repo_name
stringclasses 1
value | pr_number
int64 4.12k
11.2k
| pr_title
stringlengths 9
107
| pr_description
stringlengths 107
5.48k
| author
stringlengths 4
18
| date_created
unknown | date_merged
unknown | previous_commit
stringlengths 40
40
| pr_commit
stringlengths 40
40
| query
stringlengths 118
5.52k
| before_content
stringlengths 0
7.93M
| after_content
stringlengths 0
7.93M
| label
int64 -1
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
This is pure Python implementation of counting sort algorithm
For doctests run following command:
python -m doctest -v counting_sort.py
or
python3 -m doctest -v counting_sort.py
For manual testing run:
python counting_sort.py
"""
def counting_sort(collection):
"""Pure implementation of counting sort algorithm in Python
:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending
Examples:
>>> counting_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]
>>> counting_sort([])
[]
>>> counting_sort([-2, -5, -45])
[-45, -5, -2]
"""
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
coll_len = len(collection)
coll_max = max(collection)
coll_min = min(collection)
# create the counting array
counting_arr_length = coll_max + 1 - coll_min
counting_arr = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1, counting_arr_length):
counting_arr[i] = counting_arr[i] + counting_arr[i - 1]
# create the output collection
ordered = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0, coll_len)):
ordered[counting_arr[collection[i] - coll_min] - 1] = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def counting_sort_string(string):
"""
>>> counting_sort_string("thisisthestring")
'eghhiiinrsssttt'
"""
return "".join([chr(i) for i in counting_sort([ord(c) for c in string])])
if __name__ == "__main__":
# Test string sort
assert "eghhiiinrsssttt" == counting_sort_string("thisisthestring")
user_input = input("Enter numbers separated by a comma:\n").strip()
unsorted = [int(item) for item in user_input.split(",")]
print(counting_sort(unsorted))
| """
This is pure Python implementation of counting sort algorithm
For doctests run following command:
python -m doctest -v counting_sort.py
or
python3 -m doctest -v counting_sort.py
For manual testing run:
python counting_sort.py
"""
def counting_sort(collection):
"""Pure implementation of counting sort algorithm in Python
:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending
Examples:
>>> counting_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]
>>> counting_sort([])
[]
>>> counting_sort([-2, -5, -45])
[-45, -5, -2]
"""
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
coll_len = len(collection)
coll_max = max(collection)
coll_min = min(collection)
# create the counting array
counting_arr_length = coll_max + 1 - coll_min
counting_arr = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1, counting_arr_length):
counting_arr[i] = counting_arr[i] + counting_arr[i - 1]
# create the output collection
ordered = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0, coll_len)):
ordered[counting_arr[collection[i] - coll_min] - 1] = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def counting_sort_string(string):
"""
>>> counting_sort_string("thisisthestring")
'eghhiiinrsssttt'
"""
return "".join([chr(i) for i in counting_sort([ord(c) for c in string])])
if __name__ == "__main__":
# Test string sort
assert "eghhiiinrsssttt" == counting_sort_string("thisisthestring")
user_input = input("Enter numbers separated by a comma:\n").strip()
unsorted = [int(item) for item in user_input.split(",")]
print(counting_sort(unsorted))
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Get CO2 emission data from the UK CarbonIntensity API
"""
from datetime import date
import requests
BASE_URL = "https://api.carbonintensity.org.uk/intensity"
# Emission in the last half hour
def fetch_last_half_hour() -> str:
last_half_hour = requests.get(BASE_URL).json()["data"][0]
return last_half_hour["intensity"]["actual"]
# Emissions in a specific date range
def fetch_from_to(start, end) -> list:
return requests.get(f"{BASE_URL}/{start}/{end}").json()["data"]
if __name__ == "__main__":
for entry in fetch_from_to(start=date(2020, 10, 1), end=date(2020, 10, 3)):
print("from {from} to {to}: {intensity[actual]}".format(**entry))
print(f"{fetch_last_half_hour() = }")
| """
Get CO2 emission data from the UK CarbonIntensity API
"""
from datetime import date
import requests
BASE_URL = "https://api.carbonintensity.org.uk/intensity"
# Emission in the last half hour
def fetch_last_half_hour() -> str:
last_half_hour = requests.get(BASE_URL).json()["data"][0]
return last_half_hour["intensity"]["actual"]
# Emissions in a specific date range
def fetch_from_to(start, end) -> list:
return requests.get(f"{BASE_URL}/{start}/{end}").json()["data"]
if __name__ == "__main__":
for entry in fetch_from_to(start=date(2020, 10, 1), end=date(2020, 10, 3)):
print("from {from} to {to}: {intensity[actual]}".format(**entry))
print(f"{fetch_last_half_hour() = }")
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Totient maximum
Problem 69: https://projecteuler.net/problem=69
Euler's Totient function, φ(n) [sometimes called the phi function],
is used to determine the number of numbers less than n which are relatively prime to n.
For example, as 1, 2, 4, 5, 7, and 8,
are all less than nine and relatively prime to nine, φ(9)=6.
n Relatively Prime φ(n) n/φ(n)
2 1 1 2
3 1,2 2 1.5
4 1,3 2 2
5 1,2,3,4 4 1.25
6 1,5 2 3
7 1,2,3,4,5,6 6 1.1666...
8 1,3,5,7 4 2
9 1,2,4,5,7,8 6 1.5
10 1,3,7,9 4 2.5
It can be seen that n=6 produces a maximum n/φ(n) for n ≤ 10.
Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.
"""
def solution(n: int = 10 ** 6) -> int:
"""
Returns solution to problem.
Algorithm:
1. Precompute φ(k) for all natural k, k <= n using product formula (wikilink below)
https://en.wikipedia.org/wiki/Euler%27s_totient_function#Euler's_product_formula
2. Find k/φ(k) for all k ≤ n and return the k that attains maximum
>>> solution(10)
6
>>> solution(100)
30
>>> solution(9973)
2310
"""
if n <= 0:
raise ValueError("Please enter an integer greater than 0")
phi = list(range(n + 1))
for number in range(2, n + 1):
if phi[number] == number:
phi[number] -= 1
for multiple in range(number * 2, n + 1, number):
phi[multiple] = (phi[multiple] // number) * (number - 1)
answer = 1
for number in range(1, n + 1):
if (answer / phi[answer]) < (number / phi[number]):
answer = number
return answer
if __name__ == "__main__":
print(solution())
| """
Totient maximum
Problem 69: https://projecteuler.net/problem=69
Euler's Totient function, φ(n) [sometimes called the phi function],
is used to determine the number of numbers less than n which are relatively prime to n.
For example, as 1, 2, 4, 5, 7, and 8,
are all less than nine and relatively prime to nine, φ(9)=6.
n Relatively Prime φ(n) n/φ(n)
2 1 1 2
3 1,2 2 1.5
4 1,3 2 2
5 1,2,3,4 4 1.25
6 1,5 2 3
7 1,2,3,4,5,6 6 1.1666...
8 1,3,5,7 4 2
9 1,2,4,5,7,8 6 1.5
10 1,3,7,9 4 2.5
It can be seen that n=6 produces a maximum n/φ(n) for n ≤ 10.
Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.
"""
def solution(n: int = 10 ** 6) -> int:
"""
Returns solution to problem.
Algorithm:
1. Precompute φ(k) for all natural k, k <= n using product formula (wikilink below)
https://en.wikipedia.org/wiki/Euler%27s_totient_function#Euler's_product_formula
2. Find k/φ(k) for all k ≤ n and return the k that attains maximum
>>> solution(10)
6
>>> solution(100)
30
>>> solution(9973)
2310
"""
if n <= 0:
raise ValueError("Please enter an integer greater than 0")
phi = list(range(n + 1))
for number in range(2, n + 1):
if phi[number] == number:
phi[number] -= 1
for multiple in range(number * 2, n + 1, number):
phi[multiple] = (phi[multiple] // number) * (number - 1)
answer = 1
for number in range(1, n + 1):
if (answer / phi[answer]) < (number / phi[number]):
answer = number
return answer
if __name__ == "__main__":
print(solution())
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
One of the several implementations of Lempel–Ziv–Welch decompression algorithm
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
"""
import math
import sys
def read_file_binary(file_path: str) -> str:
"""
Reads given file as bytes and returns them as a long string
"""
result = ""
try:
with open(file_path, "rb") as binary_file:
data = binary_file.read()
for dat in data:
curr_byte = f"{dat:08b}"
result += curr_byte
return result
except OSError:
print("File not accessible")
sys.exit()
def decompress_data(data_bits: str) -> str:
"""
Decompresses given data_bits using Lempel–Ziv–Welch compression algorithm
and returns the result as a string
"""
lexicon = {"0": "0", "1": "1"}
result, curr_string = "", ""
index = len(lexicon)
for i in range(len(data_bits)):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
last_match_id = lexicon[curr_string]
result += last_match_id
lexicon[curr_string] = last_match_id + "0"
if math.log2(index).is_integer():
newLex = {}
for curr_key in list(lexicon):
newLex["0" + curr_key] = lexicon.pop(curr_key)
lexicon = newLex
lexicon[bin(index)[2:]] = last_match_id + "1"
index += 1
curr_string = ""
return result
def write_file_binary(file_path: str, to_write: str) -> None:
"""
Writes given to_write string (should only consist of 0's and 1's) as bytes in the
file
"""
byte_length = 8
try:
with open(file_path, "wb") as opened_file:
result_byte_array = [
to_write[i : i + byte_length]
for i in range(0, len(to_write), byte_length)
]
if len(result_byte_array[-1]) % byte_length == 0:
result_byte_array.append("10000000")
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1]) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(elem, 2).to_bytes(1, byteorder="big"))
except OSError:
print("File not accessible")
sys.exit()
def remove_prefix(data_bits: str) -> str:
"""
Removes size prefix, that compressed file should have
Returns the result
"""
counter = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
data_bits = data_bits[counter:]
data_bits = data_bits[counter + 1 :]
return data_bits
def compress(source_path: str, destination_path: str) -> None:
"""
Reads source file, decompresses it and writes the result in destination file
"""
data_bits = read_file_binary(source_path)
data_bits = remove_prefix(data_bits)
decompressed = decompress_data(data_bits)
write_file_binary(destination_path, decompressed)
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| """
One of the several implementations of Lempel–Ziv–Welch decompression algorithm
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
"""
import math
import sys
def read_file_binary(file_path: str) -> str:
"""
Reads given file as bytes and returns them as a long string
"""
result = ""
try:
with open(file_path, "rb") as binary_file:
data = binary_file.read()
for dat in data:
curr_byte = f"{dat:08b}"
result += curr_byte
return result
except OSError:
print("File not accessible")
sys.exit()
def decompress_data(data_bits: str) -> str:
"""
Decompresses given data_bits using Lempel–Ziv–Welch compression algorithm
and returns the result as a string
"""
lexicon = {"0": "0", "1": "1"}
result, curr_string = "", ""
index = len(lexicon)
for i in range(len(data_bits)):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
last_match_id = lexicon[curr_string]
result += last_match_id
lexicon[curr_string] = last_match_id + "0"
if math.log2(index).is_integer():
newLex = {}
for curr_key in list(lexicon):
newLex["0" + curr_key] = lexicon.pop(curr_key)
lexicon = newLex
lexicon[bin(index)[2:]] = last_match_id + "1"
index += 1
curr_string = ""
return result
def write_file_binary(file_path: str, to_write: str) -> None:
"""
Writes given to_write string (should only consist of 0's and 1's) as bytes in the
file
"""
byte_length = 8
try:
with open(file_path, "wb") as opened_file:
result_byte_array = [
to_write[i : i + byte_length]
for i in range(0, len(to_write), byte_length)
]
if len(result_byte_array[-1]) % byte_length == 0:
result_byte_array.append("10000000")
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1]) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(elem, 2).to_bytes(1, byteorder="big"))
except OSError:
print("File not accessible")
sys.exit()
def remove_prefix(data_bits: str) -> str:
"""
Removes size prefix, that compressed file should have
Returns the result
"""
counter = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
data_bits = data_bits[counter:]
data_bits = data_bits[counter + 1 :]
return data_bits
def compress(source_path: str, destination_path: str) -> None:
"""
Reads source file, decompresses it and writes the result in destination file
"""
data_bits = read_file_binary(source_path)
data_bits = remove_prefix(data_bits)
decompressed = decompress_data(data_bits)
write_file_binary(destination_path, decompressed)
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Calculates the nth number in Sylvester's sequence
Source:
https://en.wikipedia.org/wiki/Sylvester%27s_sequence
"""
def sylvester(number: int) -> int:
"""
:param number: nth number to calculate in the sequence
:return: the nth number in Sylvester's sequence
>>> sylvester(8)
113423713055421844361000443
>>> sylvester(-1)
Traceback (most recent call last):
...
ValueError: The input value of [n=-1] has to be > 0
>>> sylvester(8.0)
Traceback (most recent call last):
...
AssertionError: The input value of [n=8.0] is not an integer
"""
assert isinstance(number, int), f"The input value of [n={number}] is not an integer"
if number == 1:
return 2
elif number < 1:
raise ValueError(f"The input value of [n={number}] has to be > 0")
else:
num = sylvester(number - 1)
lower = num - 1
upper = num
return lower * upper + 1
if __name__ == "__main__":
print(f"The 8th number in Sylvester's sequence: {sylvester(8)}")
| """
Calculates the nth number in Sylvester's sequence
Source:
https://en.wikipedia.org/wiki/Sylvester%27s_sequence
"""
def sylvester(number: int) -> int:
"""
:param number: nth number to calculate in the sequence
:return: the nth number in Sylvester's sequence
>>> sylvester(8)
113423713055421844361000443
>>> sylvester(-1)
Traceback (most recent call last):
...
ValueError: The input value of [n=-1] has to be > 0
>>> sylvester(8.0)
Traceback (most recent call last):
...
AssertionError: The input value of [n=8.0] is not an integer
"""
assert isinstance(number, int), f"The input value of [n={number}] is not an integer"
if number == 1:
return 2
elif number < 1:
raise ValueError(f"The input value of [n={number}] has to be > 0")
else:
num = sylvester(number - 1)
lower = num - 1
upper = num
return lower * upper + 1
if __name__ == "__main__":
print(f"The 8th number in Sylvester's sequence: {sylvester(8)}")
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| # https://en.wikipedia.org/wiki/Hill_climbing
import math
class SearchProblem:
"""
An interface to define search problems.
The interface will be illustrated using the example of mathematical function.
"""
def __init__(self, x: int, y: int, step_size: int, function_to_optimize):
"""
The constructor of the search problem.
x: the x coordinate of the current search state.
y: the y coordinate of the current search state.
step_size: size of the step to take when looking for neighbors.
function_to_optimize: a function to optimize having the signature f(x, y).
"""
self.x = x
self.y = y
self.step_size = step_size
self.function = function_to_optimize
def score(self) -> int:
"""
Returns the output of the function called with current x and y coordinates.
>>> def test_function(x, y):
... return x + y
>>> SearchProblem(0, 0, 1, test_function).score() # 0 + 0 = 0
0
>>> SearchProblem(5, 7, 1, test_function).score() # 5 + 7 = 12
12
"""
return self.function(self.x, self.y)
def get_neighbors(self):
"""
Returns a list of coordinates of neighbors adjacent to the current coordinates.
Neighbors:
| 0 | 1 | 2 |
| 3 | _ | 4 |
| 5 | 6 | 7 |
"""
step_size = self.step_size
return [
SearchProblem(x, y, step_size, self.function)
for x, y in (
(self.x - step_size, self.y - step_size),
(self.x - step_size, self.y),
(self.x - step_size, self.y + step_size),
(self.x, self.y - step_size),
(self.x, self.y + step_size),
(self.x + step_size, self.y - step_size),
(self.x + step_size, self.y),
(self.x + step_size, self.y + step_size),
)
]
def __hash__(self):
"""
hash the string representation of the current search state.
"""
return hash(str(self))
def __eq__(self, obj):
"""
Check if the 2 objects are equal.
"""
if isinstance(obj, SearchProblem):
return hash(str(self)) == hash(str(obj))
return False
def __str__(self):
"""
string representation of the current search state.
>>> str(SearchProblem(0, 0, 1, None))
'x: 0 y: 0'
>>> str(SearchProblem(2, 5, 1, None))
'x: 2 y: 5'
"""
return f"x: {self.x} y: {self.y}"
def hill_climbing(
search_prob,
find_max: bool = True,
max_x: float = math.inf,
min_x: float = -math.inf,
max_y: float = math.inf,
min_y: float = -math.inf,
visualization: bool = False,
max_iter: int = 10000,
) -> SearchProblem:
"""
Implementation of the hill climbling algorithm.
We start with a given state, find all its neighbors,
move towards the neighbor which provides the maximum (or minimum) change.
We keep doing this until we are at a state where we do not have any
neighbors which can improve the solution.
Args:
search_prob: The search state at the start.
find_max: If True, the algorithm should find the maximum else the minimum.
max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y.
visualization: If True, a matplotlib graph is displayed.
max_iter: number of times to run the iteration.
Returns a search state having the maximum (or minimum) score.
"""
current_state = search_prob
scores = [] # list to store the current score at each iteration
iterations = 0
solution_found = False
visited = set()
while not solution_found and iterations < max_iter:
visited.add(current_state)
iterations += 1
current_score = current_state.score()
scores.append(current_score)
neighbors = current_state.get_neighbors()
max_change = -math.inf
min_change = math.inf
next_state = None # to hold the next best neighbor
for neighbor in neighbors:
if neighbor in visited:
continue # do not want to visit the same state again
if (
neighbor.x > max_x
or neighbor.x < min_x
or neighbor.y > max_y
or neighbor.y < min_y
):
continue # neighbor outside our bounds
change = neighbor.score() - current_score
if find_max: # finding max
# going to direction with greatest ascent
if change > max_change and change > 0:
max_change = change
next_state = neighbor
else: # finding min
# to direction with greatest descent
if change < min_change and change < 0:
min_change = change
next_state = neighbor
if next_state is not None:
# we found at least one neighbor which improved the current state
current_state = next_state
else:
# since we have no neighbor that improves the solution we stop the search
solution_found = True
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(iterations), scores)
plt.xlabel("Iterations")
plt.ylabel("Function values")
plt.show()
return current_state
if __name__ == "__main__":
import doctest
doctest.testmod()
def test_f1(x, y):
return (x ** 2) + (y ** 2)
# starting the problem with initial coordinates (3, 4)
prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1)
local_min = hill_climbing(prob, find_max=False)
print(
"The minimum score for f(x, y) = x^2 + y^2 found via hill climbing: "
f"{local_min.score()}"
)
# starting the problem with initial coordinates (12, 47)
prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1)
local_min = hill_climbing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
f"and 50 > y > - 5 found via hill climbing: {local_min.score()}"
)
def test_f2(x, y):
return (3 * x ** 2) - (6 * y)
prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1)
local_min = hill_climbing(prob, find_max=True)
print(
"The maximum score for f(x, y) = x^2 + y^2 found via hill climbing: "
f"{local_min.score()}"
)
| # https://en.wikipedia.org/wiki/Hill_climbing
import math
class SearchProblem:
"""
An interface to define search problems.
The interface will be illustrated using the example of mathematical function.
"""
def __init__(self, x: int, y: int, step_size: int, function_to_optimize):
"""
The constructor of the search problem.
x: the x coordinate of the current search state.
y: the y coordinate of the current search state.
step_size: size of the step to take when looking for neighbors.
function_to_optimize: a function to optimize having the signature f(x, y).
"""
self.x = x
self.y = y
self.step_size = step_size
self.function = function_to_optimize
def score(self) -> int:
"""
Returns the output of the function called with current x and y coordinates.
>>> def test_function(x, y):
... return x + y
>>> SearchProblem(0, 0, 1, test_function).score() # 0 + 0 = 0
0
>>> SearchProblem(5, 7, 1, test_function).score() # 5 + 7 = 12
12
"""
return self.function(self.x, self.y)
def get_neighbors(self):
"""
Returns a list of coordinates of neighbors adjacent to the current coordinates.
Neighbors:
| 0 | 1 | 2 |
| 3 | _ | 4 |
| 5 | 6 | 7 |
"""
step_size = self.step_size
return [
SearchProblem(x, y, step_size, self.function)
for x, y in (
(self.x - step_size, self.y - step_size),
(self.x - step_size, self.y),
(self.x - step_size, self.y + step_size),
(self.x, self.y - step_size),
(self.x, self.y + step_size),
(self.x + step_size, self.y - step_size),
(self.x + step_size, self.y),
(self.x + step_size, self.y + step_size),
)
]
def __hash__(self):
"""
hash the string representation of the current search state.
"""
return hash(str(self))
def __eq__(self, obj):
"""
Check if the 2 objects are equal.
"""
if isinstance(obj, SearchProblem):
return hash(str(self)) == hash(str(obj))
return False
def __str__(self):
"""
string representation of the current search state.
>>> str(SearchProblem(0, 0, 1, None))
'x: 0 y: 0'
>>> str(SearchProblem(2, 5, 1, None))
'x: 2 y: 5'
"""
return f"x: {self.x} y: {self.y}"
def hill_climbing(
search_prob,
find_max: bool = True,
max_x: float = math.inf,
min_x: float = -math.inf,
max_y: float = math.inf,
min_y: float = -math.inf,
visualization: bool = False,
max_iter: int = 10000,
) -> SearchProblem:
"""
Implementation of the hill climbling algorithm.
We start with a given state, find all its neighbors,
move towards the neighbor which provides the maximum (or minimum) change.
We keep doing this until we are at a state where we do not have any
neighbors which can improve the solution.
Args:
search_prob: The search state at the start.
find_max: If True, the algorithm should find the maximum else the minimum.
max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y.
visualization: If True, a matplotlib graph is displayed.
max_iter: number of times to run the iteration.
Returns a search state having the maximum (or minimum) score.
"""
current_state = search_prob
scores = [] # list to store the current score at each iteration
iterations = 0
solution_found = False
visited = set()
while not solution_found and iterations < max_iter:
visited.add(current_state)
iterations += 1
current_score = current_state.score()
scores.append(current_score)
neighbors = current_state.get_neighbors()
max_change = -math.inf
min_change = math.inf
next_state = None # to hold the next best neighbor
for neighbor in neighbors:
if neighbor in visited:
continue # do not want to visit the same state again
if (
neighbor.x > max_x
or neighbor.x < min_x
or neighbor.y > max_y
or neighbor.y < min_y
):
continue # neighbor outside our bounds
change = neighbor.score() - current_score
if find_max: # finding max
# going to direction with greatest ascent
if change > max_change and change > 0:
max_change = change
next_state = neighbor
else: # finding min
# to direction with greatest descent
if change < min_change and change < 0:
min_change = change
next_state = neighbor
if next_state is not None:
# we found at least one neighbor which improved the current state
current_state = next_state
else:
# since we have no neighbor that improves the solution we stop the search
solution_found = True
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(iterations), scores)
plt.xlabel("Iterations")
plt.ylabel("Function values")
plt.show()
return current_state
if __name__ == "__main__":
import doctest
doctest.testmod()
def test_f1(x, y):
return (x ** 2) + (y ** 2)
# starting the problem with initial coordinates (3, 4)
prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1)
local_min = hill_climbing(prob, find_max=False)
print(
"The minimum score for f(x, y) = x^2 + y^2 found via hill climbing: "
f"{local_min.score()}"
)
# starting the problem with initial coordinates (12, 47)
prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1)
local_min = hill_climbing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
f"and 50 > y > - 5 found via hill climbing: {local_min.score()}"
)
def test_f2(x, y):
return (3 * x ** 2) - (6 * y)
prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1)
local_min = hill_climbing(prob, find_max=True)
print(
"The maximum score for f(x, y) = x^2 + y^2 found via hill climbing: "
f"{local_min.score()}"
)
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
python/black : true
flake8 : passed
"""
from __future__ import annotations
from typing import Iterator
class RedBlackTree:
"""
A Red-Black tree, which is a self-balancing BST (binary search
tree).
This tree has similar performance to AVL trees, but the balancing is
less strict, so it will perform faster for writing/deleting nodes
and slower for reading in the average case, though, because they're
both balanced binary search trees, both will get the same asymptotic
performance.
To read more about them, https://en.wikipedia.org/wiki/Red–black_tree
Unless otherwise specified, all asymptotic runtimes are specified in
terms of the size of the tree.
"""
def __init__(
self,
label: int | None = None,
color: int = 0,
parent: RedBlackTree | None = None,
left: RedBlackTree | None = None,
right: RedBlackTree | None = None,
) -> None:
"""Initialize a new Red-Black Tree node with the given values:
label: The value associated with this node
color: 0 if black, 1 if red
parent: The parent to this node
left: This node's left child
right: This node's right child
"""
self.label = label
self.parent = parent
self.left = left
self.right = right
self.color = color
# Here are functions which are specific to red-black trees
def rotate_left(self) -> RedBlackTree:
"""Rotate the subtree rooted at this node to the left and
returns the new root to this subtree.
Performing one rotation can be done in O(1).
"""
parent = self.parent
right = self.right
self.right = right.left
if self.right:
self.right.parent = self
self.parent = right
right.left = self
if parent is not None:
if parent.left == self:
parent.left = right
else:
parent.right = right
right.parent = parent
return right
def rotate_right(self) -> RedBlackTree:
"""Rotate the subtree rooted at this node to the right and
returns the new root to this subtree.
Performing one rotation can be done in O(1).
"""
parent = self.parent
left = self.left
self.left = left.right
if self.left:
self.left.parent = self
self.parent = left
left.right = self
if parent is not None:
if parent.right is self:
parent.right = left
else:
parent.left = left
left.parent = parent
return left
def insert(self, label: int) -> RedBlackTree:
"""Inserts label into the subtree rooted at self, performs any
rotations necessary to maintain balance, and then returns the
new root to this subtree (likely self).
This is guaranteed to run in O(log(n)) time.
"""
if self.label is None:
# Only possible with an empty tree
self.label = label
return self
if self.label == label:
return self
elif self.label > label:
if self.left:
self.left.insert(label)
else:
self.left = RedBlackTree(label, 1, self)
self.left._insert_repair()
else:
if self.right:
self.right.insert(label)
else:
self.right = RedBlackTree(label, 1, self)
self.right._insert_repair()
return self.parent or self
def _insert_repair(self) -> None:
"""Repair the coloring from inserting into a tree."""
if self.parent is None:
# This node is the root, so it just needs to be black
self.color = 0
elif color(self.parent) == 0:
# If the parent is black, then it just needs to be red
self.color = 1
else:
uncle = self.parent.sibling
if color(uncle) == 0:
if self.is_left() and self.parent.is_right():
self.parent.rotate_right()
self.right._insert_repair()
elif self.is_right() and self.parent.is_left():
self.parent.rotate_left()
self.left._insert_repair()
elif self.is_left():
self.grandparent.rotate_right()
self.parent.color = 0
self.parent.right.color = 1
else:
self.grandparent.rotate_left()
self.parent.color = 0
self.parent.left.color = 1
else:
self.parent.color = 0
uncle.color = 0
self.grandparent.color = 1
self.grandparent._insert_repair()
def remove(self, label: int) -> RedBlackTree:
"""Remove label from this tree."""
if self.label == label:
if self.left and self.right:
# It's easier to balance a node with at most one child,
# so we replace this node with the greatest one less than
# it and remove that.
value = self.left.get_max()
self.label = value
self.left.remove(value)
else:
# This node has at most one non-None child, so we don't
# need to replace
child = self.left or self.right
if self.color == 1:
# This node is red, and its child is black
# The only way this happens to a node with one child
# is if both children are None leaves.
# We can just remove this node and call it a day.
if self.is_left():
self.parent.left = None
else:
self.parent.right = None
else:
# The node is black
if child is None:
# This node and its child are black
if self.parent is None:
# The tree is now empty
return RedBlackTree(None)
else:
self._remove_repair()
if self.is_left():
self.parent.left = None
else:
self.parent.right = None
self.parent = None
else:
# This node is black and its child is red
# Move the child node here and make it black
self.label = child.label
self.left = child.left
self.right = child.right
if self.left:
self.left.parent = self
if self.right:
self.right.parent = self
elif self.label > label:
if self.left:
self.left.remove(label)
else:
if self.right:
self.right.remove(label)
return self.parent or self
def _remove_repair(self) -> None:
"""Repair the coloring of the tree that may have been messed up."""
if color(self.sibling) == 1:
self.sibling.color = 0
self.parent.color = 1
if self.is_left():
self.parent.rotate_left()
else:
self.parent.rotate_right()
if (
color(self.parent) == 0
and color(self.sibling) == 0
and color(self.sibling.left) == 0
and color(self.sibling.right) == 0
):
self.sibling.color = 1
self.parent._remove_repair()
return
if (
color(self.parent) == 1
and color(self.sibling) == 0
and color(self.sibling.left) == 0
and color(self.sibling.right) == 0
):
self.sibling.color = 1
self.parent.color = 0
return
if (
self.is_left()
and color(self.sibling) == 0
and color(self.sibling.right) == 0
and color(self.sibling.left) == 1
):
self.sibling.rotate_right()
self.sibling.color = 0
self.sibling.right.color = 1
if (
self.is_right()
and color(self.sibling) == 0
and color(self.sibling.right) == 1
and color(self.sibling.left) == 0
):
self.sibling.rotate_left()
self.sibling.color = 0
self.sibling.left.color = 1
if (
self.is_left()
and color(self.sibling) == 0
and color(self.sibling.right) == 1
):
self.parent.rotate_left()
self.grandparent.color = self.parent.color
self.parent.color = 0
self.parent.sibling.color = 0
if (
self.is_right()
and color(self.sibling) == 0
and color(self.sibling.left) == 1
):
self.parent.rotate_right()
self.grandparent.color = self.parent.color
self.parent.color = 0
self.parent.sibling.color = 0
def check_color_properties(self) -> bool:
"""Check the coloring of the tree, and return True iff the tree
is colored in a way which matches these five properties:
(wording stolen from wikipedia article)
1. Each node is either red or black.
2. The root node is black.
3. All leaves are black.
4. If a node is red, then both its children are black.
5. Every path from any node to all of its descendent NIL nodes
has the same number of black nodes.
This function runs in O(n) time, because properties 4 and 5 take
that long to check.
"""
# I assume property 1 to hold because there is nothing that can
# make the color be anything other than 0 or 1.
# Property 2
if self.color:
# The root was red
print("Property 2")
return False
# Property 3 does not need to be checked, because None is assumed
# to be black and is all the leaves.
# Property 4
if not self.check_coloring():
print("Property 4")
return False
# Property 5
if self.black_height() is None:
print("Property 5")
return False
# All properties were met
return True
def check_coloring(self) -> None:
"""A helper function to recursively check Property 4 of a
Red-Black Tree. See check_color_properties for more info.
"""
if self.color == 1:
if color(self.left) == 1 or color(self.right) == 1:
return False
if self.left and not self.left.check_coloring():
return False
if self.right and not self.right.check_coloring():
return False
return True
def black_height(self) -> int:
"""Returns the number of black nodes from this node to the
leaves of the tree, or None if there isn't one such value (the
tree is color incorrectly).
"""
if self is None:
# If we're already at a leaf, there is no path
return 1
left = RedBlackTree.black_height(self.left)
right = RedBlackTree.black_height(self.right)
if left is None or right is None:
# There are issues with coloring below children nodes
return None
if left != right:
# The two children have unequal depths
return None
# Return the black depth of children, plus one if this node is
# black
return left + (1 - self.color)
# Here are functions which are general to all binary search trees
def __contains__(self, label) -> bool:
"""Search through the tree for label, returning True iff it is
found somewhere in the tree.
Guaranteed to run in O(log(n)) time.
"""
return self.search(label) is not None
def search(self, label: int) -> RedBlackTree:
"""Search through the tree for label, returning its node if
it's found, and None otherwise.
This method is guaranteed to run in O(log(n)) time.
"""
if self.label == label:
return self
elif label > self.label:
if self.right is None:
return None
else:
return self.right.search(label)
else:
if self.left is None:
return None
else:
return self.left.search(label)
def floor(self, label: int) -> int:
"""Returns the largest element in this tree which is at most label.
This method is guaranteed to run in O(log(n)) time."""
if self.label == label:
return self.label
elif self.label > label:
if self.left:
return self.left.floor(label)
else:
return None
else:
if self.right:
attempt = self.right.floor(label)
if attempt is not None:
return attempt
return self.label
def ceil(self, label: int) -> int:
"""Returns the smallest element in this tree which is at least label.
This method is guaranteed to run in O(log(n)) time.
"""
if self.label == label:
return self.label
elif self.label < label:
if self.right:
return self.right.ceil(label)
else:
return None
else:
if self.left:
attempt = self.left.ceil(label)
if attempt is not None:
return attempt
return self.label
def get_max(self) -> int:
"""Returns the largest element in this tree.
This method is guaranteed to run in O(log(n)) time.
"""
if self.right:
# Go as far right as possible
return self.right.get_max()
else:
return self.label
def get_min(self) -> int:
"""Returns the smallest element in this tree.
This method is guaranteed to run in O(log(n)) time.
"""
if self.left:
# Go as far left as possible
return self.left.get_min()
else:
return self.label
@property
def grandparent(self) -> RedBlackTree:
"""Get the current node's grandparent, or None if it doesn't exist."""
if self.parent is None:
return None
else:
return self.parent.parent
@property
def sibling(self) -> RedBlackTree:
"""Get the current node's sibling, or None if it doesn't exist."""
if self.parent is None:
return None
elif self.parent.left is self:
return self.parent.right
else:
return self.parent.left
def is_left(self) -> bool:
"""Returns true iff this node is the left child of its parent."""
return self.parent and self.parent.left is self
def is_right(self) -> bool:
"""Returns true iff this node is the right child of its parent."""
return self.parent and self.parent.right is self
def __bool__(self) -> bool:
return True
def __len__(self) -> int:
"""
Return the number of nodes in this tree.
"""
ln = 1
if self.left:
ln += len(self.left)
if self.right:
ln += len(self.right)
return ln
def preorder_traverse(self) -> Iterator[int]:
yield self.label
if self.left:
yield from self.left.preorder_traverse()
if self.right:
yield from self.right.preorder_traverse()
def inorder_traverse(self) -> Iterator[int]:
if self.left:
yield from self.left.inorder_traverse()
yield self.label
if self.right:
yield from self.right.inorder_traverse()
def postorder_traverse(self) -> Iterator[int]:
if self.left:
yield from self.left.postorder_traverse()
if self.right:
yield from self.right.postorder_traverse()
yield self.label
def __repr__(self) -> str:
from pprint import pformat
if self.left is None and self.right is None:
return f"'{self.label} {(self.color and 'red') or 'blk'}'"
return pformat(
{
f"{self.label} {(self.color and 'red') or 'blk'}": (
self.left,
self.right,
)
},
indent=1,
)
def __eq__(self, other) -> bool:
"""Test if two trees are equal."""
if self.label == other.label:
return self.left == other.left and self.right == other.right
else:
return False
def color(node) -> int:
"""Returns the color of a node, allowing for None leaves."""
if node is None:
return 0
else:
return node.color
"""
Code for testing the various
functions of the red-black tree.
"""
def test_rotations() -> bool:
"""Test that the rotate_left and rotate_right functions work."""
# Make a tree to test on
tree = RedBlackTree(0)
tree.left = RedBlackTree(-10, parent=tree)
tree.right = RedBlackTree(10, parent=tree)
tree.left.left = RedBlackTree(-20, parent=tree.left)
tree.left.right = RedBlackTree(-5, parent=tree.left)
tree.right.left = RedBlackTree(5, parent=tree.right)
tree.right.right = RedBlackTree(20, parent=tree.right)
# Make the right rotation
left_rot = RedBlackTree(10)
left_rot.left = RedBlackTree(0, parent=left_rot)
left_rot.left.left = RedBlackTree(-10, parent=left_rot.left)
left_rot.left.right = RedBlackTree(5, parent=left_rot.left)
left_rot.left.left.left = RedBlackTree(-20, parent=left_rot.left.left)
left_rot.left.left.right = RedBlackTree(-5, parent=left_rot.left.left)
left_rot.right = RedBlackTree(20, parent=left_rot)
tree = tree.rotate_left()
if tree != left_rot:
return False
tree = tree.rotate_right()
tree = tree.rotate_right()
# Make the left rotation
right_rot = RedBlackTree(-10)
right_rot.left = RedBlackTree(-20, parent=right_rot)
right_rot.right = RedBlackTree(0, parent=right_rot)
right_rot.right.left = RedBlackTree(-5, parent=right_rot.right)
right_rot.right.right = RedBlackTree(10, parent=right_rot.right)
right_rot.right.right.left = RedBlackTree(5, parent=right_rot.right.right)
right_rot.right.right.right = RedBlackTree(20, parent=right_rot.right.right)
if tree != right_rot:
return False
return True
def test_insertion_speed() -> bool:
"""Test that the tree balances inserts to O(log(n)) by doing a lot
of them.
"""
tree = RedBlackTree(-1)
for i in range(300000):
tree = tree.insert(i)
return True
def test_insert() -> bool:
"""Test the insert() method of the tree correctly balances, colors,
and inserts.
"""
tree = RedBlackTree(0)
tree.insert(8)
tree.insert(-8)
tree.insert(4)
tree.insert(12)
tree.insert(10)
tree.insert(11)
ans = RedBlackTree(0, 0)
ans.left = RedBlackTree(-8, 0, ans)
ans.right = RedBlackTree(8, 1, ans)
ans.right.left = RedBlackTree(4, 0, ans.right)
ans.right.right = RedBlackTree(11, 0, ans.right)
ans.right.right.left = RedBlackTree(10, 1, ans.right.right)
ans.right.right.right = RedBlackTree(12, 1, ans.right.right)
return tree == ans
def test_insert_and_search() -> bool:
"""Tests searching through the tree for values."""
tree = RedBlackTree(0)
tree.insert(8)
tree.insert(-8)
tree.insert(4)
tree.insert(12)
tree.insert(10)
tree.insert(11)
if 5 in tree or -6 in tree or -10 in tree or 13 in tree:
# Found something not in there
return False
if not (11 in tree and 12 in tree and -8 in tree and 0 in tree):
# Didn't find something in there
return False
return True
def test_insert_delete() -> bool:
"""Test the insert() and delete() method of the tree, verifying the
insertion and removal of elements, and the balancing of the tree.
"""
tree = RedBlackTree(0)
tree = tree.insert(-12)
tree = tree.insert(8)
tree = tree.insert(-8)
tree = tree.insert(15)
tree = tree.insert(4)
tree = tree.insert(12)
tree = tree.insert(10)
tree = tree.insert(9)
tree = tree.insert(11)
tree = tree.remove(15)
tree = tree.remove(-12)
tree = tree.remove(9)
if not tree.check_color_properties():
return False
if list(tree.inorder_traverse()) != [-8, 0, 4, 8, 10, 11, 12]:
return False
return True
def test_floor_ceil() -> bool:
"""Tests the floor and ceiling functions in the tree."""
tree = RedBlackTree(0)
tree.insert(-16)
tree.insert(16)
tree.insert(8)
tree.insert(24)
tree.insert(20)
tree.insert(22)
tuples = [(-20, None, -16), (-10, -16, 0), (8, 8, 8), (50, 24, None)]
for val, floor, ceil in tuples:
if tree.floor(val) != floor or tree.ceil(val) != ceil:
return False
return True
def test_min_max() -> bool:
"""Tests the min and max functions in the tree."""
tree = RedBlackTree(0)
tree.insert(-16)
tree.insert(16)
tree.insert(8)
tree.insert(24)
tree.insert(20)
tree.insert(22)
if tree.get_max() != 22 or tree.get_min() != -16:
return False
return True
def test_tree_traversal() -> bool:
"""Tests the three different tree traversal functions."""
tree = RedBlackTree(0)
tree = tree.insert(-16)
tree.insert(16)
tree.insert(8)
tree.insert(24)
tree.insert(20)
tree.insert(22)
if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]:
return False
if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]:
return False
if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]:
return False
return True
def test_tree_chaining() -> bool:
"""Tests the three different tree chaining functions."""
tree = RedBlackTree(0)
tree = tree.insert(-16).insert(16).insert(8).insert(24).insert(20).insert(22)
if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]:
return False
if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]:
return False
if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]:
return False
return True
def print_results(msg: str, passes: bool) -> None:
print(str(msg), "works!" if passes else "doesn't work :(")
def pytests() -> None:
assert test_rotations()
assert test_insert()
assert test_insert_and_search()
assert test_insert_delete()
assert test_floor_ceil()
assert test_tree_traversal()
assert test_tree_chaining()
def main() -> None:
"""
>>> pytests()
"""
print_results("Rotating right and left", test_rotations())
print_results("Inserting", test_insert())
print_results("Searching", test_insert_and_search())
print_results("Deleting", test_insert_delete())
print_results("Floor and ceil", test_floor_ceil())
print_results("Tree traversal", test_tree_traversal())
print_results("Tree traversal", test_tree_chaining())
print("Testing tree balancing...")
print("This should only be a few seconds.")
test_insertion_speed()
print("Done!")
if __name__ == "__main__":
main()
| """
python/black : true
flake8 : passed
"""
from __future__ import annotations
from typing import Iterator
class RedBlackTree:
"""
A Red-Black tree, which is a self-balancing BST (binary search
tree).
This tree has similar performance to AVL trees, but the balancing is
less strict, so it will perform faster for writing/deleting nodes
and slower for reading in the average case, though, because they're
both balanced binary search trees, both will get the same asymptotic
performance.
To read more about them, https://en.wikipedia.org/wiki/Red–black_tree
Unless otherwise specified, all asymptotic runtimes are specified in
terms of the size of the tree.
"""
def __init__(
self,
label: int | None = None,
color: int = 0,
parent: RedBlackTree | None = None,
left: RedBlackTree | None = None,
right: RedBlackTree | None = None,
) -> None:
"""Initialize a new Red-Black Tree node with the given values:
label: The value associated with this node
color: 0 if black, 1 if red
parent: The parent to this node
left: This node's left child
right: This node's right child
"""
self.label = label
self.parent = parent
self.left = left
self.right = right
self.color = color
# Here are functions which are specific to red-black trees
def rotate_left(self) -> RedBlackTree:
"""Rotate the subtree rooted at this node to the left and
returns the new root to this subtree.
Performing one rotation can be done in O(1).
"""
parent = self.parent
right = self.right
self.right = right.left
if self.right:
self.right.parent = self
self.parent = right
right.left = self
if parent is not None:
if parent.left == self:
parent.left = right
else:
parent.right = right
right.parent = parent
return right
def rotate_right(self) -> RedBlackTree:
"""Rotate the subtree rooted at this node to the right and
returns the new root to this subtree.
Performing one rotation can be done in O(1).
"""
parent = self.parent
left = self.left
self.left = left.right
if self.left:
self.left.parent = self
self.parent = left
left.right = self
if parent is not None:
if parent.right is self:
parent.right = left
else:
parent.left = left
left.parent = parent
return left
def insert(self, label: int) -> RedBlackTree:
"""Inserts label into the subtree rooted at self, performs any
rotations necessary to maintain balance, and then returns the
new root to this subtree (likely self).
This is guaranteed to run in O(log(n)) time.
"""
if self.label is None:
# Only possible with an empty tree
self.label = label
return self
if self.label == label:
return self
elif self.label > label:
if self.left:
self.left.insert(label)
else:
self.left = RedBlackTree(label, 1, self)
self.left._insert_repair()
else:
if self.right:
self.right.insert(label)
else:
self.right = RedBlackTree(label, 1, self)
self.right._insert_repair()
return self.parent or self
def _insert_repair(self) -> None:
"""Repair the coloring from inserting into a tree."""
if self.parent is None:
# This node is the root, so it just needs to be black
self.color = 0
elif color(self.parent) == 0:
# If the parent is black, then it just needs to be red
self.color = 1
else:
uncle = self.parent.sibling
if color(uncle) == 0:
if self.is_left() and self.parent.is_right():
self.parent.rotate_right()
self.right._insert_repair()
elif self.is_right() and self.parent.is_left():
self.parent.rotate_left()
self.left._insert_repair()
elif self.is_left():
self.grandparent.rotate_right()
self.parent.color = 0
self.parent.right.color = 1
else:
self.grandparent.rotate_left()
self.parent.color = 0
self.parent.left.color = 1
else:
self.parent.color = 0
uncle.color = 0
self.grandparent.color = 1
self.grandparent._insert_repair()
def remove(self, label: int) -> RedBlackTree:
"""Remove label from this tree."""
if self.label == label:
if self.left and self.right:
# It's easier to balance a node with at most one child,
# so we replace this node with the greatest one less than
# it and remove that.
value = self.left.get_max()
self.label = value
self.left.remove(value)
else:
# This node has at most one non-None child, so we don't
# need to replace
child = self.left or self.right
if self.color == 1:
# This node is red, and its child is black
# The only way this happens to a node with one child
# is if both children are None leaves.
# We can just remove this node and call it a day.
if self.is_left():
self.parent.left = None
else:
self.parent.right = None
else:
# The node is black
if child is None:
# This node and its child are black
if self.parent is None:
# The tree is now empty
return RedBlackTree(None)
else:
self._remove_repair()
if self.is_left():
self.parent.left = None
else:
self.parent.right = None
self.parent = None
else:
# This node is black and its child is red
# Move the child node here and make it black
self.label = child.label
self.left = child.left
self.right = child.right
if self.left:
self.left.parent = self
if self.right:
self.right.parent = self
elif self.label > label:
if self.left:
self.left.remove(label)
else:
if self.right:
self.right.remove(label)
return self.parent or self
def _remove_repair(self) -> None:
"""Repair the coloring of the tree that may have been messed up."""
if color(self.sibling) == 1:
self.sibling.color = 0
self.parent.color = 1
if self.is_left():
self.parent.rotate_left()
else:
self.parent.rotate_right()
if (
color(self.parent) == 0
and color(self.sibling) == 0
and color(self.sibling.left) == 0
and color(self.sibling.right) == 0
):
self.sibling.color = 1
self.parent._remove_repair()
return
if (
color(self.parent) == 1
and color(self.sibling) == 0
and color(self.sibling.left) == 0
and color(self.sibling.right) == 0
):
self.sibling.color = 1
self.parent.color = 0
return
if (
self.is_left()
and color(self.sibling) == 0
and color(self.sibling.right) == 0
and color(self.sibling.left) == 1
):
self.sibling.rotate_right()
self.sibling.color = 0
self.sibling.right.color = 1
if (
self.is_right()
and color(self.sibling) == 0
and color(self.sibling.right) == 1
and color(self.sibling.left) == 0
):
self.sibling.rotate_left()
self.sibling.color = 0
self.sibling.left.color = 1
if (
self.is_left()
and color(self.sibling) == 0
and color(self.sibling.right) == 1
):
self.parent.rotate_left()
self.grandparent.color = self.parent.color
self.parent.color = 0
self.parent.sibling.color = 0
if (
self.is_right()
and color(self.sibling) == 0
and color(self.sibling.left) == 1
):
self.parent.rotate_right()
self.grandparent.color = self.parent.color
self.parent.color = 0
self.parent.sibling.color = 0
def check_color_properties(self) -> bool:
"""Check the coloring of the tree, and return True iff the tree
is colored in a way which matches these five properties:
(wording stolen from wikipedia article)
1. Each node is either red or black.
2. The root node is black.
3. All leaves are black.
4. If a node is red, then both its children are black.
5. Every path from any node to all of its descendent NIL nodes
has the same number of black nodes.
This function runs in O(n) time, because properties 4 and 5 take
that long to check.
"""
# I assume property 1 to hold because there is nothing that can
# make the color be anything other than 0 or 1.
# Property 2
if self.color:
# The root was red
print("Property 2")
return False
# Property 3 does not need to be checked, because None is assumed
# to be black and is all the leaves.
# Property 4
if not self.check_coloring():
print("Property 4")
return False
# Property 5
if self.black_height() is None:
print("Property 5")
return False
# All properties were met
return True
def check_coloring(self) -> None:
"""A helper function to recursively check Property 4 of a
Red-Black Tree. See check_color_properties for more info.
"""
if self.color == 1:
if color(self.left) == 1 or color(self.right) == 1:
return False
if self.left and not self.left.check_coloring():
return False
if self.right and not self.right.check_coloring():
return False
return True
def black_height(self) -> int:
"""Returns the number of black nodes from this node to the
leaves of the tree, or None if there isn't one such value (the
tree is color incorrectly).
"""
if self is None:
# If we're already at a leaf, there is no path
return 1
left = RedBlackTree.black_height(self.left)
right = RedBlackTree.black_height(self.right)
if left is None or right is None:
# There are issues with coloring below children nodes
return None
if left != right:
# The two children have unequal depths
return None
# Return the black depth of children, plus one if this node is
# black
return left + (1 - self.color)
# Here are functions which are general to all binary search trees
def __contains__(self, label) -> bool:
"""Search through the tree for label, returning True iff it is
found somewhere in the tree.
Guaranteed to run in O(log(n)) time.
"""
return self.search(label) is not None
def search(self, label: int) -> RedBlackTree:
"""Search through the tree for label, returning its node if
it's found, and None otherwise.
This method is guaranteed to run in O(log(n)) time.
"""
if self.label == label:
return self
elif label > self.label:
if self.right is None:
return None
else:
return self.right.search(label)
else:
if self.left is None:
return None
else:
return self.left.search(label)
def floor(self, label: int) -> int:
"""Returns the largest element in this tree which is at most label.
This method is guaranteed to run in O(log(n)) time."""
if self.label == label:
return self.label
elif self.label > label:
if self.left:
return self.left.floor(label)
else:
return None
else:
if self.right:
attempt = self.right.floor(label)
if attempt is not None:
return attempt
return self.label
def ceil(self, label: int) -> int:
"""Returns the smallest element in this tree which is at least label.
This method is guaranteed to run in O(log(n)) time.
"""
if self.label == label:
return self.label
elif self.label < label:
if self.right:
return self.right.ceil(label)
else:
return None
else:
if self.left:
attempt = self.left.ceil(label)
if attempt is not None:
return attempt
return self.label
def get_max(self) -> int:
"""Returns the largest element in this tree.
This method is guaranteed to run in O(log(n)) time.
"""
if self.right:
# Go as far right as possible
return self.right.get_max()
else:
return self.label
def get_min(self) -> int:
"""Returns the smallest element in this tree.
This method is guaranteed to run in O(log(n)) time.
"""
if self.left:
# Go as far left as possible
return self.left.get_min()
else:
return self.label
@property
def grandparent(self) -> RedBlackTree:
"""Get the current node's grandparent, or None if it doesn't exist."""
if self.parent is None:
return None
else:
return self.parent.parent
@property
def sibling(self) -> RedBlackTree:
"""Get the current node's sibling, or None if it doesn't exist."""
if self.parent is None:
return None
elif self.parent.left is self:
return self.parent.right
else:
return self.parent.left
def is_left(self) -> bool:
"""Returns true iff this node is the left child of its parent."""
return self.parent and self.parent.left is self
def is_right(self) -> bool:
"""Returns true iff this node is the right child of its parent."""
return self.parent and self.parent.right is self
def __bool__(self) -> bool:
return True
def __len__(self) -> int:
"""
Return the number of nodes in this tree.
"""
ln = 1
if self.left:
ln += len(self.left)
if self.right:
ln += len(self.right)
return ln
def preorder_traverse(self) -> Iterator[int]:
yield self.label
if self.left:
yield from self.left.preorder_traverse()
if self.right:
yield from self.right.preorder_traverse()
def inorder_traverse(self) -> Iterator[int]:
if self.left:
yield from self.left.inorder_traverse()
yield self.label
if self.right:
yield from self.right.inorder_traverse()
def postorder_traverse(self) -> Iterator[int]:
if self.left:
yield from self.left.postorder_traverse()
if self.right:
yield from self.right.postorder_traverse()
yield self.label
def __repr__(self) -> str:
from pprint import pformat
if self.left is None and self.right is None:
return f"'{self.label} {(self.color and 'red') or 'blk'}'"
return pformat(
{
f"{self.label} {(self.color and 'red') or 'blk'}": (
self.left,
self.right,
)
},
indent=1,
)
def __eq__(self, other) -> bool:
"""Test if two trees are equal."""
if self.label == other.label:
return self.left == other.left and self.right == other.right
else:
return False
def color(node) -> int:
"""Returns the color of a node, allowing for None leaves."""
if node is None:
return 0
else:
return node.color
"""
Code for testing the various
functions of the red-black tree.
"""
def test_rotations() -> bool:
"""Test that the rotate_left and rotate_right functions work."""
# Make a tree to test on
tree = RedBlackTree(0)
tree.left = RedBlackTree(-10, parent=tree)
tree.right = RedBlackTree(10, parent=tree)
tree.left.left = RedBlackTree(-20, parent=tree.left)
tree.left.right = RedBlackTree(-5, parent=tree.left)
tree.right.left = RedBlackTree(5, parent=tree.right)
tree.right.right = RedBlackTree(20, parent=tree.right)
# Make the right rotation
left_rot = RedBlackTree(10)
left_rot.left = RedBlackTree(0, parent=left_rot)
left_rot.left.left = RedBlackTree(-10, parent=left_rot.left)
left_rot.left.right = RedBlackTree(5, parent=left_rot.left)
left_rot.left.left.left = RedBlackTree(-20, parent=left_rot.left.left)
left_rot.left.left.right = RedBlackTree(-5, parent=left_rot.left.left)
left_rot.right = RedBlackTree(20, parent=left_rot)
tree = tree.rotate_left()
if tree != left_rot:
return False
tree = tree.rotate_right()
tree = tree.rotate_right()
# Make the left rotation
right_rot = RedBlackTree(-10)
right_rot.left = RedBlackTree(-20, parent=right_rot)
right_rot.right = RedBlackTree(0, parent=right_rot)
right_rot.right.left = RedBlackTree(-5, parent=right_rot.right)
right_rot.right.right = RedBlackTree(10, parent=right_rot.right)
right_rot.right.right.left = RedBlackTree(5, parent=right_rot.right.right)
right_rot.right.right.right = RedBlackTree(20, parent=right_rot.right.right)
if tree != right_rot:
return False
return True
def test_insertion_speed() -> bool:
"""Test that the tree balances inserts to O(log(n)) by doing a lot
of them.
"""
tree = RedBlackTree(-1)
for i in range(300000):
tree = tree.insert(i)
return True
def test_insert() -> bool:
"""Test the insert() method of the tree correctly balances, colors,
and inserts.
"""
tree = RedBlackTree(0)
tree.insert(8)
tree.insert(-8)
tree.insert(4)
tree.insert(12)
tree.insert(10)
tree.insert(11)
ans = RedBlackTree(0, 0)
ans.left = RedBlackTree(-8, 0, ans)
ans.right = RedBlackTree(8, 1, ans)
ans.right.left = RedBlackTree(4, 0, ans.right)
ans.right.right = RedBlackTree(11, 0, ans.right)
ans.right.right.left = RedBlackTree(10, 1, ans.right.right)
ans.right.right.right = RedBlackTree(12, 1, ans.right.right)
return tree == ans
def test_insert_and_search() -> bool:
"""Tests searching through the tree for values."""
tree = RedBlackTree(0)
tree.insert(8)
tree.insert(-8)
tree.insert(4)
tree.insert(12)
tree.insert(10)
tree.insert(11)
if 5 in tree or -6 in tree or -10 in tree or 13 in tree:
# Found something not in there
return False
if not (11 in tree and 12 in tree and -8 in tree and 0 in tree):
# Didn't find something in there
return False
return True
def test_insert_delete() -> bool:
"""Test the insert() and delete() method of the tree, verifying the
insertion and removal of elements, and the balancing of the tree.
"""
tree = RedBlackTree(0)
tree = tree.insert(-12)
tree = tree.insert(8)
tree = tree.insert(-8)
tree = tree.insert(15)
tree = tree.insert(4)
tree = tree.insert(12)
tree = tree.insert(10)
tree = tree.insert(9)
tree = tree.insert(11)
tree = tree.remove(15)
tree = tree.remove(-12)
tree = tree.remove(9)
if not tree.check_color_properties():
return False
if list(tree.inorder_traverse()) != [-8, 0, 4, 8, 10, 11, 12]:
return False
return True
def test_floor_ceil() -> bool:
"""Tests the floor and ceiling functions in the tree."""
tree = RedBlackTree(0)
tree.insert(-16)
tree.insert(16)
tree.insert(8)
tree.insert(24)
tree.insert(20)
tree.insert(22)
tuples = [(-20, None, -16), (-10, -16, 0), (8, 8, 8), (50, 24, None)]
for val, floor, ceil in tuples:
if tree.floor(val) != floor or tree.ceil(val) != ceil:
return False
return True
def test_min_max() -> bool:
"""Tests the min and max functions in the tree."""
tree = RedBlackTree(0)
tree.insert(-16)
tree.insert(16)
tree.insert(8)
tree.insert(24)
tree.insert(20)
tree.insert(22)
if tree.get_max() != 22 or tree.get_min() != -16:
return False
return True
def test_tree_traversal() -> bool:
"""Tests the three different tree traversal functions."""
tree = RedBlackTree(0)
tree = tree.insert(-16)
tree.insert(16)
tree.insert(8)
tree.insert(24)
tree.insert(20)
tree.insert(22)
if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]:
return False
if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]:
return False
if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]:
return False
return True
def test_tree_chaining() -> bool:
"""Tests the three different tree chaining functions."""
tree = RedBlackTree(0)
tree = tree.insert(-16).insert(16).insert(8).insert(24).insert(20).insert(22)
if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]:
return False
if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]:
return False
if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]:
return False
return True
def print_results(msg: str, passes: bool) -> None:
print(str(msg), "works!" if passes else "doesn't work :(")
def pytests() -> None:
assert test_rotations()
assert test_insert()
assert test_insert_and_search()
assert test_insert_delete()
assert test_floor_ceil()
assert test_tree_traversal()
assert test_tree_chaining()
def main() -> None:
"""
>>> pytests()
"""
print_results("Rotating right and left", test_rotations())
print_results("Inserting", test_insert())
print_results("Searching", test_insert_and_search())
print_results("Deleting", test_insert_delete())
print_results("Floor and ceil", test_floor_ceil())
print_results("Tree traversal", test_tree_traversal())
print_results("Tree traversal", test_tree_chaining())
print("Testing tree balancing...")
print("This should only be a few seconds.")
test_insertion_speed()
print("Done!")
if __name__ == "__main__":
main()
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| def lower(word: str) -> str:
"""
Will convert the entire string to lowercase letters
>>> lower("wow")
'wow'
>>> lower("HellZo")
'hellzo'
>>> lower("WHAT")
'what'
>>> lower("wh[]32")
'wh[]32'
>>> lower("whAT")
'what'
"""
# converting to ascii value int value and checking to see if char is a capital
# letter if it is a capital letter it is getting shift by 32 which makes it a lower
# case letter
return "".join(chr(ord(char) + 32) if "A" <= char <= "Z" else char for char in word)
if __name__ == "__main__":
from doctest import testmod
testmod()
| def lower(word: str) -> str:
"""
Will convert the entire string to lowercase letters
>>> lower("wow")
'wow'
>>> lower("HellZo")
'hellzo'
>>> lower("WHAT")
'what'
>>> lower("wh[]32")
'wh[]32'
>>> lower("whAT")
'what'
"""
# converting to ascii value int value and checking to see if char is a capital
# letter if it is a capital letter it is getting shift by 32 which makes it a lower
# case letter
return "".join(chr(ord(char) + 32) if "A" <= char <= "Z" else char for char in word)
if __name__ == "__main__":
from doctest import testmod
testmod()
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| from decimal import Decimal, getcontext
from math import ceil, factorial
def pi(precision: int) -> str:
"""
The Chudnovsky algorithm is a fast method for calculating the digits of PI,
based on Ramanujan’s PI formulae.
https://en.wikipedia.org/wiki/Chudnovsky_algorithm
PI = constant_term / ((multinomial_term * linear_term) / exponential_term)
where constant_term = 426880 * sqrt(10005)
The linear_term and the exponential_term can be defined iteratively as follows:
L_k+1 = L_k + 545140134 where L_0 = 13591409
X_k+1 = X_k * -262537412640768000 where X_0 = 1
The multinomial_term is defined as follows:
6k! / ((3k)! * (k!) ^ 3)
where k is the k_th iteration.
This algorithm correctly calculates around 14 digits of PI per iteration
>>> pi(10)
'3.14159265'
>>> pi(100)
'3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706'
>>> pi('hello')
Traceback (most recent call last):
...
TypeError: Undefined for non-integers
>>> pi(-1)
Traceback (most recent call last):
...
ValueError: Undefined for non-natural numbers
"""
if not isinstance(precision, int):
raise TypeError("Undefined for non-integers")
elif precision < 1:
raise ValueError("Undefined for non-natural numbers")
getcontext().prec = precision
num_iterations = ceil(precision / 14)
constant_term = 426880 * Decimal(10005).sqrt()
exponential_term = 1
linear_term = 13591409
partial_sum = Decimal(linear_term)
for k in range(1, num_iterations):
multinomial_term = factorial(6 * k) // (factorial(3 * k) * factorial(k) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term) / exponential_term
return str(constant_term / partial_sum)[:-1]
if __name__ == "__main__":
n = 50
print(f"The first {n} digits of pi is: {pi(n)}")
| from decimal import Decimal, getcontext
from math import ceil, factorial
def pi(precision: int) -> str:
"""
The Chudnovsky algorithm is a fast method for calculating the digits of PI,
based on Ramanujan’s PI formulae.
https://en.wikipedia.org/wiki/Chudnovsky_algorithm
PI = constant_term / ((multinomial_term * linear_term) / exponential_term)
where constant_term = 426880 * sqrt(10005)
The linear_term and the exponential_term can be defined iteratively as follows:
L_k+1 = L_k + 545140134 where L_0 = 13591409
X_k+1 = X_k * -262537412640768000 where X_0 = 1
The multinomial_term is defined as follows:
6k! / ((3k)! * (k!) ^ 3)
where k is the k_th iteration.
This algorithm correctly calculates around 14 digits of PI per iteration
>>> pi(10)
'3.14159265'
>>> pi(100)
'3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706'
>>> pi('hello')
Traceback (most recent call last):
...
TypeError: Undefined for non-integers
>>> pi(-1)
Traceback (most recent call last):
...
ValueError: Undefined for non-natural numbers
"""
if not isinstance(precision, int):
raise TypeError("Undefined for non-integers")
elif precision < 1:
raise ValueError("Undefined for non-natural numbers")
getcontext().prec = precision
num_iterations = ceil(precision / 14)
constant_term = 426880 * Decimal(10005).sqrt()
exponential_term = 1
linear_term = 13591409
partial_sum = Decimal(linear_term)
for k in range(1, num_iterations):
multinomial_term = factorial(6 * k) // (factorial(3 * k) * factorial(k) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term) / exponential_term
return str(constant_term / partial_sum)[:-1]
if __name__ == "__main__":
n = 50
print(f"The first {n} digits of pi is: {pi(n)}")
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Project Euler Problem 75: https://projecteuler.net/problem=75
It turns out that 12 cm is the smallest length of wire that can be bent to form an
integer sided right angle triangle in exactly one way, but there are many more examples.
12 cm: (3,4,5)
24 cm: (6,8,10)
30 cm: (5,12,13)
36 cm: (9,12,15)
40 cm: (8,15,17)
48 cm: (12,16,20)
In contrast, some lengths of wire, like 20 cm, cannot be bent to form an integer sided
right angle triangle, and other lengths allow more than one solution to be found; for
example, using 120 cm it is possible to form exactly three different integer sided
right angle triangles.
120 cm: (30,40,50), (20,48,52), (24,45,51)
Given that L is the length of the wire, for how many values of L ≤ 1,500,000 can
exactly one integer sided right angle triangle be formed?
Solution: we generate all pythagorean triples using Euclid's formula and
keep track of the frequencies of the perimeters.
Reference: https://en.wikipedia.org/wiki/Pythagorean_triple#Generating_a_triple
"""
from collections import defaultdict
from math import gcd
from typing import DefaultDict
def solution(limit: int = 1500000) -> int:
"""
Return the number of values of L <= limit such that a wire of length L can be
formmed into an integer sided right angle triangle in exactly one way.
>>> solution(50)
6
>>> solution(1000)
112
>>> solution(50000)
5502
"""
frequencies: DefaultDict = defaultdict(int)
euclid_m = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1, euclid_m, 2):
if gcd(euclid_m, euclid_n) > 1:
continue
primitive_perimeter = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(primitive_perimeter, limit + 1, primitive_perimeter):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1)
if __name__ == "__main__":
print(f"{solution() = }")
| """
Project Euler Problem 75: https://projecteuler.net/problem=75
It turns out that 12 cm is the smallest length of wire that can be bent to form an
integer sided right angle triangle in exactly one way, but there are many more examples.
12 cm: (3,4,5)
24 cm: (6,8,10)
30 cm: (5,12,13)
36 cm: (9,12,15)
40 cm: (8,15,17)
48 cm: (12,16,20)
In contrast, some lengths of wire, like 20 cm, cannot be bent to form an integer sided
right angle triangle, and other lengths allow more than one solution to be found; for
example, using 120 cm it is possible to form exactly three different integer sided
right angle triangles.
120 cm: (30,40,50), (20,48,52), (24,45,51)
Given that L is the length of the wire, for how many values of L ≤ 1,500,000 can
exactly one integer sided right angle triangle be formed?
Solution: we generate all pythagorean triples using Euclid's formula and
keep track of the frequencies of the perimeters.
Reference: https://en.wikipedia.org/wiki/Pythagorean_triple#Generating_a_triple
"""
from collections import defaultdict
from math import gcd
from typing import DefaultDict
def solution(limit: int = 1500000) -> int:
"""
Return the number of values of L <= limit such that a wire of length L can be
formmed into an integer sided right angle triangle in exactly one way.
>>> solution(50)
6
>>> solution(1000)
112
>>> solution(50000)
5502
"""
frequencies: DefaultDict = defaultdict(int)
euclid_m = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1, euclid_m, 2):
if gcd(euclid_m, euclid_n) > 1:
continue
primitive_perimeter = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(primitive_perimeter, limit + 1, primitive_perimeter):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1)
if __name__ == "__main__":
print(f"{solution() = }")
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| import base64
def encode_to_b16(inp: str) -> bytes:
"""
Encodes a given utf-8 string into base-16.
>>> encode_to_b16('Hello World!')
b'48656C6C6F20576F726C6421'
>>> encode_to_b16('HELLO WORLD!')
b'48454C4C4F20574F524C4421'
>>> encode_to_b16('')
b''
"""
# encode the input into a bytes-like object and then encode b16encode that
return base64.b16encode(inp.encode("utf-8"))
def decode_from_b16(b16encoded: bytes) -> str:
"""
Decodes from base-16 to a utf-8 string.
>>> decode_from_b16(b'48656C6C6F20576F726C6421')
'Hello World!'
>>> decode_from_b16(b'48454C4C4F20574F524C4421')
'HELLO WORLD!'
>>> decode_from_b16(b'')
''
"""
# b16decode the input into bytes and decode that into a human readable string
return base64.b16decode(b16encoded).decode("utf-8")
if __name__ == "__main__":
import doctest
doctest.testmod()
| import base64
def encode_to_b16(inp: str) -> bytes:
"""
Encodes a given utf-8 string into base-16.
>>> encode_to_b16('Hello World!')
b'48656C6C6F20576F726C6421'
>>> encode_to_b16('HELLO WORLD!')
b'48454C4C4F20574F524C4421'
>>> encode_to_b16('')
b''
"""
# encode the input into a bytes-like object and then encode b16encode that
return base64.b16encode(inp.encode("utf-8"))
def decode_from_b16(b16encoded: bytes) -> str:
"""
Decodes from base-16 to a utf-8 string.
>>> decode_from_b16(b'48656C6C6F20576F726C6421')
'Hello World!'
>>> decode_from_b16(b'48454C4C4F20574F524C4421')
'HELLO WORLD!'
>>> decode_from_b16(b'')
''
"""
# b16decode the input into bytes and decode that into a human readable string
return base64.b16decode(b16encoded).decode("utf-8")
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| def printDist(dist, V):
print("\nVertex Distance")
for i in range(V):
if dist[i] != float("inf"):
print(i, "\t", int(dist[i]), end="\t")
else:
print(i, "\t", "INF", end="\t")
print()
def minDist(mdist, vset, V):
minVal = float("inf")
minInd = -1
for i in range(V):
if (not vset[i]) and mdist[i] < minVal:
minInd = i
minVal = mdist[i]
return minInd
def Dijkstra(graph, V, src):
mdist = [float("inf") for i in range(V)]
vset = [False for i in range(V)]
mdist[src] = 0.0
for i in range(V - 1):
u = minDist(mdist, vset, V)
vset[u] = True
for v in range(V):
if (
(not vset[v])
and graph[u][v] != float("inf")
and mdist[u] + graph[u][v] < mdist[v]
):
mdist[v] = mdist[u] + graph[u][v]
printDist(mdist, V)
if __name__ == "__main__":
V = int(input("Enter number of vertices: ").strip())
E = int(input("Enter number of edges: ").strip())
graph = [[float("inf") for i in range(V)] for j in range(V)]
for i in range(V):
graph[i][i] = 0.0
for i in range(E):
print("\nEdge ", i + 1)
src = int(input("Enter source:").strip())
dst = int(input("Enter destination:").strip())
weight = float(input("Enter weight:").strip())
graph[src][dst] = weight
gsrc = int(input("\nEnter shortest path source:").strip())
Dijkstra(graph, V, gsrc)
| def printDist(dist, V):
print("\nVertex Distance")
for i in range(V):
if dist[i] != float("inf"):
print(i, "\t", int(dist[i]), end="\t")
else:
print(i, "\t", "INF", end="\t")
print()
def minDist(mdist, vset, V):
minVal = float("inf")
minInd = -1
for i in range(V):
if (not vset[i]) and mdist[i] < minVal:
minInd = i
minVal = mdist[i]
return minInd
def Dijkstra(graph, V, src):
mdist = [float("inf") for i in range(V)]
vset = [False for i in range(V)]
mdist[src] = 0.0
for i in range(V - 1):
u = minDist(mdist, vset, V)
vset[u] = True
for v in range(V):
if (
(not vset[v])
and graph[u][v] != float("inf")
and mdist[u] + graph[u][v] < mdist[v]
):
mdist[v] = mdist[u] + graph[u][v]
printDist(mdist, V)
if __name__ == "__main__":
V = int(input("Enter number of vertices: ").strip())
E = int(input("Enter number of edges: ").strip())
graph = [[float("inf") for i in range(V)] for j in range(V)]
for i in range(V):
graph[i][i] = 0.0
for i in range(E):
print("\nEdge ", i + 1)
src = int(input("Enter source:").strip())
dst = int(input("Enter destination:").strip())
weight = float(input("Enter weight:").strip())
graph[src][dst] = weight
gsrc = int(input("\nEnter shortest path source:").strip())
Dijkstra(graph, V, gsrc)
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| #!/usr/bin/env python3
def climb_stairs(n: int) -> int:
"""
LeetCdoe No.70: Climbing Stairs
Distinct ways to climb a n step staircase where
each time you can either climb 1 or 2 steps.
Args:
n: number of steps of staircase
Returns:
Distinct ways to climb a n step staircase
Raises:
AssertionError: n not positive integer
>>> climb_stairs(3)
3
>>> climb_stairs(1)
1
>>> climb_stairs(-7) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
AssertionError: n needs to be positive integer, your input -7
"""
assert (
isinstance(n, int) and n > 0
), f"n needs to be positive integer, your input {n}"
if n == 1:
return 1
dp = [0] * (n + 1)
dp[0], dp[1] = (1, 1)
for i in range(2, n + 1):
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]
if __name__ == "__main__":
import doctest
doctest.testmod()
| #!/usr/bin/env python3
def climb_stairs(n: int) -> int:
"""
LeetCdoe No.70: Climbing Stairs
Distinct ways to climb a n step staircase where
each time you can either climb 1 or 2 steps.
Args:
n: number of steps of staircase
Returns:
Distinct ways to climb a n step staircase
Raises:
AssertionError: n not positive integer
>>> climb_stairs(3)
3
>>> climb_stairs(1)
1
>>> climb_stairs(-7) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
AssertionError: n needs to be positive integer, your input -7
"""
assert (
isinstance(n, int) and n > 0
), f"n needs to be positive integer, your input {n}"
if n == 1:
return 1
dp = [0] * (n + 1)
dp[0], dp[1] = (1, 1)
for i in range(2, n + 1):
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| #!/bin/python3
# Doomsday algorithm info: https://en.wikipedia.org/wiki/Doomsday_rule
DOOMSDAY_LEAP = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
DOOMSDAY_NOT_LEAP = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
WEEK_DAY_NAMES = {
0: "Sunday",
1: "Monday",
2: "Tuesday",
3: "Wednesday",
4: "Thursday",
5: "Friday",
6: "Saturday",
}
def get_week_day(year: int, month: int, day: int) -> str:
"""Returns the week-day name out of a given date.
>>> get_week_day(2020, 10, 24)
'Saturday'
>>> get_week_day(2017, 10, 24)
'Tuesday'
>>> get_week_day(2019, 5, 3)
'Friday'
>>> get_week_day(1970, 9, 16)
'Wednesday'
>>> get_week_day(1870, 8, 13)
'Saturday'
>>> get_week_day(2040, 3, 14)
'Wednesday'
"""
# minimal input check:
assert len(str(year)) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
century = year // 100
century_anchor = (5 * (century % 4) + 2) % 7
centurian = year % 100
centurian_m = centurian % 12
dooms_day = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
day_anchor = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0)
else DOOMSDAY_LEAP[month - 1]
)
week_day = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| #!/bin/python3
# Doomsday algorithm info: https://en.wikipedia.org/wiki/Doomsday_rule
DOOMSDAY_LEAP = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
DOOMSDAY_NOT_LEAP = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
WEEK_DAY_NAMES = {
0: "Sunday",
1: "Monday",
2: "Tuesday",
3: "Wednesday",
4: "Thursday",
5: "Friday",
6: "Saturday",
}
def get_week_day(year: int, month: int, day: int) -> str:
"""Returns the week-day name out of a given date.
>>> get_week_day(2020, 10, 24)
'Saturday'
>>> get_week_day(2017, 10, 24)
'Tuesday'
>>> get_week_day(2019, 5, 3)
'Friday'
>>> get_week_day(1970, 9, 16)
'Wednesday'
>>> get_week_day(1870, 8, 13)
'Saturday'
>>> get_week_day(2040, 3, 14)
'Wednesday'
"""
# minimal input check:
assert len(str(year)) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
century = year // 100
century_anchor = (5 * (century % 4) + 2) % 7
centurian = year % 100
centurian_m = centurian % 12
dooms_day = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
day_anchor = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0)
else DOOMSDAY_LEAP[month - 1]
)
week_day = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| # Video Explanation: https://www.youtube.com/watch?v=6w60Zi1NtL8&feature=emb_logo
from __future__ import annotations
def maximum_non_adjacent_sum(nums: list[int]) -> int:
"""
Find the maximum non-adjacent sum of the integers in the nums input list
>>> print(maximum_non_adjacent_sum([1, 2, 3]))
4
>>> maximum_non_adjacent_sum([1, 5, 3, 7, 2, 2, 6])
18
>>> maximum_non_adjacent_sum([-1, -5, -3, -7, -2, -2, -6])
0
>>> maximum_non_adjacent_sum([499, 500, -3, -7, -2, -2, -6])
500
"""
if not nums:
return 0
max_including = nums[0]
max_excluding = 0
for num in nums[1:]:
max_including, max_excluding = (
max_excluding + num,
max(max_including, max_excluding),
)
return max(max_excluding, max_including)
if __name__ == "__main__":
import doctest
doctest.testmod()
| # Video Explanation: https://www.youtube.com/watch?v=6w60Zi1NtL8&feature=emb_logo
from __future__ import annotations
def maximum_non_adjacent_sum(nums: list[int]) -> int:
"""
Find the maximum non-adjacent sum of the integers in the nums input list
>>> print(maximum_non_adjacent_sum([1, 2, 3]))
4
>>> maximum_non_adjacent_sum([1, 5, 3, 7, 2, 2, 6])
18
>>> maximum_non_adjacent_sum([-1, -5, -3, -7, -2, -2, -6])
0
>>> maximum_non_adjacent_sum([499, 500, -3, -7, -2, -2, -6])
500
"""
if not nums:
return 0
max_including = nums[0]
max_excluding = 0
for num in nums[1:]:
max_including, max_excluding = (
max_excluding + num,
max(max_including, max_excluding),
)
return max(max_excluding, max_including)
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
The first known prime found to exceed one million digits was discovered in 1999,
and is a Mersenne prime of the form 2**6972593 − 1; it contains exactly 2,098,960
digits. Subsequently other Mersenne primes, of the form 2**p − 1, have been found
which contain more digits.
However, in 2004 there was found a massive non-Mersenne prime which contains
2,357,207 digits: (28433 * (2 ** 7830457 + 1)).
Find the last ten digits of this prime number.
"""
def solution(n: int = 10) -> str:
"""
Returns the last n digits of NUMBER.
>>> solution()
'8739992577'
>>> solution(8)
'39992577'
>>> solution(1)
'7'
>>> solution(-1)
Traceback (most recent call last):
...
ValueError: Invalid input
>>> solution(8.3)
Traceback (most recent call last):
...
ValueError: Invalid input
>>> solution("a")
Traceback (most recent call last):
...
ValueError: Invalid input
"""
if not isinstance(n, int) or n < 0:
raise ValueError("Invalid input")
MODULUS = 10 ** n
NUMBER = 28433 * (pow(2, 7830457, MODULUS)) + 1
return str(NUMBER % MODULUS)
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"{solution(10) = }")
| """
The first known prime found to exceed one million digits was discovered in 1999,
and is a Mersenne prime of the form 2**6972593 − 1; it contains exactly 2,098,960
digits. Subsequently other Mersenne primes, of the form 2**p − 1, have been found
which contain more digits.
However, in 2004 there was found a massive non-Mersenne prime which contains
2,357,207 digits: (28433 * (2 ** 7830457 + 1)).
Find the last ten digits of this prime number.
"""
def solution(n: int = 10) -> str:
"""
Returns the last n digits of NUMBER.
>>> solution()
'8739992577'
>>> solution(8)
'39992577'
>>> solution(1)
'7'
>>> solution(-1)
Traceback (most recent call last):
...
ValueError: Invalid input
>>> solution(8.3)
Traceback (most recent call last):
...
ValueError: Invalid input
>>> solution("a")
Traceback (most recent call last):
...
ValueError: Invalid input
"""
if not isinstance(n, int) or n < 0:
raise ValueError("Invalid input")
MODULUS = 10 ** n
NUMBER = 28433 * (pow(2, 7830457, MODULUS)) + 1
return str(NUMBER % MODULUS)
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"{solution(10) = }")
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
author : Mayank Kumar Jha (mk9440)
"""
from __future__ import annotations
def find_max_sub_array(A, low, high):
if low == high:
return low, high, A[low]
else:
mid = (low + high) // 2
left_low, left_high, left_sum = find_max_sub_array(A, low, mid)
right_low, right_high, right_sum = find_max_sub_array(A, mid + 1, high)
cross_left, cross_right, cross_sum = find_max_cross_sum(A, low, mid, high)
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
else:
return cross_left, cross_right, cross_sum
def find_max_cross_sum(A, low, mid, high):
left_sum, max_left = -999999999, -1
right_sum, max_right = -999999999, -1
summ = 0
for i in range(mid, low - 1, -1):
summ += A[i]
if summ > left_sum:
left_sum = summ
max_left = i
summ = 0
for i in range(mid + 1, high + 1):
summ += A[i]
if summ > right_sum:
right_sum = summ
max_right = i
return max_left, max_right, (left_sum + right_sum)
def max_sub_array(nums: list[int]) -> int:
"""
Finds the contiguous subarray which has the largest sum and return its sum.
>>> max_sub_array([-2, 1, -3, 4, -1, 2, 1, -5, 4])
6
An empty (sub)array has sum 0.
>>> max_sub_array([])
0
If all elements are negative, the largest subarray would be the empty array,
having the sum 0.
>>> max_sub_array([-1, -2, -3])
0
>>> max_sub_array([5, -2, -3])
5
>>> max_sub_array([31, -41, 59, 26, -53, 58, 97, -93, -23, 84])
187
"""
best = 0
current = 0
for i in nums:
current += i
if current < 0:
current = 0
best = max(best, current)
return best
if __name__ == "__main__":
"""
A random simulation of this algorithm.
"""
import time
from random import randint
from matplotlib import pyplot as plt
inputs = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000]
tim = []
for i in inputs:
li = [randint(1, i) for j in range(i)]
strt = time.time()
(find_max_sub_array(li, 0, len(li) - 1))
end = time.time()
tim.append(end - strt)
print("No of Inputs Time Taken")
for i in range(len(inputs)):
print(inputs[i], "\t\t", tim[i])
plt.plot(inputs, tim)
plt.xlabel("Number of Inputs")
plt.ylabel("Time taken in seconds ")
plt.show()
| """
author : Mayank Kumar Jha (mk9440)
"""
from __future__ import annotations
def find_max_sub_array(A, low, high):
if low == high:
return low, high, A[low]
else:
mid = (low + high) // 2
left_low, left_high, left_sum = find_max_sub_array(A, low, mid)
right_low, right_high, right_sum = find_max_sub_array(A, mid + 1, high)
cross_left, cross_right, cross_sum = find_max_cross_sum(A, low, mid, high)
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
else:
return cross_left, cross_right, cross_sum
def find_max_cross_sum(A, low, mid, high):
left_sum, max_left = -999999999, -1
right_sum, max_right = -999999999, -1
summ = 0
for i in range(mid, low - 1, -1):
summ += A[i]
if summ > left_sum:
left_sum = summ
max_left = i
summ = 0
for i in range(mid + 1, high + 1):
summ += A[i]
if summ > right_sum:
right_sum = summ
max_right = i
return max_left, max_right, (left_sum + right_sum)
def max_sub_array(nums: list[int]) -> int:
"""
Finds the contiguous subarray which has the largest sum and return its sum.
>>> max_sub_array([-2, 1, -3, 4, -1, 2, 1, -5, 4])
6
An empty (sub)array has sum 0.
>>> max_sub_array([])
0
If all elements are negative, the largest subarray would be the empty array,
having the sum 0.
>>> max_sub_array([-1, -2, -3])
0
>>> max_sub_array([5, -2, -3])
5
>>> max_sub_array([31, -41, 59, 26, -53, 58, 97, -93, -23, 84])
187
"""
best = 0
current = 0
for i in nums:
current += i
if current < 0:
current = 0
best = max(best, current)
return best
if __name__ == "__main__":
"""
A random simulation of this algorithm.
"""
import time
from random import randint
from matplotlib import pyplot as plt
inputs = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000]
tim = []
for i in inputs:
li = [randint(1, i) for j in range(i)]
strt = time.time()
(find_max_sub_array(li, 0, len(li) - 1))
end = time.time()
tim.append(end - strt)
print("No of Inputs Time Taken")
for i in range(len(inputs)):
print(inputs[i], "\t\t", tim[i])
plt.plot(inputs, tim)
plt.xlabel("Number of Inputs")
plt.ylabel("Time taken in seconds ")
plt.show()
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| def exchange_sort(numbers: list[int]) -> list[int]:
"""
Uses exchange sort to sort a list of numbers.
Source: https://en.wikipedia.org/wiki/Sorting_algorithm#Exchange_sort
>>> exchange_sort([5, 4, 3, 2, 1])
[1, 2, 3, 4, 5]
>>> exchange_sort([-1, -2, -3])
[-3, -2, -1]
>>> exchange_sort([1, 2, 3, 4, 5])
[1, 2, 3, 4, 5]
>>> exchange_sort([0, 10, -2, 5, 3])
[-2, 0, 3, 5, 10]
>>> exchange_sort([])
[]
"""
numbers_length = len(numbers)
for i in range(numbers_length):
for j in range(i + 1, numbers_length):
if numbers[j] < numbers[i]:
numbers[i], numbers[j] = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
user_input = input("Enter numbers separated by a comma:\n").strip()
unsorted = [int(item) for item in user_input.split(",")]
print(exchange_sort(unsorted))
| def exchange_sort(numbers: list[int]) -> list[int]:
"""
Uses exchange sort to sort a list of numbers.
Source: https://en.wikipedia.org/wiki/Sorting_algorithm#Exchange_sort
>>> exchange_sort([5, 4, 3, 2, 1])
[1, 2, 3, 4, 5]
>>> exchange_sort([-1, -2, -3])
[-3, -2, -1]
>>> exchange_sort([1, 2, 3, 4, 5])
[1, 2, 3, 4, 5]
>>> exchange_sort([0, 10, -2, 5, 3])
[-2, 0, 3, 5, 10]
>>> exchange_sort([])
[]
"""
numbers_length = len(numbers)
for i in range(numbers_length):
for j in range(i + 1, numbers_length):
if numbers[j] < numbers[i]:
numbers[i], numbers[j] = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
user_input = input("Enter numbers separated by a comma:\n").strip()
unsorted = [int(item) for item in user_input.split(",")]
print(exchange_sort(unsorted))
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """Breadth-first search shortest path implementations.
doctest:
python -m doctest -v bfs_shortest_path.py
Manual test:
python bfs_shortest_path.py
"""
demo_graph = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
def bfs_shortest_path(graph: dict, start, goal) -> list[str]:
"""Find shortest path between `start` and `goal` nodes.
Args:
graph (dict): node/list of neighboring nodes key/value pairs.
start: start node.
goal: target node.
Returns:
Shortest path between `start` and `goal` nodes as a string of nodes.
'Not found' string if no path found.
Example:
>>> bfs_shortest_path(demo_graph, "G", "D")
['G', 'C', 'A', 'B', 'D']
>>> bfs_shortest_path(demo_graph, "G", "G")
['G']
>>> bfs_shortest_path(demo_graph, "G", "Unknown")
[]
"""
# keep track of explored nodes
explored = set()
# keep track of all the paths to be checked
queue = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
path = queue.pop(0)
# get the last node from the path
node = path[-1]
if node not in explored:
neighbours = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
new_path = list(path)
new_path.append(neighbour)
queue.append(new_path)
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(node)
# in case there's no path between the 2 nodes
return []
def bfs_shortest_path_distance(graph: dict, start, target) -> int:
"""Find shortest path distance between `start` and `target` nodes.
Args:
graph: node/list of neighboring nodes key/value pairs.
start: node to start search from.
target: node to search for.
Returns:
Number of edges in shortest path between `start` and `target` nodes.
-1 if no path exists.
Example:
>>> bfs_shortest_path_distance(demo_graph, "G", "D")
4
>>> bfs_shortest_path_distance(demo_graph, "A", "A")
0
>>> bfs_shortest_path_distance(demo_graph, "A", "Unknown")
-1
"""
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
queue = [start]
visited = set(start)
# Keep tab on distances from `start` node.
dist = {start: 0, target: -1}
while queue:
node = queue.pop(0)
if node == target:
dist[target] = (
dist[node] if dist[target] == -1 else min(dist[target], dist[node])
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(adjacent)
queue.append(adjacent)
dist[adjacent] = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
| """Breadth-first search shortest path implementations.
doctest:
python -m doctest -v bfs_shortest_path.py
Manual test:
python bfs_shortest_path.py
"""
demo_graph = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
def bfs_shortest_path(graph: dict, start, goal) -> list[str]:
"""Find shortest path between `start` and `goal` nodes.
Args:
graph (dict): node/list of neighboring nodes key/value pairs.
start: start node.
goal: target node.
Returns:
Shortest path between `start` and `goal` nodes as a string of nodes.
'Not found' string if no path found.
Example:
>>> bfs_shortest_path(demo_graph, "G", "D")
['G', 'C', 'A', 'B', 'D']
>>> bfs_shortest_path(demo_graph, "G", "G")
['G']
>>> bfs_shortest_path(demo_graph, "G", "Unknown")
[]
"""
# keep track of explored nodes
explored = set()
# keep track of all the paths to be checked
queue = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
path = queue.pop(0)
# get the last node from the path
node = path[-1]
if node not in explored:
neighbours = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
new_path = list(path)
new_path.append(neighbour)
queue.append(new_path)
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(node)
# in case there's no path between the 2 nodes
return []
def bfs_shortest_path_distance(graph: dict, start, target) -> int:
"""Find shortest path distance between `start` and `target` nodes.
Args:
graph: node/list of neighboring nodes key/value pairs.
start: node to start search from.
target: node to search for.
Returns:
Number of edges in shortest path between `start` and `target` nodes.
-1 if no path exists.
Example:
>>> bfs_shortest_path_distance(demo_graph, "G", "D")
4
>>> bfs_shortest_path_distance(demo_graph, "A", "A")
0
>>> bfs_shortest_path_distance(demo_graph, "A", "Unknown")
-1
"""
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
queue = [start]
visited = set(start)
# Keep tab on distances from `start` node.
dist = {start: 0, target: -1}
while queue:
node = queue.pop(0)
if node == target:
dist[target] = (
dist[node] if dist[target] == -1 else min(dist[target], dist[node])
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(adjacent)
queue.append(adjacent)
dist[adjacent] = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| 04/24/2020, 1279.31, 1640394, 1261.17, 1280.4, 1249.45
04/23/2020, 1276.31, 1566203, 1271.55, 1293.31, 1265.67
04/22/2020, 1263.21, 2093140, 1245.54, 1285.6133, 1242
04/21/2020, 1216.34, 2153003, 1247, 1254.27, 1209.71
04/20/2020, 1266.61, 1695488, 1271, 1281.6, 1261.37
04/17/2020, 1283.25, 1949042, 1284.85, 1294.43, 1271.23
04/16/2020, 1263.47, 2518099, 1274.1, 1279, 1242.62
04/15/2020, 1262.47, 1671703, 1245.61, 1280.46, 1240.4
04/14/2020, 1269.23, 2470353, 1245.09, 1282.07, 1236.93
04/13/2020, 1217.56, 1739828, 1209.18, 1220.51, 1187.5984
04/09/2020, 1211.45, 2175421, 1224.08, 1225.57, 1196.7351
04/08/2020, 1210.28, 1975135, 1206.5, 1219.07, 1188.16
04/07/2020, 1186.51, 2387329, 1221, 1225, 1182.23
04/06/2020, 1186.92, 2664723, 1138, 1194.66, 1130.94
04/03/2020, 1097.88, 2313400, 1119.015, 1123.54, 1079.81
04/02/2020, 1120.84, 1964881, 1098.26, 1126.86, 1096.4
04/01/2020, 1105.62, 2344173, 1122, 1129.69, 1097.45
03/31/2020, 1162.81, 2487983, 1147.3, 1175.31, 1138.14
03/30/2020, 1146.82, 2574061, 1125.04, 1151.63, 1096.48
03/27/2020, 1110.71, 3208495, 1125.67, 1150.6702, 1105.91
03/26/2020, 1161.75, 3573755, 1111.8, 1169.97, 1093.53
03/25/2020, 1102.49, 4081528, 1126.47, 1148.9, 1086.01
03/24/2020, 1134.46, 3344450, 1103.77, 1135, 1090.62
03/23/2020, 1056.62, 4044137, 1061.32, 1071.32, 1013.5361
03/20/2020, 1072.32, 3601750, 1135.72, 1143.99, 1065.49
03/19/2020, 1115.29, 3651106, 1093.05, 1157.9699, 1060.1075
03/18/2020, 1096.8, 4233435, 1056.51, 1106.5, 1037.28
03/17/2020, 1119.8, 3861489, 1093.11, 1130.86, 1056.01
03/16/2020, 1084.33, 4252365, 1096, 1152.2665, 1074.44
03/13/2020, 1219.73, 3700125, 1179, 1219.76, 1117.1432
03/12/2020, 1114.91, 4226748, 1126, 1193.87, 1113.3
03/11/2020, 1215.41, 2611229, 1249.7, 1260.96, 1196.07
03/10/2020, 1280.39, 2611373, 1260, 1281.15, 1218.77
03/09/2020, 1215.56, 3365365, 1205.3, 1254.7599, 1200
03/06/2020, 1298.41, 2660628, 1277.06, 1306.22, 1261.05
03/05/2020, 1319.04, 2561288, 1350.2, 1358.91, 1305.1
03/04/2020, 1386.52, 1913315, 1359.23, 1388.09, 1343.11
03/03/2020, 1341.39, 2402326, 1399.42, 1410.15, 1332
03/02/2020, 1389.11, 2431468, 1351.61, 1390.87, 1326.815
02/28/2020, 1339.33, 3790618, 1277.5, 1341.14, 1271
02/27/2020, 1318.09, 2978300, 1362.06, 1371.7037, 1317.17
02/26/2020, 1393.18, 2204037, 1396.14, 1415.7, 1379
02/25/2020, 1388.45, 2478278, 1433, 1438.14, 1382.4
02/24/2020, 1421.59, 2867053, 1426.11, 1436.97, 1411.39
02/21/2020, 1485.11, 1732273, 1508.03, 1512.215, 1480.44
02/20/2020, 1518.15, 1096552, 1522, 1529.64, 1506.82
02/19/2020, 1526.69, 949268, 1525.07, 1532.1063, 1521.4
02/18/2020, 1519.67, 1121140, 1515, 1531.63, 1512.59
02/14/2020, 1520.74, 1197836, 1515.6, 1520.74, 1507.34
02/13/2020, 1514.66, 929730, 1512.69, 1527.18, 1504.6
02/12/2020, 1518.27, 1167565, 1514.48, 1520.695, 1508.11
02/11/2020, 1508.79, 1344633, 1511.81, 1529.63, 1505.6378
02/10/2020, 1508.68, 1419876, 1474.32, 1509.5, 1474.32
02/07/2020, 1479.23, 1172270, 1467.3, 1485.84, 1466.35
02/06/2020, 1476.23, 1679384, 1450.33, 1481.9997, 1449.57
02/05/2020, 1448.23, 1986157, 1462.42, 1463.84, 1430.56
02/04/2020, 1447.07, 3932954, 1457.07, 1469.5, 1426.3
02/03/2020, 1485.94, 3055216, 1462, 1490, 1458.99
01/31/2020, 1434.23, 2417214, 1468.9, 1470.13, 1428.53
01/30/2020, 1455.84, 1339421, 1439.96, 1457.28, 1436.4
01/29/2020, 1458.63, 1078667, 1458.8, 1465.43, 1446.74
01/28/2020, 1452.56, 1577422, 1443, 1456, 1432.47
01/27/2020, 1433.9, 1755201, 1431, 1438.07, 1421.2
01/24/2020, 1466.71, 1784644, 1493.59, 1495.495, 1465.25
01/23/2020, 1486.65, 1351354, 1487.64, 1495.52, 1482.1
01/22/2020, 1485.95, 1610846, 1491, 1503.2143, 1484.93
01/21/2020, 1484.4, 2036780, 1479.12, 1491.85, 1471.2
01/17/2020, 1480.39, 2396215, 1462.91, 1481.2954, 1458.22
01/16/2020, 1451.7, 1173688, 1447.44, 1451.99, 1440.92
01/15/2020, 1439.2, 1282685, 1430.21, 1441.395, 1430.21
01/14/2020, 1430.88, 1560453, 1439.01, 1441.8, 1428.37
01/13/2020, 1439.23, 1653482, 1436.13, 1440.52, 1426.02
01/10/2020, 1429.73, 1821566, 1427.56, 1434.9292, 1418.35
01/09/2020, 1419.83, 1502664, 1420.57, 1427.33, 1410.27
01/08/2020, 1404.32, 1529177, 1392.08, 1411.58, 1390.84
01/07/2020, 1393.34, 1511693, 1397.94, 1402.99, 1390.38
01/06/2020, 1394.21, 1733149, 1350, 1396.5, 1350
01/03/2020, 1360.66, 1187006, 1347.86, 1372.5, 1345.5436
01/02/2020, 1367.37, 1406731, 1341.55, 1368.14, 1341.55
12/31/2019, 1337.02, 962468, 1330.11, 1338, 1329.085
12/30/2019, 1336.14, 1051323, 1350, 1353, 1334.02
12/27/2019, 1351.89, 1038718, 1362.99, 1364.53, 1349.31
12/26/2019, 1360.4, 667754, 1346.17, 1361.3269, 1344.47
12/24/2019, 1343.56, 347518, 1348.5, 1350.26, 1342.78
12/23/2019, 1348.84, 883200, 1355.87, 1359.7999, 1346.51
12/20/2019, 1349.59, 3316905, 1363.35, 1363.64, 1349
12/19/2019, 1356.04, 1470112, 1351.82, 1358.1, 1348.985
12/18/2019, 1352.62, 1657069, 1356.6, 1360.47, 1351
12/17/2019, 1355.12, 1855259, 1362.89, 1365, 1351.3231
12/16/2019, 1361.17, 1397451, 1356.5, 1364.68, 1352.67
12/13/2019, 1347.83, 1550028, 1347.95, 1353.0931, 1343.87
12/12/2019, 1350.27, 1281722, 1345.94, 1355.775, 1340.5
12/11/2019, 1345.02, 850796, 1350.84, 1351.2, 1342.67
12/10/2019, 1344.66, 1094653, 1341.5, 1349.975, 1336.04
12/09/2019, 1343.56, 1355795, 1338.04, 1359.45, 1337.84
12/06/2019, 1340.62, 1315510, 1333.44, 1344, 1333.44
12/05/2019, 1328.13, 1212818, 1328, 1329.3579, 1316.44
12/04/2019, 1320.54, 1538110, 1307.01, 1325.8, 1304.87
12/03/2019, 1295.28, 1268647, 1279.57, 1298.461, 1279
12/02/2019, 1289.92, 1511851, 1301, 1305.83, 1281
11/29/2019, 1304.96, 586981, 1307.12, 1310.205, 1303.97
11/27/2019, 1312.99, 996329, 1315, 1318.36, 1309.63
11/26/2019, 1313.55, 1069795, 1309.86, 1314.8, 1305.09
11/25/2019, 1306.69, 1036487, 1299.18, 1311.31, 1298.13
11/22/2019, 1295.34, 1386506, 1305.62, 1308.73, 1291.41
11/21/2019, 1301.35, 995499, 1301.48, 1312.59, 1293
11/20/2019, 1303.05, 1309835, 1311.74, 1315, 1291.15
11/19/2019, 1315.46, 1269372, 1327.7, 1327.7, 1312.8
11/18/2019, 1320.7, 1488083, 1332.22, 1335.5288, 1317.5
11/15/2019, 1334.87, 1782955, 1318.94, 1334.88, 1314.2796
11/14/2019, 1311.46, 1194305, 1297.5, 1317, 1295.65
11/13/2019, 1298, 853861, 1294.07, 1304.3, 1293.51
11/12/2019, 1298.8, 1085859, 1300, 1310, 1295.77
11/11/2019, 1299.19, 1012429, 1303.18, 1306.425, 1297.41
11/08/2019, 1311.37, 1251916, 1305.28, 1318, 1304.365
11/07/2019, 1308.86, 2029970, 1294.28, 1323.74, 1294.245
11/06/2019, 1291.8, 1152977, 1289.46, 1293.73, 1282.5
11/05/2019, 1292.03, 1282711, 1292.89, 1298.93, 1291.2289
11/04/2019, 1291.37, 1500964, 1276.45, 1294.13, 1276.355
11/01/2019, 1273.74, 1670072, 1265, 1274.62, 1260.5
10/31/2019, 1260.11, 1455651, 1261.28, 1267.67, 1250.8428
10/30/2019, 1261.29, 1408851, 1252.97, 1269.36, 1252
10/29/2019, 1262.62, 1886380, 1276.23, 1281.59, 1257.2119
10/28/2019, 1290, 2613237, 1275.45, 1299.31, 1272.54
10/25/2019, 1265.13, 1213051, 1251.03, 1269.6, 1250.01
10/24/2019, 1260.99, 1039868, 1260.9, 1264, 1253.715
10/23/2019, 1259.13, 928595, 1242.36, 1259.89, 1242.36
10/22/2019, 1242.8, 1047851, 1247.85, 1250.6, 1241.38
10/21/2019, 1246.15, 1038042, 1252.26, 1254.6287, 1240.6
10/18/2019, 1245.49, 1352839, 1253.46, 1258.89, 1241.08
10/17/2019, 1253.07, 980510, 1250.93, 1263.325, 1249.94
10/16/2019, 1243.64, 1168174, 1241.17, 1254.74, 1238.45
10/15/2019, 1243.01, 1395259, 1220.4, 1247.33, 1220.4
10/14/2019, 1217.14, 882039, 1212.34, 1226.33, 1211.76
10/11/2019, 1215.45, 1277144, 1222.21, 1228.39, 1213.74
10/10/2019, 1208.67, 932531, 1198.58, 1215, 1197.34
10/09/2019, 1202.31, 876632, 1199.35, 1208.35, 1197.63
10/08/2019, 1189.13, 1141784, 1197.59, 1206.08, 1189.01
10/07/2019, 1207.68, 867149, 1204.4, 1218.2036, 1203.75
10/04/2019, 1209, 1183264, 1191.89, 1211.44, 1189.17
10/03/2019, 1187.83, 1663656, 1180, 1189.06, 1162.43
10/02/2019, 1176.63, 1639237, 1196.98, 1196.99, 1171.29
10/01/2019, 1205.1, 1358279, 1219, 1231.23, 1203.58
09/30/2019, 1219, 1419676, 1220.97, 1226, 1212.3
09/27/2019, 1225.09, 1354432, 1243.01, 1244.02, 1214.45
09/26/2019, 1241.39, 1561882, 1241.96, 1245, 1232.268
09/25/2019, 1246.52, 1593875, 1215.82, 1248.3, 1210.09
09/24/2019, 1218.76, 1591786, 1240, 1246.74, 1210.68
09/23/2019, 1234.03, 1075253, 1226, 1239.09, 1224.17
09/20/2019, 1229.93, 2337269, 1233.12, 1243.32, 1223.08
09/19/2019, 1238.71, 1000155, 1232.06, 1244.44, 1232.02
09/18/2019, 1232.41, 1144333, 1227.51, 1235.61, 1216.53
09/17/2019, 1229.15, 958112, 1230.4, 1235, 1223.69
09/16/2019, 1231.3, 1053299, 1229.52, 1239.56, 1225.61
09/13/2019, 1239.56, 1301350, 1231.35, 1240.88, 1227.01
09/12/2019, 1234.25, 1725908, 1224.3, 1241.86, 1223.02
09/11/2019, 1220.17, 1307033, 1203.41, 1222.6, 1202.2
09/10/2019, 1206, 1260115, 1195.15, 1210, 1194.58
09/09/2019, 1204.41, 1471880, 1204, 1220, 1192.62
09/06/2019, 1204.93, 1072143, 1208.13, 1212.015, 1202.5222
09/05/2019, 1211.38, 1408601, 1191.53, 1213.04, 1191.53
09/04/2019, 1181.41, 1068968, 1176.71, 1183.48, 1171
09/03/2019, 1168.39, 1480420, 1177.03, 1186.89, 1163.2
08/30/2019, 1188.1, 1129959, 1198.5, 1198.5, 1183.8026
08/29/2019, 1192.85, 1088858, 1181.12, 1196.06, 1181.12
08/28/2019, 1171.02, 802243, 1161.71, 1176.4199, 1157.3
08/27/2019, 1167.84, 1077452, 1180.53, 1182.4, 1161.45
08/26/2019, 1168.89, 1226441, 1157.26, 1169.47, 1152.96
08/23/2019, 1151.29, 1688271, 1181.99, 1194.08, 1147.75
08/22/2019, 1189.53, 947906, 1194.07, 1198.0115, 1178.58
08/21/2019, 1191.25, 741053, 1193.15, 1199, 1187.43
08/20/2019, 1182.69, 915605, 1195.25, 1196.06, 1182.11
08/19/2019, 1198.45, 1232517, 1190.09, 1206.99, 1190.09
08/16/2019, 1177.6, 1349436, 1179.55, 1182.72, 1171.81
08/15/2019, 1167.26, 1224739, 1163.5, 1175.84, 1162.11
08/14/2019, 1164.29, 1578668, 1176.31, 1182.3, 1160.54
08/13/2019, 1197.27, 1318009, 1171.46, 1204.78, 1171.46
08/12/2019, 1174.71, 1003187, 1179.21, 1184.96, 1167.6723
08/09/2019, 1188.01, 1065658, 1197.99, 1203.88, 1183.603
08/08/2019, 1204.8, 1467997, 1182.83, 1205.01, 1173.02
08/07/2019, 1173.99, 1444324, 1156, 1178.4451, 1149.6239
08/06/2019, 1169.95, 1709374, 1163.31, 1179.96, 1160
08/05/2019, 1152.32, 2597455, 1170.04, 1175.24, 1140.14
08/02/2019, 1193.99, 1645067, 1200.74, 1206.9, 1188.94
08/01/2019, 1209.01, 1698510, 1214.03, 1234.11, 1205.72
07/31/2019, 1216.68, 1725454, 1223, 1234, 1207.7635
07/30/2019, 1225.14, 1453263, 1225.41, 1234.87, 1223.3
07/29/2019, 1239.41, 2223731, 1241.05, 1247.37, 1228.23
07/26/2019, 1250.41, 4805752, 1224.04, 1265.5499, 1224
07/25/2019, 1132.12, 2209823, 1137.82, 1141.7, 1120.92
07/24/2019, 1137.81, 1590101, 1131.9, 1144, 1126.99
07/23/2019, 1146.21, 1093688, 1144, 1146.9, 1131.8
07/22/2019, 1138.07, 1301846, 1133.45, 1139.25, 1124.24
07/19/2019, 1130.1, 1647245, 1148.19, 1151.14, 1129.62
07/18/2019, 1146.33, 1291281, 1141.74, 1147.605, 1132.73
07/17/2019, 1146.35, 1170047, 1150.97, 1158.36, 1145.77
07/16/2019, 1153.58, 1238807, 1146, 1158.58, 1145
07/15/2019, 1150.34, 903780, 1146.86, 1150.82, 1139.4
07/12/2019, 1144.9, 863973, 1143.99, 1147.34, 1138.78
07/11/2019, 1144.21, 1195569, 1143.25, 1153.07, 1139.58
07/10/2019, 1140.48, 1209466, 1131.22, 1142.05, 1130.97
07/09/2019, 1124.83, 1330370, 1111.8, 1128.025, 1107.17
07/08/2019, 1116.35, 1236419, 1125.17, 1125.98, 1111.21
07/05/2019, 1131.59, 1264540, 1117.8, 1132.88, 1116.14
07/03/2019, 1121.58, 767011, 1117.41, 1126.76, 1113.86
07/02/2019, 1111.25, 991755, 1102.24, 1111.77, 1098.17
07/01/2019, 1097.95, 1438504, 1098, 1107.58, 1093.703
06/28/2019, 1080.91, 1693450, 1076.39, 1081, 1073.37
06/27/2019, 1076.01, 1004477, 1084, 1087.1, 1075.29
06/26/2019, 1079.8, 1810869, 1086.5, 1092.97, 1072.24
06/25/2019, 1086.35, 1546913, 1112.66, 1114.35, 1083.8
06/24/2019, 1115.52, 1395696, 1119.61, 1122, 1111.01
06/21/2019, 1121.88, 1947591, 1109.24, 1124.11, 1108.08
06/20/2019, 1111.42, 1262011, 1119.99, 1120.12, 1104.74
06/19/2019, 1102.33, 1339218, 1105.6, 1107, 1093.48
06/18/2019, 1103.6, 1386684, 1109.69, 1116.39, 1098.99
06/17/2019, 1092.5, 941602, 1086.28, 1099.18, 1086.28
06/14/2019, 1085.35, 1111643, 1086.42, 1092.69, 1080.1721
06/13/2019, 1088.77, 1058000, 1083.64, 1094.17, 1080.15
06/12/2019, 1077.03, 1061255, 1078, 1080.93, 1067.54
06/11/2019, 1078.72, 1437063, 1093.98, 1101.99, 1077.6025
06/10/2019, 1080.38, 1464248, 1072.98, 1092.66, 1072.3216
06/07/2019, 1066.04, 1802370, 1050.63, 1070.92, 1048.4
06/06/2019, 1044.34, 1703244, 1044.99, 1047.49, 1033.7
06/05/2019, 1042.22, 2168439, 1051.54, 1053.55, 1030.49
06/04/2019, 1053.05, 2833483, 1042.9, 1056.05, 1033.69
06/03/2019, 1036.23, 5130576, 1065.5, 1065.5, 1025
05/31/2019, 1103.63, 1508203, 1101.29, 1109.6, 1100.18
05/30/2019, 1117.95, 951873, 1115.54, 1123.13, 1112.12
05/29/2019, 1116.46, 1538212, 1127.52, 1129.1, 1108.2201
05/28/2019, 1134.15, 1365166, 1134, 1151.5871, 1133.12
05/24/2019, 1133.47, 1112341, 1147.36, 1149.765, 1131.66
05/23/2019, 1140.77, 1199300, 1140.5, 1145.9725, 1129.224
05/22/2019, 1151.42, 914839, 1146.75, 1158.52, 1145.89
05/21/2019, 1149.63, 1160158, 1148.49, 1152.7077, 1137.94
05/20/2019, 1138.85, 1353292, 1144.5, 1146.7967, 1131.4425
05/17/2019, 1162.3, 1208623, 1168.47, 1180.15, 1160.01
05/16/2019, 1178.98, 1531404, 1164.51, 1188.16, 1162.84
05/15/2019, 1164.21, 2289302, 1117.87, 1171.33, 1116.6657
05/14/2019, 1120.44, 1836604, 1137.21, 1140.42, 1119.55
05/13/2019, 1132.03, 1860648, 1141.96, 1147.94, 1122.11
05/10/2019, 1164.27, 1314546, 1163.59, 1172.6, 1142.5
05/09/2019, 1162.38, 1185973, 1159.03, 1169.66, 1150.85
05/08/2019, 1166.27, 1309514, 1172.01, 1180.4243, 1165.74
05/07/2019, 1174.1, 1551368, 1180.47, 1190.44, 1161.04
05/06/2019, 1189.39, 1563943, 1166.26, 1190.85, 1166.26
05/03/2019, 1185.4, 1980653, 1173.65, 1186.8, 1169
05/02/2019, 1162.61, 1944817, 1167.76, 1174.1895, 1155.0018
05/01/2019, 1168.08, 2642983, 1188.05, 1188.05, 1167.18
04/30/2019, 1188.48, 6194691, 1185, 1192.81, 1175
04/29/2019, 1287.58, 2412788, 1274, 1289.27, 1266.2949
04/26/2019, 1272.18, 1228276, 1269, 1273.07, 1260.32
04/25/2019, 1263.45, 1099614, 1264.77, 1267.4083, 1252.03
04/24/2019, 1256, 1015006, 1264.12, 1268.01, 1255
04/23/2019, 1264.55, 1271195, 1250.69, 1269, 1246.38
04/22/2019, 1248.84, 806577, 1235.99, 1249.09, 1228.31
04/18/2019, 1236.37, 1315676, 1239.18, 1242, 1234.61
04/17/2019, 1236.34, 1211866, 1233, 1240.56, 1227.82
04/16/2019, 1227.13, 855258, 1225, 1230.82, 1220.12
04/15/2019, 1221.1, 1187353, 1218, 1224.2, 1209.1101
04/12/2019, 1217.87, 926799, 1210, 1218.35, 1208.11
04/11/2019, 1204.62, 709417, 1203.96, 1207.96, 1200.13
04/10/2019, 1202.16, 724524, 1200.68, 1203.785, 1196.435
04/09/2019, 1197.25, 865416, 1196, 1202.29, 1193.08
04/08/2019, 1203.84, 859969, 1207.89, 1208.69, 1199.86
04/05/2019, 1207.15, 900950, 1214.99, 1216.22, 1205.03
04/04/2019, 1215, 949962, 1205.94, 1215.67, 1204.13
04/03/2019, 1205.92, 1014195, 1207.48, 1216.3, 1200.5
04/02/2019, 1200.49, 800820, 1195.32, 1201.35, 1185.71
04/01/2019, 1194.43, 1188235, 1184.1, 1196.66, 1182
03/29/2019, 1173.31, 1269573, 1174.9, 1178.99, 1162.88
03/28/2019, 1168.49, 966843, 1171.54, 1171.565, 1159.4312
03/27/2019, 1173.02, 1362217, 1185.5, 1187.559, 1159.37
03/26/2019, 1184.62, 1894639, 1198.53, 1202.83, 1176.72
03/25/2019, 1193, 1493841, 1196.93, 1206.3975, 1187.04
03/22/2019, 1205.5, 1668910, 1226.32, 1230, 1202.825
03/21/2019, 1231.54, 1195899, 1216, 1231.79, 1213.15
03/20/2019, 1223.97, 2089367, 1197.35, 1227.14, 1196.17
03/19/2019, 1198.85, 1404863, 1188.81, 1200, 1185.87
03/18/2019, 1184.26, 1212506, 1183.3, 1190, 1177.4211
03/15/2019, 1184.46, 2457597, 1193.38, 1196.57, 1182.61
03/14/2019, 1185.55, 1150950, 1194.51, 1197.88, 1184.48
03/13/2019, 1193.32, 1434816, 1200.645, 1200.93, 1191.94
03/12/2019, 1193.2, 2012306, 1178.26, 1200, 1178.26
03/11/2019, 1175.76, 1569332, 1144.45, 1176.19, 1144.45
03/08/2019, 1142.32, 1212271, 1126.73, 1147.08, 1123.3
03/07/2019, 1143.3, 1166076, 1155.72, 1156.755, 1134.91
03/06/2019, 1157.86, 1094100, 1162.49, 1167.5658, 1155.49
03/05/2019, 1162.03, 1422357, 1150.06, 1169.61, 1146.195
03/04/2019, 1147.8, 1444774, 1146.99, 1158.2804, 1130.69
03/01/2019, 1140.99, 1447454, 1124.9, 1142.97, 1124.75
02/28/2019, 1119.92, 1541068, 1111.3, 1127.65, 1111.01
02/27/2019, 1116.05, 968362, 1106.95, 1117.98, 1101
02/26/2019, 1115.13, 1469761, 1105.75, 1119.51, 1099.92
02/25/2019, 1109.4, 1395281, 1116, 1118.54, 1107.27
02/22/2019, 1110.37, 1048361, 1100.9, 1111.24, 1095.6
02/21/2019, 1096.97, 1414744, 1110.84, 1111.94, 1092.52
02/20/2019, 1113.8, 1080144, 1119.99, 1123.41, 1105.28
02/19/2019, 1118.56, 1046315, 1110, 1121.89, 1110
02/15/2019, 1113.65, 1442461, 1130.08, 1131.67, 1110.65
02/14/2019, 1121.67, 941678, 1118.05, 1128.23, 1110.445
02/13/2019, 1120.16, 1048630, 1124.99, 1134.73, 1118.5
02/12/2019, 1121.37, 1608658, 1106.8, 1125.295, 1105.85
02/11/2019, 1095.01, 1063825, 1096.95, 1105.945, 1092.86
02/08/2019, 1095.06, 1072031, 1087, 1098.91, 1086.55
02/07/2019, 1098.71, 2040615, 1104.16, 1104.84, 1086
02/06/2019, 1115.23, 2101674, 1139.57, 1147, 1112.77
02/05/2019, 1145.99, 3529974, 1124.84, 1146.85, 1117.248
02/04/2019, 1132.8, 2518184, 1112.66, 1132.8, 1109.02
02/01/2019, 1110.75, 1455609, 1112.4, 1125, 1104.89
01/31/2019, 1116.37, 1531463, 1103, 1117.33, 1095.41
01/30/2019, 1089.06, 1241760, 1068.43, 1091, 1066.85
01/29/2019, 1060.62, 1006731, 1072.68, 1075.15, 1055.8647
01/28/2019, 1070.08, 1277745, 1080.11, 1083, 1063.8
01/25/2019, 1090.99, 1114785, 1085, 1094, 1081.82
01/24/2019, 1073.9, 1317718, 1076.48, 1079.475, 1060.7
01/23/2019, 1075.57, 956526, 1077.35, 1084.93, 1059.75
01/22/2019, 1070.52, 1607398, 1088, 1091.51, 1063.47
01/18/2019, 1098.26, 1933754, 1100, 1108.352, 1090.9
01/17/2019, 1089.9, 1223674, 1079.47, 1091.8, 1073.5
01/16/2019, 1080.97, 1320530, 1080, 1092.375, 1079.34
01/15/2019, 1077.15, 1452238, 1050.17, 1080.05, 1047.34
01/14/2019, 1044.69, 1127417, 1046.92, 1051.53, 1041.255
01/11/2019, 1057.19, 1512651, 1063.18, 1063.775, 1048.48
01/10/2019, 1070.33, 1444976, 1067.66, 1071.15, 1057.71
01/09/2019, 1074.66, 1198369, 1081.65, 1082.63, 1066.4
01/08/2019, 1076.28, 1748371, 1076.11, 1084.56, 1060.53
01/07/2019, 1068.39, 1978077, 1071.5, 1073.9999, 1054.76
01/04/2019, 1070.71, 2080144, 1032.59, 1070.84, 1027.4179
01/03/2019, 1016.06, 1829379, 1041, 1056.98, 1014.07
01/02/2019, 1045.85, 1516681, 1016.57, 1052.32, 1015.71
12/31/2018, 1035.61, 1492541, 1050.96, 1052.7, 1023.59
12/28/2018, 1037.08, 1399218, 1049.62, 1055.56, 1033.1
12/27/2018, 1043.88, 2102069, 1017.15, 1043.89, 997
12/26/2018, 1039.46, 2337212, 989.01, 1040, 983
12/24/2018, 976.22, 1590328, 973.9, 1003.54, 970.11
12/21/2018, 979.54, 4560424, 1015.3, 1024.02, 973.69
12/20/2018, 1009.41, 2659047, 1018.13, 1034.22, 996.36
12/19/2018, 1023.01, 2419322, 1033.99, 1062, 1008.05
12/18/2018, 1028.71, 2101854, 1026.09, 1049.48, 1021.44
12/17/2018, 1016.53, 2337631, 1037.51, 1053.15, 1007.9
12/14/2018, 1042.1, 1685802, 1049.98, 1062.6, 1040.79
12/13/2018, 1061.9, 1329198, 1068.07, 1079.7597, 1053.93
12/12/2018, 1063.68, 1523276, 1068, 1081.65, 1062.79
12/11/2018, 1051.75, 1354751, 1056.49, 1060.6, 1039.84
12/10/2018, 1039.55, 1793465, 1035.05, 1048.45, 1023.29
12/07/2018, 1036.58, 2098526, 1060.01, 1075.26, 1028.5
12/06/2018, 1068.73, 2758098, 1034.26, 1071.2, 1030.7701
12/04/2018, 1050.82, 2278200, 1103.12, 1104.42, 1049.98
12/03/2018, 1106.43, 1900355, 1123.14, 1124.65, 1103.6645
11/30/2018, 1094.43, 2554416, 1089.07, 1095.57, 1077.88
11/29/2018, 1088.3, 1403540, 1076.08, 1094.245, 1076
11/28/2018, 1086.23, 2399374, 1048.76, 1086.84, 1035.76
11/27/2018, 1044.41, 1801334, 1041, 1057.58, 1038.49
11/26/2018, 1048.62, 1846430, 1038.35, 1049.31, 1033.91
11/23/2018, 1023.88, 691462, 1030, 1037.59, 1022.3992
11/21/2018, 1037.61, 1531676, 1036.76, 1048.56, 1033.47
11/20/2018, 1025.76, 2447254, 1000, 1031.74, 996.02
11/19/2018, 1020, 1837207, 1057.2, 1060.79, 1016.2601
11/16/2018, 1061.49, 1641232, 1059.41, 1067, 1048.98
11/15/2018, 1064.71, 1819132, 1044.71, 1071.85, 1031.78
11/14/2018, 1043.66, 1561656, 1050, 1054.5643, 1031
11/13/2018, 1036.05, 1496534, 1043.29, 1056.605, 1031.15
11/12/2018, 1038.63, 1429319, 1061.39, 1062.12, 1031
11/09/2018, 1066.15, 1343154, 1073.99, 1075.56, 1053.11
11/08/2018, 1082.4, 1463022, 1091.38, 1093.27, 1072.2048
11/07/2018, 1093.39, 2057155, 1069, 1095.46, 1065.9
11/06/2018, 1055.81, 1225197, 1039.48, 1064.345, 1038.07
11/05/2018, 1040.09, 2436742, 1055, 1058.47, 1021.24
11/02/2018, 1057.79, 1829295, 1073.73, 1082.975, 1054.61
11/01/2018, 1070, 1456222, 1075.8, 1083.975, 1062.46
10/31/2018, 1076.77, 2528584, 1059.81, 1091.94, 1057
10/30/2018, 1036.21, 3209126, 1008.46, 1037.49, 1000.75
10/29/2018, 1020.08, 3873644, 1082.47, 1097.04, 995.83
10/26/2018, 1071.47, 4185201, 1037.03, 1106.53, 1034.09
10/25/2018, 1095.57, 2511884, 1071.79, 1110.98, 1069.55
10/24/2018, 1050.71, 1910060, 1104.25, 1106.12, 1048.74
10/23/2018, 1103.69, 1847798, 1080.89, 1107.89, 1070
10/22/2018, 1101.16, 1494285, 1103.06, 1112.23, 1091
10/19/2018, 1096.46, 1264605, 1093.37, 1110.36, 1087.75
10/18/2018, 1087.97, 2056606, 1121.84, 1121.84, 1077.09
10/17/2018, 1115.69, 1397613, 1126.46, 1128.99, 1102.19
10/16/2018, 1121.28, 1845491, 1104.59, 1124.22, 1102.5
10/15/2018, 1092.25, 1343231, 1108.91, 1113.4464, 1089
10/12/2018, 1110.08, 2029872, 1108, 1115, 1086.402
10/11/2018, 1079.32, 2939514, 1072.94, 1106.4, 1068.27
10/10/2018, 1081.22, 2574985, 1131.08, 1132.17, 1081.13
10/09/2018, 1138.82, 1308706, 1146.15, 1154.35, 1137.572
10/08/2018, 1148.97, 1877142, 1150.11, 1168, 1127.3636
10/05/2018, 1157.35, 1184245, 1167.5, 1173.4999, 1145.12
10/04/2018, 1168.19, 2151762, 1195.33, 1197.51, 1155.576
10/03/2018, 1202.95, 1207280, 1205, 1206.41, 1193.83
10/02/2018, 1200.11, 1655602, 1190.96, 1209.96, 1186.63
10/01/2018, 1195.31, 1345250, 1199.89, 1209.9, 1190.3
09/28/2018, 1193.47, 1306822, 1191.87, 1195.41, 1184.5
09/27/2018, 1194.64, 1244278, 1186.73, 1202.1, 1183.63
09/26/2018, 1180.49, 1346434, 1185.15, 1194.23, 1174.765
09/25/2018, 1184.65, 937577, 1176.15, 1186.88, 1168
09/24/2018, 1173.37, 1218532, 1157.17, 1178, 1146.91
09/21/2018, 1166.09, 4363929, 1192, 1192.21, 1166.04
09/20/2018, 1186.87, 1209855, 1179.99, 1189.89, 1173.36
09/19/2018, 1171.09, 1185321, 1164.98, 1173.21, 1154.58
09/18/2018, 1161.22, 1184407, 1157.09, 1176.08, 1157.09
09/17/2018, 1156.05, 1279147, 1170.14, 1177.24, 1154.03
09/14/2018, 1172.53, 934300, 1179.1, 1180.425, 1168.3295
09/13/2018, 1175.33, 1402005, 1170.74, 1178.61, 1162.85
09/12/2018, 1162.82, 1291304, 1172.72, 1178.61, 1158.36
09/11/2018, 1177.36, 1209171, 1161.63, 1178.68, 1156.24
09/10/2018, 1164.64, 1115259, 1172.19, 1174.54, 1160.11
09/07/2018, 1164.83, 1401034, 1158.67, 1175.26, 1157.215
09/06/2018, 1171.44, 1886690, 1186.3, 1186.3, 1152
09/05/2018, 1186.48, 2043732, 1193.8, 1199.0096, 1162
09/04/2018, 1197, 1800509, 1204.27, 1212.99, 1192.5
08/31/2018, 1218.19, 1812366, 1234.98, 1238.66, 1211.2854
08/30/2018, 1239.12, 1320261, 1244.23, 1253.635, 1232.59
08/29/2018, 1249.3, 1295939, 1237.45, 1250.66, 1236.3588
08/28/2018, 1231.15, 1296532, 1241.29, 1242.545, 1228.69
08/27/2018, 1241.82, 1154962, 1227.6, 1243.09, 1225.716
08/24/2018, 1220.65, 946529, 1208.82, 1221.65, 1206.3588
08/23/2018, 1205.38, 988509, 1207.14, 1221.28, 1204.24
08/22/2018, 1207.33, 881463, 1200, 1211.84, 1199
08/21/2018, 1201.62, 1187884, 1208, 1217.26, 1200.3537
08/20/2018, 1207.77, 864462, 1205.02, 1211, 1194.6264
08/17/2018, 1200.96, 1381724, 1202.03, 1209.02, 1188.24
08/16/2018, 1206.49, 1319985, 1224.73, 1225.9999, 1202.55
08/15/2018, 1214.38, 1815642, 1229.26, 1235.24, 1209.51
08/14/2018, 1242.1, 1342534, 1235.19, 1245.8695, 1225.11
08/13/2018, 1235.01, 957153, 1236.98, 1249.2728, 1233.6405
08/10/2018, 1237.61, 1107323, 1243, 1245.695, 1232
08/09/2018, 1249.1, 805227, 1249.9, 1255.542, 1246.01
08/08/2018, 1245.61, 1369650, 1240.47, 1256.5, 1238.0083
08/07/2018, 1242.22, 1493073, 1237, 1251.17, 1236.17
08/06/2018, 1224.77, 1080923, 1225, 1226.0876, 1215.7965
08/03/2018, 1223.71, 1072524, 1229.62, 1230, 1215.06
08/02/2018, 1226.15, 1520488, 1205.9, 1229.88, 1204.79
08/01/2018, 1220.01, 1567142, 1228, 1233.47, 1210.21
07/31/2018, 1217.26, 1632823, 1220.01, 1227.5877, 1205.6
07/30/2018, 1219.74, 1822782, 1228.01, 1234.916, 1211.47
07/27/2018, 1238.5, 2115802, 1271, 1273.89, 1231
07/26/2018, 1268.33, 2334881, 1251, 1269.7707, 1249.02
07/25/2018, 1263.7, 2115890, 1239.13, 1265.86, 1239.13
07/24/2018, 1248.08, 3303268, 1262.59, 1266, 1235.56
07/23/2018, 1205.5, 2584034, 1181.01, 1206.49, 1181
07/20/2018, 1184.91, 1246898, 1186.96, 1196.86, 1184.22
07/19/2018, 1186.96, 1256113, 1191, 1200, 1183.32
07/18/2018, 1195.88, 1391232, 1196.56, 1204.5, 1190.34
07/17/2018, 1198.8, 1585091, 1172.22, 1203.04, 1170.6
07/16/2018, 1183.86, 1049560, 1189.39, 1191, 1179.28
07/13/2018, 1188.82, 1221687, 1185, 1195.4173, 1180
07/12/2018, 1183.48, 1251083, 1159.89, 1184.41, 1155.935
07/11/2018, 1153.9, 1094301, 1144.59, 1164.29, 1141.0003
07/10/2018, 1152.84, 789249, 1156.98, 1159.59, 1149.59
07/09/2018, 1154.05, 906073, 1148.48, 1154.67, 1143.42
07/06/2018, 1140.17, 966155, 1123.58, 1140.93, 1120.7371
07/05/2018, 1124.27, 1060752, 1110.53, 1127.5, 1108.48
07/03/2018, 1102.89, 679034, 1135.82, 1135.82, 1100.02
07/02/2018, 1127.46, 1188616, 1099, 1128, 1093.8
06/29/2018, 1115.65, 1275979, 1120, 1128.2265, 1115
06/28/2018, 1114.22, 1072438, 1102.09, 1122.31, 1096.01
06/27/2018, 1103.98, 1287698, 1121.34, 1131.8362, 1103.62
06/26/2018, 1118.46, 1559791, 1128, 1133.21, 1116.6589
06/25/2018, 1124.81, 2155276, 1143.6, 1143.91, 1112.78
06/22/2018, 1155.48, 1310164, 1159.14, 1162.4965, 1147.26
06/21/2018, 1157.66, 1232352, 1174.85, 1177.295, 1152.232
06/20/2018, 1169.84, 1648248, 1175.31, 1186.2856, 1169.16
06/19/2018, 1168.06, 1616125, 1158.5, 1171.27, 1154.01
06/18/2018, 1173.46, 1400641, 1143.65, 1174.31, 1143.59
06/15/2018, 1152.26, 2119134, 1148.86, 1153.42, 1143.485
06/14/2018, 1152.12, 1350085, 1143.85, 1155.47, 1140.64
06/13/2018, 1134.79, 1490017, 1141.12, 1146.5, 1133.38
06/12/2018, 1139.32, 899231, 1131.07, 1139.79, 1130.735
06/11/2018, 1129.99, 1071114, 1118.6, 1137.26, 1118.6
06/08/2018, 1120.87, 1289859, 1118.18, 1126.67, 1112.15
06/07/2018, 1123.86, 1519860, 1131.32, 1135.82, 1116.52
06/06/2018, 1136.88, 1697489, 1142.17, 1143, 1125.7429
06/05/2018, 1139.66, 1538169, 1140.99, 1145.738, 1133.19
06/04/2018, 1139.29, 1881046, 1122.33, 1141.89, 1122.005
06/01/2018, 1119.5, 2416755, 1099.35, 1120, 1098.5
05/31/2018, 1084.99, 3085325, 1067.56, 1097.19, 1067.56
05/30/2018, 1067.8, 1129958, 1063.03, 1069.21, 1056.83
05/29/2018, 1060.32, 1858676, 1064.89, 1073.37, 1055.22
05/25/2018, 1075.66, 878903, 1079.02, 1082.56, 1073.775
05/24/2018, 1079.24, 757752, 1079, 1080.47, 1066.15
05/23/2018, 1079.69, 1057712, 1065.13, 1080.78, 1061.71
05/22/2018, 1069.73, 1088700, 1083.56, 1086.59, 1066.69
05/21/2018, 1079.58, 1012258, 1074.06, 1088, 1073.65
05/18/2018, 1066.36, 1496448, 1061.86, 1069.94, 1060.68
05/17/2018, 1078.59, 1031190, 1079.89, 1086.87, 1073.5
05/16/2018, 1081.77, 989819, 1077.31, 1089.27, 1076.26
05/15/2018, 1079.23, 1494306, 1090, 1090.05, 1073.47
05/14/2018, 1100.2, 1450140, 1100, 1110.75, 1099.11
05/11/2018, 1098.26, 1253205, 1093.6, 1101.3295, 1090.91
05/10/2018, 1097.57, 1441456, 1086.03, 1100.44, 1085.64
05/09/2018, 1082.76, 2032319, 1058.1, 1085.44, 1056.365
05/08/2018, 1053.91, 1217260, 1058.54, 1060.55, 1047.145
05/07/2018, 1054.79, 1464008, 1049.23, 1061.68, 1047.1
05/04/2018, 1048.21, 1936797, 1016.9, 1048.51, 1016.9
05/03/2018, 1023.72, 1813623, 1019, 1029.675, 1006.29
05/02/2018, 1024.38, 1534094, 1028.1, 1040.389, 1022.87
05/01/2018, 1037.31, 1427171, 1013.66, 1038.47, 1008.21
04/30/2018, 1017.33, 1664084, 1030.01, 1037, 1016.85
04/27/2018, 1030.05, 1617452, 1046, 1049.5, 1025.59
04/26/2018, 1040.04, 1984448, 1029.51, 1047.98, 1018.19
04/25/2018, 1021.18, 2225495, 1025.52, 1032.49, 1015.31
04/24/2018, 1019.98, 4750851, 1052, 1057, 1010.59
04/23/2018, 1067.45, 2278846, 1077.86, 1082.72, 1060.7
04/20/2018, 1072.96, 1887698, 1082, 1092.35, 1069.57
04/19/2018, 1087.7, 1741907, 1069.4, 1094.165, 1068.18
04/18/2018, 1072.08, 1336678, 1077.43, 1077.43, 1066.225
04/17/2018, 1074.16, 2311903, 1051.37, 1077.88, 1048.26
04/16/2018, 1037.98, 1194144, 1037, 1043.24, 1026.74
04/13/2018, 1029.27, 1175754, 1040.88, 1046.42, 1022.98
04/12/2018, 1032.51, 1357599, 1025.04, 1040.69, 1021.4347
04/11/2018, 1019.97, 1476133, 1027.99, 1031.3641, 1015.87
04/10/2018, 1031.64, 1983510, 1026.44, 1036.28, 1011.34
04/09/2018, 1015.45, 1738682, 1016.8, 1039.6, 1014.08
04/06/2018, 1007.04, 1740896, 1020, 1031.42, 1003.03
04/05/2018, 1027.81, 1345681, 1041.33, 1042.79, 1020.1311
04/04/2018, 1025.14, 2464418, 993.41, 1028.7175, 993
04/03/2018, 1013.41, 2271858, 1013.91, 1020.99, 994.07
04/02/2018, 1006.47, 2679214, 1022.82, 1034.8, 990.37
03/29/2018, 1031.79, 2714402, 1011.63, 1043, 1002.9
03/28/2018, 1004.56, 3345046, 998, 1024.23, 980.64
03/27/2018, 1005.1, 3081612, 1063, 1064.8393, 996.92
03/26/2018, 1053.21, 2593808, 1046, 1055.63, 1008.4
03/23/2018, 1021.57, 2147097, 1047.03, 1063.36, 1021.22
03/22/2018, 1049.08, 2584639, 1081.88, 1082.9, 1045.91
03/21/2018, 1090.88, 1878294, 1092.74, 1106.2999, 1085.15
03/20/2018, 1097.71, 1802209, 1099, 1105.2, 1083.46
03/19/2018, 1099.82, 2355186, 1120.01, 1121.99, 1089.01
03/16/2018, 1135.73, 2614871, 1154.14, 1155.88, 1131.96
03/15/2018, 1149.58, 1397767, 1149.96, 1161.08, 1134.54
03/14/2018, 1149.49, 1290638, 1145.21, 1158.59, 1141.44
03/13/2018, 1138.17, 1874176, 1170, 1176.76, 1133.33
03/12/2018, 1164.5, 2106548, 1163.85, 1177.05, 1157.42
03/09/2018, 1160.04, 2121425, 1136, 1160.8, 1132.4606
03/08/2018, 1126, 1393529, 1115.32, 1127.6, 1112.8
03/07/2018, 1109.64, 1277439, 1089.19, 1112.22, 1085.4823
03/06/2018, 1095.06, 1497087, 1099.22, 1101.85, 1089.775
03/05/2018, 1090.93, 1141932, 1075.14, 1097.1, 1069.0001
03/02/2018, 1078.92, 2271394, 1053.08, 1081.9986, 1048.115
03/01/2018, 1069.52, 2511872, 1107.87, 1110.12, 1067.001
02/28/2018, 1104.73, 1873737, 1123.03, 1127.53, 1103.24
02/27/2018, 1118.29, 1772866, 1141.24, 1144.04, 1118
02/26/2018, 1143.75, 1514920, 1127.8, 1143.96, 1126.695
02/23/2018, 1126.79, 1190432, 1112.64, 1127.28, 1104.7135
02/22/2018, 1106.63, 1309536, 1116.19, 1122.82, 1102.59
02/21/2018, 1111.34, 1507152, 1106.47, 1133.97, 1106.33
02/20/2018, 1102.46, 1389491, 1090.57, 1113.95, 1088.52
02/16/2018, 1094.8, 1680283, 1088.41, 1104.67, 1088.3134
02/15/2018, 1089.52, 1785552, 1079.07, 1091.4794, 1064.34
02/14/2018, 1069.7, 1547665, 1048.95, 1071.72, 1046.75
02/13/2018, 1052.1, 1213800, 1045, 1058.37, 1044.0872
02/12/2018, 1051.94, 2054002, 1048, 1061.5, 1040.928
02/09/2018, 1037.78, 3503970, 1017.25, 1043.97, 992.56
02/08/2018, 1001.52, 2809890, 1055.41, 1058.62, 1000.66
02/07/2018, 1048.58, 2353003, 1081.54, 1081.78, 1048.26
02/06/2018, 1080.6, 3432313, 1027.18, 1081.71, 1023.1367
02/05/2018, 1055.8, 3769453, 1090.6, 1110, 1052.03
02/02/2018, 1111.9, 4837979, 1122, 1123.07, 1107.2779
02/01/2018, 1167.7, 2380221, 1162.61, 1174, 1157.52
01/31/2018, 1169.94, 1523820, 1170.57, 1173, 1159.13
01/30/2018, 1163.69, 1541771, 1167.83, 1176.52, 1163.52
01/29/2018, 1175.58, 1337324, 1176.48, 1186.89, 1171.98
01/26/2018, 1175.84, 1981173, 1175.08, 1175.84, 1158.11
01/25/2018, 1170.37, 1461518, 1172.53, 1175.94, 1162.76
01/24/2018, 1164.24, 1382904, 1177.33, 1179.86, 1161.05
01/23/2018, 1169.97, 1309862, 1159.85, 1171.6266, 1158.75
01/22/2018, 1155.81, 1616120, 1137.49, 1159.88, 1135.1101
01/19/2018, 1137.51, 1390118, 1131.83, 1137.86, 1128.3
01/18/2018, 1129.79, 1194943, 1131.41, 1132.51, 1117.5
01/17/2018, 1131.98, 1200476, 1126.22, 1132.6, 1117.01
01/16/2018, 1121.76, 1566662, 1132.51, 1139.91, 1117.8316
01/12/2018, 1122.26, 1718491, 1102.41, 1124.29, 1101.15
01/11/2018, 1105.52, 977727, 1106.3, 1106.525, 1099.59
01/10/2018, 1102.61, 1042273, 1097.1, 1104.6, 1096.11
01/09/2018, 1106.26, 900089, 1109.4, 1110.57, 1101.2307
01/08/2018, 1106.94, 1046767, 1102.23, 1111.27, 1101.62
01/05/2018, 1102.23, 1279990, 1094, 1104.25, 1092
01/04/2018, 1086.4, 1002945, 1088, 1093.5699, 1084.0017
01/03/2018, 1082.48, 1429757, 1064.31, 1086.29, 1063.21
01/02/2018, 1065, 1236401, 1048.34, 1066.94, 1045.23
12/29/2017, 1046.4, 886845, 1046.72, 1049.7, 1044.9
12/28/2017, 1048.14, 833011, 1051.6, 1054.75, 1044.77
12/27/2017, 1049.37, 1271780, 1057.39, 1058.37, 1048.05
12/26/2017, 1056.74, 761097, 1058.07, 1060.12, 1050.2
12/22/2017, 1060.12, 755089, 1061.11, 1064.2, 1059.44
12/21/2017, 1063.63, 986548, 1064.95, 1069.33, 1061.7938
12/20/2017, 1064.95, 1268285, 1071.78, 1073.38, 1061.52
12/19/2017, 1070.68, 1307894, 1075.2, 1076.84, 1063.55
12/18/2017, 1077.14, 1552016, 1066.08, 1078.49, 1062
12/15/2017, 1064.19, 3275091, 1054.61, 1067.62, 1049.5
12/14/2017, 1049.15, 1558684, 1045, 1058.5, 1043.11
12/13/2017, 1040.61, 1220364, 1046.12, 1046.665, 1038.38
12/12/2017, 1040.48, 1279511, 1039.63, 1050.31, 1033.6897
12/11/2017, 1041.1, 1190527, 1035.5, 1043.8, 1032.0504
12/08/2017, 1037.05, 1288419, 1037.49, 1042.05, 1032.5222
12/07/2017, 1030.93, 1458145, 1020.43, 1034.24, 1018.071
12/06/2017, 1018.38, 1258496, 1001.5, 1024.97, 1001.14
12/05/2017, 1005.15, 2066247, 995.94, 1020.61, 988.28
12/04/2017, 998.68, 1906058, 1012.66, 1016.1, 995.57
12/01/2017, 1010.17, 1908962, 1015.8, 1022.4897, 1002.02
11/30/2017, 1021.41, 1723003, 1022.37, 1028.4899, 1015
11/29/2017, 1021.66, 2442974, 1042.68, 1044.08, 1015.65
11/28/2017, 1047.41, 1421027, 1055.09, 1062.375, 1040
11/27/2017, 1054.21, 1307471, 1040, 1055.46, 1038.44
11/24/2017, 1040.61, 536996, 1035.87, 1043.178, 1035
11/22/2017, 1035.96, 746351, 1035, 1039.706, 1031.43
11/21/2017, 1034.49, 1096161, 1023.31, 1035.11, 1022.655
11/20/2017, 1018.38, 898389, 1020.26, 1022.61, 1017.5
11/17/2017, 1019.09, 1366936, 1034.01, 1034.42, 1017.75
11/16/2017, 1032.5, 1129424, 1022.52, 1035.92, 1022.52
11/15/2017, 1020.91, 847932, 1019.21, 1024.09, 1015.42
11/14/2017, 1026, 958708, 1022.59, 1026.81, 1014.15
11/13/2017, 1025.75, 885565, 1023.42, 1031.58, 1022.57
11/10/2017, 1028.07, 720674, 1026.46, 1030.76, 1025.28
11/09/2017, 1031.26, 1244701, 1033.99, 1033.99, 1019.6656
11/08/2017, 1039.85, 1088395, 1030.52, 1043.522, 1028.45
11/07/2017, 1033.33, 1112123, 1027.27, 1033.97, 1025.13
11/06/2017, 1025.9, 1124757, 1028.99, 1034.87, 1025
11/03/2017, 1032.48, 1075134, 1022.11, 1032.65, 1020.31
11/02/2017, 1025.58, 1048584, 1021.76, 1028.09, 1013.01
11/01/2017, 1025.5, 1371619, 1017.21, 1029.67, 1016.95
10/31/2017, 1016.64, 1331265, 1015.22, 1024, 1010.42
10/30/2017, 1017.11, 2083490, 1014, 1024.97, 1007.5
10/27/2017, 1019.27, 5165922, 1009.19, 1048.39, 1008.2
10/26/2017, 972.56, 2027218, 980, 987.6, 972.2
10/25/2017, 973.33, 1210368, 968.37, 976.09, 960.5201
10/24/2017, 970.54, 1206074, 970, 972.23, 961
10/23/2017, 968.45, 1471544, 989.52, 989.52, 966.12
10/20/2017, 988.2, 1176177, 989.44, 991, 984.58
10/19/2017, 984.45, 1312706, 986, 988.88, 978.39
10/18/2017, 992.81, 1057285, 991.77, 996.72, 986.9747
10/17/2017, 992.18, 1290152, 990.29, 996.44, 988.59
10/16/2017, 992, 910246, 992.1, 993.9065, 984
10/13/2017, 989.68, 1169584, 992, 997.21, 989
10/12/2017, 987.83, 1278357, 987.45, 994.12, 985
10/11/2017, 989.25, 1692843, 973.72, 990.71, 972.25
10/10/2017, 972.6, 968113, 980, 981.57, 966.0801
10/09/2017, 977, 890620, 980, 985.425, 976.11
10/06/2017, 978.89, 1146207, 966.7, 979.46, 963.36
10/05/2017, 969.96, 1210427, 955.49, 970.91, 955.18
10/04/2017, 951.68, 951766, 957, 960.39, 950.69
10/03/2017, 957.79, 888303, 954, 958, 949.14
10/02/2017, 953.27, 1282850, 959.98, 962.54, 947.84
09/29/2017, 959.11, 1576365, 952, 959.7864, 951.51
09/28/2017, 949.5, 997036, 941.36, 950.69, 940.55
09/27/2017, 944.49, 2237538, 927.74, 949.9, 927.74
09/26/2017, 924.86, 1666749, 923.72, 930.82, 921.14
09/25/2017, 920.97, 1855742, 925.45, 926.4, 909.7
09/22/2017, 928.53, 1052170, 927.75, 934.73, 926.48
09/21/2017, 932.45, 1227059, 933, 936.53, 923.83
09/20/2017, 931.58, 1535626, 922.98, 933.88, 922
09/19/2017, 921.81, 912967, 917.42, 922.4199, 912.55
09/18/2017, 915, 1300759, 920.01, 922.08, 910.6
09/15/2017, 920.29, 2499466, 924.66, 926.49, 916.36
09/14/2017, 925.11, 1395497, 931.25, 932.77, 924
09/13/2017, 935.09, 1101145, 930.66, 937.25, 929.86
09/12/2017, 932.07, 1133638, 932.59, 933.48, 923.861
09/11/2017, 929.08, 1266020, 934.25, 938.38, 926.92
09/08/2017, 926.5, 997699, 936.49, 936.99, 924.88
09/07/2017, 935.95, 1211472, 931.73, 936.41, 923.62
09/06/2017, 927.81, 1526209, 930.15, 930.915, 919.27
09/05/2017, 928.45, 1346791, 933.08, 937, 921.96
09/01/2017, 937.34, 943657, 941.13, 942.48, 935.15
08/31/2017, 939.33, 1566888, 931.76, 941.98, 931.76
08/30/2017, 929.57, 1300616, 920.05, 930.819, 919.65
08/29/2017, 921.29, 1181391, 905.1, 923.33, 905
08/28/2017, 913.81, 1085014, 916, 919.245, 911.87
08/25/2017, 915.89, 1052764, 923.49, 925.555, 915.5
08/24/2017, 921.28, 1266191, 928.66, 930.84, 915.5
08/23/2017, 927, 1088575, 921.93, 929.93, 919.36
08/22/2017, 924.69, 1166320, 912.72, 925.86, 911.4751
08/21/2017, 906.66, 942328, 910, 913, 903.4
08/18/2017, 910.67, 1341990, 910.31, 915.275, 907.1543
08/17/2017, 910.98, 1241782, 925.78, 926.86, 910.98
08/16/2017, 926.96, 1005261, 925.29, 932.7, 923.445
08/15/2017, 922.22, 882479, 924.23, 926.5499, 919.82
08/14/2017, 922.67, 1063404, 922.53, 924.668, 918.19
08/11/2017, 914.39, 1205652, 907.97, 917.78, 905.58
08/10/2017, 907.24, 1755521, 917.55, 919.26, 906.13
08/09/2017, 922.9, 1191332, 920.61, 925.98, 917.2501
08/08/2017, 926.79, 1057351, 927.09, 935.814, 925.6095
08/07/2017, 929.36, 1031710, 929.06, 931.7, 926.5
08/04/2017, 927.96, 1081814, 926.75, 930.3068, 923.03
08/03/2017, 923.65, 1201519, 930.34, 932.24, 922.24
08/02/2017, 930.39, 1822272, 928.61, 932.6, 916.68
08/01/2017, 930.83, 1234612, 932.38, 937.447, 929.26
07/31/2017, 930.5, 1964748, 941.89, 943.59, 926.04
07/28/2017, 941.53, 1802343, 929.4, 943.83, 927.5
07/27/2017, 934.09, 3128819, 951.78, 951.78, 920
07/26/2017, 947.8, 2069349, 954.68, 955, 942.2788
07/25/2017, 950.7, 4656609, 953.81, 959.7, 945.4
07/24/2017, 980.34, 3205374, 972.22, 986.2, 970.77
07/21/2017, 972.92, 1697190, 962.25, 973.23, 960.15
07/20/2017, 968.15, 1620636, 975, 975.9, 961.51
07/19/2017, 970.89, 1221155, 967.84, 973.04, 964.03
07/18/2017, 965.4, 1152741, 953, 968.04, 950.6
07/17/2017, 953.42, 1164141, 957, 960.74, 949.2407
07/14/2017, 955.99, 1052855, 952, 956.91, 948.005
07/13/2017, 947.16, 1294674, 946.29, 954.45, 943.01
07/12/2017, 943.83, 1517168, 938.68, 946.3, 934.47
07/11/2017, 930.09, 1112417, 929.54, 931.43, 922
07/10/2017, 928.8, 1190237, 921.77, 930.38, 919.59
07/07/2017, 918.59, 1590456, 908.85, 921.54, 908.85
07/06/2017, 906.69, 1424290, 904.12, 914.9444, 899.7
07/05/2017, 911.71, 1813309, 901.76, 914.51, 898.5
07/03/2017, 898.7, 1710373, 912.18, 913.94, 894.79
06/30/2017, 908.73, 2086340, 926.05, 926.05, 908.31
06/29/2017, 917.79, 3287991, 929.92, 931.26, 910.62
06/28/2017, 940.49, 2719213, 929, 942.75, 916
06/27/2017, 927.33, 2566047, 942.46, 948.29, 926.85
06/26/2017, 952.27, 1596664, 969.9, 973.31, 950.79
06/23/2017, 965.59, 1527513, 956.83, 966, 954.2
06/22/2017, 957.09, 941639, 958.7, 960.72, 954.55
06/21/2017, 959.45, 1201971, 953.64, 960.1, 950.76
06/20/2017, 950.63, 1125520, 957.52, 961.62, 950.01
06/19/2017, 957.37, 1520715, 949.96, 959.99, 949.05
06/16/2017, 939.78, 3061794, 940, 942.04, 931.595
06/15/2017, 942.31, 2065271, 933.97, 943.339, 924.44
06/14/2017, 950.76, 1487378, 959.92, 961.15, 942.25
06/13/2017, 953.4, 2012980, 951.91, 959.98, 944.09
06/12/2017, 942.9, 3762434, 939.56, 949.355, 915.2328
06/09/2017, 949.83, 3305545, 984.5, 984.5, 935.63
06/08/2017, 983.41, 1477151, 982.35, 984.57, 977.2
06/07/2017, 981.08, 1447172, 979.65, 984.15, 975.77
06/06/2017, 976.57, 1814323, 983.16, 988.25, 975.14
06/05/2017, 983.68, 1251903, 976.55, 986.91, 975.1
06/02/2017, 975.6, 1750723, 969.46, 975.88, 966
06/01/2017, 966.95, 1408958, 968.95, 971.5, 960.01
05/31/2017, 964.86, 2447176, 975.02, 979.27, 960.18
05/30/2017, 975.88, 1466288, 970.31, 976.2, 969.49
05/26/2017, 971.47, 1251425, 969.7, 974.98, 965.03
05/25/2017, 969.54, 1659422, 957.33, 972.629, 955.47
05/24/2017, 954.96, 1031408, 952.98, 955.09, 949.5
05/23/2017, 948.82, 1269438, 947.92, 951.4666, 942.575
05/22/2017, 941.86, 1118456, 935, 941.8828, 935
05/19/2017, 934.01, 1389848, 931.47, 937.755, 931
05/18/2017, 930.24, 1596058, 921, 933.17, 918.75
05/17/2017, 919.62, 2357922, 935.67, 939.3325, 918.14
05/16/2017, 943, 968288, 940, 943.11, 937.58
05/15/2017, 937.08, 1104595, 932.95, 938.25, 929.34
05/12/2017, 932.22, 1050377, 931.53, 933.44, 927.85
05/11/2017, 930.6, 834997, 925.32, 932.53, 923.0301
05/10/2017, 928.78, 1173887, 931.98, 932, 925.16
05/09/2017, 932.17, 1581236, 936.95, 937.5, 929.53
05/08/2017, 934.3, 1328885, 926.12, 936.925, 925.26
05/05/2017, 927.13, 1910317, 933.54, 934.9, 925.2
05/04/2017, 931.66, 1421938, 926.07, 935.93, 924.59
05/03/2017, 927.04, 1497565, 914.86, 928.1, 912.5426
05/02/2017, 916.44, 1543696, 909.62, 920.77, 909.4526
05/01/2017, 912.57, 2114629, 901.94, 915.68, 901.45
04/28/2017, 905.96, 3223850, 910.66, 916.85, 905.77
04/27/2017, 874.25, 2009509, 873.6, 875.4, 870.38
04/26/2017, 871.73, 1233724, 874.23, 876.05, 867.7481
04/25/2017, 872.3, 1670095, 865, 875, 862.81
04/24/2017, 862.76, 1371722, 851.2, 863.45, 849.86
04/21/2017, 843.19, 1323364, 842.88, 843.88, 840.6
04/20/2017, 841.65, 957994, 841.44, 845.2, 839.32
04/19/2017, 838.21, 954324, 839.79, 842.22, 836.29
04/18/2017, 836.82, 835433, 834.22, 838.93, 832.71
04/17/2017, 837.17, 894540, 825.01, 837.75, 824.47
04/13/2017, 823.56, 1118221, 822.14, 826.38, 821.44
04/12/2017, 824.32, 900059, 821.93, 826.66, 821.02
04/11/2017, 823.35, 1078951, 824.71, 827.4267, 817.0201
04/10/2017, 824.73, 978825, 825.39, 829.35, 823.77
04/07/2017, 824.67, 1056692, 827.96, 828.485, 820.5127
04/06/2017, 827.88, 1254235, 832.4, 836.39, 826.46
04/05/2017, 831.41, 1553163, 835.51, 842.45, 830.72
04/04/2017, 834.57, 1044455, 831.36, 835.18, 829.0363
04/03/2017, 838.55, 1670349, 829.22, 840.85, 829.22
03/31/2017, 829.56, 1401756, 828.97, 831.64, 827.39
03/30/2017, 831.5, 1055263, 833.5, 833.68, 829
03/29/2017, 831.41, 1785006, 825, 832.765, 822.3801
03/28/2017, 820.92, 1620532, 820.41, 825.99, 814.027
03/27/2017, 819.51, 1894735, 806.95, 821.63, 803.37
03/24/2017, 814.43, 1980415, 820.08, 821.93, 808.89
03/23/2017, 817.58, 3485390, 821, 822.57, 812.257
03/22/2017, 829.59, 1399409, 831.91, 835.55, 827.1801
03/21/2017, 830.46, 2461375, 851.4, 853.5, 829.02
03/20/2017, 848.4, 1217560, 850.01, 850.22, 845.15
03/17/2017, 852.12, 1712397, 851.61, 853.4, 847.11
03/16/2017, 848.78, 977384, 849.03, 850.85, 846.13
03/15/2017, 847.2, 1381328, 847.59, 848.63, 840.77
03/14/2017, 845.62, 779920, 843.64, 847.24, 840.8
03/13/2017, 845.54, 1149928, 844, 848.685, 843.25
03/10/2017, 843.25, 1702731, 843.28, 844.91, 839.5
03/09/2017, 838.68, 1261393, 836, 842, 834.21
03/08/2017, 835.37, 988900, 833.51, 838.15, 831.79
03/07/2017, 831.91, 1037573, 827.4, 833.41, 826.52
03/06/2017, 827.78, 1108799, 826.95, 828.88, 822.4
03/03/2017, 829.08, 890640, 830.56, 831.36, 825.751
03/02/2017, 830.63, 937824, 833.85, 834.51, 829.64
03/01/2017, 835.24, 1495934, 828.85, 836.255, 827.26
02/28/2017, 823.21, 2258695, 825.61, 828.54, 820.2
02/27/2017, 829.28, 1101120, 824.55, 830.5, 824
02/24/2017, 828.64, 1392039, 827.73, 829, 824.2
02/23/2017, 831.33, 1471342, 830.12, 832.46, 822.88
02/22/2017, 830.76, 983058, 828.66, 833.25, 828.64
02/21/2017, 831.66, 1259841, 828.66, 833.45, 828.35
02/17/2017, 828.07, 1602549, 823.02, 828.07, 821.655
02/16/2017, 824.16, 1285919, 819.93, 824.4, 818.98
02/15/2017, 818.98, 1311316, 819.36, 823, 818.47
02/14/2017, 820.45, 1054472, 819, 823, 816
02/13/2017, 819.24, 1205835, 816, 820.959, 815.49
02/10/2017, 813.67, 1134701, 811.7, 815.25, 809.78
02/09/2017, 809.56, 990260, 809.51, 810.66, 804.54
02/08/2017, 808.38, 1155892, 807, 811.84, 803.1903
02/07/2017, 806.97, 1240257, 803.99, 810.5, 801.78
02/06/2017, 801.34, 1182882, 799.7, 801.67, 795.2501
02/03/2017, 801.49, 1461217, 802.99, 806, 800.37
02/02/2017, 798.53, 1530827, 793.8, 802.7, 792
02/01/2017, 795.695, 2027708, 799.68, 801.19, 791.19
01/31/2017, 796.79, 2153957, 796.86, 801.25, 790.52
01/30/2017, 802.32, 3243568, 814.66, 815.84, 799.8
01/27/2017, 823.31, 2964989, 834.71, 841.95, 820.44
01/26/2017, 832.15, 2944642, 837.81, 838, 827.01
01/25/2017, 835.67, 1612854, 829.62, 835.77, 825.06
01/24/2017, 823.87, 1472228, 822.3, 825.9, 817.821
01/23/2017, 819.31, 1962506, 807.25, 820.87, 803.74
01/20/2017, 805.02, 1668638, 806.91, 806.91, 801.69
01/19/2017, 802.175, 917085, 805.12, 809.48, 801.8
01/18/2017, 806.07, 1293893, 805.81, 806.205, 800.99
01/17/2017, 804.61, 1361935, 807.08, 807.14, 800.37
01/13/2017, 807.88, 1098154, 807.48, 811.2244, 806.69
01/12/2017, 806.36, 1352872, 807.14, 807.39, 799.17
01/11/2017, 807.91, 1065360, 805, 808.15, 801.37
01/10/2017, 804.79, 1176637, 807.86, 809.1299, 803.51
01/09/2017, 806.65, 1274318, 806.4, 809.9664, 802.83
01/06/2017, 806.15, 1639246, 795.26, 807.9, 792.2041
01/05/2017, 794.02, 1334028, 786.08, 794.48, 785.02
01/04/2017, 786.9, 1071198, 788.36, 791.34, 783.16
01/03/2017, 786.14, 1657291, 778.81, 789.63, 775.8
12/30/2016, 771.82, 1769809, 782.75, 782.78, 770.41
12/29/2016, 782.79, 743808, 783.33, 785.93, 778.92
12/28/2016, 785.05, 1142148, 793.7, 794.23, 783.2
12/27/2016, 791.55, 789151, 790.68, 797.86, 787.657
12/23/2016, 789.91, 623682, 790.9, 792.74, 787.28
12/22/2016, 791.26, 972147, 792.36, 793.32, 788.58
12/21/2016, 794.56, 1208770, 795.84, 796.6757, 787.1
12/20/2016, 796.42, 950345, 796.76, 798.65, 793.27
12/19/2016, 794.2, 1231966, 790.22, 797.66, 786.27
12/16/2016, 790.8, 2435100, 800.4, 800.8558, 790.29
12/15/2016, 797.85, 1623709, 797.34, 803, 792.92
12/14/2016, 797.07, 1700875, 797.4, 804, 794.01
12/13/2016, 796.1, 2122735, 793.9, 804.3799, 793.34
12/12/2016, 789.27, 2102288, 785.04, 791.25, 784.3554
12/09/2016, 789.29, 1821146, 780, 789.43, 779.021
12/08/2016, 776.42, 1487517, 772.48, 778.18, 767.23
12/07/2016, 771.19, 1757710, 761, 771.36, 755.8
12/06/2016, 759.11, 1690365, 764.73, 768.83, 757.34
12/05/2016, 762.52, 1393566, 757.71, 763.9, 752.9
12/02/2016, 750.5, 1452181, 744.59, 754, 743.1
12/01/2016, 747.92, 3017001, 757.44, 759.85, 737.0245
11/30/2016, 758.04, 2386628, 770.07, 772.99, 754.83
11/29/2016, 770.84, 1616427, 771.53, 778.5, 768.24
11/28/2016, 768.24, 2177039, 760, 779.53, 759.8
11/25/2016, 761.68, 587421, 764.26, 765, 760.52
11/23/2016, 760.99, 1477501, 767.73, 768.2825, 755.25
11/22/2016, 768.27, 1592372, 772.63, 776.96, 767
11/21/2016, 769.2, 1324431, 762.61, 769.7, 760.6
11/18/2016, 760.54, 1528555, 771.37, 775, 760
11/17/2016, 771.23, 1298484, 766.92, 772.7, 764.23
11/16/2016, 764.48, 1468196, 755.2, 766.36, 750.51
11/15/2016, 758.49, 2375056, 746.97, 764.4162, 746.97
11/14/2016, 736.08, 3644965, 755.6, 757.85, 727.54
11/11/2016, 754.02, 2421889, 756.54, 760.78, 750.38
11/10/2016, 762.56, 4733916, 791.17, 791.17, 752.18
11/09/2016, 785.31, 2603860, 779.94, 791.2265, 771.67
11/08/2016, 790.51, 1361472, 783.4, 795.633, 780.19
11/07/2016, 782.52, 1574426, 774.5, 785.19, 772.55
11/04/2016, 762.02, 2131948, 750.66, 770.36, 750.5611
11/03/2016, 762.13, 1933937, 767.25, 769.95, 759.03
11/02/2016, 768.7, 1905814, 778.2, 781.65, 763.4496
11/01/2016, 783.61, 2404898, 782.89, 789.49, 775.54
10/31/2016, 784.54, 2420892, 795.47, 796.86, 784
10/28/2016, 795.37, 4261912, 808.35, 815.49, 793.59
10/27/2016, 795.35, 2723097, 801, 803.49, 791.5
10/26/2016, 799.07, 1645403, 806.34, 806.98, 796.32
10/25/2016, 807.67, 1575020, 816.68, 816.68, 805.14
10/24/2016, 813.11, 1693162, 804.9, 815.18, 804.82
10/21/2016, 799.37, 1262042, 795, 799.5, 794
10/20/2016, 796.97, 1755546, 803.3, 803.97, 796.03
10/19/2016, 801.56, 1762990, 798.86, 804.63, 797.635
10/18/2016, 795.26, 2046338, 787.85, 801.61, 785.565
10/17/2016, 779.96, 1091524, 779.8, 785.85, 777.5
10/14/2016, 778.53, 851512, 781.65, 783.95, 776
10/13/2016, 778.19, 1360619, 781.22, 781.22, 773
10/12/2016, 786.14, 935138, 783.76, 788.13, 782.06
10/11/2016, 783.07, 1371461, 786.66, 792.28, 780.58
10/10/2016, 785.94, 1161410, 777.71, 789.38, 775.87
10/07/2016, 775.08, 932444, 779.66, 779.66, 770.75
10/06/2016, 776.86, 1066910, 779, 780.48, 775.54
10/05/2016, 776.47, 1457661, 779.31, 782.07, 775.65
10/04/2016, 776.43, 1198361, 776.03, 778.71, 772.89
10/03/2016, 772.56, 1276614, 774.25, 776.065, 769.5
09/30/2016, 777.29, 1583293, 776.33, 780.94, 774.09
09/29/2016, 775.01, 1310252, 781.44, 785.8, 774.232
09/28/2016, 781.56, 1108249, 777.85, 781.81, 774.97
09/27/2016, 783.01, 1152760, 775.5, 785.9899, 774.308
09/26/2016, 774.21, 1531788, 782.74, 782.74, 773.07
09/23/2016, 786.9, 1411439, 786.59, 788.93, 784.15
09/22/2016, 787.21, 1483899, 780, 789.85, 778.44
09/21/2016, 776.22, 1166290, 772.66, 777.16, 768.301
09/20/2016, 771.41, 975434, 769, 773.33, 768.53
09/19/2016, 765.7, 1171969, 772.42, 774, 764.4406
09/16/2016, 768.88, 2047036, 769.75, 769.75, 764.66
09/15/2016, 771.76, 1344945, 762.89, 773.8, 759.96
09/14/2016, 762.49, 1093723, 759.61, 767.68, 759.11
09/13/2016, 759.69, 1394158, 764.48, 766.2195, 755.8
09/12/2016, 769.02, 1310493, 755.13, 770.29, 754.0001
09/09/2016, 759.66, 1879903, 770.1, 773.245, 759.66
09/08/2016, 775.32, 1268663, 778.59, 780.35, 773.58
09/07/2016, 780.35, 893874, 780, 782.73, 776.2
09/06/2016, 780.08, 1441864, 773.45, 782, 771
09/02/2016, 771.46, 1070725, 773.01, 773.9199, 768.41
09/01/2016, 768.78, 925019, 769.25, 771.02, 764.3
08/31/2016, 767.05, 1247937, 767.01, 769.09, 765.38
08/30/2016, 769.09, 1129932, 769.33, 774.466, 766.84
08/29/2016, 772.15, 847537, 768.74, 774.99, 766.615
08/26/2016, 769.54, 1164713, 769, 776.0799, 765.85
08/25/2016, 769.41, 926856, 767, 771.89, 763.1846
08/24/2016, 769.64, 1071569, 770.58, 774.5, 767.07
08/23/2016, 772.08, 925356, 775.48, 776.44, 771.785
08/22/2016, 772.15, 950417, 773.27, 774.54, 770.0502
08/19/2016, 775.42, 860899, 775, 777.1, 773.13
08/18/2016, 777.5, 718882, 780.01, 782.86, 777
08/17/2016, 779.91, 921666, 777.32, 780.81, 773.53
08/16/2016, 777.14, 1027836, 780.3, 780.98, 773.444
08/15/2016, 782.44, 938183, 783.75, 787.49, 780.11
08/12/2016, 783.22, 739761, 781.5, 783.395, 780.4
08/11/2016, 784.85, 971742, 785, 789.75, 782.97
08/10/2016, 784.68, 784559, 783.75, 786.8123, 782.778
08/09/2016, 784.26, 1318457, 781.1, 788.94, 780.57
08/08/2016, 781.76, 1106693, 782, 782.63, 778.091
08/05/2016, 782.22, 1799478, 773.78, 783.04, 772.34
08/04/2016, 771.61, 1139972, 772.22, 774.07, 768.795
08/03/2016, 773.18, 1283186, 767.18, 773.21, 766.82
08/02/2016, 771.07, 1782822, 768.69, 775.84, 767.85
08/01/2016, 772.88, 2697699, 761.09, 780.43, 761.09
07/29/2016, 768.79, 3830103, 772.71, 778.55, 766.77
07/28/2016, 745.91, 3473040, 747.04, 748.65, 739.3
07/27/2016, 741.77, 1509133, 738.28, 744.46, 737
07/26/2016, 738.42, 1182993, 739.04, 741.69, 734.27
07/25/2016, 739.77, 1031643, 740.67, 742.61, 737.5
07/22/2016, 742.74, 1256741, 741.86, 743.24, 736.56
07/21/2016, 738.63, 1022229, 740.36, 741.69, 735.831
07/20/2016, 741.19, 1283931, 737.33, 742.13, 737.1
07/19/2016, 736.96, 1225467, 729.89, 736.99, 729
07/18/2016, 733.78, 1284740, 722.71, 736.13, 721.19
07/15/2016, 719.85, 1277514, 725.73, 725.74, 719.055
07/14/2016, 720.95, 949456, 721.58, 722.21, 718.03
07/13/2016, 716.98, 933352, 723.62, 724, 716.85
07/12/2016, 720.64, 1336112, 719.12, 722.94, 715.91
07/11/2016, 715.09, 1107039, 708.05, 716.51, 707.24
07/08/2016, 705.63, 1573909, 699.5, 705.71, 696.435
07/07/2016, 695.36, 1303661, 698.08, 698.2, 688.215
07/06/2016, 697.77, 1411080, 689.98, 701.68, 689.09
07/05/2016, 694.49, 1462879, 696.06, 696.94, 688.88
07/01/2016, 699.21, 1344387, 692.2, 700.65, 692.1301
06/30/2016, 692.1, 1597298, 685.47, 692.32, 683.65
06/29/2016, 684.11, 1931436, 683, 687.4292, 681.41
06/28/2016, 680.04, 2169704, 678.97, 680.33, 673
06/27/2016, 668.26, 2632011, 671, 672.3, 663.284
06/24/2016, 675.22, 4442943, 675.17, 689.4, 673.45
06/23/2016, 701.87, 2166183, 697.45, 701.95, 687
06/22/2016, 697.46, 1182161, 699.06, 700.86, 693.0819
06/21/2016, 695.94, 1464836, 698.4, 702.77, 692.01
06/20/2016, 693.71, 2080645, 698.77, 702.48, 693.41
06/17/2016, 691.72, 3397720, 708.65, 708.82, 688.4515
06/16/2016, 710.36, 1981657, 714.91, 716.65, 703.26
06/15/2016, 718.92, 1213386, 719, 722.98, 717.31
06/14/2016, 718.27, 1303808, 716.48, 722.47, 713.12
06/13/2016, 718.36, 1255199, 716.51, 725.44, 716.51
06/10/2016, 719.41, 1213989, 719.47, 725.89, 716.43
06/09/2016, 728.58, 987635, 722.87, 729.54, 722.3361
06/08/2016, 728.28, 1583325, 723.96, 728.57, 720.58
06/07/2016, 716.65, 1336348, 719.84, 721.98, 716.55
06/06/2016, 716.55, 1565955, 724.91, 724.91, 714.61
06/03/2016, 722.34, 1225924, 729.27, 729.49, 720.56
06/02/2016, 730.4, 1340664, 732.5, 733.02, 724.17
06/01/2016, 734.15, 1251468, 734.53, 737.21, 730.66
05/31/2016, 735.72, 2128358, 731.74, 739.73, 731.26
05/27/2016, 732.66, 1974425, 724.01, 733.936, 724
05/26/2016, 724.12, 1573635, 722.87, 728.33, 720.28
05/25/2016, 725.27, 1629790, 720.76, 727.51, 719.7047
05/24/2016, 720.09, 1926828, 706.86, 720.97, 706.86
05/23/2016, 704.24, 1326386, 706.53, 711.4781, 704.18
05/20/2016, 709.74, 1825830, 701.62, 714.58, 700.52
05/19/2016, 700.32, 1668887, 702.36, 706, 696.8
05/18/2016, 706.63, 1765632, 703.67, 711.6, 700.63
05/17/2016, 706.23, 1999883, 715.99, 721.52, 704.11
05/16/2016, 716.49, 1316719, 709.13, 718.48, 705.65
05/13/2016, 710.83, 1307559, 711.93, 716.6619, 709.26
05/12/2016, 713.31, 1361170, 717.06, 719.25, 709
05/11/2016, 715.29, 1690862, 723.41, 724.48, 712.8
05/10/2016, 723.18, 1568621, 716.75, 723.5, 715.72
05/09/2016, 712.9, 1509892, 712, 718.71, 710
05/06/2016, 711.12, 1828508, 698.38, 711.86, 698.1067
05/05/2016, 701.43, 1680220, 697.7, 702.3199, 695.72
05/04/2016, 695.7, 1692757, 690.49, 699.75, 689.01
05/03/2016, 692.36, 1541297, 696.87, 697.84, 692
05/02/2016, 698.21, 1645013, 697.63, 700.64, 691
04/29/2016, 693.01, 2486584, 690.7, 697.62, 689
04/28/2016, 691.02, 2859790, 708.26, 714.17, 689.55
04/27/2016, 705.84, 3094905, 707.29, 708.98, 692.3651
04/26/2016, 708.14, 2739133, 725.42, 725.766, 703.0264
04/25/2016, 723.15, 1956956, 716.1, 723.93, 715.59
04/22/2016, 718.77, 5949699, 726.3, 736.12, 713.61
04/21/2016, 759.14, 2995094, 755.38, 760.45, 749.55
04/20/2016, 752.67, 1526776, 758, 758.1315, 750.01
04/19/2016, 753.93, 2027962, 769.51, 769.9, 749.33
04/18/2016, 766.61, 1557199, 760.46, 768.05, 757.3
04/15/2016, 759, 1807062, 753.98, 761, 752.6938
04/14/2016, 753.2, 1134056, 754.01, 757.31, 752.705
04/13/2016, 751.72, 1707397, 749.16, 754.38, 744.261
04/12/2016, 743.09, 1349780, 738, 743.83, 731.01
04/11/2016, 736.1, 1218789, 743.02, 745, 736.05
04/08/2016, 739.15, 1289869, 743.97, 745.45, 735.55
04/07/2016, 740.28, 1452369, 745.37, 746.9999, 736.28
04/06/2016, 745.69, 1052171, 735.77, 746.24, 735.56
04/05/2016, 737.8, 1130817, 738, 742.8, 735.37
04/04/2016, 745.29, 1134214, 750.06, 752.8, 742.43
04/01/2016, 749.91, 1576240, 738.6, 750.34, 737
03/31/2016, 744.95, 1718638, 749.25, 750.85, 740.94
03/30/2016, 750.53, 1782278, 750.1, 757.88, 748.74
03/29/2016, 744.77, 1902254, 734.59, 747.25, 728.76
03/28/2016, 733.53, 1300817, 736.79, 738.99, 732.5
03/24/2016, 735.3, 1570474, 732.01, 737.747, 731
03/23/2016, 738.06, 1431130, 742.36, 745.7199, 736.15
03/22/2016, 740.75, 1269263, 737.46, 745, 737.46
03/21/2016, 742.09, 1835963, 736.5, 742.5, 733.5157
03/18/2016, 737.6, 2982194, 741.86, 742, 731.83
03/17/2016, 737.78, 1859562, 736.45, 743.07, 736
03/16/2016, 736.09, 1621412, 726.37, 737.47, 724.51
03/15/2016, 728.33, 1720790, 726.92, 732.29, 724.77
03/14/2016, 730.49, 1717002, 726.81, 735.5, 725.15
03/11/2016, 726.82, 1968164, 720, 726.92, 717.125
03/10/2016, 712.82, 2830630, 708.12, 716.44, 703.36
03/09/2016, 705.24, 1419661, 698.47, 705.68, 694
03/08/2016, 693.97, 2075305, 688.59, 703.79, 685.34
03/07/2016, 695.16, 2986064, 706.9, 708.0912, 686.9
03/04/2016, 710.89, 1971379, 714.99, 716.49, 706.02
03/03/2016, 712.42, 1956958, 718.68, 719.45, 706.02
03/02/2016, 718.85, 1629501, 719, 720, 712
03/01/2016, 718.81, 2148608, 703.62, 718.81, 699.77
02/29/2016, 697.77, 2478214, 700.32, 710.89, 697.68
02/26/2016, 705.07, 2241785, 708.58, 713.43, 700.86
02/25/2016, 705.75, 1640430, 700.01, 705.98, 690.585
02/24/2016, 699.56, 1961258, 688.92, 700, 680.78
02/23/2016, 695.85, 2006572, 701.45, 708.4, 693.58
02/22/2016, 706.46, 1949046, 707.45, 713.24, 702.51
02/19/2016, 700.91, 1585152, 695.03, 703.0805, 694.05
02/18/2016, 697.35, 1880306, 710, 712.35, 696.03
02/17/2016, 708.4, 2490021, 699, 709.75, 691.38
02/16/2016, 691, 2517324, 692.98, 698, 685.05
02/12/2016, 682.4, 2138937, 690.26, 693.75, 678.6
02/11/2016, 683.11, 3021587, 675, 689.35, 668.8675
02/10/2016, 684.12, 2629130, 686.86, 701.31, 682.13
02/09/2016, 678.11, 3605792, 672.32, 699.9, 668.77
02/08/2016, 682.74, 4241416, 667.85, 684.03, 663.06
02/05/2016, 683.57, 5098357, 703.87, 703.99, 680.15
02/04/2016, 708.01, 5157988, 722.81, 727, 701.86
02/03/2016, 726.95, 6166731, 770.22, 774.5, 720.5
02/02/2016, 764.65, 6340548, 784.5, 789.8699, 764.65
02/01/2016, 752, 5065235, 750.46, 757.86, 743.27
01/29/2016, 742.95, 3464432, 731.53, 744.9899, 726.8
01/28/2016, 730.96, 2664956, 722.22, 733.69, 712.35
01/27/2016, 699.99, 2175913, 713.67, 718.235, 694.39
01/26/2016, 713.04, 1329141, 713.85, 718.28, 706.48
01/25/2016, 711.67, 1709777, 723.58, 729.68, 710.01
01/22/2016, 725.25, 2009951, 723.6, 728.13, 720.121
01/21/2016, 706.59, 2411079, 702.18, 719.19, 694.46
01/20/2016, 698.45, 3441642, 688.61, 706.85, 673.26
01/19/2016, 701.79, 2264747, 703.3, 709.98, 693.4101
01/15/2016, 694.45, 3604137, 692.29, 706.74, 685.37
01/14/2016, 714.72, 2225495, 705.38, 721.925, 689.1
01/13/2016, 700.56, 2497086, 730.85, 734.74, 698.61
01/12/2016, 726.07, 2010026, 721.68, 728.75, 717.3165
01/11/2016, 716.03, 2089495, 716.61, 718.855, 703.54
01/08/2016, 714.47, 2449420, 731.45, 733.23, 713
01/07/2016, 726.39, 2960578, 730.31, 738.5, 719.06
01/06/2016, 743.62, 1943685, 730, 747.18, 728.92
01/05/2016, 742.58, 1949386, 746.45, 752, 738.64
01/04/2016, 741.84, 3271348, 743, 744.06, 731.2577
12/31/2015, 758.88, 1500129, 769.5, 769.5, 758.34
12/30/2015, 771, 1293514, 776.6, 777.6, 766.9
12/29/2015, 776.6, 1764044, 766.69, 779.98, 766.43
12/28/2015, 762.51, 1515574, 752.92, 762.99, 749.52
12/24/2015, 748.4, 527223, 749.55, 751.35, 746.62
12/23/2015, 750.31, 1566723, 753.47, 754.21, 744
12/22/2015, 750, 1365420, 751.65, 754.85, 745.53
12/21/2015, 747.77, 1524535, 746.13, 750, 740
12/18/2015, 739.31, 3140906, 746.51, 754.13, 738.15
12/17/2015, 749.43, 1551087, 762.42, 762.68, 749
12/16/2015, 758.09, 1986319, 750, 760.59, 739.435
12/15/2015, 743.4, 2661199, 753, 758.08, 743.01
12/14/2015, 747.77, 2417778, 741.79, 748.73, 724.17
12/11/2015, 738.87, 2223284, 741.16, 745.71, 736.75
12/10/2015, 749.46, 1988035, 752.85, 755.85, 743.83
12/09/2015, 751.61, 2697978, 759.17, 764.23, 737.001
12/08/2015, 762.37, 1829004, 757.89, 764.8, 754.2
12/07/2015, 763.25, 1811336, 767.77, 768.73, 755.09
12/04/2015, 766.81, 2756194, 753.1, 768.49, 750
12/03/2015, 752.54, 2589641, 766.01, 768.995, 745.63
12/02/2015, 762.38, 2196721, 768.9, 775.955, 758.96
12/01/2015, 767.04, 2131827, 747.11, 768.95, 746.7
11/30/2015, 742.6, 2045584, 748.81, 754.93, 741.27
11/27/2015, 750.26, 838528, 748.46, 753.41, 747.49
11/25/2015, 748.15, 1122224, 748.14, 752, 746.06
11/24/2015, 748.28, 2333700, 752, 755.279, 737.63
11/23/2015, 755.98, 1414640, 757.45, 762.7075, 751.82
11/20/2015, 756.6, 2212934, 746.53, 757.92, 743
11/19/2015, 738.41, 1327265, 738.74, 742, 737.43
11/18/2015, 740, 1683978, 727.58, 741.41, 727
11/17/2015, 725.3, 1507449, 729.29, 731.845, 723.027
11/16/2015, 728.96, 1904395, 715.6, 729.49, 711.33
11/13/2015, 717, 2072392, 729.17, 731.15, 716.73
11/12/2015, 731.23, 1836567, 731, 737.8, 728.645
11/11/2015, 735.4, 1366611, 732.46, 741, 730.23
11/10/2015, 728.32, 1606499, 724.4, 730.59, 718.5001
11/09/2015, 724.89, 2068920, 730.2, 734.71, 719.43
11/06/2015, 733.76, 1510586, 731.5, 735.41, 727.01
11/05/2015, 731.25, 1861100, 729.47, 739.48, 729.47
11/04/2015, 728.11, 1705745, 722, 733.1, 721.9
11/03/2015, 722.16, 1565355, 718.86, 724.65, 714.72
11/02/2015, 721.11, 1885155, 711.06, 721.62, 705.85
10/30/2015, 710.81, 1907732, 715.73, 718, 710.05
10/29/2015, 716.92, 1455508, 710.5, 718.26, 710.01
10/28/2015, 712.95, 2178841, 707.33, 712.98, 703.08
10/27/2015, 708.49, 2232183, 707.38, 713.62, 704.55
10/26/2015, 712.78, 2709292, 701.55, 719.15, 701.26
10/23/2015, 702, 6651909, 727.5, 730, 701.5
10/22/2015, 651.79, 3994360, 646.7, 657.8, 644.01
10/21/2015, 642.61, 1792869, 654.15, 655.87, 641.73
10/20/2015, 650.28, 2498077, 664.04, 664.7197, 644.195
10/19/2015, 666.1, 1465691, 661.18, 666.82, 659.58
10/16/2015, 662.2, 1610712, 664.11, 664.97, 657.2
10/15/2015, 661.74, 1832832, 654.66, 663.13, 654.46
10/14/2015, 651.16, 1413798, 653.21, 659.39, 648.85
10/13/2015, 652.3, 1806003, 643.15, 657.8125, 643.15
10/12/2015, 646.67, 1275565, 642.09, 648.5, 639.01
10/09/2015, 643.61, 1648656, 640, 645.99, 635.318
10/08/2015, 639.16, 2181990, 641.36, 644.45, 625.56
10/07/2015, 642.36, 2092536, 649.24, 650.609, 632.15
10/06/2015, 645.44, 2235078, 638.84, 649.25, 636.5295
10/05/2015, 641.47, 1802263, 632, 643.01, 627
10/02/2015, 626.91, 2681241, 607.2, 627.34, 603.13
10/01/2015, 611.29, 1866223, 608.37, 612.09, 599.85
09/30/2015, 608.42, 2412754, 603.28, 608.76, 600.73
09/29/2015, 594.97, 2310065, 597.28, 605, 590.22
09/28/2015, 594.89, 3118693, 610.34, 614.605, 589.38
09/25/2015, 611.97, 2173134, 629.77, 629.77, 611
09/24/2015, 625.8, 2238097, 616.64, 627.32, 612.4
09/23/2015, 622.36, 1470633, 622.05, 628.93, 620
09/22/2015, 622.69, 2561551, 627, 627.55, 615.43
09/21/2015, 635.44, 1786543, 634.4, 636.49, 625.94
09/18/2015, 629.25, 5123314, 636.79, 640, 627.02
09/17/2015, 642.9, 2259404, 637.79, 650.9, 635.02
09/16/2015, 635.98, 1276250, 635.47, 637.95, 632.32
09/15/2015, 635.14, 2082426, 626.7, 638.7, 623.78
09/14/2015, 623.24, 1701618, 625.7, 625.86, 619.43
09/11/2015, 625.77, 1372803, 619.75, 625.78, 617.42
09/10/2015, 621.35, 1903334, 613.1, 624.16, 611.43
09/09/2015, 612.72, 1699686, 621.22, 626.52, 609.6
09/08/2015, 614.66, 2277487, 612.49, 616.31, 604.12
09/04/2015, 600.7, 2087028, 600, 603.47, 595.25
09/03/2015, 606.25, 1757851, 617, 619.71, 602.8213
09/02/2015, 614.34, 2573982, 605.59, 614.34, 599.71
09/01/2015, 597.79, 3699844, 602.36, 612.86, 594.1
08/31/2015, 618.25, 2172168, 627.54, 635.8, 617.68
08/28/2015, 630.38, 1975818, 632.82, 636.88, 624.56
08/27/2015, 637.61, 3485906, 639.4, 643.59, 622
08/26/2015, 628.62, 4187276, 610.35, 631.71, 599.05
08/25/2015, 582.06, 3521916, 614.91, 617.45, 581.11
08/24/2015, 589.61, 5727282, 573, 614, 565.05
08/21/2015, 612.48, 4261666, 639.78, 640.05, 612.33
08/20/2015, 646.83, 2854028, 655.46, 662.99, 642.9
08/19/2015, 660.9, 2132265, 656.6, 667, 654.19
08/18/2015, 656.13, 1455664, 661.9, 664, 653.46
08/17/2015, 660.87, 1050553, 656.8, 661.38, 651.24
08/14/2015, 657.12, 1071333, 655.01, 659.855, 652.66
08/13/2015, 656.45, 1807182, 659.323, 664.5, 651.661
08/12/2015, 659.56, 2938651, 663.08, 665, 652.29
08/11/2015, 660.78, 5016425, 669.2, 674.9, 654.27
08/10/2015, 633.73, 1653836, 639.48, 643.44, 631.249
08/07/2015, 635.3, 1403441, 640.23, 642.68, 629.71
08/06/2015, 642.68, 1572150, 645, 645.379, 632.25
08/05/2015, 643.78, 2331720, 634.33, 647.86, 633.16
08/04/2015, 629.25, 1486858, 628.42, 634.81, 627.16
08/03/2015, 631.21, 1301439, 625.34, 633.0556, 625.34
07/31/2015, 625.61, 1705286, 631.38, 632.91, 625.5
07/30/2015, 632.59, 1472286, 630, 635.22, 622.05
07/29/2015, 631.93, 1573146, 628.8, 633.36, 622.65
07/28/2015, 628, 1713684, 632.83, 632.83, 623.31
07/27/2015, 627.26, 2673801, 621, 634.3, 620.5
07/24/2015, 623.56, 3622089, 647, 648.17, 622.52
07/23/2015, 644.28, 3014035, 661.27, 663.63, 641
07/22/2015, 662.1, 3707818, 660.89, 678.64, 659
07/21/2015, 662.3, 3363342, 655.21, 673, 654.3
07/20/2015, 663.02, 5857092, 659.24, 668.88, 653.01
07/17/2015, 672.93, 11153500, 649, 674.468, 645
07/16/2015, 579.85, 4559712, 565.12, 580.68, 565
07/15/2015, 560.22, 1782264, 560.13, 566.5029, 556.79
07/14/2015, 561.1, 3231284, 546.76, 565.8487, 546.71
07/13/2015, 546.55, 2204610, 532.88, 547.11, 532.4001
07/10/2015, 530.13, 1954951, 526.29, 532.56, 525.55
07/09/2015, 520.68, 1840155, 523.12, 523.77, 520.35
07/08/2015, 516.83, 1293372, 521.05, 522.734, 516.11
07/07/2015, 525.02, 1595672, 523.13, 526.18, 515.18
07/06/2015, 522.86, 1278587, 519.5, 525.25, 519
07/02/2015, 523.4, 1235773, 521.08, 524.65, 521.08
07/01/2015, 521.84, 1961197, 524.73, 525.69, 518.2305
06/30/2015, 520.51, 2234284, 526.02, 526.25, 520.5
06/29/2015, 521.52, 1935361, 525.01, 528.61, 520.54
06/26/2015, 531.69, 2108629, 537.26, 537.76, 531.35
06/25/2015, 535.23, 1332412, 538.87, 540.9, 535.23
06/24/2015, 537.84, 1286576, 540, 540, 535.66
06/23/2015, 540.48, 1196115, 539.64, 541.499, 535.25
06/22/2015, 538.19, 1243535, 539.59, 543.74, 537.53
06/19/2015, 536.69, 1890916, 537.21, 538.25, 533.01
06/18/2015, 536.73, 1832450, 531, 538.15, 530.79
06/17/2015, 529.26, 1269113, 529.37, 530.98, 525.1
06/16/2015, 528.15, 1071728, 528.4, 529.6399, 525.56
06/15/2015, 527.2, 1632675, 528, 528.3, 524
06/12/2015, 532.33, 955489, 531.6, 533.12, 530.16
06/11/2015, 534.61, 1208632, 538.425, 538.98, 533.02
06/10/2015, 536.69, 1813775, 529.36, 538.36, 529.35
06/09/2015, 526.69, 1454172, 527.56, 529.2, 523.01
06/08/2015, 526.83, 1523960, 533.31, 534.12, 526.24
06/05/2015, 533.33, 1375008, 536.35, 537.2, 532.52
06/04/2015, 536.7, 1346044, 537.76, 540.59, 534.32
06/03/2015, 540.31, 1716836, 539.91, 543.5, 537.11
06/02/2015, 539.18, 1936721, 532.93, 543, 531.33
06/01/2015, 533.99, 1900257, 536.79, 536.79, 529.76
05/29/2015, 532.11, 2590445, 537.37, 538.63, 531.45
05/28/2015, 539.78, 1029764, 538.01, 540.61, 536.25
05/27/2015, 539.79, 1524783, 532.8, 540.55, 531.71
05/26/2015, 532.32, 2404462, 538.12, 539, 529.88
05/22/2015, 540.11, 1175065, 540.15, 544.19, 539.51
05/21/2015, 542.51, 1461431, 537.95, 543.8399, 535.98
05/20/2015, 539.27, 1430565, 538.49, 542.92, 532.972
05/19/2015, 537.36, 1964037, 533.98, 540.66, 533.04
05/18/2015, 532.3, 2001117, 532.01, 534.82, 528.85
05/15/2015, 533.85, 1965088, 539.18, 539.2743, 530.38
05/14/2015, 538.4, 1401005, 533.77, 539, 532.41
05/13/2015, 529.62, 1253005, 530.56, 534.3215, 528.655
05/12/2015, 529.04, 1633180, 531.6, 533.2089, 525.26
05/11/2015, 535.7, 904465, 538.37, 541.98, 535.4
05/08/2015, 538.22, 1527181, 536.65, 541.15, 536
05/07/2015, 530.7, 1543986, 523.99, 533.46, 521.75
05/06/2015, 524.22, 1566865, 531.24, 532.38, 521.085
05/05/2015, 530.8, 1380519, 538.21, 539.74, 530.3906
05/04/2015, 540.78, 1303830, 538.53, 544.07, 535.06
05/01/2015, 537.9, 1758085, 538.43, 539.54, 532.1
04/30/2015, 537.34, 2080834, 547.87, 548.59, 535.05
04/29/2015, 549.08, 1696886, 550.47, 553.68, 546.905
04/28/2015, 553.68, 1490735, 554.64, 556.02, 550.366
04/27/2015, 555.37, 2390696, 563.39, 565.95, 553.2001
| 04/24/2020, 1279.31, 1640394, 1261.17, 1280.4, 1249.45
04/23/2020, 1276.31, 1566203, 1271.55, 1293.31, 1265.67
04/22/2020, 1263.21, 2093140, 1245.54, 1285.6133, 1242
04/21/2020, 1216.34, 2153003, 1247, 1254.27, 1209.71
04/20/2020, 1266.61, 1695488, 1271, 1281.6, 1261.37
04/17/2020, 1283.25, 1949042, 1284.85, 1294.43, 1271.23
04/16/2020, 1263.47, 2518099, 1274.1, 1279, 1242.62
04/15/2020, 1262.47, 1671703, 1245.61, 1280.46, 1240.4
04/14/2020, 1269.23, 2470353, 1245.09, 1282.07, 1236.93
04/13/2020, 1217.56, 1739828, 1209.18, 1220.51, 1187.5984
04/09/2020, 1211.45, 2175421, 1224.08, 1225.57, 1196.7351
04/08/2020, 1210.28, 1975135, 1206.5, 1219.07, 1188.16
04/07/2020, 1186.51, 2387329, 1221, 1225, 1182.23
04/06/2020, 1186.92, 2664723, 1138, 1194.66, 1130.94
04/03/2020, 1097.88, 2313400, 1119.015, 1123.54, 1079.81
04/02/2020, 1120.84, 1964881, 1098.26, 1126.86, 1096.4
04/01/2020, 1105.62, 2344173, 1122, 1129.69, 1097.45
03/31/2020, 1162.81, 2487983, 1147.3, 1175.31, 1138.14
03/30/2020, 1146.82, 2574061, 1125.04, 1151.63, 1096.48
03/27/2020, 1110.71, 3208495, 1125.67, 1150.6702, 1105.91
03/26/2020, 1161.75, 3573755, 1111.8, 1169.97, 1093.53
03/25/2020, 1102.49, 4081528, 1126.47, 1148.9, 1086.01
03/24/2020, 1134.46, 3344450, 1103.77, 1135, 1090.62
03/23/2020, 1056.62, 4044137, 1061.32, 1071.32, 1013.5361
03/20/2020, 1072.32, 3601750, 1135.72, 1143.99, 1065.49
03/19/2020, 1115.29, 3651106, 1093.05, 1157.9699, 1060.1075
03/18/2020, 1096.8, 4233435, 1056.51, 1106.5, 1037.28
03/17/2020, 1119.8, 3861489, 1093.11, 1130.86, 1056.01
03/16/2020, 1084.33, 4252365, 1096, 1152.2665, 1074.44
03/13/2020, 1219.73, 3700125, 1179, 1219.76, 1117.1432
03/12/2020, 1114.91, 4226748, 1126, 1193.87, 1113.3
03/11/2020, 1215.41, 2611229, 1249.7, 1260.96, 1196.07
03/10/2020, 1280.39, 2611373, 1260, 1281.15, 1218.77
03/09/2020, 1215.56, 3365365, 1205.3, 1254.7599, 1200
03/06/2020, 1298.41, 2660628, 1277.06, 1306.22, 1261.05
03/05/2020, 1319.04, 2561288, 1350.2, 1358.91, 1305.1
03/04/2020, 1386.52, 1913315, 1359.23, 1388.09, 1343.11
03/03/2020, 1341.39, 2402326, 1399.42, 1410.15, 1332
03/02/2020, 1389.11, 2431468, 1351.61, 1390.87, 1326.815
02/28/2020, 1339.33, 3790618, 1277.5, 1341.14, 1271
02/27/2020, 1318.09, 2978300, 1362.06, 1371.7037, 1317.17
02/26/2020, 1393.18, 2204037, 1396.14, 1415.7, 1379
02/25/2020, 1388.45, 2478278, 1433, 1438.14, 1382.4
02/24/2020, 1421.59, 2867053, 1426.11, 1436.97, 1411.39
02/21/2020, 1485.11, 1732273, 1508.03, 1512.215, 1480.44
02/20/2020, 1518.15, 1096552, 1522, 1529.64, 1506.82
02/19/2020, 1526.69, 949268, 1525.07, 1532.1063, 1521.4
02/18/2020, 1519.67, 1121140, 1515, 1531.63, 1512.59
02/14/2020, 1520.74, 1197836, 1515.6, 1520.74, 1507.34
02/13/2020, 1514.66, 929730, 1512.69, 1527.18, 1504.6
02/12/2020, 1518.27, 1167565, 1514.48, 1520.695, 1508.11
02/11/2020, 1508.79, 1344633, 1511.81, 1529.63, 1505.6378
02/10/2020, 1508.68, 1419876, 1474.32, 1509.5, 1474.32
02/07/2020, 1479.23, 1172270, 1467.3, 1485.84, 1466.35
02/06/2020, 1476.23, 1679384, 1450.33, 1481.9997, 1449.57
02/05/2020, 1448.23, 1986157, 1462.42, 1463.84, 1430.56
02/04/2020, 1447.07, 3932954, 1457.07, 1469.5, 1426.3
02/03/2020, 1485.94, 3055216, 1462, 1490, 1458.99
01/31/2020, 1434.23, 2417214, 1468.9, 1470.13, 1428.53
01/30/2020, 1455.84, 1339421, 1439.96, 1457.28, 1436.4
01/29/2020, 1458.63, 1078667, 1458.8, 1465.43, 1446.74
01/28/2020, 1452.56, 1577422, 1443, 1456, 1432.47
01/27/2020, 1433.9, 1755201, 1431, 1438.07, 1421.2
01/24/2020, 1466.71, 1784644, 1493.59, 1495.495, 1465.25
01/23/2020, 1486.65, 1351354, 1487.64, 1495.52, 1482.1
01/22/2020, 1485.95, 1610846, 1491, 1503.2143, 1484.93
01/21/2020, 1484.4, 2036780, 1479.12, 1491.85, 1471.2
01/17/2020, 1480.39, 2396215, 1462.91, 1481.2954, 1458.22
01/16/2020, 1451.7, 1173688, 1447.44, 1451.99, 1440.92
01/15/2020, 1439.2, 1282685, 1430.21, 1441.395, 1430.21
01/14/2020, 1430.88, 1560453, 1439.01, 1441.8, 1428.37
01/13/2020, 1439.23, 1653482, 1436.13, 1440.52, 1426.02
01/10/2020, 1429.73, 1821566, 1427.56, 1434.9292, 1418.35
01/09/2020, 1419.83, 1502664, 1420.57, 1427.33, 1410.27
01/08/2020, 1404.32, 1529177, 1392.08, 1411.58, 1390.84
01/07/2020, 1393.34, 1511693, 1397.94, 1402.99, 1390.38
01/06/2020, 1394.21, 1733149, 1350, 1396.5, 1350
01/03/2020, 1360.66, 1187006, 1347.86, 1372.5, 1345.5436
01/02/2020, 1367.37, 1406731, 1341.55, 1368.14, 1341.55
12/31/2019, 1337.02, 962468, 1330.11, 1338, 1329.085
12/30/2019, 1336.14, 1051323, 1350, 1353, 1334.02
12/27/2019, 1351.89, 1038718, 1362.99, 1364.53, 1349.31
12/26/2019, 1360.4, 667754, 1346.17, 1361.3269, 1344.47
12/24/2019, 1343.56, 347518, 1348.5, 1350.26, 1342.78
12/23/2019, 1348.84, 883200, 1355.87, 1359.7999, 1346.51
12/20/2019, 1349.59, 3316905, 1363.35, 1363.64, 1349
12/19/2019, 1356.04, 1470112, 1351.82, 1358.1, 1348.985
12/18/2019, 1352.62, 1657069, 1356.6, 1360.47, 1351
12/17/2019, 1355.12, 1855259, 1362.89, 1365, 1351.3231
12/16/2019, 1361.17, 1397451, 1356.5, 1364.68, 1352.67
12/13/2019, 1347.83, 1550028, 1347.95, 1353.0931, 1343.87
12/12/2019, 1350.27, 1281722, 1345.94, 1355.775, 1340.5
12/11/2019, 1345.02, 850796, 1350.84, 1351.2, 1342.67
12/10/2019, 1344.66, 1094653, 1341.5, 1349.975, 1336.04
12/09/2019, 1343.56, 1355795, 1338.04, 1359.45, 1337.84
12/06/2019, 1340.62, 1315510, 1333.44, 1344, 1333.44
12/05/2019, 1328.13, 1212818, 1328, 1329.3579, 1316.44
12/04/2019, 1320.54, 1538110, 1307.01, 1325.8, 1304.87
12/03/2019, 1295.28, 1268647, 1279.57, 1298.461, 1279
12/02/2019, 1289.92, 1511851, 1301, 1305.83, 1281
11/29/2019, 1304.96, 586981, 1307.12, 1310.205, 1303.97
11/27/2019, 1312.99, 996329, 1315, 1318.36, 1309.63
11/26/2019, 1313.55, 1069795, 1309.86, 1314.8, 1305.09
11/25/2019, 1306.69, 1036487, 1299.18, 1311.31, 1298.13
11/22/2019, 1295.34, 1386506, 1305.62, 1308.73, 1291.41
11/21/2019, 1301.35, 995499, 1301.48, 1312.59, 1293
11/20/2019, 1303.05, 1309835, 1311.74, 1315, 1291.15
11/19/2019, 1315.46, 1269372, 1327.7, 1327.7, 1312.8
11/18/2019, 1320.7, 1488083, 1332.22, 1335.5288, 1317.5
11/15/2019, 1334.87, 1782955, 1318.94, 1334.88, 1314.2796
11/14/2019, 1311.46, 1194305, 1297.5, 1317, 1295.65
11/13/2019, 1298, 853861, 1294.07, 1304.3, 1293.51
11/12/2019, 1298.8, 1085859, 1300, 1310, 1295.77
11/11/2019, 1299.19, 1012429, 1303.18, 1306.425, 1297.41
11/08/2019, 1311.37, 1251916, 1305.28, 1318, 1304.365
11/07/2019, 1308.86, 2029970, 1294.28, 1323.74, 1294.245
11/06/2019, 1291.8, 1152977, 1289.46, 1293.73, 1282.5
11/05/2019, 1292.03, 1282711, 1292.89, 1298.93, 1291.2289
11/04/2019, 1291.37, 1500964, 1276.45, 1294.13, 1276.355
11/01/2019, 1273.74, 1670072, 1265, 1274.62, 1260.5
10/31/2019, 1260.11, 1455651, 1261.28, 1267.67, 1250.8428
10/30/2019, 1261.29, 1408851, 1252.97, 1269.36, 1252
10/29/2019, 1262.62, 1886380, 1276.23, 1281.59, 1257.2119
10/28/2019, 1290, 2613237, 1275.45, 1299.31, 1272.54
10/25/2019, 1265.13, 1213051, 1251.03, 1269.6, 1250.01
10/24/2019, 1260.99, 1039868, 1260.9, 1264, 1253.715
10/23/2019, 1259.13, 928595, 1242.36, 1259.89, 1242.36
10/22/2019, 1242.8, 1047851, 1247.85, 1250.6, 1241.38
10/21/2019, 1246.15, 1038042, 1252.26, 1254.6287, 1240.6
10/18/2019, 1245.49, 1352839, 1253.46, 1258.89, 1241.08
10/17/2019, 1253.07, 980510, 1250.93, 1263.325, 1249.94
10/16/2019, 1243.64, 1168174, 1241.17, 1254.74, 1238.45
10/15/2019, 1243.01, 1395259, 1220.4, 1247.33, 1220.4
10/14/2019, 1217.14, 882039, 1212.34, 1226.33, 1211.76
10/11/2019, 1215.45, 1277144, 1222.21, 1228.39, 1213.74
10/10/2019, 1208.67, 932531, 1198.58, 1215, 1197.34
10/09/2019, 1202.31, 876632, 1199.35, 1208.35, 1197.63
10/08/2019, 1189.13, 1141784, 1197.59, 1206.08, 1189.01
10/07/2019, 1207.68, 867149, 1204.4, 1218.2036, 1203.75
10/04/2019, 1209, 1183264, 1191.89, 1211.44, 1189.17
10/03/2019, 1187.83, 1663656, 1180, 1189.06, 1162.43
10/02/2019, 1176.63, 1639237, 1196.98, 1196.99, 1171.29
10/01/2019, 1205.1, 1358279, 1219, 1231.23, 1203.58
09/30/2019, 1219, 1419676, 1220.97, 1226, 1212.3
09/27/2019, 1225.09, 1354432, 1243.01, 1244.02, 1214.45
09/26/2019, 1241.39, 1561882, 1241.96, 1245, 1232.268
09/25/2019, 1246.52, 1593875, 1215.82, 1248.3, 1210.09
09/24/2019, 1218.76, 1591786, 1240, 1246.74, 1210.68
09/23/2019, 1234.03, 1075253, 1226, 1239.09, 1224.17
09/20/2019, 1229.93, 2337269, 1233.12, 1243.32, 1223.08
09/19/2019, 1238.71, 1000155, 1232.06, 1244.44, 1232.02
09/18/2019, 1232.41, 1144333, 1227.51, 1235.61, 1216.53
09/17/2019, 1229.15, 958112, 1230.4, 1235, 1223.69
09/16/2019, 1231.3, 1053299, 1229.52, 1239.56, 1225.61
09/13/2019, 1239.56, 1301350, 1231.35, 1240.88, 1227.01
09/12/2019, 1234.25, 1725908, 1224.3, 1241.86, 1223.02
09/11/2019, 1220.17, 1307033, 1203.41, 1222.6, 1202.2
09/10/2019, 1206, 1260115, 1195.15, 1210, 1194.58
09/09/2019, 1204.41, 1471880, 1204, 1220, 1192.62
09/06/2019, 1204.93, 1072143, 1208.13, 1212.015, 1202.5222
09/05/2019, 1211.38, 1408601, 1191.53, 1213.04, 1191.53
09/04/2019, 1181.41, 1068968, 1176.71, 1183.48, 1171
09/03/2019, 1168.39, 1480420, 1177.03, 1186.89, 1163.2
08/30/2019, 1188.1, 1129959, 1198.5, 1198.5, 1183.8026
08/29/2019, 1192.85, 1088858, 1181.12, 1196.06, 1181.12
08/28/2019, 1171.02, 802243, 1161.71, 1176.4199, 1157.3
08/27/2019, 1167.84, 1077452, 1180.53, 1182.4, 1161.45
08/26/2019, 1168.89, 1226441, 1157.26, 1169.47, 1152.96
08/23/2019, 1151.29, 1688271, 1181.99, 1194.08, 1147.75
08/22/2019, 1189.53, 947906, 1194.07, 1198.0115, 1178.58
08/21/2019, 1191.25, 741053, 1193.15, 1199, 1187.43
08/20/2019, 1182.69, 915605, 1195.25, 1196.06, 1182.11
08/19/2019, 1198.45, 1232517, 1190.09, 1206.99, 1190.09
08/16/2019, 1177.6, 1349436, 1179.55, 1182.72, 1171.81
08/15/2019, 1167.26, 1224739, 1163.5, 1175.84, 1162.11
08/14/2019, 1164.29, 1578668, 1176.31, 1182.3, 1160.54
08/13/2019, 1197.27, 1318009, 1171.46, 1204.78, 1171.46
08/12/2019, 1174.71, 1003187, 1179.21, 1184.96, 1167.6723
08/09/2019, 1188.01, 1065658, 1197.99, 1203.88, 1183.603
08/08/2019, 1204.8, 1467997, 1182.83, 1205.01, 1173.02
08/07/2019, 1173.99, 1444324, 1156, 1178.4451, 1149.6239
08/06/2019, 1169.95, 1709374, 1163.31, 1179.96, 1160
08/05/2019, 1152.32, 2597455, 1170.04, 1175.24, 1140.14
08/02/2019, 1193.99, 1645067, 1200.74, 1206.9, 1188.94
08/01/2019, 1209.01, 1698510, 1214.03, 1234.11, 1205.72
07/31/2019, 1216.68, 1725454, 1223, 1234, 1207.7635
07/30/2019, 1225.14, 1453263, 1225.41, 1234.87, 1223.3
07/29/2019, 1239.41, 2223731, 1241.05, 1247.37, 1228.23
07/26/2019, 1250.41, 4805752, 1224.04, 1265.5499, 1224
07/25/2019, 1132.12, 2209823, 1137.82, 1141.7, 1120.92
07/24/2019, 1137.81, 1590101, 1131.9, 1144, 1126.99
07/23/2019, 1146.21, 1093688, 1144, 1146.9, 1131.8
07/22/2019, 1138.07, 1301846, 1133.45, 1139.25, 1124.24
07/19/2019, 1130.1, 1647245, 1148.19, 1151.14, 1129.62
07/18/2019, 1146.33, 1291281, 1141.74, 1147.605, 1132.73
07/17/2019, 1146.35, 1170047, 1150.97, 1158.36, 1145.77
07/16/2019, 1153.58, 1238807, 1146, 1158.58, 1145
07/15/2019, 1150.34, 903780, 1146.86, 1150.82, 1139.4
07/12/2019, 1144.9, 863973, 1143.99, 1147.34, 1138.78
07/11/2019, 1144.21, 1195569, 1143.25, 1153.07, 1139.58
07/10/2019, 1140.48, 1209466, 1131.22, 1142.05, 1130.97
07/09/2019, 1124.83, 1330370, 1111.8, 1128.025, 1107.17
07/08/2019, 1116.35, 1236419, 1125.17, 1125.98, 1111.21
07/05/2019, 1131.59, 1264540, 1117.8, 1132.88, 1116.14
07/03/2019, 1121.58, 767011, 1117.41, 1126.76, 1113.86
07/02/2019, 1111.25, 991755, 1102.24, 1111.77, 1098.17
07/01/2019, 1097.95, 1438504, 1098, 1107.58, 1093.703
06/28/2019, 1080.91, 1693450, 1076.39, 1081, 1073.37
06/27/2019, 1076.01, 1004477, 1084, 1087.1, 1075.29
06/26/2019, 1079.8, 1810869, 1086.5, 1092.97, 1072.24
06/25/2019, 1086.35, 1546913, 1112.66, 1114.35, 1083.8
06/24/2019, 1115.52, 1395696, 1119.61, 1122, 1111.01
06/21/2019, 1121.88, 1947591, 1109.24, 1124.11, 1108.08
06/20/2019, 1111.42, 1262011, 1119.99, 1120.12, 1104.74
06/19/2019, 1102.33, 1339218, 1105.6, 1107, 1093.48
06/18/2019, 1103.6, 1386684, 1109.69, 1116.39, 1098.99
06/17/2019, 1092.5, 941602, 1086.28, 1099.18, 1086.28
06/14/2019, 1085.35, 1111643, 1086.42, 1092.69, 1080.1721
06/13/2019, 1088.77, 1058000, 1083.64, 1094.17, 1080.15
06/12/2019, 1077.03, 1061255, 1078, 1080.93, 1067.54
06/11/2019, 1078.72, 1437063, 1093.98, 1101.99, 1077.6025
06/10/2019, 1080.38, 1464248, 1072.98, 1092.66, 1072.3216
06/07/2019, 1066.04, 1802370, 1050.63, 1070.92, 1048.4
06/06/2019, 1044.34, 1703244, 1044.99, 1047.49, 1033.7
06/05/2019, 1042.22, 2168439, 1051.54, 1053.55, 1030.49
06/04/2019, 1053.05, 2833483, 1042.9, 1056.05, 1033.69
06/03/2019, 1036.23, 5130576, 1065.5, 1065.5, 1025
05/31/2019, 1103.63, 1508203, 1101.29, 1109.6, 1100.18
05/30/2019, 1117.95, 951873, 1115.54, 1123.13, 1112.12
05/29/2019, 1116.46, 1538212, 1127.52, 1129.1, 1108.2201
05/28/2019, 1134.15, 1365166, 1134, 1151.5871, 1133.12
05/24/2019, 1133.47, 1112341, 1147.36, 1149.765, 1131.66
05/23/2019, 1140.77, 1199300, 1140.5, 1145.9725, 1129.224
05/22/2019, 1151.42, 914839, 1146.75, 1158.52, 1145.89
05/21/2019, 1149.63, 1160158, 1148.49, 1152.7077, 1137.94
05/20/2019, 1138.85, 1353292, 1144.5, 1146.7967, 1131.4425
05/17/2019, 1162.3, 1208623, 1168.47, 1180.15, 1160.01
05/16/2019, 1178.98, 1531404, 1164.51, 1188.16, 1162.84
05/15/2019, 1164.21, 2289302, 1117.87, 1171.33, 1116.6657
05/14/2019, 1120.44, 1836604, 1137.21, 1140.42, 1119.55
05/13/2019, 1132.03, 1860648, 1141.96, 1147.94, 1122.11
05/10/2019, 1164.27, 1314546, 1163.59, 1172.6, 1142.5
05/09/2019, 1162.38, 1185973, 1159.03, 1169.66, 1150.85
05/08/2019, 1166.27, 1309514, 1172.01, 1180.4243, 1165.74
05/07/2019, 1174.1, 1551368, 1180.47, 1190.44, 1161.04
05/06/2019, 1189.39, 1563943, 1166.26, 1190.85, 1166.26
05/03/2019, 1185.4, 1980653, 1173.65, 1186.8, 1169
05/02/2019, 1162.61, 1944817, 1167.76, 1174.1895, 1155.0018
05/01/2019, 1168.08, 2642983, 1188.05, 1188.05, 1167.18
04/30/2019, 1188.48, 6194691, 1185, 1192.81, 1175
04/29/2019, 1287.58, 2412788, 1274, 1289.27, 1266.2949
04/26/2019, 1272.18, 1228276, 1269, 1273.07, 1260.32
04/25/2019, 1263.45, 1099614, 1264.77, 1267.4083, 1252.03
04/24/2019, 1256, 1015006, 1264.12, 1268.01, 1255
04/23/2019, 1264.55, 1271195, 1250.69, 1269, 1246.38
04/22/2019, 1248.84, 806577, 1235.99, 1249.09, 1228.31
04/18/2019, 1236.37, 1315676, 1239.18, 1242, 1234.61
04/17/2019, 1236.34, 1211866, 1233, 1240.56, 1227.82
04/16/2019, 1227.13, 855258, 1225, 1230.82, 1220.12
04/15/2019, 1221.1, 1187353, 1218, 1224.2, 1209.1101
04/12/2019, 1217.87, 926799, 1210, 1218.35, 1208.11
04/11/2019, 1204.62, 709417, 1203.96, 1207.96, 1200.13
04/10/2019, 1202.16, 724524, 1200.68, 1203.785, 1196.435
04/09/2019, 1197.25, 865416, 1196, 1202.29, 1193.08
04/08/2019, 1203.84, 859969, 1207.89, 1208.69, 1199.86
04/05/2019, 1207.15, 900950, 1214.99, 1216.22, 1205.03
04/04/2019, 1215, 949962, 1205.94, 1215.67, 1204.13
04/03/2019, 1205.92, 1014195, 1207.48, 1216.3, 1200.5
04/02/2019, 1200.49, 800820, 1195.32, 1201.35, 1185.71
04/01/2019, 1194.43, 1188235, 1184.1, 1196.66, 1182
03/29/2019, 1173.31, 1269573, 1174.9, 1178.99, 1162.88
03/28/2019, 1168.49, 966843, 1171.54, 1171.565, 1159.4312
03/27/2019, 1173.02, 1362217, 1185.5, 1187.559, 1159.37
03/26/2019, 1184.62, 1894639, 1198.53, 1202.83, 1176.72
03/25/2019, 1193, 1493841, 1196.93, 1206.3975, 1187.04
03/22/2019, 1205.5, 1668910, 1226.32, 1230, 1202.825
03/21/2019, 1231.54, 1195899, 1216, 1231.79, 1213.15
03/20/2019, 1223.97, 2089367, 1197.35, 1227.14, 1196.17
03/19/2019, 1198.85, 1404863, 1188.81, 1200, 1185.87
03/18/2019, 1184.26, 1212506, 1183.3, 1190, 1177.4211
03/15/2019, 1184.46, 2457597, 1193.38, 1196.57, 1182.61
03/14/2019, 1185.55, 1150950, 1194.51, 1197.88, 1184.48
03/13/2019, 1193.32, 1434816, 1200.645, 1200.93, 1191.94
03/12/2019, 1193.2, 2012306, 1178.26, 1200, 1178.26
03/11/2019, 1175.76, 1569332, 1144.45, 1176.19, 1144.45
03/08/2019, 1142.32, 1212271, 1126.73, 1147.08, 1123.3
03/07/2019, 1143.3, 1166076, 1155.72, 1156.755, 1134.91
03/06/2019, 1157.86, 1094100, 1162.49, 1167.5658, 1155.49
03/05/2019, 1162.03, 1422357, 1150.06, 1169.61, 1146.195
03/04/2019, 1147.8, 1444774, 1146.99, 1158.2804, 1130.69
03/01/2019, 1140.99, 1447454, 1124.9, 1142.97, 1124.75
02/28/2019, 1119.92, 1541068, 1111.3, 1127.65, 1111.01
02/27/2019, 1116.05, 968362, 1106.95, 1117.98, 1101
02/26/2019, 1115.13, 1469761, 1105.75, 1119.51, 1099.92
02/25/2019, 1109.4, 1395281, 1116, 1118.54, 1107.27
02/22/2019, 1110.37, 1048361, 1100.9, 1111.24, 1095.6
02/21/2019, 1096.97, 1414744, 1110.84, 1111.94, 1092.52
02/20/2019, 1113.8, 1080144, 1119.99, 1123.41, 1105.28
02/19/2019, 1118.56, 1046315, 1110, 1121.89, 1110
02/15/2019, 1113.65, 1442461, 1130.08, 1131.67, 1110.65
02/14/2019, 1121.67, 941678, 1118.05, 1128.23, 1110.445
02/13/2019, 1120.16, 1048630, 1124.99, 1134.73, 1118.5
02/12/2019, 1121.37, 1608658, 1106.8, 1125.295, 1105.85
02/11/2019, 1095.01, 1063825, 1096.95, 1105.945, 1092.86
02/08/2019, 1095.06, 1072031, 1087, 1098.91, 1086.55
02/07/2019, 1098.71, 2040615, 1104.16, 1104.84, 1086
02/06/2019, 1115.23, 2101674, 1139.57, 1147, 1112.77
02/05/2019, 1145.99, 3529974, 1124.84, 1146.85, 1117.248
02/04/2019, 1132.8, 2518184, 1112.66, 1132.8, 1109.02
02/01/2019, 1110.75, 1455609, 1112.4, 1125, 1104.89
01/31/2019, 1116.37, 1531463, 1103, 1117.33, 1095.41
01/30/2019, 1089.06, 1241760, 1068.43, 1091, 1066.85
01/29/2019, 1060.62, 1006731, 1072.68, 1075.15, 1055.8647
01/28/2019, 1070.08, 1277745, 1080.11, 1083, 1063.8
01/25/2019, 1090.99, 1114785, 1085, 1094, 1081.82
01/24/2019, 1073.9, 1317718, 1076.48, 1079.475, 1060.7
01/23/2019, 1075.57, 956526, 1077.35, 1084.93, 1059.75
01/22/2019, 1070.52, 1607398, 1088, 1091.51, 1063.47
01/18/2019, 1098.26, 1933754, 1100, 1108.352, 1090.9
01/17/2019, 1089.9, 1223674, 1079.47, 1091.8, 1073.5
01/16/2019, 1080.97, 1320530, 1080, 1092.375, 1079.34
01/15/2019, 1077.15, 1452238, 1050.17, 1080.05, 1047.34
01/14/2019, 1044.69, 1127417, 1046.92, 1051.53, 1041.255
01/11/2019, 1057.19, 1512651, 1063.18, 1063.775, 1048.48
01/10/2019, 1070.33, 1444976, 1067.66, 1071.15, 1057.71
01/09/2019, 1074.66, 1198369, 1081.65, 1082.63, 1066.4
01/08/2019, 1076.28, 1748371, 1076.11, 1084.56, 1060.53
01/07/2019, 1068.39, 1978077, 1071.5, 1073.9999, 1054.76
01/04/2019, 1070.71, 2080144, 1032.59, 1070.84, 1027.4179
01/03/2019, 1016.06, 1829379, 1041, 1056.98, 1014.07
01/02/2019, 1045.85, 1516681, 1016.57, 1052.32, 1015.71
12/31/2018, 1035.61, 1492541, 1050.96, 1052.7, 1023.59
12/28/2018, 1037.08, 1399218, 1049.62, 1055.56, 1033.1
12/27/2018, 1043.88, 2102069, 1017.15, 1043.89, 997
12/26/2018, 1039.46, 2337212, 989.01, 1040, 983
12/24/2018, 976.22, 1590328, 973.9, 1003.54, 970.11
12/21/2018, 979.54, 4560424, 1015.3, 1024.02, 973.69
12/20/2018, 1009.41, 2659047, 1018.13, 1034.22, 996.36
12/19/2018, 1023.01, 2419322, 1033.99, 1062, 1008.05
12/18/2018, 1028.71, 2101854, 1026.09, 1049.48, 1021.44
12/17/2018, 1016.53, 2337631, 1037.51, 1053.15, 1007.9
12/14/2018, 1042.1, 1685802, 1049.98, 1062.6, 1040.79
12/13/2018, 1061.9, 1329198, 1068.07, 1079.7597, 1053.93
12/12/2018, 1063.68, 1523276, 1068, 1081.65, 1062.79
12/11/2018, 1051.75, 1354751, 1056.49, 1060.6, 1039.84
12/10/2018, 1039.55, 1793465, 1035.05, 1048.45, 1023.29
12/07/2018, 1036.58, 2098526, 1060.01, 1075.26, 1028.5
12/06/2018, 1068.73, 2758098, 1034.26, 1071.2, 1030.7701
12/04/2018, 1050.82, 2278200, 1103.12, 1104.42, 1049.98
12/03/2018, 1106.43, 1900355, 1123.14, 1124.65, 1103.6645
11/30/2018, 1094.43, 2554416, 1089.07, 1095.57, 1077.88
11/29/2018, 1088.3, 1403540, 1076.08, 1094.245, 1076
11/28/2018, 1086.23, 2399374, 1048.76, 1086.84, 1035.76
11/27/2018, 1044.41, 1801334, 1041, 1057.58, 1038.49
11/26/2018, 1048.62, 1846430, 1038.35, 1049.31, 1033.91
11/23/2018, 1023.88, 691462, 1030, 1037.59, 1022.3992
11/21/2018, 1037.61, 1531676, 1036.76, 1048.56, 1033.47
11/20/2018, 1025.76, 2447254, 1000, 1031.74, 996.02
11/19/2018, 1020, 1837207, 1057.2, 1060.79, 1016.2601
11/16/2018, 1061.49, 1641232, 1059.41, 1067, 1048.98
11/15/2018, 1064.71, 1819132, 1044.71, 1071.85, 1031.78
11/14/2018, 1043.66, 1561656, 1050, 1054.5643, 1031
11/13/2018, 1036.05, 1496534, 1043.29, 1056.605, 1031.15
11/12/2018, 1038.63, 1429319, 1061.39, 1062.12, 1031
11/09/2018, 1066.15, 1343154, 1073.99, 1075.56, 1053.11
11/08/2018, 1082.4, 1463022, 1091.38, 1093.27, 1072.2048
11/07/2018, 1093.39, 2057155, 1069, 1095.46, 1065.9
11/06/2018, 1055.81, 1225197, 1039.48, 1064.345, 1038.07
11/05/2018, 1040.09, 2436742, 1055, 1058.47, 1021.24
11/02/2018, 1057.79, 1829295, 1073.73, 1082.975, 1054.61
11/01/2018, 1070, 1456222, 1075.8, 1083.975, 1062.46
10/31/2018, 1076.77, 2528584, 1059.81, 1091.94, 1057
10/30/2018, 1036.21, 3209126, 1008.46, 1037.49, 1000.75
10/29/2018, 1020.08, 3873644, 1082.47, 1097.04, 995.83
10/26/2018, 1071.47, 4185201, 1037.03, 1106.53, 1034.09
10/25/2018, 1095.57, 2511884, 1071.79, 1110.98, 1069.55
10/24/2018, 1050.71, 1910060, 1104.25, 1106.12, 1048.74
10/23/2018, 1103.69, 1847798, 1080.89, 1107.89, 1070
10/22/2018, 1101.16, 1494285, 1103.06, 1112.23, 1091
10/19/2018, 1096.46, 1264605, 1093.37, 1110.36, 1087.75
10/18/2018, 1087.97, 2056606, 1121.84, 1121.84, 1077.09
10/17/2018, 1115.69, 1397613, 1126.46, 1128.99, 1102.19
10/16/2018, 1121.28, 1845491, 1104.59, 1124.22, 1102.5
10/15/2018, 1092.25, 1343231, 1108.91, 1113.4464, 1089
10/12/2018, 1110.08, 2029872, 1108, 1115, 1086.402
10/11/2018, 1079.32, 2939514, 1072.94, 1106.4, 1068.27
10/10/2018, 1081.22, 2574985, 1131.08, 1132.17, 1081.13
10/09/2018, 1138.82, 1308706, 1146.15, 1154.35, 1137.572
10/08/2018, 1148.97, 1877142, 1150.11, 1168, 1127.3636
10/05/2018, 1157.35, 1184245, 1167.5, 1173.4999, 1145.12
10/04/2018, 1168.19, 2151762, 1195.33, 1197.51, 1155.576
10/03/2018, 1202.95, 1207280, 1205, 1206.41, 1193.83
10/02/2018, 1200.11, 1655602, 1190.96, 1209.96, 1186.63
10/01/2018, 1195.31, 1345250, 1199.89, 1209.9, 1190.3
09/28/2018, 1193.47, 1306822, 1191.87, 1195.41, 1184.5
09/27/2018, 1194.64, 1244278, 1186.73, 1202.1, 1183.63
09/26/2018, 1180.49, 1346434, 1185.15, 1194.23, 1174.765
09/25/2018, 1184.65, 937577, 1176.15, 1186.88, 1168
09/24/2018, 1173.37, 1218532, 1157.17, 1178, 1146.91
09/21/2018, 1166.09, 4363929, 1192, 1192.21, 1166.04
09/20/2018, 1186.87, 1209855, 1179.99, 1189.89, 1173.36
09/19/2018, 1171.09, 1185321, 1164.98, 1173.21, 1154.58
09/18/2018, 1161.22, 1184407, 1157.09, 1176.08, 1157.09
09/17/2018, 1156.05, 1279147, 1170.14, 1177.24, 1154.03
09/14/2018, 1172.53, 934300, 1179.1, 1180.425, 1168.3295
09/13/2018, 1175.33, 1402005, 1170.74, 1178.61, 1162.85
09/12/2018, 1162.82, 1291304, 1172.72, 1178.61, 1158.36
09/11/2018, 1177.36, 1209171, 1161.63, 1178.68, 1156.24
09/10/2018, 1164.64, 1115259, 1172.19, 1174.54, 1160.11
09/07/2018, 1164.83, 1401034, 1158.67, 1175.26, 1157.215
09/06/2018, 1171.44, 1886690, 1186.3, 1186.3, 1152
09/05/2018, 1186.48, 2043732, 1193.8, 1199.0096, 1162
09/04/2018, 1197, 1800509, 1204.27, 1212.99, 1192.5
08/31/2018, 1218.19, 1812366, 1234.98, 1238.66, 1211.2854
08/30/2018, 1239.12, 1320261, 1244.23, 1253.635, 1232.59
08/29/2018, 1249.3, 1295939, 1237.45, 1250.66, 1236.3588
08/28/2018, 1231.15, 1296532, 1241.29, 1242.545, 1228.69
08/27/2018, 1241.82, 1154962, 1227.6, 1243.09, 1225.716
08/24/2018, 1220.65, 946529, 1208.82, 1221.65, 1206.3588
08/23/2018, 1205.38, 988509, 1207.14, 1221.28, 1204.24
08/22/2018, 1207.33, 881463, 1200, 1211.84, 1199
08/21/2018, 1201.62, 1187884, 1208, 1217.26, 1200.3537
08/20/2018, 1207.77, 864462, 1205.02, 1211, 1194.6264
08/17/2018, 1200.96, 1381724, 1202.03, 1209.02, 1188.24
08/16/2018, 1206.49, 1319985, 1224.73, 1225.9999, 1202.55
08/15/2018, 1214.38, 1815642, 1229.26, 1235.24, 1209.51
08/14/2018, 1242.1, 1342534, 1235.19, 1245.8695, 1225.11
08/13/2018, 1235.01, 957153, 1236.98, 1249.2728, 1233.6405
08/10/2018, 1237.61, 1107323, 1243, 1245.695, 1232
08/09/2018, 1249.1, 805227, 1249.9, 1255.542, 1246.01
08/08/2018, 1245.61, 1369650, 1240.47, 1256.5, 1238.0083
08/07/2018, 1242.22, 1493073, 1237, 1251.17, 1236.17
08/06/2018, 1224.77, 1080923, 1225, 1226.0876, 1215.7965
08/03/2018, 1223.71, 1072524, 1229.62, 1230, 1215.06
08/02/2018, 1226.15, 1520488, 1205.9, 1229.88, 1204.79
08/01/2018, 1220.01, 1567142, 1228, 1233.47, 1210.21
07/31/2018, 1217.26, 1632823, 1220.01, 1227.5877, 1205.6
07/30/2018, 1219.74, 1822782, 1228.01, 1234.916, 1211.47
07/27/2018, 1238.5, 2115802, 1271, 1273.89, 1231
07/26/2018, 1268.33, 2334881, 1251, 1269.7707, 1249.02
07/25/2018, 1263.7, 2115890, 1239.13, 1265.86, 1239.13
07/24/2018, 1248.08, 3303268, 1262.59, 1266, 1235.56
07/23/2018, 1205.5, 2584034, 1181.01, 1206.49, 1181
07/20/2018, 1184.91, 1246898, 1186.96, 1196.86, 1184.22
07/19/2018, 1186.96, 1256113, 1191, 1200, 1183.32
07/18/2018, 1195.88, 1391232, 1196.56, 1204.5, 1190.34
07/17/2018, 1198.8, 1585091, 1172.22, 1203.04, 1170.6
07/16/2018, 1183.86, 1049560, 1189.39, 1191, 1179.28
07/13/2018, 1188.82, 1221687, 1185, 1195.4173, 1180
07/12/2018, 1183.48, 1251083, 1159.89, 1184.41, 1155.935
07/11/2018, 1153.9, 1094301, 1144.59, 1164.29, 1141.0003
07/10/2018, 1152.84, 789249, 1156.98, 1159.59, 1149.59
07/09/2018, 1154.05, 906073, 1148.48, 1154.67, 1143.42
07/06/2018, 1140.17, 966155, 1123.58, 1140.93, 1120.7371
07/05/2018, 1124.27, 1060752, 1110.53, 1127.5, 1108.48
07/03/2018, 1102.89, 679034, 1135.82, 1135.82, 1100.02
07/02/2018, 1127.46, 1188616, 1099, 1128, 1093.8
06/29/2018, 1115.65, 1275979, 1120, 1128.2265, 1115
06/28/2018, 1114.22, 1072438, 1102.09, 1122.31, 1096.01
06/27/2018, 1103.98, 1287698, 1121.34, 1131.8362, 1103.62
06/26/2018, 1118.46, 1559791, 1128, 1133.21, 1116.6589
06/25/2018, 1124.81, 2155276, 1143.6, 1143.91, 1112.78
06/22/2018, 1155.48, 1310164, 1159.14, 1162.4965, 1147.26
06/21/2018, 1157.66, 1232352, 1174.85, 1177.295, 1152.232
06/20/2018, 1169.84, 1648248, 1175.31, 1186.2856, 1169.16
06/19/2018, 1168.06, 1616125, 1158.5, 1171.27, 1154.01
06/18/2018, 1173.46, 1400641, 1143.65, 1174.31, 1143.59
06/15/2018, 1152.26, 2119134, 1148.86, 1153.42, 1143.485
06/14/2018, 1152.12, 1350085, 1143.85, 1155.47, 1140.64
06/13/2018, 1134.79, 1490017, 1141.12, 1146.5, 1133.38
06/12/2018, 1139.32, 899231, 1131.07, 1139.79, 1130.735
06/11/2018, 1129.99, 1071114, 1118.6, 1137.26, 1118.6
06/08/2018, 1120.87, 1289859, 1118.18, 1126.67, 1112.15
06/07/2018, 1123.86, 1519860, 1131.32, 1135.82, 1116.52
06/06/2018, 1136.88, 1697489, 1142.17, 1143, 1125.7429
06/05/2018, 1139.66, 1538169, 1140.99, 1145.738, 1133.19
06/04/2018, 1139.29, 1881046, 1122.33, 1141.89, 1122.005
06/01/2018, 1119.5, 2416755, 1099.35, 1120, 1098.5
05/31/2018, 1084.99, 3085325, 1067.56, 1097.19, 1067.56
05/30/2018, 1067.8, 1129958, 1063.03, 1069.21, 1056.83
05/29/2018, 1060.32, 1858676, 1064.89, 1073.37, 1055.22
05/25/2018, 1075.66, 878903, 1079.02, 1082.56, 1073.775
05/24/2018, 1079.24, 757752, 1079, 1080.47, 1066.15
05/23/2018, 1079.69, 1057712, 1065.13, 1080.78, 1061.71
05/22/2018, 1069.73, 1088700, 1083.56, 1086.59, 1066.69
05/21/2018, 1079.58, 1012258, 1074.06, 1088, 1073.65
05/18/2018, 1066.36, 1496448, 1061.86, 1069.94, 1060.68
05/17/2018, 1078.59, 1031190, 1079.89, 1086.87, 1073.5
05/16/2018, 1081.77, 989819, 1077.31, 1089.27, 1076.26
05/15/2018, 1079.23, 1494306, 1090, 1090.05, 1073.47
05/14/2018, 1100.2, 1450140, 1100, 1110.75, 1099.11
05/11/2018, 1098.26, 1253205, 1093.6, 1101.3295, 1090.91
05/10/2018, 1097.57, 1441456, 1086.03, 1100.44, 1085.64
05/09/2018, 1082.76, 2032319, 1058.1, 1085.44, 1056.365
05/08/2018, 1053.91, 1217260, 1058.54, 1060.55, 1047.145
05/07/2018, 1054.79, 1464008, 1049.23, 1061.68, 1047.1
05/04/2018, 1048.21, 1936797, 1016.9, 1048.51, 1016.9
05/03/2018, 1023.72, 1813623, 1019, 1029.675, 1006.29
05/02/2018, 1024.38, 1534094, 1028.1, 1040.389, 1022.87
05/01/2018, 1037.31, 1427171, 1013.66, 1038.47, 1008.21
04/30/2018, 1017.33, 1664084, 1030.01, 1037, 1016.85
04/27/2018, 1030.05, 1617452, 1046, 1049.5, 1025.59
04/26/2018, 1040.04, 1984448, 1029.51, 1047.98, 1018.19
04/25/2018, 1021.18, 2225495, 1025.52, 1032.49, 1015.31
04/24/2018, 1019.98, 4750851, 1052, 1057, 1010.59
04/23/2018, 1067.45, 2278846, 1077.86, 1082.72, 1060.7
04/20/2018, 1072.96, 1887698, 1082, 1092.35, 1069.57
04/19/2018, 1087.7, 1741907, 1069.4, 1094.165, 1068.18
04/18/2018, 1072.08, 1336678, 1077.43, 1077.43, 1066.225
04/17/2018, 1074.16, 2311903, 1051.37, 1077.88, 1048.26
04/16/2018, 1037.98, 1194144, 1037, 1043.24, 1026.74
04/13/2018, 1029.27, 1175754, 1040.88, 1046.42, 1022.98
04/12/2018, 1032.51, 1357599, 1025.04, 1040.69, 1021.4347
04/11/2018, 1019.97, 1476133, 1027.99, 1031.3641, 1015.87
04/10/2018, 1031.64, 1983510, 1026.44, 1036.28, 1011.34
04/09/2018, 1015.45, 1738682, 1016.8, 1039.6, 1014.08
04/06/2018, 1007.04, 1740896, 1020, 1031.42, 1003.03
04/05/2018, 1027.81, 1345681, 1041.33, 1042.79, 1020.1311
04/04/2018, 1025.14, 2464418, 993.41, 1028.7175, 993
04/03/2018, 1013.41, 2271858, 1013.91, 1020.99, 994.07
04/02/2018, 1006.47, 2679214, 1022.82, 1034.8, 990.37
03/29/2018, 1031.79, 2714402, 1011.63, 1043, 1002.9
03/28/2018, 1004.56, 3345046, 998, 1024.23, 980.64
03/27/2018, 1005.1, 3081612, 1063, 1064.8393, 996.92
03/26/2018, 1053.21, 2593808, 1046, 1055.63, 1008.4
03/23/2018, 1021.57, 2147097, 1047.03, 1063.36, 1021.22
03/22/2018, 1049.08, 2584639, 1081.88, 1082.9, 1045.91
03/21/2018, 1090.88, 1878294, 1092.74, 1106.2999, 1085.15
03/20/2018, 1097.71, 1802209, 1099, 1105.2, 1083.46
03/19/2018, 1099.82, 2355186, 1120.01, 1121.99, 1089.01
03/16/2018, 1135.73, 2614871, 1154.14, 1155.88, 1131.96
03/15/2018, 1149.58, 1397767, 1149.96, 1161.08, 1134.54
03/14/2018, 1149.49, 1290638, 1145.21, 1158.59, 1141.44
03/13/2018, 1138.17, 1874176, 1170, 1176.76, 1133.33
03/12/2018, 1164.5, 2106548, 1163.85, 1177.05, 1157.42
03/09/2018, 1160.04, 2121425, 1136, 1160.8, 1132.4606
03/08/2018, 1126, 1393529, 1115.32, 1127.6, 1112.8
03/07/2018, 1109.64, 1277439, 1089.19, 1112.22, 1085.4823
03/06/2018, 1095.06, 1497087, 1099.22, 1101.85, 1089.775
03/05/2018, 1090.93, 1141932, 1075.14, 1097.1, 1069.0001
03/02/2018, 1078.92, 2271394, 1053.08, 1081.9986, 1048.115
03/01/2018, 1069.52, 2511872, 1107.87, 1110.12, 1067.001
02/28/2018, 1104.73, 1873737, 1123.03, 1127.53, 1103.24
02/27/2018, 1118.29, 1772866, 1141.24, 1144.04, 1118
02/26/2018, 1143.75, 1514920, 1127.8, 1143.96, 1126.695
02/23/2018, 1126.79, 1190432, 1112.64, 1127.28, 1104.7135
02/22/2018, 1106.63, 1309536, 1116.19, 1122.82, 1102.59
02/21/2018, 1111.34, 1507152, 1106.47, 1133.97, 1106.33
02/20/2018, 1102.46, 1389491, 1090.57, 1113.95, 1088.52
02/16/2018, 1094.8, 1680283, 1088.41, 1104.67, 1088.3134
02/15/2018, 1089.52, 1785552, 1079.07, 1091.4794, 1064.34
02/14/2018, 1069.7, 1547665, 1048.95, 1071.72, 1046.75
02/13/2018, 1052.1, 1213800, 1045, 1058.37, 1044.0872
02/12/2018, 1051.94, 2054002, 1048, 1061.5, 1040.928
02/09/2018, 1037.78, 3503970, 1017.25, 1043.97, 992.56
02/08/2018, 1001.52, 2809890, 1055.41, 1058.62, 1000.66
02/07/2018, 1048.58, 2353003, 1081.54, 1081.78, 1048.26
02/06/2018, 1080.6, 3432313, 1027.18, 1081.71, 1023.1367
02/05/2018, 1055.8, 3769453, 1090.6, 1110, 1052.03
02/02/2018, 1111.9, 4837979, 1122, 1123.07, 1107.2779
02/01/2018, 1167.7, 2380221, 1162.61, 1174, 1157.52
01/31/2018, 1169.94, 1523820, 1170.57, 1173, 1159.13
01/30/2018, 1163.69, 1541771, 1167.83, 1176.52, 1163.52
01/29/2018, 1175.58, 1337324, 1176.48, 1186.89, 1171.98
01/26/2018, 1175.84, 1981173, 1175.08, 1175.84, 1158.11
01/25/2018, 1170.37, 1461518, 1172.53, 1175.94, 1162.76
01/24/2018, 1164.24, 1382904, 1177.33, 1179.86, 1161.05
01/23/2018, 1169.97, 1309862, 1159.85, 1171.6266, 1158.75
01/22/2018, 1155.81, 1616120, 1137.49, 1159.88, 1135.1101
01/19/2018, 1137.51, 1390118, 1131.83, 1137.86, 1128.3
01/18/2018, 1129.79, 1194943, 1131.41, 1132.51, 1117.5
01/17/2018, 1131.98, 1200476, 1126.22, 1132.6, 1117.01
01/16/2018, 1121.76, 1566662, 1132.51, 1139.91, 1117.8316
01/12/2018, 1122.26, 1718491, 1102.41, 1124.29, 1101.15
01/11/2018, 1105.52, 977727, 1106.3, 1106.525, 1099.59
01/10/2018, 1102.61, 1042273, 1097.1, 1104.6, 1096.11
01/09/2018, 1106.26, 900089, 1109.4, 1110.57, 1101.2307
01/08/2018, 1106.94, 1046767, 1102.23, 1111.27, 1101.62
01/05/2018, 1102.23, 1279990, 1094, 1104.25, 1092
01/04/2018, 1086.4, 1002945, 1088, 1093.5699, 1084.0017
01/03/2018, 1082.48, 1429757, 1064.31, 1086.29, 1063.21
01/02/2018, 1065, 1236401, 1048.34, 1066.94, 1045.23
12/29/2017, 1046.4, 886845, 1046.72, 1049.7, 1044.9
12/28/2017, 1048.14, 833011, 1051.6, 1054.75, 1044.77
12/27/2017, 1049.37, 1271780, 1057.39, 1058.37, 1048.05
12/26/2017, 1056.74, 761097, 1058.07, 1060.12, 1050.2
12/22/2017, 1060.12, 755089, 1061.11, 1064.2, 1059.44
12/21/2017, 1063.63, 986548, 1064.95, 1069.33, 1061.7938
12/20/2017, 1064.95, 1268285, 1071.78, 1073.38, 1061.52
12/19/2017, 1070.68, 1307894, 1075.2, 1076.84, 1063.55
12/18/2017, 1077.14, 1552016, 1066.08, 1078.49, 1062
12/15/2017, 1064.19, 3275091, 1054.61, 1067.62, 1049.5
12/14/2017, 1049.15, 1558684, 1045, 1058.5, 1043.11
12/13/2017, 1040.61, 1220364, 1046.12, 1046.665, 1038.38
12/12/2017, 1040.48, 1279511, 1039.63, 1050.31, 1033.6897
12/11/2017, 1041.1, 1190527, 1035.5, 1043.8, 1032.0504
12/08/2017, 1037.05, 1288419, 1037.49, 1042.05, 1032.5222
12/07/2017, 1030.93, 1458145, 1020.43, 1034.24, 1018.071
12/06/2017, 1018.38, 1258496, 1001.5, 1024.97, 1001.14
12/05/2017, 1005.15, 2066247, 995.94, 1020.61, 988.28
12/04/2017, 998.68, 1906058, 1012.66, 1016.1, 995.57
12/01/2017, 1010.17, 1908962, 1015.8, 1022.4897, 1002.02
11/30/2017, 1021.41, 1723003, 1022.37, 1028.4899, 1015
11/29/2017, 1021.66, 2442974, 1042.68, 1044.08, 1015.65
11/28/2017, 1047.41, 1421027, 1055.09, 1062.375, 1040
11/27/2017, 1054.21, 1307471, 1040, 1055.46, 1038.44
11/24/2017, 1040.61, 536996, 1035.87, 1043.178, 1035
11/22/2017, 1035.96, 746351, 1035, 1039.706, 1031.43
11/21/2017, 1034.49, 1096161, 1023.31, 1035.11, 1022.655
11/20/2017, 1018.38, 898389, 1020.26, 1022.61, 1017.5
11/17/2017, 1019.09, 1366936, 1034.01, 1034.42, 1017.75
11/16/2017, 1032.5, 1129424, 1022.52, 1035.92, 1022.52
11/15/2017, 1020.91, 847932, 1019.21, 1024.09, 1015.42
11/14/2017, 1026, 958708, 1022.59, 1026.81, 1014.15
11/13/2017, 1025.75, 885565, 1023.42, 1031.58, 1022.57
11/10/2017, 1028.07, 720674, 1026.46, 1030.76, 1025.28
11/09/2017, 1031.26, 1244701, 1033.99, 1033.99, 1019.6656
11/08/2017, 1039.85, 1088395, 1030.52, 1043.522, 1028.45
11/07/2017, 1033.33, 1112123, 1027.27, 1033.97, 1025.13
11/06/2017, 1025.9, 1124757, 1028.99, 1034.87, 1025
11/03/2017, 1032.48, 1075134, 1022.11, 1032.65, 1020.31
11/02/2017, 1025.58, 1048584, 1021.76, 1028.09, 1013.01
11/01/2017, 1025.5, 1371619, 1017.21, 1029.67, 1016.95
10/31/2017, 1016.64, 1331265, 1015.22, 1024, 1010.42
10/30/2017, 1017.11, 2083490, 1014, 1024.97, 1007.5
10/27/2017, 1019.27, 5165922, 1009.19, 1048.39, 1008.2
10/26/2017, 972.56, 2027218, 980, 987.6, 972.2
10/25/2017, 973.33, 1210368, 968.37, 976.09, 960.5201
10/24/2017, 970.54, 1206074, 970, 972.23, 961
10/23/2017, 968.45, 1471544, 989.52, 989.52, 966.12
10/20/2017, 988.2, 1176177, 989.44, 991, 984.58
10/19/2017, 984.45, 1312706, 986, 988.88, 978.39
10/18/2017, 992.81, 1057285, 991.77, 996.72, 986.9747
10/17/2017, 992.18, 1290152, 990.29, 996.44, 988.59
10/16/2017, 992, 910246, 992.1, 993.9065, 984
10/13/2017, 989.68, 1169584, 992, 997.21, 989
10/12/2017, 987.83, 1278357, 987.45, 994.12, 985
10/11/2017, 989.25, 1692843, 973.72, 990.71, 972.25
10/10/2017, 972.6, 968113, 980, 981.57, 966.0801
10/09/2017, 977, 890620, 980, 985.425, 976.11
10/06/2017, 978.89, 1146207, 966.7, 979.46, 963.36
10/05/2017, 969.96, 1210427, 955.49, 970.91, 955.18
10/04/2017, 951.68, 951766, 957, 960.39, 950.69
10/03/2017, 957.79, 888303, 954, 958, 949.14
10/02/2017, 953.27, 1282850, 959.98, 962.54, 947.84
09/29/2017, 959.11, 1576365, 952, 959.7864, 951.51
09/28/2017, 949.5, 997036, 941.36, 950.69, 940.55
09/27/2017, 944.49, 2237538, 927.74, 949.9, 927.74
09/26/2017, 924.86, 1666749, 923.72, 930.82, 921.14
09/25/2017, 920.97, 1855742, 925.45, 926.4, 909.7
09/22/2017, 928.53, 1052170, 927.75, 934.73, 926.48
09/21/2017, 932.45, 1227059, 933, 936.53, 923.83
09/20/2017, 931.58, 1535626, 922.98, 933.88, 922
09/19/2017, 921.81, 912967, 917.42, 922.4199, 912.55
09/18/2017, 915, 1300759, 920.01, 922.08, 910.6
09/15/2017, 920.29, 2499466, 924.66, 926.49, 916.36
09/14/2017, 925.11, 1395497, 931.25, 932.77, 924
09/13/2017, 935.09, 1101145, 930.66, 937.25, 929.86
09/12/2017, 932.07, 1133638, 932.59, 933.48, 923.861
09/11/2017, 929.08, 1266020, 934.25, 938.38, 926.92
09/08/2017, 926.5, 997699, 936.49, 936.99, 924.88
09/07/2017, 935.95, 1211472, 931.73, 936.41, 923.62
09/06/2017, 927.81, 1526209, 930.15, 930.915, 919.27
09/05/2017, 928.45, 1346791, 933.08, 937, 921.96
09/01/2017, 937.34, 943657, 941.13, 942.48, 935.15
08/31/2017, 939.33, 1566888, 931.76, 941.98, 931.76
08/30/2017, 929.57, 1300616, 920.05, 930.819, 919.65
08/29/2017, 921.29, 1181391, 905.1, 923.33, 905
08/28/2017, 913.81, 1085014, 916, 919.245, 911.87
08/25/2017, 915.89, 1052764, 923.49, 925.555, 915.5
08/24/2017, 921.28, 1266191, 928.66, 930.84, 915.5
08/23/2017, 927, 1088575, 921.93, 929.93, 919.36
08/22/2017, 924.69, 1166320, 912.72, 925.86, 911.4751
08/21/2017, 906.66, 942328, 910, 913, 903.4
08/18/2017, 910.67, 1341990, 910.31, 915.275, 907.1543
08/17/2017, 910.98, 1241782, 925.78, 926.86, 910.98
08/16/2017, 926.96, 1005261, 925.29, 932.7, 923.445
08/15/2017, 922.22, 882479, 924.23, 926.5499, 919.82
08/14/2017, 922.67, 1063404, 922.53, 924.668, 918.19
08/11/2017, 914.39, 1205652, 907.97, 917.78, 905.58
08/10/2017, 907.24, 1755521, 917.55, 919.26, 906.13
08/09/2017, 922.9, 1191332, 920.61, 925.98, 917.2501
08/08/2017, 926.79, 1057351, 927.09, 935.814, 925.6095
08/07/2017, 929.36, 1031710, 929.06, 931.7, 926.5
08/04/2017, 927.96, 1081814, 926.75, 930.3068, 923.03
08/03/2017, 923.65, 1201519, 930.34, 932.24, 922.24
08/02/2017, 930.39, 1822272, 928.61, 932.6, 916.68
08/01/2017, 930.83, 1234612, 932.38, 937.447, 929.26
07/31/2017, 930.5, 1964748, 941.89, 943.59, 926.04
07/28/2017, 941.53, 1802343, 929.4, 943.83, 927.5
07/27/2017, 934.09, 3128819, 951.78, 951.78, 920
07/26/2017, 947.8, 2069349, 954.68, 955, 942.2788
07/25/2017, 950.7, 4656609, 953.81, 959.7, 945.4
07/24/2017, 980.34, 3205374, 972.22, 986.2, 970.77
07/21/2017, 972.92, 1697190, 962.25, 973.23, 960.15
07/20/2017, 968.15, 1620636, 975, 975.9, 961.51
07/19/2017, 970.89, 1221155, 967.84, 973.04, 964.03
07/18/2017, 965.4, 1152741, 953, 968.04, 950.6
07/17/2017, 953.42, 1164141, 957, 960.74, 949.2407
07/14/2017, 955.99, 1052855, 952, 956.91, 948.005
07/13/2017, 947.16, 1294674, 946.29, 954.45, 943.01
07/12/2017, 943.83, 1517168, 938.68, 946.3, 934.47
07/11/2017, 930.09, 1112417, 929.54, 931.43, 922
07/10/2017, 928.8, 1190237, 921.77, 930.38, 919.59
07/07/2017, 918.59, 1590456, 908.85, 921.54, 908.85
07/06/2017, 906.69, 1424290, 904.12, 914.9444, 899.7
07/05/2017, 911.71, 1813309, 901.76, 914.51, 898.5
07/03/2017, 898.7, 1710373, 912.18, 913.94, 894.79
06/30/2017, 908.73, 2086340, 926.05, 926.05, 908.31
06/29/2017, 917.79, 3287991, 929.92, 931.26, 910.62
06/28/2017, 940.49, 2719213, 929, 942.75, 916
06/27/2017, 927.33, 2566047, 942.46, 948.29, 926.85
06/26/2017, 952.27, 1596664, 969.9, 973.31, 950.79
06/23/2017, 965.59, 1527513, 956.83, 966, 954.2
06/22/2017, 957.09, 941639, 958.7, 960.72, 954.55
06/21/2017, 959.45, 1201971, 953.64, 960.1, 950.76
06/20/2017, 950.63, 1125520, 957.52, 961.62, 950.01
06/19/2017, 957.37, 1520715, 949.96, 959.99, 949.05
06/16/2017, 939.78, 3061794, 940, 942.04, 931.595
06/15/2017, 942.31, 2065271, 933.97, 943.339, 924.44
06/14/2017, 950.76, 1487378, 959.92, 961.15, 942.25
06/13/2017, 953.4, 2012980, 951.91, 959.98, 944.09
06/12/2017, 942.9, 3762434, 939.56, 949.355, 915.2328
06/09/2017, 949.83, 3305545, 984.5, 984.5, 935.63
06/08/2017, 983.41, 1477151, 982.35, 984.57, 977.2
06/07/2017, 981.08, 1447172, 979.65, 984.15, 975.77
06/06/2017, 976.57, 1814323, 983.16, 988.25, 975.14
06/05/2017, 983.68, 1251903, 976.55, 986.91, 975.1
06/02/2017, 975.6, 1750723, 969.46, 975.88, 966
06/01/2017, 966.95, 1408958, 968.95, 971.5, 960.01
05/31/2017, 964.86, 2447176, 975.02, 979.27, 960.18
05/30/2017, 975.88, 1466288, 970.31, 976.2, 969.49
05/26/2017, 971.47, 1251425, 969.7, 974.98, 965.03
05/25/2017, 969.54, 1659422, 957.33, 972.629, 955.47
05/24/2017, 954.96, 1031408, 952.98, 955.09, 949.5
05/23/2017, 948.82, 1269438, 947.92, 951.4666, 942.575
05/22/2017, 941.86, 1118456, 935, 941.8828, 935
05/19/2017, 934.01, 1389848, 931.47, 937.755, 931
05/18/2017, 930.24, 1596058, 921, 933.17, 918.75
05/17/2017, 919.62, 2357922, 935.67, 939.3325, 918.14
05/16/2017, 943, 968288, 940, 943.11, 937.58
05/15/2017, 937.08, 1104595, 932.95, 938.25, 929.34
05/12/2017, 932.22, 1050377, 931.53, 933.44, 927.85
05/11/2017, 930.6, 834997, 925.32, 932.53, 923.0301
05/10/2017, 928.78, 1173887, 931.98, 932, 925.16
05/09/2017, 932.17, 1581236, 936.95, 937.5, 929.53
05/08/2017, 934.3, 1328885, 926.12, 936.925, 925.26
05/05/2017, 927.13, 1910317, 933.54, 934.9, 925.2
05/04/2017, 931.66, 1421938, 926.07, 935.93, 924.59
05/03/2017, 927.04, 1497565, 914.86, 928.1, 912.5426
05/02/2017, 916.44, 1543696, 909.62, 920.77, 909.4526
05/01/2017, 912.57, 2114629, 901.94, 915.68, 901.45
04/28/2017, 905.96, 3223850, 910.66, 916.85, 905.77
04/27/2017, 874.25, 2009509, 873.6, 875.4, 870.38
04/26/2017, 871.73, 1233724, 874.23, 876.05, 867.7481
04/25/2017, 872.3, 1670095, 865, 875, 862.81
04/24/2017, 862.76, 1371722, 851.2, 863.45, 849.86
04/21/2017, 843.19, 1323364, 842.88, 843.88, 840.6
04/20/2017, 841.65, 957994, 841.44, 845.2, 839.32
04/19/2017, 838.21, 954324, 839.79, 842.22, 836.29
04/18/2017, 836.82, 835433, 834.22, 838.93, 832.71
04/17/2017, 837.17, 894540, 825.01, 837.75, 824.47
04/13/2017, 823.56, 1118221, 822.14, 826.38, 821.44
04/12/2017, 824.32, 900059, 821.93, 826.66, 821.02
04/11/2017, 823.35, 1078951, 824.71, 827.4267, 817.0201
04/10/2017, 824.73, 978825, 825.39, 829.35, 823.77
04/07/2017, 824.67, 1056692, 827.96, 828.485, 820.5127
04/06/2017, 827.88, 1254235, 832.4, 836.39, 826.46
04/05/2017, 831.41, 1553163, 835.51, 842.45, 830.72
04/04/2017, 834.57, 1044455, 831.36, 835.18, 829.0363
04/03/2017, 838.55, 1670349, 829.22, 840.85, 829.22
03/31/2017, 829.56, 1401756, 828.97, 831.64, 827.39
03/30/2017, 831.5, 1055263, 833.5, 833.68, 829
03/29/2017, 831.41, 1785006, 825, 832.765, 822.3801
03/28/2017, 820.92, 1620532, 820.41, 825.99, 814.027
03/27/2017, 819.51, 1894735, 806.95, 821.63, 803.37
03/24/2017, 814.43, 1980415, 820.08, 821.93, 808.89
03/23/2017, 817.58, 3485390, 821, 822.57, 812.257
03/22/2017, 829.59, 1399409, 831.91, 835.55, 827.1801
03/21/2017, 830.46, 2461375, 851.4, 853.5, 829.02
03/20/2017, 848.4, 1217560, 850.01, 850.22, 845.15
03/17/2017, 852.12, 1712397, 851.61, 853.4, 847.11
03/16/2017, 848.78, 977384, 849.03, 850.85, 846.13
03/15/2017, 847.2, 1381328, 847.59, 848.63, 840.77
03/14/2017, 845.62, 779920, 843.64, 847.24, 840.8
03/13/2017, 845.54, 1149928, 844, 848.685, 843.25
03/10/2017, 843.25, 1702731, 843.28, 844.91, 839.5
03/09/2017, 838.68, 1261393, 836, 842, 834.21
03/08/2017, 835.37, 988900, 833.51, 838.15, 831.79
03/07/2017, 831.91, 1037573, 827.4, 833.41, 826.52
03/06/2017, 827.78, 1108799, 826.95, 828.88, 822.4
03/03/2017, 829.08, 890640, 830.56, 831.36, 825.751
03/02/2017, 830.63, 937824, 833.85, 834.51, 829.64
03/01/2017, 835.24, 1495934, 828.85, 836.255, 827.26
02/28/2017, 823.21, 2258695, 825.61, 828.54, 820.2
02/27/2017, 829.28, 1101120, 824.55, 830.5, 824
02/24/2017, 828.64, 1392039, 827.73, 829, 824.2
02/23/2017, 831.33, 1471342, 830.12, 832.46, 822.88
02/22/2017, 830.76, 983058, 828.66, 833.25, 828.64
02/21/2017, 831.66, 1259841, 828.66, 833.45, 828.35
02/17/2017, 828.07, 1602549, 823.02, 828.07, 821.655
02/16/2017, 824.16, 1285919, 819.93, 824.4, 818.98
02/15/2017, 818.98, 1311316, 819.36, 823, 818.47
02/14/2017, 820.45, 1054472, 819, 823, 816
02/13/2017, 819.24, 1205835, 816, 820.959, 815.49
02/10/2017, 813.67, 1134701, 811.7, 815.25, 809.78
02/09/2017, 809.56, 990260, 809.51, 810.66, 804.54
02/08/2017, 808.38, 1155892, 807, 811.84, 803.1903
02/07/2017, 806.97, 1240257, 803.99, 810.5, 801.78
02/06/2017, 801.34, 1182882, 799.7, 801.67, 795.2501
02/03/2017, 801.49, 1461217, 802.99, 806, 800.37
02/02/2017, 798.53, 1530827, 793.8, 802.7, 792
02/01/2017, 795.695, 2027708, 799.68, 801.19, 791.19
01/31/2017, 796.79, 2153957, 796.86, 801.25, 790.52
01/30/2017, 802.32, 3243568, 814.66, 815.84, 799.8
01/27/2017, 823.31, 2964989, 834.71, 841.95, 820.44
01/26/2017, 832.15, 2944642, 837.81, 838, 827.01
01/25/2017, 835.67, 1612854, 829.62, 835.77, 825.06
01/24/2017, 823.87, 1472228, 822.3, 825.9, 817.821
01/23/2017, 819.31, 1962506, 807.25, 820.87, 803.74
01/20/2017, 805.02, 1668638, 806.91, 806.91, 801.69
01/19/2017, 802.175, 917085, 805.12, 809.48, 801.8
01/18/2017, 806.07, 1293893, 805.81, 806.205, 800.99
01/17/2017, 804.61, 1361935, 807.08, 807.14, 800.37
01/13/2017, 807.88, 1098154, 807.48, 811.2244, 806.69
01/12/2017, 806.36, 1352872, 807.14, 807.39, 799.17
01/11/2017, 807.91, 1065360, 805, 808.15, 801.37
01/10/2017, 804.79, 1176637, 807.86, 809.1299, 803.51
01/09/2017, 806.65, 1274318, 806.4, 809.9664, 802.83
01/06/2017, 806.15, 1639246, 795.26, 807.9, 792.2041
01/05/2017, 794.02, 1334028, 786.08, 794.48, 785.02
01/04/2017, 786.9, 1071198, 788.36, 791.34, 783.16
01/03/2017, 786.14, 1657291, 778.81, 789.63, 775.8
12/30/2016, 771.82, 1769809, 782.75, 782.78, 770.41
12/29/2016, 782.79, 743808, 783.33, 785.93, 778.92
12/28/2016, 785.05, 1142148, 793.7, 794.23, 783.2
12/27/2016, 791.55, 789151, 790.68, 797.86, 787.657
12/23/2016, 789.91, 623682, 790.9, 792.74, 787.28
12/22/2016, 791.26, 972147, 792.36, 793.32, 788.58
12/21/2016, 794.56, 1208770, 795.84, 796.6757, 787.1
12/20/2016, 796.42, 950345, 796.76, 798.65, 793.27
12/19/2016, 794.2, 1231966, 790.22, 797.66, 786.27
12/16/2016, 790.8, 2435100, 800.4, 800.8558, 790.29
12/15/2016, 797.85, 1623709, 797.34, 803, 792.92
12/14/2016, 797.07, 1700875, 797.4, 804, 794.01
12/13/2016, 796.1, 2122735, 793.9, 804.3799, 793.34
12/12/2016, 789.27, 2102288, 785.04, 791.25, 784.3554
12/09/2016, 789.29, 1821146, 780, 789.43, 779.021
12/08/2016, 776.42, 1487517, 772.48, 778.18, 767.23
12/07/2016, 771.19, 1757710, 761, 771.36, 755.8
12/06/2016, 759.11, 1690365, 764.73, 768.83, 757.34
12/05/2016, 762.52, 1393566, 757.71, 763.9, 752.9
12/02/2016, 750.5, 1452181, 744.59, 754, 743.1
12/01/2016, 747.92, 3017001, 757.44, 759.85, 737.0245
11/30/2016, 758.04, 2386628, 770.07, 772.99, 754.83
11/29/2016, 770.84, 1616427, 771.53, 778.5, 768.24
11/28/2016, 768.24, 2177039, 760, 779.53, 759.8
11/25/2016, 761.68, 587421, 764.26, 765, 760.52
11/23/2016, 760.99, 1477501, 767.73, 768.2825, 755.25
11/22/2016, 768.27, 1592372, 772.63, 776.96, 767
11/21/2016, 769.2, 1324431, 762.61, 769.7, 760.6
11/18/2016, 760.54, 1528555, 771.37, 775, 760
11/17/2016, 771.23, 1298484, 766.92, 772.7, 764.23
11/16/2016, 764.48, 1468196, 755.2, 766.36, 750.51
11/15/2016, 758.49, 2375056, 746.97, 764.4162, 746.97
11/14/2016, 736.08, 3644965, 755.6, 757.85, 727.54
11/11/2016, 754.02, 2421889, 756.54, 760.78, 750.38
11/10/2016, 762.56, 4733916, 791.17, 791.17, 752.18
11/09/2016, 785.31, 2603860, 779.94, 791.2265, 771.67
11/08/2016, 790.51, 1361472, 783.4, 795.633, 780.19
11/07/2016, 782.52, 1574426, 774.5, 785.19, 772.55
11/04/2016, 762.02, 2131948, 750.66, 770.36, 750.5611
11/03/2016, 762.13, 1933937, 767.25, 769.95, 759.03
11/02/2016, 768.7, 1905814, 778.2, 781.65, 763.4496
11/01/2016, 783.61, 2404898, 782.89, 789.49, 775.54
10/31/2016, 784.54, 2420892, 795.47, 796.86, 784
10/28/2016, 795.37, 4261912, 808.35, 815.49, 793.59
10/27/2016, 795.35, 2723097, 801, 803.49, 791.5
10/26/2016, 799.07, 1645403, 806.34, 806.98, 796.32
10/25/2016, 807.67, 1575020, 816.68, 816.68, 805.14
10/24/2016, 813.11, 1693162, 804.9, 815.18, 804.82
10/21/2016, 799.37, 1262042, 795, 799.5, 794
10/20/2016, 796.97, 1755546, 803.3, 803.97, 796.03
10/19/2016, 801.56, 1762990, 798.86, 804.63, 797.635
10/18/2016, 795.26, 2046338, 787.85, 801.61, 785.565
10/17/2016, 779.96, 1091524, 779.8, 785.85, 777.5
10/14/2016, 778.53, 851512, 781.65, 783.95, 776
10/13/2016, 778.19, 1360619, 781.22, 781.22, 773
10/12/2016, 786.14, 935138, 783.76, 788.13, 782.06
10/11/2016, 783.07, 1371461, 786.66, 792.28, 780.58
10/10/2016, 785.94, 1161410, 777.71, 789.38, 775.87
10/07/2016, 775.08, 932444, 779.66, 779.66, 770.75
10/06/2016, 776.86, 1066910, 779, 780.48, 775.54
10/05/2016, 776.47, 1457661, 779.31, 782.07, 775.65
10/04/2016, 776.43, 1198361, 776.03, 778.71, 772.89
10/03/2016, 772.56, 1276614, 774.25, 776.065, 769.5
09/30/2016, 777.29, 1583293, 776.33, 780.94, 774.09
09/29/2016, 775.01, 1310252, 781.44, 785.8, 774.232
09/28/2016, 781.56, 1108249, 777.85, 781.81, 774.97
09/27/2016, 783.01, 1152760, 775.5, 785.9899, 774.308
09/26/2016, 774.21, 1531788, 782.74, 782.74, 773.07
09/23/2016, 786.9, 1411439, 786.59, 788.93, 784.15
09/22/2016, 787.21, 1483899, 780, 789.85, 778.44
09/21/2016, 776.22, 1166290, 772.66, 777.16, 768.301
09/20/2016, 771.41, 975434, 769, 773.33, 768.53
09/19/2016, 765.7, 1171969, 772.42, 774, 764.4406
09/16/2016, 768.88, 2047036, 769.75, 769.75, 764.66
09/15/2016, 771.76, 1344945, 762.89, 773.8, 759.96
09/14/2016, 762.49, 1093723, 759.61, 767.68, 759.11
09/13/2016, 759.69, 1394158, 764.48, 766.2195, 755.8
09/12/2016, 769.02, 1310493, 755.13, 770.29, 754.0001
09/09/2016, 759.66, 1879903, 770.1, 773.245, 759.66
09/08/2016, 775.32, 1268663, 778.59, 780.35, 773.58
09/07/2016, 780.35, 893874, 780, 782.73, 776.2
09/06/2016, 780.08, 1441864, 773.45, 782, 771
09/02/2016, 771.46, 1070725, 773.01, 773.9199, 768.41
09/01/2016, 768.78, 925019, 769.25, 771.02, 764.3
08/31/2016, 767.05, 1247937, 767.01, 769.09, 765.38
08/30/2016, 769.09, 1129932, 769.33, 774.466, 766.84
08/29/2016, 772.15, 847537, 768.74, 774.99, 766.615
08/26/2016, 769.54, 1164713, 769, 776.0799, 765.85
08/25/2016, 769.41, 926856, 767, 771.89, 763.1846
08/24/2016, 769.64, 1071569, 770.58, 774.5, 767.07
08/23/2016, 772.08, 925356, 775.48, 776.44, 771.785
08/22/2016, 772.15, 950417, 773.27, 774.54, 770.0502
08/19/2016, 775.42, 860899, 775, 777.1, 773.13
08/18/2016, 777.5, 718882, 780.01, 782.86, 777
08/17/2016, 779.91, 921666, 777.32, 780.81, 773.53
08/16/2016, 777.14, 1027836, 780.3, 780.98, 773.444
08/15/2016, 782.44, 938183, 783.75, 787.49, 780.11
08/12/2016, 783.22, 739761, 781.5, 783.395, 780.4
08/11/2016, 784.85, 971742, 785, 789.75, 782.97
08/10/2016, 784.68, 784559, 783.75, 786.8123, 782.778
08/09/2016, 784.26, 1318457, 781.1, 788.94, 780.57
08/08/2016, 781.76, 1106693, 782, 782.63, 778.091
08/05/2016, 782.22, 1799478, 773.78, 783.04, 772.34
08/04/2016, 771.61, 1139972, 772.22, 774.07, 768.795
08/03/2016, 773.18, 1283186, 767.18, 773.21, 766.82
08/02/2016, 771.07, 1782822, 768.69, 775.84, 767.85
08/01/2016, 772.88, 2697699, 761.09, 780.43, 761.09
07/29/2016, 768.79, 3830103, 772.71, 778.55, 766.77
07/28/2016, 745.91, 3473040, 747.04, 748.65, 739.3
07/27/2016, 741.77, 1509133, 738.28, 744.46, 737
07/26/2016, 738.42, 1182993, 739.04, 741.69, 734.27
07/25/2016, 739.77, 1031643, 740.67, 742.61, 737.5
07/22/2016, 742.74, 1256741, 741.86, 743.24, 736.56
07/21/2016, 738.63, 1022229, 740.36, 741.69, 735.831
07/20/2016, 741.19, 1283931, 737.33, 742.13, 737.1
07/19/2016, 736.96, 1225467, 729.89, 736.99, 729
07/18/2016, 733.78, 1284740, 722.71, 736.13, 721.19
07/15/2016, 719.85, 1277514, 725.73, 725.74, 719.055
07/14/2016, 720.95, 949456, 721.58, 722.21, 718.03
07/13/2016, 716.98, 933352, 723.62, 724, 716.85
07/12/2016, 720.64, 1336112, 719.12, 722.94, 715.91
07/11/2016, 715.09, 1107039, 708.05, 716.51, 707.24
07/08/2016, 705.63, 1573909, 699.5, 705.71, 696.435
07/07/2016, 695.36, 1303661, 698.08, 698.2, 688.215
07/06/2016, 697.77, 1411080, 689.98, 701.68, 689.09
07/05/2016, 694.49, 1462879, 696.06, 696.94, 688.88
07/01/2016, 699.21, 1344387, 692.2, 700.65, 692.1301
06/30/2016, 692.1, 1597298, 685.47, 692.32, 683.65
06/29/2016, 684.11, 1931436, 683, 687.4292, 681.41
06/28/2016, 680.04, 2169704, 678.97, 680.33, 673
06/27/2016, 668.26, 2632011, 671, 672.3, 663.284
06/24/2016, 675.22, 4442943, 675.17, 689.4, 673.45
06/23/2016, 701.87, 2166183, 697.45, 701.95, 687
06/22/2016, 697.46, 1182161, 699.06, 700.86, 693.0819
06/21/2016, 695.94, 1464836, 698.4, 702.77, 692.01
06/20/2016, 693.71, 2080645, 698.77, 702.48, 693.41
06/17/2016, 691.72, 3397720, 708.65, 708.82, 688.4515
06/16/2016, 710.36, 1981657, 714.91, 716.65, 703.26
06/15/2016, 718.92, 1213386, 719, 722.98, 717.31
06/14/2016, 718.27, 1303808, 716.48, 722.47, 713.12
06/13/2016, 718.36, 1255199, 716.51, 725.44, 716.51
06/10/2016, 719.41, 1213989, 719.47, 725.89, 716.43
06/09/2016, 728.58, 987635, 722.87, 729.54, 722.3361
06/08/2016, 728.28, 1583325, 723.96, 728.57, 720.58
06/07/2016, 716.65, 1336348, 719.84, 721.98, 716.55
06/06/2016, 716.55, 1565955, 724.91, 724.91, 714.61
06/03/2016, 722.34, 1225924, 729.27, 729.49, 720.56
06/02/2016, 730.4, 1340664, 732.5, 733.02, 724.17
06/01/2016, 734.15, 1251468, 734.53, 737.21, 730.66
05/31/2016, 735.72, 2128358, 731.74, 739.73, 731.26
05/27/2016, 732.66, 1974425, 724.01, 733.936, 724
05/26/2016, 724.12, 1573635, 722.87, 728.33, 720.28
05/25/2016, 725.27, 1629790, 720.76, 727.51, 719.7047
05/24/2016, 720.09, 1926828, 706.86, 720.97, 706.86
05/23/2016, 704.24, 1326386, 706.53, 711.4781, 704.18
05/20/2016, 709.74, 1825830, 701.62, 714.58, 700.52
05/19/2016, 700.32, 1668887, 702.36, 706, 696.8
05/18/2016, 706.63, 1765632, 703.67, 711.6, 700.63
05/17/2016, 706.23, 1999883, 715.99, 721.52, 704.11
05/16/2016, 716.49, 1316719, 709.13, 718.48, 705.65
05/13/2016, 710.83, 1307559, 711.93, 716.6619, 709.26
05/12/2016, 713.31, 1361170, 717.06, 719.25, 709
05/11/2016, 715.29, 1690862, 723.41, 724.48, 712.8
05/10/2016, 723.18, 1568621, 716.75, 723.5, 715.72
05/09/2016, 712.9, 1509892, 712, 718.71, 710
05/06/2016, 711.12, 1828508, 698.38, 711.86, 698.1067
05/05/2016, 701.43, 1680220, 697.7, 702.3199, 695.72
05/04/2016, 695.7, 1692757, 690.49, 699.75, 689.01
05/03/2016, 692.36, 1541297, 696.87, 697.84, 692
05/02/2016, 698.21, 1645013, 697.63, 700.64, 691
04/29/2016, 693.01, 2486584, 690.7, 697.62, 689
04/28/2016, 691.02, 2859790, 708.26, 714.17, 689.55
04/27/2016, 705.84, 3094905, 707.29, 708.98, 692.3651
04/26/2016, 708.14, 2739133, 725.42, 725.766, 703.0264
04/25/2016, 723.15, 1956956, 716.1, 723.93, 715.59
04/22/2016, 718.77, 5949699, 726.3, 736.12, 713.61
04/21/2016, 759.14, 2995094, 755.38, 760.45, 749.55
04/20/2016, 752.67, 1526776, 758, 758.1315, 750.01
04/19/2016, 753.93, 2027962, 769.51, 769.9, 749.33
04/18/2016, 766.61, 1557199, 760.46, 768.05, 757.3
04/15/2016, 759, 1807062, 753.98, 761, 752.6938
04/14/2016, 753.2, 1134056, 754.01, 757.31, 752.705
04/13/2016, 751.72, 1707397, 749.16, 754.38, 744.261
04/12/2016, 743.09, 1349780, 738, 743.83, 731.01
04/11/2016, 736.1, 1218789, 743.02, 745, 736.05
04/08/2016, 739.15, 1289869, 743.97, 745.45, 735.55
04/07/2016, 740.28, 1452369, 745.37, 746.9999, 736.28
04/06/2016, 745.69, 1052171, 735.77, 746.24, 735.56
04/05/2016, 737.8, 1130817, 738, 742.8, 735.37
04/04/2016, 745.29, 1134214, 750.06, 752.8, 742.43
04/01/2016, 749.91, 1576240, 738.6, 750.34, 737
03/31/2016, 744.95, 1718638, 749.25, 750.85, 740.94
03/30/2016, 750.53, 1782278, 750.1, 757.88, 748.74
03/29/2016, 744.77, 1902254, 734.59, 747.25, 728.76
03/28/2016, 733.53, 1300817, 736.79, 738.99, 732.5
03/24/2016, 735.3, 1570474, 732.01, 737.747, 731
03/23/2016, 738.06, 1431130, 742.36, 745.7199, 736.15
03/22/2016, 740.75, 1269263, 737.46, 745, 737.46
03/21/2016, 742.09, 1835963, 736.5, 742.5, 733.5157
03/18/2016, 737.6, 2982194, 741.86, 742, 731.83
03/17/2016, 737.78, 1859562, 736.45, 743.07, 736
03/16/2016, 736.09, 1621412, 726.37, 737.47, 724.51
03/15/2016, 728.33, 1720790, 726.92, 732.29, 724.77
03/14/2016, 730.49, 1717002, 726.81, 735.5, 725.15
03/11/2016, 726.82, 1968164, 720, 726.92, 717.125
03/10/2016, 712.82, 2830630, 708.12, 716.44, 703.36
03/09/2016, 705.24, 1419661, 698.47, 705.68, 694
03/08/2016, 693.97, 2075305, 688.59, 703.79, 685.34
03/07/2016, 695.16, 2986064, 706.9, 708.0912, 686.9
03/04/2016, 710.89, 1971379, 714.99, 716.49, 706.02
03/03/2016, 712.42, 1956958, 718.68, 719.45, 706.02
03/02/2016, 718.85, 1629501, 719, 720, 712
03/01/2016, 718.81, 2148608, 703.62, 718.81, 699.77
02/29/2016, 697.77, 2478214, 700.32, 710.89, 697.68
02/26/2016, 705.07, 2241785, 708.58, 713.43, 700.86
02/25/2016, 705.75, 1640430, 700.01, 705.98, 690.585
02/24/2016, 699.56, 1961258, 688.92, 700, 680.78
02/23/2016, 695.85, 2006572, 701.45, 708.4, 693.58
02/22/2016, 706.46, 1949046, 707.45, 713.24, 702.51
02/19/2016, 700.91, 1585152, 695.03, 703.0805, 694.05
02/18/2016, 697.35, 1880306, 710, 712.35, 696.03
02/17/2016, 708.4, 2490021, 699, 709.75, 691.38
02/16/2016, 691, 2517324, 692.98, 698, 685.05
02/12/2016, 682.4, 2138937, 690.26, 693.75, 678.6
02/11/2016, 683.11, 3021587, 675, 689.35, 668.8675
02/10/2016, 684.12, 2629130, 686.86, 701.31, 682.13
02/09/2016, 678.11, 3605792, 672.32, 699.9, 668.77
02/08/2016, 682.74, 4241416, 667.85, 684.03, 663.06
02/05/2016, 683.57, 5098357, 703.87, 703.99, 680.15
02/04/2016, 708.01, 5157988, 722.81, 727, 701.86
02/03/2016, 726.95, 6166731, 770.22, 774.5, 720.5
02/02/2016, 764.65, 6340548, 784.5, 789.8699, 764.65
02/01/2016, 752, 5065235, 750.46, 757.86, 743.27
01/29/2016, 742.95, 3464432, 731.53, 744.9899, 726.8
01/28/2016, 730.96, 2664956, 722.22, 733.69, 712.35
01/27/2016, 699.99, 2175913, 713.67, 718.235, 694.39
01/26/2016, 713.04, 1329141, 713.85, 718.28, 706.48
01/25/2016, 711.67, 1709777, 723.58, 729.68, 710.01
01/22/2016, 725.25, 2009951, 723.6, 728.13, 720.121
01/21/2016, 706.59, 2411079, 702.18, 719.19, 694.46
01/20/2016, 698.45, 3441642, 688.61, 706.85, 673.26
01/19/2016, 701.79, 2264747, 703.3, 709.98, 693.4101
01/15/2016, 694.45, 3604137, 692.29, 706.74, 685.37
01/14/2016, 714.72, 2225495, 705.38, 721.925, 689.1
01/13/2016, 700.56, 2497086, 730.85, 734.74, 698.61
01/12/2016, 726.07, 2010026, 721.68, 728.75, 717.3165
01/11/2016, 716.03, 2089495, 716.61, 718.855, 703.54
01/08/2016, 714.47, 2449420, 731.45, 733.23, 713
01/07/2016, 726.39, 2960578, 730.31, 738.5, 719.06
01/06/2016, 743.62, 1943685, 730, 747.18, 728.92
01/05/2016, 742.58, 1949386, 746.45, 752, 738.64
01/04/2016, 741.84, 3271348, 743, 744.06, 731.2577
12/31/2015, 758.88, 1500129, 769.5, 769.5, 758.34
12/30/2015, 771, 1293514, 776.6, 777.6, 766.9
12/29/2015, 776.6, 1764044, 766.69, 779.98, 766.43
12/28/2015, 762.51, 1515574, 752.92, 762.99, 749.52
12/24/2015, 748.4, 527223, 749.55, 751.35, 746.62
12/23/2015, 750.31, 1566723, 753.47, 754.21, 744
12/22/2015, 750, 1365420, 751.65, 754.85, 745.53
12/21/2015, 747.77, 1524535, 746.13, 750, 740
12/18/2015, 739.31, 3140906, 746.51, 754.13, 738.15
12/17/2015, 749.43, 1551087, 762.42, 762.68, 749
12/16/2015, 758.09, 1986319, 750, 760.59, 739.435
12/15/2015, 743.4, 2661199, 753, 758.08, 743.01
12/14/2015, 747.77, 2417778, 741.79, 748.73, 724.17
12/11/2015, 738.87, 2223284, 741.16, 745.71, 736.75
12/10/2015, 749.46, 1988035, 752.85, 755.85, 743.83
12/09/2015, 751.61, 2697978, 759.17, 764.23, 737.001
12/08/2015, 762.37, 1829004, 757.89, 764.8, 754.2
12/07/2015, 763.25, 1811336, 767.77, 768.73, 755.09
12/04/2015, 766.81, 2756194, 753.1, 768.49, 750
12/03/2015, 752.54, 2589641, 766.01, 768.995, 745.63
12/02/2015, 762.38, 2196721, 768.9, 775.955, 758.96
12/01/2015, 767.04, 2131827, 747.11, 768.95, 746.7
11/30/2015, 742.6, 2045584, 748.81, 754.93, 741.27
11/27/2015, 750.26, 838528, 748.46, 753.41, 747.49
11/25/2015, 748.15, 1122224, 748.14, 752, 746.06
11/24/2015, 748.28, 2333700, 752, 755.279, 737.63
11/23/2015, 755.98, 1414640, 757.45, 762.7075, 751.82
11/20/2015, 756.6, 2212934, 746.53, 757.92, 743
11/19/2015, 738.41, 1327265, 738.74, 742, 737.43
11/18/2015, 740, 1683978, 727.58, 741.41, 727
11/17/2015, 725.3, 1507449, 729.29, 731.845, 723.027
11/16/2015, 728.96, 1904395, 715.6, 729.49, 711.33
11/13/2015, 717, 2072392, 729.17, 731.15, 716.73
11/12/2015, 731.23, 1836567, 731, 737.8, 728.645
11/11/2015, 735.4, 1366611, 732.46, 741, 730.23
11/10/2015, 728.32, 1606499, 724.4, 730.59, 718.5001
11/09/2015, 724.89, 2068920, 730.2, 734.71, 719.43
11/06/2015, 733.76, 1510586, 731.5, 735.41, 727.01
11/05/2015, 731.25, 1861100, 729.47, 739.48, 729.47
11/04/2015, 728.11, 1705745, 722, 733.1, 721.9
11/03/2015, 722.16, 1565355, 718.86, 724.65, 714.72
11/02/2015, 721.11, 1885155, 711.06, 721.62, 705.85
10/30/2015, 710.81, 1907732, 715.73, 718, 710.05
10/29/2015, 716.92, 1455508, 710.5, 718.26, 710.01
10/28/2015, 712.95, 2178841, 707.33, 712.98, 703.08
10/27/2015, 708.49, 2232183, 707.38, 713.62, 704.55
10/26/2015, 712.78, 2709292, 701.55, 719.15, 701.26
10/23/2015, 702, 6651909, 727.5, 730, 701.5
10/22/2015, 651.79, 3994360, 646.7, 657.8, 644.01
10/21/2015, 642.61, 1792869, 654.15, 655.87, 641.73
10/20/2015, 650.28, 2498077, 664.04, 664.7197, 644.195
10/19/2015, 666.1, 1465691, 661.18, 666.82, 659.58
10/16/2015, 662.2, 1610712, 664.11, 664.97, 657.2
10/15/2015, 661.74, 1832832, 654.66, 663.13, 654.46
10/14/2015, 651.16, 1413798, 653.21, 659.39, 648.85
10/13/2015, 652.3, 1806003, 643.15, 657.8125, 643.15
10/12/2015, 646.67, 1275565, 642.09, 648.5, 639.01
10/09/2015, 643.61, 1648656, 640, 645.99, 635.318
10/08/2015, 639.16, 2181990, 641.36, 644.45, 625.56
10/07/2015, 642.36, 2092536, 649.24, 650.609, 632.15
10/06/2015, 645.44, 2235078, 638.84, 649.25, 636.5295
10/05/2015, 641.47, 1802263, 632, 643.01, 627
10/02/2015, 626.91, 2681241, 607.2, 627.34, 603.13
10/01/2015, 611.29, 1866223, 608.37, 612.09, 599.85
09/30/2015, 608.42, 2412754, 603.28, 608.76, 600.73
09/29/2015, 594.97, 2310065, 597.28, 605, 590.22
09/28/2015, 594.89, 3118693, 610.34, 614.605, 589.38
09/25/2015, 611.97, 2173134, 629.77, 629.77, 611
09/24/2015, 625.8, 2238097, 616.64, 627.32, 612.4
09/23/2015, 622.36, 1470633, 622.05, 628.93, 620
09/22/2015, 622.69, 2561551, 627, 627.55, 615.43
09/21/2015, 635.44, 1786543, 634.4, 636.49, 625.94
09/18/2015, 629.25, 5123314, 636.79, 640, 627.02
09/17/2015, 642.9, 2259404, 637.79, 650.9, 635.02
09/16/2015, 635.98, 1276250, 635.47, 637.95, 632.32
09/15/2015, 635.14, 2082426, 626.7, 638.7, 623.78
09/14/2015, 623.24, 1701618, 625.7, 625.86, 619.43
09/11/2015, 625.77, 1372803, 619.75, 625.78, 617.42
09/10/2015, 621.35, 1903334, 613.1, 624.16, 611.43
09/09/2015, 612.72, 1699686, 621.22, 626.52, 609.6
09/08/2015, 614.66, 2277487, 612.49, 616.31, 604.12
09/04/2015, 600.7, 2087028, 600, 603.47, 595.25
09/03/2015, 606.25, 1757851, 617, 619.71, 602.8213
09/02/2015, 614.34, 2573982, 605.59, 614.34, 599.71
09/01/2015, 597.79, 3699844, 602.36, 612.86, 594.1
08/31/2015, 618.25, 2172168, 627.54, 635.8, 617.68
08/28/2015, 630.38, 1975818, 632.82, 636.88, 624.56
08/27/2015, 637.61, 3485906, 639.4, 643.59, 622
08/26/2015, 628.62, 4187276, 610.35, 631.71, 599.05
08/25/2015, 582.06, 3521916, 614.91, 617.45, 581.11
08/24/2015, 589.61, 5727282, 573, 614, 565.05
08/21/2015, 612.48, 4261666, 639.78, 640.05, 612.33
08/20/2015, 646.83, 2854028, 655.46, 662.99, 642.9
08/19/2015, 660.9, 2132265, 656.6, 667, 654.19
08/18/2015, 656.13, 1455664, 661.9, 664, 653.46
08/17/2015, 660.87, 1050553, 656.8, 661.38, 651.24
08/14/2015, 657.12, 1071333, 655.01, 659.855, 652.66
08/13/2015, 656.45, 1807182, 659.323, 664.5, 651.661
08/12/2015, 659.56, 2938651, 663.08, 665, 652.29
08/11/2015, 660.78, 5016425, 669.2, 674.9, 654.27
08/10/2015, 633.73, 1653836, 639.48, 643.44, 631.249
08/07/2015, 635.3, 1403441, 640.23, 642.68, 629.71
08/06/2015, 642.68, 1572150, 645, 645.379, 632.25
08/05/2015, 643.78, 2331720, 634.33, 647.86, 633.16
08/04/2015, 629.25, 1486858, 628.42, 634.81, 627.16
08/03/2015, 631.21, 1301439, 625.34, 633.0556, 625.34
07/31/2015, 625.61, 1705286, 631.38, 632.91, 625.5
07/30/2015, 632.59, 1472286, 630, 635.22, 622.05
07/29/2015, 631.93, 1573146, 628.8, 633.36, 622.65
07/28/2015, 628, 1713684, 632.83, 632.83, 623.31
07/27/2015, 627.26, 2673801, 621, 634.3, 620.5
07/24/2015, 623.56, 3622089, 647, 648.17, 622.52
07/23/2015, 644.28, 3014035, 661.27, 663.63, 641
07/22/2015, 662.1, 3707818, 660.89, 678.64, 659
07/21/2015, 662.3, 3363342, 655.21, 673, 654.3
07/20/2015, 663.02, 5857092, 659.24, 668.88, 653.01
07/17/2015, 672.93, 11153500, 649, 674.468, 645
07/16/2015, 579.85, 4559712, 565.12, 580.68, 565
07/15/2015, 560.22, 1782264, 560.13, 566.5029, 556.79
07/14/2015, 561.1, 3231284, 546.76, 565.8487, 546.71
07/13/2015, 546.55, 2204610, 532.88, 547.11, 532.4001
07/10/2015, 530.13, 1954951, 526.29, 532.56, 525.55
07/09/2015, 520.68, 1840155, 523.12, 523.77, 520.35
07/08/2015, 516.83, 1293372, 521.05, 522.734, 516.11
07/07/2015, 525.02, 1595672, 523.13, 526.18, 515.18
07/06/2015, 522.86, 1278587, 519.5, 525.25, 519
07/02/2015, 523.4, 1235773, 521.08, 524.65, 521.08
07/01/2015, 521.84, 1961197, 524.73, 525.69, 518.2305
06/30/2015, 520.51, 2234284, 526.02, 526.25, 520.5
06/29/2015, 521.52, 1935361, 525.01, 528.61, 520.54
06/26/2015, 531.69, 2108629, 537.26, 537.76, 531.35
06/25/2015, 535.23, 1332412, 538.87, 540.9, 535.23
06/24/2015, 537.84, 1286576, 540, 540, 535.66
06/23/2015, 540.48, 1196115, 539.64, 541.499, 535.25
06/22/2015, 538.19, 1243535, 539.59, 543.74, 537.53
06/19/2015, 536.69, 1890916, 537.21, 538.25, 533.01
06/18/2015, 536.73, 1832450, 531, 538.15, 530.79
06/17/2015, 529.26, 1269113, 529.37, 530.98, 525.1
06/16/2015, 528.15, 1071728, 528.4, 529.6399, 525.56
06/15/2015, 527.2, 1632675, 528, 528.3, 524
06/12/2015, 532.33, 955489, 531.6, 533.12, 530.16
06/11/2015, 534.61, 1208632, 538.425, 538.98, 533.02
06/10/2015, 536.69, 1813775, 529.36, 538.36, 529.35
06/09/2015, 526.69, 1454172, 527.56, 529.2, 523.01
06/08/2015, 526.83, 1523960, 533.31, 534.12, 526.24
06/05/2015, 533.33, 1375008, 536.35, 537.2, 532.52
06/04/2015, 536.7, 1346044, 537.76, 540.59, 534.32
06/03/2015, 540.31, 1716836, 539.91, 543.5, 537.11
06/02/2015, 539.18, 1936721, 532.93, 543, 531.33
06/01/2015, 533.99, 1900257, 536.79, 536.79, 529.76
05/29/2015, 532.11, 2590445, 537.37, 538.63, 531.45
05/28/2015, 539.78, 1029764, 538.01, 540.61, 536.25
05/27/2015, 539.79, 1524783, 532.8, 540.55, 531.71
05/26/2015, 532.32, 2404462, 538.12, 539, 529.88
05/22/2015, 540.11, 1175065, 540.15, 544.19, 539.51
05/21/2015, 542.51, 1461431, 537.95, 543.8399, 535.98
05/20/2015, 539.27, 1430565, 538.49, 542.92, 532.972
05/19/2015, 537.36, 1964037, 533.98, 540.66, 533.04
05/18/2015, 532.3, 2001117, 532.01, 534.82, 528.85
05/15/2015, 533.85, 1965088, 539.18, 539.2743, 530.38
05/14/2015, 538.4, 1401005, 533.77, 539, 532.41
05/13/2015, 529.62, 1253005, 530.56, 534.3215, 528.655
05/12/2015, 529.04, 1633180, 531.6, 533.2089, 525.26
05/11/2015, 535.7, 904465, 538.37, 541.98, 535.4
05/08/2015, 538.22, 1527181, 536.65, 541.15, 536
05/07/2015, 530.7, 1543986, 523.99, 533.46, 521.75
05/06/2015, 524.22, 1566865, 531.24, 532.38, 521.085
05/05/2015, 530.8, 1380519, 538.21, 539.74, 530.3906
05/04/2015, 540.78, 1303830, 538.53, 544.07, 535.06
05/01/2015, 537.9, 1758085, 538.43, 539.54, 532.1
04/30/2015, 537.34, 2080834, 547.87, 548.59, 535.05
04/29/2015, 549.08, 1696886, 550.47, 553.68, 546.905
04/28/2015, 553.68, 1490735, 554.64, 556.02, 550.366
04/27/2015, 555.37, 2390696, 563.39, 565.95, 553.2001
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
This is a pure Python implementation of the bogosort algorithm,
also known as permutation sort, stupid sort, slowsort, shotgun sort, or monkey sort.
Bogosort generates random permutations until it guesses the correct one.
More info on: https://en.wikipedia.org/wiki/Bogosort
For doctests run following command:
python -m doctest -v bogo_sort.py
or
python3 -m doctest -v bogo_sort.py
For manual testing run:
python bogo_sort.py
"""
import random
def bogo_sort(collection):
"""Pure implementation of the bogosort algorithm in Python
:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending
Examples:
>>> bogo_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]
>>> bogo_sort([])
[]
>>> bogo_sort([-2, -5, -45])
[-45, -5, -2]
"""
def is_sorted(collection):
if len(collection) < 2:
return True
for i in range(len(collection) - 1):
if collection[i] > collection[i + 1]:
return False
return True
while not is_sorted(collection):
random.shuffle(collection)
return collection
if __name__ == "__main__":
user_input = input("Enter numbers separated by a comma:\n").strip()
unsorted = [int(item) for item in user_input.split(",")]
print(bogo_sort(unsorted))
| """
This is a pure Python implementation of the bogosort algorithm,
also known as permutation sort, stupid sort, slowsort, shotgun sort, or monkey sort.
Bogosort generates random permutations until it guesses the correct one.
More info on: https://en.wikipedia.org/wiki/Bogosort
For doctests run following command:
python -m doctest -v bogo_sort.py
or
python3 -m doctest -v bogo_sort.py
For manual testing run:
python bogo_sort.py
"""
import random
def bogo_sort(collection):
"""Pure implementation of the bogosort algorithm in Python
:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending
Examples:
>>> bogo_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]
>>> bogo_sort([])
[]
>>> bogo_sort([-2, -5, -45])
[-45, -5, -2]
"""
def is_sorted(collection):
if len(collection) < 2:
return True
for i in range(len(collection) - 1):
if collection[i] > collection[i + 1]:
return False
return True
while not is_sorted(collection):
random.shuffle(collection)
return collection
if __name__ == "__main__":
user_input = input("Enter numbers separated by a comma:\n").strip()
unsorted = [int(item) for item in user_input.split(",")]
print(bogo_sort(unsorted))
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Champernowne's constant
Problem 40
An irrational decimal fraction is created by concatenating the positive
integers:
0.123456789101112131415161718192021...
It can be seen that the 12th digit of the fractional part is 1.
If dn represents the nth digit of the fractional part, find the value of the
following expression.
d1 × d10 × d100 × d1000 × d10000 × d100000 × d1000000
"""
def solution():
"""Returns
>>> solution()
210
"""
constant = []
i = 1
while len(constant) < 1e6:
constant.append(str(i))
i += 1
constant = "".join(constant)
return (
int(constant[0])
* int(constant[9])
* int(constant[99])
* int(constant[999])
* int(constant[9999])
* int(constant[99999])
* int(constant[999999])
)
if __name__ == "__main__":
print(solution())
| """
Champernowne's constant
Problem 40
An irrational decimal fraction is created by concatenating the positive
integers:
0.123456789101112131415161718192021...
It can be seen that the 12th digit of the fractional part is 1.
If dn represents the nth digit of the fractional part, find the value of the
following expression.
d1 × d10 × d100 × d1000 × d10000 × d100000 × d1000000
"""
def solution():
"""Returns
>>> solution()
210
"""
constant = []
i = 1
while len(constant) < 1e6:
constant.append(str(i))
i += 1
constant = "".join(constant)
return (
int(constant[0])
* int(constant[9])
* int(constant[99])
* int(constant[999])
* int(constant[9999])
* int(constant[99999])
* int(constant[999999])
)
if __name__ == "__main__":
print(solution())
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| r"""
Problem:
The n queens problem is: placing N queens on a N * N chess board such that no queen
can attack any other queens placed on that chess board. This means that one queen
cannot have any other queen on its horizontal, vertical and diagonal lines.
Solution:
To solve this problem we will use simple math. First we know the queen can move in all
the possible ways, we can simplify it in this: vertical, horizontal, diagonal left and
diagonal right.
We can visualize it like this:
left diagonal = \
right diagonal = /
On a chessboard vertical movement could be the rows and horizontal movement could be
the columns.
In programming we can use an array, and in this array each index could be the rows and
each value in the array could be the column. For example:
. Q . . We have this chessboard with one queen in each column and each queen
. . . Q can't attack to each other.
Q . . . The array for this example would look like this: [1, 3, 0, 2]
. . Q .
So if we use an array and we verify that each value in the array is different to each
other we know that at least the queens can't attack each other in horizontal and
vertical.
At this point we have it halfway completed and we will treat the chessboard as a
Cartesian plane. Hereinafter we are going to remember basic math, so in the school we
learned this formula:
Slope of a line:
y2 - y1
m = ----------
x2 - x1
This formula allow us to get the slope. For the angles 45º (right diagonal) and 135º
(left diagonal) this formula gives us m = 1, and m = -1 respectively.
See::
https://www.enotes.com/homework-help/write-equation-line-that-hits-origin-45-degree-1474860
Then we have this other formula:
Slope intercept:
y = mx + b
b is where the line crosses the Y axis (to get more information see:
https://www.mathsisfun.com/y_intercept.html), if we change the formula to solve for b
we would have:
y - mx = b
And since we already have the m values for the angles 45º and 135º, this formula would
look like this:
45º: y - (1)x = b
45º: y - x = b
135º: y - (-1)x = b
135º: y + x = b
y = row
x = column
Applying these two formulas we can check if a queen in some position is being attacked
for another one or vice versa.
"""
from __future__ import annotations
def depth_first_search(
possible_board: list[int],
diagonal_right_collisions: list[int],
diagonal_left_collisions: list[int],
boards: list[list[str]],
n: int,
) -> None:
"""
>>> boards = []
>>> depth_first_search([], [], [], boards, 4)
>>> for board in boards:
... print(board)
['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
['. . Q . ', 'Q . . . ', '. . . Q ', '. Q . . ']
"""
# Get next row in the current board (possible_board) to fill it with a queen
row = len(possible_board)
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board])
return
# We iterate each column in the row to find all possible results in each row
for col in range(n):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
possible_board + [col],
diagonal_right_collisions + [row - col],
diagonal_left_collisions + [row + col],
boards,
n,
)
def n_queens_solution(n: int) -> None:
boards: list[list[str]] = []
depth_first_search([], [], [], boards, n)
# Print all the boards
for board in boards:
for column in board:
print(column)
print("")
print(len(boards), "solutions were found.")
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| r"""
Problem:
The n queens problem is: placing N queens on a N * N chess board such that no queen
can attack any other queens placed on that chess board. This means that one queen
cannot have any other queen on its horizontal, vertical and diagonal lines.
Solution:
To solve this problem we will use simple math. First we know the queen can move in all
the possible ways, we can simplify it in this: vertical, horizontal, diagonal left and
diagonal right.
We can visualize it like this:
left diagonal = \
right diagonal = /
On a chessboard vertical movement could be the rows and horizontal movement could be
the columns.
In programming we can use an array, and in this array each index could be the rows and
each value in the array could be the column. For example:
. Q . . We have this chessboard with one queen in each column and each queen
. . . Q can't attack to each other.
Q . . . The array for this example would look like this: [1, 3, 0, 2]
. . Q .
So if we use an array and we verify that each value in the array is different to each
other we know that at least the queens can't attack each other in horizontal and
vertical.
At this point we have it halfway completed and we will treat the chessboard as a
Cartesian plane. Hereinafter we are going to remember basic math, so in the school we
learned this formula:
Slope of a line:
y2 - y1
m = ----------
x2 - x1
This formula allow us to get the slope. For the angles 45º (right diagonal) and 135º
(left diagonal) this formula gives us m = 1, and m = -1 respectively.
See::
https://www.enotes.com/homework-help/write-equation-line-that-hits-origin-45-degree-1474860
Then we have this other formula:
Slope intercept:
y = mx + b
b is where the line crosses the Y axis (to get more information see:
https://www.mathsisfun.com/y_intercept.html), if we change the formula to solve for b
we would have:
y - mx = b
And since we already have the m values for the angles 45º and 135º, this formula would
look like this:
45º: y - (1)x = b
45º: y - x = b
135º: y - (-1)x = b
135º: y + x = b
y = row
x = column
Applying these two formulas we can check if a queen in some position is being attacked
for another one or vice versa.
"""
from __future__ import annotations
def depth_first_search(
possible_board: list[int],
diagonal_right_collisions: list[int],
diagonal_left_collisions: list[int],
boards: list[list[str]],
n: int,
) -> None:
"""
>>> boards = []
>>> depth_first_search([], [], [], boards, 4)
>>> for board in boards:
... print(board)
['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
['. . Q . ', 'Q . . . ', '. . . Q ', '. Q . . ']
"""
# Get next row in the current board (possible_board) to fill it with a queen
row = len(possible_board)
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board])
return
# We iterate each column in the row to find all possible results in each row
for col in range(n):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
possible_board + [col],
diagonal_right_collisions + [row - col],
diagonal_left_collisions + [row + col],
boards,
n,
)
def n_queens_solution(n: int) -> None:
boards: list[list[str]] = []
depth_first_search([], [], [], boards, n)
# Print all the boards
for board in boards:
for column in board:
print(column)
print("")
print(len(boards), "solutions were found.")
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| -1 |
TheAlgorithms/Python | 5,362 | Rewrite parts of Vector and Matrix | ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| tianyizheng02 | "2021-10-16T22:20:43Z" | "2021-10-27T03:48:43Z" | 8285913e81fb8f46b90d0e19da233862964c07dc | fe5c711ce68cb1d410d13d8c8a02ee7bfd49b1d3 | Rewrite parts of Vector and Matrix. ### **Describe your change:**
Rewrote parts of Vector and Matrix and added unit tests as needed
* [x] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [x] Documentation change?
### **Checklist:**
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
|