized_image2.size, (8, 8)) self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2))) resized_image3 = feature_extractor.resize(image, (8, 16)) self.assertTrue(isinstance(resized_image3, PIL.Image.Image)) self.assertEqual(resized_image3.size, (8, 16)) self.assertTrue(np.array_equal(np.array(resized_image1), np.array(resized_image3))) def test_resize_image_and_array_non_default_to_square(self): feature_extractor = ImageFeatureExtractionMixin() heights_widths = [ # height, width # square image (28, 28), (27, 27), # rectangular image: h < w (28, 34), (29, 35), # rectangular image: h > w (34, 28), (35, 29), ] # single integer or single integer in tuple/list sizes = [22, 27, 28, 36, [22], (27,)] for (height, width), size in zip(heights_widths, sizes): for max_size in (None, 37, 1000): image = get_random_image(height, width) array = np.array(image) size = size[0] if isinstance(size, (list, tuple)) else size # Size can be an int or a tuple of ints. # If size is an int, smaller edge of the image will be matched to this number. # i.e, if height > width, then image will be rescaled to (size * height / width, size). if height < width: exp_w, exp_h = (int(size * width / height), size) if max_size is not None and max_size < exp_w: exp_w, exp_h = max_size, int(max_size * exp_h / exp_w) elif width < height: exp_w, exp_h = (size, int(size * height / width)) if max_size is not None and max_size < exp_h: exp_w, exp_h = int(max_size * exp_w / exp_h), max_size else: exp_w, exp_h = (size, size) if max_size is not None and max_size < size: exp_w, exp_h = max_size, max_size resized_image = feature_extractor.resize(image, size=size, default_to_square=False, max_size=max_size) self.assertTrue(isinstance(resized_image, PIL.Image.Image)) self.assertEqual(resized_image.size, (exp_w, exp_h)) # Passing an array converts it to a PIL Image. resized_image2 = feature_extractor.resize(array, size=size, default_to_square=False, max_size=max_size) self.assertTrue(isinstance(resized_image2, PIL.Image.Image)) self.assertEqual(resized_image2.size, (exp_w, exp_h)) self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2))) @require_torch def test_resize_tensor(self): feature_extractor = ImageFeatureExtractionMixin() tensor = torch.randint(0, 256, (16, 32, 3)) array = tensor.numpy() # Size can be an int or a tuple of ints. resized_image = feature_extractor.resize(tensor, 8) self.assertTrue(isinstance(resized_image, PIL.Image.Image)) self.assertEqual(resized_image.size, (8, 8)) resized_image1 = feature_extractor.resize(tensor, (8, 16)) self.assertTrue(isinstance(resized_image1, PIL.Image.Image)) self.assertEqual(resized_image1.size, (8, 16)) # Check we get the same results as with NumPy arrays. resized_image2 = feature_extractor.resize(array, 8) self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2))) resized_image3 = feature_extractor.resize(array, (8, 16)) self.assertTrue(np.array_equal(np.array(resized_image1), np.array(resized_image3))) def test_normalize_image(self): feature_extractor = ImageFeatureExtractionMixin() image = get_random_image(16, 32) array = np.array(image) mean = [0.1, 0.5, 0.9] std = [0.2, 0.4, 0.6] # PIL Image are converted to NumPy arrays for the normalization normalized_image = feature_extractor.normalize(image, mean, std) self.assertTrue(isinstance(normalized_image, np.ndarray)) self.assertEqual(normalized_image.shape, (3, 16, 32)) # During the conversion rescale and channel first will be applied. expected = array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0) np_mean = np.array(mean).astype(np.float32)[:, None, None] np_std = np.array(std).astype(np.float32)[:, None, None] expected = (expected - np_mean) / np_std self.assertTrue(np.array_equal(normalized_image, expected)) def test_normalize_array(self): feature_extractor = ImageFeatureExtractionMixin() array = np.random.random((16, 32, 3)) mean = [0.1, 0.5, 0.9] std = [0.2, 0.4, 0.6] # mean and std can be passed as lists or NumPy arrays. expected = (array - np.array(mean)) / np.array(std) normalized_array = feature_extractor.normalize(array, mean, std) self.assertTrue(np.array_equal(normalized_array, expected)) normalized_array = feature_extractor.normalize(array, np.array(mean), np.array(std)) self.assertTrue(np.array_equal(normalized_array, expected)) # Normalize will detect automatically if channel first or channel last is used. array = np.random.random((3, 16, 32)) expected = (array - np.array(mean)[:, None, None]) / np.array(std)[:, None, None] normalized_array = feature_extractor.normalize(array, mean, std) self.assertTrue(np.array_equal(normalized_array, expected)) normalized_array = feature_extractor.normalize(array, np.array(mean), np.array(std)) self.assertTrue(np.array_equal(normalized_array, expected)) @require_torch def test_normalize_tensor(self): feature_extractor = ImageFeatureExtractionMixin() tensor = torch.rand(16, 32, 3) mean = [0.1, 0.5, 0.9] std = [0.2, 0.4, 0.6] # mean and std can be passed as lists or tensors. expected = (tensor - torch.tensor(mean)) / torch.tensor(std) normalized_tensor = feature_extractor.normalize(tensor, mean, std) self.assertTrue(torch.equal(normalized_tensor, expected)) normalized_tensor = feature_extractor.normalize(tensor, torch.tensor(mean), torch.tensor(std)) self.assertTrue(torch.equal(normalized_tensor, expected)) # Normalize will detect automatically if channel first or channel last is used. tensor = torch.rand(3, 16, 32) expected = (tensor - torch.tensor(mean)[:, None, None]) / torch.tensor(std)[:, None, None] normalized_tensor = feature_extractor.normalize(tensor, mean, std) self.assertTrue(torch.equal(normalized_tensor, expected)) normalized_tensor = feature_extractor.normalize(tensor, torch.tensor(mean), torch.tensor(std)) self.assertTrue(torch.equal(normalized_tensor, expected)) def test_center_crop_image(self): feature_extractor = ImageFeatureExtractionMixin() image = get_random_image(16, 32) # Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions. crop_sizes = [8, (8, 64), 20, (32, 64)] for size in crop_sizes: cropped_image = feature_extractor.center_crop(image, size) self.assertTrue(isinstance(cropped_image, PIL.Image.Image)) # PIL Image.size is transposed compared to NumPy or PyTorch (width first instead of height first). expected_size = (size, size) if isinstance(size, int) else (size[1], size[0]) self.assertEqual(cropped_image.size, expected_size) def test_center_crop_array(self): feature_extractor = ImageFeatureExtractionMixin() image = get_random_image(16, 32) array = feature_extractor.to_numpy_array(image) # Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions. crop_sizes = [8, (8, 64), 20, (32, 64)] for size in crop_sizes: cropped_array = feature_extractor.center_crop(array, size) self.assertTrue(isinstance(cropped_array, np.ndarray)) expected_size = (size, size) if isinstance(size, int) else size self.assertEqual(cropped_array.shape[-2:], expected_size) # Check result is consistent with PIL.Image.crop cropped_image = feature_extractor.center_crop(image, size) self.assertTrue(np.array_equal(cropped_array, feature_extractor.to_numpy_array(cropped_image))) @require_torch def test_center_crop_tensor(self): feature_extractor = ImageFeatureExtractionMixin() image = get_random_image(16, 32) array = feature_extractor.to_numpy_array(image) tensor = torch.tensor(array) # Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions. crop_sizes = [8, (8, 64), 20, (32, 64)] for size in crop_sizes: cropped_tensor = feature_extractor.center_crop(tensor, size) self.assertTrue(isinstance(cropped_tensor, torch.Tensor)) expected_size = (size, size) if isinstance(size, int) else size self.assertEqual(cropped_tensor.shape[-2:], expected_size) # Check result is consistent with PIL.Image.crop cropped_image = feature_extractor.center_crop(image, size) self.assertTrue(torch.equal(cropped_tensor, torch.tensor(feature_extractor.to_numpy_array(cropped_image)))) @require_vision class LoadImageTester(unittest.TestCase): def test_load_img_url(self): img = load_image(INVOICE_URL) img_arr = np.array(img) self.assertEqual(img_arr.shape, (1061, 750, 3)) @is_flaky() def test_load_img_url_timeout(self): with self.assertRaises((ReadTimeout, ConnectTimeout)): load_image(INVOICE_URL, timeout=0.001) def test_load_img_local(self): img = load_image("./tests/fixtures/tests_samples/COCO/000000039769.png") img_arr = np.array(img) self.assertEqual( img_arr.shape, (480, 640, 3), ) def test_load_img_base64_prefix(self): try: tmp_file = tempfile.mktemp() with open(tmp_file, "wb") as f: http_get( "https://huggingface.co/datasets/hf-internal-testing/dummy-base64-images/raw/main/image_0.txt", f ) with open(tmp_file, encoding="utf-8") as b64: img = load_image(b64.read()) img_arr = np.array(img) finally: os.remove(tmp_file) self.assertEqual(img_arr.shape, (64, 32, 3)) def test_load_img_base64(self): try: tmp_file = tempfile.mktemp() with open(tmp_file, "wb") as f: http_get( "https://huggingface.co/datasets/hf-internal-testing/dummy-base64-images/raw/main/image_1.txt", f ) with open(tmp_file, encoding="utf-8") as b64: img = load_image(b64.read()) img_arr = np.array(img) finally: os.remove(tmp_file) self.assertEqual(img_arr.shape, (64, 32, 3)) def test_load_img_rgba(self): # we use revision="refs/pr/1" until the PR is merged # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1 dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1") img = load_image(dataset[0]["image"]) # img with mode RGBA img_arr = np.array(img) self.assertEqual( img_arr.shape, (512, 512, 3), ) def test_load_img_la(self): # we use revision="refs/pr/1" until the PR is merged # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1 dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1") img = load_image(dataset[1]["image"]) # img with mode LA img_arr = np.array(img) self.assertEqual( img_arr.shape, (512, 768, 3), ) def test_load_img_l(self): # we use revision="refs/pr/1" until the PR is merged # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1 dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1") img = load_image(dataset[2]["image"]) # img with mode L img_arr = np.array(img) self.assertEqual( img_arr.shape, (381, 225, 3), ) def test_load_img_exif_transpose(self): # we use revision="refs/pr/1" until the PR is merged # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1 dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1") img_without_exif_transpose = dataset[3]["image"] img_arr_without_exif_transpose = np.array(img_without_exif_transpose) self.assertEqual( img_arr_without_exif_transpose.shape, (333, 500, 3), ) img_with_exif_transpose = load_image(dataset[3]["image"]) img_arr_with_exif_transpose = np.array(img_with_exif_transpose) self.assertEqual( img_arr_with_exif_transpose.shape, (500, 333, 3), ) class UtilFunctionTester(unittest.TestCase): def test_get_image_size(self): # Test we can infer the size and channel dimension of an image. image = np.random.randint(0, 256, (32, 64, 3)) self.assertEqual(get_image_size(image), (32, 64)) image = np.random.randint(0, 256, (3, 32, 64)) self.assertEqual(get_image_size(image), (32, 64)) # Test the channel dimension can be overriden image = np.random.randint(0, 256, (3, 32, 64)) self.assertEqual(get_image_size(image, channel_dim=ChannelDimension.LAST), (3, 32)) def test_infer_channel_dimension(self): # Test we fail with invalid input with pytest.raises(ValueError): infer_channel_dimension_format(np.random.randint(0, 256, (10, 10))) with pytest.raises(ValueError): infer_channel_dimension_format(np.random.randint(0, 256, (10, 10, 10, 10, 10))) # Test we fail if neither first not last dimension is of size 3 or 1 with pytest.raises(ValueError): infer_channel_dimension_format(np.random.randint(0, 256, (10, 1, 50))) # But if we explicitly set one of the number of channels to 50 it works inferred_dim = infer_channel_dimension_format(np.random.randint(0, 256, (10, 1, 50)), num_channels=50) self.assertEqual(inferred_dim, ChannelDimension.LAST) # Test we correctly identify the channel dimension image = np.random.randint(0, 256, (3, 4, 5)) inferred_dim = infer_channel_dimension_format(image) self.assertEqual(inferred_dim, ChannelDimension.FIRST) image = np.random.randint(0, 256, (1, 4, 5)) inferred_dim = infer_channel_dimension_format(image) self.assertEqual(inferred_dim, ChannelDimension.FIRST) image = np.random.randint(0, 256, (4, 5, 3)) inferred_dim = infer_channel_dimension_format(image) self.assertEqual(inferred_dim, ChannelDimension.LAST) image = np.random.randint(0, 256, (4, 5, 1)) inferred_dim = infer_channel_dimension_format(image) self.assertEqual(inferred_dim, ChannelDimension.LAST) # We can take a batched array of images and find the dimension image = np.random.randint(0, 256, (1, 3, 4, 5)) inferred_dim = infer_channel_dimension_format(image) self.assertEqual(inferred_dim, ChannelDimension.FIRST) def test_get_channel_dimension_axis(self): # Test we correctly identify the channel dimension image = np.random.randint(0, 256, (3, 4, 5)) inferred_axis = get_channel_dimension_axis(image) self.assertEqual(inferred_axis, 0) image = np.random.randint(0, 256, (1, 4, 5)) inferred_axis = get_channel_dimension_axis(image) self.assertEqual(inferred_axis, 0) image = np.random.randint(0, 256, (4, 5, 3)) inferred_axis = get_channel_dimension_axis(image) self.assertEqual(inferred_axis, 2) image = np.random.randint(0, 256, (4, 5, 1)) inferred_axis = get_channel_dimension_axis(image) self.assertEqual(inferred_axis, 2) # We can take a batched array of images and find the dimension image = np.random.randint(0, 256, (1, 3, 4, 5)) inferred_axis = get_channel_dimension_axis(image) self.assertEqual(inferred_axis, 1)
transformers/tests/utils/test_image_utils.py/0
{ "file_path": "transformers/tests/utils/test_image_utils.py", "repo_id": "transformers", "token_count": 13075 }
191
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is responsible for cleaning the list of doctests by making sure the entries all exist and are in alphabetical order. Usage (from the root of the repo): Check that the doctest list is properly sorted and all files exist (used in `make repo-consistency`): ```bash python utils/check_doctest_list.py ``` Auto-sort the doctest list if it is not properly sorted (used in `make fix-copies`): ```bash python utils/check_doctest_list.py --fix_and_overwrite ``` """ import argparse import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py REPO_PATH = "." DOCTEST_FILE_PATHS = ["not_doctested.txt", "slow_documentation_tests.txt"] def clean_doctest_list(doctest_file: str, overwrite: bool = False): """ Cleans the doctest in a given file. Args: doctest_file (`str`): The path to the doctest file to check or clean. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to fix problems. If `False`, will error when the file is not clean. """ non_existent_paths = [] all_paths = [] with open(doctest_file, "r", encoding="utf-8") as f: for line in f: line = line.strip().split(" ")[0] path = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(line) if len(non_existent_paths) > 0: non_existent_paths = "\n".join([f"- {f}" for f in non_existent_paths]) raise ValueError(f"`{doctest_file}` contains non-existent paths:\n{non_existent_paths}") sorted_paths = sorted(all_paths) if all_paths != sorted_paths: if not overwrite: raise ValueError( f"Files in `{doctest_file}` are not in alphabetical order, run `make fix-copies` to fix " "this automatically." ) with open(doctest_file, "w", encoding="utf-8") as f: f.write("\n".join(sorted_paths) + "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") args = parser.parse_args() for doctest_file in DOCTEST_FILE_PATHS: doctest_file = os.path.join(REPO_PATH, "utils", doctest_file) clean_doctest_list(doctest_file, args.fix_and_overwrite)
transformers/utils/check_doctest_list.py/0
{ "file_path": "transformers/utils/check_doctest_list.py", "repo_id": "transformers", "token_count": 1179 }
192
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys fork_point_sha = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") modified_files = ( subprocess.check_output(f"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode("utf-8").split() ) joined_dirs = "|".join(sys.argv[1:]) regex = re.compile(rf"^({joined_dirs}).*?\.py$") relevant_modified_files = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
transformers/utils/get_modified_files.py/0
{ "file_path": "transformers/utils/get_modified_files.py", "repo_id": "transformers", "token_count": 448 }
193
import torch from transformers import PreTrainedModel from .custom_configuration import CustomConfig, NoSuperInitConfig class CustomModel(PreTrainedModel): config_class = CustomConfig def __init__(self, config): super().__init__(config) self.linear = torch.nn.Linear(config.hidden_size, config.hidden_size) def forward(self, x): return self.linear(x) def _init_weights(self, module): pass class NoSuperInitModel(PreTrainedModel): config_class = NoSuperInitConfig def __init__(self, config): super().__init__(config) self.linear = torch.nn.Linear(config.attribute, config.attribute) def forward(self, x): return self.linear(x) def _init_weights(self, module): pass
transformers/utils/test_module/custom_modeling.py/0
{ "file_path": "transformers/utils/test_module/custom_modeling.py", "repo_id": "transformers", "token_count": 289 }
194
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # How To Request Support This is an Open Source Project so please be mindful that like in any other project of this kind there is no obligation to answer all requests for help. However, we want to encourage you to ask for help whenever you think it's needed! We are happy about every question we get because it allows us to better understand your needs, possible misunderstandings, and most importantly a way for you to help us make this library better. That being said, this document's main purpose is to provide guidelines at how you can formulate your requests to increase your chances to be understood and to get support. There are two main venues to receive support: [the forums](https://discuss.huggingface.co/) and [the GitHub issues](https://github.com/huggingface/transformers/issues). ## The Forums [The user forums](https://discuss.huggingface.co/) are supported by the wide community of the library users and backed up by developers when needed. If you have a difficulty with deploying this library or some questions, or you'd like to discuss a new feature, please first consider discussing those things at the forums. Only when you feel your subject matter has been crystalized and you still need support from the library developers do proceed to file an [issue](https://github.com/huggingface/transformers/issues). In particular all "Please explain" questions or objectively very user-specific feature requests belong to the forums. Here are some example of such questions: * "I would like to use a BertModel within a RL-Agent for a customer support service. How can I use a BertForMaskedLM in my ChatBotModel?" * "Could you please explain why T5 has no positional embedding matrix under T5Model?" * "How should I set my generation parameters for translation?" * "How to train T5 on De->En translation?" ## The GitHub Issues Everything which hints at a bug should be opened as an [issue](https://github.com/huggingface/transformers/issues). You are not required to read the following guidelines before opening an issue. However, if you notice that your issue doesn't get any replies, chances are that the developers have one or several difficulties with its quality. In this case, reading the following points and adjusting your issue accordingly could help. 1. Before posting an issue, first search for already posted issues, since chances are someone has already asked a similar question before you. If you use Google your search query should be: ``` "huggingface" "transformers" your query ``` The first two quoted words tell Google to limit the search to the context of the Huggingface Transformers. The remainder is your query - most commonly this would be the error message the software fails with. We will go deeper into details shortly. The results of such a query will typically match GitHub issues, Hugging Face forums, StackExchange, and blogs. If you find relevant hints, you may choose to continue the discussion there if you have follow up questions. If what you found is similar but doesn't quite answer your problem, please, post a new issue and do include links to similar issues or forum discussions you may have found. Let's look at some examples: The error message, often referred to as an assertion, tells us what went wrong. Here is an example of an assertion: ```python Traceback (most recent call last): File "<string>", line 1, in <module> File "/transformers/src/transformers/__init__.py", line 34, in <module> from . import dependency_versions_check File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module> from .utils import is_tokenizers_available File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module> from tqdm.auto import tqdm ModuleNotFoundError: No module named 'tqdm.auto' ``` and it typically includes a traceback, so that we can see the full stack of calls the program made before it fails. This gives us the context to know why the program failed. Going back to the above example. If you received this error search, look at the very last line of the error which is: ```python ModuleNotFoundError: No module named 'tqdm.auto' ``` And now we can use it to do the searching on your favorite search engine: 1. first for `"huggingface" "transformers" "ModuleNotFoundError: No module named 'tqdm.auto'"` 2. if you don't find relevant results, then search for just `"ModuleNotFoundError: No module named 'tqdm.auto'"` 3. and finally if nothing still comes up, then remove the outside quotes: `ModuleNotFoundError: No module named 'tqdm.auto'` If the error includes any messages that include bits unique to your filesystem, always remove those in the search query since other users will not have the same filesystem as yours. For example: ```bash python -c 'open("/tmp/wrong_path.txt", "r")' Traceback (most recent call last): File "<string>", line 1, in <module> FileNotFoundError: [Errno 2] No such file or directory: '/tmp/wrong_path.txt' ``` Here you'd search for just: `"FileNotFoundError: [Errno 2] No such file or directory"` If the local information that you removed were inside the error message and you removed them you may need to remove double quotes since your query is no longer exact. So if the error message was something like: ```bash ValueError: '/tmp/wrong_path.txt' cannot be found ``` then you'd search for `"ValueError" "cannot be found"` As you search you will notice that when you don't use quotes often the search engines will return a variety of unrelated hits, which may or may not be what you want. Experiment with different ways and find which approach gives the most satisfactory results. 2. Keep the issue short, providing the information that you think will aid the developers to understand your situation. Put yourself in the shoes of the person who has never seen your code or knows anything about your custom setup. This mental exercise will help to develop an intuition to what/what not to share" 3. If there is a software failure, always provide the full traceback, for example: ```python $ python -c 'import transformers' Traceback (most recent call last): File "<string>", line 1, in <module> File "/transformers/src/transformers/__init__.py", line 34, in <module> from . import dependency_versions_check File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module> from .utils import is_tokenizers_available File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module> from tqdm.auto import tqdm ModuleNotFoundError: No module named 'tqdm.auto' ``` As compared to providing just the last line of the error message, e.g.: ```python ModuleNotFoundError: No module named 'tqdm.auto' ``` which is not sufficient. If your application is running on more than one GPU (e.g. under `DistributedDataParallel`) and typically getting every log and traceback printed multiple times, please make sure that you paste only one copy of it. At times the traceback from parallel processes may get interleaved - so either disentangle these or change the loggers to log only for `local_rank==0` so that only one process logs things. 4. When quoting a traceback, command line instructions and any type of code always enclose it in triple backticks inside the editor window, that is: ```` ``` git clone https://github.com/huggingface/transformers cd transformers pip install . ``` ```` If it's a command line with a long argument list, please consider breaking it down using backslashes and new lines. Here is an example of a good command line quote: ```bash cd examples/seq2seq torchrun --nproc_per_node=2 ./finetune_trainer.py \ --model_name_or_path sshleifer/distill-mbart-en-ro-12-4 --data_dir wmt_en_ro \ --output_dir output_dir --overwrite_output_dir \ --do_train --n_train 500 --num_train_epochs 1 \ --per_device_train_batch_size 1 --freeze_embeds \ --src_lang en_XX --tgt_lang ro_RO --task translation \ --fp16 ``` If you don't break it up, one has to scroll horizontally which often makes it quite difficult to quickly see what's happening. The backslashes allow us to copy the command directly into the console to run it, without needing to edit it. 5. Include only the important information that you think will help the developer to quickly identify the problem. For example applications often create huge amounts of logs. Ask yourself whether providing all or parts of the log is useful. Pasting a 100-1000 lines of log into the issue is an immediate turn off, since it will take a lot of time to figure out where the pertinent parts of the log are. Attaching a full log can be helpful if it's done as an attachment, if it's enclosed in the following html code in the comment editor window: ``` <details> <summary>Full log</summary> <pre> many lines go here </pre> </details> ``` which would result in the following entry, which can be opened if desired, but otherwise takes little space. <details> <summary>Full log</summary> <pre> many lines go here </pre> </details> You could also provide a link to a pastebin service, but this is less beneficial since those links tend to expire quickly and future readers of your issue might not be able to access that log file anymore and may lack some context. 6. If this is an issue in your code, do try to reduce that code to a minimal example that still demonstrates the problem. Please ask at the forums if you have a hard time figuring how to do that. Please realize that we don't have the luxury of having time to try and understand all of your custom code. If you really tried to make a short reproducible code but couldn't figure it out, it might be that having a traceback will give the developer enough information to know what's going on. But if it is not enough and we can't reproduce the problem, we can't really solve it. Do not despair if you can't figure it out from the beginning, just share what you can and perhaps someone else will be able to help you at the forums. If your setup involves any custom datasets, the best way to help us reproduce the problem is to create a [Google Colab notebook](https://colab.research.google.com/) that demonstrates the issue and once you verify that the issue still exists, include a link to that notebook in the Issue. Just make sure that you don't copy and paste the location bar url of the open notebook - as this is private and we won't be able to open it. Instead, you need to click on `Share` in the right upper corner of the notebook, select `Get Link` and then copy and paste the public link it will give to you. 7. If you forked off some of this project's code or example applications, please, do not ask us to go into your code repository and figure out what you may have done. The code is already very complex and unless there is an easy way to do a diff and it's a small diff, it won't be possible to find someone with time on their hands to make a lengthy investigation. Albeit, you might find someone at the forums who will be generous to do this for you. 8. Before reporting an issue, first, always try to update your environment to the latest official version of this library. We have no resources to go and debug older revisions, which could easily have bugs that have been fixed in the latest released version. We understand that this is not always possible, especially when APIs change, in which case file an issue against the highest library version your environment can support. Of course, if you upgrade the library, always retest that the problem is still there. 9. Please do not ask us to reproduce an issue with your custom data, since we don't have it. So, either you should use some existing dataset supported by HF datasets or you need to supply a code that generates a small sample on the fly, or some another quick and simple way to get it. Please do not send us any non-public domain data that may require a license or a permission to be used. 10. Do not tag multiple developers on the issue unless you know this is expected, either because you asked them and they gave you an explicit permission to tag them or the issue template instructs you to do so. The "who to tag for what domain" part of the issue template is there to help users direct their questions to the right developers who are designated maintainers of project's specific domains. They can then decide at their own discretion to tag other developers if they feel it'd help move the issue forward. We currently don't have a triage service and we trust your capacity to identify the right domain and thus the persons to tag in your issue. If you are not sure, please use the forums to ask for guidance. When in doubt, err on the side of not tagging a given person. If you tag multiple people out of context or permission don't be surprised if you get no response at all. Please remember that every time you tag someone, they get a notification and you're taking their time without their permission. Please be sensitive to that. If you got helped by one of the developers in the past please don't tag them in future issues, unless they are listed in the issue template for the domain you are asking about or that developer gave you an explicit permission to tag them in future issues. If you see a certain developer doing multiple and/or recent commits into a specific area of the project that you feel is relevant to your issue, it is not a good reason to tag them. Various developers may be fixing things that prevent them from moving forward, but often their work is focused on a totally different domain. And while they may or may not know how to help you with the problem at hand, it would benefit the whole community much more if they focus on the domain of their unique expertise. 11. Use the Edit button. Take your time, and re-read and improve the wording and formatting to make your posts and comments as easy to understand as possible. Avoid posting multiple comments in a row, as each comment generates a notification for the developers tagged in that issue. If you happened to post multiple comments in a row, and nobody followed up yet - consider merging those into one or a few comments while editing the combined content to be coherent. If you choose to edit your older comments after others posted follow up comments you need to be aware that your modifications might not be noticed, so if it's not a typo fixing, try to write a new comment flagging that something has been changed in the previous comments. For example, the very first comment is the most important one. If while the thread unfolds you realize that things aren't as they seemed to you originally you may want to edit the first post to reflect the up-to-date understanding of the issue at hand so that it helps those who read your issue in the future quickly understand what's going on and not need to sift through dozens of comments. It also helps to indicate that the post was edited. So, those reading the thread later can understand why there might be certain discontinuity in the information flow. Use bullets and items if you have lists of items and the outcome improves overall readability. Use backticks to refer to class and function names, e.g. `BartModel` and `generate` as these stand out and improve the speed of a reader's comprehension. Try not use italics and bold text too much as these often make the text more difficult to read. 12. If you are cross-referencing a specific comment in a given thread or another issue, always link to that specific comment, rather than using the issue link. If you do the latter it could be quite impossible to find which specific comment you're referring to. To get the link to the specific comment do not copy the url from the location bar of your browser, but instead, click the `...` icon in the upper right corner of the comment and then select "Copy Link". For example the first link is a link to an issue, and the second to a specific comment in the same issue: 1. https://github.com/huggingface/transformers/issues/9257 2. https://github.com/huggingface/transformers/issues/9257#issuecomment-749945162 13. If you are replying to a last comment, it's totally fine to make your reply with just your comment in it. The readers can follow the information flow here. But if you're replying to a comment that happened some comments back it's always a good practice to quote just the relevant lines you're replying it. The `>` is used for quoting, or you can always use the menu to do so. For example your editor box will look like: ``` > How big is your gpu cluster? Our cluster is made of 256 gpus. ``` If you are addressing multiple comments, quote the relevant parts of each before your answer. Some people use the same comment to do multiple replies, others separate them into separate comments. Either way works. The latter approach helps for linking to a specific comment. In general the best way to figure out what works the best is learn from issues posted by other people - see which issues get great responses and which get little to no response - observe what the posters who received great responses did differently from those who did not. Thank you for reading this somewhat lengthy document. We would like to conclude that these are not absolute rules, but a friendly advice that will help maximize the chances for us to understand what you are trying to communicate, reproduce the problem then resolve it to your satisfaction and the benefit of the whole community. If after reading this document there are remaining questions on how and why or there is a need for further elucidation, please, don't hesitate to ask your question in [this thread](https://discuss.huggingface.co/t/how-to-request-support/3128).
transformers/ISSUES.md/0
{ "file_path": "transformers/ISSUES.md", "repo_id": "transformers", "token_count": 4684 }
0
# Awesome projects built with Transformers This page lists awesome projects built on top of Transformers. Transformers is more than a toolkit to use pretrained models: it's a community of projects built around it and the Hugging Face Hub. We want Transformers to enable developers, researchers, students, professors, engineers, and anyone else to build their dream projects. In this list, we showcase incredibly impactful and novel projects that have pushed the field forward. We celebrate 100 of these projects as we reach the milestone of 100k stars as a community; but we're very open to pull requests adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR to add it. ## [gpt4all](https://github.com/nomic-ai/gpt4all) [gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style. Keywords: Open-source, LLaMa, GPT-J, instruction, assistant ## [recommenders](https://github.com/microsoft/recommenders) This repository contains examples and best practices for building recommendation systems, provided as Jupyter notebooks. It goes over several aspects required to build efficient recommendation systems: data preparation, modeling, evaluation, model selection & optimization, as well as operationalization Keywords: Recommender systems, AzureML ## [IOPaint](https://github.com/Sanster/IOPaint) Image inpainting tool powered by Stable Diffusion. Remove any unwanted object, defect, people from your pictures or erase and replace anything on your pictures. Keywords: inpainting, SD, Stable Diffusion ## [flair](https://github.com/flairNLP/flair) FLAIR is a powerful PyTorch NLP framework, convering several important tasks: NER, sentiment-analysis, part-of-speech tagging, text and document embeddings, among other things. Keywords: NLP, text embedding, document embedding, biomedical, NER, PoS, sentiment-analysis ## [mindsdb](https://github.com/mindsdb/mindsdb) MindsDB is a low-code ML platform, which automates and integrates several ML frameworks into the data stack as "AI Tables" to streamline the integration of AI into applications, making it accessible to developers of all skill levels. Keywords: Database, low-code, AI table ## [langchain](https://github.com/hwchase17/langchain) [langchain](https://github.com/hwchase17/langchain) is aimed at assisting in the development of apps merging both LLMs and other sources of knowledge. The library allows chaining calls to applications, creating a sequence across many tools. Keywords: LLMs, Large Language Models, Agents, Chains ## [LlamaIndex](https://github.com/jerryjliu/llama_index) [LlamaIndex](https://github.com/jerryjliu/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retreival mechanisms to perform different LLM tasks and obtain knowledge-augmented results. Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation ## [ParlAI](https://github.com/facebookresearch/ParlAI) [ParlAI](https://github.com/facebookresearch/ParlAI) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dialogue, to visual question answering. It provides more than 100 datasets under the same API, a large zoo of pretrained models, a set of agents, and has several integrations. Keywords: Dialogue, Chatbots, VQA, Datasets, Agents ## [sentence-transformers](https://github.com/UKPLab/sentence-transformers) This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity. Keywords: Dense vector representations, Text embeddings, Sentence embeddings ## [ludwig](https://github.com/ludwig-ai/ludwig) Ludwig is a declarative machine learning framework that makes it easy to define machine learning pipelines using a simple and flexible data-driven configuration system. Ludwig is targeted at a wide variety of AI tasks. It provides a data-driven configuration system, training, prediction, and evaluation scripts, as well as a programmatic API. Keywords: Declarative, Data-driven, ML Framework ## [InvokeAI](https://github.com/invoke-ai/InvokeAI) [InvokeAI](https://github.com/invoke-ai/InvokeAI) is an engine for Stable Diffusion models, aimed at professionals, artists, and enthusiasts. It leverages the latest AI-driven technologies through CLI as well as a WebUI. Keywords: Stable-Diffusion, WebUI, CLI ## [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) is an easy-to-use and powerful NLP library particularly targeted at the Chinese languages. It has support for multiple pre-trained model zoos, and supports a wide-range of NLP tasks from research to industrial applications. Keywords: NLP, Chinese, Research, Industry ## [stanza](https://github.com/stanfordnlp/stanza) The Stanford NLP Group's official Python NLP library. It contains support for running various accurate natural language processing tools on 60+ languages and for accessing the Java Stanford CoreNLP software from Python. Keywords: NLP, Multilingual, CoreNLP ## [DeepPavlov](https://github.com/deeppavlov/DeepPavlov) [DeepPavlov](https://github.com/deeppavlov/DeepPavlov) is an open-source conversational AI library. It is designed for the development of production ready chat-bots and complex conversational systems, as well as research in the area of NLP and, particularly, of dialog systems. Keywords: Conversational, Chatbot, Dialog ## [alpaca-lora](https://github.com/tloen/alpaca-lora) Alpaca-lora contains code for reproducing the Stanford Alpaca results using low-rank adaptation (LoRA). The repository provides training (fine-tuning) as well as generation scripts. Keywords: LoRA, Parameter-efficient fine-tuning ## [imagen-pytorch](https://github.com/lucidrains/imagen-pytorch) An open-source Implementation of Imagen, Google's closed-source Text-to-Image Neural Network that beats DALL-E2. As of release, it is the new SOTA for text-to-image synthesis. Keywords: Imagen, Text-to-image ## [adapters](https://github.com/adapter-hub/adapters) [adapters](https://github.com/adapter-hub/adapters) is an extension of HuggingFace's Transformers library, integrating adapters into state-of-the-art language models by incorporating AdapterHub, a central repository for pre-trained adapter modules. It is a drop-in replacement for transformers, which is regularly updated to stay up-to-date with the developments of transformers. Keywords: Adapters, LoRA, Parameter-efficient fine-tuning, Hub ## [NeMo](https://github.com/NVIDIA/NeMo) NVIDIA [NeMo](https://github.com/NVIDIA/NeMo) is a conversational AI toolkit built for researchers working on automatic speech recognition (ASR), text-to-speech synthesis (TTS), large language models (LLMs), and natural language processing (NLP). The primary objective of [NeMo](https://github.com/NVIDIA/NeMo) is to help researchers from industry and academia to reuse prior work (code and pretrained models) and make it easier to create new https://developer.nvidia.com/conversational-ai#started. Keywords: Conversational, ASR, TTS, LLMs, NLP ## [Runhouse](https://github.com/run-house/runhouse) [Runhouse](https://github.com/run-house/runhouse) allows to send code and data to any of your compute or data infra, all in Python, and continue to interact with them normally from your existing code and environment. Runhouse developers mention: > Think of it as an expansion pack to your Python interpreter that lets it take detours to remote machines or manipulate remote data. Keywords: MLOps, Infrastructure, Data storage, Modeling ## [MONAI](https://github.com/Project-MONAI/MONAI) [MONAI](https://github.com/Project-MONAI/MONAI) is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its ambitions are: - developing a community of academic, industrial and clinical researchers collaborating on a common foundation; - creating state-of-the-art, end-to-end training workflows for healthcare imaging; - providing researchers with the optimized and standardized way to create and evaluate deep learning models. Keywords: Healthcare imaging, Training, Evaluation ## [simpletransformers](https://github.com/ThilinaRajapakse/simpletransformers) Simple Transformers lets you quickly train and evaluate Transformer models. Only 3 lines of code are needed to initialize, train, and evaluate a model. It supports a wide variety of NLP tasks. Keywords: Framework, simplicity, NLP ## [JARVIS](https://github.com/microsoft/JARVIS) [JARVIS](https://github.com/microsoft/JARVIS) is a system attempting to merge LLMs such as GPT-4 with the rest of the open-source ML community: leveraging up to 60 downstream models in order to perform tasks identified by the LLM. Keywords: LLM, Agents, HF Hub ## [transformers.js](https://xenova.github.io/transformers.js/) [transformers.js](https://xenova.github.io/transformers.js/) is a JavaScript library targeted at running models from transformers directly within the browser. Keywords: Transformers, JavaScript, browser ## [bumblebee](https://github.com/elixir-nx/bumblebee) Bumblebee provides pre-trained Neural Network models on top of Axon, a neural networks library for the Elixir language. It includes integration with 🤗 Models, allowing anyone to download and perform Machine Learning tasks with few lines of code. Keywords: Elixir, Axon ## [argilla](https://github.com/argilla-io/argilla) Argilla is an open-source platform providing advanced NLP labeling, monitoring, and workspaces. It is compatible with many open source ecosystems such as Hugging Face, Stanza, FLAIR, and others. Keywords: NLP, Labeling, Monitoring, Workspaces ## [haystack](https://github.com/deepset-ai/haystack) Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs. It offers production-ready tools to quickly build complex decision making, question answering, semantic search, text generation applications, and more. Keywords: NLP, Framework, LLM ## [spaCy](https://github.com/explosion/spaCy) [spaCy](https://github.com/explosion/spaCy) is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. It offers support for transformers models through its third party package, spacy-transformers. Keywords: NLP, Framework ## [speechbrain](https://github.com/speechbrain/speechbrain) SpeechBrain is an open-source and all-in-one conversational AI toolkit based on PyTorch. The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognition, speech enhancement, speech separation, language identification, multi-microphone signal processing, and many others. Keywords: Conversational, Speech ## [skorch](https://github.com/skorch-dev/skorch) Skorch is a scikit-learn compatible neural network library that wraps PyTorch. It has support for models within transformers, and tokenizers from tokenizers. Keywords: Scikit-Learn, PyTorch ## [bertviz](https://github.com/jessevig/bertviz) BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models. Keywords: Visualization, Transformers ## [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) is a haiku library using the xmap/pjit operators in JAX for model parallelism of transformers. This library is designed for scalability up to approximately 40B parameters on TPUv3s. It was the library used to train the GPT-J model. Keywords: Haiku, Model parallelism, LLM, TPU ## [deepchem](https://github.com/deepchem/deepchem) DeepChem aims to provide a high quality open-source toolchain that democratizes the use of deep-learning in drug discovery, materials science, quantum chemistry, and biology. Keywords: Drug discovery, Materials Science, Quantum Chemistry, Biology ## [OpenNRE](https://github.com/thunlp/OpenNRE) An Open-Source Package for Neural Relation Extraction (NRE). It is targeted at a wide range of users, from newcomers to relation extraction, to developers, researchers, or students. Keywords: Neural Relation Extraction, Framework ## [pycorrector](https://github.com/shibing624/pycorrector) PyCorrector is a Chinese Text Error Correction Tool. It uses a language model to detect errors, pinyin feature and shape feature to correct Chinese text errors. it can be used for Chinese Pinyin and stroke input method. Keywords: Chinese, Error correction tool, Language model, Pinyin ## [nlpaug](https://github.com/makcedward/nlpaug) This python library helps you with augmenting nlp for machine learning projects. It is a lightweight library featuring synthetic data generation for improving model performance, support for audio and text, and compatibility with several ecosystems (scikit-learn, pytorch, tensorflow). Keywords: Data augmentation, Synthetic data generation, Audio, NLP ## [dream-textures](https://github.com/carson-katri/dream-textures) [dream-textures](https://github.com/carson-katri/dream-textures) is a library targeted at bringing stable-diffusion support within Blender. It supports several use-cases, such as image generation, texture projection, inpainting/outpainting, ControlNet, and upscaling. Keywords: Stable-Diffusion, Blender ## [seldon-core](https://github.com/SeldonIO/seldon-core) Seldon core converts your ML models (Tensorflow, Pytorch, H2o, etc.) or language wrappers (Python, Java, etc.) into production REST/GRPC microservices. Seldon handles scaling to thousands of production machine learning models and provides advanced machine learning capabilities out of the box including Advanced Metrics, Request Logging, Explainers, Outlier Detectors, A/B Tests, Canaries and more. Keywords: Microservices, Modeling, Language wrappers ## [open_model_zoo](https://github.com/openvinotoolkit/open_model_zoo) This repository includes optimized deep learning models and a set of demos to expedite development of high-performance deep learning inference applications. Use these free pre-trained models instead of training your own models to speed-up the development and production deployment process. Keywords: Optimized models, Demos ## [ml-stable-diffusion](https://github.com/apple/ml-stable-diffusion) ML-Stable-Diffusion is a repository by Apple bringing Stable Diffusion support to Core ML, on Apple Silicon devices. It supports stable diffusion checkpoints hosted on the Hugging Face Hub. Keywords: Stable Diffusion, Apple Silicon, Core ML ## [stable-dreamfusion](https://github.com/ashawkey/stable-dreamfusion) Stable-Dreamfusion is a pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model. Keywords: Text-to-3D, Stable Diffusion ## [txtai](https://github.com/neuml/txtai) [txtai](https://github.com/neuml/txtai) is an open-source platform for semantic search and workflows powered by language models. txtai builds embeddings databases, which are a union of vector indexes and relational databases enabling similarity search with SQL. Semantic workflows connect language models together into unified applications. Keywords: Semantic search, LLM ## [djl](https://github.com/deepjavalibrary/djl) Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. DJL is designed to be easy to get started with and simple to use for developers. DJL provides a native Java development experience and functions like any other regular Java library. DJL offers [a Java binding](https://github.com/deepjavalibrary/djl/tree/master/extensions/tokenizers) for HuggingFace Tokenizers and easy conversion toolkit for HuggingFace model to deploy in Java. Keywords: Java, Framework ## [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/) This project provides a unified framework to test generative language models on a large number of different evaluation tasks. It has support for more than 200 tasks, and supports different ecosystems: HF Transformers, GPT-NeoX, DeepSpeed, as well as the OpenAI API. Keywords: LLM, Evaluation, Few-shot ## [gpt-neox](https://github.com/EleutherAI/gpt-neox) This repository records EleutherAI's library for training large-scale language models on GPUs. The framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. It is focused on training multi-billion-parameter models. Keywords: Training, LLM, Megatron, DeepSpeed ## [muzic](https://github.com/microsoft/muzic) Muzic is a research project on AI music that empowers music understanding and generation with deep learning and artificial intelligence. Muzic was created by researchers from Microsoft Research Asia. Keywords: Music understanding, Music generation ## [dalle-flow](https://github.com/jina-ai/dalle-flow) DALL·E Flow is an interactive workflow for generating high-definition images from a text prompt. Itt leverages DALL·E-Mega, GLID-3 XL, and Stable Diffusion to generate image candidates, and then calls CLIP-as-service to rank the candidates w.r.t. the prompt. The preferred candidate is fed to GLID-3 XL for diffusion, which often enriches the texture and background. Finally, the candidate is upscaled to 1024x1024 via SwinIR. Keywords: High-definition image generation, Stable Diffusion, DALL-E Mega, GLID-3 XL, CLIP, SwinIR ## [lightseq](https://github.com/bytedance/lightseq) LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP and CV models such as BERT, GPT, Transformer, etc. It is therefore best useful for machine translation, text generation, image classification, and other sequence related tasks. Keywords: Training, Inference, Sequence Processing, Sequence Generation ## [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) The goal of this project is to create a learning based system that takes an image of a math formula and returns corresponding LaTeX code. Keywords: OCR, LaTeX, Math formula ## [open_clip](https://github.com/mlfoundations/open_clip) OpenCLIP is an open source implementation of OpenAI's CLIP. The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift. The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset. Specifically, a ResNet-50 model trained with this codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet. Keywords: CLIP, Open-source, Contrastive, Image-text ## [dalle-playground](https://github.com/saharmor/dalle-playground) A playground to generate images from any text prompt using Stable Diffusion and Dall-E mini. Keywords: WebUI, Stable Diffusion, Dall-E mini ## [FedML](https://github.com/FedML-AI/FedML) [FedML](https://github.com/FedML-AI/FedML) is a federated learning and analytics library enabling secure and collaborative machine learning on decentralized data anywhere at any scale. It supports large-scale cross-silo federated learning, and cross-device federated learning on smartphones/IoTs, and research simulation. Keywords: Federated Learning, Analytics, Collaborative ML, Decentralized ## [gpt-code-clippy](https://github.com/CodedotAl/gpt-code-clippy) GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub. Keywords: LLM, Code ## [TextAttack](https://github.com/QData/TextAttack) [TextAttack](https://github.com/QData/TextAttack) 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP. Keywords: Adversarial attacks, Data augmentation, NLP ## [OpenPrompt](https://github.com/thunlp/OpenPrompt) Prompt-learning is a paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modify the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. [OpenPrompt](https://github.com/thunlp/OpenPrompt) supports loading PLMs directly from https://github.com/huggingface/transformers. ## [text-generation-webui](https://github.com/oobabooga/text-generation-webui/) [text-generation-webui](https://github.com/oobabooga/text-generation-webui/) is a Gradio Web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, Pythia, OPT, and GALACTICA. Keywords: LLM, WebUI ## [libra](https://github.com/Palashio/libra) An ergonomic machine learning [libra](https://github.com/Palashio/libra)ry for non-technical users. It focuses on ergonomics and on ensuring that training a model is as simple as it can be. Keywords: Ergonomic, Non-technical ## [alibi](https://github.com/SeldonIO/alibi) Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation methods for classification and regression models. Keywords: Model inspection, Model interpretation, Black-box, White-box ## [tortoise-tts](https://github.com/neonbjb/tortoise-tts) Tortoise is a text-to-speech program built with the following priorities: strong multi-voice capabilities, and highly realistic prosody and intonation. Keywords: Text-to-speech ## [flower](https://github.com/adap/flower) Flower (flwr) is a framework for building federated learning systems. The design of Flower is based on a few guiding principles: customizability, extendability, framework agnosticity, and ease-of-use. Keywords: Federated learning systems, Customizable, Extendable, Framework-agnostic, Simplicity ## [fast-bert](https://github.com/utterworks/fast-bert) Fast-Bert is a deep learning library that allows developers and data scientists to train and deploy BERT and XLNet based models for natural language processing tasks beginning with Text Classification. It is aimed at simplicity. Keywords: Deployment, BERT, XLNet ## [towhee](https://github.com/towhee-io/towhee) Towhee makes it easy to build neural data processing pipelines for AI applications. We provide hundreds of models, algorithms, and transformations that can be used as standard pipeline building blocks. Users can use Towhee's Pythonic API to build a prototype of their pipeline and automatically optimize it for production-ready environments. Keywords: Data processing pipeline, Optimization ## [alibi-detect](https://github.com/SeldonIO/alibi-detect) Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection. Keywords: Adversarial, Outlier, Drift detection ## [FARM](https://github.com/deepset-ai/FARM) [FARM](https://github.com/deepset-ai/FARM) makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built upon transformers and provides additional features to simplify the life of developers: Parallelized preprocessing, highly modular design, multi-task learning, experiment tracking, easy debugging and close integration with AWS SageMaker. Keywords: Transfer Learning, Modular design, Multi-task learning, Experiment tracking ## [aitextgen](https://github.com/minimaxir/aitextgen) A robust Python tool for text-based AI training and generation using OpenAI's GPT-2 and EleutherAI's GPT Neo/GPT-3 architecture. [aitextgen](https://github.com/minimaxir/aitextgen) is a Python package that leverages PyTorch, Hugging Face Transformers and pytorch-lightning with specific optimizations for text generation using GPT-2, plus many added features. Keywords: Training, Generation ## [diffgram](https://github.com/diffgram/diffgram) Diffgram aims to integrate human supervision into platforms. We support your team programmatically changing the UI (Schema, layout, etc.) like in Streamlit. This means that you can collect and annotate timely data from users. In other words, we are the platform behind your platform, an integrated part of your application, to ship new & better AI products faster. Keywords: Human supervision, Platform ## [ecco](https://github.com/jalammar/ecco) Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0). Keywords: Model explainability ## [s3prl](https://github.com/s3prl/s3prl) [s3prl](https://github.com/s3prl/s3prl) stands for Self-Supervised Speech Pre-training and Representation Learning. Self-supervised speech pre-trained models are called upstream in this toolkit, and are utilized in various downstream tasks. Keywords: Speech, Training ## [ru-dalle](https://github.com/ai-forever/ru-dalle) RuDALL-E aims to be similar to DALL-E, targeted to Russian. Keywords: DALL-E, Russian ## [DeepKE](https://github.com/zjunlp/DeepKE) [DeepKE](https://github.com/zjunlp/DeepKE) is a knowledge extraction toolkit for knowledge graph construction supporting cnSchema,low-resource, document-level and multimodal scenarios for entity, relation and attribute extraction. Keywords: Knowledge Extraction, Knowledge Graphs ## [Nebuly](https://github.com/nebuly-ai/nebuly) Nebuly is the next-generation platform to monitor and optimize your AI costs in one place. The platform connects to all your AI cost sources (compute, API providers, AI software licenses, etc) and centralizes them in one place to give you full visibility on a model basis. The platform also provides optimization recommendations and a co-pilot model that can guide during the optimization process. The platform builds on top of the open-source tools allowing you to optimize the different steps of your AI stack to squeeze out the best possible cost performances. Keywords: Optimization, Performance, Monitoring ## [imaginAIry](https://github.com/brycedrennan/imaginAIry) Offers a CLI and a Python API to generate images with Stable Diffusion. It has support for many tools, like image structure control (controlnet), instruction-based image edits (InstructPix2Pix), prompt-based masking (clipseg), among others. Keywords: Stable Diffusion, CLI, Python API ## [sparseml](https://github.com/neuralmagic/sparseml) SparseML is an open-source model optimization toolkit that enables you to create inference-optimized sparse models using pruning, quantization, and distillation algorithms. Models optimized with SparseML can then be exported to the ONNX and deployed with DeepSparse for GPU-class performance on CPU hardware. Keywords: Model optimization, Pruning, Quantization, Distillation ## [opacus](https://github.com/pytorch/opacus) Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Keywords: Differential privacy ## [LAVIS](https://github.com/salesforce/LAVIS) [LAVIS](https://github.com/salesforce/LAVIS) is a Python deep learning library for LAnguage-and-VISion intelligence research and applications. This library aims to provide engineers and researchers with a one-stop solution to rapidly develop models for their specific multimodal scenarios, and benchmark them across standard and customized datasets. It features a unified interface design to access Keywords: Multimodal, NLP, Vision ## [buzz](https://github.com/chidiwilliams/buzz) Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper. Keywords: Audio transcription, Translation ## [rust-bert](https://github.com/guillaume-be/rust-bert) Rust-native state-of-the-art Natural Language Processing models and pipelines. Port of Hugging Face's Transformers library, using the tch-rs crate and pre-processing from rust-tokenizers. Supports multi-threaded tokenization and GPU inference. This repository exposes the model base architecture, task-specific heads and ready-to-use pipelines. Keywords: Rust, BERT, Inference ## [EasyNLP](https://github.com/alibaba/EasyNLP) [EasyNLP](https://github.com/alibaba/EasyNLP) is an easy-to-use NLP development and application toolkit in PyTorch, first released inside Alibaba in 2021. It is built with scalable distributed training strategies and supports a comprehensive suite of NLP algorithms for various NLP applications. [EasyNLP](https://github.com/alibaba/EasyNLP) integrates knowledge distillation and few-shot learning for landing large pre-trained models, together with various popular multi-modality pre-trained models. It provides a unified framework of model training, inference, and deployment for real-world applications. Keywords: NLP, Knowledge distillation, Few-shot learning, Multi-modality, Training, Inference, Deployment ## [TurboTransformers](https://github.com/Tencent/TurboTransformers) A fast and user-friendly runtime for transformer inference (Bert, Albert, GPT2, Decoders, etc) on CPU and GPU. Keywords: Optimization, Performance ## [hivemind](https://github.com/learning-at-home/hivemind) Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers. Keywords: Decentralized training ## [docquery](https://github.com/impira/docquery) DocQuery is a library and command-line tool that makes it easy to analyze semi-structured and unstructured documents (PDFs, scanned images, etc.) using large language models (LLMs). You simply point DocQuery at one or more documents and specify a question you want to ask. DocQuery is created by the team at Impira. Keywords: Semi-structured documents, Unstructured documents, LLM, Document Question Answering ## [CodeGeeX](https://github.com/THUDM/CodeGeeX) [CodeGeeX](https://github.com/THUDM/CodeGeeX) is a large-scale multilingual code generation model with 13 billion parameters, pre-trained on a large code corpus of more than 20 programming languages. It has several unique features: - Multilingual code generation - Crosslingual code translation - Is a customizable programming assistant Keywords: Code Generation Model ## [ktrain](https://github.com/amaiya/ktrain) [ktrain](https://github.com/amaiya/ktrain) is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, [ktrain](https://github.com/amaiya/ktrain) is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. Keywords: Keras wrapper, Model building, Training, Deployment ## [FastDeploy](https://github.com/PaddlePaddle/FastDeploy) [FastDeploy](https://github.com/PaddlePaddle/FastDeploy) is an Easy-to-use and High Performance AI model deployment toolkit for Cloud, Mobile and Edge with packageout-of-the-box and unified experience, endend-to-end optimization for over fire160+ Text, Vision, Speech and Cross-modal AI models. Including image classification, object detection, OCR, face detection, matting, pp-tracking, NLP, stable diffusion, TTS and other tasks to meet developers' industrial deployment needs for multi-scenario, multi-hardware and multi-platform. Keywords: Model deployment, CLoud, Mobile, Edge ## [underthesea](https://github.com/undertheseanlp/underthesea) [underthesea](https://github.com/undertheseanlp/underthesea) is a Vietnamese NLP toolkit. Underthesea is a suite of open source Python modules data sets and tutorials supporting research and development in Vietnamese Natural Language Processing. We provides extremely easy API to quickly apply pretrained NLP models to your Vietnamese text, such as word segmentation, part-of-speech tagging (PoS), named entity recognition (NER), text classification and dependency parsing. Keywords: Vietnamese, NLP ## [hasktorch](https://github.com/hasktorch/hasktorch) Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the core C++ libraries shared by PyTorch. Keywords: Haskell, Neural Networks ## [donut](https://github.com/clovaai/donut) Donut, or Document understanding transformer, is a new method of document understanding that utilizes an OCR-free end-to-end Transformer model. Donut does not require off-the-shelf OCR engines/APIs, yet it shows state-of-the-art performances on various visual document understanding tasks, such as visual document classification or information extraction (a.k.a. document parsing). Keywords: Document Understanding ## [transformers-interpret](https://github.com/cdpierse/transformers-interpret) Transformers Interpret is a model explainability tool designed to work exclusively with the transformers package. In line with the philosophy of the Transformers package Transformers Interpret allows any transformers model to be explained in just two lines. Explainers are available for both text and computer vision models. Visualizations are also available in notebooks and as savable png and html files Keywords: Model interpretation, Visualization ## [mlrun](https://github.com/mlrun/mlrun) MLRun is an open MLOps platform for quickly building and managing continuous ML applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements. Keywords: MLOps ## [FederatedScope](https://github.com/alibaba/FederatedScope) [FederatedScope](https://github.com/alibaba/FederatedScope) is a comprehensive federated learning platform that provides convenient usage and flexible customization for various federated learning tasks in both academia and industry. Based on an event-driven architecture, [FederatedScope](https://github.com/alibaba/FederatedScope) integrates rich collections of functionalities to satisfy the burgeoning demands from federated learning, and aims to build up an easy-to-use platform for promoting learning safely and effectively. Keywords: Federated learning, Event-driven ## [pythainlp](https://github.com/PyThaiNLP/pythainlp) PyThaiNLP is a Python package for text processing and linguistic analysis, similar to NLTK with focus on Thai language. Keywords: Thai, NLP, NLTK ## [FlagAI](https://github.com/FlagAI-Open/FlagAI) [FlagAI](https://github.com/FlagAI-Open/FlagAI) (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model. Our goal is to support training, fine-tuning, and deployment of large-scale models on various downstream tasks with multi-modality. Keywords: Large models, Training, Fine-tuning, Deployment, Multi-modal ## [pyserini](https://github.com/castorini/pyserini) [pyserini](https://github.com/castorini/pyserini) is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse representations is provided via integration with the group's Anserini IR toolkit. Retrieval using dense representations is provided via integration with Facebook's Faiss library. Keywords: IR, Information Retrieval, Dense, Sparse ## [baal](https://github.com/baal-org/baal) [baal](https://github.com/baal-org/baal) is an active learning library that supports both industrial applications and research usecases. [baal](https://github.com/baal-org/baal) currently supports Monte-Carlo Dropout, MCDropConnect, deep ensembles, and semi-supervised learning. Keywords: Active Learning, Research, Labeling ## [cleanlab](https://github.com/cleanlab/cleanlab) [cleanlab](https://github.com/cleanlab/cleanlab) is the standard data-centric AI package for data quality and machine learning with messy, real-world data and labels. For text, image, tabular, audio (among others) datasets, you can use cleanlab to automatically: detect data issues (outliers, label errors, near duplicates, etc), train robust ML models, infer consensus + annotator-quality for multi-annotator data, suggest data to (re)label next (active learning). Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active Learning ## [BentoML](https://github.com/bentoml/BentoML) [BentoML](https://github.com/bentoml) is the unified framework for for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models. All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage. Keywords: BentoML, Framework, Deployment, AI Applications ## [LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) [LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning). Keywords: PEFT, fine-tuning, LLaMA-2, ChatGLM, Qwen
transformers/awesome-transformers.md/0
{ "file_path": "transformers/awesome-transformers.md", "repo_id": "transformers", "token_count": 10233 }
1